WorldWideScience

Sample records for maize cropping system

  1. Integrating winter camelina into maize and soybean cropping systems

    Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems. The objectives of this st...

  2. Soil Quality Indicators as Affected by a Long Term Barley-Maize and Maize Cropping Systems

    Barbara Manachini

    2009-03-01

    Full Text Available Most soil studies aim a better characterization of the system through indicators. In the present study nematofauna and soil structure were chosen as indicators to be assess soil health as related to agricultural practices. The field research was carried out on the two fodder cropping systems continuous maize (CM, Zea mays L. and a 3-year rotation of silage-maize – silage-barley (Hordeum vulgare L. with Italian ryegrass (R3 and grain-maize maintained in these conditions for 18 years. Each crop system was submitted to two management options: 1 the high input level (H, done as a conventional tillage, 2 the low input level (L, where the tillage was replaced by harrowing and the manure was reduced by 30%. The effects of the two different cropping systems was assessed on soil nematofauna and soil physic parameters (structure or aggregate stability. Comparison was made of general composition, trophic structure and biodiversity of the nematofauna collected in both systems. Differences in nematode genera composition and distribution between the two systems were also recorded. The monoculture, compared to the three year rotation, had a negative influence on the nematofauna composition and its ecological succession. The Structural Stability Index (SSI values indicate that both the cropping systems had a negative effect on the aggregate stability. The results indicate that nematofauna can be used to assess the effects of cropping systems on soil ecosystem, and therefore be considered a good indicator of soil health to integrate information from different chemical or physical indicators.

  3. Soil Quality Indicators as Affected by a Long Term Barley-Maize and Maize Cropping Systems

    Anna Corsini

    2011-02-01

    Full Text Available Most soil studies aim a better characterization of the system through indicators. In the present study nematofauna and soil structure were chosen as indicators to be assess soil health as related to agricultural practices. The field research was carried out on the two fodder cropping systems continuous maize (CM, Zea mays L. and a 3-year rotation of silage-maize – silage-barley (Hordeum vulgare L. with Italian ryegrass (R3 and grain-maize maintained in these conditions for 18 years. Each crop system was submitted to two management options: 1 the high input level (H, done as a conventional tillage, 2 the low input level (L, where the tillage was replaced by harrowing and the manure was reduced by 30%. The effects of the two different cropping systems was assessed on soil nematofauna and soil physic parameters (structure or aggregate stability. Comparison was made of general composition, trophic structure and biodiversity of the nematofauna collected in both systems. Differences in nematode genera composition and distribution between the two systems were also recorded. The monoculture, compared to the three year rotation, had a negative influence on the nematofauna composition and its ecological succession. The Structural Stability Index (SSI values indicate that both the cropping systems had a negative effect on the aggregate stability. The results indicate that nematofauna can be used to assess the effects of cropping systems on soil ecosystem, and therefore be considered a good indicator of soil health to integrate information from different chemical or physical indicators.

  4. Soil Erodibility Parameters Under Various Cropping Systems of Maize

    van Dijk, P. M.; van der Zijp, M.; Kwaad, F. J. P. M.

    1996-08-01

    For four years, runoff and soil loss from seven cropping systems of fodder maize have been measured on experimental plots under natural and simulated rainfall. Besides runoff and soil loss, several variables have also been measured, including rainfall kinetic energy, degree of slaking, surface roughness, aggregate stability, soil moisture content, crop cover, shear strength and topsoil porosity. These variables explain a large part of the variance in measured runoff, soil loss and splash erosion under the various cropping systems. The following conclusions were drawn from the erosion measurements on the experimental plots (these conclusions apply to the spatial level at which the measurements were carried out). (1) Soil tillage after maize harvest strongly reduced surface runoff and soil loss during the winter; sowing of winter rye further reduced winter erosion, though the difference with a merely tilled soil is small. (2) During spring and the growing season, soil loss is reduced strongly if the soil surface is partly covered by plant residues; the presence of plant residue on the surface appeared to be essential in achieving erosion reduction in summer. (3) Soil loss reductions were much higher than runoff reductions; significant runoff reduction is only achieved by the straw system having flat-lying, non-fixed plant residue on the soil surface; the other systems, though effective in reducing soil loss, were not effective in reducing runoff.

  5. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  6. Effect of intercropping period management on runoff and erosion in a maize cropping system.

    Laloy, Eric; Bielders, C L

    2010-01-01

    The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest.

  7. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes

    Hu, X.K.; Su, F.; Ju, X.T.; Gao, B.; Oenema, O.; Christie, P.; Huang, B.X.; Jiang, R.F.; Zhang, F.S.

    2013-01-01

    Here, we report on a two-years field experiment aimed at the quantification of the emissions of nitrous oxide (N2O) and methane (CH4) from the dominant wheat maize double cropping system in North China Plain. The experiment had 6 different fertilization strategies, including a control treatment,

  8. No till system of maize and crop-livestock integration

    Edmar Eduardo Bassan Mendes

    2013-12-01

    Full Text Available The aim of this work was to evaluate the implementation of the Integrated Crop-Livestock (ICL in beef cattle farms where the corn was planted directly on the pasture, under no-till system, in the first year. The Crop-Livestock Integration (CLI models evaluated consisted of Brachiaria decumbens pastures intercropped with corn in the no tillage system. However, the evaluated CLI system differed from the usual system because it did not use the conventional tillage in the first year, while the conventional soil preparation and sowing of grass is used by most of the Brazilian farms. The results show that in the first year the period of time spent planting and side-dressing nitrogen   on corn was longer compared to the following years, mainly due to the lack of uniformity of the ground surface, once no conventional tillage was used to prepare the soil and these operations were performed with own implements for direct planting. Therefore, many seeds were placed either very deep or not buried, thus compromising the crop and becoming necessary to replant the corn with a manual planter. From the second year on, even though the conditions were not ideal, the ground surface became more accessible for the sowing and cultivation of corn, after the tillage of the first year. The time spent in most operations performed was longer than usual, especially planting and side-dressing nitrogen on the corn so that the discs did not chop off plants due to the irregularities of the ground surface. Productivity dropped due to the problems already discussed that contributed to a lower income. It is therefore concluded that, under these experimental conditions, the conventional tillage is imperative when implementing the CLI system, even considering the soil management improvements observed from the first to the second year.

  9. Nitrogen fertilizer fate after introducing maize into a continuous paddy rice cropping system

    Thiemann, Irabella; He, Yao; Siemens, Jan; Brüggemann, Nicolas; Lehndorf, Eva; Amelung, Wulf

    2017-04-01

    After introducing upland crops into permanent flooded cropping systems, soil conditions temporally change from anaerobic to aerobic, which profoundly impacts nitrogen (N) dynamics. In the framework of the DFG research unit 1701 ICON we applied a single 15N-urea pulse in a field experiment in the Philippines with three different crop rotations: continuous paddy rice, paddy rice-dry rice, and paddy rice-maize. Subsequently, we traced the fate of the labelled urea in bulk soil, rhizosphere, roots, biomass and microbial residues (amino sugars) within the following two years. 15N recovery in the first 5 cm of bulk soil was highest in the first dry season of continuous paddy rice cropping (37.8 % of applied 15N) and lowest in the paddy rice-maize rotation (19.2 %). While an accumulation over time could be observed in bulk soil in 5-20 cm depth of the continuous paddy rice system, the recoveries decreased over time within the following two years in the other cropping systems. Highest 15N-recovery in shoots and roots were found in the continuous paddy rice system in the first dry season (27.3 % in shoots, 3.2 % in roots) as well as in the following wet season (4.2 % in shoots, 0.3 % in roots). Lowest recoveries in biomass were found for the paddy rice-dry rice rotation. Long-term fixation of 15N in microbial biomass residues was observed in all cropping systems (2-3 % in the 3rd dry season). The results indicate that the introduction of maize into a continuous paddy rice cropping system can reduce the fertilizer N use efficiency especially in the first year, most likely due to nitrate leaching and gaseous losses to the atmosphere.

  10. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya.

    Richard, Kyalo; Abdel-Rahman, Elfatih M; Subramanian, Sevgan; Nyasani, Johnson O; Thiel, Michael; Jozani, Hosein; Borgemeister, Christian; Landmann, Tobias

    2017-11-03

    Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer's accuracy and UA: user's accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.

  11. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya

    Kyalo Richard

    2017-11-01

    Full Text Available Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step. An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer’s accuracy and UA: user’s accuracy for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10–20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.

  12. Remediation Of Cadmium And Lead Contamination In Mustard-Maize Cropping System

    Amrit Kumar Jha

    2017-10-01

    Full Text Available Farmers field trial was conducted at Patratu Ramgarh to study the effect of lime compost plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi for remediation of high trace metal levels in mustard-maize cropping system. Results reveal that microbial inoculants with or without vermicompost increased the trace metal removal however vermicompost alone decreased the removal. Vermicompost lime and lime vermicompost significantly reduced the total Cd uptake by mustard and maize. Inoculation with Glomus mossae resulted in elevated level of Cd in mustard and maize plants. Total trace metal content in soil was significantly reduced by microbial inoculation alone or that in combination with vermicompost. However DTPA-extractable trace metals decreased with addition of amendments as well as inoculation of microbes. Glomus mossae was most effective in remediating the trace metals. under this study the total metal content reduced effectively by their inoculation alone while inoculation along with vermicompost resulted in reducing the DTPA-extractable fraction more effectively. The extent of reduction in total Cd and Pb after harvest of both crops was 6 to 26 and 5 to 12 per cent respectively over control. However the corresponding values observed for DTPA extractable Cd and Pb was 53 to 65 and 20 to 32 per cent over control in microbial inoculation and 46 to 47 and 14 to 17 per cent in case of amendments.

  13. Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems

    Krogh, P. H.; Griffiths, B.; Demsar, D.

    2007-01-01

    -toxin producing transgenic maize line MON810 was studied for 1 year. At a Danish study site, Foulum (Jutland), one year of Bt corn was followed by 2 years of herbicide tolerant corn. At the French study site the most prominent effects observed were due to the tillage method where RT significantly reduced...

  14. Regional application of a cropping systems simulation model: crop residue retention in maize production systems of Jalisco, Mexico

    Hartkamp, A.D.; White, J.W.; Rossing, W.A.H.; Ittersum, van M.K.; Bakker, E.J.; Rabbinge, R.

    2004-01-01

    To ensure the productivity of smallholder maize production systems in Central America, increased attention must be paid to conserving soil and water resources. Various stakeholders from national agricultural research services (NARS), networks, non-governmental organizations (NGO's) and research

  15. Effects of cover crops on the nitrogen fluxes in a silage maize production system

    Schröder, J.J.; Dijk, van W.; Groot, de W.J.M.

    1996-01-01

    Rye and grass cover crops can potentially intercept residual soil mineral nitrogen (SMN), reduce overwinter leaching, transfer SMN to next growing seasons and reduce the fertilizer need of subsequent crops. These aspects were studied for 6 years in continuous silage maize cv. LG 2080 production

  16. Influence of Soil Tillage Systems on Soil Respiration and Production on Wheat, Maize and Soybean Crop

    Moraru, P. I.; Rusu, T.

    2012-04-01

    Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant, fertilizer etc. The data presented in this paper were obtained on argic-stagnic Faeoziom (SRTS, 2003). These areas were was our research, presents a medium multiannual temperature of 8.20C, medium of multiannual rain drowns: 613 mm. The experimental variants chosen were: A. Conventional system (CS): V1-reversible plough (22-25 cm)+rotary grape (8-10 cm); B. Minimum tillage system (MT): V2 - paraplow (18-22 cm) + rotary grape (8-10 cm); V3 - chisel (18-22 cm) + rotary grape (8-10 cm);V4 - rotary grape (10-12 cm); C. No-Tillage systems (NT): V5 - direct sowing. The experimental design was a split-plot design with three replications. In one variant the area of a plot was 300 m2. The experimental variants were studied in the 3 years crop rotation: maize - soy-bean - autumn wheat. To soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest) using ACE Automated Soil CO2 Exchange System. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration, the daily average is lower at NT (315-1914 mmoli m-2s-1), followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Productions obtained at MT and NT don't have significant differences at wheat and are higher at soybean. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility. Acknowledgments: This work was supported by CNCSIS

  17. Yield and water use efficiencies of maize and cowpea as affected by tillage and cropping systems in semi-arid Eastern Kenya

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Heng, K.L

    2012-01-01

    Soil water conservation through tillage is widely accepted as one of the ways of improving crop yields in rainfed agriculture. Field experiments were conducted between 2007 and 2009 to evaluate the effects of conservation tillage on the yields and crop water use efficiency of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) in eastern Kenya. Experimental treatments were a combination of three tillage practices and four cropping systems. Tillage practices were tied-ridges, subsoiling-ripping and ox-ploughing. The cropping systems were single crop maize, single crop cowpea, intercropped maize.cowpea and single crop maize with manure. The treatments were arranged in split plots with tillage practices as the main plots and cropping systems as the sub-plots in a Randomized Complete Block Design (RCBD). The results showed that tied-ridge tillage had the greatest plant available water content while subsoiling-ripping tillage had the least in all seasons. Averaged across seasons and cropping season, tillage did not have a significant effects on maize grain yield but it did have a significant effect on crop grain and dry matter water use efficiency (WUE). Nevertheless, maize grain yields and WUE values were generally greater under tied-ridge tillage than under subsoiling-ripping and ox-plough tillages. The yields and WUE of cowpea under subsoiling-ripping tillage were less than those of ox-plough tillage. When averaged across the seasons and tillage systems, the cropping system with the manure treatment increased (P.0.05) maize grain yield, grain WUE and dry matter WUE by 36%, 30%, 26% respectively, compared to treatments without manure. Maize and cowpea when intercropped under ox-plough and ripping tillage systems did not have any yield advantage over the single crop

  18. Effects of different cropping systems and weed management methods on free energy and content of pigments in maize

    Igor Spasojević

    2014-03-01

    Full Text Available Rotation is a cropping system that has many advantages and ensures better crop growth and yielding. Its combinination with other cropping measures can ensure optimal crop density for maximal growth and photosynthesis efficiency. The aim of this study was to investigate the influence of different cropping systems: monoculture and two rotations, including maize, wheat and soybean (MSW and MWS, and different weed management methods (weed removal by hoeing, application of a full recommended herbicide dose (RD and half that dose (0.5 RD, and weedy check on weed biomass and maize growth parameters - leaf area index (LAI, free energy, contents of chlorophyll and carotenoids, grain yield, and their possible relationships in two fields of the maize hybrids ZP 677 (H1 and ZP 606 (H2. The lowest LAI and grain yield were found in monoculture, particularly in weedy check, which had relatively high weed infestation. Higher weed biomass was also observed in herbicide treated plots in monoculture. Such high competition pressure indicates a stress reflected on reduced LAI and chlorophyll content, and increased free energy and content of carotenoids. On the other hand, rotation, particularly if it is combined with the application of herbicides or hoeing, had a positive impact on yielding potential by increasing LAI and the contents of chlorophyll and carotenoids, and decreasing free energy.

  19. Diurnal Patterns of Heterotrophic and Autotrophic Soil Respiration in Maize and Switchgrass Bioenergy Cropping Systems

    von Haden, A.; Marin-Spiotta, E.; Jackson, R. D.; Kucharik, C. J.

    2016-12-01

    A high proportion of carbon lost from terrestrial ecosystems occurs via soil CO2 respiration. Soil respiration is comprised of two contrasting sources: heterotrophic respiration (RH) from the decomposition of organic matter and autotrophic respiration (RA) from plant root metabolism. Since the two sources of soil respiration vary widely in their origin, the controls of each source are also likely to differ. However, the challenge of partitioning soil respiration sources in situ has limited our mechanistic understanding of RH and RA. Our objective was to evaluate the in situ diurnal controls of RH and RA in maize (Zea mays L.) and switchgrass (Panicum virgatum L.) bioenergy cropping systems. We hypothesized that both RH and RA would follow diurnal soil temperature trends, but that RA would also respond to diel patterns of photosynthetically active radiation (PAR). We also expected that diurnal soil respiration patterns would vary significantly within the growing season. We evaluated our hypothesis with six diurnal soil respiration campaigns during the 2015 and 2016 growing seasons at Arlington, WI, USA. RH showed clear oscillating diel trends, typically peaking in the mid-afternoon when near-surface soil temperatures were highest. Diurnal RA patterns were more nuanced than RH, but were generally highest in the late afternoon and showed the most pronounced diel trends during peak growing season in July. RA also tended to spike in concert with PAR, but this effect was much more prominent in maize than switchgrass. Continuing efforts will attempt to quantitatively separate the effects of soil temperature and PAR on RA.

  20. Effects of tillage and cropping systems on yield and nitrogen fixation of cowpea intercropped with maize in northen Guinea savanna zone of Ghana

    Kombiok, J.M.; Safo, E.Y; Quansah, C.

    2006-01-01

    Published information is scanty on the response of crops in mixed cropping systems to the various tillage systems practised by farmers in the northern savanna zone of Ghana. A field experiment assessed the yield and nitrogen (N) fixation of cowpea (Vigna unguiculata (L.) Walp) intercropped with maize (Zea mays L.) on four different tillage systems at Nyankpala in the Northern Region of Ghana. The experiment was laid in a split-plot design with four replications. The main factor was tillage systems comprising conventional (Con), bullock plough (BP), hand hoe (HH) and zero tillage (ZT). The sub-factor was cropping systems (CRPSYT) which consisted of sole maize, sole cowpea, maize/cowpea inter-row cropping system, and bare fallow in 2000. The last named was replaced by maize/cowpea intra-row cropping system in 2001. The results showed that Con and BP, which produced over 10 cm plough depth, significantly reduced soil bulk density that favoured significant (P I). The LERs ranged from 1.43 to 1.79 in 2000, and from 1.23 to 1.24 in 2001 for Con and ZT, respectively. These indicate 33 and 52 percent mean increases in productivity of cowpea and maize, respectively, over their pure stands across the 2 years. However, grain yields of both crops from the inter- and intra-row cropping systems were not different. (au)

  1. Pigeon Pea and Cowpea-Based Cropping Systems Improve Vesicular Arbuscular Mycorrhizal Fungal Colonisation of Subsequent Maize on the Alfisols in Central Malawi

    Keston O. W. Njira

    2017-01-01

    Full Text Available Mycorrhizal associations contribute to the sustainability of crop production systems through their roles in nutrient cycling and other benefits in the soil-plant ecosystems. A two-year study was conducted on the Alfisols of Lilongwe and Dowa districts, Central Malawi, to assess the vesicular-arbuscular mycorrhizal (VAM fungal colonisation levels in pigeon pea, cowpea, and maize grown in sole cropping, legume-cereal, and legume-legume intercropping systems and in the maize grown in short rotation (year 2 as influenced by the previous cropping systems and N fertilizer application. The gridline intersect method was used to assess the VAM fungal colonisation levels. Results showed that all treatments that included legumes whether grown as sole crop, in legume-cereal or in legume-legume cropping systems in the previous year, had significantly higher (P < 0.05 VAM fungal colonisation of the rotational maize crop roots by a range 39% to 50% and 19% to 47% than those in maize supplied and not supplied with N fertilizer, respectively, in a maize-maize short rotation, at the Lilongwe site. A similar trend was reported for the Dowa site. Furthermore, there were positive correlations between VAM fungal colonisation and the plant P content, dry matter yield, and nodule numbers. Further studies may help to assess the diversity of VAM fungal species in Malawi soils and identify more adaptive ones for inoculation studies.

  2. Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system

    Hüppi, R.; Felber, R.; Neftel, A.; Six, J.; Leifeld, J.

    2015-12-01

    Biochar, a carbon-rich, porous pyrolysis product of organic residues may positively affect plant yield and can, owing to its inherent stability, promote soil carbon sequestration when amended to agricultural soils. Another possible effect of biochar is the reduction in emissions of nitrous oxide (N2O). A number of laboratory incubations have shown significantly reduced N2O emissions from soil when mixed with biochar. Emission measurements under field conditions however are more scarce and show weaker or no reductions, or even increases in N2O emissions. One of the hypothesised mechanisms for reduced N2O emissions from soil is owing to the increase in soil pH following the application of alkaline biochar. To test the effect of biochar on N2O emissions in a temperate maize cropping system, we set up a field trial with a 20t ha-1 biochar treatment, a limestone treatment adjusted to the same pH as the biochar treatment (pH 6.5), and a control treatment without any addition (pH 6.1). An automated static chamber system measured N2O emissions for each replicate plot (n = 3) every 3.6 h over the course of 8 months. The field was conventionally fertilised at a rate of 160 kg N ha-1 in three applications of 40, 80 and 40 kg N ha-1 as ammonium nitrate. Cumulative N2O emissions were 52 % smaller in the biochar compared to the control treatment. However, the effect of the treatments overall was not statistically significant (p = 0.27) because of the large variability in the data set. Limed soils emitted similar mean cumulative amounts of N2O as the control. There is no evidence that reduced N2O emissions with biochar relative to the control is solely caused by a higher soil pH.

  3. Tillage and residue management effect on soil properties, crop performance and energy relations in greengram (Vigna radiata L. under maize-based cropping systems

    J.R. Meena

    2015-12-01

    Full Text Available Effect of tillage and crop residue management on soil properties, crop performance, energy relations and economics in greengram (Vigna radiata L. was evaluated under four maize-based cropping systems in an Inceptisol of Delhi, India. Soil bulk density, hydraulic conductivity and aggregation at 0–15 cm layer were significantly affected both by tillage and cropping systems, while zero tillage significantly increased the soil organic carbon content. Yields of greengram were significantly higher in maize–chickpea and maize–mustard systems, more so with residue addition. When no residue was added, conventional tillage required 20% higher energy inputs than the zero tillage, while the residue addition increased the energy output in both tillage practices. Maize–wheat–greengram cropping system involved the maximum energy requirement and the cost of production. However, the largest net return was obtained from the maize–chickpea–greengram system under the conventional tillage with residue incorporation. Although zero tillage resulted in better aggregation, C content and N availability in soil, and reduced the energy inputs, cultivation of summer greengram appeared to be profitable under conventional tillage system with residue incorporation.

  4. Cultivo de milho no sistema de aléias com leguminosas perenes Maize crop in alley cropping system with perennials legumes

    Luciano Rodrigues Queiroz

    2007-10-01

    Full Text Available Objetivou-se avaliar a influência de algumas leguminosas perenes no teor foliar de N, P e K e na produtividade da cultura do milho (UENF 506-8, cultivado no sistema de aléias, sem adubação fosfatada. Foram realizados experimentos de campo por dois ciclos de cultivo, no Campo Experimental do CCTA/UENF, em Campos dos Goytacazes - RJ. Os tratamentos consistiram no sistema de aléias com Albizia lebbeck (L. Benth., Peltophorum dubium (Spreng. Taub., Leucaena leucocephala (Lam. de Wit., Cajanus cajan (L. Millsp., Sesbania virgata (Cav. Pers., Mimosa caesalpiniaefolia Benth., Gliricidia sepium (Jacq. Pers. e duas testemunhas com milho solteiro (com e sem NPK. Após oito meses de plantio das leguminosas, essas foram podadas, o material foi incorporado ao solo e em seguida semeado o milho nas entrelinhas, com espaçamento de 80 cm entre fileiras. Após 60 dias da semeadura do milho efetuou-se nova poda. No segundo ciclo de cultivo, as práticas culturais foram similares às do primeiro. Foi utilizado o delineamento em blocos casualizados com quatro repetições. Nas aléias de guandu, observou-se milho com maior teor foliar de N, em relação às demais leguminosas, no primeiro ciclo de cultivo. No segundo ciclo, os consórcios milho+guandu, milho+gliricídia e milho solteiro adubado superaram os demais na produtividade de grãos.The objective of this study was to evaluate the effects of perennials legumes, in N, P and K foliar concentration and maize productivity in alley cropping system, without phosphorus fertilization. Field experiments were carried out for two cycles, with legumes intercropping maize (UENF 506-8 in Field Research CCTA/UENF in Campos dos Goytacazes - RJ - Brazil. The treatments consisted of alley cropping system with the species: Albizia lebbeck (L. Benth., Peltophorum dubium (Spreng. Taub., Leucaena leucocephala (Lam. de Wit., Cajanus cajan (L. Millsp., Sesbania virgata (Cav. Pers., Mimosa caesalpiniaefolia Benth., Gliricidia

  5. Sustainability of European winter wheat- and maize-based cropping systems: Economic, environmental and social ex-post assessment of conventional and IPM-based systems

    Vasileiadis, V.P.; Dachbrodt-saaydeh, S.; Kudsk, P.; Colnenne-David, C.; Leprince, F.; Holb, I.J.; Kierzek, R.; Furlan, L.; Loddo, D.; Melander, B.; Jørgensen, L.N.; Newton, A.C.; Toque, C.; Dijk, van W.; Lefebvre, M.; Benezit, M.; Sattin, M.

    2017-01-01

    In order to ensure higher sustainability of winter wheat and maize production in Europe, cropping systems featuring different levels of Integrated Pest Management (IPM) need to be tested in the field and validated for their sustainability before being adopted by farmers. However, the sustainability

  6. Straw decomposition of nitrogen-fertilized grasses intercropped with irrigated maize in an integrated crop-livestock system

    Cristiano Magalhães Pariz

    2011-12-01

    Full Text Available The greatest limitation to the sustainability of no-till systems in Cerrado environments is the low quantity and rapid decomposition of straw left on the soil surface between fall and spring, due to water deficit and high temperatures. In the 2008/2009 growing season, in an area under center pivot irrigation in Selvíria, State of Mato Grosso do Sul, Brazil, this study evaluated the lignin/total N ratio of grass dry matter , and N, P and K deposition on the soil surface and decomposition of straw of Panicum maximum cv. Tanzânia, P. maximum cv. Mombaça, Brachiaria. brizantha cv. Marandu and B. ruziziensis, and the influence of N fertilization in winter/spring grown intercropped with maize, on a dystroferric Red Latosol (Oxisol. The experiment was arranged in a randomized block design in split-plots; the plots were represented by eight maize intercropping systems with grasses (sown together with maize or at the time of N side dressing. Subplots consisted of N rates (0, 200, 400 and 800 kg ha-1 year-1 sidedressed as urea (rates split in four applications at harvests in winter/spring, as well as evaluation of the straw decomposition time by the litter bag method (15, 30, 60, 90, 120, and 180 days after straw chopping. Nitrogen fertilization in winter/spring of P. maximum cv. Tanzânia, P. maximum cv. Mombaça, B. brizantha cv. Marandu and B. ruziziensis after intercropping with irrigated maize in an integrated crop-livestock system under no-tillage proved to be a technically feasible alternative to increase the input of straw and N, P and K left on the soil surface, required for the sustainability of the system, since the low lignin/N ratio of straw combined with high temperatures accelerated straw decomposition, reaching approximately 30 % of the initial amount, 90 days after straw chopping.

  7. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  8. Fitting maize into sustainable cropping systems on acid soils of the tropics

    Horst, W.J.

    2000-01-01

    One of the key elements of sustainable cropping systems is the integration of crops and/or crop cultivars with high tolerance of soil acidity and which make most efficient use of the nutrients supplied by soil and fertilizer. This paper is based mainly on on-going work within an EU-funded project combining basic research on plant adaptation mechanisms by plant physiologists, and field experimentation on acid soils in Brazil, Cameroon, Colombia and Guadeloupe by breeders, soil scientists and a agronomists. The results suggest that large genetic variability exists in adaptation of plants to acid soils. A range of morphological and physiological plant characteristics contribute to tolerance of acid soils, elucidation of which has contributed to the development of rapid techniques for screening for tolerance. Incorporation of acid-soil-tolerant species and cultivars into cropping systems contributes to improved nutrient efficiency overall, and thus reduces fertilizer needs. This may help to minimize maintenance applications of fertiliser through various pathways: (i) deeper root growth resulting in more-efficient uptake of nutrients from the sub-soil and less leaching, (ii) more biomass production resulting in less seepage and less leaching, with more intensive nutrient cycling, maintenance of higher soil organic-matter content, and, consequently, less erosion owing to better soil protection by vegetation and mulch. (author)

  9. Multi crop model climate risk country-level management design: case study on the Tanzanian maize production system

    Chavez, E.

    2015-12-01

    Future climate projections indicate that a very serious consequence of post-industrial anthropogenic global warming is the likelihood of the greater frequency and intensity of extreme hydrometeorological events such as heat waves, droughts, storms, and floods. The design of national and international policies targeted at building more resilient and environmentally sustainable food systems needs to rely on access to robust and reliable data which is largely absent. In this context, the improvement of the modelling of current and future agricultural production losses using the unifying language of risk is paramount. In this study, we use a methodology that allows the integration of the current understanding of the various interacting systems of climate, agro-environment, crops, and the economy to determine short to long-term risk estimates of crop production loss, in different environmental, climate, and adaptation scenarios. This methodology is applied to Tanzania to assess optimum risk reduction and maize production increase paths in different climate scenarios. The simulations carried out use inputs from three different crop models (DSSAT, APSIM, WRSI) run in different technological scenarios and thus allowing to estimate crop model-driven risk exposure estimation bias. The results obtained also allow distinguishing different region-specific optimum climate risk reduction policies subject to historical as well as RCP2.5 and RCP8.5 climate scenarios. The region-specific risk profiles obtained provide a simple framework to determine cost-effective risk management policies for Tanzania and allow to optimally combine investments in risk reduction and risk transfer.

  10. Life Cycle Assessment on Carbon Footprint of Winter Wheat-Summer Maize Cropping System Based on Survey Data of Gaomi in Shandong Province, China

    ZHU Yong-chang

    2017-08-01

    Full Text Available Grain production can generate huge amount of greenhouse gases through raw material production and energy comsumption, nitrogen fertilizer amendment and farming machinery operation. Based questionnaire survey of raw material inputs and management of wheat-maize cropping system in Gaomi, Shandong Province, carbon footprint of grain production was calculated using life cycle assessment methodology. Carbon footprint per unit area of wheat, maize, and winter wheat-summer maize cropping system were 5 183.33, 3 778.09 kg CO2-eq·hm-2 and 8 961.42 kg CO2-eq·hm-2, carbon footprint per unit grain yield were 0.69, 0.40 kg CO2-eq·kg-1 and 0.53 kg CO2-eq·kg-1, carbon footprint per unit net present value were 1.82, 0.40 kg CO2-eq·yuan-1 and 0.44 kg CO2-eq·yuan-1, respectively. Greenhouse gas(GHG emission of winter wheat-summer maize cropping system mainly came from nitrogen fertilizer production(48.30% and nitrogen fertilizer application(12.04%, irrigation electricity consumption(12.94% and machinery oil consumption(11.20%. Optimizing the application of fertilizer, reducing the amount of nitrogen fertilizer and saving water irrigation were important ways to realize the clean production.

  11. Effect of crop sequence and crop residues on soil C, soil N and yield of maize

    Shafi, M.; Bakht, J.; Attaullah; Khan, M.A.

    2010-01-01

    Improved management of nitrogen (N) in low N soils is critical for increased soil productivity and crop sustainability. The objective of the present study was to evaluate the effects of residues incorporation, residues retention on soil surface as mulch, fertilizer N and legumes in crop rotation on soil fertility and yield of maize (Zea may L.). Fertilizer N was applied to maize at the rate of 160 kg ha/sup -1/, and to wheat at the rate of 120 kg ha/sup -1/ or no fertilizer N application. Crop rotation with the sequence of maize after wheat (Triticum aestivum L.), maize after lentil (Lens culinaris Medic) or wheat after mash bean (Vigna mungo L.) arranged in a split plot design was followed. Post-harvest incorporation of crop residues and residues retention on soil surface as mulch had significantly (p=0.05) affected grain and stover yield during 2004 and 2005. Two years average data revealed that grain yield was increased by 3.31 and 6.72% due to mulch and residues incorporation. Similarly, stover yield was also enhanced by 5.39 and 10.27% due to the same treatment respectively. Mulch and residues incorporation also improved stover N uptake by 2.23 and 6.58%, respectively. Total soil N and organic matter was non significantly (p=0.05) increased by 5.63 and 2.38% due to mulch and 4.13, 7.75% because of crop residues incorporation in the soil. Maize grain and stover yield responded significantly (p=0.05) to the previous legume (lentil) crop when compared with the previous cereal crop (wheat). The treatment of lentil - maize(+N), on the average, increased grain yield of maize by 15.35%, stover yield by 16.84%, total soil N by 10.31% and organic matter by 10.17%. Similarly, fertilizer N applied to the previous wheat showed carry over effect on grain yield (6.82%) and stover yield (11.37%) of the following maize crop. The present study suggested that retention of residues on soil surface as mulch, incorporation of residues in soil and legume (lentil - maize) rotation

  12. Improving weed management and crop productivity in maize systems in Zimbabwe

    Mashingaidze, A.B.

    2004-01-01

    Keywords: Intercropping, narrow planting, precise fertilizer placement, radiation interception, leaf stripping, detasselling, Land Equivalent Ratio, maize, pumpkin, dry beans, reduced herbicide dosagesIn the tropics, weeds cause more

  13. Achieving Lower Nitrogen Balance and Higher Nitrogen Recovery Efficiency Reduces Nitrous Oxide Emissions in North America's Maize Cropping Systems

    Rex A. Omonode

    2017-06-01

    Full Text Available Few studies have assessed the common, yet unproven, hypothesis that an increase of plant nitrogen (N uptake and/or recovery efficiency (NRE will reduce nitrous oxide (N2O emission during crop production. Understanding the relationships between N2O emissions and crop N uptake and use efficiency parameters can help inform crop N management recommendations for both efficiency and environmental goals. Analyses were conducted to determine which of several commonly used crop N uptake-derived parameters related most strongly to growing season N2O emissions under varying N management practices in North American maize systems. Nitrogen uptake-derived variables included total aboveground N uptake (TNU, grain N uptake (GNU, N recovery efficiency (NRE, net N balance (NNB in relation to GNU [NNB(GNU] and TNU [NNB(TNU], and surplus N (SN. The relationship between N2O and N application rate was sigmoidal with relatively small emissions for N rates <130 kg ha−1, and a sharp increase for N rates from 130 to 220 kg ha−1; on average, N2O increased linearly by about 5 g N per kg of N applied for rates up to 220 kg ha−1. Fairly strong and significant negative relationships existed between N2O and NRE when management focused on N application rate (r2 = 0.52 or rate and timing combinations (r2 = 0.65. For every percentage point increase, N2O decreased by 13 g N ha−1 in response to N rates, and by 20 g N ha−1 for NRE changes in response to rate-by-timing treatments. However, more consistent positive relationships (R2 = 0.73–0.77 existed between N2O and NNB(TNU, NNB(GNU, and SN, regardless of rate and timing of N application; on average N2O emission increased by about 5, 7, and 8 g N, respectively, per kg increase of NNB(GNU, NNB(TNU, and SN. Neither N source nor placement influenced the relationship between N2O and NRE. Overall, our analysis indicated that a careful selection of appropriate N rate applied at the right time can both increase NRE and reduce N

  14. Comparison of three pesticide fate models for two herbicides leaching under field conditions in a maize cropping system

    Marin-Benito, Jesus Maria; Pot, Valérie; Alletto, Lionel; Mamy, Laure; Bedos, Carole; van den Berg, Erik; Barriuso, Enrique; Benoit, Pierre

    2014-05-01

    Losses of pesticides from agricultural soils may influence the quality of groundwater. Therefore, numerous models were developed to assess the transfer of pesticides from the soil surface to groundwater after their application to an agricultural field. Our objective was thus to compare the ability of three pesticide fate models to describe the behavior of water, and S-metolachlor (SMOC) and mesotrione (MES) herbicides as observed under field conditions in a maize monoculture system. Simulations were based on field experimentations set up in Toulouse area (France). The tested scenario focused on a conventional maize monoculture and included two irrigated cropping periods with a fallow period managed with bare soil. SMOC was sprayed annually at 1.25 and 1.52 kg a.i./ha in 2011 and 2012, respectively, while MES was only applied in 2012 but twice, at 0.150 kg a.i./ha. Simulations were performed with the PRZM, PEARL and MACRO models parameterized with field, laboratory, and literature data, and pedotransfer functions. The results of simulations were compared with soil tension, water content and percolation data monitored at different depths in 2011-2012. The comparison of the results obtained by the three models indicated that PRZM was not able to simulate properly the water dynamic in the soil profile and for example, it predicted that microporosity was always saturated at 1 m-depth. On the contrary, PEARL and MACRO simulated quite well the observed water behavior (water pressure head and volumetric water content) at 20 and 50 cm-depth during the irrigated cropping period of 2012. However, simulated soil moisture and water pressure were overestimated before the rainfall event of 20 May 2012. MACRO and PEARL simulations generally showed similar water flow dynamics for the whole period at the three depths. Neither the dynamic nor the total amount of percolated water was correctly simulated by any model. The three models overestimated the total water volume leached at 1 m

  15. A comparison of cellulosic fuel yields and separated soil-surface CO2 fluxes in maize and prairie biofuel cropping systems

    Nichols, Virginia A.

    It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize

  16. Tillage and Composting Strategies to Maximize Potentially Mineralizable Nitrogen in Maize-based Cropping Systems

    Cereal crop yields vary drastically between developed and developing nations. In developing nations, a lack of synthetic nitrogen (N) fertilizer often limits yields. Low-cost soil management strategies that increase biologically available soil organic matter can reduce farmer reliance on synthetic N...

  17. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems

    Qisong Li

    2018-02-01

    Full Text Available Intercropping has been widely used to control disease and improve yield in agriculture. In this study, maize and peanut were used for non-separation intercropping (NS, semi-separation intercropping (SS using a nylon net, and complete separation intercropping (CS using a plastic sheet. In field experiments, two-year land equivalent ratios (LERs showed yield advantages due to belowground interactions when using NS and SS patterns as compared to monoculture. In contrast, intercropping without belowground interactions (CS showed a yield disadvantage. Meanwhile, in pot experiments, belowground interactions (found in NS and SS improved levels of soil-available nutrients (nitrogen (N and phosphorus (P and enzymes (urease and acid phosphomonoesterase as compared to intercropping without belowground interactions (CS. Soil bacterial community assay showed that soil bacterial communities in the NS and SS crops clustered together and were considerably different from the CS crops. The diversity of bacterial communities was significantly improved in soils with NS and SS. The abundance of beneficial bacteria, which have the functions of P-solubilization, pathogen suppression, and N-cycling, was improved in maize and peanut soils due to belowground interactions through intercropping. Among these bacteria, numbers of Bacillus, Brevibacillus brevis, and Paenibacillus were mainly increased in the maize rhizosphere. Burkholderia, Pseudomonas, and Rhizobium were mainly increased in the peanut rhizosphere. In conclusion, using maize and peanut intercropping, belowground interactions increased the numbers of beneficial bacteria in the soil and improved the diversity of the bacterial community, which was conducive to improving soil nutrient (N and P supply capacity and soil microecosystem stability.

  18. Mixed cropping of groundnuts and maize in East Java

    Hoof, van W.C.H.

    1987-01-01

    Mixed cropping of groundnuts and maize in East Java was studied by means of a survey of farming practice and by field experiments. The influence of different sowing times and plant density of maize on the development and yield of groundnuts and maize were the main topics in this thesis. Plant

  19. Soil organic carbon dynamics in wheat-maize cropping systems of north China: application of isotope approach to long-term experiments

    Wang, J.; Wang, X.; Xu, M.; Zhang, W.

    2013-12-01

    Soil organic carbon (SOC) in agro-ecosystem is largely influencedby agricultural practices such as croppingand fertilization. However, quantifying the contributions of various crops has been lacking. Here, we applied isotopic approachto study SOC dynamics under wheat-maize rotation with variousfertilization treatments atthree long-term experiment sites innorth China. Three treatments were chosen: no fertilizer (control), chemical nitrogen-phosphorus-potassium (NPK) and NPK plus straw (NPKS).Soil samples were collected from0-20, 20-40, 40-60, 60-80 and 80-100cm after 13 and 20 years of treatment, and SOC and its stable 13C compositions were determined. Generally, SOC content significantly decreased with depths, from 8.2 ×1.4 g kg-1 (in 0-20 cm) to 3.3×1.0 g kg-1 (in 80-100 cm) across all treatments and sites. Soil δ13C values at all depths, treatments and sites ranged from -24.2‰ to -21.6‰, averaged -22.8‰, indicating that ~70% of SOC was derived from wheat and previous C3 plant, and ~30% from maize and previous C4 plant.Both SOC and soil δ13C were significantly affected by fertilization managements, especiallyin 0-40 cm where linear relationship occurred between SOC and estimated C input. Overall, the slop of the linear equation, i.e., conversion efficiency, was four times greater for wheat-derived C relative to that for maize residue C. Our study indicated that maize-derived C contributed less to C sequestration in wheat-maize rotation system of north China. Figure 1. Relationships between SOC stock (0-40 cm) and accumulated C input for wheat (C3), maize (C4) and total. Significance is marked with one (P < 0.05), two (P < 0.01) and three (P < 0.001) asterisks.

  20. [Applicability of agricultural production systems simulator (APSIM) in simulating the production and water use of wheat-maize continuous cropping system in North China Plain].

    Wang, Lin; Zheng, You-fei; Yu, Qiang; Wang, En-li

    2007-11-01

    The Agricultural Production Systems Simulator (APSIM) was applied to simulate the 1999-2001 field experimental data and the 2002-2003 water use data at the Yucheng Experiment Station under Chinese Ecosystem Research Network, aimed to verify the applicability of the model to the wheat-summer maize continuous cropping system in North China Plain. The results showed that the average errors of the simulations of leaf area index (LAI), biomass, and soil moisture content in 1999-2000 and 2000-2001 field experiments were 27.61%, 24.59% and 7.68%, and 32.65%, 35.95% and 10.26%, respectively, and those of LAI and biomass on the soils with high and low moisture content in 2002-2003 were 26.65% and 14.52%, and 23.91% and 27.93%, respectively. The simulations of LAI and biomass accorded well with the measured values, with the coefficients of determination being > 0.85 in 1999-2000 and 2002-2003, and 0.78 in 2000-2001, indicating that APSIM had a good applicability in modeling the crop biomass and soil moisture content in the continuous cropping system, but the simulation error of LAI was a little larger.

  1. Use of a crop climate modeling system to evaluate climate change adaptation practices: maize yield in East Africa

    Moore, N. J.; Alagarswamy, G.; Andresen, J.; Olson, J.; Thornton, P.

    2013-12-01

    Sub Saharan African agriculture is dominated by small-scale farmers and is heavily depend on growing season precipitation. Recent studies indicate that anthropogenic- induced warming including the Indian Ocean sea surface significantly influences precipitation in East Africa. East Africa is a useful region to assess impacts of future climate because of its large rainfall gradient, large percentage of its area being sub-humid or semi-arid, complex climatology and topography, varied soils, and because the population is particularly vulnerable to shifts in climate. Agronomic adaptation practices most commonly being considered include include a shift to short season, drought resistant maize varieties, better management practices especially fertilizer use, and irrigation. The effectiveness of these practices with climate change had not previously been tested. We used the WorldClim data set to represent current climate and compared the current and future climate scenarios of 4 Global Climate Models (GCMs) including a wetter (CCSM) and drier (HadCM3) GCM downscaled to 6 km resolution. The climate data was then used in the process-based CERES maize crop model to simulate the current period (representing 1960- 1990) and change in future maize production (from 2000 to 2050s). The effectiveness of agronomic practices, including short duration maize variety, fertilizer use and irrigation, to reduce projected future yield losses due to climate change were simulated. The GCMs project an increase in maximum temperature during growing season ranging from 1.5 to 3°C. Changes in precipitation were dependent on the GCM, with high variability across different topographies land cover types and elevations. Projected warmer temperatures in the future scenarios accelerated plant development and led to a reduction in growing season length and yields even where moisture was sufficient Maize yield changes in 2050 relative to the historical period were highly varied, in excess of +/- 500 kg

  2. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation?

    Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori

    2018-03-01

    Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Qualitative attributes and postharvest conservation of green ears of maize grown on different cover crops in organic no-till system

    Luiz Fernando Favarato

    Full Text Available ABSTRACT Postharvest quality of sweet maize varies depending on the type of seed, soil, quality of fertilizer, climatic conditions, and stage of maturation. This study aimed to evaluate the post-harvest quality and shelf life of green ears of maize grown on three soil covers in organic no-till sytem. The study was conducted in the municipality of Domingos Martins, ES (20° 22'16.91" S and 41° 03' 41.83" W. The experiment was arranged in a randomized block design with six replications and five treatments, consisting of three cover crops in organic no-till system: black-oat straw, white lupin, oat/lupin intercrop and two systems, organic and conventional, without straw. Maize double hybrid AG-1051 was sown in a spacing of 1.00 x 0.20 m. The variables evaluated included relative percentage of grain, straw and cob, pH, titratable acidity, soluble solids, grain moisture and shelf life. The use of different straws in the organic no-till system does not influence the postharvest quality of green ears. Ears packed in polystyrene trays with plastic film are suitable for marketing until the fifth day of storage at room temperature.

  4. Pesticide use in the wheat-maize double cropping systems of the North China Plain: Assessment, field study, and implications.

    Brauns, Bentje; Jakobsen, Rasmus; Song, Xianfang; Bjerg, Poul L

    2018-03-01

    In the North China Plain (NCP), rising inputs of pesticides have intensified the environmental impact of farming activities in recent decades by contributing to surface water and groundwater contamination. In response to this, the Chinese government imposed stricter regulations on pesticide approval and application, and better monitoring strategies are being developed. However, sufficient and well-directed research on the accumulation and impact of different pesticides is needed for informed decision-making. In this study, current pesticide use, and recent and current research on water contamination by pesticides in the NCP are reviewed and assessed. Additionally, a small-scale field study was performed to determine if residuals from currently-used pesticides in the NCP can be detected in surface water, and in connected shallow groundwater. The contaminants of interest were commonly used pesticides on winter wheat-summer maize fields (the dominant cropping system in the NCP), such as 2,4-D and atrazine. Sampling took place in May, July, and October 2013; and March 2014. Results from our literature research showed that sampling is biased towards surface water monitoring. Furthermore, most studies focus on organic chlorinated pesticides (OCPs) like the isomers of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH), which were banned in China in 1983. However, currently-used herbicides like 2,4-D and atrazine were detected in river water and groundwater in all samplings of our field study. The highest concentrations of 2,4-D and atrazine were found in the river water, ranging up to 3.00 and 0.96μg/L, respectively. The monitoring of banned compounds was found to be important because several studies indicate that they are still accumulating in the environment and/or are still illegally in use. However, supported by our own data, we find that the monitoring in groundwater and surface water of currently permitted pesticides in China needs equal

  5. INFLUENCE OF CROPPING SYSTEM AND WEED MANAGEMENT PRACTICE ON EMERGENCE, GROWTH OF WEEDS, YIELD OF MAIZE (Zea mays L. AND COWPEA (Vigna unguiculata L.

    Felix Ogar Takim

    2014-06-01

    Full Text Available The effects of cropping system and weed management practice on weed seedling emergence, weed biomass production and yield of maize and cowpea were examined at Ilorin, in the southern Guinea savanna (9°29' N, 4°35' E and 307 m ASL of Nigeria. Weed emergence occurred throughout the 3-15 weeks after planting (WAP. Forty-three weed species belonging to 38 genera within 20 families were encountered. Fimbristylis littoralis Gaudet, Tridax procumbens L and Eleusine indica Gaertn were the most prevalent weed species. Cropping system and weed management practice significantly affected weed emergence. Significantly (p≤0.05 lower number of weeds emerged in the intercropped and herbicide treated plots while higher weed densities and weed biomass were recorded in the uncropped and unweeded control plots than in the other plots. While aggregate crop yields were significantly higher in the intercropped than in the sole plots, component crop yields were higher under the sole cropping than in the intercrop. The implication of the results on weed management is discussed.

  6. Orange maize in Zambia: crop development and delivery experience

    Orange maize in Zambia: crop development and delivery experience. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE ... African Journal of Food, Agriculture, Nutrition and Development. Journal Home ...

  7. Nitrogen Transformation in a Long-Term Maize-Bean cropping system Amended with Repeated Applications of Organic and Inorganic Nutrient Sources

    Kibunja, C.N.

    2002-01-01

    Nitrogen is the most limiting element to agriculture productivity and inorganic fertilisers are too expensive for mos small-scale farmers in Kenya. The element is also susceptible to loss through leaching. There is need to improve the rate of field recoveries of applied nitrogen by the crops and the build-up of soil organic N reserves, which contribute to long term soil fertility. The long-term field plots at the National Agriculture Research Laboratories crop rotation and organic/inorganic management strategies. It was set up in 1976 to investigate the effect of continuous application of farmyard manure, crop residues and NP fertilisers on soil chemical properties and yields in a maize-bean rotation system. The main treatments are levels of inorganic fertilisers (N and P), 3 rates of manure application with or without stover retention. maize (Zea mays L.) hybrid '512' is planted at the start of the long rains season (March-Sept) while beans (Phaseolus vulgaris L) cultivar 'Mwezi moja' are planted during the following season (Oct-Jan) on residual fertiliser inputs. both plants are planted as mono-crops. The trial was used to follow the movement and distribution of available mineral N from 0 to 300 cm down the soil profile for a period of 2 years. Labelled 15 N fertiliser (10% a.e) as Calcium Ammonium Nitrate (CAN) at the rate 60 kg N ha -1 yr -1 was applied to maize in 1*2 m 2 micro-plots. Soils were sampled at various levels upto 3m, three times per season for two years and analyzed for available mineral N (NH 4 + N +No 3 - -N) and total nitrogen. The result of the first year indicated that the prevalent form of inorganic N found in the soil was in the form NO 3 - N. A substantial amount of NO 3 - N (1045-23.3 mg N kg soil - 1) was found in the plough layer (20 cm) of the soil at the beginning of the season. The concentration of NO 3 - -N in the first one metre decreased with depth as the crop matured due to plant uptake and loss through leaching. A bulge of

  8. First report of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae) on larvae of Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) in maize (Zea mays L.) under different cropping systems.

    Silva, R B; Cruz, I; Penteado-Dias, A M

    2014-08-01

    In the context of the modern agriculture, pest control is important in order to increase productivity in maize (Zea mays L.). However, this control should be done rationally, prioritising environmentally safer methods such as biological control. This paper aims to report the occurrence of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae) in Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) larvae collected in maize subjected to different cropping systems. The experiment was conducted at the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS) in Sete Lagoas, Minas Gerais State, Brazil, using organic and conventional production. Ten plants were sampled from each of the 24 plots and for each production system, three times a week during the entire cycle of maize (variety BR 106). In the laboratory, larvae were distributed in individual rearing containers with artificial diet until the end of the biological cycle. An increased number of S. frugiperda larvae was observed in organic single crop maize; hence a higher percentage of S. frugiperda larvae parasitised by Hymenoptera and Diptera also occurred in the maize under this production system. Dolichozele koebelei had not yet been described in association with larvae of S. frugiperda. The percentage of parasitism of S. frugiperda larvae was high in both experiments, indicating the importance of natural control agents in reducing the population density of S. frugiperda, and especially the importance of an appropriate crop management.

  9. First report of Dolichozele koebeleiViereck, 1911 (Hymenoptera: Braconidae on larvae of Spodoptera frugiperda (J. E. Smith, 1797 (Lepidoptera: Noctuidae in maize (Zea maysL. under different cropping systems

    RB Silva

    Full Text Available In the context of the modern agriculture, pest control is important in order to increase productivity in maize (Zea maysL.. However, this control should be done rationally, prioritising environmentally safer methods such as biological control. This paper aims to report the occurrence of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae in Spodoptera frugiperda(J. E. Smith, 1797 (Lepidoptera: Noctuidae larvae collected in maize subjected to different cropping systems. The experiment was conducted at the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS in Sete Lagoas, Minas Gerais State, Brazil, using organic and conventional production. Ten plants were sampled from each of the 24 plots and for each production system, three times a week during the entire cycle of maize (variety BR 106. In the laboratory, larvae were distributed in individual rearing containers with artificial diet until the end of the biological cycle. An increased number of S. frugiperda larvae was observed in organic single crop maize; hence a higher percentage of S. frugiperda larvae parasitised by Hymenoptera and Diptera also occurred in the maize under this production system. Dolichozele koebelei had not yet been described in association with larvae of S. frugiperda. The percentage of parasitism of S. frugiperda larvae was high in both experiments, indicating the importance of natural control agents in reducing the population density of S. frugiperda, and especially the importance of an appropriate crop management.

  10. Prospects of genetic modified maize crop in Africa

    sunny t

    2016-04-13

    Apr 13, 2016 ... Farmers have rapidly adopted genetically modified organism (GMO) technology including GM maize crops. (Lawson et al., 2009). GMO technology involves the incorporation of genetic engineering to improve crop productivity since over one billion people in the world face starvation and two billion people ...

  11. Characterization of Soil Moisture Level for Rice and Maize Crops using GSM Shield and Arduino Microcontroller

    Gines, G. A.; Bea, J. G.; Palaoag, T. D.

    2018-03-01

    Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.

  12. Predicting weed problems in maize cropping by species distribution modelling

    Bürger, Jana

    2014-02-01

    Full Text Available Increasing maize cultivation and changed cropping practices promote the selection of typical maize weeds that may also profit strongly from climate change. Predicting potential weed problems is of high interest for plant production. Within the project KLIFF, experiments were combined with species distribution modelling for this task in the region of Lower Saxony, Germany. For our study, we modelled ecological and damage niches of nine weed species that are significant and wide spread in maize cropping in a number of European countries. Species distribution models describe the ecological niche of a species, these are the environmental conditions under which a species can maintain a vital population. It is also possible to estimate a damage niche, i.e. the conditions under which a species causes damage in agricultural crops. For this, we combined occurrence data of European national data bases with high resolution climate, soil and land use data. Models were also projected to simulated climate conditions for the time horizon 2070 - 2100 in order to estimate climate change effects. Modelling results indicate favourable conditions for typical maize weed occurrence virtually all over the study region, but only a few species are important in maize cropping. This is in good accordance with the findings of an earlier maize weed monitoring. Reaction to changing climate conditions is species-specific, for some species neutral (E. crus-galli, other species may gain (Polygonum persicaria or loose (Viola arvensis large areas of suitable habitats. All species with damage potential under present conditions will remain important in maize cropping, some more species will gain regional importance (Calystegia sepium, Setara viridis.

  13. Do Refuge Plants Favour Natural Pest Control in Maize Crops?

    Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander

    2017-01-01

    The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize (Spodoptera frugiperda and Rhopalosiphum maidis), as well as other species that serve as alternative hosts of these natural enemies. PMID:28718835

  14. Applying CSM-CERES-Maize to define a sowing window for irrigated maize crop - The Riacho´s Farm case study

    Denise Freitas Silva

    2011-08-01

    Full Text Available Irrigation use constitutes an alternative to improve maize production in Central Minas Gerais State, Brazil. However, even under adequate water supply conditions, other environmental factors may influence maize crop growth and development and may, ultimately, affect grain yield. This study aimed to establish a sowing window for irrigated maize crop, based on simulation results obtained with the decision support model CSM-CERES-Maize. Simulations were made for crop management conditions of Riacho´s Farm, located in Matozinhos, Minas Gerais State, Brazil. It was employed the model´s seasonal tool, along with a data set containing 46 years of weather data records, to simulate maize yield for weekly sowing scenarios, starting on August 1st and ending on July 24th of each year. One defined an irrigated maize sowing window, taking into account the yield break risk that a farmer would be willing to take. The model proved to be an interesting tool to assist in decision making, regarding crop and irrigation management, for an irrigated maize production system. Assuming a 10% yield break in the expected average maximum maize yield, it was defined as sowing window, the period from January 23rd to March 6th, with February 20th as the best sowing date. Other sowing windows may be established according to the risk that the farmer would be willing to take.

  15. Effect of Nitrogen Rate on Quantitative and Qualitative Forage Yield of Maize, Pearl Millet and Sorghum in Double Cropping System

    sh Khalesro

    2012-02-01

    Full Text Available Abstract In order to compare three summer forage grasses including sorghum (Sorghum bicolor cv. Speedfeed, corn (Zea mayz S.C. 704 and pearl millet (Pennisetum americanum cv. Nutrifeed for green chop forage production in double cropping system, a field experiment was conducted at research field of Tarbiat Modares University on 2006 growing season. Treatments were arranged in a split- plot design based on randomized complete blocks with four replications. In this research three forage crops as main factor and nitrogen rates (100, 200 and 300 kg N. ha-1 from the urea source as the sub- plot were studied. Results showed the positive response of crops to nitrogen increment, in such a manner that millet with 300 kg N ha-1 produced 85.8 t ha-1 fresh forage (%20.3 more than sorghum and %30.9 more than corn. Regarding to the sustainable agriculture objects, millet and sorghum with 200 kg N ha-1could be suggested. Forage yield advantages of millet and sorghum to corn was %10 and %12 respectively. They produce 72.4 and 73.5 t ha-1 fresh forage under this treatment. Finally regarding to general advantages of sorghum and millet to corn, especially in unsuitable condition like as drought and poor soil fertility, it seems that changing the corn with sorghum or pearl millet could be an appropriate option. Also decision making for recommending one of sorghum and millet need to more information like qualitative attributes in details and determining animal feeding indices (voluntary intake using in vivo methods. Keywords: Sorghum, Pearl millet, Corn, Nitrogen, Forage, Organic matter, Crud protein

  16. Comparison of energy and yield parameters in maize crop

    Memon, S.Q.; Mirjat, M.S.; Amjad, N.

    2013-01-01

    The aim of this study was to determine direct and indirect input energy in maize production and to investigate the efficiency of energy consumption in maize crop. Result showed that emergence percent, plant height, number of grains per cob and grain yield were the highest in deep tillage as compared to conventional and zero tillage. Total energy input and output were the highest in deep tillage with NPK at the rate 150-75-75kg/ha. The net energy gain was found the highest in deep tillage followed by conventional tillage and the lowest net energy gain in zero tillage. (author)

  17. N fixation and transfer in Maize/Cowpea and Sorghum/Cowpea inter cropping systems as determined by N-15 isotope dilution technique

    Dayatilake, G.A.; Subasinghe, S.; Senaratne, R.

    2000-01-01

    N fixation and transfer in maize/cowpea and sorghum/cowpea intercropping systems, as determined by N-15 dilution technique was studied in two field trials conducted at Bata-atha, in the dry zone of Sri Lanka. Two cvs. of cowpea i.e; Bombay and MI-35 were used in maize/cowpea intercropping system, with following combinations of treatments; maize/Bombay, maize/MI-35, Bombay (monocrop), MI-35 (monocrop) and maize (monocrop). A similar set of treatments was used in sorghum/cowpea intercropping system also. The N-15 atom excess, percentage Ndfa, total amount of N fixed, N yield and the total dry matter production were estimated. Maize/cowpea intercropping resulted in an increase in total dry matter production and total N yield compared to monocrop treatment. However the percentage Ndfa and total N fixed showed a decrease compared to monocrop stand. The percentage Ndfa was 60-65 percent monocrop while the same was 45-50 percent in intercropped treatments

  18. Differences in soil quality between organic and conventional farming over a maize crop season

    Ferreira, Carla; Veiga, Adelcia; Puga, João; Kikuchi, Ryunosuke; Ferreira, António

    2017-04-01

    Land degradation in agricultural areas is a major concern. The large number of mechanical interventions and the amount of inputs used to assure high crop productivity, such as fertilizers and pesticides, have negative impacts on soil quality and threaten crop productivity and environmental sustainability. Organic farming is an alternative agriculture system, based on organic fertilizers, biological pest control and crop rotation, in order to mitigate soil degradation. Maize is the third most important cereal worldwide, with 2008 million tons produced in 2013 (IGN, 2016). In Portugal, 120000 ha of arable land is devoted to maize production, leading to annual yields of about 930000 ton (INE, 2015). This study investigates soil quality differences in maize farms under organic and conventional systems. The study was carried out in Coimbra Agrarian Technical School (ESAC), in central region of Portugal. ESAC campus comprises maize fields managed under conventional farming - Vagem Grande (32 ha), and organic fields - Caldeirão (12 ha), distancing 2.8 km. Vagem Grande has been intensively used for grain maize production for more than 20 years, whereas Caldeirão was converted to organic farming in 2008, and is being used to select regional maize varieties. The region has a Mediterranean climate. The maize fields have Eutric Fluvisols, with gentle slopes (analyses. Additional soil samples were also collected with soil ring samplers (137 cm3) for bulk density analyses after sowing. Surface water infiltration was also measured with tension infiltrometer (membrane of 20cm), using different tensions (0 cm, -3cm, -6 cm e -15cm). Decomposition rate and litter stabilisation was assessed over a 3-month period through the Tea Bag Index (Keuskamp et al., 2013). The number and diversity of earthworms were also measured at the surface (0-20cm), through extraction, and at the subsurface (>20cm), using mustard solution.

  19. Storage of Maize in Purdue Improved Crop Storage (PICS) Bags.

    Williams, Scott B; Murdock, Larry L; Baributsa, Dieudonne

    2017-01-01

    Interest in using hermetic technologies as a pest management solution for stored grain has risen in recent years. One hermetic approach, Purdue Improved Crop Storage (PICS) bags, has proven successful in controlling the postharvest pests of cowpea. This success encouraged farmers to use of PICS bags for storing other crops including maize. To assess whether maize can be safely stored in PICS bags without loss of quality, we carried out laboratory studies of maize grain infested with Sitophilus zeamais (Motshulsky) and stored in PICS triple bags or in woven polypropylene bags. Over an eight month observation period, temperatures in the bags correlated with ambient temperature for all treatments. Relative humidity inside PICS bags remained constant over this period despite the large changes that occurred in the surrounding environment. Relative humidity in the woven bags followed ambient humidity closely. PICS bags containing S. zeamais-infested grain saw a significant decline in oxygen compared to the other treatments. Grain moisture content declined in woven bags, but remained high in PICS bags. Seed germination was not significantly affected over the first six months in all treatments, but declined after eight months of storage when infested grain was held in woven bags. Relative damage was low across treatments and not significantly different between treatments. Overall, maize showed no signs of deterioration in PICS bags versus the woven bags and PICS bags were superior to woven bags in terms of specific metrics of grain quality.

  20. Socio-ecological Niches for Minimum Tillage and Crop-residue Retention in Continuous Maize Cropping Systems in Smallholder Farms of Central Kenya

    Guto, S.N.; Pypers, P.; Vanlauwe, B.; Ridder, de N.; Giller, K.E.

    2012-01-01

    Soil fertility gradients develop on smallholder farms due to preferential allocation of inputs. A multi-location on-farm trial was conducted in Meru South, Central Kenya whose overall aim was to test minimum tillage and crop-residue retention practices in socio-ecological niches across heterogeneous

  1. Swine slurry application and soil management on double-cropped oat/maize

    Marlo Adriano Bison Pinto

    2014-06-01

    Full Text Available The swine production in southern Brazil is concentrated in small farms that use residues as a nutrient source for crops of economic interest. This study aimed to evaluate the use of swine slurry associated with tillage systems on double-cropped oat/maize. The experiment was carried out in the 2009/2010 and 2010/2011 cropping seasons, in Taquaruçu do Sul, Rio Grande do Sul State, Brazil. The experimental design was randomized blocks in a factorial scheme, with four replications. Treatments consisted of the interaction of four swine slurry doses (no swine slurry, 20 m3 ha-1, 40 m3 ha-1 and 80 m3 ha-1 and mineral fertilization, in three tillage systems (no-tillage, chiseling and chiseling + disking. The swine slurry application on doublecropped oat/maize increased the dry matter and grain yield. The 80 m3 ha-1 dose provided a response statistically similar to the mineral fertilization recommended for maize. The interaction between the 80 m3 ha-1 dose and the immediate incorporation of slurry into the soil reduced N losses by ammonia volatilization, promoting a significant increase in maize grain yield, when grown on a clayish soil.

  2. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System

    Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V.

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha−1 yr−1, respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000–250, 250–53, and fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000–250 μm > 250–53μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient. PMID:27031697

  3. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System.

    Andong Cai

    Full Text Available Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC accumulation and nitrogen (N mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha(-1 yr(-1, respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P and potassium (K. Soils were separated into three particle-size fractions (2000-250, 250-53, and 250-53 μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient.

  4. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops.

    Wu, Yongzhong; Fox, Tim W; Trimnell, Mary R; Wang, Lijuan; Xu, Rui-Ji; Cigan, A Mark; Huffman, Gary A; Garnaat, Carl W; Hershey, Howard; Albertsen, Marc C

    2016-03-01

    We have developed a novel hybridization platform that utilizes nuclear male sterility to produce hybrids in maize and other cross-pollinating crops. A key component of this platform is a process termed Seed Production Technology (SPT). This process incorporates a transgenic SPT maintainer line capable of propagating nontransgenic nuclear male-sterile lines for use as female parents in hybrid production. The maize SPT maintainer line is a homozygous recessive male sterile transformed with a SPT construct containing (i) a complementary wild-type male fertility gene to restore fertility, (ii) an α-amylase gene to disrupt pollination and (iii) a seed colour marker gene. The sporophytic wild-type allele complements the recessive mutation, enabling the development of pollen grains, all of which carry the recessive allele but with only half carrying the SPT transgenes. Pollen grains with the SPT transgenes exhibit starch depletion resulting from expression of α-amylase and are unable to germinate. Pollen grains that do not carry the SPT transgenes are nontransgenic and are able to fertilize homozygous mutant plants, resulting in nontransgenic male-sterile progeny for use as female parents. Because transgenic SPT maintainer seeds express a red fluorescent protein, they can be detected and efficiently separated from seeds that do not contain the SPT transgenes by mechanical colour sorting. The SPT process has the potential to replace current approaches to pollen control in commercial maize hybrid seed production. It also has important applications for other cross-pollinating crops where it can unlock the potential for greater hybrid productivity through expanding the parental germplasm pool. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize.

    Joseph L Spencer

    Full Text Available BACKGROUND: Interest in the cultivation of biomass crops like the C4 grass Miscanthus x giganteus (Miscanthus is increasing as global demand for biofuel grows. In the US, Miscanthus is promoted as a crop well-suited to the Corn Belt where it could be cultivated on marginal land interposed with maize and soybean. Interactions (direct and indirect of Miscanthus, maize, and the major Corn Belt pest of maize, the western corn rootworm, (Diabrotica virgifera virgifera LeConte, WCR are unknown. Adding a perennial grass/biomass crop to this system is concerning since WCR is adapted to the continuous availability of its grass host, maize (Zea mays. METHODOLOGY/PRINCIPAL FINDINGS: In a greenhouse and field study, we investigated WCR development and oviposition on Miscanthus. The suitability of Miscanthus for WCR development varied across different WCR populations. Data trends indicate that WCR populations that express behavioural resistance to crop rotation performed as well on Miscanthus as on maize. Over the entire study, total adult WCR emergence from Miscanthus (212 WCR was 29.6% of that from maize (717 WCR. Adult dry weight was 75-80% that of WCR from maize; female emergence patterns on Miscanthus were similar to females developing on maize. There was no difference in the mean no. of WCR eggs laid at the base of Miscanthus and maize in the field. CONCLUSIONS/SIGNIFICANCE: Field oviposition and significant WCR emergence from Miscanthus raises many questions about the nature of likely interactions between Miscanthus, maize and WCR and the potential for Miscanthus to act as a refuge or reservoir for Corn Belt WCR. Responsible consideration of the benefits and risks associated with Corn Belt Miscanthus are critical to protecting an agroecosystem that we depend on for food, feed, and increasingly, fuel. Implications for European agroecosystems in which Miscanthus is being proposed are also discussed in light of the WCR's recent invasion into Europe.

  6. Exploration of agro-ecological options for improving maize-based farming systems in Costa Chica, Guerrero, Mexico

    Flores Sanchez, D.

    2013-01-01

    Keywords: farm diagnosis, farming systems, soil degradation, intercropping, maize, roselle, legumes, nutrient management, vermicompost, crop residues, decomposition, explorations. In the Costa Chica, a region of Southwest Mexico, farming systems are organized in smallholder units. The dominant cropping systems are based on maize (Zea mays L.), either as monocrop or intercropped with roselle (Hibiscus sabdariffa L.). Continuous cropping, and unbalanced fertilizer management systems with an...

  7. Assessments of Maize Yield Potential in the Korean Peninsula Using Multiple Crop Models

    Kim, S. H.; Myoung, B.; Lim, C. H.; Lee, S. G.; Lee, W. K.; Kafatos, M.

    2015-12-01

    The Korean Peninsular has unique agricultural environments due to the differences in the political and socio-economical systems between the Republic of Korea (SK, hereafter) and the Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering from the lack of food supplies caused by natural disasters, land degradation and failed political system. The neighboring developed country SK has a better agricultural system but very low food self-sufficiency rate (around 1% of maize). Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we have utilized multiple process-based crop models capable of regional-scale assessments to evaluate maize Yp over the Korean Peninsula - the GIS version of EPIC model (GEPIC) and APSIM model that can be expanded to regional scales (APSIM regions). First we evaluated model performance and skill for 20 years from 1991 to 2010 using reanalysis data (Local Data Assimilation and Prediction System (LDAPS); 1.5km resolution) and observed data. Each model's performances were compared over different regions within the Korean Peninsula of different regional climate characteristics. To quantify the major influence of individual climate variables, we also conducted a sensitivity test using 20 years of climatology. Lastly, a multi-model ensemble analysis was performed to reduce crop model uncertainties. The results will provide valuable information for estimating the climate change or variability impacts on Yp over the Korean Peninsula.

  8. Effects of bacterial silage inoculants on whole-crop maize silage ...

    This study evaluated the effects of ensiling whole-crop maize with bacterial inoculants, Lactococcus lactis (LL) and Lactobacillus buchneri (LB), on the fermentation and nutrient digestibility in rams. Whole-crop maize (265 DM g/kg) was ensiled for 90 days in 210 L drums with no additive, or with LL or LB. After three months ...

  9. Productivity and profitability of maize-pumpkin mix cropping in Chitwan, Nepal

    Shiva Chandra Dhakal; Punya Prasad Regmi; Resham Bahadur Thapa; Shrawan Kumar Sah; Dilli Bahadur Khatri-Chhetri

    2015-01-01

    The study was conducted to determine the productivity, profitability and resource use efficiency of maize-pumpkin mix crop production in Chitwan. The study used 53 maize-pumpkin mix crop adopting farmers from among 300 farmers adopting different pollinator friendly practices. Descriptive and statistical tools including Cobb-Douglas production function were used to analyze data, collected from structured interview schedule. The benefit cost ratio (1.58) indicates that maize-pumpkin mix croppin...

  10. THE EFFECTS OF CLIMATIC VARIABLES AND CROP AREA ON MAIZE YIELD AND VARIABILITY IN GHANA

    Henry De-Graft Acquah

    2012-10-01

    Full Text Available Climate change tends to have negative effects on crop yield through its influence on crop production. Understanding the relationship between climatic variables and crop area on the mean and variance of crop yield will facilitate development of appropriate policies to cope with climate change. This paper examines the effects of climatic variables and crop area on the mean and variance of maize yield in Ghana. The Just and Pope stochastic production function using the Cobb-Douglas functional form was employed. The results show that average maize yield is positively related to crop area and negatively related to rainfall and temperature. Furthermore, increase in crop area and temperature will enlarge maize yield variability while rainfall increase will decrease the variability in maize yield.

  11. Investigating the Effect of Soil Texture and Fertility on Evapotranspiration and Crop Coefficient of Maize Forage

    M. Ghorbanian Kerdabadi

    2017-02-01

    Full Text Available Introduction: Crop coefficient varies in different environmental conditions, such as deficit irrigation, salinity and intercropping. The effect of soil fertility and texture of crop coefficient and evapotranspiration of maize was investigated in this study. Low soil fertility and food shortages as a stressful environment for plants that makes it different evapotranspiration rates of evapotranspiration calculation is based on the FAO publication 56. Razzaghi et al. (2012 investigate the effect of soil type and soil-drying during the seed-filling phase on N-uptake, yield and water use, a Danish-bred cultivar (CV. Titicaca was grown in field lysimeters with sand, sandy loam and sandy clay loam soil. Zhang et al (2014 were investigated the Effect of adding different amounts of nitrogen during three years (from 2010 to 2012 on water use efficiency and crop evapotranspiration two varieties of winter wheat. The results of their study showed. The results indicated the following: (1 in this dry land farming system, increased N fertilization could raise wheat yield, and the drought-tolerant Changhan No. 58 showed a yield advantage in drought environments with high N fertilizer rates; (2 N application affected water consumption in different soil layers, and promoted wheat absorbing deeper soil water and so increased utilization of soil water; and (3 comprehensive consideration of yield and WUE of wheat indicated that the N rate of 270 kg/ha for Changhan No. 58 was better to avoid the risk of reduced production reduction due to lack of precipitation; however, under conditions of better soil moisture, the N rate of 180 kg/ha was more economic. Materials and Methods: The study was a factorial experiment in a completely randomized design with three soil texture treatment, including silty clay loam, loam and sandy-loam soil and three fertility treatment, including without fertilizer, one and two percent fertilizer( It was conducted at the experimental farm in

  12. Pre and post emergence use of herbicides in maize crop

    Ahmad, M.; Chaudhry, M.H.; Amjed, M.T.

    2008-01-01

    This experiment was conducted at Maize and Millets Research institute, Yusafwala, Sahiwal, to find out the effective and economical weedicide to control weeds in maize crop during spring 200/ and 2002. Seven treatments including control (weedy Check) were studied in this trail. The results showed that Primextra (Metolachlor + Atrazine) 500 FW sprayed as pre-emergence at the rate 3.7/ liter per hectare, controlled broad-leaved weeds and grasses better as compared to other treatments in both the years. The control was 98.11% and 99.7% of broad-leaved weeds while in case of grasses it was 88.3% and 99.45% during spring 200/ and 2002, respectively Maximum grain weight per cob (143 and 186 g), 1000-grain weight (260.67 and 279 g) and grain yield (4471 and 6193 Kg ha-1) was obtained with the above treatment during spring 2001 and 2002, respectively and minimum in weedy check i.e grain weight per cob (102 and 141 g), 1000-grain weight (202.67 and 2/6.33 g) and grain yield (2769 and 4598, kg. ha/sup -I/) during spring 2001 and 2002, respectively. It was also observed from the study that all the weedicides performed better when used asp re-emergence while same used as post-emergence at 3-4 leave stage of weeds controlled only broadleaved weeds and showed poor performance against grasses. Thus keeping in view the above given result. It is concluded that Primextra (Metolacltlor + Atrazine) 500 FW at the rate 3.7 L/ha proved better weedicide for maize crop when used as pre-emergence giving effective control of broad leaved weeds and grasses in both the years along with maximum grain yield. (author)

  13. Leguminous cover crops differentially affect maize yields in three contrasting soil types of Kakamega, Western Kenya

    Kelvin Mark Mtei

    2011-06-01

    Full Text Available Maize production in smallholder farming systems in Kenya is largely limited by low soil fertility. As mineral fertilizer is expensive, green manuring using leguminous cover crops could be an alternative strategy for farmers to enhance farm productivity. However due to variability in soil type and crop management, the effects of green manure are likely to differ with farms. The objectives of this study were to evaluate Mucuna pruriens and Arachis pintoi on (i biomass and nitrogen fixation (15N natural abundance, (ii soil carbon and nitrogen stocks and (iii their effects on maize yields over two cropping seasons in Kakamega, Western Kenya. Mucuna at 6 weeks accumulated 1–1.3 Mg ha^{-1} of dry matter and 33–56 kg ha^{-1} nitrogen of which 70% was nitrogen derived from the atmosphere (Ndfa. Arachis after 12 months accumulated 2–2.7 Mg ha^{-1} of dry matter and 51–74 kg N ha^{-1} of which 52-63 % was from Ndfa. Soil carbon and nitrogen stocks at 0–15 cm depth were enhanced by 2-4 Mg C ha^{-1} and 0.3–1.0 Mg N ha^{-1} under Mucuna and Arachis fallow, irrespective of soil type. Maize yield increased by 0.5-2 Mg ha^{-1} in Mucuna and 0.5–3 Mg ha^{-1} in Arachis and the response was stronger on Nitisol than on Acrisol or Ferralsol. We concluded that leguminous cover crops seem promising in enhancing soil fertility and maize yields in Kenya, provided soil conditions and rainfall are suitable.

  14. Rainfed intensive crop systems

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed.......This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  15. Crop Management Effects on the Energy and Carbon Balances of Maize Stover-Based Ethanol Production

    Prem Woli

    2014-12-01

    Full Text Available This study was conducted to identify the crop management options—the combinations of various cultivars, irrigation amounts, planting dates, and soils—that would maximize the energy sustainability and eco-friendliness of maize (Zea mays L. stover-based ethanol production systems in the Mississippi Delta. Stover yields simulated with CERES-Maize were used to compute net energy value (NEV and carbon credit balance (CCB, the indicators of sustainability and eco-friendliness of ethanol production, respectively, for various scenarios. As the results showed, deeper soils with higher water holding capacities had larger NEV and CCB values. Both NEV and CCB had sigmoid relationships with irrigation amount and planting date and could be maximized by planting the crop during the optimum planting window. Stover yield had positive effects on NEV and CCB, whereas travel distance had negative. The influence of stover yield was larger than that of travel distance, indicating that increasing feedstock yields should be emphasized over reducing travel distance. The NEV and CCB values indicated that stover-based ethanol production in the Mississippi Delta is sustainable and environmentally friendly. The study demonstrated that the energy sustainability and eco-friendliness of maize stover-based ethanol production could be increased with alternative crop management options.

  16. Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay.

    Galeano, Pablo; Debat, Claudio Martínez; Ruibal, Fabiana; Fraguas, Laura Franco; Galván, Guillermo A

    2010-01-01

    The cultivation of genetically modified (GM) Bt maize (Zea mays L.) events MON810 and Bt11 is permitted in Uruguay. Local regulations specify that 10% of the crop should be a non-GM cultivar as refuge area for biodiversity, and the distance from other non-GM maize crops should be more than 250 m in order to avoid cross-pollination. However, the degree of cross-fertilization between maize crops in Uruguay is unknown. The level of adventitious presence of GM material in non-GM crops is a relevant issue for organic farming, in situ conservation of genetic resources and seed production. In the research reported here, the occurrence and frequency of cross-fertilization between commercial GM and non-GM maize crops in Uruguay was assessed. The methodology comprised field sampling and detection using DAS-ELISA and PCR. Five field-pair cases where GM maize crops were grown near non-GM maize crops were identified. These cases had the potential to cross-fertilize considering the distance between crops and the similarity of the sowing dates. Adventitious presence of GM material in the offspring of non-GM crops was found in three of the five cases. Adventitious presence of event MON810 or Bt11 in non-GM maize, which were distinguished using specific primers, matched the events in the putative sources of transgenic pollen. Percentages of transgenic seedlings in the offspring of the non-GM crops were estimated as 0.56%, 0.83% and 0.13% for three sampling sites with distances of respectively 40, 100 and 330 m from the GM crops. This is a first indication that adventitious presence of transgenes in non-GM maize crops will occur in Uruguay if isolation by distance and/or time is not provided. These findings contribute to the evaluation of the applicability of the "regulated coexistence policy" in Uruguay. © ISBR, EDP Sciences, 2011.

  17. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China.

    Zhang, Xubo; Sun, Nan; Wu, Lianhai; Xu, Minggang; Bingham, Ian J; Li, Zhongfang

    2016-08-15

    Although organic carbon sequestration in agricultural soils has been recommended as a 'win-win strategy' for mitigating climate change and ensuring food security, great uncertainty still remains in identifying the relationships between soil organic carbon (SOC) sequestration and crop productivity. Using data from 17 long-term experiments in China we determined the effects of fertilization strategies on SOC stocks at 0-20cm depth in the North, North East, North West and South. The impacts of changes in topsoil SOC stocks on the yield and yield stability of winter wheat (Triticum aestivum L.) and maize (Zea mays L.) were determined. Results showed that application of inorganic fertilizers (NPK) plus animal manure over 20-30years significantly increased SOC stocks to 20-cm depth by 32-87% whilst NPK plus wheat/maize straw application increased it by 26-38% compared to controls. The efficiency of SOC sequestration differed between regions with 7.4-13.1% of annual C input into the topsoil being retained as SOC over the study periods. In the northern regions, application of manure had little additional effect on yield compared to NPK over a wide range of topsoil SOC stocks (18->50MgCha(-1)). In the South, average yield from manure applied treatments was 2.5 times greater than that from NPK treatments. Moreover, the yield with NPK plus manure increased until SOC stocks (20-cm depth) increased to ~35MgCha(-1). In the northern regions, yield stability was not increased by application of NPK plus manure compared to NPK, whereas in the South there was a significant improvement. We conclude that manure application and straw incorporation could potentially lead to SOC sequestration in topsoil in China, but beneficial effects of this increase in SOC stocks to 20-cm depth on crop yield and yield stability may only be achieved in the South. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Crop sequences in no-tillage system: effects on soil fertility and soybean, maize and rice yield Sequências de culturas em semeadura direta: efeitos sobre a fertilidade do solo e a produtividade de soja, milho e arroz

    Adolfo Valente Marcelo

    2009-04-01

    Full Text Available Decomposing crop residues in no-tillage system can alter soil chemical properties, which may consequently influence the productivity of succession crops. The objective of this study was to evaluate soil chemical properties and soybean, maize and rice yield, grown in the summer, after winter crops in a no-tillage system. The experiment was carried out in Jaboticabal, SP, Brazil (21 ° 15 ' 22 '' S; 48 ° 18 ' 58 '' W on a Red Latosol (Oxisol, in a completely randomized block design, in strip plots with three replications. The treatments consisted of four summer crop sequences (maize monocrop, soybean monocrop, soybean/maize rotation and rice/bean/cotton rotation combined with seven winter crops (maize, sunflower, oilseed radish, pearl millet, pigeon pea, grain sorghum and sunn hemp. The experiment began in September 2002. After the winter crops in the 2005/2006 growing season and before the sowing of summer crops in the 2006/2007 season, soil samples were collected in the layers 0-2.5; 2.5-5.0; 5-10; 10-20; and 20-30 cm. Organic matter, pH, P, K+, Ca2+, Mg2+, and H + Al were determined in each soil sample. In the summer soybean/maize rotation and in maize the organic matter contents and P levels were lower, in the layers 0-10 cm and 0-20 cm, respectively. Summer rice/bean/cotton rotation increased soil K levels at 0-10 cm depth when sunn hemp and oilseed radish had previously been grown in the winter, and in the 0-2.5 cm layer for millet. Sunn hemp, millet, oilseed radish and sorghum grown in the winter increased organic matter contents in the soil down to 30 cm. Higher P levels were found at the depths 0-2.5 cm and 0-5 cm, respectively, when sunn hemp and oilseed radish were grown in the winter. Highest grain yields for soybean in monoculture were obtained in succession to winter oilseed radish and sunn hemp and in rotation with maize, after oilseed radish, sunn hemp and millet. Maize yields were highest in succession to winter oilseed radish

  19. USING MAIZE (ZEA MAYS L. AS A SUGAR CROP

    F.E. Below

    2008-09-01

    Full Text Available The increased demand for homegrown energy has created a market for new feedstocks for the growing biofuel industry. Plants with C4 photosynthesis are particularly suited as biofuel crops because of their high radiation, water, and nitrogen (N use efficiency. C4 species that store high levels of sucrose in their stalks such as sugarcane (Saccharum spp, sorghum (Sorghum bicolor L., and maize are especially useful. Maize has been repeatedly evaluated as a sugar crop during the last century, and prevention of pollination or ear removal is typically associated with the highest concentrations of stalk sugar. Elimination of the reproductive phase, however, usually results in accelerated leaf senescence, which is expected to limit sugar accumulation. We have developed a series of hybrids that exhibit photoperiod sensitivity as an approach to simultaneously increase biomass and sugar production by crossing seven tropical inbreds with the historic temperate inbred B73. We used a tropical parent to confer photoperiod sensitivity and to greatly delay flowering and increase the anthesis-silking interval, resulting in low seed set. When grown in temperate regions these hybrids produce abundant biomass and do not exhibit accelerated leaf senescence without grain, but rather remain green and accumulate sugars in their stalks. Total biomass (stover and grain, sucrose accumulation, and the response to N of these hybrids was determined and compared to a similar number of locally grown commercial grain hybrids. On average the tropical hybrids produced 20% more total biomass than the commercial hybrids, and they showed a smaller response to the addition of fertilizer N. Total biomass yields of tropical hybrids ranged from 16.3 to 27.5 Mg/ha (average of 23.5 Mg/ha and the stalk contained from 1.7 to 3.2 Mg/ha of sucrose (average of 2.6 Mg/ha. Increasing the N supply from 0 to 225 kg/ha increased the average biomass production of tropical hybrids by only 2.2 Mg

  20. Woody legume fallow productivity, biological N2-fixation and residual benefits to two successive maize crops in Zimbabwe

    Chikowo, R.; Mapfumo, P.; Nyamugafata, P.; Giller, K.E.

    2004-01-01

    Three woody legumes were planted as two-year 'improved fallows' to evaluate their residual nitrogen (N) effects on two subsequent maize crops under minimum and conventional tillage management. Maize monoculture and cowpea-maize-maize sequence treatments were included as controls. N-2-fixation was

  1. An Assessment of some Fertilizer Recommendations under Different Cropping Systems in a Humid Tropical Environment

    Fondufe, EY.

    2001-01-01

    Full Text Available Studies were carried out to determine the effects of four fertilizer recommendation systems (bianket recommendation, soil test recommendation, recommendation based on nutrient supplementation index and unfertilized control on five cropping systems (sole cassava, maize, melon, cassava + maize and cassava + maize + melon. The experiment was a split-plot in randomised complete block design, with fertilizer recommendation systems in main plots and cropping systems in subplots. Observations were made on plant growth and yield. Plant samples were also analyzed for N, P and K uptake. Cassava and melon gave higher yields in sole cropping than intercropping while maize yield under intercropping exceeded that under sole cropping by 17 %. Cassava root yield was significantly reduced by 24 and 35 % in cassava + maize and cassava + maize + melon plots. Fertilizer recommendation based on nutrient supplementation index (NSI gave the highest crop yield 41, 31, and 27 t/ha of maize in sole maize, maize + cassava and maize + cassava + melon and 0.6 and 0.2 t/ha of sole melon and intercropped melon respectively. Nitrogen uptake by cassava and maize was highest under NSI, but fertilizer recommendation based on soil test gave the highest crop yield and monetary returns per unit of fertilizer used.

  2. Nitrate Leaching From Grain Maize After Different Tillage Methods and Long/Short Term Cover Cropping

    Hansen, Elly Møller

    trial initiated in 1968 on a coarse sandy soil. The previous trial included spring sown crops undersown (with or without) perennial ryegrass (Lolium perenne L.) as cover crop, two N-rates (90 and 120 kg N ha-1) and different tillage methods (shallow tillage and ploughing autumn or spring). With maize......) previous history of long-term cover cropping, ii) soil tillage methods, iii) N rates and iv) present short-term use of cover cropping in maize. Preliminary results from 2009 – 2011 suggest that leaching after a history of cover cropping tended to be higher than after no history of cover cropping......, but the effect was insignificant. The effect of tillage and previous N rates were also insignificant but the present use of cover crops had a small but significant decreasing effect on leaching compared to no cover cropping. The cover crop was well established in both years but grew less vigorously during autumn...

  3. The flux of ozone to a maize crop and the underlying soil during a growing season

    Pul, van W.A.J.

    1992-01-01

    To observe the flux or deposition of ozone above a maize crop, experiments were carried out during the growing season of maize in 1988. The flux of ozone was determined using meteorological techniques. The measurements used in the present study were carried out under atmospheric conditions

  4. Effect meerjarige toepassing groenbemester en organische mest op bodemkwaliteit bij continuteelt maïs : 2e rapport project Zorg voor Zand = Effect of long-term application of cover crops and organic manure on soil quality in a continuous maize production system : 2nd report project Care for Sand

    Schooten, van H.A.; Eekeren, van N.J.M.; Hanegraaf, M.C.; Burgt, van der G.J.H.M.; Visser, de M.

    2006-01-01

    In 2005 research was conducted on the effect of long-term application of cover crops and organic manure on various soil quality characteristics in a continuous maize production system on sandy soil. The conclusion was that the effect of organic fertiliser on the quality of the soil and yield was

  5. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana.

    Kermah, Michael; Franke, Angelinus C; Adjei-Nsiah, Samuel; Ahiabor, Benjamin D K; Abaidoo, Robert C; Giller, Ken E

    2017-11-01

    Smallholder farmers in the Guinea savanna practise cereal-legume intercropping to mitigate risks of crop failure in mono-cropping. The productivity of cereal-legume intercrops could be influenced by the spatial arrangement of the intercrops and the soil fertility status. Knowledge on the effect of soil fertility status on intercrop productivity is generally lacking in the Guinea savanna despite the wide variability in soil fertility status in farmers' fields, and the productivity of within-row spatial arrangement of intercrops relative to the distinct-row systems under on-farm conditions has not been studied in the region. We studied effects of maize-legume spatial intercropping patterns and soil fertility status on resource use efficiency, crop productivity and economic profitability under on-farm conditions in the Guinea savanna. Treatments consisted of maize-legume intercropped within-row, 1 row of maize alternated with one row of legume, 2 rows of maize alternated with 2 rows of legume, a sole maize crop and a sole legume crop. These were assessed in the southern Guinea savanna (SGS) and the northern Guinea savanna (NGS) of northern Ghana for two seasons using three fields differing in soil fertility in each agro-ecological zone. Each treatment received 25 kg P and 30 kg K ha -1 at sowing, while maize received 25 kg (intercrop) or 50 kg (sole) N ha -1 at 3 and 6 weeks after sowing. The experiment was conducted in a randomised complete block design with each block of treatments replicated four times per fertility level at each site. Better soil conditions and rainfall in the SGS resulted in 48, 38 and 9% more maize, soybean and groundnut grain yield, respectively produced than in the NGS, while 11% more cowpea grain yield was produced in the NGS. Sole crops of maize and legumes produced significantly more grain yield per unit area than the respective intercrops of maize and legumes. Land equivalent ratios (LERs) of all intercrop patterns were greater than

  6. Response of maize varieties to nitrogen application for leaf area profile, crop growth, yield and yield components

    Akmal, M.; Hameed-urRehman; Farhatullah; Asim, M.; Akbar, H.

    2010-01-01

    An experiment was conducted at NWFP Agricultural University, Peshawar, to study maize varieties and Nitrogen (N) rates for growth, yield and yield components. Three varieties (Azam, Jalal and Sarhad white) and three N rates (90, 120, 150, kg N ha/sup -1/) were compared. Experiment was conducted in a Randomized Complete Block design; split plot arrangement with 4 replications. Uniform and recommended cultural practices were applied during the crop growth. The results revealed that maize variety 'Jalal' performed relatively better crop growth rate (CGR) and leaf area profile (LAP) at nodal position one to six as compared to the other two varieties (Sarhad white and Azam). This resulted higher radiation use efficiency by the crop canopy at vegetative stage of development and hence contributed higher assimilates towards biomass production. Heavier grains in number and weight were due to higher LAP and taller plants of Jalal which yielded higher in the climate. Nitrogen applications have shown that maize seed yield increase in quadratic fashion with increased N to a plateau level. Considering soil fertility status and cropping system, the 150 kg ha/sup -1/ N application to maize variety Jalal in Peshawar is required for maximum biological and seed production. (author)

  7. Farmers Participatory Research in the Evaluation of Maize Crop Residues for Improved Dairy Cattle Production in Eastern Kenya

    Kiruiro, E.M.; Kariuki, I.W.; Kang'ara, J.; Ouma, O.

    1999-01-01

    Informal and formal surveys, and participatory rural appraisal conducted within the coffee land-use system of Embu District in Eastern Kenya identified feed shortage as a major constraint to increased dairy production on small holder farms. To address this constraint, a two-year (1996-1998) on-farm research project involving 20 farms in Manyatta division, Embu District was initiated with broad objectives of developing components technologies that would use maize crop residues. This was due to the recognition of the fact that the greatest potential for improving field availability would be in the exploitation of crop residues, especially those derived from maize, the main staple crop in the region. Based on these reality appropriate technologies that would offer viable offers for the use of crop residues were identified and discussed during workshops and meetings with farmers. Component technologies considered included drying of maize leaves after defoliation and post-harvest storage methods for dry maize stover. this paper discussed the results of the participatory research in context of farmers' involvement in the technology development, testing, evaluation and promotion. The study demonstrated that involving farmers in all stages of the research process, enhanced their interest and participation in the testing and subsequent adoption of appropriate technologies

  8. Assessments of Future Maize Yield Potential Changes in the Korean Peninsula Using Multiple Crop Models

    Kim, S. H.; Lim, C. H.; Kim, J.; Lee, W. K.; Kafatos, M.

    2016-12-01

    The Korean Peninsula has unique agricultural environment due to the differences of political and socio-economical system between Republic of Korea (SK, hereafter) and Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering lack of food supplies caused by natural disasters, land degradation and political failure. The neighboring developed country SK has better agricultural system but very low food self-sufficiency rate. Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore, evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we utilized multiple process-based crop models, having ability of regional scale assessment, to evaluate maize Yp and assess the model uncertainties -EPIC, GEPIC, DSSAT, and APSIM model that has capability of regional scale expansion (apsimRegions). First we evaluated each crop model for 3 years from 2012 to 2014 using reanalysis data (RDAPS; Regional Data Assimilation and Prediction System produced by Korea Meteorological Agency) and observed yield data. Each model performances were compared over the different regions in the Korean Peninsula having different local climate characteristics. To quantify of the major influence of at each climate variables, we also conducted sensitivity test using 20 years of climatology in historical period from 1981 to 2000. Lastly, the multi-crop model ensemble analysis was performed for future period from 2031 to 2050. The required weather variables projected for mid-century were employed from COordinated Regional climate Downscaling EXperiment (CORDEX) East Asia. The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas

  9. Productivity and profitability of maize-pumpkin mix cropping in Chitwan, Nepal

    Shiva Chandra Dhakal

    2015-12-01

    Full Text Available The study was conducted to determine the productivity, profitability and resource use efficiency of maize-pumpkin mix crop production in Chitwan. The study used 53 maize-pumpkin mix crop adopting farmers from among 300 farmers adopting different pollinator friendly practices. Descriptive and statistical tools including Cobb-Douglas production function were used to analyze data, collected from structured interview schedule. The benefit cost ratio (1.58 indicates that maize-pumpkin mix cropping was profitable with productivity of 2.83 ton per ha on maize main product equivalent basis. The magnitude of regression coefficients of maize-pumpkin mix cropping implied that expenditure on seed and fertilizer and irrigation had significant positive effect on gross return with estimated decreasing return to scale (0.85. According to estimated allocative efficiency indices, it is suggested to increase expenditure on seed and fertilizer cum irrigation by about 90% and 55% respectively. Extension of modern technologies with adjustment on resource use is to be encouraged for increase in productivity and profitability of maize-pumpkin mix crop production which indirectly promotes and ensure forage for pollinators

  10. Comparison of cellulosic ethanol yields from midwestern maize and reconstructed tallgrass prairie systems managed for bioenergy

    Maize- and prairie-based systems were investigated as cellulosic feedstocks by conducting a 9 ha side-by-side comparison on fertile soils in the Midwestern United States. Maize was grown continuously with adequate fertilization over years both with and without a winter rye cover crop, and the 31-spe...

  11. Crop Row Detection in Maize Fields Inspired on the Human Visual Perception

    J. Romeo

    2012-01-01

    Full Text Available This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate green plants or pixels (crops and weeds from the rest (soil, stones, and others. It is based on a fuzzy clustering process, which allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments. They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired effects. It is favorably compared against the well-tested Hough transformation for line detection.

  12. Evaluation for Multi Purpose Free Species for Inter Cropping with Maize

    Kimotho, L.M

    2002-01-01

    The continued increase in Kenya's population has forced people to move into the dry lands and hence increasing demand for food and tree products in these areas. This has forced farmers to clear the existing natural forests to pave way for agricultural activities. In order to address this problem an integrated approach of planting both trees and crops on farm has been adopted. A trial was established to compare the growth performance of some local and exotic timber tree species as well as examine their effect on maize (Zea mays) crop yield. the tree treatments included Acacia polyacantha, caesalpinia velutina, Grevillae robusta, melia azaderach, senna spectabilis and senna siamea, planted at 5m x 5m spacing, in a Randomized Complete Block Design with three (3) replicates. Maize crop (Dry Land Hybrid 1 -DH1) was used as inter-crop during November-January seasons. The maize was planted at a spacing of 90 cm by 40 cm. There was a control with no trees. Growth of the trees was based on increase in both height and girth while whilst the crop yield was asses d by estimating average plot yield under each species. Results indicated that, different tree species affected the maize grain yield differently: i.e. there was no tre effect on maize yield in the earlier stages but as the trees increased in age and hence size some species caused reduction in the maize grain yields while others did not cause any reduction as yet. However, depending on the individual needs various decisions could be made on whether to compromise the crop yields, which are minimal in order to attain some timber products in addition to food. The trial is continuing in order to establish how long each tree species would permit a maize crop

  13. Carbon exchange of a maize (Zea mays L.) crop: Influence of phenology

    Jans, W.W.P.; Jacobs, C.M.J.; Kruijt, B.; Elbers, J.A.; Barendse, S.C.A.; Moors, E.J.

    2010-01-01

    A study was carried out to quantify the carbon budget of a maize (Zea mays L.) crop followed by a rye cover crop in the Netherlands, and to determine the importance of the phenological phases and the fallow phase when modelling the carbon budget. Measurements were made of carbon fluxes, soil

  14. Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya - An application of classification and regression tree analysis

    Tittonell, P.A.; Shepherd, K.; Vanlauwe, B.; Giller, K.E.

    2008-01-01

    To guide soil fertility investment programmes in sub-Saharan Africa, better understanding is needed of the relative importance of soil and crop management factors in determining smallholder crop yields and yield variability. Spatial variability in crop yields within farms is strongly influenced by

  15. Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States

    Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.

    2013-12-01

    The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.

  16. Dissolution of different zinc salts and zn uptake by Sedum alfredii and maize in mono- and co-cropping under hydroponic culture.

    Jiang, Cheng'ai; Wu, Qitang; Zeng, Shucai; Chen, Xian; Wei, Zebin; Long, Xinxian

    2013-09-01

    Previous soil pot and field experiments demonstrated that co-cropping the hyperaccumulator Sedum alfredii with maize increased Zn phytoextraction by S. alfredii and decreased Zn uptake by maize shoots. This hydroponic experiment was conducted to investigate whether the facilitation of Zn phytoextraction by S. alfredii resulted from improved dissolution in this co-cropping system and its relation to root exudates. S. alfredii and maize were mono- and co-cropped (without a root barrier) in nutrient solution spiked with four Zn compounds, ZnS, ZnO, Zn3(PO4)2 and 5ZnO x 2CO3-4H2O (represented as ZnCO3) at 1000 mg/L Zn for 15 days without renewal of nutrient solution after pre-culture. The root exudates were collected under incomplete sterilization and analyzed. The results indicated that the difference in Zn salts had a greater influence on the Zn concentration in maize than for S. alfredii, varying from 210-2603 mg/kg for maize shoots and 6445-12476 mg/kg for S. alfredii in the same order: ZnCO3 > ZnO > Zn3(PO4)2 > ZnS. For the four kinds of Zn sources in this experiment, co-cropping with maize did not improve Zn phytoextraction by S. alfredii. In most cases, compared to co-cropped and mono-cropped maize, mono-cropped S. alfredii resulted in the highest Zn2+ concentration in the remaining nutrient solution, and also had a higher total concentration of low molecular weight organic acids (LMWOA) and lower pH of root exudation. Root exudates did partly influence Zn hyperaccumulation in S. alfredii.

  17. Estimating yield gaps at the cropping system level.

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  18. Exclusion of soil macrofauna did not affect soil quality but increases crop yields in a sub-humid tropical maize-based system

    Paul, B.K.; Vanlauwe, B.; Hoogmoed, M.; Hurisso, T.T.; Ndabamenye, T.; Terano, Y.; Ayuke, F.O.; Pulleman, M.M.

    2015-01-01

    Soil macrofauna such as earthworms and termites are involved in key ecosystem functions and thus considered important for sustainable intensification of crop production. However, their contribution to tropical soil and crop performance, as well as relations with agricultural management (e.g.

  19. Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds.

    Colbach, Nathalie; Fernier, Alice; Le Corre, Valérie; Messéan, Antoine; Darmency, Henri

    2017-04-01

    Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FLORSYS model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28 years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.

  20. Evaluation of JULES-crop performance against site observations of irrigated maize from Mead, Nebraska

    Williams, Karina; Gornall, Jemma; Harper, Anna; Wiltshire, Andy; Hemming, Debbie; Quaife, Tristan; Arkebauer, Tim; Scoby, David

    2016-01-01

    The JULES-crop model (Osborne et al., 2015) is a parameterisation of crops within the Joint UK Land Environment Simulator (JULES), which aims to simulate both the impact of weather and climate on crop productivity and the impact of crop-lands on weather and climate. In this evaluation paper, observations of maize at three FLUXNET sites in Nebraska (US-Ne1, US-Ne2, US-Ne3) are used to test model assumptions and make appropriate input parameter choices. JULES runs are performed for the irrigate...

  1. Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity.

    Colbach, Nathalie; Darmency, Henri; Fernier, Alice; Granger, Sylvie; Le Corre, Valérie; Messéan, Antoine

    2017-05-01

    Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.

  2. Weed Control in Maize-Cowpea Intercropping System Related to Environmental Resources Consumption

    Hamdollah ESKANDARI

    2011-03-01

    Full Text Available A field experiment was carried out in Ramhormoz, Iran during the 2008-2009 growing season to investigate the effects of different planting pattern of intercropping on environmental resource consumption and weed biomass. A randomized complete block design (RCBD with three replications was employed to compare the treatments. Treatments included maize sole crop (M, cow pea sole crop (C, within row intercropping (I1, row intercropping (I2 and mix cropping (I3. The density of intercropping was according to replacement design (one maize replaced by three cow pea plants. The results showed that environmental resource consumption was significantly (P?0.05 affected by cropping system, where PAR interception, moisture and nutrients uptake were higher in intercropping systems compared to sole crop systems. Regarding to weed control, intercrops were more effective than sole crops and it was related to lower availability of environmental resources for weeds in intercropping systems.

  3. Effect of Incident Rainfall Redistribution by Maize Canopy on Soil Moisture at the Crop Row Scale

    Marco Martello

    2015-05-01

    Full Text Available The optimization of irrigation use in agriculture is a key challenge to increase farm profitability and reduce its ecological footprint. To this context, an understanding of more efficient irrigation systems includes the assessment of water redistribution at the microscale. This study aimed to investigate rainfall interception by maize canopy and to model the soil water dynamics at row scale as a result of rain and sprinkler irrigation with HYDRUS 2D/3D. On average, 78% of rainfall below the maize canopy was intercepted by the leaves and transferred along the stem (stemflow, while only 22% reached the ground directly (throughfall. In addition, redistribution of the water with respect to the amount (both rain and irrigation showed that the stemflow/throughfall ratio decreased logarithmically at increasing values of incident rainfall, suggesting the plant capacity to confine the water close to the roots and diminish water stress conditions. This was also underlined by higher soil moisture values observed in the row than in the inter-row at decreasing rainfall events. Modelled data highlighted different behavior in terms of soil water dynamics between simulated irrigation water distributions, although they did not show significant changes in terms of crop water use efficiency. These results were most likely affected by the soil type (silty-loam where the experiment was conducted, as it had unfavorable physical conditions for the rapid vertical water movement that would have increased infiltration and drainage.

  4. Integrated pest management in the small farmer's maize crop in Nicaragua

    Huis, van A.

    1981-01-01

    Maize, the main food crop in Nicaragua, is produced by a large group of small landowners, who farm under constraints of land tenure, marginal soils, poor infrastructure and inadequate production services (credit, technical assistance, marketing). Rural development plans, designed to raise

  5. The performance of maize crop during acid amelioration with ...

    Tanzania Journal of Science ... This study evaluated acid ameliorative potential and their effects on maize growth of four organic residues namely wild spikenard, cordia, cowpea and pigeon peas ... The finding suggests different acid ameliorating potential of residues, pigeon peas and cordia being the most effective.

  6. Rainfall and crop modeling-based water stress assessment for rainfed maize cultivation in peninsular India

    Manivasagam, V. S.; Nagarajan, R.

    2018-04-01

    Water stress due to uneven rainfall distribution causes a significant impact on the agricultural production of monsoon-dependent peninsular India. In the present study, water stress assessment for rainfed maize crop is carried out for kharif (June-October) and rabi (October-February) cropping seasons which coincide with two major Indian monsoons. Rainfall analysis (1976-2010) shows that the kharif season receives sufficient weekly rainfall (28 ± 32 mm) during 26th-39th standard meteorological weeks (SMWs) from southwest monsoon, whereas the rabi season experiences a major portion of its weekly rainfall due to northeast monsoon between the 42nd and 51st SMW (31 ± 42 mm). The later weeks experience minimal rainfall (5.5 ± 15 mm) and thus expose the late sown maize crops to a severe water stress during its maturity stage. Wet and dry spell analyses reveal a substantial increase in the rainfall intensity over the last few decades. However, the distribution of rainfall shows a striking decrease in the number of wet spells, with prolonged dry spells in both seasons. Weekly rainfall classification shows that the flowering and maturity stages of kharif maize (33rd-39th SMWs) can suffer around 30-40% of the total water stress. In the case of rabi maize, the analysis reveals that a shift in the sowing time from the existing 42nd SMW (16-22 October) to the 40th SMW (1-7 October) can avoid terminal water stress. Further, AquaCrop modeling results show that one or two minimal irrigations during the flowering and maturity stages (33rd-39th SMWs) of kharif maize positively avoid the mild water stress exposure. Similarly, rabi maize requires an additional two or three lifesaving irrigations during its flowering and maturity stages (48th-53rd SMWs) to improve productivity. Effective crop planning with appropriate sowing time, short duration crop, and high yielding drought-resistant varieties will allow for better utilization of the monsoon rain, thus reducing water stress with

  7. Evaluation of the Aqua‎Crop Model to Simulate Maize Yiled Response under Salinity Stress

    Aida Mehrazar

    2017-01-01

    Full Text Available Introduction: Limited water resources and its salinity uptrend has caused reducing water and soil quality and consequently reducing the crop production. Thus, use of saline water is the management strategies to decrease drought and water crisis. Furthermore, simulation models are valuable tools for improving on-farm water management and study about the effects of water quality and quantity on crop yield.. The AquaCrop model has recently been developed by the FAO which has the ability to check the production process under different propositions. The initial version of the model was introduced for simulation of crop yield and soil water movement in 2007, that the effect of salinity on crop yield was not considered. Version 4 of the model was released in 2012 in which also considered the effects of salinity on crop yield and simulation of solute Transmission in soil profile. Material and methods: In this project, evaluation of the AquaCrop model and its accuracy was studied in the simulating yield of maize under salt stress. This experiment was conducted in Karaj, on maize hybrid (Zea ma ys L in a sandy soil for investigation of salinity stress on maize yield in 2011-2012. This experiment was conducted in form of randomized complete block design in four replications and five levels of salinity treatments including 0, 4.53, 9.06, 13.59 and 18.13 dS/m at the two times sampling. To evaluate the effect of different levels of salinity on the yield of maize was used Version 4 AquaCrop model and SAS ver 9.1 software .The model calibration was performed by comparing the results of the field studies and the results of simulations in the model. In calculating the yield under different scenarios of salt stress by using AquaCrop, the model needs climate data, soil data, vegetation data and information related to farm management. The effects of salinity on yield and some agronomic and physiological traits of hybrid maize (Shoot length, root length, dry weight

  8. Agroclimatic mapping of maize crop based on soil physical properties

    Dourado Neto, Durval; Sparovek, G.; Reichardt, K.; Timm, Luiz Carlos; Nielsen, D.R.

    2004-01-01

    With the purpose of estimating water deficit to forecast yield knowing productivity (potential yield), the water balance is useful tool to recommend maize exploration and to define the sowing date. The computation can be done for each region with the objective of mapping maize grain yield based on agro-climatic data and soil physical properties. Based on agro-climatic data, air temperature and solar radiation, a model was built to estimate the corn grain productivity (the energy conversion results in dry mass production). The carbon dioxide (CO 2 ) fixation by plants is related to gross carbohydrate (CH 2 O) production and solar radiation. The CO 2 assimilation by C4 plants depends on the photosynthetic active radiation and temperature. From agro-climatic data and soil physical properties, a map with region identification can be built for solar radiation, air temperature, rainfall, maize grain productivity and yield, potential and real evapo-transpiration and water deficit. The map allows to identify the agro-climatic and the soil physical restrictions. This procedure can be used in different spatial (farm to State) and temporal (daily to monthly data) scales. The statistical analysis allows to compare estimated and observed values in different situations to validate the model and to verify which scale is more appropriate

  9. Exploring maize-legume intercropping systems in Southwest Mexico

    Flores-Sanchez, D.; Pastor, A.V.; Lantinga, E.A.; Rossing, W.A.H.; Kropff, M.J.

    2013-01-01

    Maize yields in continuous maize production systems of smallholders in the Costa Chica, a region in Southwest Mexico, are low despite consistent inputs of fertilizers and herbicides. This study was aimed at investigating the prospects of intercropping maize (Zea mays L.) and maize-roselle (Hibiscus

  10. Evaluation of the Beneficial Effects of Triple Intercropping of Maize (Zea mays L., Pinto Been (Phaseolus vulgaris L.

    P. Moradi

    2016-05-01

    Full Text Available In order to evaluate the benefits of maize, pinto bean and naked pumpkin triple cropping, an experiment was carried out as a randomized complete block design with three replications at Faculty of Agricultural Science, University of Guilan, Rasht, Iran in 2012. The treatments consisted of maize, pinto bean and naked pumpkin sole cropping (100, 75 and 50% of conventional densities, maize – pinto bean and maize – pumpkin double cropping (100-100%, 75-75% and 50-50%, and maize-pinto bean-pumpkin triple cropping (100-100-100%, 75-75-75% and 50-50-50%. The highest and lowest forage fresh weights were obtained in triple cropping system with high density and sole cropping systems with low density, respectively. In double cropping systems, the maize-pumpkin out-yielded the maize-pinto bean in terms of fresh weight. The relative crowding coefficient, competitive ratio and aggressivity of maize in double cropping of maize-pinto bean and naked pumpkin in double cropping of maize-naked pumpkin were dominant. In triple cropping systems, while maize and naked pumpkin were comparable, but both of the latter crops were dominant over pinto bean. Land Equivalent Ratio (LER for double and triple cropping was greater than one, revealing the profitability of double and triple cropping systems on sole cropping. According to the LER, the cropping systems can be ranked as follows: triple cropping > double cropping maize/pinto bean > double cropping maize/pumpkin

  11. Conservation agriculture practices in rainfed uplands of India improve maize-based system productivity and profitability

    Aliza Pradhan

    2016-07-01

    Full Text Available Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift towards more sustainable cropping systems such as conservation agriculture production systems (CAPS may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over three years (2011-2014 of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation i.e. minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e. conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  12. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  13. Annual maize and perennial grass-clover strip cropping for increased resource use efficiency and productivity using organic farming practice as a model

    Hauggaard-Nielsen, Henrik; Johansen, Anders; Carter, Mette Sustmann

    2013-01-01

    A cropping system was designed to fulfill the increasing demand for biomass for food and energy without decreasing long term soil fertility. A field experiment was carried out including alternating strips of annual maize (Zea mays L.) and perennial ryegrass (Lolium perenne L.) – clover (Trifolium...

  14. MAIZE YIELD AND ITS STABILITY AS AFFECTED BY TILLAGE AND CROP RESIDUE MANAGEMENT IN THE EASTERN ROMANIAN DANUBE PLAIN

    Alexandru COCIU

    2015-10-01

    Full Text Available Rainfed crop management systems need to be optimized to provide more resilient options in order to cope with projected climatic scenarios which are forecasting a decrease in mean precipitation and more frequent extreme drought periods in the Eastern Romanian Danube Plain. This research, carried out in the period of 2011-2014, had as main purpose the determination of influence of tillage practices and residue management on rainfall use efficiency, maize yield and its stability, in order to evaluate the advantages of conservation agriculture (CA in the time of stabilization of direct seeding effects, in comparison with traditional chisel tillage. The maize grain yields are presented for each crop management practices, as follows: (1 chisel tillage, retained crop residues being chopped and incorporated (ciz; (2 zero tillage, retained crop residue chopped and kept on the field in short flat condition (rvt; (3 zero tillage, crop residues kept on the field in short root-anchored condition (1/2rva, and (4 zero tillage, crop residues kept on the field in tall root-anchored condition (1/1rva. In 2012, a year with prolonged drought during vegetative growth, yield differences between zero tillage with short root-anchored residue retention (1/2rva and chisel tillage with residue incorporation (ciz were positive, up to 840 kg ha-1. In average over 2011-2014, conservation agriculture (CA practices had a yield advantage over traditional chisel tillage practice. Zero tillage with residue retention used rainfall more efficiently so suggesting that it is a more resilient agronomic system than traditional (conventional practices involving chisel tillage with residue incorporation.

  15. Estratégias de manejo de coberturas de solo no inverno para cultivo do milho em sucessão no sistema semeadura direta Management strategies of winter cover crops to maize grown in succession in no-till system

    Paulo Regis Ferreira da Silva

    2006-06-01

    Full Text Available A maioria dos produtores do estado do Rio Grande do Sul adota o sistema de semeadura direta, em que não há revolvimento do solo para preparo da área para semeadura. A adoção de um sistema de rotação e sucessão de culturas diversificado, que produza adequada quantidade de resíduos culturais na superfície do solo, é fundamental para sustentabilidade do sistema de semeadura direta. Os agricultores dispõem de várias espécies de cobertura de solo no inverno com potencial para anteceder a cultura do milho em sucessão. Na família das poáceas, destaca-se a aveia preta (Avena strigosa como a mais cultivada. No entanto, o seu uso continuado pode causar prejuízos ao cultivo do milho em sucessão. Objetivando minimizar os efeitos das poáceas e ao mesmo tempo atender às exigências do sistema de semeadura direta, novas espécies de inverno pertencentes a famílias botânicas distintas, como fabáceas e brassicáceas, têm sido estudadas, tanto em cultivos solteiros quanto em consórcio com poáceas, como alternativas para anteceder o cultivo do milho. Assim, esta revisão bibliográfica tem como objetivos descrever as principais vantagens e limitações do uso de coberturas de solo no inverno, em cultivos solteiros ou consorciados, como culturas antecessoras ao milho no sistema de semeadura direta e discutir estratégias de manejo destas coberturas que resultem em maiores benefícios para o milho.The no-tillage system is adopted by most of the farmers in Rio Grande do Sul, Southern Brazil. No-till system requires no ploughing and only a narrow and superficial band or slot is opened in the soil to allow sowing. The sustainability of this system is dependent on a diversified system of crop rotation and succession able to leave on the soil an adequate amount of crop residues. In Rio Grande do Sul black oat (Avena strigosa L. is the most cultivated cover crop, in spite of fact that different cover crops are available to precede the maize crop

  16. Crops are a main driver for species diversityand the toxigenic potential of Fusarium isolates in maize ears in China.

    Zhang, Hao; Brankovics, Balázs; Luo, W.; Xu, J.; Xu, J.S.; Guo, C.; Guo, J.G.; Jin, S.L.; Chen, W.Q.; Feng, J.; van Diepeningen, Anne D.; van der Lee, Theo A J; Waalwijk, Cees

    2016-01-01

    In recent years increasing demands and the relatively low-care cultivation of the crop have resulted in an enormous expansion of the acreage of maize in China. However, particularly in China, Fusarium ear rot forms an important constraint to maize production. In this study, we showed that members of

  17. Flavone-rich maize: An opportunity to improve the nutritional value of an important commodity crop

    Maria Isabel Casas

    2014-09-01

    Full Text Available Agricultural outputs have resulted in food production continuously expanding. Satisfying the needs of a fast growing human population, higher yields, more efficient food processing, and food esthetic value, resulted in crop varieties with higher caloric intake but lacking many phytochemicals important for plant protection and adequate human nutrition. The increasing incidence of chronic diseases such as obesity, diabetes and cardiovascular diseases, combined with social disparity worldwide prompted the interest in developing enhanced crops that can simultaneously address the two sides of the current malnutrition sword, increasing yield while providing added nutritional value. Flavones, phytochemicals associated with the beneficial effects of the Mediterranean diet, have potent anti-inflammatory and anti-carcinogenic activities. However, many Mediterranean diet-associated vegetables are inaccessible, or lowly consumed, in many parts of the world. Maize is the most widely grown cereal crop, yet most lines used for hybrid maize production lack flavones. As a first step towards a sustainable strategy to increasing the nutritional value of maize-based diets, we investigated the accumulation and chemical properties of flavones in maize seeds of defined genotypes. We show that the pericarps of the P1-rr genotype accumulate flavones at levels comparable to those present in some flavone-rich vegetables, and are mostly present in their C- and O-glycosylated forms. Some of these glycosides can be readily converted into the corresponding more active health beneficial aglycones during food processing. Our results provide evidence that nutritionally beneficial flavones could be re-introduced into elite lines to increase the dietary benefits of maize.

  18. Mixed Cropping of Legumes and Maize by the Use of Urea

    Esmaeil Alibakhshi; Mohammad Mirzakhani

    2016-01-01

    To study the effect of nitrogenous fertilizers and mixed cropping of legumes and maize on its grain yield and yield component of corn in Arak, an experiment was carried at the Agricultural Research Center of Markazi Province in 2013. A factorial experiment based on randomized complete block design with three replications was performed. Treatments were four levels of urea (N0= control, N1= 75 kg.ha-1, N2= 150 kg.ha-1, N3= 225 kg.ha-1) and mixed cropping with four levels (S1= planting corn, S2=...

  19. Assessment of energy crops alternative to maize for biogas production in the Greater Region.

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe

    2014-08-01

    The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions. Copyright © 2014. Published by Elsevier Ltd.

  20. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K.

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  1. Mitigating Groundwater Depletion in North China Plain with Cropping System that Alternate Deep and Shallow Rooted Crops

    Xiao-Lin Yang

    2017-06-01

    Full Text Available In the North China Plain, groundwater tables have been dropping at unsustainable rates of 1 m per year due to irrigation of a double cropping system of winter wheat and summer maize. To reverse the trend, we examined whether alternative crop rotations could save water. Moisture contents were measured weekly at 20 cm intervals in the top 180 cm of soil as part of a 12-year field experiment with four crop rotations: sweet potato→ cotton→ sweet potato→ winter wheat-summer maize (SpCSpWS, 4-year cycle; peanuts → winter wheat-summer maize (PWS, 2-year cycle; ryegrass–cotton→ peanuts→ winter wheat-summer maize (RCPWS, 3-year cycle; and winter wheat-summer maize (WS, each year. We found that, compared to WS, the SpCSpWS annual evapotranspiration was 28% lower, PWS was 19% lower and RCPWS was 14% lower. The yield per unit of water evaporated improved for wheat within any alternative rotation compared to WS, increasing up to 19%. Average soil moisture contents at the sowing date of wheat in the SpCSpWS, PWS, and RCPWS rotations were 7, 4, and 10% higher than WS, respectively. The advantage of alternative rotations was that a deep rooted crop of winter wheat reaching down to 180 cm followed shallow rooted crops (sweet potato and peanut drawing soil moisture from 0 to 120 cm. They benefited from the sequencing and vertical complementarity of soil moisture extraction. Thus, replacing the traditional crop rotation with cropping system that involves rotating with annual shallow rooted crops is promising for reducing groundwater depletion in the North China Plain.

  2. Adaptation options to future climate of maize crop in Southern Italy examined using thermal sums

    Di Tommasi, P.; Alfieri, S. M.; Bonfante, A.; Basile, A.; De Lorenzi, F.; Menenti, M.

    2012-04-01

    Future climate scenarios predict substantial changes in air temperature within a few decades and agriculture needs to increase the capacity of adaptation both by changing spatial distribution of crops and shifting timing of management. In this context the prediction of future behaviour of crops with respect to present climate could be useful for farm and landscape management. In this work, thermal sums were used to simulate a maize crop in a future scenario, in terms of length of the growing season and of intervals between the main phenological stages. The area under study is the Sele plain (Campania Region), a pedo-climatic homogeneous area, one of the most agriculturally advanced and relevant flatland in Southern Italy. Maize was selected for the present study since it is extensively grown in the Sele Plain for water buffalofeeding,. Daily time-series of climatic data of the area under study were generated within the Italian project AGROSCENARI, and include maximum and minimum temperature and precipitation. The 1961-1990 and the 1998-2008 periods were compared to a future climate scenario (2021-2050). Future time series were generated using a statistical downscaling technique (Tomozeiu et al., 2007) from general circulation models (AOGCM). Differences in crop development length were calculated for different maize varieties under 3 management options for sowing time: custom date (typical for the area), before and after custom date. The interactions between future thermal regime and the length of growing season under the different management options were analyzed. Moreover, frequency of spells of high temperatures during the anthesis was examined. The feasibility of the early sowing option was discussed in relation with field trafficability at the beginning of the crop cycle. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)

  3. How Do Various Maize Crop Models Vary in Their Responses to Climate Change Factors?

    Bassu, Simona; Brisson, Nadine; Grassini, Patricio; Durand, Jean-Louis; Boote, Kenneth; Lizaso, Jon; Jones, James W.; Rosenzweig, Cynthia; Ruane, Alex C.; Adam, Myriam; hide

    2014-01-01

    Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(sup 1) per degC. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.

  4. Addressing crop interactions within cropping systems in LCA

    Goglio, Pietro; Brankatschk, Gerhard; Knudsen, Marie Trydeman

    2018-01-01

    objectives of this discussion article are as follows: (i) to discuss the characteristics of cropping systems which might affect the LCA methodology, (ii) to discuss the advantages and the disadvantages of the current available methods for the life-cycle assessment of cropping systems, and (iii) to offer...... management and emissions, and (3) functional unit issues. The LCA approaches presented are as follows: cropping system, allocation approaches, crop-by-crop approach, and combined approaches. The various approaches are described together with their advantages and disadvantages, applicability...... considers cropping system issues if they are related to multiproduct and nutrient cycling, while the crop-by-crop approach is highly affected by assumptions and considers cropping system issues only if they are related to the analyzed crop. Conclusions Each LCA approach presents advantages and disadvantages...

  5. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health

    Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739

  6. Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation

    P. Yankov

    2015-03-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type. For the purposes of this investigation, variants from a stationary field experiment initiated in 1987 and based on various soil tillage tools and operations were analyzed. The species composition and density of weeds were followed in a wheat crop grown after grain maize using the following soil tillage systems: plowing at 24 – 26 cm (for maize – disking at 10 – 12 cm (for wheat; cutting at 24 – 26 cm (for maize – cutting at 8 – 10 cm (for wheat; disking at 10 – 12 cm (for maize – disking at 10 – 12 cm (for wheat; no-tillage (for maize – no-tillage (for wheat.Weed infestation was read at the fourth rotation since the initiation of the trial. The observations were made in spring before treatment of the crop with herbicides. The soil tillage system had a significant effect on the species composition and density of weeds in the field with wheat grown after previous crop maize. The long-term alternation of plowing with disking in parallel with the usage of chemicals for weed control lead to lower weed infestation of the weed crop. The lower weed density after this soil tillage system was not related to changes in the species composition and the relative percent of the individual species in the total weed infestation. The long-term application in crop rotation of systems without turning of the soil layer and of minimal and no-tillage increased the amount of weeds. The reason is the greater variability of weed species which typically occur after shallow soil tillage.

  7. Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China

    Wang, X.B.; Dai, K.; Zhang, D.; Zhang, X.; Wang, Y.; Zhao, Q.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.

    2011-01-01

    Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage/crop residue and nutrient management practices on maize (Zea mays L.) yield, water use efficiency (WUE), and N agronomic use efficiency (NAE) at Shouyang Dryland Farming

  8. Nitrogen deficiency in maize. I. Effects on crop growth, development, dry matter partitioning, and kernel set

    Uhart, S.A.; Andrade, F.H.

    1995-01-01

    Variations in N availability affect growth and development of maize (Zea mays L.) and may lead to changes in crop physiological conditions at flowering and in kernel set. The objectives of this study were (i) to establish the effect of N availability on crop development, crop radiation interception, radiation use efficiency, and dry matter partitioning; and (ii) to study the relationship between kernel number and crop growth at flowering and between kernel number and crop N accumulation at flowering. Three experiments with a commercial hybrid (DK636) were carried out under field conditions at the INTA Balcarce Experimental Station, Argentina, without water limitations. The treatments consisted of different radiation levels, obtained by shading, combined with different levels of N availability obtained by the addition of N fertilizer or organic matter to immobilize N. Nitrogen deficiencies delayed both vegetative and reproductive phenological development, slightly reduced leaf emergence rate, and strongly diminished leaf expansion rate and leaf area duration. Nitrogen deficiencies reduced radiation interception as much as radiation use efficiency and their effects on the ear dry mater/total dry matter ratio at harvest were associated with crop growth rate reductions at flowering. Dry matter partitioning to reproductive sinks at flowering and the ear dry matter/total dry matter ratio at harvest were reduced by N shortages. Significant relationships between kernel number and N accumulation rate or crop growth rate at flowering were fitted by linear + plateau functions with thresholds above which kernel number and grain yield did not increase

  9. Studies on food preferences of maize weevil, Sitophilus zeamais Mots. to different crops in Chitwan, Nepal

    Sheela Devi Sharma

    2016-12-01

    Full Text Available Food preference by the maize weevil, Sitophilus zeamais Motschulsky was studied on seven different crops and varieties including maize, wheat and rice. They were maize cultivars namely Arun-2, Manakamana-4, Deuti, buckwheat local cultivar, wheat cultivar namely Annapurna-1, polished rice-Radha 4 and unshelled rice cultivar Mansuli under storage condition at Institute of Agriculture and Animal Science, Rampur, Chitwan, Nepal from June 2013 to February 2014 . The hosts were tested using completely randomized design with three replications and were laid in free-choice and no-choice conditions. The maximum number of grain loss was recorded in wheat followed by polished rice respectively. Similarly, the highest weight loss was recorded in polished rice followed by Wheat in both conditions. F1 progeny emergence of weevil was highest in wheat followed by polished rice in free-choice and in no choice conditions, the highest progeny were emerged from polished rice followed by wheat. The lowest numbers of weevils emerged from rice in both conditions. Maximum germination losses were recorded in wheat (24.33% and lowest in Arun-2 (9.67. The rice showed a relatively higher preference to maize weevil under storage condition.

  10. Dependence of the productivity of maize and soybean intercropping systems on hybrid type and plant arrangement pattern

    Dolijanović Željko

    2013-01-01

    Full Text Available Intercropping systems could improve utilization of the most important resources (soil, water and nutrients, provide a better control of weeds, pests and diseases, and finally higher productivity, especially under rain-fed growing conditions. This study aimed to determine the effects of three maize (Zea mays L. prolific hybrids (FAO 500, 600 and 700 and the spatial intercrop patterns on the above-ground biomass and grain yields of maize and soybean (Glycine max L. Merrill, on chernozem soil type at Zemun Polje, Belgrade, in 2003, 2004 and 2005. The experimental design was a complete randomized block with four replications and three treatments: 3 rows of maize and 3 rows of soybean in strips for each maize hybrid (three variants, 3 rows of maize and 3 rows of soybean in alternate rows for each hybrid (another three variants and monocrops of both maize and soybeans. To optimize the ecological and economic benefits of maize/soybean intercrop in terms of yield, variety selection and compatibility of the component crops should be made using established agronomic management practices involving the two crops. Suitable maize varieties for maize/soybean intercrop systems are varieties that have less dense canopy. These varieties would therefore have lesser shading effect to the understory beans. However, establishment of an appropriate spatial arrangement of the component crops would be essential to alleviate negative effects especially on the less competitive crop. The intercropping system in alternate rows showed significantly higher above-ground biomass and grain yields in comparation with both the strip intercropping system and maize monocrops in 2004. Soybean gave significantly lower above-ground biomass and grain yield in intercrops than in monocrops. Maize prolific hybrid growing in intercropping with soybean as legume crop, increased productivity of cropping system, especially in favourable agroecological conditions. Maize and soybean yields

  11. Descompactación de suelos en siembra directa: efectos sobre las propiedades físicas y el cultivo de maíz Soil alleviation in direct drilling systems: effect on soil physical properties and maize crop

    Carina Rosa Álvarez

    2006-07-01

    infiltration rate were determined at maize sowing and harvest. At flowering maize root abundance, intercepted photosynthetic active radiation and leaf greenness were determined. Additionally, yield and its components were measured. Soil alleviation increased infiltration rate at sowing (P<0,05, but there were no differences at harvest. Soil alleviation reduced penetration resistances at sowing by 54%, 28%, 42 % at Junin, San Gregorio and Chivilcoy, respectively (P<0,05. Deep tillage increased root abundance at flowering at Junin and Chivilcoy (P<0,05. Maize yield showed a positive and statistically significant increase with soil alleviation. However, its magnitude was only 6,5% more than control yield. This result was in accordance with a 3% increase in intercepted photosynthetic active radiation. Yield response to subsoiling was positively related with the original soil bulk density at each site. Although the measured changes might improve water use efficiency, little impact on yield was observed due to a relatively humid cropping season. More research is needed in order to establish crop response in a wide range of water availability and soil compaction conditions.

  12. Utilization of Landsat-8 data for the estimation of carrot and maize crop water footprint under the arid climate of Saudi Arabia.

    Madugundu, Rangaswamy; Al-Gaadi, Khalid A; Tola, ElKamil; Hassaballa, Abdalhaleem A; Kayad, Ahmed G

    2018-01-01

    totally provided using groundwater delivered by center pivot irrigation systems. On the other hand, the WFRS-b estimated using Landsat-8 data was varied from 276 (±73) m3 t-1 (carrot) and 2885 (±441) m3 t-1 (silage maize). The variation (RMSE) between WFRS-b and WFAgro-b was about 17% and 14% for silage maize and carrot crops, respectively.

  13. Utilization of Landsat-8 data for the estimation of carrot and maize crop water footprint under the arid climate of Saudi Arabia.

    Rangaswamy Madugundu

    irrigation is totally provided using groundwater delivered by center pivot irrigation systems. On the other hand, the WFRS-b estimated using Landsat-8 data was varied from 276 (±73 m3 t-1 (carrot and 2885 (±441 m3 t-1 (silage maize. The variation (RMSE between WFRS-b and WFAgro-b was about 17% and 14% for silage maize and carrot crops, respectively.

  14. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël

    2013-01-01

    Non-inversion tillage with tine or disc based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape and maize in Europe. However, new regulations on pesticide use may hinder further expansion of reduc...

  15. Biomass productivity and radiation utilisation of innovative cropping systems for biorefinery

    Manevski, Kiril; Lærke, Poul Erik; Jiao, Xiurong

    2017-01-01

    rotation of annual crops (maize, beet, hemp/oat, triticale, winter rye and winter rapeseed), ii) perennial crops intensively fertilised (festulolium, reed canary, cocksfoot and tall fescue), low-fertilised (miscanthus) or unfertilised (grass-legume mixtures) and iii) traditional systems (continuous...

  16. Cover crops support ecological intensification of arable cropping systems

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  17. Periods of weed interference in maize crops cultivated in the first and second cycles

    Caio Ferraz de Campos

    2016-10-01

    Full Text Available The interference of weeds in maize production may be reflected in grain yield losses that vary as a function of the density, stage and degree of aggressiveness of the species present. In the agricultural ecosystem, crops and weeds demand light, water, nutrients and space, which are frequently not available in sufficient quantities, leading to competition. The aim of this work was to determine the period of interference of weed plants, in particular of naked crabgrass (Digitaria nuda on maize crop in the first and second harvest. The treatments were defined as increasing periods of coexistence and increasing control of weed community (7, 14, 21, 28, 35, 42, 49, and 56 days, two more controls, a control including one with weed control until the end of the culture cycle and another with coexistence until the harvest. For each period, were evaluated the stand of maize plants, length of ear, number of grains per row, number of rows per ear, cob, 100-grain weight, and grain productivity. The data obtained were subjected to analysis of variance using the F test, with average treatments compared using Tukey’s test at 5% probability. Crop productivity was evaluated by means of regressions, the critical periods of interference were estimated. The critical timing of weed removal was 25 days for both harvests. The critical weed free period was 54 and 27 days for the first and second harvest respectively. For the conditions of the first and second harvest, the critical period of weed control was of 29 and 2 days respectively.

  18. Breeding for culinary and nutritional quality of common bean (Phaseolus vulgaris L. in intercropping systems with maize (Zea mays L.

    Rodino A.P.

    1999-01-01

    Full Text Available Common bean (Phaseolus vulgaris L. is widely intercropped with maize (Zea mays L. in the North of Spain. Breeding beans for multiple cropping systems is important for the development of a productive and sustainable agriculture, and is mainly oriented to minimize intercrop competition and to stabilize complementarity with maize. Most agricultural research on intercropping to date has focused on the agronomic and overall yield effects of the different species, but characters related with socio-economic and food quality aspects are also important. The effect of intercropping beans with maize on food seed quality traits was studied for thirty-five bush bean varieties under different environments in Galicia (Northwestern Spain. Parameters determining Asturian (Northern Spain white bean commercial and culinary quality have also been evaluated in fifteen accessions. There are significant differences between varieties in the selected cropping systems (sole crop, intercrop with field maize and intercrop with sweet maize for dry and soaked seed weight, coat proportion, crude protein, crude fat and moisture. Different white bean accessions have been chosen according to their culinary quality. Under these environmental conditions it appears that intercropping systems with sweet maize give higher returns than sole cropping system. It is also suggested that the culinary and nutritional quality potential of some white bean accessions could be the base material in a breeding programme the objectives of which are to develop varieties giving seeds with high food quality.

  19. Nitrate leaching from sandy loam soils under a double-cropping forage system estimated from suction-probe measurements.

    Trindade, H.; Coutinho, J.; Beusichem, van M.L.; Scholefield, D.; Moreira, N.

    1997-01-01

    Nitrate leaching from a double-cropping forage system was measured over a 2-year period (June 1994–May 1996) in the Northwest region of Portugal using ceramic cup samplers. The crops were grown for silage making and include maize (from May to September) and a winter crop (rest of the year)

  20. Economics of wheat based cropping systems in rainfed areas of pakistan

    Khaliq, P.; Cheema, N.M.; Malik, A.; Umair, M.

    2012-01-01

    The Pothwar tract of rainfed area has enormous potential to meet incremental food grain needs of the country. However, a significant yield gap in wheat has been reported between yields of substantive and the progressive growers mainly due to poor management of soil, water and fertility issues. A field study was conducted at National Agricultural Research Centre (NARC), Islamabad and the traditional wheat-fallow-wheat (W-F-W) cropping system was evaluated with the improved wheat-maize fodder-wheat (W-MF-W) and wheat-mungbean-wheat (W-MB-W) cropping systems. Two tillage practices, i.e. shallow tillage with cultivator and deep tillage with moldboard; and four fertilizer treatments viz., control (C), recommended dose of fertilizer for each crop (F), farmyard manure (FYM) at the rate -15 tha . The recommended doses of fertilizer for individual crop with FYM (F+FYM) were also included in the study to know their impact on the crops yield in the cropping systems. Economic analysis of the data revealed that the traditional wheat-fallow-wheat cropping system could be economically replaced with wheat-maize fodder-wheat cropping system even under drought condition and there will be no economical loss of wheat yield when planted after maize fodder. Application of recommended dose of fertilizer -1 along with FYM at the rate 5 tha will enhance the yield of wheat and maize fodder. The improved cropping system of wheat-maize fodder-wheat will help the farmers to sustain productivity of these crops, stable economic benefits and improvement in soil nutrients and organic matter over time. (author)

  1. Cropping Systems and Climate Change in Humid Subtropical Environments

    Ixchel M. Hernandez-Ochoa

    2018-02-01

    Full Text Available In the future, climate change will challenge food security by threatening crop production. Humid subtropical regions play an important role in global food security, with crop rotations often including wheat (winter crop and soybean and maize (summer crops. Over the last 30 years, the humid subtropics in the Northern Hemisphere have experienced a stronger warming trend than in the Southern Hemisphere, and the trend is projected to continue throughout the mid- and end of century. Past rainfall trends range, from increases up to 4% per decade in Southeast China to −3% decadal decline in East Australia; a similar trend is projected in the future. Climate change impact studies suggest that by the middle and end of the century, wheat yields may not change, or they will increase up to 17%. Soybean yields will increase between 3% and 41%, while maize yields will increase by 30% or decline by −40%. These wide-ranging climate change impacts are partly due to the region-specific projections, but also due to different global climate models, climate change scenarios, single-model uncertainties, and cropping system assumptions, making it difficult to make conclusions from these impact studies and develop adaptation strategies. Additionally, most of the crop models used in these studies do not include major common stresses in this environment, such as heat, frost, excess water, pests, and diseases. Standard protocols and impact assessments across the humid subtropical regions are needed to understand climate change impacts and prepare for adaptation strategies.

  2. Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat-maize system in Jiangsu, China

    Dong, J.; Hengsdijk, H.; Dai, T.; Boer, de W.; Qi, J.; Cao, W.

    2006-01-01

    Winter wheat-maize rotations are dominant cropping systems on the North China Plain, where recently the use of organic manure with grain crops has almost disappeared. This could reduce soil fertility and crop productivity in the long run. A 20-year field experiment was conducted to 1) assess the

  3. When and What Meteorological Stresses Will Maize Crops Meet in the future in France?

    Caubel, J.

    2015-12-01

    Climate change is expected to modify overall climatic conditions and therefore, suitability for cropping. Assessment of when and what meteorological stresses will crops meet in the future is highly useful for planners and land managers who can apply adaptation strategies to improve agricultural potentialities. We propose to evaluate the impacts of climate change on suitability for maize cropping in terms of ecophysiology (e.g., heat stress during grain filling), yield quality (e.g., thermal conditions on protein content) and cultural practices performance (e.g., days available for harvest according to risk of waterlogged soil compaction) in two French areas. The Midi-Pyrénées (southern) and Ile-de-France (northern) regions were chosen as representing the two distinct climates when dividing France into southern and northern parts. The Midi-Pyrénées region is a major irrigated maize producer but could become penalizing in the future because of heat and water stress. By contrast, northern France could become a more suitable area thanks to the expected increasing temperature. To confirm our assumptions, we used the method assessment for crop-climate suitability developed in Caubel et al. (2015) and based on the sub-annual analysis of agroclimatic indicators calculated over phenological periods. Indicators have been calculated using climatic data from 1950 to 2100 simulated by the global climate ARPEGE at the meso-scale SAFRAN (8 km resolution) for the two areas and forced by a greenhouse effect corresponding to the SRES A1B scenario (similar to RCP 6.0). The evaluation was done for two distinct varieties in terms of precocity. Agroclimatic indicators characterizing water deficit and water excess impacts on crop were calculated for three soils with contrasting soil water reserves and depths. Finally, the evaluation was performed with a unique sowing date (the current one), and with an optimized sowing date according to water and thermal requirements for emergence

  4. Maize x Teosinte Hybrid Cobs Do Not Prevent Crop Gene Introgression.

    Chavez, Nancy B; Flores, Jose J; Martin, Joseph; Ellstrand, Norman C; Guadagnuolo, Roberto; Heredia, Sylvia; Welles, Shana R

    2012-06-01

    Maize x Teosinte Hybrid Cobs Do Not Prevent Crop Gene Introgression. Whether introgression from crops to wild relatives can occur is an important component of transgene risk assessment. In the case of maize, which co-occurs with its wild relative teosinte in Mexico, the possibility of introgression has been controversial. Maize is cross-compatible with teosinte, and spontaneous hybridization is known to occur. Some scientists have hypothesized that the maize x teosinte cob infructescence will prevent progeny dispersal, thus preventing introgression. Motivated by a prior study where we found maize x teosinte hybrid fruits naturally dispersed under field conditions, we tested whether hybrid cobs hold their fruits as tightly as maize cobs. We found the force required to detach hybrid fruits was substantially and significantly less than that for maize. Consequently, we expect that introgression of transgenes from maize into teosinte in Mexico should occur largely unimpeded by the hybrid cob.La mazorca o elote híbrido de maíz x teocintle no impide la introgresión de genes transgénicos provenientes del cultivo. La introgresión entre el maíz cultivado y el maíz silvestre, o teocintle, es un componente importante en la evaluación ambiental relacionada con los riesgos de la introducción de genes transgénicos. La posibilidad de introgresión entre el maíz domesticado y el teocintle ha sido un tema controversial, en particular en México, donde maíz y teocintle coexisten. El maíz es compatible con el teocintle y la hibridización espontánea ocurre entre ellos. Algunos científicos han planteado como hipótesis que al cruzar el maíz con teocintle, la estructura interna de la infrutescencia que sujeta los frutos conocida como la mazorca de maíz o el elote, impide la dispersión de la progenie evitando que la introgresión ocurra. Los resultados de un estudio previo evidencian la dispersión de los frutos híbridos del maíz x teocintle en condiciones naturales

  5. Evaluation of mulching materials as integrated weed management component in maize crop

    Shah, F.U.

    2014-01-01

    Yield losses by weeds in maize crop and demonstrated efficacy of various mulches in weed management led to check the efficacy of various available mulches for suppressing weeds in maize crop at National Agricultural Research Centre (NARC), Islamabad during kharif (autumn) season 2011. The experiment was laid in Randomized Complete Block Design, (RBCD) having eight treatments and four replications. The treatments were black plastic, white plastic, sugarcane straw, wheat straw, live mulch, weeds as mulch, hand weeding and weedy check. Weed data included weed density m, fresh and dry weight g m, while crop data included crop density m, fresh and dry weight g m, number of plant plot, stover yield (g), plant height (cm), number of cobs plant, number of leaves plant, average grain number of five cobs and grain yield (t ha). With the exception of hand weeding, minimum number of weeds 128 m and 164 m were recorded in black plastic and weeds as mulch, respectively, compared to 595 min weedy check. Similarly, maximum grain yields (1.91 and 1.85 tha) were recorded in black plastic and weeds as mulch, while minimum grain yield (0.64 t ha) was recorded in weedy check plots. The economic net returns of black plastic mulch and weeds as mulch were Rs. 39,824 and Rs. 38,291, respectively as compared to Rs. 21431 for weedy check. Yield increased by 21.1 and 16.5% over hand weeding by plastic mulch and weeds as mulch, respectively. Black plastic followed by weeds as mulch, are recommended to control weeds and get maximum yield as well as net economic return. (author)

  6. Designing a new cropping system for high productivity and sustainable water usage under climate change

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) -summer maize system. The M-M system improved yield by 14-31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr-1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  7. Determination of actual crop evapotranspiration (ETc) and dual crop coefficients (Kc) for cotton, wheat and maize in Fergana Valley: integration of the FAO-56 approach and BUDGET

    Kenjabaev, Shavkat; Dernedde, Yvonne; Frede, Hans-Georg; Stulina, Galina

    2014-05-01

    Determination of the actual crop evapotranspiration (ETc) during the growing period is important for accurate irrigation scheduling in arid and semi-arid regions. Development of a crop coefficient (Kc) can enhance ETc estimations in relation to specific crop phenological development. This research was conducted to determine daily and growth-stage-specific Kc and ETc values for cotton (Gossypium hirsutum L.), winter wheat (Triticum aestivum L.) and maize (Zea mays L.) for silage at fields in Fergana Valley (Uzbekistan). The soil water balance model - Budget with integration of the dual crop procedure of the FAO-56 was used to estimate the ETc and separate it into evaporation (Ec) and transpiration (Tc) components. An empirical equation was developed to determine the daily Kc values based on the estimated Ec and Tc. The ETc, Kc determination and comparison to existing FAO Kc values were performed based on 10, 5 and 6 study cases for cotton, wheat and maize, respectively. Mean seasonal amounts of crop water consumption in terms of ETc were 560±50, 509±27 and 243±39 mm for cotton, wheat and maize, respectively. The growth-stage-specific Kc for cotton, wheat and maize was 0.15, 0.27 and 0.11 at initial; 1.15, 1.03 and 0.56 at mid; and 0.45, 0.89 and 0.53 at late season stages. These values correspond to those reported by the FAO-56. Development of site specific Kc helps tremendously in irrigation management and furthermore provides precise water applications in the region. The developed simple approach to estimate daily Kc for the three main crops grown in the Fergana region was a first attempt to meet this issue. Keywords: Actual crop evapotranspiration, evaporation and transpiration, crop coefficient, model BUDGET, Fergana Valley.

  8. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows

    Krämer, Monika; Lund, Peter; Weisbjerg, Martin Riis

    2016-01-01

    The importance of maize silage as a feed component in cattle rations and for biogas production has substantially increased. Whole crop maize silage is a forage with a high starch concentration, but also the cell wall fraction, commonly analysed as neutral detergent fibre (aNDFom) is a major energ...... silage aNDFom digestibility improved daily milk yield with 82 g (P = 0.04) and daily weight gain with 12 g (P = 0.03). Therefore, aNDFom digestibility is an important trait in maize used as whole crop silage for dairy cows.......The importance of maize silage as a feed component in cattle rations and for biogas production has substantially increased. Whole crop maize silage is a forage with a high starch concentration, but also the cell wall fraction, commonly analysed as neutral detergent fibre (aNDFom) is a major energy...... source for use in ruminant nutrition. Even though ruminants require forage fibre to maintain rumen function and maximize productivity, excess fibre limits feed intake due to its contribution to physical fill in the rumen. As feed intake is the most important factor for milk production, both a...

  9. Environmental assessment of two different crop systems in terms of biomethane potential production

    Bacenetti, Jacopo; Fusi, Alessandra; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  10. Environmental assessment of two different crop systems in terms of biomethane potential production

    Bacenetti, Jacopo; Fusi, Alessandra, E-mail: alessandra.fusi@unimi.it; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  11. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production.

    Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H

    2017-11-01

    Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  12. Comparative impact of genetically modified and non modified maize (Zea mays L.) on succeeding crop and associated weed.

    Ibrahim, Muhammad; Ahmed, Naseer; Ullah, Faizan; Shinwari, Zabta Khan; Bano, Asghari

    2016-04-01

    This research work documents the comparative impact of genetically modified (GM) (insect resistance) and non modified maize (Zea mays L.) on growth and germination of succeeding crop wheat (Triticum aestivum L.) and associated weed (Avena fatua L.). The aqueous extracts of both the GM and non-GM maize exhibited higher phenolic content than that of methanolic extracts. Germination percentage and germination index of wheat was significantly decreased by GM methanolic extract (10%) as well as that of non-GM maize at 3% aqueous extract. Similarly germination percentage of weed (Avena fatua L.) was significantly reduced by application of 3% and 5% methanolic GM extracts. All extracts of GM maize showed non-significant effect on the number of roots, root length and shoot length per plant but 5% and 10% methanolic extracts of non-GM maize significantly increased the number of roots per plant of wheat seedling. Similarly, 10% methanolic extract of GM maize significantly increased the number of roots per plant of weed seedling. Methanolic extracts of GM and non-GM maize (3% and 5%) significantly decreased the protease activity in wheat as compared to untreated control. © The Author(s) 2013.

  13. Faba bean in cropping systems

    Steen Jensen, Erik; Peoples, Mark B.; Hauggaard-Nielsen, Henrik

    2010-01-01

    The grain legume (pulse) faba bean (Vicia faba L.) is grown world-wide as a protein source for food and feed. At the same time faba bean offers ecosystem services such as renewable inputs of nitrogen (N) into crops and soil via biological N2 fixation, and a diversification of cropping systems. Even...... though the global average grain yield has almost doubled during the past 50 years the total area sown to faba beans has declined by 56% over the same period. The season-to-season fluctuations in grain yield of faba bean and the progressive replacement of traditional farming systems, which utilized...... legumes to provide N to maintain soil N fertility, with industrialized, largely cereal-based systems that are heavily reliant upon fossil fuels (=N fertilizers, heavy mechanization) are some of the explanations for this decline in importance. Past studies of faba bean in cropping systems have tended...

  14. Potential of fungal antagonists for biocontrol of toxigenic Fusarium spp. in wheat and maize through competition in crop debris

    Luongo, L.; Galli, M.; Corazza, L.; Meekes, E.T.M.; Haas, de B.H.; Lombaers-van der Plas, C.H.; Köhl, J.

    2005-01-01

    Pathogenic Fusarium spp. cause head blight in wheat or ear rot in maize leading to yield losses and also a reduction in quality due to mycotoxin contamination of the grain. Infected crop residues are the main inoculum source for epidemics. Saprophytic fungi, obtained from cereal tissues or necrotic

  15. Mixed Cropping of Legumes and Maize by the Use of Urea

    Esmaeil Alibakhshi

    2016-10-01

    Full Text Available To study the effect of nitrogenous fertilizers and mixed cropping of legumes and maize on its grain yield and yield component of corn in Arak, an experiment was carried at the Agricultural Research Center of Markazi Province in 2013. A factorial experiment based on randomized complete block design with three replications was performed. Treatments were four levels of urea (N0= control, N1= 75 kg.ha-1, N2= 150 kg.ha-1, N3= 225 kg.ha-1 and mixed cropping with four levels (S1= planting corn, S2= planting corn + chickpea, S3= planting corn + cowpea, S4= planting corn + mung bean. Plot consisted of 4 rows, 6 m long with 60 cm between rows space and 20 cm between plants on the rows, and S.C 704 corn hybrid was used. In this study characteristics such as: plant height, number of green leaf, grain yield, number of row per ear, number of grain per ear row, nitrogen use efficiency, biomasses of legumes, nitrogen percentage and 1000 grain weight were assessed. Results indicated that the effect of different levels of urea on plant height, number of green leaf, grain yield, number of grain per row, nitrogen use efficiency, legumes biomass and nitrogen percentage were significant. Effect of mixed cropping on characteristics like grain yield, nitrogen use efficiency, biomasses of legumes nitrogen percentage was also significant. Highest and lowest grain yield (7.37 and 5.47 t.ha-1 were obtained with the use of 225 and 75 kg.ha-1 urea, respectively. The highest and lowest grain yield (7.30 and 6.01 t.ha-1 belonged to sole cropping at corn and mixed cropping of corn + mung bean, respectively.

  16. Comparative performance of annual and perennial energy cropping systems under different management regimes

    Boehmel, Ute Constanze

    2007-07-18

    The theme of this thesis was chosen against the background of the necessary substitution of fossil fuels and the need to reduce greenhouse gas emissions. One major solution for these topics may be the energy generation from domestically produced biomass. The overall aim of this thesis was the identification of one or more efficient energy cropping systems for Central Europe. The existence of diverse production environments necessitates further diversification and the identification of several energy crops and the development of energy cropping systems suited to those diverse environments. This thesis starts with an introductory essay (chapter 1), which provides the background for renewable energy production, its features, demands and potentials, and the scientific basis of this thesis. Chapters 2 to 6 consist of five manuscripts to be published in reviewed journals (Papers I, II, IV and V) or in a multi-author book (Paper III). Subsequently, the results from all papers are discussed in a general setting (chapter 7), from which a general conclusion is formulated (chapter 8). The basis of the research formed four field experiments, which were conducted at the experimental sites Ihinger Hof, Oberer Lindenhof and Goldener Acker of the University of Hohenheim, in south-western Germany. Paper I addresses the overall objective of this thesis. Selected cropping systems for this experiment were short rotation willow, miscanthus, switchgrass, energy maize and two different crop rotation systems including winter oilseed rape, winter wheat and winter triticale with either conventional tillage or no-till. The systems were cultivated with three different nitrogen fertilizer applications. An energy balance was calculated to evaluate the biomass and energy yields of the different cropping systems. Results indicate that perennial lignocellulosic crops combine high biomass and net energy yields with low input and potential ecological impacts. Switchgrass, which produced low yields

  17. Quantitative analysis of yield and soil water balance for summer maize on the piedmont of the North China Plain using AquaCrop

    Jingjing WANG,Feng HUANG,Baoguo LI

    2015-12-01

    Full Text Available The North China Plain (NCP is a major grain production area in China, but the current winter wheat-summer maize system has resulted in a large water deficit. This water-shortage necessitates the improvement of crop water productivity in the NCP. A crop water model, AquaCrop, was adopted to investigate yield and water productivity (WP for rain-fed summer maize on the piedmont of the NCP. The data sets to calibrate and validate the model were obtained from a 3-year (2011—2013 field experiment conducted on the Yanshan piedmont of the NCP. The range of root mean square error (RMSE between the simulated and measured biomass was 0.67—1.25 t·hm-2, and that of relative error (RE was 9.4%—15.4%, the coefficient of determination (R2 ranged from 0.992 to 0.994. The RMSE between the simulated and measured soil water storage at depth of 0—100 cm ranged from 4.09 to 4.39 mm; and RE and R2 in the range of 1.07%—1.20% and 0.880—0.997, respectively. The WP as measured by crop yield per unit evapotranspiration was 2.50—2.66 kg·m-3. The simulated impact of long-term climate (i.e., 1980—2010 and groundwater depth on crop yield and WP revealed that the higher yield and WP could be obtained in dry years in areas with capillary recharge from groundwater, and much lower values elsewhere. The simulation also suggested that supplementary irrigation in areas without capillary groundwater would not result in groundwater over-tapping since the precipitation can meet the water required by both maize and ecosystem, thus a beneficial outcome for both food and ecosystem security can be assured.

  18. Characterization of rhizobacteria associated to maize crop in IAA, siderophores and salicylic acid metabolite production

    Annia Hernández

    2004-01-01

    Full Text Available It has been demonstrated that rhizobacteria are able to produce metabolites having agricultural interest, including salicylic acid, the siderophores and phytohormones. Indol acetic acid (IAA is the most well-known and studied auxin, playing a governing role in culture growth. The object of this work was to characterise rhizobacteria associated with the maize crop in terms of producing IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia and Pseudomonas fluorescens strains previously isolated from maize Francisco variety rhizosphere were used. Colorimetric and chromatographic techniques for detecting these metabolites were studied; multi-variable analysis of hierarchic conglomerate and complete ligament were used for selecting the best strains for producing metabolites of interest. These results demonstrated that all rhizobacteria strains studied produced IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia MBf21, MBp1, MBp2, MBf22, MBp3, MBf20, MBf 15 and Pseudomonas fluorescens MPp4strains have presented the greatest production of these metabolites, showing that these strains could be used in promoting vegetal growth in economically important cultures. Key words: Pseudomonas fluorescens, Burkholderia cepacia, IAA, siderophore, salicylic acid.

  19. Effect of cement dust pollution on certain physical parameters of maize crop and soils

    Parthasarathy, S; Arunachalam, N; Natarajan, K; Oblisami, G; Rangaswami, G

    1975-04-01

    A study was undertaken in the fields near a cement factory where the cement dust is the prime pollutant to the field crops and soils. Cement dust deposit varied with the distance from the kiln and fourth and fifth leaves of maize had comparatively more dust than the first three leaves from the top. The cement dust deposited plants showed a suppression in most of the characters like leaf size, number and size of cobs and plant height when compared to plants in non-polluted fields. On comparison with the physical characters of the soils from the control field the soil from cement dust polluted field showed a decrease in water holding capacity and pore space while thermal conductivity and specific heat were more. Artificial mixtures of red and black soils with cement dust showed similar trend as those of the field sample, the black soil being affected more seriously than the red soil.

  20. Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala, Mexico.

    Ruíz-Huerta, Esther Aurora; de la Garza Varela, Alonso; Gómez-Bernal, Juan Miguel; Castillo, Francisco; Avalos-Borja, Miguel; SenGupta, Bhaskar; Martínez-Villegas, Nadia

    2017-10-05

    Mobility of Arsenic (As) from metallurgical wastes in Matehuala, Mexico has been accounted for ultra-high concentration of As in water (4.8-158mg/L) that is used for recreational purposes as well as cultivation of maize. In this study, we (i) measured As concentrations in soils irrigated with this water, (ii) investigated the geochemical controls of available As, and (iii) measured bioaccumulation of As in maize. Water, soil, and maize plant samples were collected from 3 different plots to determine As in environmental matrices as well as water soluble As in soils. Soil mineralogy was determined by X-ray diffraction analysis. Bioaccumulation of As in maize plants was estimated from the bioconcentration and translocation factors. We recorded As built-up in agricultural soils to the extent of 172mg/kg, and noted that this As is highly soluble in water (30% on average). Maize crops presented high bioaccumulation, up to 2.5 times of bioconcentration and 45% of translocation. Furthermore, we found that water extractable As was higher in soils rich in calcite, while it was lower in soils containing high levels of gypsum, but As bioconcentration showed opposite trend. Results from this study show that irrigation with As rich water represents a significant risk to the population consuming contaminated crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Efficiency of phosphate fertilization to maize crop in high phosphorus content soil, evaluated by 32P tracer

    Trevizam, Anderson R.; Alvarez Villanueva, Felipe C.; Silva, Maria Ligia de S.; Muraoka, Takashi

    2007-01-01

    Application of high dosis of phosphorus (P) in agricultural soils is justified by its intense fixation by the soil clays, which reduce availability to crops. The objective of this research was to evaluate the response of maize crops to five rates of triple superphosphate in a soil with high available phosphorus content. Portions of 2 dm 3 of soil (Typic Quartzipisamment) with 75 mg kg -1 of available phosphorus and pH 7.00, collected from the upper 0-20 cm layer, were placed in plastic pots, received solution containing 5.55 MBq (150 μCi) of 32 P and incubated for 7 days. Then 0, 250, 500, 1000 and 4000 mg P kg -1 as triple superphosphate was added to soil in the respective pots and incubated for 15 days keeping the soil moisture to 60 % of the field capacity. Maize (Zea mays L.) plants, single hybrid P30F80, were grown for 50 days (after germination), collected, oven dried, weighed and ground in a Wiley mill for analysis of total P content and 32 P radioactivity. The maize dry matter increased with triple superphosphate rates. The phosphorus content and accumulation in the maize plants increased with triple superphosphate rate up to 4000 mg kg -1 . The percentage of phosphorus derived from the fertilizer ranged from 79 to 97% and consequently the phosphorus derived from soil decreased with increasing application of triple superphosphate. In spite of soil high P available content, maize plants responded to applied phosphorus rates. (author)

  2. Quantifying the effect of Tmax extreme events on local adaptation to climate change of maize crop in Andalusia for the 21st century

    Gabaldon, Clara; Lorite, Ignacio J.; Ines Minguez, M.; Lizaso, Jon; Dosio, Alessandro; Sanchez, Enrique; Ruiz-Ramos, Margarita

    2015-04-01

    Agriculture, Food Security and Climate Change (FACCE - JPI) of EU and is financed by MULCLIVAR project (CGL2012-38923-C02-02) and IFAPA project AGR6126 from Junta de Andalucía, Spain. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116, D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, Volume 117, D17, doi: 0.1029/2012JD017968 Gabaldón C, Lorite IJ, Mínguez MI, Dosio A, Sánchez-Sánchez E and Ruiz-Ramos M, 2013. Evaluation of local adaptation strategies to climate change of maize crop in Andalusia for the first half of 21st century. Geophysical Research Abstracts. Vol. 15, EGU2013-13625, 2013. EGU General Assembly 2013, April 2013, Vienna, Austria. Jones C.A. and J.R. Kiniry. 1986. CERES-Maize: A simulation model of maize growth and development. Texas A&M Univ. Press, College Station. Ruiz-Ramos M., E. Sanchez, C. Galllardo, and M.I. Minguez. 2011. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula. Natural Hazards and Earth System Science 11: 3275-3291. Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F. Global hotspots of heat stress on agricultural crops due to climate change. Agric For Meteorol. 2013;170(15):206-215.

  3. Exploration of agro-ecological options for improving maize-based farming systems in Costa Chica, Guerrero, Mexico

    Flores Sanchez, D.

    2013-01-01

    Keywords: farm diagnosis, farming systems, soil degradation, intercropping, maize, roselle, legumes, nutrient management, vermicompost, crop residues, decomposition, explorations.

    In the Costa Chica, a region of Southwest Mexico, farming systems are organized in

  4. Forms of phosphorus in an oxisol under different soil tillage systems and cover plants in rotation with maize

    Arminda Moreira de Carvalho

    2014-06-01

    Full Text Available Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L., and Raphanus sativus L. were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.

  5. How can we improve Mediterranean cropping systems?

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  6. Efeito de inseticidas na semeadura sobre pragas iniciais e produtividade de milho safrinha em plantio direto Effect of inseticides at sowing on seedling pests and yield off-season maize crop under no-tillage system

    Gessi Ceccon

    2004-01-01

    Full Text Available Considerando o aumento do complexo de pragas em lavouras de milho safrinha, foram desenvolvidos dois experimentos (A e B no município de Cândido Mota (SP. O objetivo foi avaliar o efeito de inseticidas sobre pragas de solo (percevejos-castanhos e corós, lagarta-do-cartucho na fase inicial da cultura e desenvolvimento das plantas. Os inseticidas utilizados na semeadura foram: thiamethoxam (Cruiser 700 WS, carbofuran (Furazin 310 TS, imidacloprid (Gaucho FS, imidacloprid (Gaucho FS + carbofuran (Furazin 310 TS, fipronil (Regent 800 WG e thiodicarb (Semevin 350 RPA, nas doses recomendadas de cada produto, e a testemunha sem inseticida. As pragas de solo foram avaliadas aos 14 e 28 dias após a emergência das plantas (DAE, no experimento A, e aos 7 e 21 DAE, no experimento B. Os parâmetros agronômicos foram avaliados aos 14 e 28 DAE, juntamente com o ataque por Spodoptera frugiperda, e também por ocasião da colheita dos grãos. Os inseticidas fipronil e carbofuran destacaram-se no controle do percevejo-castanho Scaptocoris castanea e o fipronil sobressaiu no controle dos corós (Phyllophaga spp. Os inseticidas carbofuran e thiodicarb reduziram o número de plantas danificadas pela lagarta-do-cartucho Spodoptera frugiperda. O controle químico do complexo de pragas do solo e da lagarta-do-cartucho proporcionou aumentos significativos da produtividade de grãos de milho apenas na área A, onde o número de corós era maior.Due to an increasing pest diversity in maize crop during the off-season, two autumn-winter experiments were conducted in the Medium Paranapanema region, State of São Paulo, Brazil, designated as Fields A and B, both in Cândido Mota County. The aim of the experiments were to evaluate the effect of insecticides on the control of pests occurring in the initial plant development. Treatments were the recommended dosage of the insecticides thiamethoxam (Cruiser 700 WS, carbofuran (Furazin 310 TS, imidacloprid (Gaucho FS

  7. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows

    Krämer, Monika; Lund, Peter; Weisbjerg, Martin Riis

    2016-01-01

    The importance of maize silage as a feed component in cattle rations and for biogas production has substantially increased. Whole crop maize silage is a forage with a high starch concentration, but also the cell wall fraction, commonly analysed as neutral detergent fibre (aNDFom) is a major energy...... source for use in ruminant nutrition. Even though ruminants require forage fibre to maintain rumen function and maximize productivity, excess fibre limits feed intake due to its contribution to physical fill in the rumen. As feed intake is the most important factor for milk production, both a......NDFom concentration and aNDFom digestibility are key determinants of the nutritive value of a diet. Therefore, the importance of maize silage aNDFom digestibility on nutritive value, dry matter (DM) intake (DMI) and milk production was investigated in a literature review across a wide range of studies varying...

  8. Adverse weather impacts on arable cropping systems

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  9. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops

    Melander, B.; Munier-Jolain, N.M.; Charles, R.; Wirth, J.; Schwarz, J.; Weide, van der R.Y.; Bonin, L.; Jensen, P.K.; Kudsk, P.K.

    2013-01-01

    Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of

  10. Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL).

    Hooper, Cornelia M; Castleden, Ian R; Aryamanesh, Nader; Jacoby, Richard P; Millar, A Harvey

    2016-01-01

    Barley, wheat, rice and maize provide the bulk of human nutrition and have extensive industrial use as agricultural products. The genomes of these crops each contains >40,000 genes encoding proteins; however, the major genome databases for these species lack annotation information of protein subcellular location for >80% of these gene products. We address this gap, by constructing the compendium of crop protein subcellular locations called crop Proteins with Annotated Locations (cropPAL). Subcellular location is most commonly determined by fluorescent protein tagging of live cells or mass spectrometry detection in subcellular purifications, but can also be predicted from amino acid sequence or protein expression patterns. The cropPAL database collates 556 published studies, from >300 research institutes in >30 countries that have been previously published, as well as compiling eight pre-computed subcellular predictions for all Hordeum vulgare, Triticum aestivum, Oryza sativa and Zea mays protein sequences. The data collection including metadata for proteins and published studies can be accessed through a search portal http://crop-PAL.org. The subcellular localization information housed in cropPAL helps to depict plant cells as compartmentalized protein networks that can be investigated for improving crop yield and quality, and developing new biotechnological solutions to agricultural challenges. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Effects of adjusting cropping systems on utilization efficiency of climatic resources in Northeast China under future climate scenarios

    Guo, Jianping; Zhao, Junfang; Xu, Yanhong; Chu, Zheng; Mu, Jia; Zhao, Qian

    Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm-cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011-2040, 2041-2070 and 2071-2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize

  12. Exploring the Usefulness of MISR-HR Products to Estimate Maize Crop Extent and Using Field Evidence to Evaluate the Results in South Africa's Free State Province

    Verstraete, M. M.; Knox, N. M.; Hunt, L. A.; Kleyn, L.

    2014-12-01

    The MISR instrument on NASA's Terra platform has been operating for almost 15 years. Standard products are generated at a spatial resolution of 1.1 km or coarser, but a recently developed method to re-analyze the Level-1B2 data allows the retrieval of biogeophysical products at the native spatial resolution of the instrument (275 m). This development opens new opportunities to better address issues such as the management of agricultural production and food security. South African maize production is of great economic and social importance, not only nationally, but on the global market too, being one of the top ten maize producing countries. Seasonal maize production statistics are currently based on a combination of field measurements and estimates derived from manually digitizing high resolution imagery from the SPOT satellite. The field measurements are collected using the Producer Independent Crop Estimate System (PICES) developed by Crop Estimates Committee of the Department of Agriculture, Forestry and Fisheries. There is a strong desire to improve the quality of these statistics, to generate those earlier, and to automate the process to encompass larger areas. This paper will explore the feasibility of using the MISR-HR spectral and directional products, combined with the finer spatial resolution and the relatively frequent coverage afforded by that instrument, to address these needs. The study area is based in the Free State, South Africa, one of the primary maize growing areas in the country, and took place during the 2012-2013 summer growing season. The significance of the outcomes will be evaluated in the context of the 14+ years of available MISR data.

  13. Residual soil nitrate content and profitability of five cropping systems in northwest Iowa.

    Robert L De Haan

    Full Text Available Many communities in the Midwestern United States obtain their drinking water from shallow alluvial wells that are vulnerable to contamination by NO3-N from the surrounding agricultural landscape. The objective of this research was to assess cropping systems with the potential to produce a reasonable return for farmers while simultaneously reducing the risk of NO3-N movement into these shallow aquifers. From 2009 to 2013 we conducted a field experiment in northwest Iowa in which we evaluated five cropping systems for residual (late fall soil NO3-N content and profitability. Soil samples were taken annually from the top 30 cm of the soil profile in June and August, and from the top 180 cm in November (late fall. The November samples were divided into 30 cm increments for analysis. Average residual NO3-N content in the top 180 cm of the soil profile following the 2010 to 2013 cropping years was 134 kg ha-1 for continuous maize (Zea mays L. with a cereal rye (Secale cereale L. cover crop, 18 kg ha-1 for perennial grass, 60 kg ha-1 for a three year oat (Avena sativa L.-alfalfa (Medicago sativa L.-maize rotation, 85 kg ha-1 for a two year oat/red clover (Trifolium pratense L.-maize rotation, and 90 kg ha-1 for a three year soybean (Glycine max (L. Merr.-winter wheat (Triticum aestivum L.-maize rotation. However, residual NO3-N in the 90 to 180 cm increment of the soil profile was not significantly higher in the oat-alfalfa-maize cropping system than the perennial grass system. For 2010 to 2013, average profit ($ ha-1 yr-1 was 531 for continuous corn, 347 for soybean-winter wheat-maize, 264 for oat-alfalfa-maize, 140 for oat/red clover-maize, and -384 (loss for perennial grass. Considering both residual soil NO3-N and profitability data, the oat-alfalfa-maize rotation performed the best in this setting. However, given current economic pressures widespread adoption is likely to require changes in public policy.

  14. Residual soil nitrate content and profitability of five cropping systems in northwest Iowa.

    De Haan, Robert L; Schuiteman, Matthew A; Vos, Ronald J

    2017-01-01

    Many communities in the Midwestern United States obtain their drinking water from shallow alluvial wells that are vulnerable to contamination by NO3-N from the surrounding agricultural landscape. The objective of this research was to assess cropping systems with the potential to produce a reasonable return for farmers while simultaneously reducing the risk of NO3-N movement into these shallow aquifers. From 2009 to 2013 we conducted a field experiment in northwest Iowa in which we evaluated five cropping systems for residual (late fall) soil NO3-N content and profitability. Soil samples were taken annually from the top 30 cm of the soil profile in June and August, and from the top 180 cm in November (late fall). The November samples were divided into 30 cm increments for analysis. Average residual NO3-N content in the top 180 cm of the soil profile following the 2010 to 2013 cropping years was 134 kg ha-1 for continuous maize (Zea mays L.) with a cereal rye (Secale cereale L.) cover crop, 18 kg ha-1 for perennial grass, 60 kg ha-1 for a three year oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-maize rotation, 85 kg ha-1 for a two year oat/red clover (Trifolium pratense L.)-maize rotation, and 90 kg ha-1 for a three year soybean (Glycine max (L.) Merr.)-winter wheat (Triticum aestivum L.)-maize rotation. However, residual NO3-N in the 90 to 180 cm increment of the soil profile was not significantly higher in the oat-alfalfa-maize cropping system than the perennial grass system. For 2010 to 2013, average profit ($ ha-1 yr-1) was 531 for continuous corn, 347 for soybean-winter wheat-maize, 264 for oat-alfalfa-maize, 140 for oat/red clover-maize, and -384 (loss) for perennial grass. Considering both residual soil NO3-N and profitability data, the oat-alfalfa-maize rotation performed the best in this setting. However, given current economic pressures widespread adoption is likely to require changes in public policy.

  15. Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties

    Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining

    2017-11-01

    Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize ( Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.

  16. Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment

    Geneille E. Greaves

    2016-11-01

    Full Text Available Crop simulation models have a pivotal role to play in evaluating irrigation management strategies for improving agricultural water use. The objective of this study was to test and validate the AquaCrop model for maize under deficit irrigation management. Field observations from three experiments consisting of four treatments were used to evaluate model performance in simulating canopy cover (CC, biomass (B, yield (Y, crop evapotranspiration (ETc, and water use efficiency (WUE. Statistics for root mean square error, model efficiency (E, and index of agreement for B and CC suggest that the model prediction is good under non-stressed and moderate stress environments. Prediction of final B and Y under these conditions was acceptable, as indicated by the high coefficient of determination and deviations <10%. In severely stressed conditions, low E and deviations >11% for B and 9% for Y indicate a reduction in the model reliability. Simulated ETc and WUE deviation from observed values were within the range of 9.5% to 22.2% and 6.0% to 32.2%, respectively, suggesting that AquaCrop prediction of these variables is fair, becoming unsatisfactory as plant water stress intensifies. AquaCrop can be reliably used for evaluating the effectiveness of proposed irrigation management strategies for maize; however, the limitations should be kept in mind when interpreting the results in severely stressed conditions.

  17. Use of Drought Index and Crop Modelling for Drought Impacts Analysis on Maize (Zea mays L.) Yield Loss in Bandung District

    Kurniasih, E.; Impron; Perdinan

    2017-03-01

    Drought impacts on crop yield loss depend on drought magnitude and duration and on plant genotype at every plant growth stages when droughts occur. This research aims to assess the difference calculation results of 2 drought index methods and to study the maize yield loss variability impacted by drought magnitude and duration during maize growth stages in Bandung district, province of West Java, Indonesia. Droughts were quantified by the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at 1- to 3-month lags for the January1986-December 2015 period data. Maize yield responses to droughts were simulated by AquaCrop for the January 1986-May 2016 period of growing season. The analysis showed that the SPI and SPEI methods provided similar results in quantifying drought event. Droughts during maize reproductive stages caused the highest maize yield loss.

  18. COMPARING OPTICALAND DIRECT METHODS FOR LEAFAREA INDEX DETERMINATION IN A MAIZE CROP

    Arianna Facchi

    2010-03-01

    Full Text Available Leaf area index (LAI is a crucial variable in the modelling of many hydrological processes. Destructive sampling of LAI is extremely time-consuming, thus not suitable for monitoring temporal/spatial variations of the variable. In the last fifty years optical instruments retrieving LAI from more easily measurable variables (i.e. transmitted radiation through canopies have been developed. Several instruments are available on the market, but very few are the studies comparing LAI estimates in agricultural crops. In this paper three optical instruments are compared with destructive sampling for a maize crop located in Northern Italy. Determinations were carried out on three plots (replicates before and after successive thinning of plant populations. Destructively sampled LAI ranged from 4.9 m2m-2 (no thinning to 1.2 m2m- 2 (maximum thinning. Correlation analysis showed that estimates by the AccuPAR-80, the hemispherical camera (“effective” and “true” LAI and the LAI- 2000 (in the standard configuration, i.e. five zenithal rings, and excluding the fifth ring were well correlated with destructive measurements (R2≥0.95. Anyway, if for the AccuPAR-80 the regression line was close to the 1:1 line, the “true LAI” by hemispherical photography tended to overestimate destructively sampled LAI for low values while the “effective LAI” and the LAI-2000 to underestimate it for high values (in a minor way for the LAI-2000 when the fifth ring was removed. Results from the ANOVA and the Tukey T test for two-factor experiments with replicates showed that only the “effective LAI” retrieved by hemispherical photographs and the estimates provided by the LAI-2000 in the standard configuration (five rings were statistically different from destructive measurements.

  19. Nitrogen effects on maize yield following groundnut in rotation on ...

    Rotating maize (Zea mays L.) with groundnut (Arachis hypogaea L.) has been proposed as a way to maintain soil fertility and prevent maize productivity declines in the smallholder cropping systems of sub-humid Zimbabwe. Field experiments with fertilizer-N on maize in rotation with groundnut were conducted at three ...

  20. Intercropping maize with cassava or cowpea in Ghana | Ennin ...

    Maize/cassava and maize/cowpea intercrops were evaluated in southern Ghana, over a 5-year period to determine the optimum combination of component crop varieties and component plant population densities to optimize productivity of maize-based intercropping systems. Results indicated that some cowpea varieties ...

  1. Use of the crop maize to reduce yellow nutsedge (Cyperus esculentus L. pressure in highly infested fields in Switzerland

    Keller, Martina

    2014-02-01

    Full Text Available Cyperus esculentus L. causes high yield losses in many crops worldwide. In Switzerland it was observed for the first time about 30 years ago. Since then it has become a serious weed in several regions - especially where vegetables are produced. Growing vegetables in heavily infested fields should be abandoned due to their low competitiveness and the lack of available, effective herbicides. Contrarily, in maize several herbicides with a partial effect on C. esculentus are registered. Thus, continuous cultivation of maize including the use of the most effective herbicides against C. esculentus could help reducing infestation levels in heavily infested fields. Field trials were carried out at two sites in maize during 2011 and 2012. Different herbicide combinations, hoeing and herbicide applications combined with hoeing were the applied treatments. Split application was compared with one single application of the same amount of product. The effect of an additional, late under leaf herbicide application was determined as well. Cyperus esculentus coverage was estimated in the fields in 2011. Plots were sampled in spring 2011, autumn 2011 and autumn 2012. The Number of C. esculentus sprouts germinated from the soil samples was determined under greenhouse conditions. The most effective herbicide combination of registered active ingredients was rimsulfuron and mesotrione. Smetolachlor was effective as well, especially if combined with mechanical weed control. Halosulfuron-methyl applied twice provided the best C. esculentus control. Split application tended to be more effective than a single application. Control of C. esculentus could be improved considerably with an additional herbicide application in late June (under leaf. The treatments with highest C. esculentus control determined in the field trials and combinations thereof are effective treatment options for C. esculentus control in maize. These findings indicate and confirm that maize cropped for

  2. Efficiency of phosphate fertilization to maize crop in high phosphorus content soil, evaluated by {sup 32}P tracer

    Trevizam, Anderson R.; Alvarez Villanueva, Felipe C.; Silva, Maria Ligia de S.; Muraoka, Takashi [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fertilidade do Solo]. E-mails: trevizam@cena.usp.br; falvarez@cena.usp.br; mlsousi@hotmail.com; muraoka@cena.usp.br

    2007-07-01

    Application of high dosis of phosphorus (P) in agricultural soils is justified by its intense fixation by the soil clays, which reduce availability to crops. The objective of this research was to evaluate the response of maize crops to five rates of triple superphosphate in a soil with high available phosphorus content. Portions of 2 dm{sup 3} of soil (Typic Quartzipisamment) with 75 mg kg{sup -1} of available phosphorus and pH 7.00, collected from the upper 0-20 cm layer, were placed in plastic pots, received solution containing 5.55 MBq (150 {mu}Ci) of {sup 32}P and incubated for 7 days. Then 0, 250, 500, 1000 and 4000 mg P kg{sup -1} as triple superphosphate was added to soil in the respective pots and incubated for 15 days keeping the soil moisture to 60 % of the field capacity. Maize (Zea mays L.) plants, single hybrid P30F80, were grown for 50 days (after germination), collected, oven dried, weighed and ground in a Wiley mill for analysis of total P content and {sup 32}P radioactivity. The maize dry matter increased with triple superphosphate rates. The phosphorus content and accumulation in the maize plants increased with triple superphosphate rate up to 4000 mg kg{sup -1}. The percentage of phosphorus derived from the fertilizer ranged from 79 to 97% and consequently the phosphorus derived from soil decreased with increasing application of triple superphosphate. In spite of soil high P available content, maize plants responded to applied phosphorus rates. (author)

  3. Soil salinization and maize and cowpea yield in the crop rotation system using saline waters Salinização do solo e produtividade de milho e feijão caupi em sistema de rotação cultural utilizando águas salinas

    Claudivan F. Lacerda

    2011-01-01

    Full Text Available The use of saline water and the reuse of drainage water for irrigation depend on long-term strategies that ensure the sustainability of socio-economic and environmental impacts of agricultural systems. In this study, it was evaluated the effects of irrigation with saline water in the dry season and fresh water in the rainy season on the soil salt accumulation yield of maize and cowpea, in a crop rotation system. The experiment was conducted in the field, using a randomized complete block design, with five replications. The first crop was installed during the dry season of 2007, with maize irrigated with water of different salinities (0.8, 2.2, 3.6 and 5.0 dS m-1. The maize plants were harvested at 90 days after sowing (DAS, and vegetative growth, dry mass of 1000 seeds and grain yield were evaluated. The same plots were utilized for the cultivation of cowpea, during the rainy season of 2008. At the end of the crop, cycle plants of this species were harvested, being evaluated the vegetative growth and plant yield. Soil samples were collected before and after maize and cowpea cultivation. The salinity of irrigation water above 2.2 dS m-1 reduced the yield of maize during the dry season. The high total rainfall during the rainy season resulted in leaching of salts accumulated during cultivation in the dry season, and eliminated the possible negative effects of salinity on cowpea plants. However, this crop showed atypical behavior with a significant proportion of vegetative mass and low pod production, which reduced the efficiency of this strategy of crop rotation under the conditions of this study.A utilização de águas salinas bem como o reúso de águas de drenagem na irrigação dependem de estratégias de longo prazo que garantam a sustentabilidade socioeconômica e ambiental dos sistemas agrícolas. Neste trabalho, avaliaram-se os efeitos da irrigação com água salina na estação seca e com água de baixa salinidade na estação chuvosa

  4. Meteorological risks and impacts on crop production systems in Belgium

    Gobin, Anne

    2013-04-01

    Extreme weather events such as droughts, heat stress, rain storms and floods can have devastating effects on cropping systems. The perspective of rising risk-exposure is exacerbated further by projected increases of extreme events with climate change. More limits to aid received for agricultural damage and an overall reduction of direct income support to farmers further impacts farmers' resilience. Based on insurance claims, potatoes and rapeseed are the most vulnerable crops, followed by cereals and sugar beets. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Current knowledge gaps exist in the response of arable crops to the occurrence of extreme events. The degree of temporal overlap between extreme weather events and the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop and its environment. The regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency and magnitude of drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. Since crop development is driven by thermal time, crops matured earlier during the warmer 1988-2008 period than during the 1947-1987 period. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the cropping season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Soil moisture deficit increases towards harvesting, such that earlier maturing winter crops may avoid drought stress that occurs in late spring and summer. This is reflected in a decrease both in magnitude and frequency of soil moisture deficit around the sensitive stages during the 1988-2008 period when atmospheric drought may be compensated for with soil moisture. The risk of drought spells during

  5. Green manuring effect of pure and mixed barley - hairy vetch winter cover crops on maize and processing tomato N nutrition

    Tosti, Giacomo; Benincasa, Paolo; Farneselli, Michela

    2012-01-01

    this can influence the N uptake and N status of different subsequent summer cash crops. In this study the N effect of barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa Roth.) grown in pure stands or in mixtures with different sowing proportion was tested on maize (Zea Mays L.) and processing......Adopting mixtures between legumes and non legumes can be an efficient tool to merge the advantages of the single species in the fall-sown cover crop practice. Nevertheless there is a lack of information on how the species proportion may affect N accumulation and C/N of the cover crops and how...... of the relationship between cover crop C/N and Neff was confirmed, so mixtures can be used to adjust the extent and timing of mineralisation of the incorporated biomass to the subsequent cash crop requirements. Prediction of the cash crops N status on the cover crop C/N appears to be a useful approach, but, it may...

  6. PHYSICAL ATTRIBUTES OF SOIL AFTER SWINE WASTEWATER APPLICATION AS COVER FERTILIZER ON MAIZE CROP AND BLACK OATS SEQUENCE

    FÁBIO PALCZEWSKI PACHECO

    2017-01-01

    Full Text Available The rate of swine wastewater application (SW in agricultural production could result in the replacement of chemical fertilizers. However, SW destroys soil physical properties by decreasing pore bulk, which negatively affects both crop yield and development. In this context, this study aimed at monitoring the influence of swine wastewater as a cover fertilizer in maize and black oats in sequence on soil physical properties. Five application rates (0, 100, 200, 300 and 537 m3ha - 1 equivalent to 0, 11.2, 22.3, 33.5 and 60 kg ha-1 N, respectively, based on the average nitrogen concentration in SW were tested with four replications each. In the studied area, soil porosity, density, and water content, before maize sowing and at the end of the cycles of maize and black oats, were determined by the volumetric ring method. Data were submitted for regression analyses. There was a reduction in the macroporosity and total porosity of the soil when the SW application rate, before maize cultivation, was higher. The introduction of black oats helped to improve the physical quality of the soil and reduced the compaction of the surface layer from 0 to 15 cm and 100 to 300 m3 ha-1 SW rates.

  7. A quality assessment of the MARS crop yield forecasting system for the European Union

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  8. Evaluation of the CropSyst Model during Wheat-Maize Rotations on the North China Plain for Identifying Soil Evaporation Losses

    Muhammad Umair

    2017-09-01

    Full Text Available The North China Plain (NCP is a major grain production zone that plays a critical role in ensuring China's food supply. Irrigation is commonly used during grain production; however, the high annual water deficit [precipitation (P minus evapotranspiration (ET] in typical irrigated cropland does not support double cropping systems (such as maize and wheat and this has resulted in the steep decline in the water table (~0.8 m year−1 at the Luancheng station that has taken place since the 1970s. The current study aimed to adapt and check the ability of the CropSyst model (Suite-4 to simulate actual evapotranspiration (ETa, biomass, and grain yield, and to identify major evaporation (E losses from winter wheat (WW and summer maize (SM rotations. Field experiments were conducted at the Luancheng Agro-ecosystem station, NCP, in 2010–2011 to 2012–2013. The CropSyst model was calibrated on wheat/maize (from weekly leaf area/biomass data available for 2012–2013 and validated onto measured ETa, biomass, and grain yield at the experimental station from 2010–2011 to 2011–2012, by using model calibration parameters. The revalidation was performed with the ETa, biomass, grain yield, and simulated ETa partition for 2008–2009 WW [ETa partition was measured by the Micro-lysimeter (MLM and isotopes approach available for this year]. For the WW crop, E was 30% of total ETa; but from 2010–11 to 2013, the annual average E was ~40% of ETa for the WW and SM rotation. Furthermore, the WW and SM rotation from 2010–2011 to 2012–2013 was divided into three growth periods; (i pre-sowing irrigation (PSI; sowing at field capacity to emergence period (EP, (ii EP to canopy cover period (CC and (iii CC to harvesting period (HP, and E from each growth period was ~10, 60, and 30%, respectively. In general, error statistics such as RMSE, Willmott's d, and NRMSE in the model evaluation for wheat ETa (maize ETa were 38.3 mm, 0.81, and 9.24% (31.74 mm, 0.73, and 11

  9. Detecting and monitoring water stress states in maize crops using spectral ratios obtained in the photosynthetic domain

    Baranoski, Gladimir V. G.; Van Leeuwen, Spencer R.

    2017-07-01

    The reliable detection and monitoring of changes in the water status of crops composed of plants like maize, a highly adaptable C4 species in large demand for both food and biofuel production, are longstanding remote sensing goals. Existing procedures employed to achieve these goals rely predominantly on the spectral signatures of plant leaves in the infrared domain where the light absorption within the foliar tissues is dominated by water. It has been suggested that such procedures could be implemented using subsurface reflectance to transmittance ratios obtained in the visible (photosynthetic) domain with the assistance of polarization devices. However, the experiments leading to this proposition were performed on detached maize leaves, which were not influenced by the whole (living) plant's adaptation mechanisms to water stress. In this work, we employ predictive simulations of light-leaf interactions in the photosynthetic domain to demonstrate that the living specimens' physiological responses to dehydration stress should be taken into account in this context. Our findings also indicate that a reflectance to transmittance ratio obtained in the photosynthetic domain at a lower angle of incidence without the use of polarization devices may represent a cost-effective alternative for the assessment of water stress states in maize crops.

  10. Biomassa, atividade microbiana e FMA em rotação cultural milho/feijão-de-corda utilizando-se águas salinas Biomass, microbial activity and AMF in crop rotation system of maize/cowpea using saline water

    Maria Eloneide de Jesus Bezerra

    2010-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a influência da irrigação com água de alta e baixa salinidade sobre variáveis microbiológicas do solo em área submetida à rotação de cultura entre milho (Zea Mays L. e feijão-de-corda (Vigna unguiculata L.. A área destinada ao experimento foi dividida em duas subáreas, sendo realizados quatro cultivos: dois cultivos irrigados na estação seca e dois de sequeiro na estação chuvosa. O estudo foi conduzido em campo, utilizando-se o delineamento em blocos ao acaso, com cinco repetições. Nos cultivos irrigados foram usadas água com as seguintes condutividades elétricas (CEa: 0,8; 2,2; 3,6 e 5,0 dS m-1. Os cultivos de sequeiro foram realizados nas mesmas parcelas que foram cultivadas na estação seca, as quais permaneceram demarcadas e identificadas. No início e ao final de cada cultivo, foram coletadas amostras em duas subáreas na região radicular das plantas, no terço médio da fileira central de cada parcela. O aumento da salinidade da água de irrigação promoveu aumento do número total de esporos de fungos micorrízicos arbusculares FMA e reduziu a respiração basal do solo, o carbono da biomassa e o coeficiente metabólico microbiano (qCO2, principalmente na área cultivada com feijão-de-corda. O gênero Glomus respondeu por mais de 70% dos esporos totais encontrados, sendo que essa percentagem aumentou nos tratamentos com maior salinidade nos cultivos da estação seca. Os dados não evidenciaram qualquer efeito negativo da salinidade residual sobre as variáveis microbiológicas avaliadas, em função da irrigação com água salina durante os cultivos da estação seca.This work carred out the influence of irrigation with water of high and low salinity on soil microbial variables in area under the crop rotation between maize (Zea Mays L. and cowpea (Vigna unguiculata L.. The area for the experiment was divided into two sub areas being made four crops, two crops irrigated in

  11. application of morpho-anatomical traits of maize plant to quality

    USER

    CONTROL AND QUALITY ASSURANCE IN MAIZE SEED SYSTEM ... 1Cereals Program, National Agricultural Research Organization, National Crops Resources Research Institute, .... characters and scaling values were used to assess.

  12. Computing the biomass potentials for maize and two alternative energy crops, triticale and cup plant (Silphium perfoliatum L.), with the crop model BioSTAR in the region of Hannover (Germany).

    Bauböck, Roland; Karpenstein-Machan, Marianne; Kappas, Martin

    2014-01-01

    Lower Saxony (Germany) has the highest installed electric capacity from biogas in Germany. Most of this electricity is generated with maize. Reasons for this are the high yields and the economic incentive. In parts of Lower Saxony, an expansion of maize cultivation has led to ecological problems and a negative image of bioenergy as such. Winter triticale and cup plant have both shown their suitability as alternative energy crops for biogas production and could help to reduce maize cultivation. The model Biomass Simulation Tool for Agricultural Resources (BioSTAR) has been validated with observed yield data from the region of Hannover for the cultures maize and winter wheat. Predicted yields for the cultures show satisfactory error values of 9.36% (maize) and 11.5% (winter wheat). Correlations with observed data are significant ( P  alternative to maize in the region of Hanover and other places in Lower Saxony. The model BioSTAR simulated yields for maize and winter wheat in the region of Hannover at a good overall level of accuracy (combined error 10.4%). Due to input data aggregation, individual years show high errors though (up to 30%). Nevertheless, the BioSTAR crop model has proven to be a functioning tool for the prediction of agricultural biomass potentials under varying environmental and crop management frame conditions.

  13. Effects of climate change on yield potential of wheat and maize crops in the European Union

    Wolf, J.; Diepen, van C.A.

    1995-01-01

    Yields of winter wheat, silage maize and grain maize in the main arable areas of the European Union (EU) were calculated with a simulation model, WOFOST, using historical weather data and average soil characteristics. The sensitivity of the model to individual weather variables was determined.

  14. Toxicity of some insecticides used in maize crop on Trichogramma pretiosum (Hymenoptera, Trichogrammatidae immature stages

    Jander R Souza

    2014-04-01

    Full Text Available Fall armyworm Spodoptera frugiperda (J.E. Smith, 1797 (Lepidoptera: Noctuidae is an important pest of maize (Zea mays L. crops in Brazil. The effects of beta-cypermethrin, chlorfenapyr, chlorpyrifos, spinosad, etofenprox, triflumuron, alpha-cypermethrin/teflubenzuron, and lambda-cyhalothrin/thiamethoxam on Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae immature stages were evaluated. Eggs of Anagasta kuehniella (Zeller, 1879 (Lepidoptera: Pyralidae, containing immature stages of the parasitoid were dipped in water solution pesticides, to evaluate their effects on emergence and sex ratio of F1 parasitoids. For F2 parasitoids, emergence, parasitism capacity, and sex ratio were evaluated. Beta-cypermethrin, chlorfenapyr, chlorpyrifos, and spinosad affected the emergence success of F1 T. pretiosum. Insects exposed to etofenprox and alpha-cypermethrin/teflubenzuron during the egg-larval period and to lambda-cyhalothrin/thiamethoxam during the pupal stage also suffered reduction in the emergence. Beta-cypermethrin affected the sex ratio of F1 T. pretiosum from host eggs treated during the egg-larval period; spinosad affected it during the egg-larval period and the pupal stage, whereas chlorpyrifos did the same when applied during the pupal stage. Chlorpyrifos also affected the sex ratio of F2 parasitoids, but only when applied during the egg-larval period, whereas chlorfenapyr reduced this trait when applied during the pre-pupal phase. Chlorpyrifos and alpha-cypermethrin/teflubenzuron affected the parasitism capacity of F1 females from eggs treated during the egg-larval period. Considering the overall effects, only etofenprox and triflumuron were selective on T. pretiosum when applied on parasitized A. kuehniella eggs. Further studies need to be carried out to verify the toxicity of the other pesticides under semi-field and field conditions.

  15. Food Yields and Nutrient Analyses of the Three Sisters: A Haudenosaunee Cropping System

    Jane Mt.Pleasant

    2016-11-01

    Full Text Available Scholars have studied The Three Sisters, a traditional cropping system of the Haudenosaunee (Iroquois, from multiple perspectives. However, there is no research examining food yields, defined as the quantities of energy and protein produced per unit land area, from the cropping system within Iroquoia. This article compares food yields and other nutrient contributions from the Three Sisters, comprised of interplanted maize, bean and pumpkin, with monocultures of these same crops. The Three Sisters yields more energy (12.25 x 106 kcal/ha and more protein (349 kg/ha than any of the crop monocultures or mixtures of monocultures planted to the same area. The Three Sisters supplies 13.42 people/ha/yr. with energy and 15.86 people/ha/yr. with protein. Nutrient contents of the crops are further enhanced by nixtamalization, a traditional processing technique where maize is cooked in a high alkaline solution. This process increases calcium, protein quality, and niacin in maize.

  16. IMPACT OF AGROFORESTRY PARKLAND SYSTEM ON MAIZE PRODUCTIVITY BY SMALLHOLDER FARMERS IN EASTERN HIGHLANDS OF KENYA

    Elton Ndlovu

    2016-12-01

    Full Text Available A field experiment was carried on farms at Kyeni South in Eastern highlands of Kenya. The purpose of this study was to investigate on the effects of identified common tree species on growth and yield of maize on farms. The selected tree species found to be prevalently growing on farms were Croton macrostachyus Hochst. Ex Delile, Cordia africana Lam. and Grevillea robusta A. Cunn. Growth in basal diameter, height, leaf chlorophyll content and final grain yield was assessed on maize plants selected from the plots under the trees and control plots (away from trees. The maize plants in G. robusta plots had significantly lower mean basal diameter of 1.67 cm at 6 weeks after crop emergence (WACE and 1.96 cm at 9 WACE. No significant differences were observed in plant height in plots under different tree species. Significant suppression of chlorophyll development in maize (indicated by SPAD readings was observed in all the plots under the identified tree species at 6 WACE (P < 0.01. G. robusta plots had significantly lower grain yield of 1.57 t ha-1 compared to the control plots that had the highest mean yield of 2.21 t ha-1. Proper crown management is necessary in agroforestry systems.

  17. Nutrient composition, ruminal degradability and whole tract digestibility of whole crop maize silage from nine current varieties.

    Gruber, Leonhard; Terler, Georg; Knaus, Wilhelm

    2018-04-01

    Since maize silage is an important forage in cattle nutrition, it is important to know its nutritive value. Much effort is put into breeding maize, and several new varieties are introduced on the market every year. This requires periodical analyses of the nutritive value of current maize varieties for the formulation of cattle rations. The aim of this study was to examine the nutritive value of whole crop maize silage (WCMS) from nine maize varieties in 3 consecutive years. For the analysis of nutrient composition and ruminal degradability of organic matter (OM), crude protein (CP), neutral detergent fibre (aNDFom) and non-fibre carbohydrates (NFC), varieties were harvested at three harvest dates (50%, 55% and 60% dry matter content in ear). Due to capacity limitations, the digestibility of WCMS was tested only for the middle harvest date. The CP and acid detergent fibre (ADFom) content was affected (p content was not influenced by variety. With advancing maturity, CP, aNDFom and ADFom content declined while NFC content increased. Variety influenced effective ruminal degradability (ED) of nutrients, except for CP. The ED of all examined nutrients decreased as maturity advanced from first to third harvest date. Digestibility of OM, ADFom and NFC was significantly and digestibility of aNDFom was tendentially (p = 0.064) influenced by variety. Additionally, an effect of year and a harvest date × year interaction was found for almost all examined parameters. In conclusion, variety, harvest date and year influence the nutritive value of WCMS. A comparison with earlier studies shows that current varieties have a higher fibre digestibility and a slower-ripening stover compared to older varieties.

  18. Carbon dynamics under a maize-Faidherbia albida agroforestry system in Zambia

    Yengwe, Jones; Chipatela, Floyd; Amalia, Okky; Lungu, Obed; De Neve, Stefaan

    2017-04-01

    because of large C substrate added. Indicating a high C mineralization potential, MBC and enzyme activity for soils under the canopy compared with soils outside the canopy. F. albida trees therefore could be a source of labile C in F. albida-Maize systems nevertheless, in the long term, input from other crop residue such as maize and savanna grasses which have a large recalcitrant pool of C are important in sustaining SOC on these fields.

  19. Mycotoxin occurrence in maize produced in Northern Italy over the years 2009–2011: focus on the role of crop related factors

    Marco CAMARDO LEGGIERI

    2015-09-01

    Full Text Available The occurrence of mycotoxins associated with Fusarium spp. and Aspergillus flavus in Northern Italy, and the role of cropping systems, were investigated on 140 field samples collected over the years 2009–2011. Samples were analysed for fumonisins B1 and B2 (FBs, aflatoxins B1, B2, G1 and G2 (AFs, deoxynivalenol (DON and zearalenone (ZEN using validated analytical methods. Information on: maize hybrid, preceding crop, tillage applied, mineral nutrition, pest and disease control, severity of European Corn Borer (ECB attack, sowing and harvesting dates, kernel moisture at harvesting and longitude of the sampled province, were also collected. During this period there were distinct differences in FBs and AFs concentrations between years and geographic origins, and very low contamination with DON and ZEN was always found. The incidence of AFs exceeded 75% across all samples, and was almost 100% for FBs. The meteorological trends were quite different in the 3 years surveyed. 2009 was the coldest in June and the warmest in August, 2010 the most humid, and in 2011 cold weather occurred during flowering and dry conditions during ripening. The run of a logistic equation with the backward stepwise approach selected three parameters, (seeding week, ECB severity and longitude of sampling province to predict AFB1 contamination and four parameters (year, sowing week, ECB severity and longitude of sampling province to predict FB contamination. The internal validation gave good results, with 76% correct predictions. The probability of harvesting maize with more than 5 µg kg-1 of AFB1 varied between 86 and 5%, and the probability of harvesting maize with more than 4,000 µg kg-1 of FBs varied between 81 and 2%, respectively, for conducive and non-conducive environments. Therefore, considerable variability was found even if a limited area and only 3 years were considered.

  20. Backscatter Analysis Using Multi-Temporal SENTINEL-1 SAR Data for Crop Growth of Maize in Konya Basin, Turkey

    Abdikan, S.; Sekertekin, A.; Ustunern, M.; Balik Sanli, F.; Nasirzadehdizaji, R.

    2018-04-01

    Temporal monitoring of crop types is essential for the sustainable management of agricultural activities on both national and global levels. As a practical and efficient tool, remote sensing is widely used in such applications. In this study, Sentinel-1 Synthetic Aperture Radar (SAR) imagery was utilized to investigate the performance of the sensor backscatter image on crop monitoring. Multi-temporal C-band VV and VH polarized SAR images were acquired simultaneously by in-situ measurements which was conducted at Konya basin, central Anatolia Turkey. During the measurements, plant height of maize plant was collected and relationship between backscatter values and plant height was analysed. The maize growth development was described under Biologische Bundesanstalt, bundessortenamt und CHemische industrie (BBCH). Under BBCH stages, the test site was classified as leaf development, stem elongation, heading and flowering in general. The correlation coefficient values indicated high correlation for both polarimetry during the early stages of the plant, while late stages indicated lower values in both polarimetry. As a last step, multi-temporal coverage of crop fields was analysed to map seasonal land use. To this aim, object based image classification was applied following image segmentation. About 80 % accuracies of land use maps were created in this experiment. As preliminary results, it is concluded that Sentinel-1 data provides beneficial information about plant growth. Dual-polarized Sentinel-1 data has high potential for multi-temporal analyses for agriculture monitoring and reliable mapping.

  1. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study

    Gao, Bing; Ju, Xiaotang; Su, Fang; Meng, Qingfeng; Oenema, Oene; Christie, Peter; Chen, Xinping; Zhang, Fusuo

    2014-01-01

    The impacts of different crop rotation systems with their corresponding management practices on grain yield, greenhouse gas emissions, and fertilizer nitrogen (N) and irrigation water use efficiencies are not well documented. This holds especially for the North China Plain which provides the staple food for hundreds of millions of people and where groundwater resources are polluted with nitrate and depleted through irrigation. Here, we report on fertilizer N and irrigation water use, grain yields, and nitrous oxide (N 2 O) and methane (CH 4 ) emissions of conventional and optimized winter wheat–summer maize double-cropping systems, and of three alternative cropping systems, namely a winter wheat–summer maize (or soybean)–spring maize system, with three harvests in two years; and a single spring maize system with one crop per year. The results of this two-year study show that the optimized double-cropping system led to a significant increase in grain yields and a significant decrease in fertilizer N use and net greenhouse gas intensity, but the net greenhouse gas N 2 O emissions plus CH 4 uptake and the use of irrigation water did not decrease relative to the conventional system. Compared to the conventional system the net greenhouse gas emissions, net greenhouse gas intensity and use of fertilizer N and irrigation water decreased in the three alternative cropping systems, but at the cost of grain yields except in the winter wheat–summer maize–spring maize system. Net uptake of CH 4 by the soil was little affected by cropping system. Average N 2 O emission factors were only 0.17% for winter wheat and 0.53% for maize. In conclusion, the winter wheat–summer maize–spring maize system has considerable potential to decrease water and N use and decrease N 2 O emissions while maintaining high grain yields and sustainable use of groundwater. - Highlights: • Yields, resource use efficiency and N 2 O + CH 4 emission differ among cropping systems. • An

  2. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study

    Gao, Bing [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Ju, Xiaotang, E-mail: juxt@cau.edu.cn [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Su, Fang; Meng, Qingfeng [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Oenema, Oene [Wageningen University and Research, Alterra, Wageningen (Netherlands); Christie, Peter [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast BT9 5PX (United Kingdom); Chen, Xinping; Zhang, Fusuo [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China)

    2014-02-01

    The impacts of different crop rotation systems with their corresponding management practices on grain yield, greenhouse gas emissions, and fertilizer nitrogen (N) and irrigation water use efficiencies are not well documented. This holds especially for the North China Plain which provides the staple food for hundreds of millions of people and where groundwater resources are polluted with nitrate and depleted through irrigation. Here, we report on fertilizer N and irrigation water use, grain yields, and nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) emissions of conventional and optimized winter wheat–summer maize double-cropping systems, and of three alternative cropping systems, namely a winter wheat–summer maize (or soybean)–spring maize system, with three harvests in two years; and a single spring maize system with one crop per year. The results of this two-year study show that the optimized double-cropping system led to a significant increase in grain yields and a significant decrease in fertilizer N use and net greenhouse gas intensity, but the net greenhouse gas N{sub 2}O emissions plus CH{sub 4} uptake and the use of irrigation water did not decrease relative to the conventional system. Compared to the conventional system the net greenhouse gas emissions, net greenhouse gas intensity and use of fertilizer N and irrigation water decreased in the three alternative cropping systems, but at the cost of grain yields except in the winter wheat–summer maize–spring maize system. Net uptake of CH{sub 4} by the soil was little affected by cropping system. Average N{sub 2}O emission factors were only 0.17% for winter wheat and 0.53% for maize. In conclusion, the winter wheat–summer maize–spring maize system has considerable potential to decrease water and N use and decrease N{sub 2}O emissions while maintaining high grain yields and sustainable use of groundwater. - Highlights: • Yields, resource use efficiency and N{sub 2}O + CH{sub 4} emission

  3. Spatial rooting patterns of gliricidia, pigeon pea and maize intercrops and effect on profile soil N and P distribution in southern Malawi

    Makumba, W.; Akinnifesi, F.K.; Janssen, B.H.

    2009-01-01

    The concept of competition or complementarity between tree and crop roots for below ground resources have been a major debate in simultaneous systems. Root studies were conducted in three cropping systems, namely: sole maize, pigeon pea/maize intercropping and Gliricidia sepium (Gliricidia)/maize

  4. Sucessão entre cultivos orgânicos de milho e couve consorciados com leguminosas em plantio direto Organic crop succession of maize and collard greens intercropped with legumes in no-tillage system

    EE Silva

    2011-03-01

    oleracea L. var. acephala and corn (Zea mays L. intercropped with green manure legumes under no-tillage organic system. The study was conducted in Seropédica, Rio de Janeiro State, during two years. We utilized dwarf velvet bean (Mucuna deeringiana and showy crotalaria (Crotalaria spectabilis as green manure intercropped with collard greens and in succession sunn hemp (Crotalaria juncea and velvet bean (Mucuna pruriens intercropped with corn. As a control, there was a single crop system of corn and collard greens. The experimental design was of randomized complete blocks, a factorial 3 (crop system x 2 (doses of poultry bed manure, with four replications, in plots of 20 m². For the collard greens we applied 0 and 5.4 t ha-1 of poultry bed manure (2.7 t ha-1 in two applications in 2003; 0 (zero and 2.7 t ha-1 in 2004. In the monocrop system, the yield of collard greens was of 37.7 and 18.4 t ha-1, intercropped with dwarf velvet bean the yield reached 40.3 and 38.8 t ha-1 and, using showy crotalaria the yield was of 42.9 and 24.8 t ha-1, in 2003 and 2004, respectively. The corn was benefited from the residual effect of fertilizer with poultry bed manure increasing the production of ears from 25,625 to 27,916 ha-1. Crop succession of collard greens and corn, intercropped with annual legumes under organic fertilization as poultry bed manure, showed yield increase for collard greens and corn.

  5. Energizing marginal soils: A perennial cropping system for Sida hermaphrodita

    Nabel, Moritz; Poorter, Hendrik; Temperton, Vicky; Schrey, Silvia D.; Koller, Robert; Schurr, Ulrich; Jablonowski, Nicolai D.

    2017-04-01

    As a way to avoid land use conflicts, the use of marginal soils for the production of plant biomass can be a sustainable alternative to conventional biomass production (e.g. maize). However, new cropping strategies have to be found that meet the challenge of crop production under marginal soil conditions. We aim for increased soil fertility by the use of the perennial crop Sida hermaphrodita in combination with organic fertilization and legume intercropping to produce substantial biomass yield. We present results of a three-year outdoor mesocosm experiment testing the perennial energy crop Sida hermaphrodita grown on a marginal model substrate (sand) with four kinds of fertilization (Digestate broadcast, Digestate Depot, mineral NPK and unfertilized control) in combination with legume intercropping. After three years, organic fertilization (via biogas digestate) compared to mineral fertilization (NPK), reduced the nitrate concentration in leachate and increased the soil carbon content. Biomass yields of Sida were 25% higher when fertilized organically, compared to mineral fertilizer. In general, digestate broadcast application reduced root growth and the wettability of the sandy substrate. However, when digestate was applied locally as depot to the rhizosphere, root growth increased and the wettability of the sandy substrate was preserved. Depot fertilization increased biomass yield by 10% compared to digestate broadcast fertilization. We intercropped Sida with various legumes (Trifolium repens, Trifolium pratense, Melilotus spp. and Medicago sativa) to enable biological nitrogen fixation and make the cropping system independent from synthetically produced fertilizers. We could show that Medicago sativa grown on marginal substrate fixed large amounts of N, especially when fertilized organically, whereas mineral fertilization suppressed biological nitrogen fixation. We conclude that the perennial energy crop Sida in combination with organic fertilization has great

  6. Maize and soybeans production in integrated system under no-tillage with different pasture combinations and animal categories

    Silva,Hernani Alves da; Moraes,Anibal de; Carvalho,Paulo César de Faccio; Fonseca,Adriel Ferreira da; Dias,Carlos Tadeu dos Santos

    2012-01-01

    The adoption of no-till system (NTS) combined with crop-livestock integration (CLI) has been a strategy promoted in Brazil, aiming to maximize areas yield and increase agribusiness profitability. This study aimed to evaluate grains yield and phytotechnical attributes from maize and soybean culture by CLI system under NTS after winter annual pure and diversified pastures with the absence or presence of grazing animals. The experiment was installed in Castro (Paraná State, Brazil) on in a dystr...

  7. UAS imaging for automated crop lodging detection: a case study over an experimental maize field

    Chu, Tianxing; Starek, Michael J.; Brewer, Michael J.; Masiane, Tiisetso; Murray, Seth C.

    2017-05-01

    Lodging has been recognized as one of the major destructive factors for crop quality and yield, particularly in corn. A variety of contributing causes, e.g. disease and/or pest, weather conditions, excessive nitrogen, and high plant density, may lead to lodging before harvesting season. Traditional lodging detection strategies mainly rely on ground data collection, which is insufficient in efficiency and accuracy. To address this problem, this research focuses on the use of unmanned aircraft systems (UAS) for automated detection of crop lodging. The study was conducted over an experimental corn field at the Texas A and M AgriLife Research and Extension Center at Corpus Christi, Texas, during the growing season of 2016. Nadir-view images of the corn field were taken by small UAS platforms equipped with consumer grade RGB and NIR cameras on a per week basis, enabling a timely observation of the plant growth. 3D structural information of the plants was reconstructed using structure-from-motion photogrammetry. The structural information was then applied to calculate crop height, and rates of growth. A lodging index for detecting corn lodging was proposed afterwards. Ground truth data of lodging was collected on a per row basis and used for fair assessment and tuning of the detection algorithm. Results show the UAS-measured height correlates well with the ground-measured height. More importantly, the lodging index can effectively reflect severity of corn lodging and yield after harvesting.

  8. Maize cultivar performance under diverse organic production systems

    Maize cultivar performance can vary widely among different production systems. The need for high-performing hybrids for organic systems with wide adaptation to various macroenvironments is becoming increasingly important. The goal of this study was to characterize inbred lines developed by distinc...

  9. Advances in Maize Transformation Technologies and Development of Transgenic Maize.

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K

    2016-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium -mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area.

  10. EFFECT OF COMPOST FROM BY-PRODUCT OF THE FISHING INDUSTRY ON CROP YIELD AND MICROELEMENT CONTENT IN MAIZE

    Maja Radziemska

    2015-09-01

    Full Text Available A pot experiment was conducted to compare the effects of compost from fish waste with mineral and manure fertilization on the yield and chemical composition of the overground parts of maize (Zea mays L.. The experiment comprised two series: I – composts at a dose of 1 g of compost per pot, and II – composts with 0.5 g of urea. The treatments were conducted on the following types of composts: compost 1: fish waste (80% d.m., sawdust (20% d.m.; compost 2: fish waste (80% d.m., straw (20% d.m.; compost 3: fish waste (80% d.m., bark (20% d.m.; compost 4: fish waste (79.3% d.m., sawdust (19.7% d.m., lignite (1% d.m.; compost 5: fish waste (79.3% d.m., straw (19.7% d.m.; lignite (1% d.m.; compost 6: fish waste (79.3% d.m., bark (19.7% d.m, lignite (1% d.m. The contents of Ni, Zn, Cr, Cu and Cd were determined in an air-acetylene flame using the flame atomic absorption spectrophotometric method. The average crop yield of the overground parts of maize in the series without additional mineral fertilization and with mineral N-fertilization was higher compared to objects without mineral N-fertilization. The highest crop yield was noted in the case of compost containing fish waste and straw with addition of lignite and with bark and lignite. The addition of lignite to the compost mass in the series with mineral N-fertilization had stronger influence on the content of cadmium, chromium, nickel and zinc in the overground parts of maize.

  11. Water-Soluble Lignins from Different Bioenergy Crops Stimulate the Early Development of Maize (Zea mays, L.

    Davide Savy

    2015-11-01

    Full Text Available The molecular composition of water-soluble lignins isolated from four non-food bioenergy crops (cardoon CAR, eucalyptus EUC, and two black poplars RIP and LIM was characterized in detail, and their potential bioactivity towards maize germination and early growth evaluated. Lignins were found to not affect seed germination rates, but stimulated the maize seedling development, though to a different extent. RIP promoted root elongation, while CAR only stimulated the length of lateral seminal roots and coleoptile, and LIM improved only the coleoptile development. The most significant bioactivity of CAR was related to its large content of aliphatic OH groups, C-O carbons and lowest hydrophobicity, as assessed by 31P-NMR and 13C-CPMAS-NMR spectroscopies. Less bioactive RIP and LIM lignins were similar in composition, but their stimulation of maize seedling was different. This was accounted to their diverse content of aliphatic OH groups and S- and G-type molecules. The poorest bioactivity of the EUC lignin was attributed to its smallest content of aliphatic OH groups and largest hydrophobicity. Both these features may be conducive of a EUC conformational structure tight enough to prevent its alteration by organic acids exuded from vegetal tissues. Conversely the more labile conformational arrangements of the other more hydrophilic lignin extracts promoted their bioactivity by releasing biologically active molecules upon the action of exuded organic acids. Our findings indicate that water-soluble lignins from non-food crops may be effectively used as plant biostimulants, thus contributing to increase the economic and ecological liability of bio-based industries.

  12. Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: implications for resistance management.

    Yang, Fei; Kerns, David L; Brown, Sebe; Kurtz, Ryan; Dennehy, Tim; Braxton, Bo; Head, Graham; Huang, Fangneng

    2016-06-15

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins have become a primary tool in pest management. Due to the intensive use of Bt crops, resistance of the fall armyworm, Spodoptera frugiperda, to Cry1F maize has occurred in Puerto Rico, Brazil, and some areas of the southeastern U.S. The sustainability of Bt crops faces a great challenge because the Cry1F-maize resistant S. frugiperda may also infest other Bt crops in multiple cropping ecosystems. Here we examined the survival and plant injury of a S. frugiperda population selected with Cry1F maize on three single-gene and five pyramided Bt cotton products. Larvae of Cry1F-susceptible (SS), -heterozygous (RS), and -resistant (RR) genotypes of S. frugiperda were all susceptible to the pyramided cotton containing Cry1Ac/Cry2Ab, Cry1Ac/Cry1F/Vip3A, Cry1Ab/Cry2Ae, or Cry1Ab/Cry2Ae/Vip3A, and the single-gene Cry2Ae cotton. Pyramided cotton containing Cry1Ac/Cry1F was effective against SS and RS, but not for RR. These findings show that the Cry1F-maize selected S. frugiperda can cause cross-crop resistance to other Bt crops expressing similar insecticidal proteins. Resistance management and pest management programs that utilize diversify mortality factors must be implemented to ensure the sustainability of Bt crops. This is especially important in areas where resistance to single-gene Bt crops is already widespread.

  13. Effect of Mixed Systems on Crop Productivity

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  14. Sustaining soil productivity by integrated plant nutrient management in wheat based cropping system under rainfed conditions

    Dilshad, M.; Lone, M.I.

    2011-01-01

    The study of the use of organic (FYM) and inorganic (NPK) nutrient sources with bio fertiliser on wheat-fallow and wheat-maize cropping system under rainfed environment revealed significant increase in bio metric parameters of wheat during winter and summer seasons of two years. During both the seasons, application of half NPK + half FYM + Bio power (brand) produced the highest grain yield (3684 kg/ha) and (3781 kg/ha) of wheat with the maximum N uptake of 357 kg/ha, P uptake of 51 kg/ha and K uptake of 215 kg/ha. Wheat-maize cropping system was found to be profitable economically with integrated use of mineral and organic and/or Bio power under rainfed conditions of Pakistan. (author)

  15. Nitrogen Leaching in Intensive Cropping Systems in Tam Duong District, Red River Delta of Vietnam

    Trinh, M.V.; Keulen, van, H.; Roetter, R.P.

    2010-01-01

    The environmental and economic consequences of nitrogen (N) lost in rice-based systems in Vietnam is important but has not been extensively studied. The objective of this study was to quantify the amount of N lost in major cropping systems in the Red River Delta. An experiment was conducted in the Red River Delta of Vietnam, on five different crops including rose, daisy, cabbage, chili, and a rice–rice–maize rotation during 2004 and 2005. Core soil samples were taken periodically in 20-cm inc...

  16. Evaluation of local adaptation strategies to climate change of maize crop in Andalusia for the first half of 21st century

    Gabaldón, Clara; Lorite, Ignacio J.; Inés Mínguez, M.; Dosio, Alessandro; Sánchez-Sánchez, Enrique; Ruiz-Ramos, Margarita

    2013-04-01

    The objective of this work is to generate and analyse adaptation strategies to cope with impacts of climate change on cereal cropping systems in Andalusia (Southern Spain) in a semi-arid environment, with focus on extreme events. In Andalusia, located in the South of the Iberian Peninsula, cereals crops may be affected by the increase in average temperatures, the precipitation variability and the possible extreme events. Those impacts may cause a decrease in both water availability and the pollination rate resulting on a decrease in yield and the farmer's profitability. Designing local and regional adaptation strategies to reduce these negative impacts is necessary. This study is focused on irrigated maize on five Andalusia locations. The Andalusia Network of Agricultural Trials (RAEA in Spanish) provided the experimental crop and soil data, and the observed climate data were obtained from the Agroclimatic Information Network of Andalusia and the Spanish National Meteorological Agency (AEMET in Spanish). The data for future climate scenarios (2013-2050) were generated by Dosio and Paruolo (2011) and Dosio et al. (2012), who corrected the bias of ENSEMBLES data for maximum and minimum temperatures and precipitation. ENSEMBLES data were the results of numerical simulations obtained from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/). Crop models considered were CERES-maize (Jones and Kiniry, 1986) under DSSAT platform, and CropSyst (Stockle et al., 2003). Those crop models were applied only on locations were calibration and validation were done. The effects of the adaptations strategies, such as changes in sowing dates or choice of cultivar, were evaluated regarding water consumption; changes in phenological dates were also analysed to compare with occurrence of extreme events of maximum temperature. These events represent a threat on summer crops due to the reduction on the duration of

  17. Quixotic coupling between irrigation system and maize-cowpea ...

    A study was conducted at the Research and Experimental Station, Faculty of Agriculture, Ain Shams University at Shalakan, Kalubia Governorate, Egypt, to evaluate the effect of two irrigation systems (trickle and modified furrow irrigation) and five maize (M)-cowpea (C) intercropping patterns (sole M-30, sole M-15, ridge ...

  18. Average Amount and Stability of Available Agro-Climate Resources in the Main Maize Cropping Regions in China during 1981-2010

    Zhao, Jin; Yang, Xiaoguang

    2018-02-01

    The available agro-climate resources that can be absorbed and converted into dry matter could directly affect crop growth and yield under climate change. Knowledge of the average amount and stability of available agro-climate resources for maize in the main cropping regions of China under climate change is essential for farmers and advisors to optimize cropping choices and develop adaptation strategies under limited resources. In this study, the three main maize cropping regions in China—the North China spring maize region (NCS), the Huanghuaihai summer maize region (HS), and the Southwest China mountain maize region (SCM)—were selected as study regions. Based on observed solar radiation, temperature, and precipitation data, we analyzed the spatial distributions and temporal trends in the available agro-climate resources for maize during 1981-2010. During this period, significantly prolonged climatological growing seasons for maize [3.3, 2.0, and 4.7 day (10 yr)-1 in NCS, HS, and SCM] were found in all three regions. However, the spatiotemporal patterns of the available agro-climate resources differed among the three regions. The available heating resources for maize increased significantly in the three regions, and the rates of increase were higher in NCS [95.5°C day (10 yr)-1] and SCM [93.5°C day (10 yr)-1] than that in HS [57.7°C day (10 yr)-1]. Meanwhile, decreasing trends in the available water resources were found in NCS [-5.3 mm (10 yr)-1] and SCM [-5.8 mm (10 yr)-1], whereas an increasing trend was observed in HS [3.0 mm (10 yr)-1]. Increasing trends in the available radiation resources were found in NCS [20.9 MJ m-2 (10 yr)-1] and SCM [25.2 MJ m-2 (10 yr)-1], whereas a decreasing trend was found in HS [11.6 MJ m-2 (10 yr)-1]. Compared with 1981-90, the stability of all three resource types decreased during 1991-2000 and 2001-10 in the three regions. More consideration should be placed on the extreme events caused by more intense climate fluctuations

  19. Integrated crop protection as a system approach

    Haan, de, J.J.; Wijnands, F.G.; Sukkel, W.

    2005-01-01

    New farming systems in vegetable production are required as demands for high quality products that do not pollute the environment are rising, and production risks are large and incomes low. The methodology of prototyping new systems is described, especially the themes, parameters and target values connected to integrated crop protection. The role of integrated crop protection in prototyping new systems is discussed. The results of twenty years working with this prototyping methodology are pre...

  20. Simply obtained global radiation, soil temperature and soil moisture in an alley cropping system in semi-arid Kenya

    Mungai, D.N.; Stigter, C.J.; Coulson, C.L.; Ng'ang'a, J.K.

    2000-01-01

    Global radiation, soil temperature and soil moisture data were obtained from a 4-6 year old Cassia siamea/maize (CM) alley cropping (or hedgerow intercropping) system, at a semi-arid site at Machakos, Kenya, in the late eighties. With the growing need to explore and manage variations in

  1. [Effect of reduced N application on soil N residue and N loss in maize-soybean relay strip intercropping system].

    Liu, Xiao-Ming; Yong, Tai-Wen; Liu, Wen-Yu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-08-01

    A field experiment was conducted in 2012, including three planting pattern (maize-soybean relay strip intercropping, mono-cultured maize and soybean) and three nitrogen application level [0 kg N x hm(-2), 180 kg N x hm(-2) (reduced N) and 240 kg N x hm(-2) (normal N)]. Fields were assigned to different treatments in a randomized block design with three replicates. The objective of this work was to analyze the effects of planting patterns and nitrogen application rates on plant N uptake, soil N residue and N loss. After fertilization applications, NH4(+)-N and NO3(-)-N levels increased in the soil of intercropped maize but decreased in the soil of intercropped soybean. Compared with mono-crops, the soil N residue and loss of intercropped soybean were reduced, while those of intercropped maize were increased and decreased, respectively. With the reduced rate of N application, N residue rate, N loss rate and ammonia volatilization loss rate of the maize-soybean intercropping relay strip system were decreased by 17.7%, 21.5% and 0.4% compared to mono-cultured maize, but increased by 2.0%, 19.8% and 0.1% compared to mono-cultured soybean, respectively. Likewise, the reduced N application resulted in reductions in N residue, N loss, and the N loss via ammonia volatilization in the maize-soybean relay strip intercropping system compared with the conventional rate of N application adopted by local farmers, and the N residue rate, N loss rate and ammonia volatilization loss rate reduced by 12.0%, 15.4% and 1.2%, respectively.

  2. Integrated use of biochar: a tool for improving soil and wheat quality of degraded soil under wheat-maize cropping pattern

    Ali, K.; Arif, M.; Jan, M.T.

    2015-01-01

    Wheat quality, nutrient uptake and nutrient use efficiency are significantly influenced by nutrient sources and application rate. To investigate the integrative effect of biochar, farmyard manure (FYM) and nitrogen (organic and inorganic soil amendments) in a wheat-maize cropping system, a two year study was designed to assess the interactive outcome of biochar, FYM and nitrogenous fertilizer on wheat nitrogen (N) parameters and associated soil quality parameters. Three levels of biochar (0, 25 and 50 t ha-1), two levels of FYM (5 and 10 t ha-1) and two levels of nitrogen fertilizer (60 and 120 kg ha-1) were used in the study. Biochar application displayed a significantly increased in wheat leaf, stem, straw and grain N content; grain and total N-uptake and grain protein content by 24, 20, 24, 56, 50, 17 and 20% respectively. Similarly, biochar application significantly increased soil total N (TN) and soil mineral N (SMN) by 63 and 40% respectively in second year. FYM application increased grain, leaf and straw N content by 20, 19.5 and 18% respectively, and increased total N-uptake and grain protein content by 49 and 19% respectively. FYM increased soil TN and SMN by 63 and 32% in both the years of the experiment. Mineral N application increased soil TN by over a half and SMN by a third, and grain protein content increased 16%. In contrast, nitrogen use efficiency (NUE) decreased for all amendments relative to the control. However, biochar treated plots improved NUE by 38% compared to plots without biochar. In conclusion, this field experiment has illustrated the potential of biochar to bring about short-term benefits in wheat and soil quality parameters in wheat-maize cropping systems. However, the long-term benefits remain to be quantified. (author)

  3. Towards Better Simulation of US Maize Yield Responses to Climate in the Community Earth System Model

    Peng, B.; Guan, K.; Chen, M.; Lawrence, D. M.; Jin, Z.; Bernacchi, C.; Ainsworth, E. A.; DeLucia, E. H.; Lombardozzi, D. L.; Lu, Y.

    2017-12-01

    Global food security is undergoing continuing pressure from increased population and climate change despites the potential advancement in breeding and management technologies. Earth system models (ESMs) are essential tools to study the impacts of historical and future climate on regional and global food production, as well as to assess the effectiveness of possible adaptations and their potential feedback to climate. Here we developed an improved maize representation within the Community Earth System Model (CESM) by combining the strengths of both the Community Land Model version 4.5 (CLM4.5) and the Agricultural Production Systems sIMulator (APSIM) models. Specifically, we modified the maize planting scheme, incorporated the phenology scheme adopted from the APSIM model, added a new carbon allocation scheme into CLM4.5, and improved the estimation of canopy structure parameters including leaf area index (LAI) and canopy height. Unique features of the new model (CLM-APSIM) include more detailed phenology stages, an explicit implementation of the impacts of various abiotic environmental stresses (including nitrogen, water, temperature and heat stresses) on maize phenology and carbon allocation, as well as an explicit simulation of grain number and grain size. We conducted a regional simulation of this new model over the US Corn Belt during 1990 to 2010. The simulated maize yield as well as its responses to climate (growing season mean temperature and precipitation) are benchmarked with data from UADA NASS statistics. Our results show that the CLM-APSIM model outperforms the CLM4.5 in simulating county-level maize yield production and reproduces more realistic yield responses to climate variations than CLM4.5. However, some critical processes (such as crop failure due to frost and inundation and suboptimal growth condition due to biotic stresses) are still missing in both CLM-APSIM and CLM4.5, making the simulated yield responses to climate slightly deviate from the

  4. Crop yield network and its response to changes in climate system

    Yokozawa, M.

    2013-12-01

    Crop failure (reduction in crop yield) due to extreme weather and climate change could lead to unstable food supply, reflecting the recent globalization in world agricultural production. Specifically, in several major production countries producing large amount of main cereal crops, wheat, maize, soybean and rice, abrupt crop failures in wide area are significantly serious for world food supply system. We examined the simultaneous changes in crop yield in USA, China and Brazil, in terms of the changes in climate system such as El Nino, La nina and so on. In this study, we defined a crop yield networks, which represent the correlation between yearly changes in crop yields and climate resources during the crop growing season in two regions. The climate resources during the crop growing season represents here the average temperature and the accumulated precipitation during the crop growing season of a target crop. As climate data, we used a reanalysis climate data JRA-25 (Japan Meteorological Agency). The yearly changes in crop yields are based on a gridded crop productivity database with a resolution of 1.125 degree in latitude/longitude (Iizumi et al. 2013). It is constructed from the agriculture statistics issued by local administrative bureau in each country, which covers the period during 1982 to 2006 (25 years). For the regions being lack of data, the data was interpolated referring to NPP values estimated by satellite data. Crop yield network is constructed as follows: (1) let DY(i,y) be negative difference in crop yield of year y from the trend yield at grid i; (2) define the correlation of the differences Cij(y) = DY(i, y) DY(j, y); (3) if Cij(y) > Q, then grids i and j are mutually linked for a threshold value Q. Links between grids make a crop yield network. It is here noted that only negative differences are taken into account because we focused on the lean year cases (i.e. yields of both grids were lower than those in the long-term trend). The arrays of

  5. EUE (energy use efficiency) of cropping systems for a sustainable agriculture

    Alluvione, Francesco; Moretti, Barbara; Sacco, Dario; Grignani, Carlo

    2011-01-01

    Energy efficiency of agriculture needs improvement to reduce the dependency on non-renewable energy sources. We estimated the energy flows of a wheat-maize-soybean-maize rotation of three different cropping systems: (i) low-input integrated farming (LI), (ii) integrated farming following European Regulations (IFS), and (iii) conventional farming (CONV). Balancing N fertilization with actual crop requirements and adopting minimum tillage proved the most efficient techniques to reduce energy inputs, contributing 64.7% and 11.2% respectively to the total reduction. Large differences among crops in energy efficiency (maize: 2.2 MJ kg -1 grain; wheat: 2.6 MJ kg -1 grain; soybean: 4.1 MJ kg -1 grain) suggest that crop rotation and crop management can be equally important in determining cropping system energy efficiency. Integrated farming techniques improved energy efficiency by reducing energy inputs without affecting energy outputs. Compared with CONV, energy use efficiency increased 31.4% and 32.7% in IFS and LI, respectively, while obtaining similar net energy values. Including SOM evolution in the energy analysis greatly enhanced the energy performance of IFS and, even more dramatically, LI compared to CONV. Improved energy efficiency suggests the adoption of alternative farming systems to reduce greenhouse gas emissions from agriculture. However, a thorough evaluation should include net global warming potential assessment. -- Highlights: → We evaluated the energy flows of integrated as alternative to conventional Farming. → Energy flows, soil organic matter evolution included, were analyzed following process analysis. → Energy flows were compared using indicators. → Integrated farming improved energy efficiency without affecting net energy. → Inclusion of soil organic matter in energy analysis accrue environmental evaluation.

  6. Year-Round Irrigation Schedule for a Tomato–Maize Rotation System in Reservoir-Based Irrigation Schemes in Ghana

    Ephraim Sekyi-Annan

    2018-05-01

    Full Text Available Improving irrigation management in semi-arid regions of Sub-Saharan Africa is crucial to respond to increasing variability in rainfall and overcome deficits in current irrigation schemes. In small-scale and medium-scale reservoir-based irrigation schemes in the Upper East region of Ghana, we explored options for improving the traditional, dry season irrigation practices and assessed the potential for supplemental irrigation in the rainy season. The AquaCrop model was used to (i assess current water management in the typical tomato-maize rotational system; (ii develop an improved irrigation schedule for dry season cultivation of tomato; and (iii determine the requirement for supplemental irrigation of maize in the rainy season under different climate scenarios. The improved irrigation schedule for dry season tomato cultivation would result in a water saving of 130–1325 mm compared to traditional irrigation practices, accompanied by approximately a 4–14% increase in tomato yield. The supplemental irrigation of maize would require 107–126 mm of water in periods of low rainfall and frequent dry spells, and 88–105 mm in periods of high rainfall and rare dry spells. Therefore, year-round irrigated crop production may be feasible, using water saved during dry season tomato cultivation for supplemental irrigation of maize in the rainy season.

  7. Effects of Tillage on Yield and Economic Returns of Maize and Cowpea in Semi-Arid Eastern Kenya

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Nyamwaro, S.O; Heng, K.L

    2014-01-01

    Crop yields and financial returns are important criteria for adoption of conservation tillage by farmers. A study was conducted between 2007-2010 to compare the financial returns of subsoiling-ripping and tied-ridge tillage with the conventional ox-plough tillage in the production of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) under semi-arid subsistence farming conditions in lower eastern Kenya. Four cropping systems namely maize sole crop, cowpea sole crop, maize/cowpea intercrop and maize sole crop with manure were evaluated in a split-plot treatments arrangement with tillage practices as the main plots and cropping systems as the sub-plots. The grain yields of maize and cowpea, prevailing market prices for cowpea and maize grains, labour, inputs applied and other relevant socio-economic data were collected every season, to enable estimation of economic returns and acceptability of the technologies. The results showed that average grain yield for maize sole crop, cowpea sole crop, maize/cowpea intercrop and maize sole crop with manure cropping systems under tied-ridge were 5, 9, 97 and 27% greater than the yields under oxplough tillage, respectively. Crop yields produced under subsoiling-ripping and ox-plough tillage were generally similar. However, land preparation and weeding labour expenses (KES 4240 / ha) for ox-plough tillage were 34% greater than those for subsoiling-ripping tillage but 40% lower than those for tied-ridge tillage. When averaged across seasons and tillage systems, the highest gross margins (KES 8567 / ha) were obtained in sole cowpea cropping system, followed by sole maize with manure (KES 4070 / ha), intercrop (KES 864 / ha) and least (loss of KES 1330 / ha) in sole maize without manure cropping system. (author)

  8. Changes in soil biological quality under legume- and maize-based farming systems in a humid savanna zone of Côte d’Ivoire

    Tano Y.

    2008-01-01

    Full Text Available Studying the impact of farming systems on soil status is essential in determining the most relevant for a given agroecological zone. A trial was conducted in a West Africa humid savanna, aiming at assessing the short-term effects of farming systems on soil (0-10 cm organic carbon (SOC content and some soil microbiological properties. A randomized complete block experimental design with three replications, and the following treatments were used: Mucuna pruriens (Mucuna, Pueraria phaseoloides (Pueraria, Lablab purpureus (Lablab, a combination of these three legumes (Mixed-legumes, maize + urea (Maize-U, maize + triple super phosphate (Maize-Sp, maize + urea + triple super phosphate (Maize-USp, fertilizer-free maize continuous cropping (Maize-Tradi. Results indicated that SOC content was improved over time under legume-based systems. The relative increase was the highest with the legume association and Lablab, where SOC varied from 7.5 to 8.6 g.kg-1 (i.e. 14.7% and from 7.2 to 8.3 g.kg-1 (i.e. 15.3% respectively, between the start and the end of the trial. Besides, applying grass and maize residues as mulch on the ground, in association with inorganic fertilizers may be a way of improving SOC content in the short-term. Although legume-based systems exhibited highest values, microbial biomass carbon (MBC did not show any statistical significant differences between treatments. However, soil C mineralization and soil specific respiration were influenced by the farming systems, with higher mean values under legume-based systems (42 ± 7.6 mg C-CO2.g-1 Corg and 0.4 mg C-CO2.g-1 biomass C, respectively, compared to maize continuous cropping systems (33.1 ± 1.6 mg C-CO2.g-1 Corg and 0.3 mg C-CO2.g-1 biomass C, respectively. Thus, these parameters can be used as sensitive indicators of the early changes in soil organic matter quality. The integration of legumes cover crops in farming systems may contribute to improve soil quality that would lead to

  9. The influence of cropping systems on the population and build up of ...

    Maize and cassava inter-crops recorded the lowest population counts and highest on pigeonpea + cocoyam, pigeonpea + yam and pigeonpea sole crops. However, the population of grasshoppers were significantly higher in pigeonpea sole crops. Followed by pigeonpea + cassava inter-crops. The population of beetles ...

  10. Modelling nutrient management in tropical cropping systems

    Delve, R. (ed.); Probert, M. (ed.)

    2004-01-01

    Metadata only record In tropical regions, organic materials are often more important than fertilizers in maintaining soil fertility, yet fertilizer recommendations and most crop models are unable to take account of the level and quality of organic inputs that farmers use. Computer simulation models, such as the Agricultural Production Systems Simulator (APSIM) developed by CSIRO and the Queensland Department of Primary Industries, have proven their value in many cropping environments. Thes...

  11. Effects of farmers\\' seed source on maize seed quality and crop ...

    determined the seed quality and field performance of farmer-saved seeds of the most popular quality protein maize (QPM) variety, Obatanpa, compared to the ... Une étude était entreprise pour déterminer la qualité de graine et le rendement sur le terrain de semence gardé par l'agriculteur de la variété la plus populaire du ...

  12. Determination of region-specific data of yield and quality of alternatives to silage maize in fodder crops – field trails with forage gras and clover grass mixtures, Sorghum as well as whole plant silage of grain

    Wosnitza, Andrea

    2014-02-01

    Full Text Available This project should generate current regional results over a period of three years about the parameter yield and quality of alternative fodder crops to maize; this includes grass and clover grass mixtures, silage maize, varieties of Sorghum/millets and whole plant silages of wheat, rye and triticale. The tested silage maize showed the highest and most reliable average dry matter yield with 23 tons per hectare, with a very low variance. The Sorghum and millet varieties had dry matter yields of 3 to 5 tons per hectare below the silage maize yield but with individual values fluctuating in a broad range within years and locations. With values far below 28% the dry matter contents were not suitable for ensiling. The grass and clover grass mixtures are good, stable and established alternatives to maize for silage. They achieved high yields comparable with these of Sorghum but stable and with a highly suitable dry matter content for ensiling. The yield of the whole plant silages was up to 22% lower compared with maize. So none of the alternative crops can compete with the high level yield of silage maize in its favoured region, therefore would be a combination of two crops recommended. But some individual locally adapted mixtures or varieties of the alternative crops reached nearly 80% of the maize yield. Silage maize showed the highest level of the net energy content for lactation (NEL, followed by the values of the fodder crops and the whole plant silages. The Sorghum varieties showed the lowest NEL value of all tested cultures. The highest crude protein showed the fodder crops contents. Silage maize, Sorghum and the whole plant silages had values lying nearly around the 50% mark of the fodder crops.

  13. Modelling the crop: from system dynamics to systems biology

    Yin, X.; Struik, P.C.

    2010-01-01

    There is strong interplant competition in a crop stand for various limiting resources, resulting in complex compensation and regulation mechanisms along the developmental cascade of the whole crop. Despite decades-long use of principles in system dynamics (e.g. feedback control), current crop models

  14. Glyphosate sustainability in South American cropping systems.

    Christoffoleti, Pedro J; Galli, Antonio J B; Carvalho, Saul J P; Moreira, Murilo S; Nicolai, Marcelo; Foloni, Luiz L; Martins, Bianca A B; Ribeiro, Daniela N

    2008-04-01

    South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it. Copyright (c) 2008 Society of Chemical Industry.

  15. Alterações microbianas no solo durante o ciclo do milho nos sistemas plantio direto e convencional Microbial changes in soil during a maize crop season in no-till and conventional systems

    Luciano Kayser Vargas

    2004-08-01

    Full Text Available A disponibilidade de resíduos de aveia-preta, com relação C:N elevada, resulta em imobilização microbiana de nitrogênio no solo, exigindo cuidados no manejo da adubação nitrogenada da cultura subseqüente. O objetivo deste trabalho foi avaliar as alterações na estrutura da comunidade microbiana ao longo do ciclo do milho, na presença de resíduos de aveia-preta e da aplicação de nitrogênio. Foram coletadas amostras de um Argissolo Vermelho distrófico no dia da semeadura do milho e 46, 62, 88 e 112 dias após a semeadura. O nitrogênio foi aplicado 25 dias e 49 dias após a semeadura. As alterações na comunidade microbiana foram avaliadas mediante relações entre carbono (C e nitrogênio (N, nitrogênio reativo com ninidrina (N-Nin e carboidratos (CHO da biomassa microbiana, além da análise do rDNA fúngico e bacteriano. As diferenças na composição da comunidade microbiana, reveladas pela análise do rDNA, relacionaram-se mais com as relações C:N e C:N-Nin do que com a relação C:CHO. As relações C:N-Nin e C:N e as avaliações do rDNA mostraram um predomínio inicial de população fúngica. Com a aplicação de N, a população bacteriana tornou-se preponderante e, ao final do ciclo do milho, retornou para uma condição semelhante à inicial.The availability of black oat residues, with high C:N ratio, leads to microbial immobilization of soil nitrogen, demanding special strategies to supply nitrogen to subsequent crops. The objective of this work was to evaluate shifts in microbial community structure due to the availability of black oat residues and nitrogen applications during the corn growing season. Soil (Paleudult samples were collected on the day of the corn seeding and after 46, 62, 88 and 112 days. Nitrogen fertilizer was applied 25 and 49 days after corn seeding. Changes in microbial community were assessed by microbial biomass carbon (C and nitrogen (N, ninhydrin-reactive N (N-Nin and carbohydrates (CHO

  16. Comparison of Soil Respiration in Typical Conventional and New Alternative Cereal Cropping Systems on the North China Plain

    Gao, Bing; Ju, Xiaotang; Su, Fang; Gao, Fengbin; Cao, Qingsen; Oenema, Oene; Christie, Peter; Chen, Xinping; Zhang, Fusuo

    2013-01-01

    We monitored soil respiration (Rs), soil temperature (T) and volumetric water content (VWC%) over four years in one typical conventional and four alternative cropping systems to understand Rs in different cropping systems with their respective management practices and environmental conditions. The control was conventional double-cropping system (winter wheat and summer maize in one year - Con.W/M). Four alternative cropping systems were designed with optimum water and N management, i.e. optimized winter wheat and summer maize (Opt.W/M), three harvests every two years (first year, winter wheat and summer maize or soybean; second year, fallow then spring maize - W/M-M and W/S-M), and single spring maize per year (M). Our results show that Rs responded mainly to the seasonal variation in T but was also greatly affected by straw return, root growth and soil moisture changes under different cropping systems. The mean seasonal CO2 emissions in Con.W/M were 16.8 and 15.1 Mg CO2 ha−1 for summer maize and winter wheat, respectively, without straw return. They increased significantly by 26 and 35% in Opt.W/M, respectively, with straw return. Under the new alternative cropping systems with straw return, W/M-M showed similar Rs to Opt.W/M, but total CO2 emissions of W/S-M decreased sharply relative to Opt.W/M when soybean was planted to replace summer maize. Total CO2 emissions expressed as the complete rotation cycles of W/S-M, Con.W/M and M treatments were not significantly different. Seasonal CO2 emissions were significantly correlated with the sum of carbon inputs of straw return from the previous season and the aboveground biomass in the current season, which explained 60% of seasonal CO2 emissions. T and VWC% explained up to 65% of Rs using the exponential-power and double exponential models, and the impacts of tillage and straw return must therefore be considered for accurate modeling of Rs in this geographical region. PMID:24278340

  17. Comparison of soil respiration in typical conventional and new alternative cereal cropping systems on the North China plain.

    Gao, Bing; Ju, Xiaotang; Su, Fang; Gao, Fengbin; Cao, Qingsen; Oenema, Oene; Christie, Peter; Chen, Xinping; Zhang, Fusuo

    2013-01-01

    We monitored soil respiration (Rs), soil temperature (T) and volumetric water content (VWC%) over four years in one typical conventional and four alternative cropping systems to understand Rs in different cropping systems with their respective management practices and environmental conditions. The control was conventional double-cropping system (winter wheat and summer maize in one year--Con.W/M). Four alternative cropping systems were designed with optimum water and N management, i.e. optimized winter wheat and summer maize (Opt.W/M), three harvests every two years (first year, winter wheat and summer maize or soybean; second year, fallow then spring maize--W/M-M and W/S-M), and single spring maize per year (M). Our results show that Rs responded mainly to the seasonal variation in T but was also greatly affected by straw return, root growth and soil moisture changes under different cropping systems. The mean seasonal CO2 emissions in Con.W/M were 16.8 and 15.1 Mg CO2 ha(-1) for summer maize and winter wheat, respectively, without straw return. They increased significantly by 26 and 35% in Opt.W/M, respectively, with straw return. Under the new alternative cropping systems with straw return, W/M-M showed similar Rs to Opt.W/M, but total CO2 emissions of W/S-M decreased sharply relative to Opt.W/M when soybean was planted to replace summer maize. Total CO2 emissions expressed as the complete rotation cycles of W/S-M, Con.W/M and M treatments were not significantly different. Seasonal CO2 emissions were significantly correlated with the sum of carbon inputs of straw return from the previous season and the aboveground biomass in the current season, which explained 60% of seasonal CO2 emissions. T and VWC% explained up to 65% of Rs using the exponential-power and double exponential models, and the impacts of tillage and straw return must therefore be considered for accurate modeling of Rs in this geographical region.

  18. [Effects of planting system on soil and water conservation and crop output value in a sloping land of Southwest China].

    Xiang, Da-Bing; Yong, Tai-Wen; Yang, Wen-Yu; Yu, Xiao-Bo; Guo, Kai

    2010-06-01

    A three-year experiment was conducted to study the effects of wheat/maize/soybean with total no-tillage and mulching (NTM), wheat/maize/soybean with part no-tillage and part mulching (PTM), wheat/maize/soybean with total tillage without mulching (TWM), and wheat/maize/ sweet potato with total tillage without mulching (TWMS) on the soil and water conservation, soil fertility, and crop output value in a sloping land of Southwest China. The average soil erosion amount and surface runoff of NTM were significantly lower than those of the other three planting systems, being 1189 kg x hm(-2) and 215 m3 x hm(-2), and 10.6% and 84.7% lower than those of TWMS, respectively. The soil organic matter, total N, available K and available N contents of NTM were increased by 15.7%, 18.2%, 55.2%, and 25.9%, respectively, being the highest among the test planting systems. PTM and TWM took the second place, and TWMS pattern had the least. NTM had the highest annual crop output value (18809 yuan x hm(-2)) and net income (12619 yuan x hm(-2)) in three years, being 2.2% -20.6% and 3.8% -32.9% higher than other three planting systems, respectively. In a word, the planting system wheat/maize/soybean was more beneficial to the water and soil conservation and the improvement of soil fertility and crop output value, compared with the traditional planting system wheat/maize/sweet potato.

  19. A bioenergy feedstock/vegetable double-cropping system

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  20. Transfer of 65Zn in maize -mycorrhizal systems: a potential mechanism to alleviate Zn deficiency in maize

    Subramanian, K.S.; Tenshia, Virgin

    2017-01-01

    Mycorrhizas are root associated fungi and obligate symbionts known to improve the nutritional status of the host plant as a direct consequence of transfer of slowly diffusing nutrients such as zinc. The Zn use efficiency by crops hardly exceeds 2-5 per cent and major portion of the Zn gets accumulated in soil in various pools which are not available to plants. Further, mycorrhizal symbiosis alters the chemical and biochemical properties of rhizosphere that affect the isotopic parameters such as A value, E value and L value. These parameters were measured for both mycorrhizal and non-mycorrhizal maize plants. A pot culture experiment was conducted to determine the availability of Zn using isotopic dilution techniques. Maize plants were grown in pots inoculated with (M+) or without (M-) mycorrhizal fungus Glomus intraradices. Tagged 65 ZnSO 4 was applied to soil at the time of sowing

  1. The Potential of Integrating Provitamin A-Biofortified Maize in Smallholder Farming Systems to Reduce Malnourishment in South Africa

    Mthokozisi K. Zuma

    2018-04-01

    Full Text Available Biofortification interventions have the potential to combat malnutrition. This review explored the use of provitamin A-biofortified maize (PVABM as a vitamin A deficiency (VAD reduction agricultural-based strategy. Maize has been identified as one of the key staple crops for biofortification to reduce hidden hunger in Africa. Most nutrition interventions have not been successful in reducing hunger because rural communities, who mainly rely on agriculture, have been indirectly excluded. The biofortification intervention proposed here aims to be an inclusive strategy, based on smallholder farming systems. Vitamin A is a micronutrient essential for growth, immune function, reproduction and vision, and its deficiency results in VAD. VAD is estimated to affect more than 250 million children in developing countries. In Africa, especially sub-Saharan Africa, maize is a staple food for rural communities, consumed by most household members. Due to carotenoids, PVABM presents an orange color. This color has been reported to lead to negative perceptions about PVABM varieties. The perceived agronomic traits of this maize by smallholder farmers have not been explored. Adoption and utilization of PVABM varieties relies on both acceptable consumer attributes and agronomic traits, including nutritional value. It is therefore important to assess farmers’ perceptions of and willingness to adopt the varieties, and the potential markets for PVABM maize. It is essential to establish on-farm trials and experiments to evaluate the response of PVABM under different climatic conditions, fertilizer levels and soils, and its overall agronomic potential. For the better integration of PVABM with smallholder farming systems, farmer training and workshops about PVABM should be part of any intervention. A holistic approach would enhance farmers’ knowledge about PVABM varieties and that their benefits out-compete other existing maize varieties.

  2. Monoculture Maize (Zea mays L. Cropped Under Conventional Tillage, No-tillage and N Fertilization: (II Fumonisin Incidence on Kernels

    Adriano Marocco

    2009-09-01

    Full Text Available Planting maize under no-tillage is an increasing farming practice for sustainable agriculture and sound environmental management. Although several studies on yield of no-till maize have been done, there is few information about the effect of tillage on fumonisin contamination. The present study was done to determine the effect of notillage and conventional tillage with two rates of nitrogen on fumonisin content in kernels of continuous maize. Average grain contamination with fumonisins B1 and B2 over the years 2004-06 was not significantly different, with mean values of 1682, 1984 and 2504 μg kg-1, respectively. Fumonisin B1 was the most abundant toxin found in the samples. No-tillage significantly affected the incidence of fumonisins during the first year of the trial, in which fumonisin content was significantly higher with no-till (2008 μg kg-1 compared with conventional tillage (1355 μg kg-1. However, no-tillage did not significantly affect the incidence of fumonisins in the second and third years of the study. Fumonisin content at the rate of 300 kg N ha-1 was not statistically different compared to that obtained without N fertilization. The interaction between the soil management system and the rate of applied nitrogen was only evident in the second year. Our results indicate that fumonisin contamination was affected by no-tillage only in the first year. Nitrogen fertilization had no significant effect on fumonisin content in any year. The weather conditions during susceptible stages of maize development have probably overridden the effect of nitrogen fertilization.

  3. Farmers' preferences and the factors affecting their decision to improve maize crops in Mexico

    Sánchez Toledano, Blanca Isabel

    2017-01-01

    Mexico is one of the countries with the highest corn production in the world (24.6 million tons) (FAOSTAT, 2016). However, in some regions, the yields are very low (2.0 Tn.ha-1) compared to the national average (9.39 Tn.ha-1). Among the different strategies to improve productivity, the adoption of improved maize seeds can play an important role. However, the adoption of this type of seed in Mexico is still limited. The development of a seed sector that meets the needs of farmers is an opportu...

  4. Influência de sistemas de plantio e armadilha adesiva na incidência de Frankliniella williamsi Hood na cultura do milho = Influence of planting systems and adhesive trap on the incidence of Frankliniella williamsi Hood in crop maize

    Fernando Alves de Albuquerque

    2006-07-01

    Full Text Available Esta pesquisa objetivou avaliar a influência de diferentes sistemas de plantio de milho e o efeito de armadilha adesiva na incidência de Frankliniella williamsi Hood. Os tratamentos consistiram no plantio direto do milho sobre aveia dessecada com glyphosate, aveia tombada, aveia roçada e plantas daninhas, aveia incorporada e plantio convencional. Alguns tratamentos foram associados a armadilha adesiva de coloração azul, colocada horizontalmente no centro da parcela. Verificou-se que tanto a presença de armadilha quanto os diferentes sistemas de plantio influíram significativamente na infestação das plantas de milho pelo tripes, sendo que os tratamentos “aveia dessecada” e “aveia roçada e plantas daninhas” apresentaram menor incidência do inseto, com esse efeito diminuindo com o desenvolvimento das plantas.This research aimed to evaluate the influence of different systems of corn planting and the effect of adhesive trap on the incidence ofFrankliniella williamsi. The treatments consisted of sowing the corn seed directly on oats dried by glyphosate, tilt oats, cut oats and weeds, incorporated oats, and also conventional planting. Some treatments were associated with adhesive trap of blue coloration, puthorizontally in the center of the plot. Results showed that the presence of traps, as well as the different planting systems influenced significantly on the thrips infestation, and the treatmentswith "dry oats" and "cut oats and weeds" presented smaller incidence of the insect with a decreasing effect along the plants growth.

  5. Classification of Maize in Complex Smallholder Farming Systems Using UAV Imagery

    Ola Hall

    2018-06-01

    Full Text Available Yield estimates and yield gap analysis are important for identifying poor agricultural productivity. Remote sensing holds great promise for measuring yield and thus determining yield gaps. Farming systems in sub-Saharan Africa (SSA are commonly characterized by small field size, intercropping, different crop species with similar phenologies, and sometimes high cloud frequency during the growing season, all of which pose real challenges to remote sensing. Here, an unmanned aerial vehicle (UAV system based on a quadcopter equipped with two consumer-grade cameras was used for the delineation and classification of maize plants on smallholder farms in Ghana. Object-oriented image classification methods were applied to the imagery, combined with measures of image texture and intensity, hue, and saturation (IHS, in order to achieve delineation. It was found that the inclusion of a near-infrared (NIR channel and red–green–blue (RGB spectra, in combination with texture or IHS, increased the classification accuracy for both single and mosaic images to above 94%. Thus, the system proved suitable for delineating and classifying maize using RGB and NIR imagery and calculating the vegetation fraction, an important parameter in producing yield estimates for heterogeneous smallholder farming systems.

  6. The mechanisms of root exudates of maize in improvement of iron nutrition of peanut in peanut/maize intercropping system by 14C tracer technique

    Zuo Yuanmei; Chen Qing; Zhang Fusuo

    2004-01-01

    The related mechanisms of root exudates of maize in improvement iron nutrition of peanut intercropped with maize was investigated by 14 C tracer technique. Neighboring roots between maize and peanut were separated by a 30 μm nylon net, the iron nutrition of peanut was also improved just like normal intercropping of maize and peanut. The results proved that root exudates of maize played an important role in improvement iron nutrition of peanut. The photosynthesis carbohydrate of maize could exuded into the rhizosphere of peanut and transfer into shoot and root of peanut in intercropping system. Root exudates of maize could increased efficiency of iron in soil and improved iron utilization of peanut

  7. Research and Development of Statistical Analysis Software System of Maize Seedling Experiment

    Hui Cao

    2014-01-01

    In this study, software engineer measures were used to develop a set of software system for maize seedling experiments statistics and analysis works. During development works, B/S structure software design method was used and a set of statistics indicators for maize seedling evaluation were established. The experiments results indicated that this set of software system could finish quality statistics and analysis for maize seedling very well. The development of this software system explored a...

  8. Assessment of Climate Suitability of Maize in South Korea

    Hyun, S.; Choi, D.; Seo, B.

    2017-12-01

    Assessing suitable areas for crops would be useful to design alternate cropping systems as an adaptation option to climate change adaptation. Although suitable areas could be identified by using a crop growth model, it would require a number of input parameters including cultivar and soil. Instead, a simple climate suitability model, e.g., EcoCrop model, could be used for an assessment of climate suitability for a major grain crop. The objective of this study was to assess of climate suitability for maize using the EcoCrop model under climate change conditions in Korea. A long term climate data from 2000 - 2100 were compiled from weather data source. The EcoCrop model implemented in R was used to determine climate suitability index at each grid cell. Overall, the EcoCrop model tended to identify suitable areas for maize production near the coastal areas whereas the actual major production areas located in inland areas. It is likely that the discrepancy between assessed and actual crop production areas would result from the socioeconomic aspects of maize production. Because the price of maize is considerably low, maize has been grown in an area where moisture and temperature conditions would be less than optimum. In part, a simple algorithm to predict climate suitability for maize would caused a relatively large error in climate suitability assessment under the present climate conditions. In 2050s, the climate suitability for maize increased in a large areas in southern and western part of Korea. In particular, the plain areas near the coastal region had considerably greater suitability index in the future compared with mountainous areas. The expansion of suitable areas for maize would help crop production policy making such as the allocation of rice production area for other crops due to considerably less demand for the rice in Korea.

  9. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops.

    Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Midtiby, Henrik Skov; Jensen, Kjeld; Christiansen, Martin Peter; Giselsson, Thomas Mosgaard; Mortensen, Anders Krogh; Jensen, Peter Kryger

    2016-11-04

    The stricter legislation within the European Union for the regulation of herbicides that are prone to leaching causes a greater economic burden on the agricultural industry through taxation. Owing to the increased economic burden, research in reducing herbicide usage has been prompted. High-resolution images from digital cameras support the studying of plant characteristics. These images can also be utilized to analyze shape and texture characteristics for weed identification. Instead of detecting weed patches, weed density can be estimated at a sub-patch level, through which even the identification of a single plant is possible. The aim of this study is to adapt the monocot and dicot coverage ratio vision (MoDiCoVi) algorithm to estimate dicotyledon leaf cover, perform grid spraying in real time, and present initial results in terms of potential herbicide savings in maize. The authors designed and executed an automated, large-scale field trial supported by the Armadillo autonomous tool carrier robot. The field trial consisted of 299 maize plots. Half of the plots (parcels) were planned with additional seeded weeds; the other half were planned with naturally occurring weeds. The in-situ evaluation showed that, compared to conventional broadcast spraying, the proposed method can reduce herbicide usage by 65% without measurable loss in biological effect.

  10. Effect of management systems and cover crops on organic matter dynamics of soil under vegetables

    Rodrigo Fernandes de Souza

    2014-06-01

    Full Text Available Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT, reduced tillage (RT and conventional tillage (CT and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC, microbial biomass carbon (MBC, oxidizable fractions, and the carbon fractions fulvic acid (C FA, humic acid (C HA and humin (C HUM were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover

  11. Application of GIS to assess rainfall variability impacts on crop yield ...

    SERVER

    2007-09-19

    Sep 19, 2007 ... Geospatial analysis. GIS Interpolation and other geospatial Analysis techniques were carried out to ... means of Spatial Decision Support System (SDSS) to plan crops ... rainwater variability on water availability for crop maize ...

  12. Individual plant care in cropping systems

    Griepentrog, Hans W.; Nørremark, Michael; Nielsen, Henning; Blackmore, Simon

    2003-01-01

    Individual plant care cropping systems, embodied in precision farming, may lead to new opportunities in agricultural crop management. The objective of the project was to provide high accuracy seed position mapping of a field of sugar beet. An RTK GPS was retrofitted on to a precision seeder to map the seeds as they were planted. The average error between the seed map and the actual plant map was about 32 mm to 59 mm. The results showed that the overall accuracy of the estimated plant position...

  13. Long term fate and effects of the herbicide bromoxynil in soil cropped with maize

    Scheunert, I.; Gunthner, A.; Rosenbrock, P.

    2001-01-01

    Bromoxynil (3,5-dibromo-4-hydroxy-benzonitrile; BO), mainly used as the octanoate ester (BOO), is among the most widespread herbicides applied to maize in Germany and other countries. Effects on the microflora of soil were assessed by the determination of microbial biomass and bioactivity using microcalorimetry, of enzymatic activity using dehydrogenase activity, of potential nitrification and of phospholipid fatty acid pattern. In laboratory experiments for 3 weeks, significant effects on microbial biomass and bioactivity, dehydrogenase activity and nitrification in general were obvious only for 100-to 1000-fold of the concentration resulting from normal agricultural application rate. Differences in the composition pattern of phospholipid fatty acids were obvious as trends already at BOO-concentrations corresponding to the normal application rate and were highly significant at 10-fold application rate level. After application of BOO formulation to outdoor lysimeters at normal agricultural application rates, no significant differences in dehydrogenase activity and nitrification between treated soils and controls could be detected; however, both treated soils and controls exhibited seasonal variations between the different sampling dates. After application of 14 C-BOO formulation to outdoor lysimeters, the uptake of 14 C in maize plants was negligible ( 14 C in leachate amounted to about 0.12 μg/L and was due only to highly polar, water-soluble products not identified thus far. Laboratory degradation experiments with 14 C-BO and 14 C-BOO in soil demonstrated mineralization to 14 CO 2 , transformation to the corresponding benzoate, and the formation of soil-bound residues. (author)

  14. Changes in mycorrhiza development in maize induced by crop management practices

    Gavito, M.E.; Miller, M.H.

    1998-01-01

    (Zea mays L.) or with the original plant species in the field site, bromegrass (Bromus inermis Leys.) and alfalfa (Medicago sativa L.). The delay in mycorrhiza development after cropping with canola was also observed in samples taken from the field and in a bioassay, both conducted at the beginning...

  15. Leaf temperature of maize and crop water stress index with variable irrigation and nitrogen supply

    Water scarcity due to changing climate, population growth, and economic development is a major threat to the sustainability of irrigated agriculture in the Western United States and other regions around the world. Water stress indices based on crop canopy temperature can be useful for assessing plan...

  16. Shifts in comparative advantages for maize, oat, and wheat cropping under climate change in Europe

    Elsgaard, Lars; Børgesen, Christen Duus; Olesen, Jørgen E

    2012-01-01

    as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed...

  17. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    Pajić Zorica

    2007-01-01

    Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a...

  18. [Effects of phosphorus application rates and depths on P utilization and loss risk in a maize-soybean intercropping system].

    Zhao, Wei; Song, Chun; Zhou, Pan; Wang, Jia Yu; Xui, Feng; Ye, Fang; Wang, Xiao Chun; Yang, Wen Yu

    2018-04-01

    In order to explore the advantage of intercropping on phosphorus (P) efficient utilization and the reduction of soil P loss, a field experiment in a maize-soybean intercropping system, which included three P application (P 2 O 5 ) rates (CP: 168 kg·hm -2 ; RP 1 : 135 kg·hm -2 ; RP 2 : 101 kg·hm -2 ) and three P application depths (D 1 : applied in 5 cm depth; D 2 : applied in 15 cm depth; D 3 : 1/2 of P fertilizer applied in 5 cm depth and another 1/2 in 15 cm depth) was carried out to analyze the effects of P application rates and depth on crop aboveground biomass, grain yield, crop P uptake, soil total and available P contents, and soil P adsorption-desorption characteristics. Compared with control treatment, the aboveground biomass, grain yield, crop P uptake, soil total P, and available P content were increased significantly by P application, regardless of P rate and application depth. Under the same application depth, RP 1 had similar grain yield but higher crop P uptake compared with CP, and thus higher P apparent utilization efficiency. Under the same P application rate, the application depth of D 2 had the highest crop aboveground biomass, grain yield, P uptake, soil total P, and available P. According to the characteristic of soil P adsorption-desorption, the treatment with the rate of RP 1 and the depth of D 2 had the strongest soil P retention capacity, which had advantage in alleviating P loss. These results suggested that reducing application rate but increasing application depth of P fertilizer could improve P use efficiency and reduce soil P loss without sacrifice in crop production in maize-soybean relay intercropping system.

  19. Smart investments in sustainable food production: revisiting mixed crop-livestock systems.

    Herrero, M; Thornton, P K; Notenbaert, A M; Wood, S; Msangi, S; Freeman, H A; Bossio, D; Dixon, J; Peters, M; van de Steeg, J; Lynam, J; Parthasarathy Rao, P; Macmillan, S; Gerard, B; McDermott, J; Seré, C; Rosegrant, M

    2010-02-12

    Farmers in mixed crop-livestock systems produce about half of the world's food. In small holdings around the world, livestock are reared mostly on grass, browse, and nonfood biomass from maize, millet, rice, and sorghum crops and in their turn supply manure and traction for future crops. Animals act as insurance against hard times and supply farmers with a source of regular income from sales of milk, eggs, and other products. Thus, faced with population growth and climate change, small-holder farmers should be the first target for policies to intensify production by carefully managed inputs of fertilizer, water, and feed to minimize waste and environmental impact, supported by improved access to markets, new varieties, and technologies.

  20. Carbon dioxide assimilation in Danish crops (wheat and maize) and its dependency on increasing temperature and elevated atmospheric CO2 concentration

    Soegaard, H.; Boegh, E.

    2001-01-01

    Eddy correlation measurements of atmospheric CO 2 fluxes have been recorded over a number of crops throughout the growing season. These data have been used for validating a mechanistic photosynthesis model, which is used together with one of the most wide spread soil respiration equations. The combined model, is applied for analysing the temperature- and CO 2 -dependency of field crops. To get an idea of the potential range in the sensitivity of agricultural crops to atmospheric change, two crops with contrasting biochemical and physiological properties were selected for the present analysis: winter wheat (Triticum aestivum cv. Hereward) and maize (Zea mayz cv. Loft). While wheat, which is a C 3 -species, is the most common Danish crop (covering 25% of the Danish agricultural area), maize is interesting because it is a C 4 -plant which uses another CO 2 pathway in the dry matter production. The photosynthetic process of C 4 -plants has a higher temperature optimum compared to C 3 -plants. This could give C 4 plants more favourable conditions in the future. The model applied in this paper is utilized to evaluate whether increasing atmospheric CO 2 concentrations have contributed to the general increase in grain yield observed in Denmark since the late sixties. (LN)

  1. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  2. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.

    Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan

    2015-12-01

    Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.

  3. Crop maize evapotranspiration; 2: ratios between the evapotranspiration to class A pan evaporation, to the reference evapotranspiration and to global solar radiation, at three sowing dates

    Matzenauer, R.; Bergamashi, H.; Berlato, M.A.

    1998-01-01

    Water availability is the most limiting factor for growth and grain yield of maize in the State of Rio Grande do Sul, Brazil, reducing frequently this production. Therefore, studies involving the determination of the water requirements are important for irrigation management to minimize the water availability problem. The main objective of this study was to calculate ratios between the maize crop evapotranspiration (ETm) to the class A pan evaporation (Eo), to the reference evapotranspiration (ETo) and to global solar radiation (Rs), in order to obtain ralations between ETm/Eo, ETm/ETo and ETm/Rs, at different crop stages for three different sowing dates. Field experiments were carried out at the Experimental Station of Taquari/RS, 29°48’ of south latitude, 51°49’of west longitude, and 76m of altitude, from 1976/77 to 1988/89. ETm was measured using drainage lysimeters (Thornthwaite-Mather type). The average ratio between ETm and Eo for whole crop cycle (from sowing to physiological maturity) was 0.66, 0.72, and 0.68, respectively, in crops sown on September, October, and November. The average ratio between ETm and ETo for whole crop cycle was 0.74, 0.81, and 0.8, in crops sown on September, October, and November, while the average ratio between ETm and Rs was 0.45, 0.51, and 0.49 for the same sowing dates. The higher average values of crop coefficients occured from tasseling to the milk grain stage, when ETm/Eo was 0.81, 0.92, and 0.81; ETm/ETo was 0.97, 1.05, and 0.96, whereas ETm/Rs was 0.6, 0.68, and 0.6 for crops sown on September, October, and November, respectively [pt

  4. quixotic coupling between irrigation system and maize-cowpea

    ACSS

    number row-1 and maize grain yield, respectively. The ridge ... Key Words: Furrow irrigation, water use efficiency, Zea mays. RÉSUMÉ ... important in arid and semi-arid regions, with ... as maize) canopy is not able to intercept all the solar radiation during the growth period. ... Intercropping maize and legumes considerably ...

  5. Effects of different organic wastes incorporation on soil organic carbon and its fraction under wheat-maize cropping system in North China Plain%有机物料还田对华北小麦玉米两熟农田土壤有机碳及其组分的影响

    陈源泉; 隋鹏; 严玲玲; 龙攀; 李柘锦; 王彬彬

    2016-01-01

    There are large amounts of agricultural waste produced in China annually and China has become the world’s largest agricultural waste generator with the rapid development of farming, breeding, and the agricultural processing industry. The vastmajority of these wastes are under utilized as a potential resource, which not only causes a huge waste of resources but also creates serious environmental pollution. Thus,acircular agriculture pattern of planting and animal farming and/or agro-processing industry which is good for reducing pollution, improving the use of natural resources and saving fossil energy are important to promote sustainable development of agriculture and the environment. Based on the conception of circular agriculture, five types of organic wastes were applied to the field at an equal rate of carbon in the study including crop straw (CS), biogas residue (BR), pig manure (PM), mushroom residue (MR) and wine residue (WR). The effect of different organic waste on soil total organic carbon and labile organic carbon fractions were investigated and analyzed in this paper. The field experiment was established from June 2010 in a wheat-maize rotation cropping system. The data analyzed in this paper were observed from 2010 to 2014. The main results showed that: (1)Soil total organic carbon (TOC), labile organic carbon (LOC), microbial biomass carbon (MBC) and dissolved organic carbon (DOC) were all increased graduallyunder different organic wastes amendments. Soil TOC, LOC, MBC and DOC content were 1.24-1.62, 2.07-3.19, 1.20-2.06 and 1.05-3.36 times of inorganic fertilizer treatment after applying organic material 5 years.The annual increase rate of soil TOC, LOC and MBC under organic wastes treatment were 15.57%-22.82%, 20.00%-38.31% and 16.30%-50.56%, respectively. (2) Among the five kinds of organic wastes, biogas residue and mushroom residue are more effectiveto the improvement of soil TOC content compared with crop straw. The areraqe annual increasing

  6. Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    The benefits of improving nitrogen use efficiency (NUE) in crops are typically studied through the performance of the individual crop. However, in order to increase yields in a sustainable way, improving NUE of the cropping systems must be the aim. We did a model simulation study to investigate h...

  7. Nitrogen assimilation system in maize is regulated by developmental and tissue-specific mechanisms

    Plett, Darren

    2016-08-10

    Key message: We found metabolites, enzyme activities and enzyme transcript abundances vary significantly across the maize lifecycle, but weak correlation exists between the three groups. We identified putative genes regulating nitrate assimilation. Abstract: Progress in improving nitrogen (N) use efficiency (NUE) of crop plants has been hampered by the complexity of the N uptake and utilisation systems. To understand this complexity we measured the activities of seven enzymes and ten metabolites related to N metabolism in the leaf and root tissues of Gaspe Flint maize plants grown in 0.5 or 2.5 mM NO3 − throughout the lifecycle. The amino acids had remarkably similar profiles across the lifecycle except for transient responses, which only appeared in the leaves for aspartate or in the roots for asparagine, serine and glycine. The activities of the enzymes for N assimilation were also coordinated to a certain degree, most noticeably with a peak in root activity late in the lifecycle, but with wide variation in the activity levels over the course of development. We analysed the transcriptional data for gene sets encoding the measured enzymes and found that, unlike the enzyme activities, transcript levels of the corresponding genes did not exhibit the same coordination across the lifecycle and were only weakly correlated with the levels of various amino acids or individual enzyme activities. We identified gene sets which were correlated with the enzyme activity profiles, including seven genes located within previously known quantitative trait loci for enzyme activities and hypothesise that these genes are important for the regulation of enzyme activities. This work provides insights into the complexity of the N assimilation system throughout development and identifies candidate regulatory genes, which warrant further investigation in efforts to improve NUE in crop plants. © 2016, Springer Science+Business Media Dordrecht.

  8. Nitrogen assimilation system in maize is regulated by developmental and tissue-specific mechanisms

    Plett, Darren; Holtham, Luke; Baumann, Ute; Kalashyan, Elena; Francis, Karen; Enju, Akiko; Toubia, John; Roessner, Ute; Bacic, Antony; Rafalski, Antoni; Dhugga, Kanwarpal S.; Tester, Mark A.; Garnett, Trevor; Kaiser, Brent N.

    2016-01-01

    Key message: We found metabolites, enzyme activities and enzyme transcript abundances vary significantly across the maize lifecycle, but weak correlation exists between the three groups. We identified putative genes regulating nitrate assimilation. Abstract: Progress in improving nitrogen (N) use efficiency (NUE) of crop plants has been hampered by the complexity of the N uptake and utilisation systems. To understand this complexity we measured the activities of seven enzymes and ten metabolites related to N metabolism in the leaf and root tissues of Gaspe Flint maize plants grown in 0.5 or 2.5 mM NO3 − throughout the lifecycle. The amino acids had remarkably similar profiles across the lifecycle except for transient responses, which only appeared in the leaves for aspartate or in the roots for asparagine, serine and glycine. The activities of the enzymes for N assimilation were also coordinated to a certain degree, most noticeably with a peak in root activity late in the lifecycle, but with wide variation in the activity levels over the course of development. We analysed the transcriptional data for gene sets encoding the measured enzymes and found that, unlike the enzyme activities, transcript levels of the corresponding genes did not exhibit the same coordination across the lifecycle and were only weakly correlated with the levels of various amino acids or individual enzyme activities. We identified gene sets which were correlated with the enzyme activity profiles, including seven genes located within previously known quantitative trait loci for enzyme activities and hypothesise that these genes are important for the regulation of enzyme activities. This work provides insights into the complexity of the N assimilation system throughout development and identifies candidate regulatory genes, which warrant further investigation in efforts to improve NUE in crop plants. © 2016, Springer Science+Business Media Dordrecht.

  9. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on poten...

  10. Monoculture Maize (Zea mays L. Cropped Under Conventional Tillage, No-tillage and N Fertilization: (I Three Year Yield Performances

    Vincenzo Tabaglio

    Full Text Available A three-year (2004-2006 field trial was carried out to compare two agricultural land management systems, in the Po Valley (Northern Italy. Conventional tillage and No-tillage (hereafter indicated as CT and NT, respectively were compared for maize treated with three levels of nitrogen. The soil was a fine-loamy, mixed, mesic Ultic Haplustalf, that had been under processing tomato in the previous year. Experimental design was a split-plot with four replicates, with the management system as the main factor and nitrogen fertilization (0, 250 and 300 kg N ha-1 year-1 as the secondary factor. Cumulative 3-yr yields of grain and total biomass of NT maize plants were 8% lower than those obtained under CT management, but not significantly different. No N starter was distributed in the first conversion year, causing 17% less grain yield in the NT plots compared with the CT plots. The N fertilizing with 250 and 300 kg N ha-1 year-1 determined statistically equal grain yields, demonstrating the waste of the extra 50 kg N at the N2 rate. Overall, the results for the three years indicate that on an Ultic Haplustalf conversion from a ploughed regime to mature NT conditions could be achieved over a relatively short period.

  11. Rice production in relation to soil quality under different rice-based cropping systems

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  12. An operational fluorescence system for crop assessment

    Belzile, Charles; Belanger, Marie-Christine; Viau, Alain A.; Chamberland, Martin; Roy, Simon

    2004-03-01

    The development of precision farming requires new tools for plant nutritional stress monitoring. An operational fluorescence system has been designed for vegetation status mapping and stress detection at plant and field scale. The instrument gives relative values of fluorescence at different wavelengths induced by the two-excitation sources. Lightinduced fluorescence has demonstrated successful crop health monitoring and plant nutritional stress detection capabilities. The spectral response of the plants has first been measured with an hyperspectral imager using laser-induced fluorescence. A tabletop imaging fluorometer based on flash lamp technology has also been designed to study the spatial distribution of fluorescence on plant leaves. For field based non-imaging system, LED technology is used as light source to induce fluorescence of the plant. The operational fluorescence system is based on ultraviolet and blue LED to induce fluorescence. Four narrow fluorescence bands centered on 440, 520, 690 and 740nm are detected. The instrument design includes a modular approach for light source and detector. It can accommodate as many as four different light sources and six bands of fluorescence detection. As part of the design for field application, the instrument is compatible with a mobile platform equipped with a GPS and data acquisition system. The current system developed by Telops/GAAP is configured for potato crops fluorescence measurement but can easily be adapted for other crops. This new instrument offers an effective and affordable solution for precision farming.

  13. A preliminary study of the effects of plastic film-mulched raised beds on soil temperature and crop performance of early-sown short-season spring maize (Zea mays L. in the North China Plain

    Jing Dang

    2016-08-01

    Full Text Available To identify a strategy for earlier sowing and harvesting of spring maize (Zea mays L. in an alternative maize–maize double cropping system, a 2-year field experiment was performed at Quzhou experimental station of China Agricultural University in 2014 and 2015. A short-season cultivar, Demeiya number 1 (KX7349, was used in the experiment. Soil temperature to 5 cm depth in the early crop growth stage, crop growth, crop yield, and water use of different treatments (plastic film-mulched raised bed (RF and flat field without plastic film mulching (CK in 2014; RF, plastic film-mulched flat field (FF, and CK in 2015 were measured or calculated and compared. Soil temperature in the film-mulched treatments was consistently higher than that in CK (1.6–3.5 °C in average during the early growth stage. Crops in plastic film-mulched treatments used 214 fewer growing-degree days (GDDs in 2014 and 262 fewer GDDs in 2015. In 2014, the RF treatment yielded 32.7% higher biomass than CK, although its 9.4% higher grain yield was not statistically significant. Also, RF used 17.9% less water and showed 33.1% higher water use efficiency (WUE than CK. In 2015, RF and FF showed 56.2% and 49.5% higher yield, 15.0% and 4.5% lower water use (ET, and 63.4% and 75.7% higher WUE, respectively, than CK. RF markedly increased soil temperature in the early crop season, accelerated crop growth, reduced ET, and greatly increased crop yield and WUE. Compared with FF, RF had no obvious effect on crop growth rate, although soil temperature during the period between sowing and stem elongation was slightly increased. However, RF resulted in lower ET and higher WUE than FF. Effects of RF on soil water dynamics as well as its cost-effectiveness remain topics for further study.

  14. Soil chemical atributtes on brachiaria spp in integrated crop livestock system

    Valdinei Tadeu Paulino

    2013-12-01

    Full Text Available Integrated crop-livestock systems have attracted more interest in the last few years due to their capacity of improving stability and sustainability of agricultural systems when compared to more specialized production ones. The crop-livestock integration is an effective technique, but complex to maintain pasture productivity and its recovery, whose efficiency depends on soil physical management and its chemical fertility. Regarding the soil fertility, the corrective practices generally begin with the liming due to the high acidity of most Brazilian soils and low levels of Ca and Mg in the exchange complex and high Al saturation. In areas of crop-livestock systems, liming corrects the surface acidity potential. However, this practice can leave the subsoil with excess aluminum and lack of calcium, which inhibit root growth and affect the absorption of water and nutrients. The application of gypsum allows the improvement of the subsoil, reducing Al saturation and increasing levels of calcium and sulfur. The aim of this study was to investigate changes in the soil chemical properties of a Haplorthox soil in integrated crop-livestock system (ICL with Brachiaria brizantha cv. Marandu and Piatã, Brachiaria ruziziensis with gypsum and liming application. This study was conducted at the Instituto de Zootecnia, Nova Odessa/SP, a pasture established on a soil with medium texture (61.4% sand, silt 14.6% and 24.0% clay. The treatment plots consisted on integration crop-livestock (ICL cultivated - maize and B. Marandu,  ICL - maize and B. ruziziensis, ICL - maize and B. Piatã and an untreated control group (control - without liming and fertilization grazed pasture throughout the year, located immediately adjacent to the ICL evaluation, which was cultivated for 25 years with B. brizantha cv. Marandu. All pastures were desiccated in October with glyphosate-based herbicide (4 liters per hectare. Then gypsum (1.2 Mg ha-1 and liming (1.2 Mg ha-1 were applied

  15. effect of tillage, rhizobium inoculation in maize-soybean- based ...

    main plot, four rhizobium inoculation in soybean-maize-based cropping systems ... production systems, such as cropping systems, ... of commercial inoculants. Studies ... and distributed by IITA business incubation ... sowing, while the remaining part (2/3) was done as ...... biological nitrogen fixation potential and grain yield.

  16. Understanding of crop phenology using satellite-based retrievals and climate factors - a case study on spring maize in Northeast China plain

    Shuai, Yanmin; Xie, Donghui; Wang, Peijuan; Wu, Menxin

    2014-03-01

    Land surface phenology is an efficient bio-indicator for monitoring terrestrial ecosystem variation in response to climate change. Numerous studies point out climate change plays an important role in modulating vegetation phenological events, especially in agriculture. In turn, surface changes caused by geo-biological processes can affect climate transition regionally and perhaps globally, as concluded by Intergovernmental Panel on Climate Change (IPCC) in 2001. Large amounts of research concluded that crops, as one of the most sensitive bio-indicators for climate change, can be strongly influenced by local weather such as temperature, moisture and radiation. Thus, investigating the details of weather impact and the feedback from crops can help improve our understanding of the interaction between crops and climate change at satellite scale. Our efforts start from this point, via case studies over the famous agriculture region in the Northeast China's plain to examine the response of spring maize under temperature and moisture stress. MODIS-based daily green vegetation information together with frequent field specification of the surface phenology as well as continuous measurements of the routine climatic factors during seven years (2003-2009) is used in this paper. Despite the obvious difference in scale between satellite estimations and field observations, the inter- and intra-annual variation of maize in seven-years' growth was captured successfully over three typical spring maize regions (Fuyu, Changling, and Hailun) in Northeast China. The results demonstrate that weather conditions such as changes of temperature and moisture stress provide considerable contribution to the year-to-year variations in the timing of spring maize phenological events.

  17. Understanding of crop phenology using satellite-based retrievals and climate factors – a case study on spring maize in Northeast China plain

    Shuai, Yanmin; Xie, Donghui; Wang, Peijuan; Wu, Menxin

    2014-01-01

    Land surface phenology is an efficient bio-indicator for monitoring terrestrial ecosystem variation in response to climate change. Numerous studies point out climate change plays an important role in modulating vegetation phenological events, especially in agriculture. In turn, surface changes caused by geo-biological processes can affect climate transition regionally and perhaps globally, as concluded by Intergovernmental Panel on Climate Change (IPCC) in 2001. Large amounts of research concluded that crops, as one of the most sensitive bio-indicators for climate change, can be strongly influenced by local weather such as temperature, moisture and radiation. Thus, investigating the details of weather impact and the feedback from crops can help improve our understanding of the interaction between crops and climate change at satellite scale. Our efforts start from this point, via case studies over the famous agriculture region in the Northeast China's plain to examine the response of spring maize under temperature and moisture stress. MODIS-based daily green vegetation information together with frequent field specification of the surface phenology as well as continuous measurements of the routine climatic factors during seven years (2003-2009) is used in this paper. Despite the obvious difference in scale between satellite estimations and field observations, the inter- and intra-annual variation of maize in seven-years' growth was captured successfully over three typical spring maize regions (Fuyu, Changling, and Hailun) in Northeast China. The results demonstrate that weather conditions such as changes of temperature and moisture stress provide considerable contribution to the year-to-year variations in the timing of spring maize phenological events

  18. Long-term C-CO2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM. The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification, mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a conventional tillage (CT and (b no tillage (NT in combination with three cropping systems: (a R0- monoculture system (soybean/wheat, (b R1- winter crop rotation (soybean/wheat/soybean/black oat, and (c R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat. The soil C-CO2 efflux was measured every 14 days for two years (48 measurements, by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between

  19. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  20. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis.

    Gerlach, Nina; Schmitz, Jessica; Polatajko, Aleksandra; Schlüter, Urte; Fahnenstich, Holger; Witt, Sandra; Fernie, Alisdair R; Uroic, Kalle; Scholz, Uwe; Sonnewald, Uwe; Bucher, Marcel

    2015-08-01

    Most terrestrial plants benefit from the symbiosis with arbuscular mycorrhizal fungi (AMF) mainly under nutrient-limited conditions. Here the crop plant Zea mays was grown with and without AMF in a bi-compartmented system separating plant and phosphate (Pi) source by a hyphae-permeable membrane. Thus, Pi was preferentially taken up via the mycorrhizal Pi uptake pathway while other nutrients were ubiquitously available. To study systemic effects of mycorrhizal Pi uptake on leaf status, leaves of these plants that display an increased biomass in the presence of AMF were subjected to simultaneous ionomic, transcriptomic and metabolomic analyses. We observed robust changes of the leaf elemental composition, that is, increase of P, S and Zn and decrease of Mn, Co and Li concentration in mycorrhizal plants. Although changes in anthocyanin and lipid metabolism point to an improved P status, a global increase in C versus N metabolism highlights the redistribution of metabolic pools including carbohydrates and amino acids. Strikingly, an induction of systemic defence gene expression and concomitant accumulation of secondary metabolites such as the terpenoids alpha- and beta-amyrin suggest priming of mycorrhizal maize leaves as a mycorrhiza-specific response. This work emphasizes the importance of AM symbiosis for the physiological status of plant leaves and could lead to strategies for optimized breeding of crop species with high growth potential. © 2015 John Wiley & Sons Ltd.

  1. Growth response of maize plants (Zea mays L.) to wheat and lentil pre-cropping and to indigenous mycorrhizal in field soil

    Almaca, A.; Ortas, I.

    2010-07-01

    The presence of indigenous mycorrhizal fungi may have significant effects on the growth and on the root morphology of plants, under arid and semi arid soil conditions. Lentil and wheat are the traditional crops grown in Southeastern Turkey. In this study soil samples from the Harran plain were collected from the 0-15 cm surface layer under wheat or lentil crop residues and used in a pot experiment carried out under greenhouse conditions with four levels of P fertilization: 0, 20, 40 and 80 mg kg{sup -}1 soil as Ca(H{sub 2}PO{sub 4}){sub 2}. Half of the soil batches were submitted to a heating treatment (80 degree centigrade, 2 h). The maize variety PX-9540 was grown in the pots for 57 days. At harvest, plant dry weight, root length, P and Zn concentrations in plant tissues were measured and the extent of root colonization by arbuscular mycorrhizal fungi (AMF) was determined. Results showed that maize plants grown in soils where lentil had been previously cultivated grew better than those grown after wheat cultivation. In both cases, P concentration in plant tissues increased with increased P fertilization. There were no significant differences in root AMF colonization between soils with different crop sequences, nor with soils submitted to high temperature. Previous crops had a significant influence on the growth of plants that could be related to differences in the indigenous mycorrhizas inoculum potential and efficacy that can promote P uptake and benefit plant growth. (Author) 29 refs.

  2. Field assessment of the relative agronomic effectiveness of phosphate rock materials in a soybean - Maize crop rotation using 32P isotope techniques

    Mahisarakul, J.; Siripaibool, C.; Claimon, J.; Pakkong, P.

    2002-01-01

    Field experiments were conducted at Phrabudhabart Field Crop Research Station, Lopbur Province during the period 1995-1997 to determine the relative agronomic effectiveness (RAE) in a soybean- maize crop rotation using 32 P isotope techniques. The soil of the experimental site was the Pakchong soil series (Oxic Paleustults). Four PRs were applied at 120 kg P ha -1 , namely Algerian PR (ARPR), North Carolina PR from USA (NCPR), Petchaburi PR from Thailand (PBPR) and Ratchaburi PR from Thailand (RBPR) and TSP was added at three rates (40, 60, 120 kg P ha -1 ). For the first year harvest, soybeans absorbed more P from TSP fertilizer (% FPU) applied at 40 kg P ha -1 than maize, but there was no yield response. Among four PRs, North Carolina phosphate rock (NCPR) gave the highest % Pdff as well as the highest RAE. Maize was planted after soybean to study the residual effect of TSP and PRs. The results were the same as in soybean. In the second year (1996) the grain yield of soybean was higher than in the first year (1995), and there was significant response to P from TSP. The RAE of NCPR was very high. Maize showed the opposite results. In this case Algerian PR (ARPR) had the highest RAE. In 1997, TSP and six PRs (same four used in 1995 and 1996, Morocco PR (MCPR), and Lumphun PR (LPPR)) were applied at 60 kg P ha -1 . Phosphate rocks were applied either alone or in combination with TSP (50:50). Application of TSP resulted in high yields of soybean. In terms of RAE the P sources ranked as follows: LPPR+TSP>ARPR>LPPR> MCPR>NCPR+TSP>NCPR. The residual effect of P on the following maize crop resulted in a high RAE for MCPR and LPPR. It was concluded that TSP should be applied to every crop. The reactivity of PRs in the first and the second year experiments were: ARPR>NCPR>RBPR>PBPR. Morocco PR and LPPR were also reactive PRs in the third experiment. The combination of PR and TSP resulted in better P uptake (%Pdff). (author)

  3. Improving Resilience of Northern Field Crop Systems Using Inter-Seeded Red Clover: A Review

    William Deen

    2013-02-01

    Full Text Available In light of the environmental challenges ahead, resilience of the most abundant field crop production systems must be improved to guarantee yield stability with more efficient use of nitrogen inputs, soil and water resources. Along with genetic and agronomic innovations, diversification of northern agro-ecosystems using inter-seeded legumes provides further opportunities to improve land management practices that sustain crop yields and their resilience to biotic and abiotic stresses. Benefits of legume cover crops have been known for decades and red clover (Trifolium pratense is one of the most common and beneficial when frost-seeded under winter wheat in advance of maize in a rotation. However, its use has been declining mostly due to the use of synthetic fertilizers and herbicides, concerns over competition with the main crop and the inability to fully capture red clover benefits due to difficulties in the persistence of uniform stands. In this manuscript, we first review the environmental, agronomic, rotational and economical benefits associated with inter-seeded red clover. Red clover adaptation to a wide array of common wheat-based rotations, its potential to mitigate the effects of land degradation in a changing climate and its integration into sustainable food production systems are discussed. We then identify areas of research with significant potential to impact cropping system profitability and sustainability.

  4. Scope for improved eco-efficiency varies among diverse cropping systems.

    Carberry, Peter S; Liang, Wei-li; Twomlow, Stephen; Holzworth, Dean P; Dimes, John P; McClelland, Tim; Huth, Neil I; Chen, Fu; Hochman, Zvi; Keating, Brian A

    2013-05-21

    Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.

  5. the influence of farmers' adoption behaviour on maize production ...

    p2333147

    The main cash crops grown in the country include coffee, sisal, cashew, cotton, tobacco ... Among these food crops, maize is the most important cereal food crop, and ... promoting recommended maize production practices in a package form.

  6. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules

    Buchen, Caroline; Well, Reinhard; Flessa, Heinz; Fuß, Roland; Helfrich, Mirjam; Lewicka-Szczebak, Dominika

    2017-04-01

    . Investigations were carried out over a study period of one year following grassland renewal and grassland conversion to maize cropping on two different soil sites (Plaggic Anthrosol and Histic Gleysol) near Oldenburg, Lower Saxony Germany. Our observations indicate heterotrophic bacterial denitrification and/or nitrifier denitrification as the main source of N2O production, with a significant contribution of N2O reduction to N2 rather than nitrification (i.e. hydroxylamine oxidation) and fungal denitrification throughout the entire study period. A tendency to a higher contribution of N2O reduction to N2 was observed for the often water-saturated Histic Gleysol, while lower N2O reduction was found for the Plaggic Anthrosol. For two samples, we attempt to validate our results from the isotopocule mapping approach with a parallel 15N labelling study at the field scale (Buchen et al., 2016), as conditions of soil moisture, nitrate availability and N2O flux were similar. References: Buchen, C., Lewicka-Szczebak, D., Fuß, R., Helfrich, M., Flessa, H., Well, R., 2016. Fluxes of N2 and N2O and contributing processes in summer after grassland renewal and grassland conversion to maize cropping on a Plaggic Anthrosol and a Histic Gleysol. Soil Biology and Biochemistry 101, 6-19.

  7. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    Joshi, Anjali; Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-08-01

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  8. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    Joshi, Anjali; Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-01-01

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds

  9. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    Joshi, Anjali, E-mail: joshianjali1982@gmail.com; Sharma, Arti [Centre For Nanoscience and Nanotechnology, Panjab University, Chandigarh (India); Nayyar, Harsh [Department of Botany, Panjab University, Chandigarh (India); Verma, Gaurav [Dr. SS Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh (India); Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh (India)

    2015-08-28

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  10. Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.).

    Yang, Zhongzhou; Chen, Jing; Dou, Runzhi; Gao, Xiang; Mao, Chuanbin; Wang, Li

    2015-11-30

    In this study, the phytotoxicity of seven metal oxide nanoparticles(NPs)-titanium dioxide (nTiO₂), silicon dioxide (nSiO₂), cerium dioxide (nCeO₂), magnetite (nFe₃O₄), aluminum oxide (nAl₂O₃), zinc oxide (nZnO) and copper oxide (nCuO)-was assessed on two agriculturally significant crop plants (maize and rice). The results showed that seed germination was not affected by any of the seven metal oxide NPs. However, at the concentration of 2000 mg·L(-1), the root elongation was significantly inhibited by nCuO (95.73% for maize and 97.28% for rice), nZnO (50.45% for maize and 66.75% for rice). On the contrary, minor phytotoxicity of nAl₂O₃ was only observed in maize, and no obvious toxic effects were found in the other four metal oxide NPs. By further study we found that the phytotoxic effects of nZnO, nAl₂O₃ and nCuO (25 to 2000 mg·L(-)¹) were concentration dependent, and were not caused by the corresponding Cu(2+), Zn(2+) and Al(3+) ions (0.11 mg·L(-)¹, 1.27 mg·L(-)¹ and 0.74 mg·L(-)¹, respectively). Furthermore, ZnO NPs (<50 nm) showed greater toxicity than ZnO microparticles(MPs)(<5 μm) to root elongation of both maize and rice. Overall, this study provided valuable information for the application of engineered NPs in agriculture and the assessment of the potential environmental risks.

  11. Impact of Addition of FGDB as a Soil Amendment on Physical and Chemical Properties of an Alkali Soil and Crop Yield of Maize in Northern China Coastal Plain

    H.-L. Yu

    2015-01-01

    Full Text Available To evaluate the effect of Flue gas desulfurization byproduct( FGDB as a soil amendment on growth and yield of maize (Zea mays and to determine the impact of FGDB additions on soil fertility characteristics in alkaline clayey soils, a 2-year field experiment was conducted in Huanghua, in Northern China Coastal Plain. The experiment included five treatments in which the soil was amended with FGDB at 15 cm depth at the rates of 0 t·hm−2, 4.50 t·hm−2, 9.00 t·hm−2, 13.5 t·hm−2, and 18.00 t·hm−2, respectively, before maize was planted. The values of soil pH, exchangeable sodium percentage (ESP, and bulk density (BD of the soil decreased; however, values of electrical conductivity (EC, water holding capacity (WHC, and plant nutrients increased with FGDB application in the soil. Crop plants grow more readily in FGDB amended soils because of improved soil properties. The best ameliorative effect was obtained at the rate of 13.5 t·hm−2. The germination percentage, plant height, and crop yield successively increased in both years. The results indicated FGDB was an effective soil amendment for improving the physicochemical properties and nutrient balance, and enhancing crop germination, growth, and yield, particularly when applied at a suitable application rate.

  12. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  13. Yields of crops on a rhodic ferralsol in southern Brazil in relation to ...

    Even though no-tillage, crop rotation management systems have been accepted as useful for sustaining crop production, there is the need to identify which crops can be used for such rotations. This study evaluated the dry matter and grain yields of eight winter and two summer crops (maize, Zea mays L. and soybean, ...

  14. Simulating the impact of no-till systems on field water fluxes and maize productivity under semi-arid conditions

    Mupangwa, W.; Jewitt, G. P. W.

    Crop output from the smallholder farming sector in sub-Saharan Africa is trailing population growth leading to widespread household food insecurity. It is therefore imperative that crop production in semi-arid areas be improved in order to meet the food demand of the ever increasing human population. No-till farming practices have the potential to increase crop productivity in smallholder production systems of sub-Saharan Africa, but rarely do because of the constraints experienced by these farmers. One of the most significant of these is the consumption of mulch by livestock. In the absence of long term on-farm assessment of the no-till system under smallholder conditions, simulation modelling is a tool that provides an insight into the potential benefits and can highlight shortcomings of the system under existing soil, climatic and socio-economic conditions. Thus, this study was designed to better understand the long term impact of no-till system without mulch cover on field water fluxes and maize productivity under a highly variable rainfall pattern typical of semi-arid South Africa. The simulated on-farm experiment consisted of two tillage treatments namely oxen-drawn conventional ploughing (CT) and ripping (NT). The APSIM model was applied for a 95 year period after first being calibrated and validated using measured runoff and maize yield data. The predicted results showed significantly higher surface runoff from the conventional system compared to the no-till system. Predicted deep drainage losses were higher from the NT system compared to the CT system regardless of the rainfall pattern. However, the APSIM model predicted 62% of the annual rainfall being lost through soil evaporation from both tillage systems. The predicted yields from the two systems were within 50 kg ha -1 difference in 74% of the years used in the simulation. In only 9% of the years, the model predicted higher grain yield in the NT system compared to the CT system. It is suggested that

  15. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems.

    Ladha, J K; Tirol-Padre, A; Reddy, C K; Cassman, K G; Verma, Sudhir; Powlson, D S; van Kessel, C; de B Richter, Daniel; Chakraborty, Debashis; Pathak, Himanshu

    2016-01-18

    Industrially produced N-fertilizer is essential to the production of cereals that supports current and projected human populations. We constructed a top-down global N budget for maize, rice, and wheat for a 50-year period (1961 to 2010). Cereals harvested a total of 1551 Tg of N, of which 48% was supplied through fertilizer-N and 4% came from net soil depletion. An estimated 48% (737 Tg) of crop N, equal to 29, 38, and 25 kg ha(-1) yr(-1) for maize, rice, and wheat, respectively, is contributed by sources other than fertilizer- or soil-N. Non-symbiotic N2 fixation appears to be the major source of this N, which is 370 Tg or 24% of total N in the crop, corresponding to 13, 22, and 13 kg ha(-1) yr(-1) for maize, rice, and wheat, respectively. Manure (217 Tg or 14%) and atmospheric deposition (96 Tg or 6%) are the other sources of N. Crop residues and seed contribute marginally. Our scaling-down approach to estimate the contribution of non-symbiotic N2 fixation is robust because it focuses on global quantities of N in sources and sinks that are easier to estimate, in contrast to estimating N losses per se, because losses are highly soil-, climate-, and crop-specific.

  16. Life Cycle Assessment of a Highly Diverse Vegetable Multi-Cropping System in Fengqiu County, China

    Li Li

    2018-03-01

    Full Text Available Agricultural biodiversity usually leads to greater sustainability in production practices. To understand the environmental implications of the development of village-level multi-cropping in rural China, we compared the environmental impact of a highly diverse vegetable multi-cropping system to a conventional wheat/maize rotation system based on the method of life cycle assessment (LCA. Using household level cultivation data, this study examined the gate-to-gate environmental impacts of on-site cultivation practices relating to the production of 10,000 nutrient equivalent units. Results show that vegetable multi-cropping resulted in decreased average land requirement, and diesel, water and electricity usage by 69.8%, 62.2%, 71.7%, and 63.4%, respectively, while average nitrogen (Total N, phosphorus (P2O5, and potassium (K2O usage in vegetable multi-cropping systems decreased by 16.3%, 42.1%, and 75.8%, respectively. Additional corresponding effects led to a decrease in the total global warming, eutrophication, and acidification potentials from external inputs by 21.6%, 16.7%, and 16.2% of the entire system, respectively. Moreover, the midpoint human toxicity potential from pesticide usage of the vegetable multi-cropping system was lower than that of the conventional system. However, the midpoint eco-toxicity potential from pesticide usage was higher due to certain highly toxic substances, and both human and eco-toxicity potentials from heavy metals were all higher by a few orders of magnitudes. Thus, to mitigate these detrimental consequences, some related measures are proposed for sustainable practices in the future implementation of multi-cropping systems.

  17. Methodological Aspects of On-Farm Monitoring of Cropping Systems Management

    Luca Bechini

    Full Text Available To conduct agro-environmental assessments at field and farm scale, detailed management data of crop and animal production systems are needed. However, this type of data is only rarely collected by public administrations. In the period 2005-2006, we made an experience of on-farm monitoring of cropping systems management, within a larger project aimed at assessing sustainability of agricultural systems in Italian Parks. In this paper, we describe and discuss the steps taken to carry out periodic face-to-face interviews in farms in the Sud Milano Agricultural Park (northern Italy. The first step was the selection of seven farms, which we identified by applying cluster analysis at a large database describing 733 farms of the Park. After having identified the most relevant agro-environmental issues in the studied area, we established a list of simple but sound indicators to evaluate the effects of agricultural management on the environment. The criteria used to select the indicators were that they should: be calculated on easily available data, not be based on direct measurements, make a synthesis of different aspects of reality, and be easily calculated and understood. The indicators selected evaluate nutrient management, fossil energy use, pesticide toxicity, soil management, and economic performance. Subsequently, we designed a data model to store input data used to calculate the indicators (farm configuration, flows of materials and money through the farm gate, animals and their rations, history of crop cultivation, crop management. The data model that we obtained is relatively complex, but adequate to store and analyse the large amount of data acquired during the two-year project. A questionnaire was developed to fully comply with the indicators selected and the data model. The questionnaire was used to carry out approximately six interviews per farm each year, with an investment of time of 1-2 hours per interview. Appropriate double checks of

  18. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding

    Arindam Ghatak

    2017-06-01

    Full Text Available Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.

  19. Efeito de coberturas de inverno e sua época de manejo sobre a infestação de plantas daninhas na cultura de milho Effect of winter cover crops and their management timing on weed infestation in maize crop

    A.A. Balbinot Jr.

    2007-09-01

    Full Text Available No sistema de plantio direto, a presença de palha sobre o solo proporciona significativa supressão de plantas daninhas. O objetivo deste trabalho foi avaliar o potencial de coberturas de inverno e sua época de manejo em reduzir a infestação de plantas daninhas na cultura de milho quando semeada em sucessão. Dois experimentos foram realizados em Canoinhas, SC, nas safras 2003/04 e 2004/05. No primeiro experimento, avaliaram-se seis coberturas de solo no inverno: nabo forrageiro, aveia-preta, centeio, azevém, consórcio entre aveia-preta e ervilhaca e o consórcio entre nabo forrageiro, aveia-preta, centeio, azevém e ervilhaca. Essas coberturas foram roçadas em três épocas antes da semeadura do milho: 1, 10 e 25 dias. Já no segundo experimento, foram avaliados os efeitos de supressão de plantas daninhas pela palha das seis coberturas citadas anteriormente, mais a ervilhaca. As palhas de azevém e do consórcio das cinco espécies utilizadas no experimento apresentaram alta capacidade em suprimir a emergência e o acúmulo de massa seca das plantas daninhas, enquanto a palha de nabo forrageiro apresentou baixo potencial de supressão. O manejo das coberturas próximo à semeadura da cultura de milho reduziu a infestação de plantas daninhas.Straw on the soil significantly reduces weed infestation under the no-tillage system. The aim of this research was to evaluate the potential of winter cover crops and their management timing in reducing weed infestation in maize crop. Two experiments were carried out in Canoinhas, SC, Brazil, in 2003/2004 and 2004/2005. In the first experiment, six winter cover crops were investigated: oilseed radish, black oat, rye, rye grass, intercropped among black oat and common vetch and among oilseed radish, black oat, rye, ryegrass and common vetch. These cover crops were slashed down at three different times before maize seeding (1, 10 and 25 days. In the second experiment, the potential to reduce weed

  20. Social and ecological analysis of commercial integrated crop livestock systems

    Garrett, R.D.; Niles, M.T.; Gil, J.D.B.; Gaudin, A.; Chaplin-Kramer, R.; Assmann, A.; Assmann, T.S.; Brewer, K.; Faccio Carvalho, de P.C.; Cortner, O.; Dynes, R.; Garbach, K.; Kebreab, E.; Mueller, N.; Peterson, C.; Reis, J.C.; Snow, V.; Valentim, J.

    2017-01-01

    Crops and livestock play a synergistic role in global food production and farmer livelihoods. Increasingly, however, crops and livestock are produced in isolation, particularly in farms operating at the commercial scale. It has been suggested that re-integrating crop and livestock systems at the

  1. Water Quality Impacts of Cover Crop/Manure Management Systems

    Kern, James Donald

    1997-01-01

    Crop production, soil system, water quality, and economic impacts of four corn silage production systems were compared through a field study including 16 plots (4 replications of each treatment). Systems included a rye cover crop and application of liquid dairy manure in the spring and fall. The four management systems were: 1) traditional, 2) double- crop, 3) roll-down, and 4) undercut. In the fourth system, manure was applied below the soil surface during the ...

  2. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Moslem Ladoni

    Full Text Available Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover and non-leguminous (winter rye cover crops on potentially mineralizable N (PMN and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management

  3. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  4. PRODUCTIVITY OF MAIZE (ZEA MAYS) BASED INTERCROPPING SYSTEM DURING KHARIF SEASON UNDER RED AND LATERITIC TRACT OF WEST BENGAL

    M K MANDAL; M BANERJEE; H BANERJEE; A ALIPATRA; G C MALIK

    2014-01-01

    A FIELD EXPERIMENT WAS CARRIED OUT DURING KHARIF SEASON OF 2010 AND 2011 AT SRINIKETAN RESEARCH FARM, VISVA BHARTI, WEST BENGAL. THE GRAIN YILED AND STOVER YIELD OF MAIZE WERE SIGNIFICANTLY HIGHER IN CASE OF PURE STAND OF MAIZE THAN EITHER OF ITS INTERCROPPING SYSTEMS WITH LEGUMES, WHILE THE COB YILED WAS HIGHEST IN THE MAIZE WITH SOYBEAN (1:2) INTERCROPPING SYSTEM AND IT WAS STATISTICALLY AT PAR WITH THE YIELD OBTAINED IN SOLE MAIZE. THE GRAIN YIELD OF LEGUMES WAS HIGHEST IN MAIZE WITH GROUN...

  5. Identification of lactic acid bacteria in the feces of dairy cows fed whole crop maize silage to assess the survival of silage bacteria in the gut.

    Han, Hongyan; Wang, Chao; Li, Yanbing; Yu, Zhu; Xu, Qingfang; Li, Guangpeng; Minh, Tang Thuy; Nishino, Naoki

    2018-01-01

    In order to assess the survival of lactic acid bacteria (LAB) in whole crop maize silage in the gut of dairy cows, one representative silage sample and three different feces samples were collected from dairy cows on three dairy farms in Hua Bei, China and three dairy farms in Kyushu, Japan. The composition of the bacterial community was examined by denaturing gradient gel electrophoresis and quantitative polymerase chain reaction. Lactobacillus acetotolerans was detected in all bunker-made maize silage samples, regardless of the dairy farm or sampling region from which they were sourced. A total of eight LAB species were detected in the maize silage samples, of which three (L. acetotolerans, L. pontis and L. casei) appeared to survive digestion. The populations of L. acetotolerans in silage and feces were 10 6-7 and 10 3-4 copies/g, respectively, indicating that, even for the LAB species showing potential survival in the gut, competition in this niche may be harsh and the population may substantially decrease during the digestion process. It may be difficult for silage LAB to survive in the gut of silage-fed dairy cows, because marked decrease in population can take place during the digestion process, even for surviving species. © 2017 Japanese Society of Animal Science.

  6. Spatial analysis of the distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and losses in maize crop productivity using geo statistics

    Farias, Paulo R.S.; Miranda, Vicente S.; Ribeiro, Susane M.; Barbosa, Jose C.; Busoli, Antonio C.; Overal, William L.

    2008-01-01

    The fall armyworm, Spodoptera frugiperda (J.E. Smith), is one of the chief pests of maize in the Americas. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling methods, determining actual and potential crop losses, and adopting precise agricultural techniques. In Sao Paulo state, Brazil, a maize field was sampled at weekly intervals, from germination through harvest, for caterpillar densities, using quadrates. In each of 200 quadrates, 10 plants were sampled per week. Harvest weights were obtained in the field for each quadrate, and ear diameters and lengths were also sampled (15 ears per quadrate) and used to estimate potential productivity of the quadrate. Geostatistical analyses of caterpillar densities showed greatest ranges for small caterpillars when semivariograms were adjusted for a spherical model that showed greatest fit. As the caterpillars developed in the field, their spatial distribution became increasingly random, as shown by a model adjusted to a straight line, indicating a lack of spatial dependence among samples. Harvest weight and ear length followed the spherical model, indicating the existence of spatial variability of the production parameters in the maize field. Geostatistics shows promise for the application of precise methods in the integrated control of pests. (author)

  7. Spatial analysis of the distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and losses in maize crop productivity using geo statistics

    Farias, Paulo R.S.; Miranda, Vicente S.; Ribeiro, Susane M. [Universidade Federal Rural da Amazonia (UFRA), Belem, PA (Brazil). Inst. de Ciencias Agrarias]. E-mail: paulo.farias@ufra.edu.br; Barbosa, Jose C. [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias. Dept. de Ciencias Exatas; Busoli, Antonio C. [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias. Dept. de Fitossanidade; Overal, William L. [Museu Paraense Emilio Goeldi (MPEG), Belem, PA (Brazil). Coordenacao de Zoologia

    2008-05-15

    The fall armyworm, Spodoptera frugiperda (J.E. Smith), is one of the chief pests of maize in the Americas. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling methods, determining actual and potential crop losses, and adopting precise agricultural techniques. In Sao Paulo state, Brazil, a maize field was sampled at weekly intervals, from germination through harvest, for caterpillar densities, using quadrates. In each of 200 quadrates, 10 plants were sampled per week. Harvest weights were obtained in the field for each quadrate, and ear diameters and lengths were also sampled (15 ears per quadrate) and used to estimate potential productivity of the quadrate. Geostatistical analyses of caterpillar densities showed greatest ranges for small caterpillars when semivariograms were adjusted for a spherical model that showed greatest fit. As the caterpillars developed in the field, their spatial distribution became increasingly random, as shown by a model adjusted to a straight line, indicating a lack of spatial dependence among samples. Harvest weight and ear length followed the spherical model, indicating the existence of spatial variability of the production parameters in the maize field. Geostatistics shows promise for the application of precise methods in the integrated control of pests. (author)

  8. ORF43 of maize rayado fino virus is dispensable for systemic infection of maize and transmission by leafhoppers.

    Edwards, Michael C; Weiland, John J; Todd, Jane; Stewart, Lucy R; Lu, Shunwen

    2016-04-01

    Maize rayado fino virus (MRFV) possesses an open reading frame (ORF43) predicted to encode a 43 kDa protein (p43) that has been postulated to be a viral movement protein. Using a clone of MRFV (pMRFV-US) from which infectious RNA can be produced, point mutations were introduced to either prevent initiation from three potential AUG initiation codons near the 5'-end of ORF43 or prematurely terminate translation of ORF43. Inoculation of maize seed via vascular puncture inoculation (VPI) resulted in plants exhibiting symptoms typical of MRFV infection for all mutants tested. Furthermore, corn leafhoppers (Dalbulus maidis) transmitted the virus mutants to healthy plants at a frequency similar to that for wild-type MRFV-US. Viral RNA recovered from plants infected with mutants both prior to and after leafhopper transmission retained mutations blocking ORF43 expression. The results indicate that ORF43 of MRFV is dispensable for both systemic infection of maize and transmission by leafhoppers.

  9. Using observed warming to identify hazards to Mozambique maize production

    Funk, Christopher C.; Harrison, Laura; Eilerts, Gary

    2011-01-01

    New Perspectives on Crop Yield Constraints because of Climate Change. Climate change impact assessments usually focus on changes to precipitation because most global food production is from rainfed cropping systems; however, other aspects of climate change may affect crop growth and potential yields.A recent (2011) study by the University of California, Santa Barbara (UCSB) Climate Hazards Group, determined that climate change may be affecting Mozambique's primary food crop in a usually overlooked, but potentially significant way (Harrison and others, 2011). The study focused on the direct relation between maize crop development and growing season temperature. It determined that warming during the past three decades in Mozambique may be causing more frequent crop stress and yield reductions in that country's maize crop, independent of any changes occurring in rainfall. This report summarizes the findings and conclusions of that study.

  10. Prioritizing stream types according to their potential risk to receive crop plant material--A GIS-based procedure to assist in the risk assessment of genetically modified crops and systemic insecticide residues.

    Bundschuh, Rebecca; Kuhn, Ulrike; Bundschuh, Mirco; Naegele, Caroline; Elsaesser, David; Schlechtriemen, Ulrich; Oehen, Bernadette; Hilbeck, Angelika; Otto, Mathias; Schulz, Ralf; Hofmann, Frieder

    2016-03-15

    Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed

  11. Enhancing productivity of salt affected soils through crops and cropping system

    Singh, S.S.; Khan, A.R.

    2002-05-01

    The reclamation of salt affected soils needs the addition of soil amendment and enough water to leach down the soluble salts. The operations may also include other simple agronomic techniques to reclaim soils and to know the crops and varieties that may be grown and other management practices which may be followed on such soils (Khan, 2001). The choice of crops to be grown during reclamation of salt affected soils is very important to obtain acceptable yields. This also decides cropping systems as well as favorable diversification for early reclamation, desirable yield and to meet the other requirements of farm families. In any salt affected soils, the following three measures are adopted for reclamation and sustaining the higher productivity of reclaimed soils. 1. Suitable choice of crops, forestry and tree species; 2. Suitable choice of cropping and agroforestry system; 3. Other measures to sustain the productivity of reclaimed soils. (author)

  12. Input subsidies and demand for improved maize : relative prices and household heterogeneity matter!

    Holden, Stein Terje

    2013-01-01

    This study uses simple non-separable farm household models calibrated to household, market, farming and policy context conditions in Central and Southern Malawi. The models are used to simulate how household characteristics, design and access to input subsidies affect the demand for improved maize seeds; how increasing land scarcity affects the cropping system and demand for improved maize; and how access to improved maize seeds affects household welfare with varying access to input subsidies...

  13. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorous content for wheat and succeeding maize crop on different soil types

    Chapke, V.G.; Bhujbal, B.M.; Mistry, K.B.

    1988-01-01

    Efficiency of 32 P labelled ammonium nitrate phosphate (ANP) containding 30, 50 and 90 per cent of water-soluble phosphorus (WSP) vis-a-vis that of entirely water soluble monoammonium orthophosphate (MAP) for wheat and succeeding maize crop on deep black (vertisol), calcareous black (vertisol), alluvial-Tarai (mollisol) and grey brown alluvial (aridisol) soils was examined in greenhouse experiments. Data on wheat indicated that ANP (50 per cent WSP) was, in general, equally efficient to MAP and ANP (90 per cent WSP) in terms of drymatter yield and total uptake of phosphorus in all soils examined, however, the per cent utilization of applied fertilizer was significantly higher for MAP and ANP (90 per cent WSP) than those for ANP (50 per cent WSP) in all soils. In general, ANP (30 per cent WSP) was significantly inferior to MAP and ANP (90 per cent WSP) in all soils. Data on the succeeding maize crop grown to flowering indicated that residual value of ANP (30 per cent WSP) was equal to that of MAP and ANP (90 per cent WSP) in terms of drymatter yield and phosphorus uptake by the four soils examined. Complementary incubation studies conducted upto 60 days on the above four soils at field capacity moisture status indicated highest 0.5 M NaHCO 3 (pH 8.5) extractable phosphorus levels in MAP treatments followed by ANP (50 per cent WSP) and least in ANP (30 per cent WSP) treatments. (author). 4 tables, 4 figures, 19 refs

  14. Annual forage cropping-systems for midwestern ruminant livestock production

    McMillan, John Ernest

    2016-01-01

    Annual forage cropping systems are a vital aspect of livestock forage production. One area where this production system can be enhanced is the integration of novel annual forages into conventional cropping systems. Two separate projects were conducted to investigate alternative forage options in annual forage production. In the first discussed research trial, two sets of crops were sown following soft red winter wheat (Triticum aestivum L.) grain harvest, at two nitrogen application rates 56 ...

  15. Farmers' agronomic and social evaluation of productivity yield and N2-fixation in different cowpea varieties and their subsequent residual N effects on a succeeding maize crop

    Adjei-Nsiah, S.; Kuyper, T.W.; Leeuwis, C.; Abekoe, M.K.; Cobbinah, J.; Sakyi-Dawson, O.; Giller, K.E.

    2008-01-01

    Cowpea-maize rotations form an important component of the farming systems of smallholder farmers in the forest/savannah transitional agro-ecological zone of Ghana. We evaluated five cowpea varieties for grain yield, N-2-fixation, biomass production, and contribution to productivity of subsequent

  16. Integration of biochar and legumes in summer gap for enhancing productivity of wheat under cereal based cropping system

    Jalal, F.; Munif, F.; Khan, M. J.

    2016-01-01

    Biochar application is gaining popularity in agriculture system as prime technology in sustainable context. Field experiments were conducted at the Research Farm of the University of Agriculture Peshawar, during 2011-2013. Wheat-maize-wheat cropping pattern was followed with the adjustment of legumes in summer gap (land available after wheat harvest till maize sowing). Legumes i.e., mungbean, cowpea and Sesbania with a fallow were adjusted in the summer gap with and without biochar application. Biochar was applied at the rate of 0 and 50 t ha-1 with four N levels of 0, 60, 90 and 120 kg ha-1 to subsequent wheat crop. Biohcar application and plots previously sown with legumes improved thousand grain weight of wheat crop. Nitrogen application increased thousand spikes m-2, grains weight, grain and biological yield. It is concluded that integration of biochar and legumes could be a useful strategy for enhancing the overall farm profitability and productivity of cereal-based systems by providing increased yields from this additional summer gap crop. (author)

  17. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  18. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  19. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  20. The beginnings of crop phosphoproteomics: exploring early warning systems of stress.

    Christof eRampitsch

    2012-07-01

    Full Text Available This review examines why a knowledge of plant protein phosphorylation events is important in devising strategies to protect crops from both biotic and abiotic stresses, and why proteomics should be included when studying stress pathways. Most of the achievements in elucidating phospho-signalling pathways in biotic and abiotic stress are reported from model systems: while these are discussed, this review attempts mainly to focus on work done with crops, with examples of achievements reported from rice, maize, wheat, grape, Brassica, tomato and soy bean after cold acclimation, hormonal and oxidative H2O2 treatment, salt stress, mechanical wounding or pathogen challenge. The challenges that remain to transfer this information into a format that can be used to protect crops against biotic and abiotic stresses are enormous. The tremendous increase in the speed and ease of DNA sequencing is poised to reveal the whole genomes of many crop species in the near future, which will facilitate phosphoproteomics and phosphogenomics research.

  1. Environmental Sustainability of Some Cropping Systems in the ...

    Results from most findings reviewed in this paper had shown that there was no one size fits cropping system that can be use for sustainability of the humid environment but the best approach was the diversification of both traditional and modern cropping systems. The transition to systems which are both sustainable and ...

  2. Biological N2 Fixation by Chickpea in inter cropping System on Sand Soil

    Ismail, M. M.; Moursy, A. A. A.; Kotb, E. A.; Farid, I. M.

    2012-12-01

    A field experiment was carried out at the plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The benefits of N 2 fixation by legumes to cereals growing in inter crops or to grasses growing in mixed swards are high clear. in cases the benefit to the N status of cereals has bee seen when they are inter cropped with legumes , where benefit is found ,it is mainly due to sparing of soil N rather than direct transfer from the legume. inter cropped wheat has a high grains yield as compared to those recorded under sole crop. The application of inter cropping system induced an increase of wheat grain yield against the sole system. regardless the cultivation system, the over all means of fertilizer rates indicated (50% MF + 50% OM) treatment was superiority (100% OM) and (75% MF + 25% OM) or those recorded with either un fertilizer when wheat grain yield considered. Comparison heed between organic sources reflected the superiority of under sole cultivation, while chickpea straw was the best under inter cropping. Inter cropped has a high grain N uptake compared to soil system. While totally organic materials had accumulates more N in grain than those of underrated treated control. In the same time, the overall mean indicated the superiority of compost treatment combined with 50% mineral fertilizer under inter cropping system over those of either only organic materials treatment or those combined with 75% mineral fertilizer. Plants treated of chickpea straw and compost, achieved the best value of straw weight. Among the organic manure treatments, chickpea straw and compost seem to be the best ones. Nitrogen derived from air (% Ndfa) shoots and seeds of chickpea plant: In case of cow manure and maize stalk, the best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general

  3. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation.

    Anand, Ajith; Bass, Steven H; Wu, Emily; Wang, Ning; McBride, Kevin E; Annaluru, Narayana; Miller, Michael; Hua, Mo; Jones, Todd J

    2018-05-01

    A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86-103%) raw transformation frequency in an elite maize inbred.

  4. Effects of cropping systems on soil biology

    The need for fertilizer use to enhance soil nutrient pools to achieve good crop yield is essential to modern agriculture. Specific management practices, including cover cropping, that increase the activities of soil microorganisms to fix N and mobilize P and micronutrients may reduce annual inputs ...

  5. Vigor-S, a new system for evaluating the physiological potential of maize seeds

    Castan, Danielle Otte Carrara; Gomes-Junior, Francisco Guilhien; Marcos-Filho, Julio

    2018-01-01

    ABSTRACT: The refinement of vigor tests and the possibility of utilizing computer resources for the effective evaluation of the seed physiological potential have attracted considerable interest from research and seed technologists. The aim of this study was to evaluate the physiological potential of maize seeds using the newly-created Automated Analysis of Seed Vigor System (Vigor-S) compared with other recommended seed vigor tests; two maize hybrids were used, each represented by seven seed ...

  6. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain

    Ju, X.T. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Kou, C.L. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Institute of Soils and Fertilizers, Henan Academy of Agricultural Sciences, Zhengzhou 450002 (China); Zhang, F.S. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)]. E-mail: zfs@cau.edu.cn; Christie, P. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Agricultural and Environmental Science Department, Queen' s University Belfast, Belfast BT9 5PX (United Kingdom)

    2006-09-15

    The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha{sup -1} on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat (Triticum aestivum L.)-maize (Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple (Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha{sup -1}, with residual soil nitrate-N after harvest amounting to 221-275, 1173 and 613 kg N ha{sup -1} in the top 90 cm of the soil profile and 213-242, 1032 and 976 kg N ha{sup -1} at 90-180 cm depth in wheat-maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs. - Intensive greenhouse vegetable production systems may pose a greater nitrogen pollution threat than apple orchards or cereal rotations to soil and water quality in north China.

  7. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain

    Ju, X.T.; Kou, C.L.; Zhang, F.S.; Christie, P.

    2006-01-01

    The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha -1 on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat (Triticum aestivum L.)-maize (Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple (Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha -1 , with residual soil nitrate-N after harvest amounting to 221-275, 1173 and 613 kg N ha -1 in the top 90 cm of the soil profile and 213-242, 1032 and 976 kg N ha -1 at 90-180 cm depth in wheat-maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs. - Intensive greenhouse vegetable production systems may pose a greater nitrogen pollution threat than apple orchards or cereal rotations to soil and water quality in north China

  8. The impact of the cropping system management on soil erosion and fertility in Northeastern Romania

    Jitareanu, G.; Ailincai, C.; Bucur, D.; Raus, L.; Filipov, F.; Cara, M.

    2009-07-01

    The mass of total carbon from Cambic Chernozem in the Moldavian Plain has recorded significant increases at higher than N{sub 1}40 P{sub 1}00 rates, in organo-mineral fertilization and in 4-year crop rotation, which included melioration plants of perennial grasses and legumes. In maize continuous cropping and wheat-maize rotation, very significant values of the carbon content were found only in the organo-mineral fertilization, in 4-year crop rotations + reserve field cultivated with perennial legumes and under N{sub 1}40 P{sub 1}00 fertilization. In comparison with 4-year crop rotations, in wheat-maize rotation with melioration plants (annual and perennial legumes and perennial grasses), the mean carbon content from soil has diminished from 18.6 to 16.4 C, g.Kg{sup -}1 and the content in mobile phosphorus decreased from 51.6 to 36.8 P-Al, mg.kg{sup -}1. The 40 year use of 3 and 4-year crop rotations has determined the increase in total carbon mass and mobile phosphorus from soil by 10% (1.7 C g-kg{sup -}1) and 31%, respectively (11.8 P-Al mg.kg{sup -}1), against maize continuous cropping. (Author) 6 refs.

  9. The impact of the cropping system management on soil erosion and fertility in Northeastern Romania

    Jitareanu, G.; Ailincai, C.; Bucur, D.; Raus, L.; Filipov, F.; Cara, M.

    2009-01-01

    The mass of total carbon from Cambic Chernozem in the Moldavian Plain has recorded significant increases at higher than N 1 40 P 1 00 rates, in organo-mineral fertilization and in 4-year crop rotation, which included melioration plants of perennial grasses and legumes. In maize continuous cropping and wheat-maize rotation, very significant values of the carbon content were found only in the organo-mineral fertilization, in 4-year crop rotations + reserve field cultivated with perennial legumes and under N 1 40 P 1 00 fertilization. In comparison with 4-year crop rotations, in wheat-maize rotation with melioration plants (annual and perennial legumes and perennial grasses), the mean carbon content from soil has diminished from 18.6 to 16.4 C, g.Kg - 1 and the content in mobile phosphorus decreased from 51.6 to 36.8 P-Al, mg.kg - 1. The 40 year use of 3 and 4-year crop rotations has determined the increase in total carbon mass and mobile phosphorus from soil by 10% (1.7 C g-kg - 1) and 31%, respectively (11.8 P-Al mg.kg - 1), against maize continuous cropping. (Author) 6 refs.

  10. Comparative efficiency of high (trip super phosphate) and low (rock phosphate) grade p nutrition source enriched with organic amendment in maize crop

    Sabah, N.U.; Sarwar, G.; Tahir, M.A.

    2016-01-01

    Pakistan falls under arid to semi-arid climate and therefore, Pakistani soils are sufferer of phosphorus deficiency. Costly phosphatic commercial fertilizers and their unavailability at the time of crop demand is the burning issue in Pakistan. Under such circumstances, use of locally available rock phosphate (RP) grasps the interest of researchers now a day. Pakistan has blessed with considerable quantity of cheaper low grade RP in Abbottabad and Hazara districts of KPK province. Due to this scenario, a pot experiment was carried out to evaluate growth efficiency of maize crop by adding organic manure fortified with RP in comparison with TSP in normal soil (pHs= 8.15, ECe= 1.28 dSm-1, SAR = 4.77 mmol L-1, saturation percentage = 29% and sandy clay loam texture). The study was comprised of 7 treatments replicated three times including: T1 = Control (0 P); T2 = Recommended NK + organic material; T3 = Recommended NK + RRP; T4 = Recommended NK + RRP + OM; T5 = Recommended NK + TSP; T6 = Recommended NK + TSP + OM and T7 = N + K + TSP + 0.5 Organic manure. It was concluded that integrated use of organic amendment with RP (Local Hazara Red Rock Phosphate) and TSP proved superior as compared to their sole use on maize crop growth. A significant increase in available P concentration of the growth medium was observed due to addition of organic material along with TSP as a source of P. Addition of organic material also enhanced the soil carbon level as compared to control. It can be concluded that rock phosphate (RP) could be an effective and economic substitution for TSP when it is integrated with suitable organic amendment with specific size. (author)

  11. Maize, tropical (Zea mays L.).

    Assem, Shireen K

    2015-01-01

    Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.

  12. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain

    Ju, X.T.; Kou, C.L.; Christie, P.; Dou, Z.X.; Zhang, F.S.

    2007-01-01

    Effects of excessive fertilizer and manure applications on the soil environment were compared in greenhouse vegetable systems shifted from wheat-maize rotations 5-15 years previously and in wheat-maize rotations. N, P and K surpluses to the greenhouses were 4328, 1337 and 1466 kg ha -1 year -1 , respectively compared to 346, 65 and -163 kg ha -1 year -1 to wheat-maize fields. Subsequently, substantial mineral N and available P and K accumulated in the soil and leaching occurred down the soil profile in the greenhouses. Soil pH under vegetables was significantly lower than in the wheat-maize fields, while the EC was significantly higher in the vegetable soils. The mean Cd concentration in the vegetable soils was 2.8 times that in the wheat-maize rotations. Due to excessive fertilizer application in greenhouse vegetable production in northeast China, excessive salt and nitrate concentrations may accumulate and soil quality may deteriorate faster than in conventional wheat-maize rotations. - Extremely high nutrient inputs to intensively managed vegetable crops in northeast China may lead to very serious degradation of soil and water quality

  13. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain

    Ju, X.T. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)]. E-mail: juxt@cau.edu.cn; Kou, C.L. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Institute of Soil and Fertilization, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 (China); Christie, P. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Agricultural and Environmental Science Department, Queen' s University Belfast, Newforge Lane, Belfast BT9 5PX (United Kingdom); Dou, Z.X. [Center for Animal Health and Productivity, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348 (United States); Zhang, F.S. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)

    2007-01-15

    Effects of excessive fertilizer and manure applications on the soil environment were compared in greenhouse vegetable systems shifted from wheat-maize rotations 5-15 years previously and in wheat-maize rotations. N, P and K surpluses to the greenhouses were 4328, 1337 and 1466 kg ha{sup -1} year{sup -1}, respectively compared to 346, 65 and -163 kg ha{sup -1} year{sup -1} to wheat-maize fields. Subsequently, substantial mineral N and available P and K accumulated in the soil and leaching occurred down the soil profile in the greenhouses. Soil pH under vegetables was significantly lower than in the wheat-maize fields, while the EC was significantly higher in the vegetable soils. The mean Cd concentration in the vegetable soils was 2.8 times that in the wheat-maize rotations. Due to excessive fertilizer application in greenhouse vegetable production in northeast China, excessive salt and nitrate concentrations may accumulate and soil quality may deteriorate faster than in conventional wheat-maize rotations. - Extremely high nutrient inputs to intensively managed vegetable crops in northeast China may lead to very serious degradation of soil and water quality.

  14. Biomass accumulation and chemical composition of Massai grass intercropped with forage legumes on an integrated crop-livestock-forest system

    Tatiana da Costa Moreno Gama

    2014-06-01

    Full Text Available The objective was to evaluate the use of woody legumes (Albizia lebbeck, Cratylia argentea, Dipteryx Allata (Baru, a Leucaena hybrid (L. leucocephala + L. diversifolia, and Leucaena leucocephalacv. Cunningham and herbaceous legumes (Arachis pintoi intercropped with Panicum maximum cv. Massai, simultaneously implanted in a maize crop. The study made use of a randomized block experimental design with four replications. Assessments of biomass accumulation and forage nutritional value were made after the maize harvest, between June 2008 and October 2010. It was found that the residues of maize provided better growing conditions for Massai grass during the dry season. L. leucocephala cv. Cunningham and the Leucaena hybrid had the highest accumulation of all forage legumes evaluated, and provided the best nutritional value of all the arrangements tested. Of all woody legumes tested in this system, Leucaena was considered feasible for intercropping with Massai grass. The intercrop of perennial woody Baru with maize is not recommended. Albizia lebbeck and Cratylia argentea require further study, especially the yield assessment at different cutting intervals and cutting heights. Arachis pintoi had a low participation in the intercropping, showing greater performance over time, indicating slow thriving in this experimental condition.

  15. [Soil quality assessment under different cropping system and straw management in farmland of arid oasis region].

    Zhang, Peng Peng; Pu, Xiao Zhen; Zhang, Wang Feng

    2018-03-01

    To reveal the regulatory mechanism of agricultural management practices on soil quality, an experiment was carried out to study the different cropping system and straw management on soil organic carbon and fractions and soil enzyme activity in farmland of arid oasis region, which would provide a scientific basic for enhancing agricultural resources utilization and sustainable development. In crop planting planning area, we took the mainly crop (cotton, wheat, maize) as research objects and designed long-term continues cropping and crop rotation experiments. The results showed that the soil organic carbon (SOC), soil microbial biomass C, labile C, water-soluble organic C, and hot-water-soluble organic C content were increased by 3.6%-9.9%, 41.8%-98.9%, 3.3%-17.0%, 11.1%-32.4%, 4.6%-27.5% by crop rotation compared to continues cropping, and 12%-35.9%, 22.4%-49.7%, 30.7%-51.0%, 10.6%-31.9%, 41.0%-96.4% by straw incorporated compared to straw removed, respectively. The soil catalase, dehydrogenase, β-glucosidase, invertase glucose, cellulase glucose activity were increased by 6.4%-10.9%, 6.6%-18.8%, 5.9%-15.3%, 10.0%-27.4%, 28.1%-37.5% by crop rotation compared to continues cropping, and 31.4%-47.5%, 19.9%-46.6%, 13.8%-20.7%, 19.8%-55.6%, 54.1%-70.9% by straw incorporated compared to straw removed, respectively. There were significant positive linear correlations among SOC, labile SOC fractions and soil enzyme. Therefore, we concluded that labile SOC fractions and soil enzyme were effective index for evaluating the change of SOC and soil quality. Based on factor analysis, in arid region, developing agricultural production using cropland management measures, such as straw-incorporated and combined short-term continues cotton and crop rotation, could enhance SOC and labile SOC fractions contents and soil enzyme activity, which could improve soil quality and be conducive to agricultural sustainable development.

  16. Status and prospects of maize research in Nepal

    Govind KC

    2015-12-01

    Full Text Available Food and nutritional securities are the major threats coupled with declining factor productivity and climate change effects in Nepal. Maize being the principal food crops of the majority of the hill people and source of animal feed for ever growing livestock industries in Terai of Nepal. Despite the many efforts made to increase the maize productivity in the country, the results are not much encouraging. Many of the maize based technologies developed and recommended for the farmers to date are not fully adopted. Therefore, problem is either on technology development or on dissemination or on both. Considering the above facts, some of the innovative and modern approaches of plant breeding and crop management technologies to increase the maize yield need to be developed and disseminated. There is a need for location-specific maize production technologies, especially for lowland winter maize, marginal upland maize production system, and resource poor farmers. Research efforts can be targeted to address both yield potential and on-farm yields by reducing the impacts of abiotic and biotic constraints. Therefore, in order to streamline the future direction of maize research in Nepal, an attempt has been made in this article to highlight the present status and future prospects with few key pathways.

  17. Biotechnology in maize breeding

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  18. Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art

    Schröder, J.J.; Neeteson, J.J.; Oenema, O.; Struik, P.C.

    2000-01-01

    High nitrogen (N) application rates are used by maize growers as an 'insurance', but may have an adverse effect on the environment. In this paper, the potential for nitrogen savings by the use of site-specific N fertilization rates is reviewed. Various tools for a more precise assessment of N

  19. Biological N2 fixation by chickpea in inter cropping system on sand soil

    Ismail, M. M.; Moursy, A. A. A.; Kotb, E. A.; Farid, I. M.

    2012-12-01

    A field experiment was carried out at the plant nutrition and fertilization unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea incorporating. The benefits of N 2 fixation by legumes to cereals growing in inter crops or to grasses growing in mixed swards are high clear. In cases the benefit to the N status of cereals has bee seen when they are inter cropped with legumes, where benefit is found, it is mainly due to sparing of soil N rather than direct transfer from the legume. Inter cropped wheat, has a high grains yield as compared to those recorded under sole crop. The application of inter cropping system an increase of wheat grain yield against the sole system, regardless the cultivation system, the over all means of fertilizer rates indicated (50% MF + 50% OM) treatment was superiority (100% OM) and (75% MF + 25% OM) or those recorded with either un fertilizer when wheat grain yield considered. Comparison heed between or gain sources reflected the superiority of compost under sole cultivation, while chickpea straw was the best under inter cropping. Inter cropped has a high grain N uptake compared to soil systems. While totally organic materials had accumulates more N in grains than those of untreated treated control. In the some time, the overall mean indicated the superiority of compost treatment combined with 50% mineral fertilizer under inter cropping system over those of either only organic materials treatment or those combined with 75% mineral fertilizer. Plants treated of chickpea straw and compost, achieved the best value of straw weight. A mong the organic manure treatments, chickpea straw and compost seem to be the best ones. Nitrogen derived from air (%Ndfa) shoots and seeds of chickpea plants: In case of cow manure and maize stalk, the best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general

  20. Cropping system impact on soil quality determinants

    M. VESTBERG

    2008-12-01

    Full Text Available Worldwide interest in soil quality evaluation has increased rapidly throughout the past decade, prompting us to evaluate the long-term impact of four cropping systems on several biological, chemical and physical determinants of soil quality. We hypothesized that after 17 years several of the determinants would show significant differences between conventional cereal and low input/organic rotations. Four crop rotations were imposed on a silt soil from 1982 through 1999. Rotation A was a conventionally managed cereal rotation that received 100% of the recommended mineral fertilizer each year. Rotation B was also managed conventionally from 1982 until 1993, although it received only 50% of the recommended mineral fertilizer. From 1994 through 1999, rotation B was managed as an organic rotation. Rotations C and D were low-input rotations with plant residues returned either untreated (Cor composted (Dfrom 1982 until 1994.From 1994 through 1999,they were also anaged organically. Significant decreases in extractable phosphorus (Pand potassium were observed in rotations C and D compared with rotation A, presumably because their yearly nutrient inputs were somewhat lower. The amount of soil organic carbon (Corg, soil water holding capacity, the numbers and biomass of earthworms and the microbial biomass carbon and nitrogen were or tended to be higher in low input/organic than in conventionally managed plots. These effects may be in connection with the slightly increased levels of Corg in soil of the organic rotations. Activities of twelve enzymes were strongly affected by sampling time (early-versus late-summer, but much less by long-term management. Litter decomposition, numbers of soil nematodes, arbuscular mycorrhizal (AMfungal diversity,AM spore density and AM functioning were little affected by rotation. However,AM spore density correlated positively with the high amounts of extractable calcium and P which were a result from excessive liming applied

  1. A multi-adaptive framework for the crop choice in paludicultural cropping systems

    Nicola Silvestri

    2017-03-01

    Full Text Available The conventional cultivation of drained peatland causes peat oxidation, soil subsidence, nutrient loss, increasing greenhouse gas emissions and biodiversity reduction. Paludiculture has been identified as an alternative management strategy consisting in the cultivation of biomass on wet and rewetted peatlands. This strategy can save these habitats and restore the ecosystem services provided by the peatlands both on the local and global scale. This paper illustrates the most important features to optimise the crop choice phase which is the crucial point for the success of paludiculture systems. A multi-adaptive framework was proposed. It was based on four points that should be checked to identify suitable crops for paludicultural cropping system: biological traits, biomass production, attitude to cultivation and biomass quality. The main agronomic implications were explored with the help of some results from a plurennial open-field experimentation carried out in a paludicultural system set up in the Massaciuccoli Lake Basin (Tuscany, Italy and a complete example of the method application was provided. The tested crops were Arundo donax L., Miscanthus×giganteus Greef et Deuter, Phragmites australis L., Populus×canadensis Moench. and Salix alba L. The results showed a different level of suitability ascribable to the different plant species proving that the proposed framework can discriminate the behaviour of tested crops. Phragmites australis L. was the most suitable crop whereas Populus×canadensis Moench and Miscanthus×giganteus Greef et Deuter (in the case of biogas conversion occupied the last positions in the ranking.

  2. Nitrogen fixation by groundnut and velvet bean and residual benefit to a subsequent maize crop Fixação de nitrogênio por amendoim e mucuna e benefício residual para uma cultura de milho

    Ambate Okito

    2004-12-01

    Full Text Available Chemical fertilisers are rarely avaiable to poor farmers, for whom the nitrogen (N is often the most limiting element for cereal grain production. The objective of this study was to quantify the contribution of biological nitrogen fixation (BNF to groundnut (Arachis hypogaea and velvet bean (Mucuna pruriens crops using the 15N natural abundance (delta15N technique and to determine their residual effect and that of a natural fallow, on growth and N accumulation by two rustic maize varieties. The contribution of BNF calculated from delta15N data was 40.9, 59.6 and 30.9 kg ha-1, for groundnut, velvet bean and the natural fallow, respectively. The only legume grain harvested was from the groundnut, which yielded approximately 1.000 kg ha-1. The subsequent maize varieties ("Sol de Manhã" and "Caiana Sobralha" yielded between 1.958 and 2.971 kg ha-1, and were higher after velvet bean for both maize varieties and "Sol da Manhã" groundnut, followed by "Caiana" after groundnut and, finally, the natural fallow. For a small-holder producer the most attractive system is the groundnut followed by maize, as, in this treatment, both groundnut and maize grain harvest are possible. However, a simple N balance calculation indicated that the groundnut-maize sequence would, in the long term, deplete soil N reserves, while the velvet bean-maize sequence would lead to a build up of soil nitrogen.Fertilizantes químicos raramente estão disponíveis aos agricultores com poucos recursos econômicos, e assim o N é, freqüentemente, um elemento mais limitante para a produção de grãos. O objetivo deste trabalho foi quantificar a contribuição da fixação biológica de nitrogênio (FBN às culturas de amendoim (Arachis hypogaea e mucuna (Mucuna pruriens, por meio da técnica de abundância natural de 15N e determinar o efeito residual das leguminosas e do pousio sobre o crescimento e acumulação de N em duas variedades de milho. A contribuição da FBN calculada a

  3. Adjustment and Optimization of the Cropping Systems under Water Constraint

    Pingli An

    2016-11-01

    Full Text Available The water constraint on agricultural production receives growing concern with the increasingly sharp contradiction between demand and supply of water resources. How to mitigate and adapt to potential water constraint is one of the key issues for ensuring food security and achieving sustainable agriculture in the context of climate change. It has been suggested that adjustment and optimization of cropping systems could be an effective measure to improve water management and ensure food security. However, a knowledge gap still exists in how to quantify potential water constraint and how to select appropriate cropping systems. Here, we proposed a concept of water constraint risk and developed an approach for the evaluation of the water constraint risks for agricultural production by performing a case study in Daxing District, Beijing, China. The results show that, over the whole growth period, the order of the water constraint risks of crops from high to low was wheat, rice, broomcorn, foxtail millet, summer soybean, summer peanut, spring corn, and summer corn, and the order of the water constraint risks of the cropping systems from high to low was winter wheat-summer grain crops, rice, broomcorn, foxtail millet, and spring corn. Our results are consistent with the actual evolving process of cropping system. This indicates that our proposed method is practicable to adjust and optimize the cropping systems to mitigate and adapt to potential water risks. This study provides an insight into the adjustment and optimization of cropping systems under resource constraints.

  4. Analysis of the Technical/Economic Performance of Four Cropping Systems Involving Jatropha curcas L. in the Kinshasa Region (Democratic Republic of the Congo

    Minengu, JD.

    2015-01-01

    Full Text Available In order to assess the sustainability of cultivating Jatropha curcas L. in rural areas in the Kinshasa region, four cropping systems were compared: cultivation of J. curcas as a sole crop with and without fertilisers, a combination of J. curcas with subsistence crops (maize ­ Zea mays L., the common bean ­ Phaseolus vulgaris L. with and without fertilisers. The major attacks by pests (mainly Aphthona sp. suffered by J. curcas plants in the region make it vital to conduct at least two insecticide treatments per year. Dry seed yields of J. curcas obtained in the 4th year of cultivation amounted to 753 kg ha­1 when J. curcas was cultivated as a sole crop without fertilisers, 797 kg ha­1 for intercropping without fertilisers, 1158 kg ha­1 when J. curcas was cultivated as a sole crop with fertilisers and 1173 kg ha­1 for intercropping with fertilisers. Yields from the two annual crops were not improved by the application of mineral fertilisers on the J. curcas plants. They amounted to an average of 815 kg ha­1 for maize and 676 kg ha­1 for the beans. It is more profitable to cultivate J. curcas with maize and beans than to cultivate it as a sole crop. By combining crops in this way, a one­ hectare farm can earn 1102 USD ha­1 without fertilisers and 1049 USD ha­1 with fertilisers. Sustainable cultivation of J. curcas under the test conditions requires the development of efficient weed/pest control methods and improved soil fertility management, in order to minimise the use of mineral fertilisers as well as strong improvement of labour productivity for seed harvesting.

  5. Procedure to select test organisms for environmental risk assessment of genetically modified crops in aquatic systems.

    Hilbeck, Angelika; Bundschuh, Rebecca; Bundschuh, Mirco; Hofmann, Frieder; Oehen, Bernadette; Otto, Mathias; Schulz, Ralf; Trtikova, Miluse

    2017-11-01

    For a long time, the environmental risk assessment (ERA) of genetically modified (GM) crops focused mainly on terrestrial ecosystems. This changed when it was scientifically established that aquatic ecosystems are exposed to GM crop residues that may negatively affect aquatic species. To assist the risk assessment process, we present a tool to identify ecologically relevant species usable in tiered testing prior to authorization or for biological monitoring in the field. The tool is derived from a selection procedure for terrestrial ecosystems with substantial but necessary changes to adequately consider the differences in the type of ecosystems. By using available information from the Water Framework Directive (2000/60/EC), the procedure can draw upon existing biological data on aquatic systems. The proposed procedure for aquatic ecosystems was tested for the first time during an expert workshop in 2013, using the cultivation of Bacillus thuringiensis (Bt) maize as the GM crop and 1 stream type as the receiving environment in the model system. During this workshop, species executing important ecological functions in aquatic environments were identified in a stepwise procedure according to predefined ecological criteria. By doing so, we demonstrated that the procedure is practicable with regard to its goal: From the initial long list of 141 potentially exposed aquatic species, 7 species and 1 genus were identified as the most suitable candidates for nontarget testing programs. Integr Environ Assess Manag 2017;13:974-979. © 2017 SETAC. © 2017 SETAC.

  6. The response of maize production in Kenya to economic incentives

    Onono, P.A.,

    2013-06-01

    Full Text Available Agricultural development policy in Kenya has emphasised the use of incentives towards increased production and therefore self-sufficiency in maize which is a basic staple for most households. The channels used to provide incentives to maize farmers over the years include setting higher producer prices; subsidisation of inputs; provision of agricultural credit, research and extension services; construction and maintenance of roads, development of irrigation and water systems; legislative, institutional and macroeconomic reforms. Despite these efforts outputof maize has remained below domestic requirements in most years and the country continues to rely on imports to meet the deficits. Studies have assessed the responsiveness of maize to output price and reported inelastic responses and have recommended policies targeting non-price incentives to complement prices for the required increased production of maize. The studies, however, did not analyse the influence of the non-price incentives on the production of the crop. The findings of those studies are therefore deficient in explaining the relative importance of different non-price incentives and how they complement prices in influencing maize production in Kenya. This study investigated the response of maize production to both price and non-price incentives. The aim of this study was to ascertain the relative importance of non-price factors in influencing production of the crops as well as complementarity between price and non-price incentives. The findings show that maize production responds positively to its output price, development expenditures in agriculture, maize sales to marketing boards, growth in per capita GDP, liberalisation and governance reforms. However, maize production responds negatively to fertiliser price and unfavourable weather conditions. The response of maize output to its price is lower with rising inflation and grain market liberalisation.

  7. IMAZAPYR-RESISTANT MAIZE TECHNOLOGY ADOPTION FOR ...

    Prof. Adipala Ekwamu

    decisions by protecting maize (Zea mays L.) crop in western Kenya from Striga. Key Words: Adopters, Zea ... Africa, efficient and profitable production of maize is severely constrained by ..... gap by understanding its source. African. Journal of ...

  8. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  9. Rational Phosphorus Application Facilitates the Sustainability of the Wheat/Maize/Soybean Relay Strip Intercropping System.

    Yuanxue Chen

    Full Text Available Wheat (Triticum aestivum L./maize (Zea mays L./soybean (Glycine max L. relay strip intercropping (W/M/S system is commonly used by the smallholders in the Southwest of China. However, little known is how to manage phosphorus (P to enhance P use efficiency of the W/M/S system and to mitigate P leaching that is a major source of pollution. Field experiments were carried out in 2011, 2012, and 2013 to test the impact of five P application rates on yield and P use efficiency of the W/M/S system. The study measured grain yield, shoot P uptake, apparent P recovery efficiency (PRE and soil P content. A linear-plateau model was used to determine the critical P rate that maximizes gains in the indexes of system productivity. The results show that increase in P application rates aggrandized shoot P uptake and crops yields at threshold rates of 70 and 71.5 kg P ha-1 respectively. With P application rates increasing, the W/M/S system decreased the PRE from 35.9% to 12.3% averaged over the three years. A rational P application rate, 72 kg P ha-1, or an appropriate soil Olsen-P level, 19.1 mg kg-1, drives the W/M/S system to maximize total grain yield while minimizing P surplus, as a result of the PRE up to 28.0%. We conclude that rational P application is an important approach for relay intercropping to produce high yield while mitigating P pollution and the rational P application-based integrated P fertilizer management is vital for sustainable intensification of agriculture in the Southwest of China.

  10. Profitability of groundnut-based cropping systems among farmers in ...

    Groundnut is an important cash crop and a good source of vegetable oil to resource-poor farmers. The study examined the Profitability of Groundnut–based Cropping Systems among farmers in Hong Local Government Area of Adamawa State, Nigeria. Specifically, the socio-economic characteristics of the farmers were ...

  11. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types

    Bhujbal, B.M.; Mistry, K.B.; Chapke, V.G.; Mutatkar, V.K.

    1977-01-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO 3 (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers. (author)

  12. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types. [/sup 32/P-labelled fertilizers

    Bhujbal, B M; Mistry, K B [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.; Chapke, V G; Mutatkar, V K [Fertilizer Corp. of India Ltd., Bombay

    1977-09-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO/sub 3/ (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers.

  13. Effect of arbuscular mycorrhizal fungal inoculation in combination with different organic fertilizers on maize crop in eroded soils

    Sharif, M.; Saud, S.; Khan, F.

    2012-01-01

    A pot experiment was conducted to study the effect of inoculating maize (Zea mays L. Azam) with Arbuscular mycorrhizal (AM) fungi in 2 different series of North West Pakistan during the year 2007. Data showed significant increase in shoots and roots yield of maize with the inoculation of AM fungi alone and in combination with farm yard manure (FYM), poultry manure (PM) and humic acid (HA) over control and N-P-K treatments. Accumulation of N by maize shoots increased significantly by the addition of HA, PM and FYM plus N-P-K with or without inoculation of AM fungi over the treatments of N-P-K and control. Plants P accumulation increased significantly over control and N-P-K treatments with the inoculation of AM fungi alone and in combination with FYM, PM and HA in missa soil series. In missa gullied soil series, significantly increased plants P accumulation was noted by the treatments of AM inoculation with PM followed by HA. Accumulation of Mn by maize shoots increased significantly with AM inoculation with HA and PM over all other treatments, Fe increased with PM, HA and FYM. Plants Cu accumulation in missa series increased significantly over control and N-P-K treatments by AM alone and in combination with PM, FYM and HA and by AM fungi with PM, FYM and HA in missa gullied series. Maximum Mycorrhizal root infection rate of 51 % was recorded in the treatment of AM fungal inoculation with HA followed by the treatment inoculated with AM fungi with FYM. In missa gullied soil series, Maximum (59 %) and significantly increased roots infection rates over all treatments were observed in the treatment of AM fungal inoculation with HA followed by PM. Spores concentrations of AM fungi increased significantly with AM inoculation alone and with FYM, PM and HA. Maximum spores numbers of 50 in 20 g soil were recorded by the inoculation of AM fungi alone and with HA. (author)

  14. Carbon balance and crop residue management in dynamic equilibrium under a no-till system in Campos Gerais

    Ademir de Oliveira Ferreira

    2012-11-01

    Full Text Available The adoption of no-tillage systems (NT and the maintenance of crop residues on the soil surface result in the long-term increase of carbon (C in the system, promoting C sequestration and reducing C-CO2 emissions to the atmosphere. The purpose of this study was to evaluate the C sequestration rate and the minimum amount of crop residues required to maintain the dynamic C equilibrium (dC/dt = 0 of two soils (Typic Hapludox with different textural classes. The experiment was arranged in a 2 x 2 x 2 randomized block factorial design. The following factors were analyzed: (a two soil types: Typic Hapludox (Oxisol with medium texture (LVTM and Oxisol with clay texture (LVTA, (b two sampling layers (0-5 and 5-20 cm, and (c two sampling periods (P1 - October 2007; P2 - September 2008. Samples were collected from fields under a long-term (20 years NT system with the following crop rotations: wheat/soybean/black oat + vetch/maize (LVTM and wheat/maize/black oat + vetch/soybean (LVTA. The annual C sequestration rates were 0.83 and 0.76 Mg ha-1 for LVTM and LVTA, respectively. The estimates of the minimum amount of crop residues required to maintain a dynamic equilibrium (dC/dt = 0 were 7.13 and 6.53 Mg ha-1 year-1 for LVTM and LVTA, respectively. The C conversion rate in both studied soils was lower than that reported in other studies in the region, resulting in a greater amount of crop residues left on the soil surface.

  15. Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems

    Sanginga, N.

    2001-01-01

    Nitrogen (N) has been gradually depleted from West African soils and now poses serious threats to food production. Many ways of increasing N supply (e.g. judicious use of inorganic fertilizers and nitrogen-fixing plants) have been tried in West African farming systems. Herbaceous and woody legumes commonly contribute 40-70 kg N ha -l season. This represents about 30% of the total N applied as residues. Nevertheless and despite repeated demonstrations of the usefulness of green manures in enhancing soil fertility, their practices and adoption are still limited. Promiscuous soya beans are being used to develop sustainable cropping systems in the moist savannah. Reliable estimates of N 2 fixed by soya beans and their residual N benefits to subsequent cereal crops in the savannah zone of southern Guinea have only infrequently been made. The actual amounts measured varied between 38 and 126 kg N ha -l assuming that only seeds of soya beans are removed from the plots, the net N accrual of soil nitrogen ranges between minus 8 kg N ha -l and plus 47 kg N ha -l depending on the soyabean cultivar. Residual soyabean N values of 10-24 kg N ha -l (14-36% of the total N in maize) were obtained in a soyabean-maize rotation. Although cereal yields following legume cultivation have been attributed to greater N accumulation, our data show that the relative increase in maize N was smaller than the relative increase in dry-matter yield. Hence, the increased yields of maize following soy beans are not entirely due to the carry-over of N from soyabean residues (as well as to conservation of soil N) but to other rotational effects as well. It is thus clear that the N benefit of grain legumes to non-legumes is small compared to the level of N fertilizer use in more intensive cereal production systems but is nevertheless significant in the context of the low amounts of input in subsistence farming. (author)

  16. Distribution of natural and artificial radionuclides in chernozem soil/crop system from stationary experiments.

    Sarap, Nataša B; Rajačić, Milica M; Đalović, Ivica G; Šeremešić, Srđan I; Đorđević, Aleksandar R; Janković, Marija M; Daković, Marko Z

    2016-09-01

    The present paper focuses on the determination of radiological characteristics of cultivated chernozem soil and crops from long-term field experiments, taking into account the importance of distribution and transfer of radionuclides in the soil-plant system, especially in agricultural cropland. The investigation was performed on the experimental fields where maize, winter wheat, and rapeseed were cultivated. Analysis of radioactivity included determination of the gross alpha and beta activity as a screening method, as well as the activities of the following radionuclides: natural ((210)Pb, (235)U, (238)U, (226)Ra, (232)Th, (40)K, (7)Be) and artificial ((90)Sr and (137)Cs). The activities of natural and artificial ((137)Cs) radionuclides were determined by gamma spectrometry, while the artificial radionuclide (90)Sr was determined by a radiochemical analytical method. Based on the obtained results for the specific activity of (40)K, (137)Cs, and (90)Sr, accumulation factors for these radionuclides were calculated in order to estimate transfer of radionuclides from soil to crops. The results of performed analyses showed that there is no increase of radioactivity that could endanger the food production through the grown crops.

  17. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  18. "Omics" of maize stress response for sustainable food production: opportunities and challenges.

    Gong, Fangping; Yang, Le; Tai, Fuju; Hu, Xiuli; Wang, Wei

    2014-12-01

    Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.

  19. Estimation of yield and water requirements of maize crops combining high spatial and temporal resolution images with a simple crop model, in the perspective of the Sentinel-2 mission

    Battude, Marjorie; Bitar, Ahmad Al; Brut, Aurore; Cros, Jérôme; Dejoux, Jean-François; Huc, Mireille; Marais Sicre, Claire; Tallec, Tiphaine; Demarez, Valérie

    2016-04-01

    Water resources are under increasing pressure as a result of global change and of a raising competition among the different users (agriculture, industry, urban). It is therefore important to develop tools able to estimate accurately crop water requirements in order to optimize irrigation while maintaining acceptable production. In this context, remote sensing is a valuable tool to monitor vegetation development and water demand. This work aims at developing a robust and generic methodology mainly based on high resolution remote sensing data to provide accurate estimates of maize yield and water needs at the watershed scale. Evapotranspiration (ETR) and dry aboveground biomass (DAM) of maize crops were modeled using time series of GAI images used to drive a simple agro-meteorological crop model (SAFYE, Duchemin et al., 2005). This model is based on a leaf partitioning function (Maas, 1993) for the simulation of crop biomass and on the FAO-56 methodology for the ETR simulation. The model also contains a module to simulate irrigation. This study takes advantage of the SPOT4 and SPOT5 Take5 experiments initiated by CNES (http://www.cesbio.ups-tlse.fr/multitemp/). They provide optical images over the watershed from February to May 2013 and from April to August 2015 respectively, with a temporal and spatial resolution similar to future images from the Sentinel-2 and VENμS missions. This dataset was completed with LandSat8 and Deimos1 images in order to cover the whole growing season while reducing the gaps in remote sensing time series. Radiometric, geometric and atmospheric corrections were achieved by the THEIA land data center, and the KALIDEOS processing chain. The temporal dynamics of the green area index (GAI) plays a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Consistent seasonal dynamics of the remotely sensed GAI was estimated by applying a radiative transfer model based on artificial neural networks (BVNET, Baret

  20. Projective analysis of staple food crop productivity in adaptation to future climate change in China.

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  1. Projective analysis of staple food crop productivity in adaptation to future climate change in China

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  2. Farmers' preferences for maize attributes in eastern and western

    ACSS

    African Crop Science Journal by African Crop Science Society is licensed ... Maize (Zea mays L.) is an important staple food crop in Uganda and is emerging as a cash crop for smallholder .... colour, grain size, pest and disease resistance.

  3. The use of 32P radioisotope techniques for evaluating the relative agronomic effectiveness of phosphate rock materials in a soybean-maize crop rotation in acid soils of Thailand

    Mahisarakul, J.; Pakkong, P.

    2002-01-01

    A series of greenhouse experiments was conducted over three years to evaluate the relative agronomic effectiveness (RAE) of phosphate rock materials in a soybean - maize crop sequence, using 32 P isotope dilution techniques. For the first two years, the crops were grown in a pot experiment in four acid soils of Thailand. In the first year, four increasing rates of TSP and one rate of four phosphate rocks (PRs) were used. The PRs used were Algerian PR, North Carolina PR, Petchaburi PR, and Ratchaburi PR. Soybean did not respond to P application from TSP, while there was good response in maize which was planted after soybean (1st residual effect). The percent P derived from TSP or PR fertilizer (%Pdff) had the following order: Warin soil > Mae Tang soil > Rangsit soil > Pakchong soil for soybean and Warin soil > Pakchong soil > Rangsit soil > Mae Tang soil for maize. In the second year, the soybean - maize rotation was replanted to study the residual effect of TSP and PRs, both applied at 180 mg P kg -1 . No significant response of soybean and maize to TSP was found in terms of dry matter yield. In terms of %Pdff and %RAE the soils ranked as follows: Rangsit soil > Pakchong soil Mae Tang soil > Warin soil for soybean and Warin soil > Rangsit soil > Mae Tang > Pakchong soil for maize. Both crops absorbed more P from TSP than from PRs. The %RAE in the 2nd year experiment was higher than %RAE in the 1st year In the third year, TSP and two PRs were applied at one P rate to Pakchong and Warin soils. The applied PRs were North Carolina PR (NCPR) and Lamphun phosphate rock (LPPR). PRs were applied either alone or in combination with TSP (50:50). Soybean was planted first, followed by maize. The P-response in terms of dry matter yield and %Pdff was highly significant in both soils. The RAE ranked as follows: TSP > NCPR + TSP > LPPR + TSP > NCPR > LPPR. Maize showed the same trend in RAE as soybean in both soils. The RAE for both crops was highest in Warin soil. (author)

  4. Crop candidates for the bioregenerative life support systems in China

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  5. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.

    Judith A Odhiambo

    Full Text Available Weed competition is a significant problem in maize (Zea mays, L. production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L. during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT, no-till (NT and conventional (CT applied to three cropping systems: continuous maize/bean intercropping (TYPICAL, maize/bean intercropping with relayed mucuna after bean harvest (RELAY and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP. Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1 in MT and $149.60 ha(-1 in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations.

  6. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.

    Odhiambo, Judith A; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C; Norton, Jay B

    2015-01-01

    Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1) in MT and $149.60 ha(-1) in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations.

  7. Evaluation of climate adaptation options for Sudano-Sahelian cropping systems

    Traore, B.; Wijk, van M.T.; Descheemaeker, K.K.E.; Corbeels, M.; Rufino, M.C.; Giller, K.E.

    2014-01-01

    In the Sudano-Sahelian region, smallholder agricultural production is dominated by rain-fed production of millet, sorghum and maize for food consumption and of cotton for the market. A major constraint for crop production is the amount of rainfall and its intra and inter-annual variability. We

  8. Effect of no-tillage crop rotation systems on nutrient status of a rhodic ...

    In this study the effects of no-tillage and eight crop rotations (established in 1985) on chemical properties of a Rhodic Ferralsol (Typic Haplorthox, Soil Taxonomy) and on nutrient uptake by maize (Zea mays L.) and soybean (Glycine max L. Merrill) leaves were assessed in the state of São Paulo, Brazil, using a randomized ...

  9. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  10. Automated irrigation systems for wheat and tomato crops in arid ...

    2017-04-02

    Apr 2, 2017 ... Many methods have been described and sensors developed to manage irrigation ... time, and automated irrigation systems based on crop water needs can .... output components, and a software program for decision support.

  11. Nitrous oxide flux in maize and wheat cropped soils in the central region of Mexico during El nino year 1998

    Longoria Ramirez, R. [Centro Nacional de Investigaciones y Desarrollo Tecnologico, Mexico, D.F. (Mexico); Carbajal Benitez, G.; Mar Morales, B.E.; Ruiz Suarez, G. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, (UNAM), Mexico, D.F. (Mexico)

    2003-10-01

    Emissions of nitrous oxide (N{sub 2}O) were measured in agricultural lands used for farming wheat and maize during 1998 in the states of Hidalgo and Tlaxcala in Mexico. In an irrigated wheat field (El Tenhe, Hidalgo), an average flux of -10.85 {mu}g N{sub 2}O - N m{sup -}2 h{sup -}1 was obtained for the total cycle (155 days between December and May). There, high negative values were observed with Water Fill Porous Space (WFPS) close to 70%. The average flux of the complete cycle (269 days between March and December) in an irrigated maize field (El Progreso, Hidalgo) was 37.43 {mu}g N{sub 2}O - N m{sup -}2 h{sup -}1. In this case, more insignificant negative fluxes were found with WFPS close to 45% or less. These last results may have been influenced by the strong El Nino, which occurred in the middle of 1998. Twenty once percent of the measurements in the state of Hidalgo showed soil acting as a nitrous oxide sink. The samples from Tlaxcala showed that these fields acted as emitters. In the rain fed fields in the state of Tlaxcala, an average flux of 121 {mu}g N{sub 2}O - N m{sup -}2 h{sup -}1 was obtained for the wheat field. The farming season lasted 142 days, from July to December. In addition, for the maize field the averaged flux was 285.61 {mu}g N{sub 2}O - Nm{sup -}2h-1. The farming season lasted 246 days, from April to December. [Spanish] En 1998 se midieron las emisiones de oxido nitroso (N{sub 2}O) de suelos agricolas para cultivar trigo y maiz en los estados de Hidalgo y Tlaxcala, en Mexico. Para un campo irrigado de trigo (El Tenhe, Hidalgo), se obtuvo un flujo promedio de -10.85 {mu}g N{sub 2}O - N m{sup -}2 h{sup -}1 para el ciclo total (155 dias entre diciembre y mayo). En este caso se observaron valores negativos elevados en el espacio poroso relleno de agua (VFPS, pos sus siglas en ingles), cercanos a 70%. El flujo promedio para el ciclo completo (269 dias entre marzo y diciembre) en un campo irrigado de maiz fue de 37.43 {mu}g N{sub 2}O - N m

  12. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    Chantal ePlanchamp

    2015-01-01

    Full Text Available Pseudomonas putida KT2440 (KT2440 rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots and systemic (leaves early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots three days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal development in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as

  13. Sustainability of current GM crop cultivation : Review of people, planet, profit effects of agricultural production of GM crops, based on the cases of soybean, maize, and cotton

    Franke, A.C.; Breukers, M.L.H.; Broer, W.; Bunte, F.H.J.; Dolstra, O.; Engelbronner-Kolff, d' F.M.; Lotz, L.A.P.; Montfort, J.; Nikoloyuk, J.; Rutten, M.M.; Smulders, M.J.M.; Wiel, van de C.C.M.; Zijl, M.

    2011-01-01

    This report adresses the question whether the cultivation of genetically modified (GM) crops abroad for import in the Netherlands, as compared to the cultivation of their conventional (non-GM) counterparts, is in line with Dutch policy and societal aims striving after more sustainable forms of

  14. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  15. Growing sensitivity of maize to water scarcity under climate change.

    Meng, Qingfeng; Chen, Xinping; Lobell, David B; Cui, Zhenling; Zhang, Yi; Yang, Haishun; Zhang, Fusuo

    2016-01-25

    Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that modern, longer-maturing varieties have extended the growing period by an average of 8 days and have significantly offset the negative impacts of climate change on yield. However, the sensitivity of maize production to water has increased: maize yield across the CMB was 5% lower with rainfed than with irrigated maize in the 1980s and was 10% lower (and even >20% lower in some areas) in the 2000s because of both warming and the increased requirement for water by the longer-maturing varieties. Of the maize area in China, 40% now fails to receive the precipitation required to attain the full yield potential. Opportunities for water saving in maize systems exist, but water scarcity in China remains a serious problem.

  16. SMALLHOLDER FARMERS’ WILLINGNESS TO INCORPORATE BIOFUEL CROPS INTO CROPPING SYSTEMS IN MALAWI

    Beston Bille Maonga

    2015-01-01

    Full Text Available Using cross-sectional data, this study analysed the critical and significant socioeconomic factors with high likelihood to determine smallholder farmers’ decision and willingness to adopt jatropha into cropping systems in Malawi. Employing desk study and multi-stage random sampling technique a sample of 592 households was drawn from across the country for analysis. A probit model was used for the analysis of determinants of jatropha adoption by smallholder farmers. Empirical findings show that education, access to loan, bicycle ownership and farmers’ expectation of raising socioeconomic status are major significant factors that would positively determine probability of smallholder farmers’ willingness to adopt jatropha as a biofuel crop on the farm. Furthermore, keeping of ruminant herds of livestock, long distance to market and fears of market unavailability have been revealed to have significant negative influence on farmers’ decision and willingness to adopt jatropha. Policy implications for sustainable crop diversification drive are drawn and discussed.

  17. Effect of different irrigation systems on root growth of maize and cowpea plants in sandy soil

    Noha A. Mahgoub

    2017-10-01

    Full Text Available A field experiment was conducted at the Experimental Farm, Faculty of Agriculture, Suez Canal University to study the influence of different irrigation systems on root length density and specific root length of maize and cowpea plants cultivated in sandy soil. Three irrigation systems (Surface, drip and sprinkler irrigation were used in this study. The NPK fertilizers were applied as recommended doses for maize and cowpea. Root samples were collected from the soil profile below one plant (maize and cowpea which was irrigated by the three irrigation systems by using an iron box (30 cm× 20 cm which is divided into 24 small boxes each box is (5× 5 × 5 cm. At surface irrigation, root length density of cowpea reached to soil depth 30-40cm with lateral distances 5-10 cm and 15-20 cm. Vertical distribution of root length density of maize was increased with soil depth till 20-25 cm, and then it decreased till soil depth 35-40cm. Under drip irrigation, root length density of cowpea increased horizontally from 0-5cm to 10-15cm then it decreased till soil depth 25-30 cm and below this depth root length density disappeared. For the root length density and specific root length of maize under drip irrigation, the data showed that root length density and specific root length decreased with increasing in soil depth. The root length density of cowpea under sprinkler irrigation at 0-5cm disappeared from horizontal distance at 25-30 cm. The data showed that root length density of maize under sprinkler irrigation was higher at the soil top layers 0-5 cm and 5-10 cm than other layers from 10-40 cm.

  18. Interspecies Interactions in Relation to Root Distribution Across the Rooting Profile in Wheat-Maize Intercropping Under Different Plant Densities

    Yifan Wang

    2018-04-01

    Full Text Available In wheat-maize intercropping systems, the maize is often disadvantageous over the wheat during the co-growth period. It is unknown whether the impaired growth of maize can be recovered through the enhancement of the belowground interspecies interactions. In this study, we (i determined the mechanism of the belowground interaction in relation to root growth and distribution under different maize plant densities, and (ii quantified the “recovery effect” of maize after wheat harvest. The three-year (2014–2016 field experiment was conducted at the Oasis Agriculture Research Station of Gansu Agricultural University, Wuwei, Northwest China. Root weight density (RWD, root length density (RLD, and root surface area density (RSAD, were measured in single-cropped maize (M, single-cropped wheat (W, and three intercropping systems (i wheat-maize intercropping with no root barrier (i.e., complete belowground interaction, IC, (ii nylon mesh root barrier (partial belowground interaction, IC-PRI, and (iii plastic sheet root barrier (no belowground interaction, IC-NRI. The intercropped maize was planted at low (45,000 plants ha−1 and high (52,000 plants ha−1 densities. During the wheat/maize co-growth period, the IC treatment increased the RWD, RLD, and RSAD of the intercropped wheat in the 20–100 cm soil depth compared to the IC-PRI and IC-NRI systems; intercropped maize had 53% lower RWD, 81% lower RLD, and 70% lower RSAD than single-cropped maize. After wheat harvest, the intercropped maize recovered the growth with the increase of RWD by 40%, RLD by 44% and RSAD by 11%, compared to the single-cropped maize. Comparisons among the three intercropping systems revealed that the “recovery effect” of the intercropped maize was attributable to complete belowground interspecies interaction by 143%, the compensational effect due to root overlap by 35%, and the compensational effect due to water and nutrient exchange (CWN by 80%. The higher maize plant

  19. Soil microbiome characteristics and soilborne disease development associated with long-term potato cropping system practices

    Potato cropping system practices substantially affect soil microbial communities and the development of soilborne diseases. Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can potentially...

  20. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    Raphiou Maliki

    2016-01-01

    Full Text Available Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM production (tubers, shoots, nutrients removed and recycled, and the soil fertility changes. We compared smallholders’ traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation. The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA using the general linear model (GLM procedure was applied to the dry matter (DM production (tubers, shoots, nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water were significantly improved on yam-based systems with legumes in comparison with traditional systems.

  1. Adapting Towards Climate Change: A Bioeconomic Analysis of Winterwheat and Grain Maize

    Lehmann, N.; Finger, R.; Klein, T.; Calanca, P.; Walter, A.

    2012-01-01

    Climate change (CC) will alter the environmental conditions for crop growth. In order to minimize negative CC impacts on cropping systems, farmers will have to adapt their management schemes. In this paper we analyzed CC impacts and adaptation in winterwheat and grain maize production using a

  2. Transcription and somatic transposition of the maize En/Spm transposon system in rice

    Greco, R.; Ouwerkerk, P.B.F.; Taal, A.J.C.; Sallaud, C.; Guiderdoni, E.; Meijer, A.H.; Hoge, J.H.C.; Pereira, A.B.

    2004-01-01

    Transposition of the maize En/Spm system in rice was investigated using a two-component construct consisting of an immobilised transposase source driven by the CaMV 35S-promoter, and a modified I/dSpm transposon. Mobilization of I/dSpm in somatic sectors was demonstrated by sequencing of excision

  3. Soil organism in organic and conventional cropping systems.

    Bettiol, Wagner; Ghini, Raquel; Galvão, José Abrahão Haddad; Ligo, Marcos Antônio Vieira; Mineiro, Jeferson Luiz de Carvalho

    2002-01-01

    Despite the recent interest in organic agriculture, little research has been carried out in this area. Thus, the objective of this study was to compare, in a dystrophic Ultisol, the effects of organic and conventional agricultures on soil organism populations, for the tomato (Lycopersicum esculentum) and corn (Zea mays) crops. In general, it was found that fungus, bacterium and actinomycet populations counted by the number of colonies in the media, were similar for the two cropping systems. C...

  4. The value of crop germplasm and value accounting system

    WANG Xiaowei; DING Guangzhou; CHANG Ying

    2007-01-01

    The value evaluation and accounting of crop germplasm not only provides the theory and method for the price of germplasm, thus makes further lawful and fair transactions, but also ensures the benefits of crop germplasm owners and is also instructive in keeping the foodstuff safety. This paper founded a multidimensional value accounting system, which included physical accounting, value accounting and quality index accounting; individual accounting and total accounting; quantity accounting and quality accounting.

  5. Intercropping Maize With Legumes for Sustainable Highland Maize Production

    Adirek Punyalue

    2018-02-01

    Full Text Available Residue burning to prepare soil for maize growing deprives the soil of both protective cover and organic matter, and it exacerbates environmental issues such as Southeast Asia's haze problem. This paper reports on a study that evaluated the effectiveness of maize/legume intercropping as an alternative to maize cultivation with residue burning. Cowpea (Vigna unguiculata, mung bean (V. radiata, rice bean (V. umbellata, and lablab (Lablab purpureus were sown into a standing maize crop 30 days before harvest, and the results were compared with a maize crop grown using residue burning as the method for land preparation at Pang Da Agricultural Station in Chiang Mai, Thailand, in a replicated trial conducted over 3 growing seasons from 2012 to 2014. Intercropping increased maize grain yield by 31–53% and left 70–170% more residue containing 113–230% more nitrogen than the maize sown after residue burning, depending on the legume, and decreased weed dry weight by two-thirds after 2 seasons. Soil biodiversity was enriched by the intercrops, with a doubling in the spore density of arbuscular mycorrhizal fungi in the root-zone soil and increased abundance, diversity (Shannon index, and richness of the soil macrofauna. The abundance of soil animals increased with crop residue dry weight (r = 0.90, P < 0.05 and nitrogen content (r = 0.98, P < 0.01. The effect of intercropping on maize grain yield and accumulation of residue and nitrogen were then confirmed in a participatory experiment involving farmers in 2 highland villages in the Phrao and Chiang Dao districts of Chiang Mai Province with maize and rice bean in 2015. The effects of maize/legume intercropping—increased nitrogen accumulation and crop residue, enhanced soil biodiversity, suppression of weeds, and protection of the soil surface, which enabled the maize to be sown without land clearing with fire—should all contribute to sustainable highland maize production.

  6. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

    Eitzinger, Josef; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rötter, R.; Kersebaum, K. C.; Olesen, J. E.; Patil, R. H.; Saylan, L.; Çaldag, B.; Caylak, O.

    2013-01-01

    Roč. 151, č. 6 (2013), s. 813-835 ISSN 0021-8596 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : crop models * weather conditions * winter wheat * Austria Subject RIV: EH - Ecology, Behaviour Impact factor: 2.891, year: 2013

  7. Effect of 3D nitrogen, dry mass per area and local irradiance on canopy photosynthesis within leaves of contrasted heterogeneous maize crops.

    Drouet, J-L; Bonhomme, R

    2004-06-01

    Nitrogen partitioning within stands has been described fairly comprehensively, especially for C(3) plants in dense stands where the horizontal heterogeneity of foliage distribution is relatively small. Nitrogen has been shown to be distributed vertically and in parallel to light, maximizing carbon assimilation and stand productivity. Conversely, row crops such as maize (C(4) plants) are characterized by strong horizontal heterogeneity of foliage distribution, and a three-dimensional (3D) approach is required to investigate the combined effect of spatial distribution of nitrogen and light on canopy photosynthesis. The 3D geometry of maize canopies was modelled with varying densities and at different developmental stages using plant digitizing under field conditions. For lamina parts, photosynthesis was measured and nitrogen content per unit area (N(a)) was described from analysis of nitrogen content per unit mass (N(m)) and dry mass per unit area (M(a)). Hyperbolic relationships between photosynthesis at irradiance saturation (P(max)) and N(a) were established as well as a linear relationship between dark respiration (R(d)) and N(a), whereas quantum efficiency (alpha) was found to be independent of N(a). N(m), M(a) and N(a) were shown to change over time vertically (i.e. between laminae), which has been largely reported previously, and horizontally (i.e. within laminae), which has scarcely been described previously. Even if M(a) played a major role in N(a), a strong relationship between N(a) and M(a) could not be demonstrated, whereas several previous studies have found that N(a) was essentially related to M(a) rather than N(m). From simulations of radiative exchange using a 3D volume-based approach and lamina photosynthesis using a hyperbola, it was shown that real patterns of N(a) partitioning could increase daily crop photosynthesis by up to 8 % compared with uniform patterns of N(a), especially for the earliest stages of stand development.

  8. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  9. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).

    Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing

    2014-11-01

    Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.

  10. Maize kernel evolution:From teosinte to maize

    Maize is the most productive and highest value commodity in the US and around the world: over 1 billion tons were produced each year in 2013 and 2014. Together, maize, rice and wheat comprise over 60% of the world’s caloric intake, with wide regional variability in the importance of each crop. The i...

  11. Soil organic carbon assessments in cropping systems using isotopic techniques

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (Pis explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of

  12. Romanian maize

    Sauer, Johannes; Balint, Borbala

    This research aims at shedding empirical light on the relative efficiency of small-scale maize producers in Romania. Farmers in transition countries still face heavily distorted price systems resulting from imperfect market conditions and socioeconomic and institutional constraints. To capture...

  13. Variations in weed population densities, rate of change and community diversity in RR-soybeans and RR-maize strip crops under two herbicide strategies Ação de herbicidas sobre as plantas daninhas na soja e milho RR em plantio consorciado

    E.S. Leguizamón

    2012-12-01

    Full Text Available Concerns about the sustainability of large-scale, direct-drilled RR-soybeans (Glycine max, and RR-maize (Zea mays under monoculture in central Argentina are growing steadily. An experiment was conducted during three consecutive years to determine the effects of crops and systems (monocultures and strips and herbicide strategy on weed density, population rate of change (l, b community diversity (H´, crop yields and Land Equivalent Ratio (LER. Not only crops but also crop systems differentially influenced weed densities along their growth and development. For crop harvests, weed densities increased in both maize crop systems as compared to in the one for soybeans, but the lowest increase occurred in soybean strips. Differences were leveled by both herbicide strategies, which achieved 73% efficacy during the critical periods in both crops. l of annual monocotyledonous increased, thus shifting the weed community composition. Species richness and H´ were not affected by crop systems, but both herbicide strategies, particularly POST, either in soybeans in monoculture or in maize strips, significantly enhanced H´. Crop yields significantly increased in the maize-strip system with POST (Year 1 or PRE (Years 2 and 3 strategies, thus increasing LER above 1. Herbicide Environmental Load treatments fall within very low or low field use rating.A preocupação com a sustentabilidade do plantio direto da monocultura e do consórcio de soja e milho RR plantados em grande escala na região central da Argentina cresce continuamente. Durante três anos consecutivos, foram determinados os efeitos das culturas de soja e de milho RR, dos sistemas de plantio (monoculturas e consorciado, e a ação de herbicidas sobre a densidade de plantas daninhas, a taxa de mudança da população, a diversidade da comunidade, as safras e a razão de área equivalente. Não apenas as culturas, mas também os sistemas de plantio, influenciaram as densidades de plantas daninhas ao

  14. The effect of managing improved fallows of Mucuna pruriens on maize production and soil carbon and nitrogen dynamics in sub-humid Zimbabwe

    Whitbread, A.M.; Jiri, O.; Maasdorp, B.

    2004-01-01

    Mucuna pruriens has emerged as a successful forage or green manure legume for use in the smallholder animal-livestock systems of Zimbabwe. The efficiency of N recovery from mucuna residues in subsequent maize crops can be low and the loss of nitrate nitrogen from the soil profile prior to maize N

  15. THE DEVELOPMENT OF SUSTAINABLE CROPPING SYSTEMS IN THE HIGHLANDS OF SOUTH-EAST ASIA: GENERAL LESSONS FOR DEVELOPMENT PROJECTS

    Michael A. Fullen

    2005-05-01

    Full Text Available Soil conservation in the highlands of South-East Asia is essential for sustainable agro-environmental development. The effectiveness of soil conservation treatments developed in runoff plots was investigated in farmer-managed plots on a natural catchment. This wasachieved by the development and scientific evaluation of modified and novel cropping practices in a representative highland catchment in Yunnan Province, China. Wang Jia Catchment covers 40.1 hectares near Kedu, in Xundian County, north-east Yunnan (25o28'N, 102o53'E. The initial project consisted of an evaluation of the effects of modified cropping practices on maize productivity and soil properties. This programme was extended to investigate ways of increasing the productivity of maize, wheat and soybean on fragile slopes in a sustainable and environmentally-friendly way. The approach incorporates modified and novel agronomic and soil conservation measures, with the evaluation of their agricultural, environmental and socio-economic impacts using multidisciplinary approaches. This European Union funded project involved an international research team from Belgium, China, Ireland, Thailand and the U.K. Five co-ordinated work packages were implemented. Involving: (1 Background agricultural and environmental assessment of Wang Jia Catchment. (2Implementation and evaluation of modified and novel cropping systems for wheat, maize and soybean in the catchment. (3 Cost-benefit analyses of the socio-economic impacts of the changed cropping practices. (4 Comparative scientific evaluation of the cropping techniques in the highlands of northern Thailand. (5 Dissemination of project outcomes and establishment of training programmes for best practice in highland rural development. The lessons of the Project for promoting sustainable agro-environmental development in tropical and subtropical highlands include: (1 Recognizing the importance of both ‘north-south’ and ‘south-south’ co

  16. 小麦/玉米/大豆和小麦/玉米/甘薯套作对根际土壤细菌群落多样性及植株氮素吸收的影响%Effect of Wheat/Maize/Soybean and Wheat/Maize/Sweet Potato Relay Strip Intercropping on Bacterial Community Diversity of Rhizosphere Soil and Nitrogen Uptake of Crops

    雍太文; 杨文钰; 向达兵; 朱贞颖

    2012-01-01

    为探讨小麦/玉米/大豆和小麦/玉米/甘薯套作体系中根际细菌群落多样性与作物氮素高效吸收的差异特性及二者间的关系,应用变性梯度凝胶电泳(DGGE)技术研究了小麦-大豆(A1)、小麦-甘薯(A2)、玉米(A3)、小麦/玉米/大豆(A4)和小麦/玉米/甘薯(A5)5种种植模式的根际细菌群落多样性.结果表明,与A1、A2、A3及A5相比,A4套作提高了各作物在开花期(或吐丝期)与成熟期的籽粒吸氮量、地上部总吸氮量和Shannon-Weiner index多样性指数(H′).处理间的吸氮量与H′的变化规律为套作>单作、大豆茬口>甘薯茬口,以A4处理最高.不同种植模式下DGGE图谱条带的数量及亮度有较大区别,且有几条特征性条带发生了明显变化.不同种植模式间的细菌群落结构相似性较低,群落相似度系数(Cs)表现为套作与套作间>套作与单作间;A4与A5间的Cs相对较小,二者间的细菌群落结构差异较大.A4模式有利于提高根际细菌群落多样性,增强植株对氮素的吸收能力.%The aim of this study was to understand the relationship between diversity of rhizosphere bacterial community and nitrogen uptake of crops in two relay strip intercropping systems: wheat/maize/soybean and wheat/maize/sweet potato. We analyzed the diversities of rhizosphere bacterial community in five cropping systems using denaturing gradient gel electrophoresis (DGGE) based on 16S rDNA. The cropping systems included wheat-soybean (Al), wheat-sweet potato (A2), maize single cropping (A3), wheat/maize/soybean (A4), and wheat/maize/sweet potato (A5). Compared to the sole cropping systems (Al, A2, and A3 treatments), the A4 treatment showed increases in grain nitrogen uptake and total nitrogen uptake amounts of aboveground of crops at both flowering (or silking) and maturity stages, and the Shannon-Weiner indices for rhizosphere bacterial community diversity was also increased significantly. The values of nitrogen

  17. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon

    Ren, Dongyang; Xu, Xu; Hao, Yuanyuan; Huang, Guanhua

    2016-01-01

    Water saving in irrigation is a key issue in the upper Yellow River basin. Excessive irrigation leads to water waste, water table rising and increased salinity. Land fragmentation associated with a large dispersion of crops adds to the agro-hydrological complexity of the irrigation system. The model HYDRUS-1D, coupled with the FAO-56 dual crop coefficient approach (dualKc), was applied to simulate the water and salt movement processes. Field experiments were conducted for maize, sunflower and watermelon crops in the command area of a typical irrigation canal system in Hetao Irrigation District during 2012 and 2013. The model was calibrated and validated in three crop fields using two-year experimental data. Simulations of soil moisture, salinity concentration and crop yield fitted well with the observations. The irrigation water use was then evaluated and results showed that large amounts of irrigation water percolated due to over-irrigation but their reuse through capillary rise was also quite large. That reuse was facilitated by the dispersion of crops throughout largely fragmented field, thus with fields reusing water percolated from nearby areas due to the rapid lateral migration of groundwater. Beneficial water use could be improved when taking this aspect into account, which was not considered in previous researches. The non-beneficial evaporation and salt accumulation into the root zone were found to significantly increase during non-growth periods due to the shallow water tables. It could be concluded that when applying water saving measures, close attention should be paid to cropping pattern distribution and groundwater control in association with irrigation scheduling and technique improvement.

  18. Soil Carbon Changes in Transitional Grain Crop Production Systems in South Dakota

    Woodard, H. J.

    2004-12-01

    Corn-C (Zea Mays L.), soybean-S (Glycine max L.) and spring wheat-W (Triticum aestivum L.) crops were seeded as a component of either a C-S, S-W, or C-S-W crop rotation on silt-loam textured soils ranging from 3.0-5.0% organic matter. Conservation tillage(chisel plow-field cultivator) was applied to half of the plots. The other plots were direct seeded as a no-till (zero-tillage) treatment. Grain yield and surface crop residues were weighed from each treatment plot. Crop residue (stover and straw) was removed from half of the plots. After four years, soil samples were removed at various increments of depth and soil organic carbon (C) and nitrogen (N) was measured. The ranking of crop residue weights occurred by the order corn>>soybean>wheat. Surface residue accumulation was also greatest with residue treatments that were returned to the plots, those rotations in which maize was a component, and those without tillage. Mean soil organic carbon levels in the 0-7.5cm depth decreased from 3.41% to 3.19% (- 0.22%) with conventional tillage (chisel plow/field cultivator) as compared to a decrease from 3.19% to 3.05% (-0.14%) in plots without tillage over a four year period. Organic carbon in the 0-7.5cm depth decreased from 3.21% to 3.01% (- 0.20%) after residue removed as compared to a decrease from 3.39% to 3.23% (-0.17%) in plots without tillage applied after four years. The soil C:N ratio (0-7.5cm) decreased from 10.63 to 10.37 (-0.26 (unitless)) in the tilled plots over a four-year period. Soil C:N ratio at the 0-7.5cm depth decreased from 10.72 to 10.04 (-0.68) in the no-till plots over a four year period. Differences in the soil C:N ratio comparing residue removed and residue returned were similar (-0.51 vs. -0.43 respectively). These soils are highly buffered for organic carbon changes. Many cropping cycles are required to determine how soil carbon storage is significantly impacted by production systems.

  19. Sources of Nitrogen for Winter Wheat in Organic Cropping Systems

    Petersen, Søren O; Schjønning, Per; Olesen, Jørgen E

    2013-01-01

    mineralizable N (PMN), microbial biomass N (MBN)] were monitored during two growth periods; at one site, biomass C/N ratios were also determined. Soil for labile N analysis was shielded from N inputs during spring application to isolate cumulated system effects. Potentially mineralizable N and MBN were...... explained 76 and 82% of the variation in grain N yields in organic cropping systems in 2007 and 2008, showing significant effects of, respectively, topsoil N, depth of A horizon, cumulated inputs of N, and N applied to winter wheat in manure. Thus, soil properties and past and current management all......In organic cropping systems, legumes, cover crops (CC), residue incorporation, and manure application are used to maintain soil fertility, but the contributions of these management practices to soil nitrogen (N) supply remain obscure. We examined potential sources of N for winter wheat (Triticum...

  20. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain

    Xiao, Dengpan; Qi, Yongqing; Shen, Yanjun; Tao, Fulu; Moiwo, Juana P.; Liu, Jianfeng; Wang, Rede; Zhang, He; Liu, Fengshan

    2016-05-01

    As climate change could significantly influence crop phenology and subsequent crop yield, adaptation is a critical mitigation process of the vulnerability of crop growth and production to climate change. Thus, to ensure crop production and food security, there is the need for research on the natural (shifts in crop growth periods) and artificial (shifts in crop cultivars) modes of crop adaptation to climate change. In this study, field observations in 18 stations in North China Plain (NCP) are used in combination with Agricultural Production Systems Simulator (APSIM)-Maize model to analyze the trends in summer maize phenology in relation to climate change and cultivar shift in 1981-2008. Apparent warming in most of the investigated stations causes early flowering and maturity and consequently shortens reproductive growth stage. However, APSIM-Maize model run for four representative stations suggests that cultivar shift delays maturity and thereby prolongs reproductive growth (flowering to maturity) stage by 2.4-3.7 day per decade (d 10a-1). The study suggests a gradual adaptation of maize production process to ongoing climate change in NCP via shifts in high thermal cultivars and phenological processes. It is concluded that cultivation of maize cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production and food security in the NCP study area and beyond.

  1. Environmental and Social Management System Implementation Handbook : Crop Production

    International Finance Corporation

    2014-01-01

    This Handbook is intended to be a practical guide to help companies in the crop production industry develop and implement an environmental and social management system, which should help to improve overall operations. If a company has existing management systems for quality or health and safety, this Handbook will help to expand them to include environmental and social performance. Sectio...

  2. Maize transformation technology development for commercial event generation

    Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.

    2014-01-01

    Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170

  3. Maize transformation technology development for commercial event generation.

    Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M

    2014-01-01

    Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.

  4. Biochar: a novel tool to enhance wheat productivity and soil fertility on sustainable basis under wheat-maize-wheat cropping pattern

    Ali, K.; Jan, M.T.; Munsif, F.

    2015-01-01

    The application of organic matter is an important element for preserving long-term soil fertility because it is the reservoir of metabolic energy, which drives soil biological processes involved in nutrient availability. Two years field experiments were conducted for the assessment of the interactive effect of biochar with synthetic fertilizer and farmyard manure. Biochar application at the rate of 25 t ha-1 increased spikes m-2 by 6.64%, grains spike-1 by 5.6%, thousand grain weight by 3.73, grain yield by 9.96%, biological yield by 15.36%, phosphorus use efficiency by 29.03% and grain phosphorus uptake by 19.67% in comparison with no biochar treated plots. Likewise, biochar application significantly increased soil carbon (C), phosphorus (P) and potassium (K) by 54.02, 61.39 and 18.41%, respectively. Similarly, farmyard manure at the rate of 10 t ha-1 resulted in significantly higher yield components, grain yield, soil C, P and K than 5 t ha-1. Likewise, mineral nitrogen application at the rate of 120 kg ha-1 improved wheat yield and yield components with no significant effect on soil C, P and K contents. It is concluded that application biochar either alone or in combination with FYM or mineral nitrogen improved yield and yield components of wheat and soil quality in wheat-maize cropping pattern. (author)

  5. Evaluation of the Agronomic Impacts on Yield-Scaled N2O Emission from Wheat and Maize Fields in China

    Wenling Gao

    2017-07-01

    Full Text Available Contemporary crop production faces dual challenges of increasing crop yield while simultaneously reducing greenhouse gas emission. An integrated evaluation of the mitigation potential of yield-scaled nitrous oxide (N2O emission by adjusting cropping practices can benefit the innovation of climate smart cropping. This study conducted a meta-analysis to assess the impact of cropping systems and soil management practices on area- and yield-scaled N2O emissions during wheat and maize growing seasons in China. Results showed that the yield-scaled N2O emissions of winter wheat-upland crops rotation and single spring maize systems were respectively 64.6% and 40.2% lower than that of winter wheat-rice and summer maize-upland crops rotation systems. Compared to conventional N fertilizer, application of nitrification inhibitors and controlled-release fertilizers significantly decreased yield-scaled N2O emission by 41.7% and 22.0%, respectively. Crop straw returning showed no significant impacts on area- and yield-scaled N2O emissions. The effect of manure on yield-scaled N2O emission highly depended on its application mode. No tillage significantly increased the yield-scaled N2O emission as compared to conventional tillage. The above findings demonstrate that there is great potential to increase wheat and maize yields with lower N2O emissions through innovative cropping technique in China.

  6. Policies for Reintegrating Crop and Livestock Systems: A Comparative Analysis

    Rachael D. Garrett

    2017-03-01

    Full Text Available The reintegration of crop and livestock systems within the same land area has the potential to improve soil quality and reduce water and air pollution, while maintaining high yields and reducing risk. In this study, we characterize the degree to which federal policies in three major global food production regions that span a range of socioeconomic contexts, Brazil, New Zealand, and the United States, incentivize or disincentivize the use of integrated crop and livestock practices (ICLS. Our analysis indicates that Brazil and New Zealand have the most favorable policy environment for ICLS, while the United States provides the least favorable environment. The balance of policy incentives and disincentives across our three cases studies mirrors current patterns of ICLS usage. Brazil and New Zealand have both undergone a trend toward mixed crop livestock systems in recent years, while the United States has transitioned rapidly toward continuous crop and livestock production. If transitions to ICLS are desired, particularly in the United States, it will be necessary to change agricultural, trade, environmental, biofuels, and food safety policies that currently buffer farmers from risk, provide too few incentives for pollution reduction, and restrict the presence of animals in crop areas. It will also be necessary to invest more in research and development in all countries to identify the most profitable ICLS technologies in each region.

  7. Simulating of Top-Cross system for enhancement of antioxidants in maize grain

    Jelena Vancetovic

    2014-04-01

    Full Text Available Blue maize (Zea mays L. is grown for its high content of antioxidants. Conversion of yellow and white to blue maize is time consuming because several genes affect blue color. After each backcross selfing is needed for color to be expressed. In order to overcome the problem of time and effort needed for conversion to blue kernel color, we have set a pilot experiment simulating a Top-cross system for increasing antioxidants in maize grain. The idea is to alternately sow six rows of sterile standard quality hybrid and two rows of blue maize in commercial production. Five commercial ZP hybrids were crossed with a blue pop-corn population. Xenia effect caused by cross-pollination produced blue grain on all hybrids in the same year. Chemical analyses of the grains of five selfed original hybrids, five cross-pollinated hybrids and selfed blue popcorn pollinator were performed. Cross-fertilization with blue popcorn had different impact on antioxidant capacity and phytonutrients, increasing them significantly in some but not all cross-pollinated hybrids. Popcorn blue pollinator had higher values for all the analyzed traits than either selfed or cross-pollinated hybrids. Selfed vs. pollinated hybrids showed significant difference for total antioxidant capacity (p<0.1, total phenolics and total yellow pigments (p<0.01, with the increase of total phenolics and decrease of total yellow pigments in pollinated ones. Total flavonoids showed a little non-significant decrease in pollinated hybrids, while total anthocyanins were not detected in selfed yellow hybrids. Blue maize obtained this way has shown good potential for growing high quality phytonutrient genotypes.

  8. The perspective crops for the bioregenerative human life support systems

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These

  9. Climate change, climate variability and adaptation options in smallholder cropping systems of the Sudano - Sahel region in West Africa

    Traore, Bouba

    2014-01-01

    Key words: crop production, maize, millet, sorghum, cotton, fertilizer, rainfall, temperature, APSIM, Mali, In the Sudano-Sahelian zone of West Africa (SSWA) agricultural production remains the main source of livelihood for rural communities, providing employment to more than 60 percent of the population and contributing to about 30% of gross domestic product. Smallholder agricultural production is dominated by rain-fed production of millet, sorghum and maize for food consumption and of c...

  10. Toward cropping systems that enhance productivity and sustainability

    Cook, R. James

    2006-01-01

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding. PMID:17130454

  11. Evaluation of certain crop residues for carbohydrate and protein fractions by cornell net carbohydrate and protein system

    Venkateswarulu Swarna

    2015-06-01

    Full Text Available Four locally available crop residues viz., jowar stover (JS, maize stover (MS, red gram straw (RGS and black gram straw (BGS were evaluated for carbohydrate and protein fractions using Cornell Net Carbohydrate and Protein (CNCP system. Lignin (% NDF was higher in legume straws as compared to cereal stovers while Non-structural carbohydrates (NSC (% DM followed the reverse trend. The carbohydrate fractions A and B1 were higher in BGS while B2 was higher in MS as compared to other crop residues. The unavailable cell wall fraction (C was higher in legume straws when compared to cereal stovers. Among protein fractions, B1 was higher in legume straws when compared to cereal stovers while B2 was higher in cereal stovers as compared to legume straws. Fraction B3 largely, bypass protein was highest in MS as compared to other crop residues. Acid detergent insoluble crude protein (ADICP (% CP or unavailable protein fraction C was lowest in MS and highest in BGS. It is concluded that MS is superior in nutritional value for feeding ruminants as compared to other crop residues.

  12. Soilless cultivation system for functional food crops

    Ahamad Sahali Mardi; Shyful Azizi Abdul Rahman; Ahmad Nazrul Abd Wahid; Abdul Razak Ruslan; Hazlina Abdullah

    2007-01-01

    This soilless cultivation system is based on the fertigation system and cultivation technologies using Functional Plant Cultivation System (FPCS). EBARA Japan has been studying on the cultivation conditions in order to enhance the function of decease risk reduction in plants. Through the research and development activities, EBARA found the possibilities on the enhancement of functions. Quality and quantity of the products in term of bioactive compounds present in the plants may be affected by unforeseen environmental conditions, such as temperature, strong light and UV radiation. The main objective to develop this system is, to support? Functional Food Industry? as newly emerging field in agriculture business. To success the system, needs comprehensive applying agriculture biotechnologies, health biotechnologies and also information technologies, in agriculture. By this system, production of valuable bioactive compounds is an advantage, because the market size of functional food is increasing more and more in the future. (Author)

  13. Sequestration of maize crop straw C in different soils: role of oxyhydrates in chemical binding and stabilization as recalcitrance.

    Song, Xiangyun; Li, Lianqing; Zheng, Jufeng; Pan, Genxing; Zhang, Xuhui; Zheng, Jinwei; Hussain, Qaiser; Han, Xiaojun; Yu, Xinyan

    2012-05-01

    While biophysical controls on the sequestration capacity of soils have been well addressed with physical protection, chemical binding and stabilization processes as well as microbial community changes, the role of chemical binding and stabilization has not yet well characterized for soil organic carbon (SOC) sequestration in rice paddies. In this study, a 6-month laboratory incubation with and without maize straw amendment (MSA) was conducted using topsoil samples from soils with different clay mineralogy and free oxy-hydrate contents collected across Southern China. The increase in SOC under MSA was found coincident with that in Fe- and Al-bound OC (Fe/Al-OC) after incubation for 30 d (R(2)=0.90, P=0.05), and with sodium dithionate-citrate-bicarbonate (DCB) extractable Fe after incubation for 180 d (R(2)=0.99, Psoils rich in DCB extractable Fe than those poor in DCB extractable Fe. The greater SOC sequestration in soils rich in DCB extractable Fe was further supported by the higher abundance of (13)C which was a natural signature of MSA. Moreover, a weak positive correlation of the increased SOC under MSA with the increased humin (R(2)=0.87, P=0.06) observed after incubation for 180 d may indicate a chemical stabilization of sequestered SOC as humin in the long run. These results improved our understanding of SOC sequestration in China's rice paddies that involves an initial chemical binding of amended C and a final stabilization as recalcitrant C of humin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Integrated crop protection as a system approach

    Haan, de J.J.; Wijnands, F.G.; Sukkel, W.

    2005-01-01

    New farming systems in vegetable production are required as demands for high quality products that do not pollute the environment are rising, and production risks are large and incomes low. The methodology of prototyping new systems is described, especially the themes, parameters and target values

  15. Chemical and physical soil attributes in integrated crop-livestock system under no-tillage

    Hernani Alves da Silva

    Full Text Available Although integrated crop-livestock system (ICLS under no-tillage (NT is an attractive practice for intensify agricultural production, little regional information is available on the effects of animal grazing and trampling, particularly dairy heifers, on the soil chemical and physical attributes. The objective of this study was to evaluate the effects of animal grazing on the chemical and physical attributes of the soil after 21 months of ICLS under NT in a succession of annual winter pastures (2008, soybeans (2008/2009, annual winter pastures (2009, and maize (2009/10. The experiment was performed in the municipality of Castro (PR in a dystrophic Humic Rhodic Hapludox with a clay texture. The treatments included a combination of two pasture (annual ryegrass monoculture and multicropping - annual ryegrass, black oat, white clover and red clover with animal grazing during the fall-winter period with two animal weight categories (light and heavy, in a completely randomized block experimental design with 12 replications. After the maize harvest (21 months after beginning, soil samples were collected at 0-10 and 10-20 cm layers to measure soil chemical and physical attributes. The different combinations of pasture and animal weight did not alter the total organic carbon and nitrogen in the soil, but they influence the attributes of soil acidity and exchangeable cations. The monoculture pasture of ryegrass showed greater soil acidification process compared to the multicropping pasture. When using heavier animals, the multicropping pasture showed lesser increase in soil bulk density and greater macroporosity.

  16. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    Pajić Zorica

    2007-01-01

    Full Text Available Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a certain trait, the following specific procedures in evaluation of the trait are necessary: the estimation of a popping volume and flake quality in popping maize; the determination of sugars and harvest maturity in sweet maize; the determination of oil in selected samples of high-oil maize types, and so forth. Breeding programmes for speciality maize, except high-amylose maize, have been implemented at the Maize Research Institute, Zemun Polje, Belgrade, for the last 45 years. A great number of high-yielding sweet maize hybrids, popping maize, high-oil and high-lysine, flint and white-seeded maize hybrids were developed during this 45-year period. Auspicious selection and breeding for these traits is facilitated by the abundant genetic variability and technical and technological possibilities necessary for successful selection.

  17. Breeding for Increased Water Use Efficiency in Corn (Maize) Using a Low-altitude Unmanned Aircraft System

    Shi, Y.; Veeranampalayam-Sivakumar, A. N.; Li, J.; Ge, Y.; Schnable, J. C.; Rodriguez, O.; Liang, Z.; Miao, C.

    2017-12-01

    Low-altitude aerial imagery collected by unmanned aircraft systems (UAS) at centimeter-level spatial resolution provides great potential to collect high throughput plant phenotyping (HTP) data and accelerate plant breeding. This study is focused on UAS-based HTP for breeding increased water use efficiency in corn in eastern Nebraska. The field trail is part of an effort by the Genomes to Fields consortium effort to grow and phenotype many of the same corn (maize) hybrids at approximately 40 locations across the United States and Canada in order to stimulate new research in crop modeling, the development of new plant phenotyping technologies and the identification of genetic loci that control the adaptation of specific corn (maize) lines to specific environments. It included approximately 250 maize hybrids primary generated using recently off patent material from major seed companies. These lines are the closest material to what farmers are growing today which can be legally used for research purposes and genotyped by the public sector. During the growing season, a hexacopter equipped with a multispectral and a RGB cameras was flown and used to image this 1-hectare field trial near Mead, NE. Sensor data from the UAS were correlated directly with grain yield, measured at the end of the growing season, and were also be used to quantify other traits of interest to breeders including flowering date, plant height, leaf orientation, canopy spectral, and stand count. The existing challenges of field data acquisition (to ensure data quality) and development of effective image processing algorithms (such as detecting corn tassels) will be discussed. The success of this study and others like it will speed up the process of phenotypic data collection, and provide more accurate and detailed trait data for plant biologists, plant breeders, and other agricultural scientists. Employing advanced UAS-based machine vision technologies in agricultural applications have the potential

  18. The FSE system for crop simulation, version 2.1

    Kraalingen, van D.W.G.

    1995-01-01

    A FORTRAN 77 programming environment for continuous simulation of agro-ecological processes, such as crop growth and calculation of water balances is presented. This system, called FSE (FORTRAN Simulation Environment), consists of a main program, weather data and utilities for performing specific

  19. Effects of organic manure and crop rotation system on potato ...

    Effects of organic manure and crop rotation system on potato ( Solanum tuberosum L.) tuber ... Ethiopian Journal of Science and Technology ... (FYM); V2 = 2.5 t/h fresh sesbania green manure (FSB) V3 = 5 t/ha FYM; and V4 = 5 t/ha FYM +2.5 ...

  20. Direct nitrous oxide emissions in Mediterranean climate cropping systems

    Cayuela, Maria L.; Aguilera, Eduardo; Sanz-Cobena, Alberto; Adams, Dean C.; Abalos Rodriguez, Diego; Barton, Louise; Ryals, Rebecca; Silver, Whendee L.; Alfaro, Marta A.; Pappa, Valentini A.; Bouwman, Lex; Lassaletta, Luis

    2017-01-01

    Many recent reviews and meta-analyses of N2O emissions do not include data from Mediterranean studies. In this paper we present a meta-analysis of the N2O emissions from Mediterranean cropping systems, and propose a more robust and reliable regional emission factor (EF) for

  1. Factors affecting the choice of cropping systems in Kebbi State ...

    The study examined the factors that influence choice of cropping systems in Kebbi State Nigeria. The technique applied in the study was Logit regression. Data to conduct the research was obtained mainly from primary sources through a questionnaire survey of 256 farmers, comprising 98 monocroppers and 158 ...

  2. Profitability of groundnut-based cropping systems among farmers in ...

    Profitability of groundnut-based cropping systems among farmers in Hong local government area of Adamawa state, Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information ...

  3. Translocation of aluminum to grain crops grown in different agricultural systems

    Khan, S.; Kazi, T.G.; Kolachi, N.F.; Afridi, H.I.

    2012-01-01

    The aim of this study was to evaluate the mobility and transport of Aluminum (AI) by shoot and grain crops (wheat and maize) grown on two different agricultural soil irrigated with water have high (lake water) and low levels (canal water) of AI. The total and bio available fractions (deionized water, 0.11 M CH/sub 3/COOH, 0.05 M ethylenediaminetetraacetic acid (EDT A) and 0.1 M HCl extractable) of Al in both understudied agricultural soils and correlate with respective total Al in the edible parts (grains) and non edible parts (Shoots) of wheat and maize. The All content in lake and canal water samples was found in the range of 750 - 1340 and 90 - 50 micro g/L respectively. The total and extractable Al in both agricultural soil samples, edible and non edible parts of wheat and maize were analysed by atomic absorption spectrometry after acid digestion in microwave oven. The edible and non edible part of both crops absorbed significantly high levels of Al grown on agricultural soil irrigated with lake water (SILW) as compared to those grown on soil irrigated with can water (SICW) had low level of A] (p< O.OI). The transfer factor of Al from soils to edible and non edible parts of wheat and maize were also evaluated. It was observed that the bioaccumulation of Al was found to be high in non edible parts of both crops grown in SILW. This study highlights the increased danger of growing food crops in the agricultural land continuously irrigated by A] contaminated lake water. (author)

  4. Life cycle assessment of a willow bioenergy cropping system

    Heller, M.C.; Keoleian, G.A.; Volk, Timothy A.

    2003-01-01

    The environmental performance of willow biomass crop production systems in New York (NY) is analyzed using life cycle assessment (LCA) methodology. The base-case, which represents current practices in NY, produces 55 units of biomass energy per unit of fossil energy consumed over the biomass crop's 23-year lifetime. Inorganic nitrogen fertilizer inputs have a strong influence on overall system performance, accounting for 37% of the non-renewable fossil energy input into the system. Net energy ratio varies from 58 to below 40 as a function of fertilizer application rate, but application rate also has implications on the system nutrient balance. Substituting inorganic N fertilizer with sewage sludge biosolids increases the net energy ratio of the willow biomass crop production system by more than 40%. While CO 2 emitted in combusting dedicated biomass is balanced by CO 2 adsorbed in the growing biomass, production processes contribute to the system's net global warming potential. Taking into account direct and indirect fuel use, N 2 O emissions from applied fertilizer and leaf litter, and carbon sequestration in below ground biomass and soil carbon, the net greenhouse gas emissions total 0.68 g CO 2 eq. MJ biomassproduced -1 . Site specific parameters such as soil carbon sequestration could easily offset these emissions resulting in a net reduction of greenhouse gases. Assuming reasonable biomass transportation distance and energy conversion efficiencies, this study implies that generating electricity from willow biomass crops could produce 11 units of electricity per unit of fossil energy consumed. Results form the LCA support the assertion that willow biomass crops are sustainable from an energy balance perspective and contribute additional environmental benefits

  5. Vigor-S, a new system for evaluating the physiological potential of maize seeds

    Danielle Otte Carrara Castan

    Full Text Available ABSTRACT: The refinement of vigor tests and the possibility of utilizing computer resources for the effective evaluation of the seed physiological potential have attracted considerable interest from research and seed technologists. The aim of this study was to evaluate the physiological potential of maize seeds using the newly-created Automated Analysis of Seed Vigor System (Vigor-S compared with other recommended seed vigor tests; two maize hybrids were used, each represented by seven seed lots. Germination and vigor (cold test, saturated salt accelerated aging, and field seedling emergence evaluations were conducted. For the evaluation of seed vigor with the use of seedling image analysis resources, two systems were compared: the Seed Vigor Imaging System (SVIS®, developed by Ohio State University, USA and the Vigor-S, resulting from collaboration between USP/ESALQ and EMBRAPA (Embrapa Instrumentation. Using these two systems, three day old seedlings were scanned and the images were analyzed. Similar results for the vigor index, uniformity of development, and seedling length were obtained. The computerized image analysis of seedlings using Vigor-S has advantages with respect to accuracy, speed, and the possibility of automatic application to a worksheet. It is a consistent alternative for the evaluation of maize seed vigor, and produces information compatible with that obtained by the accelerated aging test and SVIS®.

  6. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  7. Relating N2O emissions from energy crops to the avoided fossil fuel-derived CO2 – a study on bioethanol and biogas produced from organically managed maize, rye, vetch and grass-clover

    Carter, Mette Sustmann; Hauggard-Nielsen, Henrik; Thomsen, Sune Tjalfe

    2010-01-01

    ‐derived CO2, where the N2O emission has been subtracted. This value does not account for farm machinery CO2 emissions and fuel consumption during biofuel production. We obtained the greatest net reduction in greenhouse gas emissions by co‐production of bioethanol and biogas or by biogas alone produced from...... fuel‐derived CO2, which is obtained when energy crops are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye‐vetch, vetch and grass‐clover) and three scenarios for conversion of biomass to biofuel. The scenarios are 1) bioethanol production, 2......) biogas production and 3) co‐production of bioethanol and biogas, where the energy crops are first used for bioethanol fermentation and subsequently the residues from this process are utilized for biogas production. The net reduction in greenhouse gas missions is calculated as the avoided fossil fuel...

  8. Pathways out of poverty through cassava, maize and soybean in Thailand

    Nareenat, Roonnaphai

    2006-01-01

    This phase II covers the case study survey and interviews with farmers growing cassava, soybean and maize in the major producing areas, namely cassava farmers in Nakhonratchasima, soybean farmers in Sukhotai and maize farmers in Nakhonsawan, with the major objectives of studying the returns of diverse farming involving three CGPRT and other crops. Opportunities and constraints for the farm families are analysed together with the related industries and marketing systems in the survey areas. Fu...

  9. participatory evaluation of drought tolerant maize varieties in the ...

    User

    ). Maize production provides livelihoods for millions of subsistence farmers in WCA, thus, increasing the productivity of maize-based cropping sys- tems could increase and stabilize rural incomes, alleviate poverty and reduce food insecurity in.

  10. Benefits of seasonal forecasts of crop yields

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  11. NEW TRENDS IN AGRICULTURE - CROP SYSTEMS WITHOUT SOIL

    Ioan GRAD

    2014-04-01

    Full Text Available The paper studied new system of agriculture - crop systems without soil. The culture systems without soil can be called also the hydroponic systems and now in Romania are not used only sporadically. In other countries (USA, Japan, the Netherlands, France, UK, Denmark, Israel, Australia, etc.. they represent the modern crop technology, widely applied to vegetables, fruits, fodder, medicinal plants and flowers by the experts in this area. In the world, today there are millions of hectares hydroponics, most of the vegetables, herbs, fruits of hypermarkets are coming from the culture systems without soil. The process consists of growing plants in nutrient solutions (not in the ground, resorting to an complex equipment, depending on the specifics of each crop, so that the system can be applied only in the large farms, in the greenhouses, and not in the individual households. These types of culture systems have a number of advantages and disadvantages also. Even if today's culture systems without soil seem to be the most modern and surprising technology applied in plant growth, the principle is very old. Based on him were built The Suspended Gardens of the Semiramis from Babylon, in the seventh century BC, thanks to him, the population from the Peru”s highlands cultivates vegetables on surfaces covered with water or mud. The peasant households in China, even today use the millenary techniques of the crops on gravel. .This hydroponic agriculture system is a way of followed for Romanian agriculture too, despite its high cost, because it is very productive, ecological, can cover, by products, all market demands and it answer, increasingly, constraints of urban life. The concept of hydroponics agriculture is known and appreciated in Romania also, but more at the theory level.

  12. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India.

    Lal, B; Gautam, Priyanka; Panda, B B; Raja, R; Singh, Teekam; Tripathi, R; Shahid, M; Nayak, A K

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June-September) and land leftovers fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate

  13. How Accurately Do Maize Crop Models Simulate the Interactions of Atmospheric CO2 Concentration Levels With Limited Water Supply on Water Use and Yield?

    Durand, Jean-Louis; Delusca, Kenel; Boote, Ken; Lizaso, Jon; Manderscheid, Remy; Weigel, Hans Johachim; Ruane, Alexander Clark; Rosenzweig, Cynthia E.; Jones, Jim; Ahuja, Laj; hide

    2017-01-01

    This study assesses the ability of 21 crop models to capture the impact of elevated CO2 concentration [CO2] on maize yield and water use as measured in a 2-year Free Air Carbon dioxide Enrichment experiment conducted at the Thunen Institute in Braunschweig, Germany (Manderscheid et al. 2014). Data for ambient [CO2] and irrigated treatments were provided to the 21 models for calibrating plant traits, including weather, soil and management data as well as yield, grain number, above ground biomass, leaf area index, nitrogen concentration in biomass and grain, water use and soil water content. Models differed in their representation of carbon assimilation and evapotranspiration processes. The models reproduced the absence of yield response to elevated [CO2] under well-watered conditions, as well as the impact of water deficit at ambient [CO2], with 50 percent of models within a range of plus/minus 1 Mg ha(exp. -1) around the mean. The bias of the median of the 21 models was less than 1 Mg ha(exp. -1). However under water deficit in one of the two years, the models captured only 30 percent of the exceptionally high [CO2] enhancement on yield observed. Furthermore the ensemble of models was unable to simulate the very low soil water content at anthesis and the increase of soil water and grain number brought about by the elevated [CO2] under dry conditions. Overall, we found models with explicit stomatal control on transpiration tended to perform better. Our results highlight the need for model improvement with respect to simulating transpirational water use and its impact on water status during the kernel-set phase.

  14. Weed species composition and distribution pattern in the maize crop under the influence of edaphic factors and farming practices: A case study from Mardan, Pakistan.

    Ahmad, Zeeshan; Khan, Shujaul Mulk; Abd Allah, Elsayed Fathi; Alqarawi, Abdulaziz Abdullah; Hashem, Abeer

    2016-11-01

    Weeds are unwanted plant species growing in ordinary environment. In nature there are a total of 8000 weed species out of which 250 are important for agriculture world. The present study was carried out on weed species composition and distribution pattern with special reference to edaphic factor and farming practices in maize crop of District Mardan during the months of August and September, 2014. Quadrates methods were used to assess weed species distribution in relation to edaphic factor and farming practices. Phytosociological attributes such as frequency, relative frequency, density, relative density and Importance Values were measured by placing 9 quadrates (1 × 1 m 2 ) randomly in each field. Initial results showed that the study area has 29 diverse weed species belonging to 27 genera and 15 families distributed in 585 quadrats. Presence and absence data sheet of 29 weed species and 65 fields were analyzed through PC-ORD version 5. Cluster and Two Way Cluster Analyses initiated four different weed communities with significant indicator species and with respect to underlying environmental variables using data attribute plots. Canonical Correspondence Analyses (CCA) of CANOCO software version 4.5 was used to assess the environmental gradients of weed species. It is concluded that among all the edaphic factors the strongest variables were higher concentration of potassium, organic matter and sandy nature of soil. CCA plots of both weed species and sampled fields based on questionnaire data concluded the farming practices such as application of fertilizers, irrigation and chemical spray were the main factors in determination of weed communities.

  15. Impact of integrated nutrient management on growth and grain yield of wheat under irrigated cropping system

    Nawab, K.; Amanullah, A.; Shah, P.; Arif, M.; Khan, A.M.

    2011-01-01

    Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)

  16. The Energy Effectiveness Of Crops In Crop Rotation Under Different Soil Tillage Systems

    Strašil Zdeněk

    2015-09-01

    Full Text Available The paper identifies and compares the energy balance of winter wheat, spring barley and white mustard – all grown in crop rotation under different tillage conditions. The field trial included the conventional tillage (CT method, minimum tillage (MT and a system with no tillage (NT. The energy inputs included both the direct and indirect energy component. Energy outputs are evaluated as gross calorific value (gross heating value of phytomass dry matter of the primary product and the total harvested production. The energy effectiveness (energy output: energy input was selected for evaluation. The greatest energy effectiveness for the primary product was established as 6.35 for barley, 6.04 for wheat and 3.68 for mustard; in the case of total production, it was 9.82 for barley, 10.08 for wheat and 9.72 for mustard. When comparing the different tillage conditions, the greatest energy effectiveness was calculated for the evaluated crops under the MT operation and represented the primary product of wheat at 6.49, barley at 6.69 and mustard at 3.92. The smallest energy effectiveness for the primary product was found in wheat 5.77 and barley 6.10 under the CT option; it was 3.55 for mustard under the option of NT. Throughout the entire cropping pattern, the greatest energy effectiveness was established under the minimum tillage option – 5.70 for the primary product and 10.47 for the total production. On the other hand, the smallest values were calculated under CT – 5.22 for the primary product and 9.71 for total production.

  17. Distribution of nitrogen ammonium sulfate (15N) soil-plant system in a no-tillage crop succession

    Fernandes, Flavia Carvalho da Silva; Libardi, Paulo Leonel

    2012-01-01

    the n use by maize (Zea mays, l.) is affected by n-fertilizer levels. this study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of n use by maize in a crop succession, based on 15 N labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signal grass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of n rates of 60, 120 and 180 kg ha -1 in the form of labeled 15 N ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated n; fertilizer-derived n in corn plants and pasture; fertilizer-derived n in the soil; and recovery of fertilizer-n by plants and soil were evaluated.The highest uptake of fertilizer n by corn was observed after application of 120 kg ha -1 N and the residual effect of n fertilizer on subsequent corn and brachiaria was highest after application of 180 kg ha -1 N. After the crop succession, soil n recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha -1 N. (author)

  18. A two-dimensional simulation model of phosphorus uptake including crop growth and P-response

    Mollier, A.; Willigen, de P.; Heinen, M.; Morel, C.; Schneider, A.; Pellerin, S.

    2008-01-01

    Modelling nutrient uptake by crops implies considering and integrating the processes controlling the soil nutrient supply, the uptake by the root system and relationships between the crop growth response and the amount of nutrient absorbed. We developed a model that integrates both dynamics of maize

  19. Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA.

    Ferrero, Rosana; Lima, Mauricio; Davis, Adam S; Gonzalez-Andujar, Jose L

    2017-01-01

    Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields

  20. EFFECT OF DIFFERENT MULCHES ON THE CONTROL OF UNWISHED PLANTS IN MAIZE CROP (Zea mays EFEITO DE DIVERSAS ESPÉCIES DE COBERTURA MORTA SOBRE O CONTROLE DE PLANTAS DANINHAS DA CULTURA DO MILHO

    Rogério de Araújo Almeida

    2007-09-01

    Full Text Available

    Researches of many South American countries point the zero tillage system of crop production for little farmers as a responsible factor for best soil and water conservation, less costs of production and best profits to improve the rural way of life. The treatments usually include the application of herbicides. To find agricultural systems that allow zero tillage without herbicide or with reduced usage has been considered a challenge by the researchers. This experiment was carried out in order to evaluate the effects of different mulches on the control of unwished plants in maize crop (Zea mays. Plants such as sunhemp (Crotalaria juncea, millet (Pennisetum americanum and sunflower (Helianthus annus L. cv. Stanzuela and V 2000 were grown in 100 m² areas. The sowing was made at the second April fortnight and, after sixty days, the zero tillage system with maize was established by using a manual planting machine. Just after, the plants grown in the plots were manually cut and used as mulch. The soil fertility was corrected according to the laboratorial analyses and the plant population adopted was around 60,000 plants per hectare. No weed control was made. At the maize flowering, the seed weeds grown in the plots were collected by using two samples of 1 m² plot (two replications. The plant material was dried till constant weight. Statistical analyses obtained from the data indicated the millet mulch as the best treatment to the weed control.

  1. Multi-Seasonal Nitrogen Recoveries from Crop Residue in Soil and Crop in a Temperate Agro-Ecosystem.

    Guoqing Hu

    Full Text Available In conservation tillage systems, at least 30% of the soil surface was covered by crop residues which generally contain significant amounts of nitrogen (N. However, little is known about the multi-seasonal recoveries of the N derived from these crop residues in soil-crop systems, notably in northeastern China. In a temperate agro-ecosystem, 15N-labeled maize residue was applied to field surfaces in the 1st year (2009. From the 2nd to 4th year (2010-2012, one treatment halted the application of maize residue, whereas the soil in the second treatment was re-applied with unlabeled maize residue. Crop and soil samples were collected after each harvest, and their 15N enrichments were determined on an isotope ratio mass spectrometer to trace the allocation of N derived from the initially applied maize residue in the soil-crop systems. On average, 8.4% of the maize residue N was recovered in the soil-crop in the 1st year, and the vast majority (61.9%-91.9% was recovered during subsequent years. Throughout the experiment, the cumulative recovery of the residue N in the crop increased gradually (18.2%-20.9%, but most of the residue N was retained in the soil, notably in the 0-10 cm soil layer. Compared to the single application, the sequential residue application significantly increased the recovery of the residue N in the soil profile (73.8% vs. 40.9% and remarkably decreased the total and the initially applied residue derived mineral N along the soil profile. Our results suggested that the residue N was actively involved in N cycling, and its release and recovery in crop and soil profile were controlled by the decomposition process. Sequential residue application significantly enhanced the retention and stabilization of the initially applied residue N in the soil and retarded its translocation along the soil profile.

  2. Multi-Seasonal Nitrogen Recoveries from Crop Residue in Soil and Crop in a Temperate Agro-Ecosystem.

    Hu, Guoqing; Liu, Xiao; He, Hongbo; Zhang, Wei; Xie, Hongtu; Wu, Yeye; Cui, Jiehua; Sun, Ci; Zhang, Xudong

    2015-01-01

    In conservation tillage systems, at least 30% of the soil surface was covered by crop residues which generally contain significant amounts of nitrogen (N). However, little is known about the multi-seasonal recoveries of the N derived from these crop residues in soil-crop systems, notably in northeastern China. In a temperate agro-ecosystem, 15N-labeled maize residue was applied to field surfaces in the 1st year (2009). From the 2nd to 4th year (2010-2012), one treatment halted the application of maize residue, whereas the soil in the second treatment was re-applied with unlabeled maize residue. Crop and soil samples were collected after each harvest, and their 15N enrichments were determined on an isotope ratio mass spectrometer to trace the allocation of N derived from the initially applied maize residue in the soil-crop systems. On average, 8.4% of the maize residue N was recovered in the soil-crop in the 1st year, and the vast majority (61.9%-91.9%) was recovered during subsequent years. Throughout the experiment, the cumulative recovery of the residue N in the crop increased gradually (18.2%-20.9%), but most of the residue N was retained in the soil, notably in the 0-10 cm soil layer. Compared to the single application, the sequential residue application significantly increased the recovery of the residue N in the soil profile (73.8% vs. 40.9%) and remarkably decreased the total and the initially applied residue derived mineral N along the soil profile. Our results suggested that the residue N was actively involved in N cycling, and its release and recovery in crop and soil profile were controlled by the decomposition process. Sequential residue application significantly enhanced the retention and stabilization of the initially applied residue N in the soil and retarded its translocation along the soil profile.

  3. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis.

    van der Linde, Karina; Kastner, Christine; Kumlehn, Jochen; Kahmann, Regine; Doehlemann, Gunther

    2011-01-01

    Infection of maize (Zea mays) plants with the corn smut fungus Ustilago maydis leads to the formation of large tumors on the stem, leaves and inflorescences. In this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed massive and stage-specific changes in host gene expression during disease progression. To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a virus-induced gene silencing (VIGS) system based on the brome mosaic virus (BMV) for maize. Conditions were established that allowed successful U. maydis infection of BMV-preinfected maize plants. This set-up enabled quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (qRT-PCR)-based readout. In proof-of-principle experiments, an U. maydis-induced terpene synthase was shown to negatively regulate disease development while a protein involved in cell death inhibition was required for full virulence of U. maydis. The results suggest that this system is a versatile tool for the rapid identification of maize genes that determine compatibility with U. maydis. © (2010) Max Planck Society. Journal compilation © New Phytologist Trust (2010).

  4. Effects of maize planting patterns on the performance of cassava ...

    sola

    The design was a split-plot arrangement, laid out in a randomized ... significant differences (P<0.05) between the treatments in the growth and yield parameters of maize. The mean effects of companion crops on maize leaf area were 0.61, 0.60, 0.60 and 0.52 m2/plant for sole maize, maize / melon, maize / cassava and.

  5. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    Buddhi Bahadur Achhami; Santa Bahadur BK; Ghana Shyam Bhandari

    2015-01-01

    Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage per...

  7. Organic versus Conventional Cropping Sustainability: A Comparative System Analysis

    Tiffany L. Fess

    2018-01-01

    Full Text Available We are at a pivotal time in human history, as the agricultural sector undergoes consolidation coupled with increasing energy costs in the context of declining resource availability. Although organic systems are often thought of as more sustainable than conventional operations, the lack of concise and widely accepted means to measure sustainability makes coming to an agreement on this issue quite challenging. However, an accurate assessment of sustainability can be reached by dissecting the scientific underpinnings of opposing production practices and crop output between cropping systems. The purpose of this review is to provide an in-depth and comprehensive evaluation of modern global production practices and economics of organic cropping systems, as well as assess the sustainability of organic production practices through the clarification of information and analysis of recent research. Additionally, this review addresses areas where improvements can be made to help meet the needs of future organic producers, including organic-focused breeding programs and necessity of coming to a unified global stance on plant breeding technologies. By identifying management strategies that utilize practices with long-term environmental and resource efficiencies, a concerted global effort could guide the adoption of organic agriculture as a sustainable food production system.

  8. Tillage System and Cover Crop Effects on Soil Quality

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    ), and moldboard plowing (MP) with and without a cover crop were evaluated in a long-term experiment on a sandy loam soil in Denmark. Chemical, physical, and biological soil properties were measured in the spring of 2012. The field measurements included mean weight diameter (MWD) after the drop-shatter test......, penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K......Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H...

  9. Managed Multi-strata Tree + Crop Systems: An Agroecological Marvel

    P. K. Ramachandran Nair

    2017-12-01

    Full Text Available Today, when the emphasis on single-species production systems that is cardinal to agricultural and forestry programs the world over has resulted in serious ecosystem imbalances, the virtues of the time-tested practice of growing different species together as in managed Multi-strata Tree + Crop (MTC systems deserve serious attention. The coconut-palm-based multispecies systems in tropical homegardens and shaded perennial systems are just two such systems. A fundamental ecological principle of these systems is niche complementarity, which implies that systems that are structurally and functionally more complex than crop- or tree monocultures result in greater efficiency of resource (nutrients, light, and water capture and utilization. Others include spatial and temporal heterogeneity, perennialism, and structural and functional diversity. Unexplored or under-exploited areas of benefits of MTC systems include their ecosystem services such as carbon storage, climate regulation, and biodiversity conservation. These multispecies integrated systems indeed represent an agroecological marvel, the principles of which could be utilized in the design of sustainable as well as productive agroecosystems. Environmental and ecological specificity of MTC systems, however, is a unique feature that restricts their comparison with other land-use systems and extrapolation of the management features used in one location to another.

  10. Cover crop root, shoot, and rhizodeposit contributions to soil carbon in a no- till corn bioenergy cropping system

    Austin, E.; Grandy, S.; Wickings, K.; McDaniel, M. D.; Robertson, P.

    2016-12-01

    Crop residues are potential biofuel feedstocks, but residue removal may result in reduced soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass and as well as help to mitigate the negative effects of residue removal by adding belowground C to stable soil C pools. In a no-till continuous corn bioenergy system in the northern portion of the US corn belt, we used 13CO2 pulse labeling to trace C in a winter rye (secale cereale) cover crop into different soil C pools for two years following rye termination. Corn stover contributed 66 (another 163 was in harvested corn stover), corn roots 57, rye shoot 61, rye roots 59, and rye rhizodeposits 27 g C m-2 to soil C. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools and much of the root-derived C was in mineral- associated soil fractions. Our results underscore the importance of cover crop roots vs. shoots as a source of soil C. Belowground C inputs from winter cover crops could substantially offset short term stover removal in this system.

  11. nteraction of nutrient resource and crop diversity on resource use efficiency in different cropping systems

    E azizi

    2016-05-01

    of 3 soybean varieties, intercropping of millet, soybean and sesame and intercropping of millet, sesame, fenugreek and ajowan showed the highest NUE. In the two years, intercropping of millet, soybean and sesame and intercropping of millet, sesame, fenugreek and ajowan showed the highest nitrogen and phosphorus absorption efficiency (NAE. Intercropping of millet, soybean and sesame showed the highest potassium uptake efficiency. In this study, nutrient resource did not have a significant effect on water and nutrient use efficiency. The research results have indicated that often nitrogen amount and use efficiency in legume and non legume intercropping were higher than monocultures. This indicates the synergist effect in the intercroppings (Vandermeer, 1989; Szumigalski & Van Acker, 2006. In general, the different benefits of diversity and better use of available inputs are obtained by increasing the diversity of crops and proper selection of plants cultivated in intercropping systems and crop rotations in monoculture systems Acknowledgments This research (044 p was funded by the Vice Chancellor for Research of the Ferdowsi University of Mashhad, which is hereby acknowledged.

  12. Automated irrigation systems for wheat and tomato crops in arid ...

    The results revealed that the water use efficiency (WUE) and irrigation water use efficiency (IWUE) were typically higher in the AIS than in the conventional irrigation control system (CIS). Under the AIS treatment, the WUE and IWUE values were 1.64 and 1.37 k·gm-3 for wheat, and 7.50 and 6.50 kg·m-3 for tomato crops; ...

  13. Dynamic cropping systems: Holistic approach for dryland agricultural systems in the northern Great Plains of North America

    Cropping systems over the past century have developed greater crop specialization, more effectively conserve our soil and water resources, and are more resilient. The purpose of this chapter is to discuss the evolution of cropping systems in the Northern Great Plains and provide an approach to crop...

  14. Using Winter Annual Cover Crops in a Virginia No-till Cotton Production System

    Daniel, James B. II

    1997-01-01

    Cotton (Gossypium hirsutum L.) is a low residue crop, that may not provide sufficient surface residue to reduce erosion and protect the soil. A winter annual cover crop could alleviate erosion between cotton crops. Field experiments were conducted to evaluate selected winter annual cover crops for biomass production, ground cover, and N assimilation. The cover crop treatments were monitored under no-till and conventional tillage systems for the effects on soil moisture, cotton yield and qu...

  15. Evapotranspiración y eficiencia en el uso de agua en intercultivos maíz-soja vs cultivos puros Evapotranspiration and water use efficiency in maize-soybean intercrops and the sole crops

    Cristian Valenzuela

    2009-12-01

    Full Text Available En este trabajo se evaluó la evapotranspiración real (ETR y la eficiencia en el uso de agua (EUA del intercultivo maíz-soja bajo dos arreglos espaciales y en los respectivos cultivos puros. El experimento se realizó en la Unidad Integrada Balcarce Facultad de Ciencias Agrarias, UNMdP-EEA INTA durante la campaña 2007-08. Los tratamientos fueron: a Intercultivo con dos surcos de soja y uno de maíz (2_1, b intercultivo con tres surcos de soja y dos de maíz (3_2, c maíz puro (M y d soja pura (S. El cultivo de maíz se sembró el 18/10 y el de soja el 3/12. La ETR acumulada entre la emergencia de maíz y la madurez fisiológica de soja fue de 586,7, 564,8, 570,5 y 596,0 mm para 2_1, 3_2, M y S, respectivamente. La EUA en biomasa (EUA B resultó significativamente más alta en M (44,5 kg-1mm-1 que en S (18,6 kg ha-1mm-1, 2_1 (35,3 kg ha-1mm-1 y 3_2 (35,3 kg ha-1mm-1. La EUA B de S fue significativamente menor que en los intercultivos. Las EUA en grano fueron 21,2, 5,5, 16,9 y 17,0 kg ha-1mm-1 para M, S, 2_1 e 3_2, respectivamente. La significancia de las diferencias entre tratamientos coincidió con la descripta para la EUA B.This work studies the real evapotranspiration (RET and the water use efficiency (WUE in a maize-soybean intercrop with two spatial arrangements and in their sole crops. The experiment was conducted in the UIB, FCA-UNMdP EEA INTA during the 2007-2008 season. Treatments were: a 2 rows soybeans and 1 row maize intercrop (2_1, b 3 rows soybean and 2 rows maize intercrop (3_2, c sole maize and d sole soybean. Crops were sown on October 18 (maize and December 3 (soybean. RET accumulated from maize emergence to soybean physiological maturity was 586,7, 564,8, 570,5 y 596,0 mm for 2_1, 3_2, sole maize and sole soybean, respectively. Water use efficiency (WUE as the quotient between accumulated shoot biomass and RET was significantly higher in sole maize (44,5 kg ha-1mm-1 than in sole soybean (18,6 kg ha-1mm-1, 2_1 (35,3 kg ha-1mm

  16. Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize

    Atoui, A.; El Khoury, A.; Kallassy, M.; Lebrihi, A.

    2012-01-01

    Zearalenone (ZEA) is a mycotoxin produced by some species of Fusarium, especially by Fusarium grami- nearum and F. culmorum. ZEA induces hyperoestrogenic responses in mammals and can result in reproductive disorders in farm animals. In the present study, a real-time PCR (qPCR) assay has been successfully developed for the detection and quantification of Fusarium graminearum based on primers targeting the gene PKS13 involved in ZEA biosynthesis. A standard curve was developed by plotting the logarithm of known concentrations of F. graminearum DNA against the cycle threshold (Ct) value. The developed real time PCR system was also used to analyze the occurrence of zearalenone producing F. graminearum strains on maize. In this context, DNA extractions were performed from thirty-two maize samples, and subjected to real time PCR. Maize samples also were analyzed for zearalenone content by HPLC. F. graminearum DNA content (pg DNA/ mg of maize) was then plotted against ZEA content (ppb) in maize samples. The regression curve showed a positive and good correlation (R2 = 0.760) allowing for the estimation of the potential risk from ZEA contamination. Consequently, this work offers a quick alternative to conventional methods of ZEA quantification and mycological detection and quantification of F. graminearum in maize. (author)

  17. Selected Chemical Properties of Soybean Rhizosphere Soil as Influenced by Cropping Systems, Rhizobium Inoculation, and the Supply of Phosphorus and Potassium after Two Consecutive Cropping Seasons

    Daniel Nyoki

    2018-01-01

    Full Text Available The field experiment was carried out in northern Tanzania to assess the effects of intercropping systems, Rhizobium inoculation, and fertilization with P and K on chemical properties of soybean rhizosphere soil. The experiment was laid out in split-split plot design with 2 × 4 × 7 factorial arrangement replicated thrice. The main plots had two inoculation treatments and the subplots were comprised of four cropping systems which were sole maize, sole soybean, and two intercropping at different soybean spacing (75 × 20 and 75 × 40 cm. The fertilizer levels (kg/ha control (0 kg/ha; 20 K; 40 K; 26 P; 52 P; 26 P + 20 K; and 52 P + 40 K were assigned to sub-subplots. Statistical analysis was performed using ANOVA. Least Significant Difference was used to compare treatment means at p=0.05 significance level. The results indicated that rhizosphere soil chemical properties such as pH, organic carbon (OC, and macro- and micronutrients (N, P, Ca, Mg, and Na and Fe, Cu, Mn, and Zn, resp. were significantly increased in the Rhizobium inoculated soybean over the control. The supply of P and K fertilizers significantly increased the rhizosphere content of macronutrients (P, K, Ca, and Mg and also they altered the pH and EC of the rhizosphere soil relative to control.

  18. Mutation breeding in Ajonjoli (Sesamum indicum, L.) for adaptation to the cropping system in Venezuela

    Oropeza, F.; Murty, B.R.; Bravo, R.M.

    1984-01-01

    Sesame, the main edible oil crop in Venezuela, is grown in a cropping system under peculiar ecological conditions after rice, sorghum or maize on residual moisture. The yields are variable with 350 to 500 Kg/Ha. The available varieties are not synchronous in flowering, have poor root development, and are susceptible to Fusarium sp, Phytophtora and Macrophomina. Some are very late (more than 115 days) with 1-3 capsules of variable size and unpredictable yield. A mutational rectification program using locally adapted varieties was started in 1981, to develop material suitable for the above ecological conditions. The main characteristics for improvement are: earliness, with maturity of 75 to 90 days, synchronous flowering, uniform ripening, indehiscence at harvesting but easy threshing, suitable plant type for mechanical harvesting, resistance specially to Macrophomina spp, without adverse effect on oil content, quality and yield and improved productivity and stability under moisture stress and improved fertilizer utilization. Eight varieties were treated with gamma radiation from Csub(o) 60 at 0, 20, 40, 60, 80 KR to determine varietal responses. The results show marked varietal differences in germination, growth and survival. The other three varieties: Aceitera, Arawaca, Turen were the most susceptible to radiation, while Glauca was the most resistant. Probit analysis of data for germination, vigor seedling height and survival revealed that no single character is adequate to determine LD 50 dose in mutation breeding. The need for taking all the parameters of regression analysis like b-tilde, and σ-circumflex to characterize varietal responses is discussed along with plans for the next stage of work. (author)

  19. Effects of alternative cropping systems on globe artichoke qualitative traits.

    Spanu, Emanuela; Deligios, Paola A; Azara, Emanuela; Delogu, Giovanna; Ledda, Luigi

    2018-02-01

    Traditionally, globe artichoke cultivation in the Mediterranean basin is based on monoculture and on use of high amounts of nitrogen fertiliser. This raises issues regarding its compatibility with sustainable agriculture. We studied the effect of one typical conventional (CONV) and two alternative cropping systems [globe artichoke in sequence with French bean (NCV1), or in biannual rotation (NCV2) with cauliflower and with a leguminous cover crop in inter-row spaces] on yield, polyphenol and mineral content of globe artichoke heads over two consecutive growing seasons. NCV2 showed statistical differences in terms of fresh product yield with respect to the monoculture systems. In addition, the dihydroxycinnamic acids and dicaffeoylquinic acids of non-conventional samples were one-fold significantly higher than the conventional one. All the samples reported good mineral content, although NCV2 achieved a higher Fe content than conventional throughout the two seasons. After two and three dates of sampling, the CONV samples showed the highest levels of K content. In our study, an acceptable commercial yield and quality of 'Spinoso sardo' were achieved by shifting the common conventional agronomic management to more sustainable ones, by means of an accurate choice of cover crop species and rotations introduced in the systems. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen

    King, Alison E.; Hofmockel, Kirsten S.

    2017-03-01

    Diversifying biologically simple cropping systems often entails altering other management practices, such as tillage regime or nitrogen (N) source. We hypothesize