WorldWideScience

Sample records for main power system

  1. Isolated systems with wind power. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Lundsager, P.; Bindner, H.; Clausen, N.E.; Frandsen, S.; Hansen, L.H.; Hansen, J.C.

    2001-06-01

    The overall objective of this research project is to study the development of methods and guidelines rather than 'universal solutions' for the use of wind energy in isolated communities. The main specific objective of the project is to develop and present a more unified and generally applicable approach for assessing the technical and economical feasibility of isolated power supply systems with wind energy. As a part of the project the following tasks were carried out: Review of literature, field measurements in Egypt, development of an inventory of small isolated systems, overview of end-user demands, analysis of findings and development of proposed guidelines. The project is reported in one main report and four topical reports, all of them issued as Risoe reports. This is the Main Report Risoe-R-1256, summing up the activities and findings of the project and outlining an Implementation Strategy for Isolated Systems with Wind Power, applicable for international organisations such as donor agencies and development banks. (au)

  2. Isolated systems with wind power. Main report

    DEFF Research Database (Denmark)

    Lundsager, P.; Bindner, Henrik W.; Clausen, Niels-Erik

    2001-01-01

    The overall objective of this research project is to study the development of methods and guidelines rather than "universal solutions" for the use of wind energy in isolated communities. The main specific objective of the project is to develop and present amore unified and generally applicable...... approach for assessing the technical and economical feasibility of isolated power supply systems with wind energy. As a part of the project the following tasks were carried out: Review of literature, fieldmeasurements in Egypt, development of an inventory of small isolated systems, overview of end...... for Isolated Systems with Wind Power, applicable for international organisations such as donoragencies and development banks....

  3. Modern technical diagnostic system for the main components of powerful turbine generator

    International Nuclear Information System (INIS)

    Ezovit, G.P.; Uglyarenko, V.P.; Burlaka, S.I.; Goroz, N.I.; Orinin, S.E.; Komaritsa, V.N.; Zav'yalov, D.N.; Mazurenko, O.A.

    2011-01-01

    The modern diagnostic system to monitor the technical state of a powerful turbine generator is considered. This system permits the detection of defects in its main components and cooling system at the early stage of their development, prevention of damage and, as a consequence, emergency shutdown of nuclear power units

  4. TQC works in newly-built nuclear power plant and main electric power system plannings

    International Nuclear Information System (INIS)

    Akiyama, Yoshihisa; Kawakatsu, Tadashi; Hashimoto, Yasuo

    1985-01-01

    In the Kansai Electric Power Co., Inc., TQC has been introduced to solve such major problems in nuclear power generation as the securing of nuclear power reliability, the suppression of rises in the costs, the reduction in long periods of power failure and the promotion in siting of nuclear power plants. It is thus employed as a means of the ''creation of a slim and tough business constitution''. The state of activities in Kansai Electric are described in quality assurance of a newly-built nuclear power plant and in raising the reliability of the main electric power system to distribute the generated nuclear power and further the future prospects are explained. (Mori, K.)

  5. The New Control and Interlock System for the SPS Main Power Converters

    CERN Document Server

    Denis, B; Mugnier, C; Varas, J

    1999-01-01

    The Control and Interlock System (CIS) of the SPS main power converters was designed in the mid-70s and became increasingly difficult to maintain. A new system based on Programmable Logic Controllers has been developed by an external contractor in close collaboration with CERN. The system is now operational and fully integrated in the SPS/LEP control infrastructure. The CIS is the first major contracted industrial solution used to control accelerator equipment directly involved in the production of particle beams at CERN. This paper gives an overview of the SPS main power converter installation and describes both the contractual and technical solution adopted for the CIS. It first explains how the system was specified and how the contractual relationship was defined to respect CERN’s purchasing rules and the operational requirements of the SPS accelerator. The architectural design of the new system is presented with special emphasis on how the conflict between safety and availability has been addressed.

  6. Optimization of the main control room habitability system in nuclear power plant

    International Nuclear Information System (INIS)

    Zheng Guanghui; Zhao Xinyan

    2013-01-01

    This article describes the optimization of main control room habitability system in nuclear power plant. It also describes the design shortage in terms of habitability in the main control room. Through modification and optimization, habitable conditions are met for personnel staying in the emergency area of the main control room for a period of time, with an aim to take accident intervention measures smoothly and reduce the accident loss and radioactive contamination as low as possible. (authors)

  7. Flexibility analysis of main primary heat transport system : Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Rastogi, S.K.

    1975-01-01

    The paper presents flexibility analysis problem of main primary heat transport system and the approximate analysis that has been made to estimate the loads coming on major equipments. The primary heat transport system for Narora Atomic Power Project is adopting vertical steam generators and pumps equally divided on either side of the reactor with inter-connecting pipes and feeders. Since the system is mainly spring supported with movement of a few points in certain direction defined but no anchorage, it represents a good problem for flexibility analysis which can only be solved in one step by developing a good computer programme. (author)

  8. Validation study on reliability analysis of main safety system in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Jin; Cho, Chang Keun; Kim, Yong Hui; Kim, Tae Hyeong; Hong, Seo Kee; Park, Keon Woo; Park, Chang Jea [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cheong, Woo Sik [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Moon Kyu [KEPRI, Taejon (Korea, Republic of)

    1993-12-15

    The scope and contents of this validation study are to review the design changes of the four main safety systems in Wolsong 2/3/4 Nuclear Power Plants, to review the consideration of the above design changes in the AECL reports, the structure of fault trees, and the data base used in the quantification of the fault trees, to quantify the unavailabilities of main safety systems and check them if they meet the requirements, and to recommend desirable design changes in the emergency core cooling system to reduce the unavailability.

  9. The simulation of control system for the KEK main ring power supply, 1

    International Nuclear Information System (INIS)

    Sato, Hikaru; Shintomi, Takakazu; Kubo, Tadashi; Masuda, Masayoshi; Nakano, Michio.

    1975-09-01

    The simulation of control system for the KEK main ring power supply is performed. The inductance of the magnet is assumed to be linear against to the current. The results of the simulations are described. (auth.)

  10. Simulation of the control system for the KEK main ring power supply-II

    International Nuclear Information System (INIS)

    Kabe, Atsushi; Sato, Hikaru; Masuda, Masayoshi; Takeda, Masahiro; Nakano, Michio

    1977-05-01

    The tracking error between the magnetic field of the bending magnets and that of the quadrupole magnets is a very important problem of the KEK main ring power supply. Tacking performance is simulated using DDS (Digital Dynamics Simulator) in cases of 8 GeV and 12 GeV operation of the KEK main ring. The results of simulation coincide with the data of actual system. (auth.)

  11. The AGS Booster main ring power supply system

    International Nuclear Information System (INIS)

    Soukas, A.; Hughes, K.; Sandberg, J.; Toldo, F.; Zhang, S.Y.

    1989-01-01

    The AGS Booster is being designed as a very versatile particle accelerator. Its primary function is to be a high quality injector to the currently operating Alternating Gradient Synchrotron (AGS). The Booster/AGS combination will produce proton intensities greater than 5 x 10 13 protons per pulse (ppp), and accelerate heavy ions, with mass up to 200, to a maximum energy of 15 GeV per atomic mass unit (GeV/amu). The power supply for the Booster Main Ring (BMRPS) has to accommodate a wide range of cycles and a wide range of operating parameters. The cycles range from storage for several seconds to rapid cycling at 7.5 Hz. The peak output power is 18 MW. This paper will describe the AGS Booster machine powering requirements, the choice of power supply, the a.c. circuit tie-in and its associated problems and some of the details of the design of the BMRPS. 9 refs., 2 figs

  12. Digitized operator evaluation system for main control room of nuclear power plant

    International Nuclear Information System (INIS)

    Chen Yu; Yan Shengyuan; Chen Wenlong

    2014-01-01

    In order to evaluate the human-machine system matching relation of main control room in nuclear power plant accurately and efficiently, the expression and parameters of operator human body model were analyzed, and the evaluation required function of digital operator was determined. Based on the secondary development technology, the digital operator evaluation body model was developed. It could choose generation, gender, operation posture, single/eyes horizon, and left/right hand up to the domain according to the needs of specific evaluation, it was used to evaluate whether display information can be visible and equipment can be touch, and it also has key evaluation functions such as workspace and character visibility at the same time. The examples show that this method can complete the evaluation work of human-machine matching relation for main control room of nuclear power plant accurately, efficiently and quickly, and achieve the most optimal human-machine coordination relationship. (authors)

  13. Main unit electrical protection at Sizewell 'B' power station

    International Nuclear Information System (INIS)

    Fischer, A.; Keates, T.

    1992-01-01

    For any power station, reliable electrical protection of the main generating units (generators plus generator transformers) has important commercial implications. Spurious trips cause loss of generation and consequent loss of revenue, while failure to rapidly isolate a fault leads to unnecessary damage and again, loss of generation and revenue. While these conditions apply equally to Sizewell B there are additional factors to be taken into consideration. A spurious trip of a main generating unit may lead to a trip of the reactor with an associated challenge to the shutdown and core cooling plant. The generator transformers, besides exporting power from the generators to the 400 kV National Grid, also import power from the Grid to the 11 kV Main Electrical System, which in turn is the preferred source of supply to the Essential Electrical System. The Main Unit Protection is designed to clear generator faults leaving this off-site power route intact. Hence failure to operate correctly could affect the integrity of the Essential Electrical Supplies. (Author)

  14. TRIGA reactor main systems

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2007-01-01

    This module describes the main systems of low power (<2 MW) and higher power (≥2 MW) TRIGA reactors. The most significant difference between the two is that forced reactor cooling and an emergency core cooling system are generally required for the higher power TRIGA reactors. However, those TRIGA reactors that are designed to be operated above 3 MW also use a TRIGA fuel that is specifically designed for those higher power outputs (3 to 14 MW). Typical values are given for the respective systems although each TRIGA facility will have unique characteristics that may only be determined by the experienced facility operators. Due to the inherent wide scope of these research reactor facilities construction and missions, this training module covers those systems found at most operating TRIGA reactor facilities but may also discuss non-standard equipment that was found to be operationally useful although not necessarily required. (author)

  15. Nuclear power station main control room habitability

    International Nuclear Information System (INIS)

    Paschal, W.B.; Knous, W.S.

    1989-01-01

    The main control room at a nuclear power station must remain habitable during a variety of plant conditions and postulated events. The control room habitability requirement and the function of the heating, ventilating, air-conditioning, and air treatment system are to control environmental factors, such as temperature, pressure, humidity, radiation, and toxic gas. Habitability requirements provide for the safety of personnel and enable operation of equipment required to function in the main control room. Habitability as an issue has been gaining prominence with the Advisor Committee of Reactor Safeguards and the Nuclear Regulatory Commission since the incident at Three Mile Island. Their concern is the ability of the presently installed habitability systems to control the main control room environment after an accident. This paper discusses main control room HVAC systems; the concern, requirements, and results of NRC surveys and notices; and an approach to control room habitability reviews

  16. Water hammer calculation and analysis in main feedwater system of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Wang Xin; Han Weishi

    2010-01-01

    The main feedwater system of a nuclear power plant is an important part in ensuring the cooling of the steam generator. Moreover, it is the main pipe section where water hammers frequently occur. Studying the regular patterns of water hammers to the main feedwater system is significant to the stable operation of the system. The paper focuses on the study of water hammers through Flowmaster's transient calculating function to establish a mathematical model with boundary conditions such as a feedwater pump, control valves, etc.; calculation of the water hammers pressure when feedwater pumps and control valves shut down; exporting the instantaneous change in solution of pressure. Combined with engineering practical examples, the conclusions verify the viability of calculating the water hammers pressure through Flowmaster's transient function, increasing the periods of closure of control valves and feedwater pumps control water hammers effectively, changing the intervals of closing signals to feedwater pumps and control valves to relieve hydraulic impact. This could be a guideline for practical engineering design and system optimization. (authors)

  17. Simulation of main steam and feedwater system of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zhao Xiaoyu

    1996-01-01

    The simulation of main steam and feedwater system is the most important and maximal part in secondary circuit model, including all of main steam and feedwater's thermal-hydraulic properties, except heat-exchange of secondary side of steam generator. It simulates main steam header, steam power in each stage of turbine, moisture separator-reheater, deaerator, condenser, high pressure and low pressure heater, auxiliary feedwater and main steam bypass in full scope

  18. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  19. Integrated Main Propulsion System Performance Reconstruction Process/Models

    Science.gov (United States)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  20. Factors analysis of water hammer in FLOWMASTER for main feedwater systems of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Wang Xin; Han Weishi

    2010-01-01

    The main feedwater system of a nuclear power plant (NPP) is an important part in ensuring the cooling of a steam generator. It is the main pipe section where water hammers frequently occur. Studying the regulator patterns of water hammers in the main feedwater systems is significant to the stable operation of the system. This article focuses on a parametric study to avoid the consequences of water hammer effect in PWR by employing a general purpose fluid dynamic simulation software-FLOWMASTER. Through FLOWMASTER's transient calculating functions, a mathematical model is established with boundary conditions such as feedwater pumps, control valves, etc., calculations of water hammer pressure when feedwater pumps and control valves shut down, and simulations during instantaneous changes in water hammer pressure. Combining a plethora of engineering practical examples, this research verified the viability of calculating water hammer pressure through FLOWMASTER's transient functions and we found out that, increasing the periods of closure of control valves and feedwater pumps control water hammers effectively. We also found out that changing the intervals of closing signals to feedwater pumps and control valves aid to relieve hydraulic impact. This could be a guideline for practical engineering design and system optimization. (author)

  1. Ripple characteristic of the main ring magnet power supply for the KEK 12 GeV PS

    International Nuclear Information System (INIS)

    Sato, Hikaru; Sueno, Tuyosi; Mikawa, Katsuhiko

    1995-01-01

    First of all, general description of the main ring magnet power supply for the KEK 12 GeV PS will be described. The main power supply consists of thyristor rectifiers, DC filters, reactive power compensators, AC harmonic filters and control systems. Devices and control systems for suppressing ripple component of magnet field will be described. (author)

  2. THE ANALYSIS OF STRUCTURAL RELIABILITY OF THE MAIN ELECTRIC CONNECTION CIRCUITS OF NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    M. A. Korotkevich

    2017-01-01

    Full Text Available The reliability of the main circuit of electrical connections at a nuclear electric power plant that has two units with a capacity of 1,200 MW each has been determined. Reliability, economical, maneuverable properties of the atomic power plant under study are largely determined by its main circuit, so the choice of the circuit for the design and its status in the process of operation occur to be critical objectives. Main electrical connection circuits in nuclear electric power plants are selected on the basis of the schematic networks of the energy system and the land attached to the plant. The circuit of the connection of a nuclear power plant to the grid in the original normal operating modes at all stages of the construction of such a plant should provide the outcome of the full added capacity of a nuclear power plant and the preservation of its stability in the power system without the influence of the emergency system automatics when any outgoing transmission line is disabled. When selecting the main circuit the individual capacity of the installed units and their number are taken into account as well as the order of development of the plant and power supply system; the voltage on which the power of a plant is delivered; a shortcircuit current for switchgear high voltage and the need for their limitation by circuit means; the most power that can be lost when damage to any switch. A model of reliability of the main circuit of electrical connections is designed to detect all types of accidents that are possible at the coincidence of failures of elements with the repair and operational modes that differs in composition and damageability of the equipment, as well as under conditions of the development of accidents due to failure of operation of devices of relay protection and automation.

  3. Main Power Distribution Unit for the Jupiter Icy Moons Orbiter (JIMO)

    Science.gov (United States)

    Papa, Melissa R.

    2004-01-01

    Around the year 2011, the Jupiter Icy Moons Orbiter (JIMO) will be launched and on its way to orbit three of Jupiter s planet-sized moons. The mission goals for the JIMO project revolve heavily around gathering scientific data concerning ingredients we, as humans, consider essential: water, energy and necessary chemical elements. The JIM0 is an ambitious mission which will implore propulsion from an ION thruster powered by a nuclear fission reactor. Glenn Research Center is responsible for the development of the dynamic power conversion, power management and distribution, heat rejection and ION thrusters. The first test phase for the JIM0 program concerns the High Power AC Power Management and Distribution (PMAD) Test Bed. The goal of this testing is to support electrical performance verification of the power systems. The test bed will incorporate a 2kW Brayton Rotating Unit (BRU) to simulate the nuclear reactor as well as two ION thrusters. The first module of the PMAD Test Bed to be designed is the Main Power Distribution Unit (MPDU) which relays the power input to the various propulsion systems and scientific instruments. The MPDU involves circuitry design as well as mechanical design to determine the placement of the components. The MPDU consists of fourteen relays of four different variations used to convert the input power into the appropriate power output. The three phase system uses 400 Vo1ts(sub L-L) rms at 1000 Hertz. The power is relayed through the circuit and distributed to the scientific instruments, the ION thrusters and other controlled systems. The mechanical design requires the components to be positioned for easy electrical wiring as well as allowing adequate room for the main buss bars, individual circuit boards connected to each component and power supplies. To accomplish creating a suitable design, AutoCAD was used as a drafting tool. By showing a visual layout of the components, it is easy to see where there is extra room or where the

  4. Migration of Older to New Digital Control Systems in Nuclear Power Plant Main Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, Casey Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    The United States (U.S.) Department of Energy (DOE) Office of Nuclear Energy (NE) has the primary mission to advance nuclear power by resolving socio-technical issues through research and development (R&D). One DOE-NE activity supporting this mission is the Light Water Reactor Sustainability (LWRS) program. LWRS has the overall objective to sustain the operation of existing commercial nuclear power plants (NPPs) through conducting R&D across multiple “pathways,” or R&D focus areas. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies pathway conducts targeted R&D to address aging and reliability concerns with the legacy instrumentation and control (I&C) and related information systems in operating U.S. NPPs. This work involves (1) ensuring that legacy analog II&C systems are not life-limiting issues for the LWR fleet, and (2) implementing digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Under the LWRS Advanced II&C pathway, Human Factors experts at Idaho National Laboratory (INL) have been conducting R&D in support of NPP main control room (MCR) modernization activities. Work in prior years has focused on migrating analog I&C systems to new digital I&C systems (). In fiscal year 2016 (FY16), one new focus area for this research is migrating older digital I&C systems to new and advanced digital I&C systems. This report summarizes a plan for conducting a digital-to-digital migration of a legacy digital I&C system to a new digital I&C system in support of control room modernization activities.

  5. Migration of Older to New Digital Control Systems in Nuclear Power Plant Main Control Rooms

    International Nuclear Information System (INIS)

    Kovesdi, Casey Robert; Joe, Jeffrey Clark

    2016-01-01

    The United States (U.S.) Department of Energy (DOE) Office of Nuclear Energy (NE) has the primary mission to advance nuclear power by resolving socio-technical issues through research and development (R&D). One DOE-NE activity supporting this mission is the Light Water Reactor Sustainability (LWRS) program. LWRS has the overall objective to sustain the operation of existing commercial nuclear power plants (NPPs) through conducting R&D across multiple ''pathways,'' or R&D focus areas. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies pathway conducts targeted R&D to address aging and reliability concerns with the legacy instrumentation and control (I&C) and related information systems in operating U.S. NPPs. This work involves (1) ensuring that legacy analog II&C systems are not life-limiting issues for the LWR fleet, and (2) implementing digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Under the LWRS Advanced II&C pathway, Human Factors experts at Idaho National Laboratory (INL) have been conducting R&D in support of NPP main control room (MCR) modernization activities. Work in prior years has focused on migrating analog I&C systems to new digital I&C systems (). In fiscal year 2016 (FY16), one new focus area for this research is migrating older digital I&C systems to new and advanced digital I&C systems. This report summarizes a plan for conducting a digital-to-digital migration of a legacy digital I&C system to a new digital I&C system in support of control room modernization activities.

  6. The AGS main magnet power supply upgrade

    International Nuclear Information System (INIS)

    Sandberg, J.N.; Casella, R.; Geller, J.; Marneris, I.; Soukas, A.; Schumburg, N.

    1995-01-01

    The AGS Main Magnet Power Supply consists of a group of thyristor controlled power converters that operate from full rectify to full invert. In order to minimize ripple during the critical periods of injection and extraction 24 pulse converters are used for these portions of the cycle. The maximum voltage available in this mode is nominally 2,000 volts. The converters that are functional during this portion of the cycle are called the flat-top bank or ''F'' bank modules. During acceleration and invert where voltages of up to 12,000 volts are needed and where the ripple requirements are less stringent, groups of twelve pulse converters are operational. These converters are called the Pulsed bank or ''P'' bank modules. The original controlled rectifier system consisted of 96 large mercury filled excitron tubes divided equally between the P bank and F bank converters. These devices were extremely durable and ran successfully for over twenty years. It was, decided to replace the excitron farm with multiple arrangements of three-phase, full-wave, bridge modules that utilize silicon controlled rectifiers (SCR's or thyristors) as the switching element. In order to match the existing transformer connections and buswork, eight identical modules were required; four for the P bank system and four for the F bank system. In order to reduce noise pickup and provide electrical isolation the high level SCR gate triggers are provided via fiberoptic cable. The status of various parameters such as water flow, auxiliary power supply performance, trigger circuitry failure, over voltage, overcurrent, and loss of phase reference are monitored via a programmable logic controller (PLCs). The PLCs use isolated input and output modules for various voltage levels from TTL to 150 Vdc to 125 Vac. These devices are extremely flexible and have allowed modifications and improvements that have enhanced the performance over any equivalent hard wired system

  7. Analysis of main dynamic parameters of split power transmission

    Directory of Open Access Journals (Sweden)

    A. Janulevičius

    2008-06-01

    Full Text Available The review carried out had shown one basic approach of split power transmission to the organization of drive which is applied to stepless transmissions of tractors and parallel hybrid cars. In the split power transmission the power split device uses a planetary gear. Tractor engine power in the split power transmission is transmitted to the drive shaft via a mechanical and hydraulic path. The theoretical analysis of main parameters of the split power transmission of the tractor is presented. The angular velocity of sun and coronary gears of the differential set is estimated by solution of the system of equations in which one equation is made for planetary differential gear, and another – for hydrostatic drive. The analysis of the transmission gear-ratio dependencies on the ratio of hydraulic machines capacities is carried out. Dependence of the variation of angular velocity of the coronary and the sun gears on the ground speed of the tractor is presented. Dependence of sum shaft torque and its constituents, carried by mechanical and hydraulic lines, on sum shaft angular velocity and ground speed of tractor and engine speed is also presented.

  8. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... and unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility......, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented to increase...

  9. The influence of the political, economic and main force risk factors on the power system

    International Nuclear Information System (INIS)

    Barbu, C.; Ruxanda, G.

    1996-01-01

    This paper deals mainly with the economic aspects of the Romanian power development policy in the context of European Union integration. There are presented the gradual steps of regional interconnection which are currently undertaken under PHARE program. Special attention is given to the legislation, power production technology, costs, and environmental protection problems. (C.M.) 1 fig

  10. Impact of Wind Power on the Angular Stability of a Power System

    Directory of Open Access Journals (Sweden)

    Djemai NAIMI

    2008-06-01

    Full Text Available Wind energy conversion systems are very different in nature from conventional generators. Therefore dynamic studies must be addressed in order to integrate wind power into the power system. Angular stability assessment of wind power generator is one of main issues in power system security and operation. The angular stability for the wind power generator is determined by its corresponding Critical Clearing Time (CCT. In this paper, the effect of wind power on the transient fault behavior is investigated by replacing the power generated by two main types of wind turbine, increasing gradually a rate of wind power penetration and changing the location of wind resources. The simulation analysis was established on a 14 bus IEEE test system by PSAT/Matlab, which gives access to an extensive library of grid components, and relevant wind turbine model.

  11. Surge currents and voltages at the low voltage power mains during lightning strike to a GSM tower

    Energy Technology Data Exchange (ETDEWEB)

    Markowska, Renata [Bialystok Technical University (Poland)], E-mail: remark@pb.edu.pl

    2007-07-01

    The paper presents the results of numerical calculations of lightning surge currents and voltages in the low voltage power mains system connected to a free standing GSM base station. Direct lightning strike to GSM tower was studied. The analysis concerned the current that flows to the transformer station through AC power mains, the potential difference between the grounding systems of the GSM and the transformer stations and the voltage differences between phase and PE conductors of the power mains underground cable at both the GSM and the transformer sides. The calculations were performed using a numerical program based on the electromagnetic field theory and the method of moments. (author)

  12. Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    Energy Technology Data Exchange (ETDEWEB)

    Carnegie Mellon University

    2008-09-30

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design, field-trial and Magnetic Flux Leakage (MFL) sensor evaluation program for the next-generation Explorer-II (X-II) live gas main Non-destructive Evaluation (NDE) and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The resulting robot-train system with CAD renderings of the individual modules. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules

  13. The electrical system of nuclear power plant

    International Nuclear Information System (INIS)

    Firman Silitonga; Gunarwan Prayitno

    2009-01-01

    In these system, electrical power system is supplied from two-offsite transmission system respective main transformer and house service transformer; and reserve transformer. The electrical load in these system consist of safety electrical system and non-safety electrical system, The safety electrical and non safety electrical systems consist of four 6,9 kV AC medium voltage bus and 480 V AC low voltage bus system. The DC power system consist of four safety 125 V DC power system and the two non-safety 125 DC power systems. The equipment in these electrical system is main turbine-generator; GTG safety; GTG alternate; uninterrupted power supply (UPS) and battery system. To protect electrical equipment and building to direct stroke and non direct stroke disturbances is installed netral grounding system and lightning protection and protection the personnel to touch-voltage is installed equipment grounding system and station grounding. The lightning arrester system is connected to station station grounding system. (author)

  14. Booster main magnet power supply, present operation and potential future upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Bajon, E.; Bannon, M.; Marneris, I.; Danowski, G.; Sandberg, J.; Savatteri, S.

    2011-03-28

    The Brookhaven Booster Main Magnet Power Supply (MMPS) is a 24 pulse thyristor control supply, rated at 5500 Amps, +/-2000 Volts, or 3000 Amps, +/-6000 Volts. The power supply is fed directly from the power utility and the peak magnet power is 18 MWatts. This peak power is seen directly at the incoming ac line. This power supply has been in operation for the last 18 years. This paper will describe the present topology and operation of the power supply, the feedback control system and the different modes of operation of the power supply. Since the power supply has been in operation for the last 18 years, upgrading this power supply is essential. A new power supply topology has been studied where energy is stored in capacitor banks. DC to DC converters are used to convert the dc voltage stored in the capacitor banks to pulsed DC voltage into the magnet load. This enables the average incoming power from the ac line to be constant while the peak magnet power is pulsed to +/- 18 MWatts. Simulations and waveforms of this power supply will be presented.

  15. Dynamic influences of wind power on the power system

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Pedro

    2003-03-01

    The thesis first presents the basics influences of wind power on the power system stability and quality by pointing out the main power quality issues of wind power in a small-scale case and following, the expected large-scale problems are introduced. Secondly, a dynamic wind turbine model that supports power quality assessment of wind turbines is presented. Thirdly, an aggregate wind farm model that support power quality and stability analysis from large wind farms is presented. The aggregate wind farm model includes the smoothing of the relative power fluctuation from a wind farm compared to a single wind turbine. Finally, applications of the aggregate wind farm model to the power systems are presented. The power quality and stability characteristics influenced by large-scale wind power are illustrated with three cases. In this thesis, special emphasis has been given to appropriate models to represent the wind acting on wind farms. The wind speed model to a single wind turbine includes turbulence and tower shadow effects from the wind and the rotational sampling turbulence due to the rotation of the blades. In a park scale, the wind speed model to the wind farm includes the spatial coherence between different wind turbines. Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suitable to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power system quality and stability. The flicker and frequency deviations are the main power quality parameters presented. The power system stability concentrates on the voltage stability and on the power system oscillations. From the cases studied, voltage and the frequency variations were smaller than expected from the large-scale wind power integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting large

  16. Power demand operation - environment and potential. Proposals for main project

    International Nuclear Information System (INIS)

    Wathne, M.

    1995-01-01

    This report discusses proposals for a main project on environmental and other problems arising when hydroelectric power stations supply energy at gigawatt levels. The project aims in particular to identify environmental problems where too little is known today for proper planning of this type of operation. The proposals emphasize the consequences which cannot be adequately analysed in terms of current techniques. These techniques presuppose steady state conditions. One proposal concerns market terms for power sales. Other proposals deal with hydrological data and uncertainty, capacity of watercourses, ice and temperature, aquatic eco-systems, erosion, supersaturation of water with air, flooding and dam breaks, impact on climate, inflow of fresh water in fjords and impact on algae. 33 refs., 4 tabs

  17. A coupled 3-D kinetics/system thermal-hydraulic analysis of main steam line break accident for Optimized Power Reactor 1000

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yung Kwon; Choi, Chul Jin; Kim, Eun Kee; Lee, Sang Yong [Korea Power Engineering Company, Inc, 150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2006-07-01

    This paper presents the results of the coupled 3-D neutronics/thermal-hydraulic analysis of hypothetical main steam line break (MSLB) accident for Optimized Power Reactor 1000. One of the major concerns of this accident is a return-to-power occurrence accompanied with extremely large radial peaking near the stuck Control Element Assembly (CEA). The conventional point kinetics application does not properly account for this kind of asymmetric and local core behavior. Therefore, the current licensing method of point kinetics application introduces some uncertainties and conservatisms in the physics parameters generation, e.g., the static net scram rod worth, moderator cooldown reactivity, Doppler reactivity, and a 3-D peaking factor. The recently developed UNICORN-TM code system is applied for the 3-D coupled calculation, where neutronics code MASTER is coupled with the best-estimate system transient code RETRAN. The 3-D coupled results were assessed in comparison with those by point kinetics application using stand-alone RETRAN application. To quantify the 3-D reactivity benefits over point kinetics, both calculations assumed the accidents to be initiated from the same core state, e.g., end of cycle burnup, fuel and CEA configuration with the same initial moderator and Doppler temperature coefficient, and with initial system thermal-hydraulic condition. The core physics parameters required for point kinetics application were produced using MASTER with the method and procedure consistent with the current licensing application. The occurrence of return-to-power was simulated by intentionally reducing the net CEA worth in order to assess the spatial power distribution and local T-H effect on the dynamic reactivity feedback. The results have demonstrated that the 3-D analysis removes some of the conservatisms inherent in point kinetics analysis mainly caused by the inability to properly account for local reactivity feedback effects during return-to-power transient

  18. A coupled 3-D kinetics/system thermal-hydraulic analysis of main steam line break accident for Optimized Power Reactor 1000

    International Nuclear Information System (INIS)

    Jin, Yung Kwon; Choi, Chul Jin; Kim, Eun Kee; Lee, Sang Yong

    2006-01-01

    This paper presents the results of the coupled 3-D neutronics/thermal-hydraulic analysis of hypothetical main steam line break (MSLB) accident for Optimized Power Reactor 1000. One of the major concerns of this accident is a return-to-power occurrence accompanied with extremely large radial peaking near the stuck Control Element Assembly (CEA). The conventional point kinetics application does not properly account for this kind of asymmetric and local core behavior. Therefore, the current licensing method of point kinetics application introduces some uncertainties and conservatisms in the physics parameters generation, e.g., the static net scram rod worth, moderator cooldown reactivity, Doppler reactivity, and a 3-D peaking factor. The recently developed UNICORN-TM code system is applied for the 3-D coupled calculation, where neutronics code MASTER is coupled with the best-estimate system transient code RETRAN. The 3-D coupled results were assessed in comparison with those by point kinetics application using stand-alone RETRAN application. To quantify the 3-D reactivity benefits over point kinetics, both calculations assumed the accidents to be initiated from the same core state, e.g., end of cycle burnup, fuel and CEA configuration with the same initial moderator and Doppler temperature coefficient, and with initial system thermal-hydraulic condition. The core physics parameters required for point kinetics application were produced using MASTER with the method and procedure consistent with the current licensing application. The occurrence of return-to-power was simulated by intentionally reducing the net CEA worth in order to assess the spatial power distribution and local T-H effect on the dynamic reactivity feedback. The results have demonstrated that the 3-D analysis removes some of the conservatisms inherent in point kinetics analysis mainly caused by the inability to properly account for local reactivity feedback effects during return-to-power transient

  19. Development of a hardware-in- loop simulation platform for NPP main control systems

    Directory of Open Access Journals (Sweden)

    Liu Pengfei

    2017-01-01

    Full Text Available The simulation technology of the nuclear power plant are gradually applying to the nuclear power industry. However, most of the research on nuclear power plant simulation system only focus on pure computerized simulation at present, and it is difficult to fully display the characteristics of the simulating objects. In order to simulate the response characteristics of control system more really, a hardware-in-loop simulation platform of main control systems in the nuclear power plant has been developed in this paper. This simulation platform consists of thermal-hydraulic model, control and protection system model, physical DCS system and real-time interactive database. A physical industrial DCS system has been coupled to this platform to simulate the main control systems in the NPP, which makes the simulation result much closer to the actual control systems. The devoloped simulation platform has been validated by some steady and transient cases in this paper. This hardware-in-loop simulation platform can be used in the simulation and optimal design of NPP control systems. Furthermore, it can be used in the failure mode and effect analysis of the instrumentation and control systems in the nuclear power plant.

  20. Investigation of the Temperature Sensors Accuracy in the Temperature Monitoring System for the Welded Joints of the Industrial Power Supply Main Busways

    Science.gov (United States)

    Grivennaya, N. V.; Bazhenov, A. V.; Bondareva, G. A.; Malygin, S. V.; Knyaginin, A. A.

    2018-01-01

    The article is devoted to the substantiation of the technical solution of the remote monitoring system for the temperature changes of main and branch busways of power supply to industrial enterprises of increased environmental danger. When monitoring the temperature of trunk buses of AC mains up to 1000 V, heated by an electric current, errors occur due to various factors. Studies have been carried out to evaluate the effect of temperature of surrounding objects (including neighboring busbars) on the accuracy of temperature measurements. Conclusions are made about the possibility of using alternative versions of temperature sensors as the basis of the monitoring system.

  1. Power system protection

    International Nuclear Information System (INIS)

    Venkata, S.S.; Damborg, M.J.; Jampala, A.K.

    1991-01-01

    Power systems of the 21st century will be more modern, and complex, utilizing the latest available technologies. At the same time, generating plants will have to operate with minimal spinning margins and energy transportation has to take place at critical levels due to environmental and economical constraints. These factors dictate that the power systems be protected with optimum sensitivity, selectivity and time of operation to assure maximum reliability, and security at minimal cost. With an increasing role played by digital computers in every aspect of protection, it is important to take a critical and fresh look at the art and science of relaying and protection. The main objective of this paper is to review the past, present and future of power system protection from a software point of view

  2. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  3. Diversification criteria for power systems

    International Nuclear Information System (INIS)

    Kharbach, Mohammed

    2016-01-01

    Growing power demand, fuel availability and prices, technology changes, the environmental impacts of energy consumption, the changing regulatory environments and the uncertainties around such elements make the planning for optimal power mix a challenging task. The diversity approach is advocated as a most appropriate planning methodology for the optimal energy mix (Hickey et al., 2010). Shannon Wiener Index (SWI), which is the most cited diversity metric has been used to assess power systems diversity mainly from an energy perspective. To our best knowledge, there is no rigorous justification why energy has been the main variable used in diversification exercises rather than other variables such as capacity. We use a stylized power generation framework to show that diversity based on energy or capacity could lead to different outcomes in terms of vulnerability to fuel exposure, among others. We also introduce a Shannon Wiener Index ratio (SWIR) that we believe captures better the diversity of a power system compared to the standard SWI. - Highlights: • Ranking power systems, from a diversity perspective, based on one criteria has many shortcomings. • Diversity based on energy or capacity could lead to different outcomes in terms of vulnerability to fuel exposure, among others. • A Shannon Wiener Index ratio (SWIR) captures better the diversity of a power system compared to the standard SWI.

  4. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...

  5. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Maine Yankee nuclear power plant

    International Nuclear Information System (INIS)

    Latorre, V.R.; Mayn, B.G.

    1979-08-01

    This report documents the technical evaluation of the electrical, instrumentation, and control design aspects for the low temperature overpressure protection system of the Maine Yankee nuclear power plant. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  6. Fault diagnosis of main coolant pump in the nuclear power station based on the principal component analysis

    International Nuclear Information System (INIS)

    Feng Junting; Xu Mi; Wang Guizeng

    2003-01-01

    The fault diagnosis method based on principal component analysis is studied. The fault character direction storeroom of fifteen parameters abnormity is built in the simulation for the main coolant pump of nuclear power station. The measuring data are analyzed, and the results show that it is feasible for the fault diagnosis system of main coolant pump in the nuclear power station

  7. Power grid, mains filtering and power line communications ... a root cause for incompatibilities

    NARCIS (Netherlands)

    Coenen, Mart

    2013-01-01

    The power grid is intentionally meant to distribute electrical energy at the mains frequency, as produced by the electricity generating plants, towards the end-users. The three-phase low-voltage distribution network can be utilized more efficiently when a power factor of 1 is achieved and no

  8. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  9. Integrating Photovoltaic Systems in Power System: Power Quality Impacts and Optimal Planning Challenges

    Directory of Open Access Journals (Sweden)

    Aida Fazliana Abdul Kadir

    2014-01-01

    Full Text Available This paper is an overview of some of the main issues in photovoltaic based distributed generation (PVDG. A discussion of the harmonic distortion produced by PVDG units is presented. The maximum permissible penetration level of PVDG in distribution system is also considered. The general procedures of optimal planning for PVDG placement and sizing are also explained in this paper. The result of this review shows that there are different challenges for integrating PVDG in the power systems. One of these challenges is integrated system reliability whereas the amount of power produced by renewable energy source is consistent. Thus, the high penetration of PVDG into grid can decrease the reliability of the power system network. On the other hand, power quality is considered one of the challenges of PVDG whereas the high penetration of PVDGs can lead to more harmonic propagation into the power system network. In addition to that, voltage fluctuation of the integrated PVDG and reverse power flow are two important challenges to this technology. Finally, protection of power system with integrated PVDG is one of the most critical challenges to this technology as the current protection schemes are designed for unidirectional not bidirectional power flow pattern.

  10. Supervision functions - Secure operation of sustainable power systems

    DEFF Research Database (Denmark)

    Morais, Hugo; Zhang, Xinxin; Lind, Morten

    2013-01-01

    of power systems operation control. The use of PMUs allows more penetration of DG mainly, with technologies based on renewable resources with intermittent and unpredictable operation such a wind power. This paper introduces the Secure Operation of Sustainable Power Systems (SOSPO) project. The SOSPO...... project tries to respond to the question "How to ensure a secure operation of the future power system where the operating point is heavily is fluctuating?" focusing in the Supervision module architecture and in the power system operation states. The main goal of Supervision module is to determine...... the power system operation state based on new stability and security parameters derived from PMUs measurement and coordinate the use of automatic and manual control actions. The coordination of the control action is based not only in the static indicators but also in the performance evaluation of control...

  11. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Hardy, G.S.; Hashimoto, P.S.; Griffin, M.J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants

  12. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

  13. Communication Systems and Study Method for Active Distribution Power systems

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    Due to the involvement and evolvement of communication technologies in contemporary power systems, the applications of modern communication technologies in distribution power system are becoming increasingly important. In this paper, the International Organization for Standardization (ISO......) reference seven-layer model of communication systems, and the main communication technologies and protocols on each corresponding layer are introduced. Some newly developed communication techniques, like Ethernet, are discussed with reference to the possible applications in distributed power system....... The suitability of the communication technology to the distribution power system with active renewable energy based generation units is discussed. Subsequently the typical possible communication systems are studied by simulation. In this paper, a novel method of integrating communication system impact into power...

  14. Artificial intelligence techniques in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Laughton, M.A.

    1997-12-31

    Since the early to mid 1980s much of the effort in power systems analysis has turned away from the methodology of formal mathematical modelling which came from the fields of operations research, control theory and numerical analysis to the less rigorous techniques of artificial intelligence (AI). Today the main AI techniques found in power systems applications are those utilising the logic and knowledge representations of expert systems, fuzzy systems, artificial neural networks (ANN) and, more recently, evolutionary computing. These techniques will be outlined in this chapter and the power system applications indicated. (Author)

  15. Power systems for the RHIC first sextant test

    International Nuclear Information System (INIS)

    Schultheiss, C.; Bruno, D.; Feng, P.K.

    1997-01-01

    The first sextant test of the RHIC project is an opportunity to evaluate the many systems that must work together for the accelerator to operate. For the main dipole string, the actual main quadrupole power supply with its DSP regulator and output circuit compartment will be used. Temporary supplies will be used for the main quadrupole string, quadrupole offset, and quadrupole shunt supplies. This will let the authors both measure the performance of the main supply as well as determine the interaction among other power elements in the circuit. Correction elements will also be powered. The actual gamma-T power supplies will be used, as well as temporary supplies for the dipole correctors and sextupole supplies. Some of these units are required for beam to be transported, others are to be operated without beam to measure their performance, and how they interact with their superconducting loads. The power supply equipment, and that of other systems, required an infrastucture of AC power and output cable distribution in the RHIC tunnel, outlying service buildings, and interconnecting the tunnel to the service buildings. This note will describe the performance of the RHIC power supply systems during the sextant test, and the experience gained from this exercise

  16. Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Michael Leroy [Univ. of Maine, Orono, ME; Zydlewski, Gayle Barbin [Univ. of Maine, Orono, ME; Xue, Huijie [Univ. of Maine, Orono, ME; Johnson, Teresa R. [Univ. of Maine, Orono, ME

    2014-02-02

    The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.

  17. A Study on Electric Power Smoothing System for Lead-Acid Battery of Stand-Alone Natural Energy Power System Using EDLC

    Science.gov (United States)

    Jia, Yan; Shibata, Ryosuke; Yamamura, Naoki; Ishida, Muneaki

    To resolve energy shortage and global warming problem, renewable natural resource and its power system has been gradually generalizing. However, the power fluctuation suppressing in short period and the balance control of consumption and supply in long period are two of main problems that need to be resolved urgently in natural energy power system. In Stand-alone Natural Energy Power System (SNEPS) with power energy storage devices, power fluctuation in short period is one of the main reasons that recharge cycle times increase and lead-acid battery early failure. Hence, to prolong the service life of lead-acid battery and improve power quality through suppressing the power fluctuation, we proposed a method of electric power smoothing for lead-acid battery of SNEPS using bi-directional Buck/Boost converter and Electric Double Layer Capacitor (EDLC) in this paper. According to the test data of existing SNEPS, a power fluctuation condition is selected and as an example to analyze the validity of the proposed method. The analysis of frequency characteristics indicates the power fluctuation is suppressed a desired range in the target frequency region. The experimental results of confirmed the feasibility of the proposed system and the results well satisfy the requirement of system design.

  18. Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM

  19. TEXT poloidal coil systems power supplies

    International Nuclear Information System (INIS)

    Hutchins, S.H.; Brower, D.F.

    1977-01-01

    TEXT is a convertional iron core tokamak which will have a toroidal field of 3.0 Tesla produced by room temperature copper coils and a maximum plasma current pulse of 400 kA induced by a 40 turn Ohmic Heating coil. The major radius is 100 cm and the minor radius of the plasma is 28 cm. The machine is intended for basic research in tokamak plasma physics and atomic physics and is designed primarily to provide a stable hot plasma, extremely good diagnostic access, and reliable operation. The discharge pulse length will be 300 msec and the repetition period 120 seconds. Power for the toroidal field coils and for the ohmic heating supply is provided by a 100 MVA energy storage alternator. The vertical field, horizontal field, fast positioning, and discharge cleaning power supply systems are powered from the Tokamak Laboratory power mains. The ohmic heating power system consists of an SCR controlled premagnetizing supply and commutation circuit, the main ohmic heating capacitor bank to provide plasma breakdown and current rise, and an SCR controlled power supply which sustains plasma current during the 300 ms pulse. The vertical field power system uses a small capacitor bank and an SCR controlled supply. The horizontal field has a reversible SCR controlled supply, and the fast positioning coils are powered by bipolar output transistor controlled supplies. This paper describes the loads, required wave forms, and the specifications for these power supply systems

  20. NOKIA - nuclear power plant monitoring system

    International Nuclear Information System (INIS)

    Anon.

    The monitoring system is described developed specially for the LOVIISA-1 and -2 nuclear power plants with two WWER-440 units. The multiprocessor system of the WWER-440 contains 3 identical main computers. The in core instrumentation is based on stationary self-powered neutron detectors and on thermocouples for measuring the coolant temperature. The system has equipment for the automatic control of the insulation resistance of the self-powered detectors. It is also equipped with a wide range of standard and special programmes. The standard programmes permit the recording of analog and digital data at different frequencies depending on the pre-set requirements. These data are processed and form data files which are accessible from all programmes. The heart of the special programme is a code for the determination of the power distribution in the core of the WWER-440 reactor. The main part of the programme is the algorithm for computing measured neutron fluxes derived from the signals of the self-powered detectors and the algorithm for deriving the global distribution of the neutron flux in the core. The computed power distribution is used for the determination of instantaneous thermal loads and the distribution of burnup in the core. The production programme of the FINNATOM company for nuclear power plants is listed. (B.S.)

  1. Pilot RCM application to the Diablo Canyon main stream system

    International Nuclear Information System (INIS)

    Groff, C.R.; Beckham, P.E.; Bych, K.H.

    1988-01-01

    In 1986 Pacific Gas ampersand Electric Company (PG ampersand E) became extremely interested in reliability-centered maintenance (RCM) after the initial review of two successful Electric Power Research Institute sponsored projects. RCM was visualized as a methodology to common sensitize the burgeoning preventive maintenance (PM) program at the Diablo Canyon plant. RCM could further the uses of predictive and condition-monitoring techniques, as well as eliminate maintenance on components whose failures were noncritical. An extensive review of maintenance and operation experience data, in conjunction with plant staff recommendations and a prioritization according to maintenance expenditures and operational/safety significance, produced the selected system: the turbine main steam supply system (main steam). The pilot project segmented the main steam system into eight subsystems to aid in analysis: (a) main steam isolation valves, (b) auxiliary feedwater pump turbine, (c) overpressure protection (steam dump), (d) main feedwater pump turbines, (e) main steam, (f) main turbine, (g) steam blowdown, and (h) moisture separator reheaters. System analysis activities, including the preparation of functional failure analyses, failure modes and effects analyses, and logic model analyses, were conducted in parallel with corrective and preventive maintenance data-gathering activities to maximize project team personnel participation during the project. Results and lessons learned are summarized

  2. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  3. Impact of the Voltage Transients after a Fast Power Abort on the Quench Detection System in the LHC Main Dipole Chain

    CERN Document Server

    Ravaioli, E; Formenti, F; Montabonnet, V; Pojer, M; Schmidt, R; Siemko, A; Solfaroli Camillocci, A; Steckert, J; Thiesen, H; Verweij, A

    2012-01-01

    A Fast Power Abort in the LHC superconducting main dipole circuit consists in the switch-off of the power converter and the opening of the two energy-extraction switches. Each energy-extraction unit is composed of redundant electromechanical breakers, which are opened to force the current through an extraction resistor. When a switch is opened arcing occurs in the switch and a voltage of up to 1 kV builds up across the extraction resistor with a typical ramp rate of about 80 kV/s. The subsequent voltage transient propagates through the chain of 154 dipoles and superposes on the voltage waves caused by the switch-off of the power converter. The resulting effect caused intermittent triggering of the quench protection systems along with heater firings in the magnets when the transient occurred during a ramp of the current. A delay between power converter switch-off and opening of the energy-extraction switches was introduced to prevent this effect. Furthermore, the output filters of the power converters were mod...

  4. TidGen Power System Commercialization Project

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Christopher R. [President & CEO; McEntee, Jarlath [VP Engineering & CTO

    2013-12-30

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric

  5. Wind-powered aqueduct systems

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, F R; Ljungstroem, O [ed.

    1976-01-01

    The MITRE Corporation is proposing to develop a preliminarydesign for a system that would use large-scale wind-driven units to provide power for the pumping of water from the main reservoir to auxiliary reservoirs in other parts of an aqueduct system. The study would include a comparison of the cost and effectiveness of alternative methods of performing such operations.

  6. High-inertia hermetically sealed main coolant pump for next generation passive nuclear power plants

    International Nuclear Information System (INIS)

    Kujawski, Joseph M.; Nair, Bala R.; Vijuk, Ronald P.

    2003-01-01

    The main coolant pump for the Westinghouse AP1000 advanced passive nuclear power plant represents a significant scale-up in power, flow capacity, and physical size from its predecessor designed for the smaller AP600 power plant. More importantly, the AP1000 pump incorporates several innovative features that contribute to improved efficiency, operational reliability, and plant safety. The features include an internals design which provides the highest hydraulic efficiency achieved in commercial nuclear power plant applications. Another feature is the use of a distributed inertial mass system in the rotating assembly to develop the high rotational inertia to meet the extended system flow coastdown requirement for core heat removal in the event of loss of power to the pumps. This advanced canned motor pump also incorporates the latest development in higher operating voltage, providing plant designers with the ability to eliminate plant transformers and operate directly on the site electrical bus in many cases. The salient features of the pump design and performance data are presented in this paper. (author)

  7. Upgrade of the main ring magnet power supply for the KEK 12GeV proton synchrotron

    International Nuclear Information System (INIS)

    Sato, H.; Sueno, T.; Toyama, T.; Mikawa, M.; Toda, T.; Matsumoto, S.

    1991-01-01

    In order to use the slow extracted beam of the PS more effectively, the period of slow extraction has been extended. In this paper, upgrade of the main ring magnet power supply is described. The main power supply consists of thyrister rectifiers, DC filters, reactive power compensators, AC harmonic filters and control systems. To increase the current capacity during flat top, the rectifiers and transformers were improved. AC network and DC filter were remained as it is, since the acceleration and deceleration times were not varied. Analog control devices and the computer control software have also been improved to realize a 2 sec flat top with a 4 sec repetition rate compared with the former 0.6sec flat top with a 2.5 sec repetition rate

  8. Operational status of the AGS Booster Main Ring Magnet Power Supply

    International Nuclear Information System (INIS)

    Soukas, A.; Bannon, M.; Geller, J.; McNerney, A.J.; Sandberg, J.; Toldo, F.; Zhang, S.Y.

    1992-01-01

    The Booster is a multipurpose accelerator interposed between a 200 MeV linac, a pair of 15 MV Tandem Van deGraaf accelerators, and the AGS. It can operate on slow cycles of 0.3 Hertz pulse repetition frequency up to a maximum of 7.5 Hertz. The different cycles, from long front porches for long injection or accumulation periods or flattops for slow extraction, to normal fast extraction cycles, accommodate protons, heavy ions (h.i.) and polarized protons. One of the systems enabling the flexible Booster operation is the Main Ring Magnet Power Supply (MRPS) system. It consist of a series connection of six, 1000 volt, multiphase rectifiers together with by pass switches. Two of the six operate at currents up to 6 kA and the rest up to 3 kA. All bypass switches are rated for 6 kA. The system is equipped with passive, damped LCRC filters as well as an active transformer coupled correction system. The MRPS is connected directly to the Long Island 69 Kv bus via a dedicated 20 MVA transformer. The choice of a series of modules enables the very flexible cycle generation and at the same time minimizes the deleterious effects of power factor and harmonics on the ac lines

  9. Power generation systems and methods

    Science.gov (United States)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  10. Integration of biomass into urban energy systems for heat and power. Part II: Sensitivity assessment of main techno-economic factors

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • Application of a MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents the application of a mixed integer linear programming (MILP) methodology to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the assessment of the trade-offs between centralized district heating plants and local heat generation systems, and on the decoupling of the biomass processing and biofuel energy conversion steps. After a brief description of the methodology, which is presented in detail in Part I of the research, an application to a generic urban area is proposed. Moreover, the influence of energy demand typologies (urban areas energy density, heat consumption patterns, buildings energy efficiency levels, baseline energy costs and available infrastructures) and specific constraints of urban areas (transport logistics, air emission levels, space availability) on the selection of optimal bioenergy pathways for heat and power is assessed, by means of sensitivity analysis. On the basis of these results, broad considerations about the key factors influencing the use of bioenergy into urban energy systems are proposed. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  11. Safety assessment of emergency electric power systems for nuclear power plants

    International Nuclear Information System (INIS)

    1986-09-01

    This paper is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing a given design of the Emergency Electrical Power System. Those non-electric power systems which may be used in a plant design to serve as emergency energy sources are addressed only in their general safety aspects. The paper thus relates closely to Safety Series 50-SG-D7 ''Emergency Power Systems at Nuclear Power Plants'' (1982), as far as it addresses emergency electric power systems. Several aspects are dealt with: the information the assessor may expect from the applicant to fulfill his task of safety review; the main questions the reviewer has to answer in order to determine the compliance with requirements of the NUSS documents; the national or international standards which give further guidance on a certain system or piece of equipment; comments and suggestions which may help to judge a variety of possible solutions

  12. Improvement of the Performance of Scheduled Stepwise Power Programme Changes within the European Power System

    DEFF Research Database (Denmark)

    Welfonder, E.; Weissbach, T.; Schulz, U.

    2008-01-01

    Since the deregulation of the electrical energy market, the technical realisation of power transactions based on energy market contracts often effects large stepwise power programme changes – especially at the change of the hour. Due to mainly economic reasons these stepwise power programme changes...... extended discussions with power plant and power system operators as well as with power plant dispatchers the described issues will be adopted into a VGB-recommendation which shall be published by VGB Powertech for Germany and Europe. Subsequently, it is intended to include the main elements of the VGB...

  13. Real-Time Tariffs for Electric Vehicles in Wind Power based Power Systems

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Silva, Marco

    2013-01-01

    ’ behaviour and also the impact in load diagram. The paper proposes the energy price variation according to the relation between wind generation and power consumption. The proposed strategy was tested in two different days in the Danish power system. January 31st and August 13th 2013 were selected because......The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners...... of the high quantities of wind generation. The main goal is to evaluate the changes in the EVs charging diagram with the energy price preventing wind curtailment....

  14. Power system stability enhancement using facts controllers: a review

    International Nuclear Information System (INIS)

    Abido, M. A

    2009-01-01

    In recent years, power demand has increased substantially while the expansion of power generation and transmission has been severely limited due to limited resources and environmental restrictions. As a consequence, some transmission lines are heavily loaded and the system stability becomes a power transfer-limiting factor. Flexible AC transmission systems (FACTS) controllers have been mainly used for solving various power system steady state control problems. However, recent studies reveal that FACTS controllers could be employed to enhance power system stability in addition to their main function of power flow control. The literature shows an increasing interest in this subject for the last two decades, where the enhancement of system stability using FACTS controllers has been extensively investigated. This paper presents a comprehensive review on the research and developments in the power system stability enhancement using FACTS damping controllers. Several technical issues related to FACTS installations have been highlighted and performance comparison of different FACTS controllers has been discussed. In addition, some of the utility experience, real-world installations, and semiconductor technology development have been reviewed and summarized. Applications of FACTS to other power system studies have also been discussed. About two hundred twenty seven research publications have been classified and appended for a quick reference. (author)

  15. Buoy-Rope-Drum Wave Power System

    Directory of Open Access Journals (Sweden)

    Linsen Zhu

    2013-01-01

    Full Text Available A buoy-rope-drum wave power system is a new type of floating oscillating buoy wave power device, which absorbs energy from waves by buoy-rope-drum device. Based on the linear deep water wave theory and pure resistive load, with cylinder buoy as an example, the research sets up the theoretical model of direct-drive buoy-rope-drum wave power efficiency and analyzes the influence of the mass and load of the system on its generating efficiency. It points out the two main categories of the efficient buoy-rope-drum wave power system: light thin type and resonance type, and optimal designs of their major parameters are carried out on the basis of the above theoretical model of generating efficiency.

  16. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Costa, L.M.

    2008-12-01

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  17. Damping of Low Frequency Power System Oscillations with Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz

    of wind power plants on power system low frequency oscillations and identify methods and limitations for potential contribution to the damping of such oscillations. Consequently, the first part of the studies focuses on how the increased penetration of wind power into power systems affects their natural...... oscillatory performance. To do so, at first a generic test grid displaying a complex inter-area oscillation pattern is introduced. After the evaluation of the test grid oscillatory profile for various wind power penetration scenarios, it is concluded that full-converter based wind power plant dynamics do......-synchronous power source. The main body of the work is devoted to the damping control design for wind power plants with focus on the impact of such control on the plant operation. It can be expected that the referred impact is directly proportional to the control effort, which for power processing devices should...

  18. Modernization of electric power systems of the Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gabaldon, M. A.; Gonzalez, J. J.; Prieto, I.

    2011-01-01

    The Power Increase Project of Laguna Verde Nuclear Plant has entailed the replacement, in one unique outage, of the main power electrical systems of the Plant (Isolated Phase Bars, Generator Circuit Breaker and Main Transformer) as well as the replacement of the Turbo-group. The simultaneous substitution of these entire system has never been done by any other Plant in the world, representing an engineering challenge that embraced the design of the new equipment up to the planning, coordination and management of the construction and commissioning works, which were successfully carried out by Iberdrola within the established outage period /47 days) for both units. (Author)

  19. Keys to success for wind power in isolated power systems

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J C; Lundsager, P; Bindner, H; Hansen, L; Frandsen, S [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    It is generally expected that wind power could contribute significantly to the electricity supply in power systems of small and medium sized isolated communities. The market for such applications of wind power has not yet materialized. Wind power in isolated power systems have the main market potentials in developing countries. The money available world-wide for this technological development is limited and the necessary R and D and pilot programmes have difficult conditions. Consequently, technology developed exclusively for developing countries rarely becomes attractive for consumers, investors and funding agencies. A Danish research project is aimed at studying development of methods and guidelines rather than `universal solutions` for the use of wind energy in isolated communities. This paper report on the findings of the project regarding barriers removal and engineering methods development, with a focus on analysis and specification of user demand and priorities, numerical modeling requirements as well as wind power impact on power quality and power system operation. Input will be provided on these subjects for establishing of common guidelines on relevant technical issues, and thereby enabling the making of trustworthy project preparation studies. (au) EFP-97. 12 refs.

  20. Brushless power generating system having reduced conducted emissions in output power

    International Nuclear Information System (INIS)

    Walton, D.N.; Dolan, C.F.; Shah, M.J.

    1991-01-01

    This patent describes a brushless electrical power generating system. It comprises an exciter for producing alternating current from an exciter rotor; a rectifier mounted for rotation with the rotor for producing a rectified control current from the alternating current; a common mode inductor, coupled to the rectifier, for cancelling common mode noise components within the rectified control current; and a main generator, having a rotating field winding mounted on a main generator rotor excited by the control current and producing an alternating current power output from a stator

  1. Simulating the transient regime for main condensate system at Cernavoda NPP

    International Nuclear Information System (INIS)

    Nita, Iulian; Gheorghiu, Mihai; Prisecaru, Ilie; Dupleac, Daniel

    2005-01-01

    The purpose of this project is to make a Thermal Hydraulic Analysis of Main Condensate System for getting real-time answer of installation during regimes occurring during normal and abnormal operation. To obtain the analyses the MMS code was used. The boundaries of the systems analysis are extended to Main Feedwater System in order to get a realistic response of Deaerator equipment which are situated between those two systems and have entrances from both systems. In this way we made a complex analysis with main condenser and steam generators as boundaries. We obtained a model for the entire chain of condensate and feedwater preheater with interface just turbine bleed steam. From that we could reduce the number of assumptions necessary to make the analysis. The analyses consist in hydraulics and thermal hydraulics analyses, respectively. For the first case analysed are: - the nominal operation regime with main condensate pumps; - start-up regime with total circulate of condensate to condenser; - 25% MCR (Maximum Continuous Rate) regime (this regime was used in designing the condensate regulating valves at low flow; - 40% MCR regime (with circulate of some condensate flow to condenser); - operating regime of 60% MCR with one main condensate pump operating; - operating regime with auxiliary condensate pump; - operating regime with discharging a condensate flow to condensate storage tank. The thermal hydraulic analyses deal with normal and abnormal operating regimes, respectively. In the first case analysed are the following regimes: - nominal operating regime with main condensate pump operating 100% MCR; - transient regime, 100-80% MCR; - transient regime, 100-80-60% MCR with two pumps in operation and 60 % MCR with one main condensate pump in operation; - transient regime, 100-80-60-60-40 % MCR; - shut-down regime; - start-up regime from Hot zero power to rated power regime. Finally, for the abnormal operating regimes the analyses concerned: - transient regime 100

  2. 20 kHz main inverter unit. [for space station power supplies

    Science.gov (United States)

    Hussey, S.

    1989-01-01

    A proof-of-concept main inverter unit has demonstrated the operation of a pulse-width-modulated parallel resonant power stage topology as a 20-kHz ac power source driver, showing simple output regulation, parallel operation, power sharing and short-circuit operation. The use of a two-stage dc input filter controls the electromagnetic compatibility (EMC) characteristics of the dc power bus, and the use of an ac harmonic trap controls the EMC characteristics of the 20-kHz ac power bus.

  3. Research on characteristics of communication content of operation crew in digital main control room of nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Li; Ye Haifeng; Qing Tao; Li Pengcheng

    2015-01-01

    Communication content, communication mode and timeliness of communication are the main three factors that influence the effectiveness of the communication between team members. Based on the work domain analysis to execution of state-oriented procedures (SOP), the assumptions for operation crews' characteristics of the communication content in executing SOP were proposed, which supposed that the power plant status and parameters, power plant system functions and equipment, and SOP as well were the main communication contents. On a full-scope simulator of nuclear power plant, three operation crews performed experiments simulating accident scenarios. The results show that the assumptions of characteristics of the communication content are valid. (authors)

  4. Development and design of photovoltaic power prediction system

    Science.gov (United States)

    Wang, Zhijia; Zhou, Hai; Cheng, Xu

    2018-02-01

    In order to reduce the impact of power grid safety caused by volatility and randomness of the energy produced in photovoltaic power plants, this paper puts forward a construction scheme on photovoltaic power generation prediction system, introducing the technical requirements, system configuration and function of each module, and discussing the main technical features of the platform software development. The scheme has been applied in many PV power plants in the northwest of China. It shows that the system can produce reasonable prediction results, providing a right guidance for dispatching and efficient running for PV power plant.

  5. Research on intelligent power distribution system for spacecraft

    Science.gov (United States)

    Xia, Xiaodong; Wu, Jianju

    2017-10-01

    The power distribution system (PDS) mainly realizes the power distribution and management of the electrical load of the whole spacecraft, which is directly related to the success or failure of the mission, and hence is an important part of the spacecraft. In order to improve the reliability and intelligent degree of the PDS, and considering the function and composition of spacecraft power distribution system, this paper systematically expounds the design principle and method of the intelligent power distribution system based on SSPC, and provides the analysis and verification of the test data additionally.

  6. The system of the measurement of reactor power and the monitoring of core power distribution

    International Nuclear Information System (INIS)

    Li Xianfeng

    1999-01-01

    The author mainly describes the measurement of the reactor power and the monitoring of the core power distribution in DAYA BAY nuclear power plant, introduces the calibration for the measurement system. Ex-core nuclear instrumentation system (RPN) and LOCA surveillance system (LSS) are the most important system for the object. they perform the measurement of the reactor power and the monitoring of the core power distribution on-line and timely. They also play the important roles in the reactor control and the reactor protection. For the same purpose there are test instrumentation system (KME) and in-core instrumentation system (RIC). All of them work together ensuring the exact measurement and effective monitoring, ensuring the safety of the reactor power plant

  7. An application of the fault tree analysis for the power system reliability estimation

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2007-01-01

    The power system is a complex system with its main function to produce, transfer and provide consumers with electrical energy. Combinations of failures of components in the system can result in a failure of power delivery to certain load points and in some cases in a full blackout of power system. The power system reliability directly affects safe and reliable operation of nuclear power plants because the loss of offsite power is a significant contributor to the core damage frequency in probabilistic safety assessments of nuclear power plants. The method, which is based on the integration of the fault tree analysis with the analysis of the power flows in the power system, was developed and implemented for power system reliability assessment. The main contributors to the power system reliability are identified, both quantitatively and qualitatively. (author)

  8. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional-integral, proportio......This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional......-integral, proportional-resonant, and deadbeat (DB) controllers. Additionally, an improved DB controller robust against grid impedance variation is also presented. Since the paper discusses the implementation of these controllers for grid-connected applications, their evaluation is made in three operating conditions....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results...

  9. Simulation of electric vehicles with hybrid power systems

    Science.gov (United States)

    Burke, A. F.; Cole, G. H.

    Computer programs for the simulation of the operation of electric vehicles with hybrid power systems are described. These programs treat cases in which high energy density ultracapacitors or high power density pulse batteries are used to load level the main energy storage battery in the vehicle. A generalized control strategy for splitting the power between the main battery and the pulse power devices is implemented such that the user can specify the nominal battery power as a function of the state-of-charge of the ultracapacitor or pulse power battery. The programs display graphically on the screen, as they run, the power from both the main battery and the pulse power device and the state-of-charge of the pulse power device. After each run is completed, a summary is printed out from which the effect of load leveling the battery on vehicle range and energy consumption can be determined. Default input files are provided with the programs so various combinations of vehicles, driveline components, and batteries of special current interest to the EV community can be run with either type of pulse power device. Typical simulation results are shown including cases in which the pulse power devices are connected in parallel with the main battery without interface electronics.

  10. Modernization of the Electric Power Systems (transformers, rods and switches) in the Laguna Verde Nuclear Power Plant (Mexico)

    International Nuclear Information System (INIS)

    Gonzalez Solarzano, J. J.; Gabaldon Martin, M. A.; Pallisa Nunez, J.; Florez Ordeonez, A.; Fernandez Corbeira, A.; Prieto Diez, I.

    2010-01-01

    Description of the changes made in the Electric Power Systems as a part of the power increase project in the Laguna Verde Nuclear Power Plant (Mexico). The main electrical changes to make, besides the turbo group, are the main generation transformers, the isolated rods and the generation switch.

  11. Development of high-reliability control system for nuclear power plants

    International Nuclear Information System (INIS)

    Asami, K.; Yanai, K.; Hirose, H.; Ito, T.

    1983-01-01

    In Japan, many nuclear power generating plants are in operation and under construction. There is a general awareness of the problems in connection with nuclear power generation and strong emphasis is put on achieving highly reliable operation of nuclear power plants. Hitachi has developed a new high-reliability control system. NURECS-3000 (NUclear Power Plant High-REliability Control System), which is applied to the main control systems, such as the reactor feedwater control system, the reactor recirculation control system and the main turbine control system. The NURECS-3000 system was designed taking into account the fact that there will be failures, but the aim is for the system to continue to function correctly; it is therefore a fault-tolerant system. It has redundant components which can be completely isolated from each other in order to prevent fault propagation. The system has a hierarchical configuration, with a main controller, consisting of a triplex microcomputer system, and sub-loop controllers. Special care was taken to ensure the independence of these subsystems. Since most of the redundant system failures are caused by common-mode failures and the reliability of redundant systems depends on the reliability of the common-mode parts, the aim was to minimize these parts. (author)

  12. Simulation and analysis of main steam control system based on heat transfer calculation

    Science.gov (United States)

    Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai

    2018-05-01

    In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.

  13. The active filter voltage ripple correction system of the Brookhaven AGS main magnet power supply

    International Nuclear Information System (INIS)

    Marneris, I.; Bonati, R.; Geller, J.; Sandberg, J.N.; Soukas, A.

    1995-01-01

    This paper, and a companion paper, describe the improvements to the Main Magnet Power Supply (MMPS) so that it enables a more flexible operation of the AGS, enhances its reliability, and also improves the MMPS's ultimate performance specifications. One of the major areas for the latter is the fixed target program operating off the AGS slow extracted beam lines. The active filter, by improving the MMPS output ripple, is instrumental in the improvement of the ultimate duty factor of the extraction beam spill

  14. Main building of the Paks nuclear power plant, Hungary

    International Nuclear Information System (INIS)

    Fejes, A.

    1983-01-01

    The general layout of the main service building of the power plant, the applied building materials as well as the prefabricated structures are described. The conditions of planning and construction are discussed. Novel construction methods under the given conditions were utilized. (author)

  15. Operating the Irish power system with increased levels of wind power

    DEFF Research Database (Denmark)

    Tuohy, A.; Denny, E.; Meibom, Peter

    2008-01-01

    This paper summarises some of the main impacts of large amounts of wind power installed in the island of Ireland. Using results from various studies performed on this system, it is shown that wind power will impact on all time frames, from seconds to daily planning of the system operation. Results...... from studies examining operation of the system with up to approximately 40% of electricity provided by wind show that some of the most important aspects to be considered include the type of wind turbine technology, the provision of reserve to accommodate wind forecasting error and the method used...

  16. Analysis of man-machine interaction for control and display system in main control room of light water reactor

    International Nuclear Information System (INIS)

    Santosa, Kussigit; Supriatna, Piping; Karlina, Itjeu; Widagdo, Suharyo; Darlis; Sudiono, Bambang

    1998-01-01

    One of potential hazard in Nuclear Power Plant is the failure of its operation. The accident or operation failure in the reactor must be concerned event its probability is low. The important thing should be concerned is 'Analysis of Man-Machine Interaction (MMI) for Control and Display System in Main Control Room (MCR) of Nuclear Power Reactor', especially LWR type. Control and Display System in MCR of Reactor is the main part of MMI link process in Reactor MCR work system. Signal from display system showed performance process in reactor, while this signal will be received by operator. This signal will be described through central nerve for making decision what kind must be done. Then the operator manage the next process of reactor operation through control system. So by knowing Analysis of Man-Machine Interaction for Control and Display System in Main Control Room of Power Reactor, we can understand human error probability of the operator in reactor operation

  17. Large-scale integration of wind power into power systems as well as on transmission networks for offshore wind power plants. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt, Uta; Ackermann, Thomas (eds.)

    2013-11-01

    This proceedings contains contributions to the followings main topics: Grid integration experiences; Flexibility and economics of integration; Voltage control issues; Offshore wind power plants; Forecasting; Grid code issues; HVDC connection issues; Frequency control issues; National grid's perspective; Power system balancing; Power system issues; New grid and generators issues; Flexibility with storage and demand side management; AC connected offshore wind power plants; Economic and market issues; Modelling issues; Offshore grid issues.

  18. Dynamic model of frequency control in Danish power system with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2013-01-01

    This work evaluates the impact of large scale integration of wind power in future power systems when 50% of load demand can be met from wind power. The focus is on active power balance control, where the main source of power imbalance is an inaccurate wind speed forecast. In this study, a Danish...... power system model with large scale of wind power is developed and a case study for an inaccurate wind power forecast is investigated. The goal of this work is to develop an adequate power system model that depicts relevant dynamic features of the power plants and compensates for load generation...... imbalances, caused by inaccurate wind speed forecast, by an appropriate control of the active power production from power plants....

  19. Integrated control of next generation power system

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-02-28

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  20. Partial analysis of wind power limit in an electric micro system using continuation power flow

    International Nuclear Information System (INIS)

    Fiallo Guerrero, Jandry; Santos Fuentefria, Ariel; Castro Fernández, Miguel

    2013-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit that can insert in an electric grid without losing stability is a very important matter. Existing in bibliography a few methods for calculation of wind power limit, some of them are based in static constrains, an example is a method based in a continuation power flow analysis. In the present work the method is applied in an electric micro system formed when the system is disconnected of the man grid, the main goal was prove the method in a weak and island network. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  1. Derivation of main drivers affecting the possibility of human errors during low power and shutdown operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ar Ryum; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Park, Jin Kyun; Kim, Jae Whan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers which are commonly called as performance shaping factors (PSFs) are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers

  2. Derivation of main drivers affecting the possibility of human errors during low power and shutdown operation

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Seong, Poong Hyun; Park, Jin Kyun; Kim, Jae Whan

    2016-01-01

    In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers which are commonly called as performance shaping factors (PSFs) are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers which

  3. Wind Power Impact to Transient and Voltage Stability of the Power System in Eastern Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Joana; Jørgensen, Preben; Palsson, Magni Thor

    2005-01-01

    Voltage stability, transient stability and reactive power compensation are extremely important issues for largescale integration of wind power in areas distant from the main transmission system in Eastern Denmark. This paper describes the application of a dynamic wind farm model in simulation...... studies for assessments of a large wind power penetration. The simulation results reveal problems with voltage stability due to the characteristic of wind turbine generation as well as the inability of the power system to meet the reactive power demand. Furthermore, the established model is applied...

  4. Auxiliary System Load Schemes in Large Thermal and Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kuzle, I.; Bosnjak, D.; Pandzic, H.

    2010-01-01

    Uninterrupted auxiliary system power supply in large power plants is a key factor for normal operation, transient states, start-ups and shutdowns and particularly during fault conditions. Therefore, there are many challenges in designing the main electrical system as well as the auxiliary systems power supply. Depending upon the type of fuel used and the environmental control system required, a thermal power plant may consume as much as 10% of its total generation for auxiliary power, while a nuclear power plant may require only 4 - 6% auxiliaries. In general, the larger the power generating plant, the higher the voltage selected for the AC auxiliary electric system. Most stations in the 75 to 500 MW range utilize 4,2 kV as the base auxiliary system voltage. Large generating stations 500 - 1000 MW and more use voltage levels of 6,9 kV and more. Some single dedicated loads such as electric driven boiler feed pumps are supplied ba a 13,8 kV bus. While designing the auxiliary electric system, the following areas must be considered: motor starting requirements, voltage regulation requirements, short-circuit duty requirements, economic considerations, reliability and alternate sources. Auxiliary power supply can't be completely generalized and each situation should be studied on its own merits to determine the optimal solution. Naturally, nuclear power plants have more reliability requirements and safety design criteria. Main coolant-pump power supply and continuity of service to other vital loads deserve special attention. This paper presents an overview of some up-to-date power plant auxiliary load system concepts. The main types of auxiliary loads are described and the electric diagrams of the modern auxiliary system supply concepts are given. Various alternative sources of auxiliary electrical supply are considered, the advantages and disadvantages of these are compared and proposals are made for high voltage distribution systems around the thermal and nuclear plant

  5. Motor-Generator powering the PS (Proton Synchrotron) main magnets

    CERN Multimedia

    1983-01-01

    This motor-generator,30 MW peak, 1500 r.p.m.,pulsed power supply for the PS main magnet replaced in 1968 the initial 3000 r.p.m. motor-generator-flywheel set which had served from the PS start-up in 1959 until end 1967. See also photo 8302337 and its abstract.

  6. Fault ride-through requirements for onshore wind power plants in Europe: the needs of the power system

    NARCIS (Netherlands)

    Boemer, J.C.; Meer, van der A.A.; Rawn, B.G.; Hendriks, R.L.; Ciupuliga, A.R.; Gibescu, M.; Kling, W.L.; Ferreira, J.A.

    2011-01-01

    Wind power plants show different behavior than conventional (synchronous) generators. As the traditional power systems mainly consisted of centralized generation by synchronous machines feeding passive loads, it was well-understood how the system reacted in normal operation as well as during

  7. Troubleshooting of signal power supply system for Shanghai metro line 7

    Science.gov (United States)

    Lu, Kaixia; Xiao, Jie

    2018-03-01

    With the rapid development of Urban Rail Transit Signal Technology, the demand of signal power supply system for signal equipment is higher and higher. The signal intelligent power supply panel is the main component of the urban rail traffic signal power supply system. Whether the intelligent power supply panel working or not is directly related to traffic safety. The maintenance of intelligent signal power supply panel is particularly important. Line 7 of Shanghai Metro adopts PMZG Signal Intelligent Power Supply Panel, which is produced by Beijing Jinyujiaxin Polytron Technologies Inc. Maintenance of power supply system mainly includes routine maintenance and troubleshooting. This article will make clear the routine maintenance contents of PMZG Signal Intelligent Power Supply Panel, and put forward the common fault information and troubleshooting methods of PMZG Signal Intelligent Power Supply Panel. In accordance with the steps of fault handling, the faults can be eliminated in the shortest possible time, and PMZG Signal Intelligent Power Supply Panel can be quickly restored to normal working state.

  8. Development of a web-based monitoring system using operation parameters for the main component in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; An Kang Il; Hong, Suk Young; Lee, Jeong Soo; Lee, Kwang Yeol; Shin, Sun Hee; Lee, Chun Wha; Son, So Hee [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)

    2003-03-15

    The frequency of the damage is increasing, which is caused by the fatigue, according to the increase of running of nuclear power plants. So we need to acquire the reliance of design data to estimate the fatigue and damage of major machinery that might happen as time-dependent crack growth characterization. The research is focused on keeping operating record of nuclear power plants about major machinery which consists of a nuclear reactor pressure boarder on each excessive operating condition including normal operating and extraordinary operating by estimating fracture mechanical movements on real time and fatigue about major nuclear power plants machinery, which are acquired the pressure and temperature data. For further details about the scope and contents of R and D are following: development of H/W that is necessary to acquire operating real time data of heating and hydraulic power, selection of a safety variable about major system by each type (the fourth unit), communication protocol development for connecting between CARE system data base server and fatigue monitoring system data base server, development of connecting database for controlling and storing of heating and hydraulic power operating data, real time monitoring system development based on web using JAVA.

  9. Safety requirements for a nuclear power plant electric power system

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, L F; Shinaishin, M A

    1988-06-15

    This work aims at identifying the safety requirements for the electric power system in a typical nuclear power plant, in view of the UNSRC and the IAEA. Description of a typical system is provided, followed by a presentation of the scope of the information required for safety evaluation of the system design and performance. The acceptance and design criteria that must be met as being specified by both regulatory systems, are compared. Means of implementation of such criteria as being described in the USNRC regulatory guides and branch technical positions on one hand and in the IAEA safety guides on the other hand are investigated. It is concluded that the IAEA regulations address the problems that may be faced with in countries having varying grid sizes ranging from large stable to small potentially unstable ones; and that they put emphasis on the onsite standby power supply. Also, in this respect the Americans identify the grid as the preferred power supply to the plant auxiliaries, while the IAEA leaves the possibility that the preferred power supply could be either the grid or the unit main generator depending on the reliability of each. Therefore, it is found that it is particularly necessary in this area of electric power supplies to deal with the IAEA and the American sets of regulations as if each complements and not supplements the other. (author)

  10. Service life monitoring of the main components at the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Hahn, J.; Vincour, D.

    2007-01-01

    Knowledge and experience gained from the introduction and periodical implementation of life assessment of the major components of the Temelin nuclear power plant is summarized. The initial Soviet technical design of the plant did not incorporate lifetime monitoring and evaluation, therefore it was completed with demonstrative strength and lifetime calculations from Czech companies. Moreover, a Westinghouse primary circuit diagnosis and monitoring system, including the monitoring of temperature and pressure cycles for low-cycle fatigue evaluation, was installed at the plant. The DIALIFE code for the calculation of mainly the low-cycle fatigue of the key pressure components, was developed and installed subsequently as a superstructure to the monitoring system. (author)

  11. Quality control of three main materials for civil construction of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Feng

    2011-01-01

    The construction and operation of nuclear power plant is a systematic engineering. To ensure quality and safety of nuclear power plants, each work from design to operation can have certain impact on the quality and safety of the project. The quality of each related work shall be controlled. Starting from the quality control over raw materials for the civil construction of nuclear power plant, this article mainly analyzes how to control the quality and manage the three main materials of steel, concrete and modular parts in the civil construction. (author)

  12. An Integrated Design approach to Power Systems: from Power Flows to Electricity Markets

    Science.gov (United States)

    Bose, Subhonmesh

    Power system is at the brink of change. Engineering needs, economic forces and environmental factors are the main drivers of this change. The vision is to build a smart electrical grid and a smarter market mechanism around it to fulfill mandates on clean energy. Looking at engineering and economic issues in isolation is no longer an option today; it needs an integrated design approach. In this thesis, I shall revisit some of the classical questions on the engineering operation of power systems that deals with the nonconvexity of power flow equations. Then I shall explore some issues of the interaction of these power flow equations on the electricity markets to address the fundamental issue of market power in a deregulated market environment. Finally, motivated by the emergence of new storage technologies, I present an interesting result on the investment decision problem of placing storage over a power network. The goal of this study is to demonstrate that modern optimization and game theory can provide unique insights into this complex system. Some of the ideas carry over to applications beyond power systems.

  13. Dynamic market behaviour of autonomous network based power systems

    NARCIS (Netherlands)

    Jokic, A.; Wittebol, E.H.M.; Bosch, van den P.P.J.

    2006-01-01

    Dynamic models of real-time markets are important since they lead to additional insights of the behavior and stability of power system markets. The main topic of this paper is the analysis of real-time market dynamics in a novel power system structure that is based on the concept of autonomous

  14. Comparing Different Fault Identification Algorithms in Distributed Power System

    Science.gov (United States)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  15. Performance of the main ring magnet power supply of the KEK 12 GeV proton synchrotron

    International Nuclear Information System (INIS)

    Sato, H.; Sueno, T.; Toyama, T.; Mikawa, Ml; Toda, M.; Matsumoto, S.; Nakano, M.

    1992-01-01

    The main ring magnet power supply of the KEK 12 GeV PS consists of several twelve-pulse thyristor rectifiers with dc filters, of two reactive power compensators with tuned ac harmonic filters and of an analog and digital hybrid control system. In order to obtain well defined parameters-such as absolute precision of beam energy, stable beam position, tracking between focusing and bending fields to fix the betatron tune, stable acquisition of extracted beam spill etc.-one wants to operate this large pulsed power supply with high current reproducibility and low residual current ripple. In this paper, several stabilization techniques are applied in order to meet these requirements

  16. Small nuclear power reactor emergency electric power supply system reliability comparative analysis

    International Nuclear Information System (INIS)

    Bonfietti, Gerson

    2003-01-01

    This work presents an analysis of the reliability of the emergency power supply system, of a small size nuclear power reactor. Three different configurations are investigated and their reliability analyzed. The fault tree method is used as the main tool of analysis. The work includes a bibliographic review of emergency diesel generator reliability and a discussion of the design requirements applicable to emergency electrical systems. The influence of common cause failure influences is considered using the beta factor model. The operator action is considered using human failure probabilities. A parametric analysis shows the strong dependence between the reactor safety and the loss of offsite electric power supply. It is also shown that common cause failures can be a major contributor to the system reliability. (author)

  17. First Aspect of Conventional Power System Assessment for High Wind Power Plants Penetration

    Directory of Open Access Journals (Sweden)

    A Merzic

    2012-11-01

    Full Text Available Most power systems in underdeveloped and developing countries are based on conventional power plants, mainly "slow-response" thermal power plants and a certain number of hydro power plants; characterized by inflexible generating portfolios and traditionally designed to meet own electricity needs. Taking into account operational capabilities of conventional power systems, their development planning will face problems with integration of notable amounts of installed capacities in wind power plants (WPP. This is what highlights the purpose of this work and in that sense, here, possible variations of simulated output power from WPP in the 10 minute and hourly time interval, which need to be balanced, are investigated, presented and discussed. Comparative calculations for the amount of installed power in WPP that can be integrated into a certain power system, according to available secondary balancing power amounts, in case of concentrated and dispersed future WPP are given. The stated has been done using a part of the power system of Bosnia and Herzegovina. In the considered example, by planned geographically distributed WPP construction, even up to cca. 74% more in installed power of WPP can be integrated into the power system than in case of geographically concentrated WPP construction, for the same available amount of (secondary balancing power. These calculations have shown a significant benefit of planned, geographically distributed WPP construction, as an important recommendation for the development planning of conventional power systems, with limited balancing options. Keywords: balancing reserves,  geographical dispersion, output power  variations

  18. Selectivity of power system protections at power swings in power system

    Directory of Open Access Journals (Sweden)

    Jan Machowski

    2012-12-01

    Full Text Available The paper discusses out-of-step protection systems such as: generator pole slip protections, out of step tripping protections, distance protections of step-up transformer, distance protections of transmission lines and transformers, power swing blocking, and special out-of-step protection. It is shown that all these protections make up a protection system, to which a setting concept uniform for the entire power system has to be applied. If a power system is inappropriately equipped with these protections, or their settings are inappropriate, they may operate unselectively, thus contributing to the development of power system blackouts. In the paper the concepts for a real power system are given for the two stages: target stage fully compliant with selectivity criteria, and transitional stage between the current and target stages.

  19. Wastes power generation introduction manual. Main edition; Haikibutsu hatsuden donyu manual. Honpen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A practical and specific working manual was prepared that satisfies the standards and criteria defined in the relevant law such as the Sanitation and Environment Ordinance No. 249, the guideline for generation of dioxins caused by refuse disposal, and that enables the reports evaluating the wastes quantitatively to be submitted to heads of the local governments when persons in charge of planning the introduction of wastes power generation at local governments discuss the wastes power generation systems. Taking general combustible wastes and sewage sludge treatments as the object, this paper details from the economic performance to size of wastes treatment at the priority limit for the power generation facility introduction. The subject power generation systems include the following: the stoker furnace/separation type ash melting furnace power generation system, the fluidized bed/separation type ash melting furnace power generation system, and the direct type gasification melting furnace power generation system, whose establishment of safety, reliability and stability have been verified by full-size system operation record available at the local governments, the gas turbine re-powering composite type power generation system (gas turbine power plants are installed beside the incineration furnaces) that makes high-efficiency power generation possible, and the RDF power generation system (power generation by mixed combustion with general refuses, and power generation using RDF (refuse derived fuel) exclusive combustion). Other important discussion and assessment items include environment and resource utilization performances. (NEDO)

  20. Optimization of a wearable power system

    Energy Technology Data Exchange (ETDEWEB)

    Kovacevic, I.; Round, S. D.; Kolar, J. W.; Boulouchos, K.

    2008-07-01

    In this paper the optimization of wearable power system comprising of an internal combustion engine, motor/generator, inverter/rectifier, Li-battery pack, DC/DC converters, and controller is performed. The Wearable Power System must have the capability to supply an average 20 W for 4 days with peak power of 200 W and have a system weight less then 4 kg. The main objectives are to select the engine, fuel and battery type, to match the weight of fuel and the number of battery cells, to find the optimal working point of engine and minimizing the system weight. The minimization problem is defined in Matlab as a nonlinear constrained optimization task. The optimization procedure returns the optimal system design parameters: the Li-polymer battery with eight cells connected in series for a 28 V DC output voltage, the selection of gasoline/oil fuel mixture and the optimal engine working point of 12 krpm for a 4.5 cm{sup 3} 4-stroke engine. (author)

  1. New Main Ring control system

    International Nuclear Information System (INIS)

    Seino, K.; Anderson, L.; Ducar, R.; Franck, A.; Gomilar, J.; Hendricks, B.; Smedinghoff, J.

    1990-03-01

    The Fermilab Main Ring control system has been operational for over sixteen years. Aging and obsolescence of the equipment make the maintenance difficult. Since the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab accelerators except the Main Ring. Modernization of the equipment and standardization of the hardware and software have thus become inevitable. The Tevatron CAMAC serial system has been chosen as a basic foundation in order to make the Main Ring control system compatible with the rest of the accelerator complex. New hardware pieces including intelligent CAMAC modules have been designed to satisfy unique requirements. Fiber optic cable and repeaters have been installed in order to accommodate new channel requirements onto the already saturated communication medium system. 8 refs., 2 figs

  2. An energy management system for off-grid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Zelazo, Daniel [Universitaet Stuttgart, Institute for Systems Theory and Automatic Control, Stuttgart (Germany); Dai, Ran; Mesbahi, Mehran [University of Washington, Department of Aeronautics and Astronautics, Seattle, WA (United States)

    2012-06-15

    Next generation power management at all scales will rely on the efficient scheduling and operation of both generating units and loads to maximize efficiency and utility. The ability to schedule and modulate the demand levels of a subset of loads within a power system can lead to more efficient use of the generating units. These methods become increasingly important for systems that operate independently of the main utility, such as microgrid and off-grid systems. This work extends the principles of unit commitment and economic dispatch problems to off-grid power systems where the loads are also schedulable. We propose a general optimization framework for solving the energy management problem in these systems. An important contribution is the description of how a wide range of sources and loads, including those with discrete states, non-convex, and nonlinear cost or utility functions, can be reformulated as a convex optimization problem using, for example, a shortest path description. Once cast in this way, solution are obtainable using a sub-gradient algorithm that also lends itself to a distributed implementation. The methods are demonstrated by a simulation of an off-grid solar powered community. (orig.)

  3. Reliability Electrical Power System of Hospital as Cold Standby System

    Directory of Open Access Journals (Sweden)

    Grabski Franciszek

    2016-07-01

    Full Text Available The probabilistic model of a hospital electrical power system consisting of mains, an emergency power system and the automatic transfer switch with the generator starter are discussed in this paper. The reliability model is semi-Markov process describing two different units renewable cold standby system and switch. The embedded Semi-Markov processes concept is applied for description of the system evolution. Time to failure of the system is represented by a random variable denoting the first passage time of the process from the given state to the subset of states. The appropriate theorems of the Semi-Markov processes theory allow us to evaluate the reliability function and some reliability characteristics.

  4. A method for distributed power consumption based on the combined heat and power system

    Science.gov (United States)

    Li, Si-wei; Han, Shen-zhao; Yu, Bo; Lu, Xin; Qi, Wen

    2018-02-01

    With the development of the society and human progress, now resource problems has become one of the major problems faced by people all over the world, the development of new energy and clean energy is the priority now, is now the main power system. Winter heating is one of the main sources of pollution now, so it is very important to study the electric heating system.

  5. Multiobjective clearing of reactive power market in deregulated power systems

    International Nuclear Information System (INIS)

    Rabiee, A.; Shayanfar, H.; Amjady, N.

    2009-01-01

    This paper presents a day-ahead reactive power market which is cleared in the form of multiobjective context. Total payment function (TPF) of generators, representing the payment paid to the generators for their reactive power compensation, is considered as the main objective function of reactive power market. Besides that, voltage security margin, overload index, and also voltage drop index are the other objective functions of the optimal power flow (OPF) problem to clear the reactive power market. A Multiobjective Mathematical Programming (MMP) formulation is implemented to solve the problem of reactive power market clearing using a fuzzy approach to choose the best compromise solution according to the specific preference among various non-dominated (pareto optimal) solutions. The effectiveness of the proposed method is examined based on the IEEE 24-bus reliability test system (IEEE 24-bus RTS). (author)

  6. Development of a web-based monitoring system using operation parameters for the main component in nuclear power plants

    International Nuclear Information System (INIS)

    Son, Dong Chan; An, Kung Il; Hong, Suk Young; Lee, Jeong Soo; Jung, Duk Jin; Shin, Sun Hee; Son, So Hee

    2004-02-01

    The frequency of the damage is increasing, which is caused by the fatigue, according to the increase of running of nuclear power plants. So we need to acquire the reliance of design data to estimate the fatigue and damage of major machinery that might happen as time-dependent crack growth characterization. The research is focused on keeping operating record of nuclear power plants about major machinery which consists of a nuclear reactor pressure boarder on each excessive operating condition including normal operating and extraordinary operating by estimating fracture mechanical movements on real time and fatigue about major nuclear power plants machinery, which are acquired the pressure and temperature data. For further details about the scope and contents of R and D are following. Development of H/W that is necessary to acquire operating real time data of heating and hydraulic power. Selection of a safety variable about major system by each type (the four NPP, all unit). Communication protocol development for connecting between CARE system data base server and fatigue monitoring system data base server. Development of connecting database for controlling and storing of heating and hydraulic power operating data. Real time monitoring system development based on Web using JAVA

  7. Development of a web-based monitoring system using operation parameters for the main component in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Chan; An, Kung Il; Hong, Suk Young; Lee, Jeong Soo; Jung, Duk Jin; Shin, Sun Hee; Son, So Hee [Daesang Information Technology Co., Ltd., Seoul (Korea, Republic of)

    2004-02-15

    The frequency of the damage is increasing, which is caused by the fatigue, according to the increase of running of nuclear power plants. So we need to acquire the reliance of design data to estimate the fatigue and damage of major machinery that might happen as time-dependent crack growth characterization. The research is focused on keeping operating record of nuclear power plants about major machinery which consists of a nuclear reactor pressure boarder on each excessive operating condition including normal operating and extraordinary operating by estimating fracture mechanical movements on real time and fatigue about major nuclear power plants machinery, which are acquired the pressure and temperature data. For further details about the scope and contents of R and D are following. Development of H/W that is necessary to acquire operating real time data of heating and hydraulic power. Selection of a safety variable about major system by each type (the four NPP, all unit). Communication protocol development for connecting between CARE system data base server and fatigue monitoring system data base server. Development of connecting database for controlling and storing of heating and hydraulic power operating data. Real time monitoring system development based on Web using JAVA.

  8. Dual power, constant speed electric motor system

    Science.gov (United States)

    Kirschbaum, H.S.

    1984-07-31

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.

  9. Dual power, constant speed electric motor system

    Science.gov (United States)

    Kirschbaum, Herbert S.

    1984-01-01

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.

  10. Transient Processes in Electric Power Supply System for Oil Terminal with Own Gas-Turbine Power Station

    Directory of Open Access Journals (Sweden)

    A. M. Hаshimov

    2009-01-01

    Full Text Available The paper contains results of the investigations concerning influence of symmetrical and non-symmetrical short circuits at main power network on electric power supply system of a huge oil terminal which is powered by own gas-turbine power station. Calculations have been made in accordance with the IEC and IEEЕ requirements. Estimations for voltage level and distribution of short circuit current in the electric power supply system of the Sangachal oil terminal being operated in parallel with the AzerEnerji grid are presented in the paper

  11. Logic verification system for power plant sequence diagrams

    International Nuclear Information System (INIS)

    Fukuda, Mitsuko; Yamada, Naoyuki; Teshima, Toshiaki; Kan, Ken-ichi; Utsunomiya, Mitsugu.

    1994-01-01

    A logic verification system for sequence diagrams of power plants has been developed. The system's main function is to verify correctness of the logic realized by sequence diagrams for power plant control systems. The verification is based on a symbolic comparison of the logic of the sequence diagrams with the logic of the corresponding IBDs (interlock Block Diagrams) in combination with reference to design knowledge. The developed system points out the sub-circuit which is responsible for any existing mismatches between the IBD logic and the logic realized by the sequence diagrams. Applications to the verification of actual sequence diagrams of power plants confirmed that the developed system is practical and effective. (author)

  12. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    Science.gov (United States)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  13. Operation of the main feedwater system turbopump following plant trip with total failure of the auxiliary feedwater system

    International Nuclear Information System (INIS)

    Lucas Alvaro, A.M. de; Rosa Martinez, B. de la; Alcaide, F.; Toledano Camara, C.

    1993-01-01

    The Auxiliary Feedwater System (AF) is a safeguard system which has been designed to supply feedwater to the steam generators, cool the primary system and remove decay heat from the reactor when the main feedwater pumps fail due to loss of power or any other reason. Thus, when plant trip occurs, the AF system pumps start up automatically, allowing removal of decay heat from the reactor. However, even though this system (2 motor-driven pumps and 1 turbopump) is highly reliable, injection of water to the steam generators must be ensured when it fails completely. To do this, if plant trip has not been caused by loss of off site power or failure of the Main Feedwater System (FW) turbopumps, one of these turbopumps can be used to achieve removal of decay heat. Since a large amount of steam is consumed by these turbopumps, an analysis has been performed to determine whether one of these pumps can be used and what actions are necessary to inject water into the steam generators. Results show that, for the case in question, a FW turbopump can be used to remove decay heat from the reactor. (author)

  14. Performance test of uninterruptible power system of PIEF

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Chae; Kim, Eun Ka; Chun, Yong Bum; Park, Dea Gyu; Chu, Yong Sun; Bae, Sang Min; Koo, Dae Seo

    1998-02-01

    Because of the special features of post-irradiation examination (PIE) facility to handle very high radioactive materials like spent nuclear fuels, the electric system of the facility was designed and constructed according to a very strict requirement which is applied to nuclear power plant. A safety grade of Class 1E was adopted in the power utility system of PIEF to guarantee stable power supply to the facility without any expected interruption. In order cope with a emergency condition like a power interruption of KEPCO, a emergency power supplying system consisting of a diesel generator (3-phase, 6600/440, 1,000 kW) and uninterruptibel power supply (UPS) system was installed in PIEF. UPS power is connected to the radiation monitoring system and several other main safety devices to assure of normal operations of them for not less than 30 minutes. According to the recommendations and regulations in nuclear law, a monthly and yearly regular inspection for the UPS and emergency power supplying system are performed. In this report, a brief description to establish self-inspection technology and procedures for the above mentioned electric power supplying system at PIEF, including a principle of operation, inspection scheme, trouble shooting, and performance test techniques were made. (author). 8 refs., 3 tabs., 4 figs.

  15. A Survey on Control of Electric Power Distributed Generation Systems for Microgrid Applications

    DEFF Research Database (Denmark)

    Bouzid, Allal; Guerrero, Josep M.; Cheriti, Ahmed

    2015-01-01

    of the electrical system, opens new horizons for microgrid applications integrated into electrical power systems. The hierarchical control structure consists of primary, secondary, and tertiary levels for microgrids that mimic the behavior of the mains grid is reviewed. The main objective of this paper is to give......The introduction of microgrids in distribution networks based on power electronics facilitates the use of renewable energy resources, distributed generation (DG) and storage systems while improving the quality of electric power and reducing losses thus increasing the performance and reliability...... in three classes. This analysis is extended focusing mainly on the three classes of configurations grid-forming, grid-feeding, and grid-supporting. The paper ends up with an overview and a discussion of the control structures and strategies to control distribution power generation system (DPGS) units...

  16. A proposal to pulse the Bevatron/Bevalac main guide field magnet with SCR power supplies

    International Nuclear Information System (INIS)

    Frias, B.; Alonso, J.; Dwinell, R.; Lothrop, F.

    1989-01-01

    The Bevatron/Bevalac Main Guide Field Power Supply was originally designed to provide a 15,250 Volt DC. at sign 8400 Ampere peak magnet pulse. Protons were accelerated to 6.2 Gev. The 128 Megawatt (MW) pulse required two large motor-generator (MG) sets with 67 ton flywheels to store 680 Megajoules of energy. Ignitron rectifiers are used to rectify the generator outputs. Acceleration of heavy ions results in an operating schedule with a broad range of peak fields. The maximum field of 12.5 kilogauss requires a peak pulse of 80 MW. Acceleration of ions to 1.0 kilogauss requires an 8 MW peak pulse. One MG set can provide pulses below 45 MW. Peak pulses of less than 15 MW are now a large block of the operating schedule. A proposal has been made to replace the existing MG system with eight SCR power supplies for low field operation. The SCR supplies will be powered directly from the Lawrence Berkeley Laboratory's 12.3 KV. power distribution system. This paper describes the many advantages of the plan. 4 refs., 3 figs., 3 tabs

  17. Fission Power System Technology for NASA Exploration Missions

    Science.gov (United States)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  18. A Three-Stage Optimal Approach for Power System Economic Dispatch Considering Microgrids

    Directory of Open Access Journals (Sweden)

    Wei-Tzer Huang

    2016-11-01

    Full Text Available The inclusion of microgrids (MGs in power systems, especially distribution-substation-level MGs, significantly affects power systems because of the large volumes of import and export power flows. Consequently, power dispatch has become complicated, and finding an optimal solution is difficult. In this study, a three-stage optimal power dispatch model is proposed to solve such dispatch problems. In the proposed model, the entire power system is divided into two parts, namely, the main power grid and MGs. The optimal power dispatch problem is resolved on the basis of multi-area concepts. In stage I, the main power system economic dispatch (ED problem is solved by sensitive factors. In stage II, the optimal power dispatches of the local MGs are addressed via an improved direct search method. In stage III, the incremental linear models for the entire power system can be established on the basis of the solutions of the previous two stages and can be subjected to linear programming to determine the optimal reschedules from the original dispatch solutions. The proposed method is coded using Matlab and tested by utilizing an IEEE 14-bus test system to verify its feasibility and accuracy. Results demonstrated that the proposed approach can be used for the ED of power systems with MGs as virtual power plants.

  19. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    researching electrical engineering topics related to using underground cables for power transmission at EHV level and including the 420 kV level. The research topics were laid down by ET/AAU and Energinet.dk in the DANPAC (DANish Power systems with AC Cables) research project. The main topics are discussed...... on the basis of 39 references published by ET/AAU and Energinet.dk. Part I of the paper explains the events that lead to the research project, reactive power compensation, modelling for transient studies, including field measurements and improvements to the existing models, and temporary overvoltages due...... to resonances. Part II covers transient phenomena, harmonics in cables, system modelling for different phenomena, main and backup protections in cable-based networks, online fault detection and future trends....

  20. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    researching electrical engineering topics related to using underground cables for power transmission at EHV level and including the 420 kV level. The research topics were laid down by ET/AAU and Energinet.dk in the DANPAC (DANish Power systems with Ac Cables) research project. The main topics are discussed...... on the basis of 39 references published by ET/AAU and Energinet.dk. Part I of the paper explains the events that lead to the research project, reactive power compensation, modelling for transient studies, including field measurements and improvements to the existing models, and temporary overvoltages due...... to resonances. Part II covers transient phenomena, harmonics in cables, system modelling for different phenomena, main and backup protections in cable-based networks, online fault detection and future trends....

  1. Harmonic Resonance Damping with a Hybrid Compensation System in Power Systems with Dispersed Generation

    DEFF Research Database (Denmark)

    Chen, Zhe; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    A hybrid compensation system consisting of an active filter and a group of distributed passive filters has been studied previously. The passive filters are used for each distorting load or Dispersed Generation (DG) unit to remove major harmonics and provide reactive power compensation. The active...... filter is connected in parallel with the distributed passive filters and loads/DGs to correct the system unbalance and remove the remaining harmonic components. The effectiveness of the presented compensation system has also been demonstrated. This paper studies the performance of the hybrid compensation...... demonstrated that the harmonic resonance can be damped effectively. The hybrid filter system is an effective compensation system for dispersed generation systems. In the compensation system, the passive filters are mainly responsible for main harmonic and reactive power compensation of each individual load/ DG...

  2. Considerations for surviving the loss of a main feedwater pump at full power

    International Nuclear Information System (INIS)

    Gaydos, K.A.; Calvo, R.; Conroy, P.W.; Klein, C.M.; Mellers, J.E.

    1990-01-01

    Today's economics dictate that nuclear power operational costs be contained by addressing frequently-occurring trips that might be minimized or avoided via specific upgrades. Much recent attention has focused on the significant percentage of plant trips related to feedwater flow regulation; however, another frequent feedwater-related trip stems from the loss of a single main feedwater pump while operating at high power levels, causing a plant trip on low steam generator water-level. This paper summarizes the results of several plant-specific studies that evaluate a unit's capabilities to consistently survive the loss of a main feedwater pump from full power, and outlines a methodology for analyzing this capability

  3. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  4. Power system stabilizer control for wind power to enhance power system stability

    OpenAIRE

    Domínguez García, José Luís; Gomis Bellmunt, Oriol; Bianchi, Fernando Daniel; Sumper, Andreas

    2011-01-01

    The paper presents a small signal stability analysis for power systems with wind farm interaction. Power systems have damping oscillation modes that can be excited by disturbance or fault in the grid. The power converters of the wind farms can be used to reduce these oscillations and make the system more stable. These ideas are explored to design a power system stabilized (PSS) for a network with conventional generators and a wind farm in order to increase the damping of the oscillation...

  5. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    Science.gov (United States)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  6. Operating experience with an on-line vibration control system for PWR main coolant pumps

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Vortriede, A.

    1996-01-01

    The main circulation pumps are key components of nuclear power plants with pressurized water reactors, because the availability of the main circulation pumps has a direct influence on the availability and electrical output of the entire plant. The on-line automatic vibration control system ASMAS was developed for early failure detection during the normal operation of the main circulation pumps in order to avoid unexpected outages and to establish the possibility of preventive maintenance of the pumps. This system is permanently and successfully operating in three German 1300 MW el NPP's with PWR and has been successfully tested in a 350 MW el NPP with a PWR. (orig.)

  7. Operating experience with an on-line vibration control system for PWR main coolant pumps

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Vortriede, A.

    1998-01-01

    The main circulation pumps are key components of nuclear power plants with pressurized water reactors (PWRs), because the availability of the main circulation pumps has a direct influence on the availability and electrical output of the entire plant. The on-line automatic vibration control system ASMAS was developed for early failure detection during the normal operation of the main circulation pumps in order to avoid unexpected outages and to establish the possibility of preventive maintenance of the pumps. This system is permanently and successfully operating in three German 1300 MW e1 NPP's with PWR and has been successfully tested in a 350 MW e1 NPP with a PWR. (orig.)

  8. The main safety problems encountered at Creys-Malville power station

    International Nuclear Information System (INIS)

    Saitcevsky, Boris

    1980-01-01

    The 1200 MW. Creys-Malville nuclear power station, situated on the upper Rhone river, in the Isere department, is the largest unit in construction of the fast neutrons sodium-cooled reactor channel. Realized within a European framework, this power station of a specific character, requires special safety dispositions, owing to the utilization of sodium. Safety rests on a thorough preventive system, particularly at the level of the sodium circuits, the shut-down system and the devices for the evacuation of residual power [fr

  9. Stockholm Power Tech. Power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The proceedings from this symposium is presented in six volumes: Invited speakers` sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  10. Stockholm Power Tech. Power systems

    International Nuclear Information System (INIS)

    1995-01-01

    The proceedings from this symposium is presented in six volumes: Invited speakers' sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  11. Information service system in the power plant

    International Nuclear Information System (INIS)

    Maruyama, Yukio; Mizuno, Hiromi; Shoda, Kohei; Sekine, Yasuhiro.

    1994-01-01

    For the purpose of improving the intelligent productivity in offices, the introduction of PC-LAN system by the initiative of users has been advanced. In this example, by connecting many personal computers, the information service system that possesses the information on the business of power stations in common was constructed, and intelligent productivity was improved. This information service system is that in which all users are the sponsor as the users and the offerer of information are united, therefore, high conscience level is required for individual users, and the attentive device for the easiness of use was exercised so as to always maintain newest information. The background of introducing this system is explained. The information systems in power stations are the system related to operation control, preventive maintenance and so on and the system for helping the routine works of personnel. The main functions are the offer of the operational data of power stations, the offer of the information on the expected visitors to the PR hall of nuclear power stations, electronic information exchange and so on. The constitution and the features of the system are reported. (K.I.)

  12. Non-volatile main memory management methods based on a file system.

    Science.gov (United States)

    Oikawa, Shuichi

    2014-01-01

    There are upcoming non-volatile (NV) memory technologies that provide byte addressability and high performance. PCM, MRAM, and STT-RAM are such examples. Such NV memory can be used as storage because of its data persistency without power supply while it can be used as main memory because of its high performance that matches up with DRAM. There are a number of researches that investigated its uses for main memory and storage. They were, however, conducted independently. This paper presents the methods that enables the integration of the main memory and file system management for NV memory. Such integration makes NV memory simultaneously utilized as both main memory and storage. The presented methods use a file system as their basis for the NV memory management. We implemented the proposed methods in the Linux kernel, and performed the evaluation on the QEMU system emulator. The evaluation results show that 1) the proposed methods can perform comparably to the existing DRAM memory allocator and significantly better than the page swapping, 2) their performance is affected by the internal data structures of a file system, and 3) the data structures appropriate for traditional hard disk drives do not always work effectively for byte addressable NV memory. We also performed the evaluation of the effects caused by the longer access latency of NV memory by cycle-accurate full-system simulation. The results show that the effect on page allocation cost is limited if the increase of latency is moderate.

  13. Electric cars as mobile power storage systems

    International Nuclear Information System (INIS)

    Herzog, B.

    2010-01-01

    This article discusses the use of electric cars as a means of optimising the use of renewable energy sources. Charging the cars' batteries during periods when cheap electricity prices prevail and then using excess capacity to supply the mains with electricity during periods of peak demand is discussed. The possible use of wind for power generation is discussed and a system proposed by a leading supplier of electrical apparatus and systems is examined. Two examples of electric cars and associated power chains are looked at and tests in everyday practice are described

  14. Optimum power quality service in multi-bus microgrid systems

    DEFF Research Database (Denmark)

    Meng, Lexuan; Guerrero, Josep M.

    2017-01-01

    Power quality requirements for different consumers and electric equipment are distinguished. Conventionally a common power quality standard is applied to the whole power grid inducing debate between several sides, including consumers, generation sites and technical commissions. Customized power...... quality standard settings for different consumers become a widely accepted solution. The main challenge is on the proper regulation of power quality in different areas. This paper considers a multi-bus microgrid system where the power quality in each has flexible and individual standard. Distributed...... generators are utilized to provide power quality regulation functions. An optimization method based strategy is proposed and implemented with the power converter control system. A general mathematical model is established which can be used in the optimization problem for evaluating the objective function...

  15. Electric power system / emergency power supply

    International Nuclear Information System (INIS)

    Dorn, P.G.

    1980-01-01

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  16. Auxiliary feedwater system risk-based inspection guide for the Maine Yankee Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gore, B.F.; Vo, T.V.; Moffitt, N.E.; Bumgardner, J.D.

    1992-10-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. The information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Maine Yankee was selected as one of a series of plants for study. ne product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Maine Yankee plant

  17. The main pump motor remote visual check in the application of the domestic nuclear power plants

    International Nuclear Information System (INIS)

    Ge Lianwei; Yu Tao; Fang Jiang; Zhang Ting; Zhang Xingtian; Ding Youyuan

    2014-01-01

    In this paper, the Qinshan nuclear power station the first main pump motor to the successful implementation of remote visual inspection the main pump motor remote visual inspection applications. Qinshan Nuclear Power Plant Units 1 and 2 of the main pump motor inspection results show that the key components of the Qinshan Nuclear Power Plant Units 1 and 2 of the main pump rotor, stator end coils good condition, its problems for 10 years in the motor does not affect the normal use of the motor state disintegration overhaul problems tracking disintegration overhaul in 10 years. (authors)

  18. Modernization of Kozloduy nuclear plant unit 5 and 6, implementation of measures to improve the reliability of the main generator system

    International Nuclear Information System (INIS)

    Stinshoff, H.

    2003-01-01

    To improve the reliability of Kozloduy Nuclear power plant several modernization measures will be implemented during the outages in the years 2003 to 2005. In the area of the main generator the following measures will be performed in unit 6 during 2003 outage: - Replacement of main generator circuit breaker by new SF6 cooled breaker type - Replacement of main generator excitation system by new two channel digital system - Replacement of main generator protection by new digital multi-purpose protections including digital fault recorders - Installation of radio frequency monitoring system of main generator circuit Starting from the present situation the new concept is explained. The project organization under consideration of large Bulgarian participation as well as the sequence and schedule of the implementation during the short outage time window is shown. These modernization measures lead to an increase of reliability and availability for the operation of the power plant and with this to increase power plant safety

  19. Data logger system of Tokai (I) Nuclear Power Station, the Japan Atomic Power Company

    International Nuclear Information System (INIS)

    Machida, Akira; Chikahata, Kiyomitsu; Nakamura, Mamoru; Nanbu, Taketoshi; Kawakami, Hiroshi

    1977-01-01

    The Tokai(I) nuclear power station, the Japan Atomic Power Company, was commissioned in July, 1966. In this station, temperatures of about 700 points are monitored and recorded with a data logger. However, the logger was manufactured some 15 years ago, therefore it is now old-fashioned, and has caused frequent failures these 2 or 3 years. So it was decided to replace it with a new one, and the process control computer, U-300 system including CRT display, has been adopted considering the latest trend in U.K. The control and monitoring system in this station is not a centralized control system, but a distributed control system divided into three control rooms, namely main control room, turbine generator control room and fuel exchanger (cask machine) control room. Therefore for grasping the complete plant conditions at the main control room, the system has not been convenient, and the centralization of data processing has been desired from the viewpoint of operation. The new logger system is composed so as to facilitate the centralized monitoring in the main control room, considering the above requirement. It has been improved so as to have seven important functions in addition to the existing functions. Hardware and software of this system are briefly explained. The new system was started up in February 1977, and is now operating well, though some early failures were experienced. (Wakatsuki, Y.)

  20. Multi-microprocessor control of the main ring magnet power supply of the 12 GeV KEK proton synchrotron

    International Nuclear Information System (INIS)

    Sueno, T.; Mikawa, K.; Toda, M.; Toyama, T.; Sato, H.; Matsumoto, S.

    1992-01-01

    A general description of the computer control system of the KEK 12 GeV PS main ring magnet power supply is given, including its peripheral devices. The system consists of the main HIDIC-V90/25 CPU and of the input and output controllers HISEC-04M. The main CPU, supervised by UNIX, provides the man-machine interfacing and implements the repetitive control algorithm to correct for any magnet current deviation from reference. Two sub-CPU's are linked by a LAN and supported by a real time multi-task monitor. The output process controller distributes the control patterns to 16-bit DAC's, at 1.67 ms clock period in synchronism with the 3-phase ac line systems. The input controller logs the magnet current and voltage, via 16-bit ADC's at the same clock rate. (author)

  1. Design for Reliability of Power Electronics for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Blaabjerg, Frede

    2016-01-01

    Power electronics is the enabling technology for optimizing energy harvesting from renewable systems like Photovoltaic (PV) and wind power systems, and also for interfacing grid-friendly energy systems. Advancements in the power semiconductor technology (e.g., wide band-gap devices) have pushed...... the conversion efficiency of power electronics to above 98%, where however te reliability of power electronics is becoming of high concern. Therefore, it is important to design for reliable power electronic systems to lower the risks of many failures during operation; otherwise will increase the cost...... for maintenance and reputation, thus affecting the cost of PV energy. Today's PV power conversion applications require the power electronic systems with low failure rates during a service life of 20 years or even more. To achieve so, it is vital to know the main life-limiting factors of power electronic systems...

  2. Development of Power System for Medium Energy Accelerator

    International Nuclear Information System (INIS)

    Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Seol, Kyung Tae; Jang, Ji Ho; Cho, Yong Sub; Hong, In Seok; Kim, Kyung Ryul

    2008-05-01

    The main goal of the studies are to develop a power supply system used for 100MeV proton accelerator and to operate 20MeV accelerator which has been installed in KAERI site. The 100MeV proton accelerator uses RF cavity to accelerate beams and need RF amplifier, klystron. To operate the klystron, a high power pulse power supply is required and the power supply system should have high quality because the reliability of the power supply has critical impact on the overall reliability of accelerator system. Therefore, high power pulse power system and related technology development are inevitable for 100MeV accelerator system development. 20MeV accelerator system has been developed and installed in KAERI site, which will be used as an injector for 100MeV accelerator and supply 20MeV beam to users. A study on the 20MeV accelerator characteristics should be performed to operate the machine efficiently. In addition, this machine can be used as a test bench for developing the 100MeV accelerator components. Therefore, not only the hardware so called 'high voltage power supply', but the related technology of the high quality high voltage power system and man power can be obtained from the results of this studies. The test results of the 20MeV accelerator can be utilized as a basis for efficient operation of 100MeV accelerator and these are the ultimate objective and necessities of the study

  3. Power Converters and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Chen, Zhe

    2004-01-01

    The global electrical energy consumption is steadily rising and therefore a continuous demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective renewable...... energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface to the grid...... for the renewables and this paper will first briefly discuss three different alternative/renewable energy sources. Next, various configurations of small and medium power conversion topologies are presented including their control (mainly for PV-systems). Finally wind turbine configuration and their control...

  4. Conceptual study of superconducting urban area power systems

    International Nuclear Information System (INIS)

    Noe, Mathias; Gold-acker, Wilfried; Bach, Robert; Prusseit, Werner; Willen, Dag; Poelchau, Juri; Linke, Christian

    2010-01-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  5. Knowledge-based and integrated monitoring and diagnosis in autonomous power systems

    Science.gov (United States)

    Momoh, J. A.; Zhang, Z. Z.

    1990-01-01

    A new technique of knowledge-based and integrated monitoring and diagnosis (KBIMD) to deal with abnormalities and incipient or potential failures in autonomous power systems is presented. The KBIMD conception is discussed as a new function of autonomous power system automation. Available diagnostic modelling, system structure, principles and strategies are suggested. In order to verify the feasibility of the KBIMD, a preliminary prototype expert system is designed to simulate the KBIMD function in a main electric network of the autonomous power system.

  6. Grid-Connected Photovoltaic System with Active Power Filtering Functionality

    Directory of Open Access Journals (Sweden)

    Joaquín Vaquero

    2018-01-01

    Full Text Available Solar panels are an attractive and growing source of renewable energy in commercial and residential applications. Its use connected to the grid by means of a power converter results in a grid-connected photovoltaic system. In order to optimize this system, it is interesting to integrate several functionalities into the power converter, such as active power filtering and power factor correction. Nonlinear loads connected to the grid generate current harmonics, which deteriorates the mains power quality. Active power filters can compensate these current harmonics. A photovoltaic system with added harmonic compensation and power factor correction capabilities is proposed in this paper. A sliding mode controller is employed to control the power converter, implemented on the CompactRIO digital platform from National Instruments Corporation, allowing user friendly operation and easy tuning. The power system consists of two stages, a DC/DC boost converter and a single-phase inverter, and it is able to inject active power into the grid while compensating the current harmonics generated by nonlinear loads at the point of common coupling. The operation, design, simulation, and experimental results for the proposed system are discussed.

  7. Integration of a nuclear power plant in electrical systems, alternative programs, optimization

    International Nuclear Information System (INIS)

    Souza, J.A.M. de.

    1991-01-01

    The problem of integration of a nuclear power plants in a electrical power system, to support the power demand of the system, and mainly also support the power demand at the critical period, I.E., peak demands, is analysed. The factors considered in this analysis are: the demand structure of the region, the availability of others power plants in the electrical net and the capacity factor. (author)

  8. An overview of power electronic converter technology for renewable energy systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic technology which is an enabling tool for modern wind and marine energy conversion systems. In this chapter, the main power electronic devices are described. Various power electronic converter topologies are represented, and commonly used modulation schemes...

  9. Review of nuclear power plant systems

    International Nuclear Information System (INIS)

    Doehler

    1980-01-01

    This presentation starts with a brief description of the Technischer Ueberwachungs-Verein (TUeV) and its main activities in the field of technical assessments. The TUeV-organisation is in general the assessor who performs the review if nuclear power plant systems, structures and equipment. All aspects relating to the safe operation of nuclear power plants are assessed by the TUeV. This paper stresses the review of the design of nuclear power plant systems and structures. It gives an outline on the procedure of an assessment, starting with the regulatory requirements, going into the papers of the applicant and finally ending with the TUeV-appraisal. This procedure is shown using settlement measuring requirements as an example. The review of the design of mechanical structures such as pipes, valves, pump and vessels is shown in detail. (RW)

  10. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  11. CBA main magnet power supply ripple reduction

    International Nuclear Information System (INIS)

    Bagley, G.; Edwards, R.J.

    1983-01-01

    The preliminary results of a development program to minimize beam perturbation resulting from ripple current generated by the CBA Main Magnet Power Supply are presented. The assessment of the magnitude and causes of the ripple generated led to a modification of the SCR Gate Driver and the addition of a bandpass amplifier correction loop which gave significant improvement. A description of the changes made and the results obtained are included. A second design approach was developed in which the timing of the SCR gate pulses is directly determined by a VCO. The results reported with this VCO Loop indicate superior performance particularly at frequencies below 60 Hz. A shunt transistor regulator design is proposed to minimize higher SCR switching frequency harmonics

  12. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G

    2012-01-01

    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  13. Isolators Including Main Spring Linear Guide Systems

    Science.gov (United States)

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)

    2017-01-01

    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  14. IAEA technical meeting on integrating analog and digital instrumentation and control systems in hybrid main control rooms at nuclear power plants. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    that digital technology offers are needed to increase cost-effective electricity production. As an integral part of the I and C modernization program at a nuclear power plant, the control room and other human-system interfaces (HSIs) will also be modernized. To support safe and effective operation, it is critical to specify, design, implement, operate, and maintain, as well as train for, the control room and HSI changes to take advantage of human cognitive processing abilities. This consideration of human factors is essential to increase performance and to reduce the likelihood of human errors. The plant I and C and HSI modifications can affect personnel in various ways. They can impact the role of personnel, the tasks to be performed, the way tasks are performed, and the knowledge, skills and training required of personnel. As part of modernization, HSIs are becoming more computer-based, incorporating features such as soft controls and computerized procedures, touch-screen interfaces, sit-down workstations, and large-screen overview displays. As computer-based technologies are integrated into control rooms that were largely based on conventional technology, hybrid control rooms are created. The potential benefits of implementing digital technology include more efficient operations and maintenance, leading to improved power plant availability and safety through the avoidance of transients, forced outages, and unnecessary shutdowns. The potential benefits also include increased efficiency and power output as well as reduced operating costs. New digital systems provide the opportunity to give personnel information they did not have with conventional systems. The importance of these issues has led the IAEA to organize (in conjunction with AECL) an international forum for presentations and discussions on the potential benefits and challenges related to the integration of Analog and Digital Instrumentation and Control Systems in Hybrid Main Control Rooms. Many of these

  15. An Effective Distributed Model for Power System Transient Stability Analysis

    Directory of Open Access Journals (Sweden)

    MUTHU, B. M.

    2011-08-01

    Full Text Available The modern power systems consist of many interconnected synchronous generators having different inertia constants, connected with large transmission network and ever increasing demand for power exchange. The size of the power system grows exponentially due to increase in power demand. The data required for various power system applications have been stored in different formats in a heterogeneous environment. The power system applications themselves have been developed and deployed in different platforms and language paradigms. Interoperability between power system applications becomes a major issue because of the heterogeneous nature. The main aim of the paper is to develop a generalized distributed model for carrying out power system stability analysis. The more flexible and loosely coupled JAX-RPC model has been developed for representing transient stability analysis in large interconnected power systems. The proposed model includes Pre-Fault, During-Fault, Post-Fault and Swing Curve services which are accessible to the remote power system clients when the system is subjected to large disturbances. A generalized XML based model for data representation has also been proposed for exchanging data in order to enhance the interoperability between legacy power system applications. The performance measure, Round Trip Time (RTT is estimated for different power systems using the proposed JAX-RPC model and compared with the results obtained using traditional client-server and Java RMI models.

  16. Policy planning for nuclear power: An overview of the main issues and requirements

    International Nuclear Information System (INIS)

    1993-08-01

    This special report, Policy Planning for Nuclear Power: An Overview of the Main Issues and Requirements, has been prepared in response to the express request of a number of IAEA Member States for a document to assist makers in developing countries on the introduction of nuclear power. The report contains information on the political, governmental, economic, financial and technical issues and requirements associated with planning and implementing a safe, economic and reliable nuclear power programme. It highlights the main areas in which policies must be developed and decisions taken, as well as the role and responsibilities of government, the plant owner and national industry. Also presented are the main criteria to assist policy planners in defining options and strategies which can achieve a balance among such objectives as cost effective and efficient electricity production, realistic and acceptable financing arrangements, national development requirements, safety and environmental protection. Further information and details on the technical and other issues presented in this report are given in the list of related IAEA publications and documents at the end of this report

  17. Synchronization Methods for Three Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    Nowadays, it is a general trend to increase the electricity production using Distributed Power Generation Systems (DPGS) based on renewable energy resources such as wind, sun or hydrogen. If these systems are not properly controlled, their connection to the utility network can generate problems...... on the grid side. Therefore, considerations about power generation, safe running and grid synchronization must be done before connecting these systems to the utility network. This paper is mainly dealing with the grid synchronization issues of distributed systems. An overview of the synchronization methods...

  18. Corrective maintenance support system for nuclear power plants

    International Nuclear Information System (INIS)

    Kakiuchi, Tetsuo

    1996-01-01

    With increase of share of nuclear power generation in electric power supply in Japan, requirement for further safe operation and improvement of economics for the nuclear power plants is promoting. The pressed water type (PWR) nuclear power plant in operation in Japan reaches to 22 sets, application rate of the instruments is 74% as mean value for 7 years since 1989 and in high level, which is due to a result of preventive maintenance in ordinary and periodical inspections. The present state of maintenance at the nuclear power plant is mainly preventive maintenance, which is mainly conducted in a shape of time planning maintenance but partially in a shape of state monitoring maintenance for partial rotating appliances. Concretely speaking, the periodical inspection was planned on a base of daily inspection and a long term program on maintenance, and executed on a base of feedback function to think of the long term program again by evaluating the periodical inspection results. Here were introduced on the monitoring diagnosis and periodical inspection regionalization equipment, fatigue monitoring system, automatic supersonic wave damage inspection equipment for reactor, steam evaporator heat conductive tube inspection equipment, automatic testing equipment for measuring controller, air working valve property testing equipment, as maintaining support system in the PW generation plant. (G.K.)

  19. PowerFactory applications for power system analysis

    CERN Document Server

    Gonzalez-Longatt, Francisco

    2014-01-01

    This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-

  20. Dimensioning aspects of 48 V telecommunications power supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Jakab, L. [Siemens Telefongyar Kft (Hungary)

    2000-07-01

    Considering the reliable operation of the 48 V telecommunications power supply systems it is essential the appropriate dimensioning. The basic elements of the power supply systems, i.e. batteries, rectifiers, DC/AC cabling, fuses, etc., should be defined by exact calculation. The presentation reviews the main questions and problems of dimensioning. It lays a special emphasis on the optimized planning procedure, further it also deals with the economical impacts of the dimensioning parameters. (orig.)

  1. Power system relaying

    CERN Document Server

    Horowitz, Stanley H; Niemira, James K

    2013-01-01

    The previous three editions of Power System Relaying offer comprehensive and accessible coverage of the theory and fundamentals of relaying and have been widely adopted on university and industry courses worldwide. With the third edition, the authors have added new and detailed descriptions of power system phenomena such as stability, system-wide protection concepts and discussion of historic outages. Power System Relaying, 4th Edition continues its role as an outstanding textbook on power system protection for senior and graduate students in the field of electric power engineering and a refer

  2. Recent Operating Experience involving Power Electronics Failure in Korea Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jaedo

    2015-01-01

    Recently, modern power electronics devices for electrical component were steadily increased in electrical systems which used for main power control and protection. To upgrade the system reliability we recommended the redundancy for electrical equipment trip system. The past several years, Korean Nuclear power plants have changed the electrical control and protection systems (Auto Voltage Regulator, Power Protection Relay) for main generator and main power protection relay systems. In this paper we deal with operating experience involving modern solid state power electronics failure in Korean nuclear power plants. One of the failures we will discuss the degraded phenomenon of power electronics device for CEDMCS(Control Element Drive Mechanism Control System). As the result of the failure we concerned about the modification for trip source of main generator excitation systems and others. We present an interesting issue for modern solid state devices (IGBT, Thyristors). (authors)

  3. Power law of distribution of emergency situations on main gas pipeline

    Science.gov (United States)

    Voronin, K. S.; Akulov, K. A.

    2018-05-01

    The article presents the results of the analysis of emergency situations on a main gas pipeline. A power law of distribution of emergency situations is revealed. The possibility of conducting further scientific research to ensure the predictability of emergency situations on pipelines is justified.

  4. Management of a power system based on renewable energy

    Directory of Open Access Journals (Sweden)

    Ronay Karoly

    2012-06-01

    Full Text Available This article main purpose is to highlight the main advantage of the hardware and software implementation for an energy management system based on renewable energy sources. By using implemented and dedicated hardware and software the evolution of energy production and consumption can be monitored. The advantages of such system are highlighted by the results obtained from experimental simulations. An experimental model for the power system based on renewable energy sources was implemented, where the actual status of the system in different situations when the equipments change their own statuses can be shown.

  5. Maintenance Optimization Schedulingof Electric Power SystemsConsidering Renewable EnergySources

    OpenAIRE

    Yu, Jia

    2015-01-01

    Maintenance is crucial in any industry to keep components in a reasonable functionalcondition, especially in electric power system, where maintenance is done so that thefrequency and the duration of a fault can be shortened, thus increasing the availability of acertain component. And the reliability of the whole electric power system can also beimproved. In the many deregulated electricity markets, reliability and economic drivingforces are the two aspects that system operators mainly conside...

  6. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  7. Impact Study of PMSG-Based Wind Power Penetration on Power System Transient Stability Using EEAC Theory

    Directory of Open Access Journals (Sweden)

    Zhongyi Liu

    2015-11-01

    Full Text Available Wind turbines with direct-driven permanent magnet synchronous generators (PMSGs are widely used in wind power generation. According to the dynamic characteristics of PMSGs, an impact analysis of PMSG-based wind power penetration on the transient stability of multi-machine power systems is carried out in this paper based on the theory of extended equal area criterion (EEAC. Considering the most severe PMSG integration situation, the changes in the system’s equivalent power-angle relationships after integrating PMSGs are studied in detail. The system’s equivalent mechanical input power and the fault period electrical output power curves are found to be mainly affected. The analysis demonstrates that the integration of PMSGs can cause either detrimental or beneficial effects on the system transient stability. It is determined by several factors, including the selection of the synchronous generators used to balance wind power, the reactive power control mode of PMSGs and the wind power penetration level. Two different simulation systems are also adopted to verify the analysis results.

  8. Design characteristics of EU-APR1400 on-site power system

    International Nuclear Information System (INIS)

    Kim, D.H.; Kim, Y.S.; Kim, Y.S.

    2014-01-01

    In the global nuclear market, US and European design requirements have been largely used to develop the design of nuclear power plants(NPPs). The APR1400 design was developed on the basis of US regulatory guide and EPRI utility requirements document(URD). In order to enlarge the export market of APR1400, KHNP (Korea Hydro & Nuclear Power Co., Ltd) has developed the EU-APR1400 design which complies with the European nuclear design requirements. In this paper, the design characteristics of EU-APR1400 on-site power system developed according to the European design requirements of electrical power system are described. The European main design requirements of electrical power system involve 50 Hz rated frequency, 400/110 kV grid voltage, the application of the diversity and the redundancy, and so on. The EU-APR1400 on-site power system has been developed on the basis of these requirements. The representative designs include the redundancy, diversity, independence design, the emergency power supply design, the design for providing electrical power to the dedicated severe accident systems, and the design for European grid requirements. (author)

  9. Future steps toward a Danish power system with 50% wind power

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Ackermann, Thomas; Bach, Poul-Frederik

    .dk. The objective of EcoGrid work package 5 is to suggest future research and development activities in EcoGrid.dk. The future activities will consist of related activities of which some should be directed within an EU framework (EcoGridEU). The delivery of phase 1 work package 5 is a packet of proposals to be used......This report is part of the EcoGrid.dk project phase 1 initiated by Energinet.dk and the result of work package 5 dealing with proposals for future steps toward a Danish power system with 50% wind power. The EcoGrid.dk project has the objective to develop new long term technologies and market...... power system with increased volumes of RE. - Phase 2: Specific projects, analyses and recommendations to Energinet.dk with main focus on research activities - Phase 3: Technologies are implemented in real environment and demonstrated with subsequent adoption and implementation in Energinet...

  10. Priority Control Strategy of VSC-MTDC System for Integrating Wind Power

    Directory of Open Access Journals (Sweden)

    Wen-ning Yan

    2015-01-01

    Full Text Available For the obvious advantages in integrating wind power, multiterminal HVDC transmission system (VSC-MTDC is widely used. The priority control strategy is proposed in this paper considering the penetration rate of wind power for the AC grid. The strategy aims to solve the problems of power allocation and DC voltage control of the DC system. The main advantage of this strategy is that the demands for wind power of different areas can be satisfied and a power reference for the wind power trade can also be provided when wind farms transmit active power to several AC grids through the DC network. The objective is that power is well distributed according to the output power of wind farm with the demand of AC system and satisfactory control performance of DC voltage is obtained.

  11. Space power plants and power-consuming industrial systems

    International Nuclear Information System (INIS)

    Latyshev, L.; Semashko, N.

    1996-01-01

    An opportunity to create the space power production on the basis of solar, nuclear and fusion energies is analyzed. The priority of solar power production as the most accessible and feasible in comparison with others is emphasized. However, later on, it probably will play an auxiliary role. The possibilities of fusion power production, as a basic one in future, are also considered. It is necessary to create reactors using the fueling cycle with helium-3 (instead of tritium and deuterium, later on). The reaction products--charged particles, mainly--allow one to organize the system of direct fusion energy conversion into electricity. The produced energy is expected not to be transmitted to Earth, but an industry in space is expected to be produced on its basis. The industrial (power and science-consuming) objects located on a whole number of space apparatus will form a single complex with its own basic power plant. The power transmission within the complex will be realized with high power density fluxes of microwave radiation to short distances with their receivers at the objects. The necessary correction of the apparatus positions in the complex will be done with ion and plasma thrusters. The materials present on the Moon, asteroids and on other planets can serve as raw materials for industrial objects. Such an approach will help to improve the ecological state on Earth, to eliminate the necessity in the fast energy consumption growth and to reduce the hazard of global thermal crisis

  12. Modelling supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A; Bindner, H; Lundsager, P [Risoe National Lab., Roskilde (Denmark); Jannerup, O [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)

    1999-03-01

    Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)

  13. Development of digital device based work verification system for cooperation between main control room operators and field workers in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min, E-mail: jewellee@kaeri.re.kr [Korea Atomic Energy Research Institute, 305-353, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Hyun Chul, E-mail: leehc@kaeri.re.kr [Korea Atomic Energy Research Institute, 305-353, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ha, Jun Su, E-mail: junsu.ha@kustar.ac.ae [Department of Nuclear Engineering, Khalifa University of Science Technology and Research, Abu Dhabi P.O. Box 127788 (United Arab Emirates); Seong, Poong Hyun, E-mail: phseong@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2016-10-15

    Highlights: • A digital device-based work verification and cooperation support system was developed. • Requirements were derived by interviewing field operators having experiences with mobile-based work support systems. • The usability of the proposed system was validated by conducting questionnaire surveys. • The proposed system will be useful if the manual or the set of guidelines is well constructed. - Abstract: Digital technologies have been applied in the nuclear field to check task results, monitor events and accidents, and transmit/receive data. The results of using digital devices have proven that these devices can provide high accuracy and convenience for workers, allowing them to obtain obvious positive effects by reducing their workloads. In this study, as one step forward, a digital device-based cooperation support system, the nuclear cooperation support and mobile documentation system (Nu-COSMOS), is proposed to support communication between main control room (MCR) operators and field workers by verifying field workers’ work results in nuclear power plants (NPPs). The proposed system consists of a mobile based information storage system to support field workers by providing various functions to make workers more trusted by MCR operators; also to improve the efficiency of meeting, and a large screen based information sharing system supports meetings by allowing both sides to share one medium. The usability of this system was estimated by interviewing field operators working in nuclear power plants and experts who have experience working as operators. A survey to estimate the usability of the suggested system and the suitability of the functions of the system for field working was conducted for 35 subjects who have experience in field works or with support system development-related research. The usability test was conducted using the system usability scale (SUS), which is widely used in industrial usability evaluation. Using questionnaires

  14. Development of digital device based work verification system for cooperation between main control room operators and field workers in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Min; Lee, Hyun Chul; Ha, Jun Su; Seong, Poong Hyun

    2016-01-01

    Highlights: • A digital device-based work verification and cooperation support system was developed. • Requirements were derived by interviewing field operators having experiences with mobile-based work support systems. • The usability of the proposed system was validated by conducting questionnaire surveys. • The proposed system will be useful if the manual or the set of guidelines is well constructed. - Abstract: Digital technologies have been applied in the nuclear field to check task results, monitor events and accidents, and transmit/receive data. The results of using digital devices have proven that these devices can provide high accuracy and convenience for workers, allowing them to obtain obvious positive effects by reducing their workloads. In this study, as one step forward, a digital device-based cooperation support system, the nuclear cooperation support and mobile documentation system (Nu-COSMOS), is proposed to support communication between main control room (MCR) operators and field workers by verifying field workers’ work results in nuclear power plants (NPPs). The proposed system consists of a mobile based information storage system to support field workers by providing various functions to make workers more trusted by MCR operators; also to improve the efficiency of meeting, and a large screen based information sharing system supports meetings by allowing both sides to share one medium. The usability of this system was estimated by interviewing field operators working in nuclear power plants and experts who have experience working as operators. A survey to estimate the usability of the suggested system and the suitability of the functions of the system for field working was conducted for 35 subjects who have experience in field works or with support system development-related research. The usability test was conducted using the system usability scale (SUS), which is widely used in industrial usability evaluation. Using questionnaires

  15. Overview of electric power industry of main countries in the world

    International Nuclear Information System (INIS)

    2013-01-01

    The electric power supply system, power producer, regulation system, electricity liberalization, power demand and supply, electricity rate, development of electric power sources, nuclear power generation and renewable energy of six countries such as USA, England, German, France, Russia and China are reported. On USA, 3,754 x 10 9 kWh of total electric energy, 104 of nuclear reactors are running and giving careful consideration to safety of the plant. Shale gas production is increasing, and new technology of electric car, smart grid and demand response is developing. On England, 368 x 10 9 kWh of total electric energy, which consisted of 70.4% thermal power, 18.8% nuclear power and 10.8% renewable energy, 18 nuclear reactors are running, but almost nuclear power plants will be closed until 2023. Biomass and wind power have been developed. On German, 609 x 10 9 kWh of total electric energy, 9 nuclear reactors are running but closed till 2022, the renewable energy such as wind power and photovoltaic is introduced. On France, 542 x 10 9 kWh total electric energy, which consisted of 9% hydroelectricity, 9% thermal power, 78% nuclear power and 4% renewable energy. The renewable energy plan is formulated. On Russia, 1,052 x 10 9 kWh total electric energy consisted of 67.8% thermal power, 15.7% hydroelectricity and 16.4% nuclear power, 32 nuclear power plants are running and 9 nuclear reactors building. On China, 4,693 x 10 9 kWh power consumption, 6 nuclear power plants are running to generate 1.85% electric energy, the objects of nuclear power generation and renewable energy were announced. (S.Y.)

  16. Development and advances in conventional high power RF systems

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1995-06-01

    The development of rf systems capable of producing high peak power (hundreds of megawatts) at relatively short pulse lengths (0.1--5 microseconds) is currently being driven mainly by the requirements of future high energy linear colliders, although there may be applications to industrial, medical and research linacs as well. The production of high peak power rf typically involves four basic elements: a power supply to convert ac from the ''wall plug'' to dc; a modulator, or some sort of switching element, to produce pulsed dc power; an rf source to convert the pulsed dc to pulsed rf power; and possibly an rf pulse compression system to further enhance the peak rf power. Each element in this rf chain from wall plug to accelerating structure must perform with high efficiency in a linear collider application, such that the overall system efficiency is 30% or more. Basic design concepts are discussed for klystrons, modulators and rf pulse compression systems, and their present design status is summarized for applications to proposed linear colliders

  17. Review of Integration of Distributed Energy Resources (DERs) into Power Systems

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Xu, Zhao

    2011-01-01

    state‐of‐the‐art DER integration concepts  relations existing DER integration concepts to the EV system The power balancing challenges of power systems brought by high penetration of intermittent DER have been discussed, especially the wind power integration in the Danish context. The relevance...... of the integration of electric vehicles (EVs) to the DER integration concepts have been analyzed as well based on the energy storage potential of EVs.   Two main concepts for DER integration, virtual power plant (VPP) and microgrids, are described and a comparison of the two concepts have been done. The comparison......An overview of the integration of distributed energy resources (DER) into power systems has been presented in this report. Different aspects of integration of DER into power systems have been reviewed and discussed which are listed below.    needs of DER integration into power systems  various...

  18. Synchronized Phasor Measurements of a Power System Event in Eastern Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Joana; Jørgensen, Preben

    2003-01-01

    . The outage of the 400-kV tie-line weakened the Eastern Danish power system and excited power oscillations in the interconnected power systems. During this event prototype Phasor Measurements Units (PMU) gave the opportunity of realtime monitoring of positive sequence voltage and current phasors using...... satellite-based Global Positioning System (GPS). Comparisons between real-time recordings and results from dynamic simulations with PSS/E are presented. The main features from the simulation analysis are successfully verified by means of the corresponding synchronized phasor measurements....

  19. Synchronized Phasor Measurements of a Power System Event in Eastern Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Joana; Jørgensen, Preben

    2006-01-01

    . The outage of the 400-kV tie-line weakened the Eastern Danish power system and excited power oscillations in the interconnected power systems. During this event prototype Phasor Measurements Units (PMU) gave the opportunity of realtime monitoring of positive sequence voltage and current phasors using...... satellite-based Global Positioning System (GPS). Comparisons between real-time recordings and results from dynamic simulations with PSS/E are presented. The main features from the simulation analysis are successfully verified by means of the corresponding synchronized phasor measurements....

  20. Large screen mimic display design research for advanced main control room in nuclear power plant

    International Nuclear Information System (INIS)

    Zheng Mingguang; Yang Yanhua; Xu Jijun; Zhang Qinshun; Ning Zhonghe

    2002-01-01

    Firstly the evolution of mimic diagrams or displays used in the main control room of nuclear power plant was introduced. The active functions of mimic diagrams were analyzed on the release of operator psychological burden and pressure, the assistance of operator for the information searching, status understanding, manual actuation, correct decision making as well as the safe and reliable operation of the nuclear power plant. The importance and necessity to use the (large screen) mimic diagrams in advanced main control room of nuclear power plant, the design principle, design details and verification measures of large screen mimic display are also described

  1. Fault Correspondence Analysis in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    WANG, C.

    2015-02-01

    Full Text Available Wide area measurement system (WAMS mainly serves for the requirement of time synchronization in complex electric power systems. The analysis and control of power system mostly depends on the measurement of state variables, and WAMS provides the basis for dynamic monitoring of power system by these measurements, which can also satisfy the demands of observable, controllable, real-time analysis and decision, self-adaptive etc. requested by smart grid. In this paper, based on the principles of fault correspondence analysis, by calculating row characteristic which represents nodal electrical information and column characteristic which represents acquisition time information, we will conduct intensive research on fault detection. The research results indicate that the fault location is determined by the first dimensional variable, and the occurrence time of fault is determined by the second dimensional variable. The research in this paper will contribute to the development of future smart grid.

  2. Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Lee, Jung Pil; Kim, Han Gun

    2012-01-01

    In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using H control theory was designed to damp low frequency oscillation of power system. The main advantage of the controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed SFESS controller was more robust than conventional power system stabilizer (PSS).

  3. Modeling and Simulation of Power Distribution System in More Electric Aircraft

    Directory of Open Access Journals (Sweden)

    Zhangang Yang

    2015-01-01

    Full Text Available The More Electric Aircraft concept is a fast-developing trend in modern aircraft industry. With this new concept, the performance of the aircraft can be further optimized and meanwhile the operating and maintenance cost will be decreased effectively. In order to optimize the power system integrity and have the ability to investigate the performance of the overall system in any possible situations, one accurate simulation model of the aircraft power system will be very helpful and necessary. This paper mainly introduces a method to build a simulation model for the power distribution system, which is based on detailed component models. The power distribution system model consists of power generation unit, transformer rectifier unit, DC-DC converter unit, and DC-AC inverter unit. In order to optimize the performance of the power distribution system and improve the quality of the distributed power, a feedback control network is designed based on the characteristics of the power distribution system. The simulation result indicates that this new simulation model is well designed and it works accurately. Moreover, steady state performance and transient state performance of the model can fulfill the requirements of aircraft power distribution system in the realistic application.

  4. Automatic Generation Control Study in Two Area Reheat Thermal Power System

    Science.gov (United States)

    Pritam, Anita; Sahu, Sibakanta; Rout, Sushil Dev; Ganthia, Sibani; Prasad Ganthia, Bibhu

    2017-08-01

    Due to industrial pollution our living environment destroyed. An electric grid system has may vital equipment like generator, motor, transformers and loads. There is always be an imbalance between sending end and receiving end system which cause system unstable. So this error and fault causing problem should be solved and corrected as soon as possible else it creates faults and system error and fall of efficiency of the whole power system. The main problem developed from this fault is deviation of frequency cause instability to the power system and may cause permanent damage to the system. Therefore this mechanism studied in this paper make the system stable and balance by regulating frequency at both sending and receiving end power system using automatic generation control using various controllers taking a two area reheat thermal power system into account.

  5. improvement of power system quality using vsc-based hvdc

    African Journals Online (AJOL)

    HOD

    Key words: HVDC, Voltage source converter (VSC), Current and Voltage Control Loop; FFT Analysis ... The main requirement in a power transmission system is .... drop over the reactor (. ) ..... Distribution Conference and Exhibition: Asia and.

  6. Internet-based wide area measurement applications in deregulated power systems

    Science.gov (United States)

    Khatib, Abdel-Rahman Amin

    Since the deregulation of power systems was started in 1989 in the UK, many countries have been motivated to undergo deregulation. The United State started deregulation in the energy sector in California back in 1996. Since that time many other states have also started the deregulation procedures in different utilities. Most of the deregulation market in the United States now is in the wholesale market area, however, the retail market is still undergoing changes. Deregulation has many impacts on power system network operation and control. The number of power transactions among the utilities has increased and many Independent Power Producers (IPPs) now have a rich market for competition especially in the green power market. The Federal Energy Regulatory Commission (FERC) called upon utilities to develop the Regional Transmission Organization (RTO). The RTO is a step toward the national transmission grid. RTO is an independent entity that will operate the transmission system in a large region. The main goal of forming RTOs is to increase the operation efficiency of the power network under the impact of the deregulated market. The objective of this work is to study Internet based Wide Area Information Sharing (WAIS) applications in the deregulated power system. The study is the first step toward building a national transmission grid picture using information sharing among utilities. Two main topics are covered as applications for the WAIS in the deregulated power system, state estimation and Total Transfer Capability (TTC) calculations. As a first step for building this national transmission grid picture, WAIS and the level of information sharing of the state estimation calculations have been discussed. WAIS impacts to the TTC calculations are also covered. A new technique to update the TTC using on line measurements based on WAIS created by sharing state estimation is presented.

  7. Flexible power delivery system and its intelligent functions

    International Nuclear Information System (INIS)

    Glamochanin, Vlastimir; Andonov, Dragan

    1996-01-01

    This paper presents some of the features and capabilities of the novel energy distribution system called FRIENDS. The main FRIENDS objective is distribution system reliability, with flexible system structure reconfiguration, inclusion of dispersed energy generation systems. Altogether, it represents a new concept of reliable and economic electric power delivery to end users. The FRIENDS project is a challenge for future research and development, including new technology and devices for the implementation of such an integrated system. (author)

  8. Remote inspection system for nuclear power plants

    International Nuclear Information System (INIS)

    Inagaki, K.; Fujii, M.; Doi, A.; Harima, T.

    1977-01-01

    A remote inspection system for nuclear power plants was constructed based on an analysis of inspections performed by an operator on patrol. This system consists of an operator's console and a remote station. The remote station, equipped with five kinds of sensors, is steered along the inspection route by a photoelectric guiding system or may be manually controlled from an operator's console in a main control room. Signals for control and inspection data are multiplexed and transmitted through a coaxial cable

  9. Analysis and damping control of power system low-frequency oscillations

    CERN Document Server

    Wang, Haifeng

    2016-01-01

    This book presents the research and development results on power systems oscillations in three categories of analytical methods. First is damping torque analysis which was proposed in 1960’s, further developed between 1980-1990, and widely used in industry. Second is modal analysis which developed between the 1980’s and 1990’s as the most powerful method. Finally the linearized equal-area criterion analysis that is proposed and developed recently. The book covers three main types of controllers: Power System Stabilizer (PSS), FACTS (Flexible AC Transmission Systems) stabilizer, and ESS (Energy Storage Systems) stabilizer. The book provides a systematic and detailed introduction on the subject as the reference for industry applications and academic research.

  10. Impact of Storage Technologies upon Power System Losses

    Directory of Open Access Journals (Sweden)

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  11. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  12. Transfer Efficiency Analysis of Wireless Power Transfer System under Frequency Drift

    DEFF Research Database (Denmark)

    Huang, Shoudao; Li, Zhongqi; Lu, Kaiyuan

    2015-01-01

    Magnetic resonant wireless power transfer (WPT) is an emerging technology that may create new applications for wireless power charging. However, low efficiency resulting from resonant frequency drift is a main obstructing factor for promoting this technology. In this paper, the system efficiency...

  13. Impacts of Wind Power on Power System Stability

    NARCIS (Netherlands)

    Vittal, E.; Keane, A.; Slootweg, J.G.; Kling, W.L.; Ackermann, T.

    2012-01-01

    This chapter examines how wind power will impact the stability of power systems. It focuses on the three aspects of power system stability: voltage stability, rotor angle stability and frequency stability. It completes a detailed analysis as to how wind power in power systems will impact the

  14. Market system infrastructure: a major issue for the power system reliability

    International Nuclear Information System (INIS)

    Passelergue, J.Ch.

    2005-01-01

    The restructuring and opening of the electricity market made more complex the power system operation. While the system operator does not own anymore the generation assets, a perfect coordination with the market players is critical to guarantee the power system operation reliability. The market platforms, which are the main links between the system operator and the market players, must include communication means guaranteeing an uninterrupted service. The data-processing infrastructure must thus be designed to ensure the market system accessibility, as well as the effective exchange of data. Moreover, the market systems must facilitate the market operation and monitoring. They must allow the definition of a business process that, on the one hand, allows sequencing the users' actions, and that, on the other hand, provides the errors detected during the data-processing. Lastly, the market systems must facilitate the putting in place and follow-up by the market operator of operational procedures covering all the situations the operator can have to face. (author)

  15. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  16. Conceptual design of nuclear power plants database system

    International Nuclear Information System (INIS)

    Ishikawa, Masaaki; Izumi, Fumio; Sudoh, Takashi.

    1984-03-01

    This report is the result of the joint study on the developments of the nuclear power plants database system. The present conceptual design of the database system, which includes Japanese character processing and image processing, has been made on the data of safety design parameters mainly found in the application documents for reactor construction permit made available to the public. (author)

  17. Power Management Integrated Circuit for Indoor Photovoltaic Energy Harvesting System

    Science.gov (United States)

    Jain, Vipul

    In today's world, power dissipation is a main concern for battery operated mobile devices. Key design decisions are being governed by power rather than area/delay because power requirements are growing more stringent every year. Hence, a hybrid power management system is proposed, which uses both a solar panel to harvest energy from indoor lighting and a battery to power the load. The system tracks the maximum power point of the solar panel and regulates the battery and microcontroller output load voltages through the use of an on-chip switched-capacitor DC-DC converter. System performance is verified through simulation at the 180nm technology node and is made to be integrated on-chip with 0.25 second startup time, 79% efficiency, --8/+14% ripple on the load, an average 1micro A of quiescent current (3.7micro W of power) and total on-chip area of 1.8mm2 .

  18. Main Aspects of the Rodos System Implementation in Croatia

    International Nuclear Information System (INIS)

    Sucic, B.; Medakovic, S.; Skanata, D.; Tomisa, T.

    2002-01-01

    Analyses made in Europe after the accident in Chernobyl Nuclear Power Plant have shown that the key-element with the biggest impact on the development of consequences during and immediately after the accident was deficient notifying which was also unsystematic and in disorder. Therefore, scientific and expert organisations of the European Union have been faced with the task of system development above all meant to improve communication between European countries in terms of measured parameters exchange (the radiological and meteorological ones), that would be generally applicable in all the European countries. Development of such a system going by the name of RODOS (Real Time On Line DecisiOn Support) began in 1989 within the framework of the European Commission's research and technological development program. The main aspects associated with the implementation of the RODOS system in Croatia are described within this article. By the main aspects of implementation we mean technical prerequisites that the Republic of Croatia is due to fulfil before joining in, and they include activities like: (1) translating users' interfaces into Croatian, (2) adapting various models in consistence with local parameters, (3) collecting geographical data, (4) making specific local maps and collecting statistical data (GIS), and (5) linking the RODOS real-time data base with the net of local measure stations (radiological and meteorological). Activities of this scale and technically so demanding, request certain organisational prerequisites as well as considerable material resources. From the point of view of the Republic of Croatia, establishment of the RODOS system and inclusion into the real-time international exchange of measured radiological data would mean major improvement of the nuclear emergency response preparedness system. (author)

  19. Power supply system for KSTAR neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W., E-mail: franciscocho@nfri.re.kr; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-10-15

    accelerator grid. This paper presents configuration and features of power supply system, main controller, and interlock system of KSTAR NBI.

  20. Power supply system for KSTAR neutral beam injector

    International Nuclear Information System (INIS)

    Cho, W.; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-01-01

    accelerator grid. This paper presents configuration and features of power supply system, main controller, and interlock system of KSTAR NBI.

  1. On grid-connected power electronic systems: power quality improvement application

    International Nuclear Information System (INIS)

    Etxeberria-Otadui, I.

    2003-09-01

    The present PhD thesis deals with distribution grid-connected power electronic devices. The main focus has been power quality improvement with power electronic devices. The theoretical aspects and the power quality improvement techniques are presented and discussed. Power electronic devices are then presented, modelled and controlled. Original disturbance identification, power management and current/voltage control methods have been proposed, tested and analysed. A flexible test-bench, composed of a series and a shunt compensator, has been designed and built in order to test the studied control algorithms. These tests have permitted to experimentally evaluate and validate the proposed control algorithms and to make evident several problems that are not always visible on the theory. The conclusions outline the main short and mid term objectives and challenges in the field of power quality improvement devices. (author)

  2. Revised sequence components power system models for unbalanced power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Akher, M. [Tunku Abdul Rahman Univ., Kuala Lumpur (Malaysia); Nor, K.-M. [Univ. of Technology Malaysia, Johor (Malaysia); Rashid, A.H.A. [Univ. of Malaya, Kuala Lumpur (Malaysia)

    2007-07-01

    The principle method of analysis using positive, negative, and zero-sequence networks has been used to examine the balanced power system under both balanced and unbalanced loading conditions. The significant advantage of the sequence networks is that the sequence networks become entirely uncoupled in the case of balanced three-phase power systems. The uncoupled sequence networks then can be solved in independent way such as in fault calculation programs. However, the hypothesis of balanced power systems cannot be considered in many cases due to untransposed transmission lines; multiphase line segments in a distribution power system; or transformer phase shifts which cannot be incorporated in the existing models. A revised sequence decoupled power system models for analyzing unbalanced power systems based on symmetrical networks was presented in this paper. These models included synchronous machines, transformers, transmission lines, and voltage regulators. The models were derived from their counterpart's models in phase coordinates frame of reference. In these models, the three sequence networks were fully decoupled with a three-phase coordinates features such as transformer phase shifts and transmission line coupling. The proposed models were used to develop an unbalanced power-flow program for analyzing both balanced and unbalanced networks. The power flow solution was identical to results obtained from a full phase coordinate three-phase power-flow program. 11 refs., 3 tabs.

  3. Power system data communication architecture at BC Hydro

    Energy Technology Data Exchange (ETDEWEB)

    Struyk, E.

    2001-07-01

    Development of a power system data communication architecture (PSDCA) at British Columbia Hydro that enables authorized corporate users to access station-intelligent electronic devices (IEDs) for power system data in non real-time, without compromising the reliability and availability of the real-time SCADA systems, is described. Also discussed is the development of major upgrade initiatives for expanding the use of intelligent electronic devices and remote terminal units (RTUs) which report to the main System Control Centre at Burnaby, BC, and to the four Area Control Centres located throughout the province. The network architecture that incorporates industry standards for PSDCA also provides an opportunity to existing network security systems against electronic threats such as hackers and saboteurs, beyond the simple methods of single or two-level passwords of existing protection control and monitoring equipment systems. The virtual private network (VPN) technology built into the PSDCA will allow secure access to station IED data by corporate users to access their own power data in a secure and reliable fashion. 4 figs.

  4. Independent power source hybrid system - recent examples mainly of mountain huts.; Dokuritsu dengengata no haiburiddo shisutemu -saikin no yamagoya deno jirei wo chushin ni.

    Energy Technology Data Exchange (ETDEWEB)

    Mori, T. [Kanagawa Inst. of Tech., Kanagawa (Japan)

    2000-09-30

    History of the independent power source hybrid systems used at such as mountain huts were outlined, and recent application examples of the hybrid systems were explained. At Natsuzawa mineral spring in Nagano pref., 7 kW of hybrid power generator system composed of solar cell and wind power generator, as well as 400 W of small hydraulic power generator are working supplying electric power for the private sewerage system, and the system without diesel generator is being tested. At Senjogahara refuge hut in South Alps, a hybrid power generation system composed of 10.7 kW of solar cell and 6.4 kW of wind power generator was installed, and is working. In mountainous area, there exist critical factors such as weather condition and difficulty in carrying equipment, accordingly, cost reduction and sizing down of relevant apparatus such as batteries and inverters are expected. (NEDO)

  5. Reliable control system for nuclear power plant

    International Nuclear Information System (INIS)

    Okamoto, Tetsuo; Miyazaki, Shiro

    1980-01-01

    The System 1100 for nuclear power plants is the measuring and control system which utilizes the features of the System 1100 for electric power market in addition to the results of nuclear instrumentation with EBS-ZN series, and it has the following features. The maintenance and inspection in operation are easy. The construction of control loops is made flexibly by the combination of modules. The construction of multi-variable control system using mainly feed forward control is easy. Such functions as the automatic switching of control modes can be included. The switching of manual and automatic operations is easy, and if some trouble occurred in a module, the manual operation can be made. The aseismatic ability is improved by rigid structure cubicles. Nonflammable materials are used for wires, multi-core cables, paints and printed boards. The anti-noise characteristics are improved, and the reliability is high. The policy of developing the System 1100 for nuclear power plants, the type approval tests on modules and units and the type approval test on the system are described. The items of the system type approval test were standard performance test, earthquake test, noise isolation test, temperature and humidity test, and drift test. The aseismatic cubicle showed good endurance in its vibration test. (Kako, I.)

  6. Research on DC Micro-grid system of photovoltaic power generation

    Science.gov (United States)

    Zheng, Yiming; Wang, Xiaohui

    2018-01-01

    The use of energy has become a topic of concern, the demand of people for power grows in number or quantity with the development of economy. It is necessary to consider using new forms of power supply-microgrid system for distributed power supply. The power supply mode can not only effectively solve the problem of excessive line loss in the large power grid, but also can increase the reliability of the power supply, and is economical and environmental friendly. With the increasing of DC loads, in order to improve the utilization efficiency, the DC microgrid power supply problems are begin to be researched and integrated with the renewable energy sources. This paper researched the development of microgrid, compared AC microgrid with DC microgrid, summarized the distribution of DC bus voltage level, the DC microgrid network form, the control mode and the main power electronics elements of DC microgrid of photovoltaic power generation system. Today, the DC microgrid system is still in the development stage without uniform voltage level standard, however, it will come into service in the future.

  7. Small wind power systems: market, applications, architectures and energy management

    International Nuclear Information System (INIS)

    Roboam, X.

    2005-01-01

    Context and stakes of small wind power systems are described in this paper by situating both supply and demand as well as the main application fields. Technical issues are then concerned in terms of system structure, energy management and network connection. (author)

  8. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  9. Numerical analysis on the performance of solar chimney power plant system

    International Nuclear Information System (INIS)

    Xu Guoliang; Ming Tingzhen; Pan Yuan; Meng Fanlong; Zhou Cheng

    2011-01-01

    Power generating technology based on renewable energy resources will definitely become a new trend of future energy utilization. Numerical simulations on air flow, heat transfer and power output characteristics of a solar chimney power plant model with energy storage layer and turbine similar to the Spanish prototype were carried out in this paper, and mathematical model of flow and heat transfer for the solar chimney power plant system was established. The influences of solar radiation and pressure drop across the turbine on the flow and heat transfer, output power and energy loss of the solar chimney power plant system were analyzed. The numerical simulation results reveal that: when the solar radiation and the turbine efficiency are 600 W/m 2 and 80%, respectively, the output power of the system can reach 120 kW. In addition, large mass flow rate of air flowing through the chimney outlet become the main cause of energy loss in the system, and the collector canopy also results in large energy loss.

  10. The Expert System Application For Inspection Of The Power Plants

    International Nuclear Information System (INIS)

    Josowidagdo, L.

    1997-01-01

    This paper describes the application of expert system to evaluate and consider the problem encountered in this fields are complex and time consuming. As as example several factors affecting system voltage selections are load magnitude, distance from the main power supply, safety, standards, cost of utilization and service system equipment, and future load growth. The inspection deal with interactions between alternatives, uncertainties, and important non financial parameter. Several complex problems are multiple objective functions, multiple constraints, complex system interactions, the need for accuracy, the need for trade off, optimization, and coordination of the decision making process. ASDEP is one of the expert system for electric power plant design that describe the application of the artificial intelligence to design of a power plan's electrical auxiliary system. In this circumstance this paper will elaborate another aspect for using the expert system in the inspection

  11. Identification of the Most Effective Point of Connection for Battery Energy Storage Systems Focusing on Power System Frequency Response Improvement

    Directory of Open Access Journals (Sweden)

    Thiago Pieroni

    2018-03-01

    Full Text Available With the massive penetration of intermittent generation (wind and solar, the reduction of Electrical Power Systems’ (EPSs inertial frequency response represents a new challenge. One alternative to deal with this scenario may be the application of a Battery Energy Storage System (BESS. However, the main constraint for the massive deployment of BESSs is the high acquisition cost of these storage systems which in some situations, can preclude their use in transmission systems. The main goal of this paper is to propose a systematic procedure to include BESSs in power system aiming to improve the power system frequency response using full linear models and geometric measures. In this work, a generic battery model is developed in a two-area test system with assumed high wind penetration and full conventional generators models. The full power system is linearized, and the geometric measures of controllability associated with of the frequency regulation mode are estimated. Then, these results are used to identify the most effective point of connection for a BESS aiming at the improvement of the power system frequency response. Nonlinear time-domain simulations are carried out to evaluate and validate the results.

  12. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    Science.gov (United States)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  13. Effects of Power Tracking Algorithms on Lifetime of Power Electronic Devices Used in Solar Systems

    Directory of Open Access Journals (Sweden)

    Canras Batunlu

    2016-10-01

    Full Text Available In photovoltaic solar energy systems, power management algorithms (PMAs, usually called maximum power point tracking (MPPT algorithms, are widely used for extracting maximum available power at every point in time. However, tracking the maximum power has negative effects on the availability of solar energy systems. This is due, mainly, to the created disturbances and thermal stresses on the associated power electronic converters (PECs. This work investigates the effects of PMA on the lifetime consumption, thermal stresses and failures on DC-DC converters used in solar systems. Firstly theoretical analysis and modelling of photovoltaic solar systems including converter’s electro thermal characteristics were developed. Subsequently, experiments on photovoltaic solar systems were carried out using two different PMAs, namely, perturb and observe (P&O and incremental conductance (IC. Real-time data was collected, under different operating conditions, including thermal behavior using thermal imaging camera and dSPACE. Converters’ thermal cycling was found to be approximately 3 °C higher with the IC algorithm. The steady state temperature was 52.7 °C, for the IC while it was 42.6 °C for P&O. Although IC algorithm offers more accurate power management tool, it causes more severe thermal stresses which, in this study, has led to approximately 1.4 times greater life consumption compared to P&O.

  14. Wind farm - A power source in future power systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    wind turbines and wind farms, and then introduces the wind power development and wind farms. An optimization platform for designing electrical systems of offshore wind farms is briefed. The major issues related to the grid connection requirements and the operation of wind turbines/farms in power......The paper describes modern wind power systems, introduces the issues of large penetration of wind power into power systems, and discusses the possible methods of making wind turbines/farms act as a power source, like conventional power plants in power systems. Firstly, the paper describes modern...... systems are illustrated....

  15. Main Steam Line Break Analysis for the Fully Passive Safety System of SMART

    International Nuclear Information System (INIS)

    Kim, Seong Wook; Chun, Ji Han; Bae, Kyoo Hwan; Kim, Keung Koo

    2013-01-01

    The standard design approval of SMART (System-integrated Modular Advanced ReacTor) developed by KAERI and KEPCO consortium was issued on July 4, 2012. Although SMART has enhanced safety compared to the conventional reactor, there is a demand to meet the 'passive safety performance requirements' after the Fukushima accident. The passive safety performance requirements are the capabilities to maintain the plant at a safe shutdown condition for a minimum of 72 hours without AC power supply or operator action in case of design basis accident (DBA). To satisfy the requirements, KAERI is developing a safety enhanced SMART by adopting a passive safety injection system. The passive safety injection system developed for SMART is a gravity-driven injection system, which consists of four trains, each of which includes a pressure balance line, core makeup tank (CMT), safety injection tank (SIT) and injection line. The CMT plays an important role to inject borated water into the RCS to prevent or dissolve the return to power (re-criticality) condition during the event of increase in heat removal by the secondary system. The main steam line break accident (MSLB) is the most limiting accident for an increase in heat removal by the secondary system. In this study, the safety analysis results of MSLBs at hot full power condition and at hot zero power condition in view of re-criticality are given. The MSLB accident has been analyzed for the SMART adopting fully passive safety system in the aspect of re-criticality. The results show that the core remains subcritical condition throughout the transient due to the borated water injected by the CMT. As further works, many kinds of analyses and sensitivity studies should be performed for the design establishment and improvement of the fully passive system of SMART

  16. Nuclear power plant personnel training process management system

    International Nuclear Information System (INIS)

    Arjona Vazquez, Orison; Venegas Bernal, Maria del Carmen; Armeteros Lopez, Ana L.

    1996-01-01

    The system in charge the management of the training process personnel from a nuclear power plant was designed taking into account all the requirements stated in the training guide for nuclear power plant personnel and their evaluation, which were prepared by the IAEA in 1995 in order to implement the SAT in the training programs for nuclear plant personnel. In the preparations of formats and elements that shape the system, account has been taken of the views expressed in such a guide, in some other bibliography that was consulted, and in the authors own opinion mainly with regard to those issues which the guide does not go deeper into

  17. Consumer attitudes towards domestic solar power systems

    International Nuclear Information System (INIS)

    Faiers, Adam; Neame, Charles

    2006-01-01

    The success of the UK policy to reduce carbon emissions is partly dependent on the ability to persuade householders to become more energy efficient, and to encourage installation of domestic solar systems. Solar power is an innovation in the UK but the current policy of stimulating the market with grants is not resulting in widespread adoption. This case study, using householders in central England, investigates householder attitudes towards characteristics of solar systems and identifies some of the barriers to adoption. The study utilises Diffusion of Innovations theory to identify attitudes towards system attributes, and isolates the characteristics that are preventing a pragmatic 'early majority' from adopting the technology. A group of 'early adopters', and a group of assumed 'early majority' adopters of solar power were surveyed and the results show that overall, although the 'early majority' demonstrate a positive perception of the environmental characteristics of solar power, its financial, economic and aesthetic characteristics are limiting adoption. Differences exist between the two groups showing support for the concept of a 'chasm' between adopter categories after Moore (Crossing the Chasm: Marketing and Selling High-tech Products to Mainstream Customers, second ed. Harper Perennial, New York). However, if consumers cannot identify the relative advantage of solar power over their current sources of power, which is supplied readily and cheaply through a mains system, it is unlikely that adoption will follow. Recommendations concerning the marketing and development of solar products are identified

  18. The main steps of the Romanian nuclear power program development - Accumulated experience

    International Nuclear Information System (INIS)

    Chirica, T.; Popescu, D.; Condu, M.; Vatamanu, M.

    1998-01-01

    The paper presents a historical summary of the Romanian Nuclear Power Program development, providing details for the main criteria and principles the Program was based upon, the contracts signed with the foreign partners to implement it, and the national participation (site contractors, suppliers and design organizations). The effect of the equipment assimilation program on the NPP Cernavoda (5x700 MWe) and especially on Unit 1 schedule and performance is analyzed. Further on the impact of the transition from centralized to a market economy over the Romanian Nuclear Power Program development is analyzed, providing information's on its actual status and perspectives for the next 20 years. A description of the NPP Cernavoda Unit 1 actual progress and of the main steps performed by RENEL to get finance to complete NPP Cernavoda Unit 2 is included. Finally there is summarized the accumulated experience, and its feed back on RENEL strategy to complete NPP Cernavoda Unit 2. (author)

  19. A modular Space Station/Base electrical power system - Requirements and design study.

    Science.gov (United States)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  20. Reactor power cutback system test experience at YGN 4

    International Nuclear Information System (INIS)

    Chi, Sung Goo; Kim, Se Chang; Seo, Jong Tae; Eom, Young Meen; Wook, Jeong Dae; Choi, Young Boo

    1995-01-01

    YGN 3 and 4 are the nuclear power plants having System 80 characteristics with a rated thermal output of 2815 MWth and a nominal net electrical output of 1040 MWe. YGN 3 achieved commercial operation on March 31, 1995 and YGN 4 completed Power Ascension Test (PAT) at 20%, 50%, 80% and 100% power by September 23, 1995. YGN 3 and 4 design incorporates the Reactor POwer Cutback System (RPCS) which reduces plant trips caused by Loss of Load (LOL)/ Turbine Trip and Loss of One Main Feedwater Pump (LOMFWP). The key design objective of the RPCS is to improve overall plant availability and performance, while minimizing challenges to the plant safety systems. The RPCS is designed to rapidly reduce reactor power by dropping preselected Control Element Assemblies (CEAs) while other NSSS control systems maintain process parameters within acceptable ranges. Extensive RPCS related tests performed during the initial startup of YGN 4 demonstrated that the RPCS can maintain the reactor on-line without opening primary or secondary safety valves and without actuating the Engineered Safety Features Actuation System (ESFAS). It is expected that use of the RPCS at YGN will increase the overall availability of the units and reduce the number of challenges to plant safety systems

  1. Enhancement of observability and protection of smart power system

    Science.gov (United States)

    Siddique, Abdul Hasib

    It is important for a modern power grid to be smarter in order to provide reliable and sustainable supply of electricity. Traditional way of receiving data from the wired system is a very old and outdated technology. For a quicker and better response from the electric system, it is important to look at wireless systems as a feasible option. In order to enhance the observability and protection it is important to integrate wireless technology with the modern power system. In this thesis, wireless network based architecture for wide area monitoring and an alternate method for performing current measurement for protection of generators and motors, has been adopted. There are basically two part of this project. First part deals with the wide area monitoring of the power system and the second part focuses more on application of wireless technology from the protection point of view. A number of wireless method have been adopted in both the part, these includes Zigbee, analog transmission (Both AM and FM) and digital transmission. The main aim of our project was to propose a cost effective wide area monitoring and protection method which will enhance the observability and stability of power grid. A new concept of wireless integration in the power protection system has been implemented in this thesis work.

  2. Research on transfer rule of the monitoring of operator in digital main control room of nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Li; Li Linfeng; Li Pengcheng; Lu Changshen; Huang Weigang; Dai Zhonghua; Huang Yuanzheng; Chen Qingqing

    2013-01-01

    In the digital main control room of nuclear power plants, monitoring the operating status of the system of reactor is not only one of the most important tasks of the operators, but also the basis and premise of controlling the system of reactor running correctly. After analyzing, inducing, summarizing the data obtained, we found the operators' monitor behavior could be classified as procedure transfer, abnormal transfer, and exchange transfer. The times of exchange transfer is 29% of the total transfer times, abnormal transfer is 14%, regulation transfer is 36%, and others are 21%. (authors)

  3. Power Quality in DC Power Distribution Systems and Microgrids

    Directory of Open Access Journals (Sweden)

    Stephen Whaite

    2015-05-01

    Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.

  4. Simplified Models for Analysis and Design of the Control System Main Loops of CAREM Reactor

    International Nuclear Information System (INIS)

    Etchepareborda, Andres; Flury, Celso

    2000-01-01

    The target of this work is to show a few models developed for control analysis and design of the reactor CAREM's main control loops within a broad range of power (between 40 % and 100%).By one side, it is shown the main features of a analytic model programed in MATLAB.This model is based on fitting steady state points at different power levels of the CAREM's RETRAN model.By the other side, it is shown linear models of black-box type denoting the perturbed behavior of the system for each level power point.These models are identified from temporal responses of CAREM's RETRAN model to perturbed input signals over the different steady power level points.Then the dynamics of these models are verified contrasting the temporal responses of the RETRAN model versus the responses of the MATLAB model and the identified models, in each steady power level point.Also are contrasting the frequency response of the linearization of MATLAB model versus the frequency response of the identified models, in each steady power level point.Either the MATLAB model as the identified models are good enough for the control analysis and design of the three main control loops.The MATLAB model has a few differences against the RETRAN model in the primary pressure output variable, that it must be taken into account in the design of this control loop if this model is used.The aim of these models is to represent in a satisfactory way the dynamics of the plant for a later control analysis and design of the control loops in a frequency range between 0.01 rad/seg and 0.3 rad/seg, and a power range between 40 % and 100 %

  5. Power System Analysis

    Science.gov (United States)

    Taniguchi, Haruhito

    Electric power generation that relies on various sources as the primary sources of energy is expected to bring down CO2 emissions levels to support the overall strategy to curb global warming. Accordingly, utilities are moving towards integrating more renewable sources for generation, mostly dispersed, and adopting Smart Grid Technologies for system control. In order to construct, operate, and maintain power systems stably and economically in such background, thorough understanding about the characteristics of power systems and their components is essential. This paper presents modeling and simulation techniques available for the analysis of critical aspects such as thermal capacity, stability, voltage stability, and frequency dynamics, vital for the stable operation of power systems.

  6. A Review of Power Electronics for Wind Power

    Institute of Scientific and Technical Information of China (English)

    Zhe CHEN

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems.Main wind turbine systems with different generators and power electronic converters are described.The electrical topologies of wind farms with power electronic conversion are discussed.Power electronic applications for improving the performance of wind turbines and wind farms in power systems have been illustrated.

  7. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chick, Lawrence A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gotthold, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whyatt, Greg A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  8. A Review of Power Electronics for Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe

    2011-01-01

    The paper reviews the power electronic applications for wind energy systems. Main wind turbine systems with different generators and power electronic converters are described. The electrical topologies of wind farms with power electronic conversion are discussed. Power electronic applications...

  9. Status of the maintenance for the KEK 12GEV-PS main ring and power supply

    International Nuclear Information System (INIS)

    Sato, Hikaru; Igarashi, Susumu; Marutsuka, Katsumi; Mikawa, Katsuhiko; Shirakata, Masashi; Sueno, Tsuyoshi; Tokuda, Noboru

    2004-01-01

    More than 30 years passed since the KEK 12GeV-PS construction, some of accelerator equipments are highly radiated, especially the injection and the extraction equipments. In recent years, the higher intensity beam has been required for such as the long baseline neutrino oscillation experiment and rare decay experiments. Then, the circumference of the maintenance work has become severe. Further, almost equipments of main ring and power supply have deteriorated. Status of the Maintenance for the KEK 12GeV-PS main ring and power supply are presented. (author)

  10. HIGH POWER TESTS OF A MULTIMODE X-BAND RF DISTRIBUTION SYSTEMS

    International Nuclear Information System (INIS)

    Tantawi, S

    2004-01-01

    We present a multimode X-band rf pulse compression system suitable for the Next Linear Collider (NLC). The NLC main linacs operate at 11.424 GHz. A single NLC rf unit is required which produce 400 ns pulses with 600 MW of peak power. Each rf unit should power approximately 5 meters of accelerator structures. These rf units consist of two 75 MW klystrons and a dual-moded resonant delay line pulse compression system [1] that produce a flat output pulse. The pulse compression system components are all over moded and most components are design to operate with two modes at the same time. This approach allows increasing the power handling capabilities of the system while maintain a compact inexpensive system. We detail the design of this system and present experimental cold test results. The high power testing of the system is verified using four 50-MW solenoid focused klystrons. These Klystrons should be able to push the system beyond NLC requirements

  11. Boiler systems for nuclear powered reactors

    International Nuclear Information System (INIS)

    Cook, R.K.; George, B.V.

    1979-01-01

    A power generating plant which comprises a heat source, at least one main steam turbine and at least one main boiler heated by heat from the heat source and providing the steam to drive the turbine, comprises additionally at least one further steam turbine, smaller than the main turbine, and at least one further boiler, of lower capacity than the main boiler, and heated from the same heat source and providing steam for the further turbine. Particularly advantageous in nuclear power stations, where the heat source is a nuclear reactor, the invention enables peak loads, above the normal continuous rating of the main generators driven by the main turbines, to be met by the further turbine(s) and one or more further generators driven thereby. This enables the main turbines to be freed from the thermal stresses of rapid load changes, which stresses are more easily accommodated by the smaller and thus more tolerant further turbine(s). Thus auxiliary diesel-driven or other independent power plant may be made partly or wholly unnecessary. Further, low-load running which would be inefficient if achieved by means of the main turbine(s), can be more efficiently effected by shutting them down and using the smaller further turbine(s) instead. These latter may also be used to provide independent power for servicing the generating plant during normal operation or during emergency or other shutdown, and in this latter case may also serve as a heat sink for the shutdown reactor

  12. Agent Based Control of Electric Power Systems with Distributed Generation

    DEFF Research Database (Denmark)

    Saleem, Arshad

    and subsystems that are able to coordinate, communicate, cooperate, adapt to emerging situations and self organize in an intelligent way. At the same time, rapid development in information and and communication technologies (ICT) have brought new opportunities and elucidations. New Technologies and standards...... control strategies. The results have been discussed from case studies of multiagent based distributed control scenarios in electric power systems. The main contribution of this work is a proposal for system design methodology for application of intelligent agent technology in power systems....... Situation in Denmark is even more interesting, with a current 20% penetration of wind energy it is moving towards an ambitious goal of 50% penetration by the year 2050. Realization of these concepts requires that power systems should be of distributed nature { consisting of autonomous components...

  13. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Risk analysis of islanding of photovoltaic power systems within low voltage distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, N. [Freelance Consultant, Hillside House, Swindon SN1 3QA (United Kingdom); Thornycroft, J. [Halcrow Group Ltd, Burderop Park, Swindon SN4 0QD (United Kingdom); Collinson, A. [EA Technology, Capenhurst Technology Park, Chester CH1 6ES (United Kingdom)

    2002-03-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents the results of a risk analysis concerning photovoltaic power systems islanding in low-voltage distribution networks. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. The purpose of this study was to apply formal risk analysis techniques to the issue of islanding of photovoltaic power systems within low voltage distribution networks. The aim was to determine the additional level of risk that islanding could present to the safety of customers and network maintenance staff. The study identified the reliability required for islanding detection and control systems based on standard procedures for developing a safety assurance strategy. The main conclusions are presented and discussed and recommendations are made. The report is concluded with an appendix that lists the relative risks involved.

  14. Structural Reliability Methods for Wind Power Converter System Component Reliability Assessment

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Wind power converter systems are essential subsystems in both off-shore and on-shore wind turbines. It is the main interface between generator and grid connection. This system is affected by numerous stresses where the main contributors might be defined as vibration and temperature loadings....... The temperature variations induce time-varying stresses and thereby fatigue loads. A probabilistic model is used to model fatigue failure for an electrical component in the power converter system. This model is based on a linear damage accumulation and physics of failure approaches, where a failure criterion...... is defined by the threshold model. The attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Structural Reliability approaches are used to incorporate model, physical and statistical uncertainties. Reliability estimation by means of structural...

  15. Power transmission study for a wave energy scheme based on Lancaster Flexible Bag devices. Supervisory and telecontrol system

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Various options are considered for power data transmission associated with the power collection and transmission system of a postulated wave energy conversion scheme off the Outer Hebrides. For data transmission between the off-shore and on-shore power collector stations a Power Line Carrier (PLC) system is judged to be most suitable. In the case of data transmission between power collector stations and the main control centre, a microwave/radio link is proposed as the amount of data does not lend itself to a PLC system. Cost estimates, in the main for equipment supply only, are given.

  16. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use - international joint demonstration and development of photovoltaic power generation systems (Demonstrative research on photovoltaic power and micro hydraulic power hybrid system); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden system kokusai kyodo jissho kaihatsu (taiyoko micro suiryoku hybrid system jissho kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A photovoltaic (PV) power plant is compounded with a micro hydroelectric (MH) power plant in Vietnam, who has a dry season and a rainy season, to structure a stabilized power supply system to compensate drawbacks of the respective systems. Full load operation is being performed to advance the development of technologies to optimize and improve the performance and reliability of the system. The works include (1) site surveys, and decision on a location to execute the demonstration research, (2) design of the system, and design and fabrication of devices, and (3) the building construction thereof. In Item (1), the location was decided at Trang Village, Vietnam from such installing conditions as annual average insolation, water channels for wheel turbines, energy complementing relations, load demand amount, and difficulty of installation. In Item (2), the system consists of PV:100 kW/MH:25 kW/control system, wherein the MH is an inductive generator. The Main devices include generators, batteries, inverters, system control panels, and a meteorological data recording device. In Item (3) land survey and development were completed. (NEDO)

  17. Investigation of the Bilibin reactor operation in the regime of automatic power and frequency control in isolated power system

    International Nuclear Information System (INIS)

    Sankovskij, G.A.; Molochkov, V.I.; Dolgov, V.V.; Soldatov, G.E.; Minashin, M.E.

    1981-01-01

    The results of experimental investigations of the power unit operation of the Bilibin nuclear power and heating plant (BNPHP) in the regime of automatic power and frequency control in an isolated power system are presented. The BNPHP comprises four similar power units. Each unit includes a steam generating setup - the channel water-graphite reactor with tubular fuel elements with natural circulation of boiling water at all the power levels as well as a turbosetup with two heat selectors and a turbogenerator. The turbine operates on dry saturated steam (with intermediate separation) which is brought from the drum-separator of the reactor natural circulation circuit. The BNPHP operates according to the controller schedule since the start-up of the first power unit. The BNPHP unit power varifies within the 50-100% range 3-4 times per day (by the number of maxima in the schedule of the power system loadings). Two design flowsheets of the unit power control and dynamic characteristics of the system for both vatiants are considered. It is concluded that both investigated automatic control systems are seviceable and deviations of the reactor parameters within the transients are not dangerous for heat release from the core. The plant is better shielded from external mainly short-term perturbations coming from the power system when the system operates in accordance with the first variant of the flowsheet [ru

  18. LARGE SCALE DISTRIBUTED PARAMETER MODEL OF MAIN MAGNET SYSTEM AND FREQUENCY DECOMPOSITION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,W.; MARNERIS, I.; SANDBERG, J.

    2007-06-25

    Large accelerator main magnet system consists of hundreds, even thousands, of dipole magnets. They are linked together under selected configurations to provide highly uniform dipole fields when powered. Distributed capacitance, insulation resistance, coil resistance, magnet inductance, and coupling inductance of upper and lower pancakes make each magnet a complex network. When all dipole magnets are chained together in a circle, they become a coupled pair of very high order complex ladder networks. In this study, a network of more than thousand inductive, capacitive or resistive elements are used to model an actual system. The circuit is a large-scale network. Its equivalent polynomial form has several hundred degrees. Analysis of this high order circuit and simulation of the response of any or all components is often computationally infeasible. We present methods to use frequency decomposition approach to effectively simulate and analyze magnet configuration and power supply topologies.

  19. Personal power systems

    Energy Technology Data Exchange (ETDEWEB)

    Dunn-Rankin, Derek; Leal, Elisangela Martins; Walther, David C. [Mechanical and Aerospace Engineering Department, University of California, Irvine, CA 92697 (United States)

    2005-07-01

    The lack of compact, efficient, human compatible, lightweight power sources impedes the realization of machine-enhanced human endeavor. Electronic and communication devices, as well as mobile robotic devices, need new power sources that will allow them to operate autonomously for periods of hours. In this work, a personal power system implies an application of interest to an individual person. The human-compatible gravimetric energy density spans the range from 500 to 5000Wh/kg, with gravimetric power density requirements from 10 to 1000W/kg. These requirements are the primary goals for the systems presented here. The review examines the interesting and promising concepts in electrochemical, thermochemical, and biochemical approaches to small-scale power, as well as their technological and physical challenges and limitations. Often it is the limitations that dominate, so that while the technology to create personal autonomy for communications, information processing and mobility has accelerated, similar breakthroughs for the systems powering these devices have not yet occurred. Fuel cells, model airplane engines, and hummingbird metabolism, are three promising examples, respectively, of electrochemical, thermochemical, and biochemical power production strategies that are close to achieving personal power systems' power demands. Fuel cells show great promise as an energy source when relatively low power density is demanded, but they cannot yet deliver high peak powers nor respond quickly to variable loads. Current small-scale engines, while achieving extraordinary power densities, are too inefficient to achieve the energy density needed for long-duration autonomous operation. Metabolic processes of flying insects and hummingbirds are remarkable biological energy converters, but duplicating, accelerating, and harnessing such power for mobility applications is virtually unexplored. These challenges are significant, and they provide a fertile environment for

  20. Shipboard electrical power systems

    CERN Document Server

    Patel, Mukund R

    2011-01-01

    Shipboard Electrical Power Systems addresses new developments in this growing field. Focused on the trend toward electrification to power commercial shipping, naval, and passenger vessels, this book helps new or experienced engineers master cutting-edge methods for power system design, control, protection, and economic use of power. Provides Basic Transferable Skills for Managing Electrical Power on Ships or on LandThis groundbreaking book is the first volume of its kind to illustrate optimization of all aspects of shipboard electrical power systems. Applying author Mukund Patel's rare combina

  1. Solar power satellite system; Uchu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S [Institute of Space and Astronautical Science, Tokyo (Japan)

    1995-09-05

    The solar power satellite system is a system that converts solar energy into electric energy in the space, transmits power to earth through wireless resort such as microwave and supplies energy of new concept. In order to realize this system it is necessary to have new technologies such as space power transmission at low cost, construction of large space buildings and wireless high power transmission. In this paper, the principles, characteristics and the necessary technology of this system were explained. Besides Japan`s SPS2000 Plan (cooperative research by universities, government agencies and private corporations on the model of solar power satellite) the group of Europe, Russia and the United States has also proposed some ideas concerning the solar power satellite system. As far as the microwave power transmission, which is the key technology for solar power satellite system, is concerned, ground demonstration tests at the level of several tens of kW are discussed in Canada and France. 3 refs., 3 figs.

  2. The Use of the UPS Systems in the CERN Power Distribution

    CERN Document Server

    Pedersen, J

    2000-01-01

    The un-interruptible power supply (UPS) provides an increased supply reliability. It provides a no-break commutation to a battery in case of mains fault, and it provides a defined time for shut-down of critical installations. UPS systems are in service all over CERN, mainly supplying computer systems, control systems and other systems linked to safety. For the LHC the systems protecting the machine in case of quenching of supraconducting elements will require practically fail-safe installations. The desired degree of reliability and availability will be achieved by the use of UPS systems, grouped to assure a sufficient level of redundancy.

  3. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  4. New control approach for a PV-diesel autonomous power system

    Energy Technology Data Exchange (ETDEWEB)

    Rashed, Mohamed; Elmitwally, A.; Kaddah, Sahar [Electrical Engineering Department, Mansoura University, Mansoura 35516 (Egypt)

    2008-06-15

    A new control scheme for the hybrid photovoltaic-diesel single-phase autonomous power system is proposed. The main advantage of this scheme is that the voltage control is accomplished by the interface inverter without need to the automatic voltage regulator of the diesel-driven generator. Unlike three-phase systems, frequency and voltage control in single-phase autonomous power systems imposes additional complexity. This is due to the pulsating nature of the single-phase loads instantaneous power at twice the rated frequency that may degrade the control efficacy. This obstacle is addressed in this paper and a new scheme is presented. The approach includes three control loops for maximum power tracking, voltage control and frequency control. The generator field current is held constant at its nominal value avoiding the saturation in the field circuit. A robust fuzzy logic controller is adopted for the speed control loop of the diesel engine. The dynamic performance of the system is investigated under different operating conditions. (author)

  5. Wind power plant system services

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit

    Traditionally, conventional power plants have the task to support the power system, by supplying power balancing services. These services are required by the power system operators in order to secure a safe and reliable operation of the power system. However, as in the future the wind power...... is going more and more to replace conventional power plants, the sources of conventional reserve available to the system will be reduced and fewer conventional plants will be available on-line to share the regulation burden. The reliable operation of highly wind power integrated power system might...... then beat risk unless the wind power plants (WPPs) are able to support and participate in power balancing services. The objective of this PhD project is to develop and analyse control strategies which can increase the WPPs capability to provide system services, such as active power balancing control...

  6. Consumer attitudes towards domestic solar power systems

    Energy Technology Data Exchange (ETDEWEB)

    Faiers, Adam [Institute of Water and Environment, Cranfield University at Silsoe, Silsoe, Bedfordshire, MK45 4DT (United Kingdom)]. E-mail: a.j.faiers.so2@cranfield.ac.uk; Neame, Charles [Institute of Water and Environment, Cranfield University at Silsoe, Silsoe, Bedfordshire, MK45 4DT (United Kingdom)]. E-mail: c.neame@cranfield.ac.uk

    2006-09-15

    The success of the UK policy to reduce carbon emissions is partly dependent on the ability to persuade householders to become more energy efficient, and to encourage installation of domestic solar systems. Solar power is an innovation in the UK but the current policy of stimulating the market with grants is not resulting in widespread adoption. This case study, using householders in central England, investigates householder attitudes towards characteristics of solar systems and identifies some of the barriers to adoption. The study utilises Diffusion of Innovations theory to identify attitudes towards system attributes, and isolates the characteristics that are preventing a pragmatic 'early majority' from adopting the technology. A group of 'early adopters', and a group of assumed 'early majority' adopters of solar power were surveyed and the results show that overall, although the 'early majority' demonstrate a positive perception of the environmental characteristics of solar power, its financial, economic and aesthetic characteristics are limiting adoption. Differences exist between the two groups showing support for the concept of a 'chasm' between adopter categories after Moore (Crossing the Chasm: Marketing and Selling High-tech Products to Mainstream Customers, second ed. Harper Perennial, New York). However, if consumers cannot identify the relative advantage of solar power over their current sources of power, which is supplied readily and cheaply through a mains system, it is unlikely that adoption will follow. Recommendations concerning the marketing and development of solar products are identified.

  7. Transient analysis of an HTS DC power cable with an HVDC system

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-11-01

    The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  8. Power supply system for the superconducting outsert of the CHMFL hybrid magnet

    Science.gov (United States)

    Fang, Z.; Zhu, J.; Chen, W.; Jiang, D.; Huang, P.; Chen, Z.; Tan, Y.; Kuang, G.

    2017-12-01

    The construction of a new hybrid magnet, consisting of a 11 T superconducting outsert and a 34 T resistive insert magnet, has been finished at the Chinese High Magnetic Field Laboratory (CHMFL) in Hefei. With a room temperature bore of 800 mm in diameter, the hybrid magnet superconducting outsert is composed of four separate Nb3Sn-based Cable-in-Conduit Conductor (CICC) coils electrically connected in series and powered by a single power supply system. The power supply system for the superconducting outsert consists of a 16 kA DC power supply, a quench protection system, a pair of 16 kA High Temperature Superconducting (HTS) current leads, and two Low Temperature Superconducting bus-lines. The design and manufacturing of the power supply system have been completed at the CHMFL. This paper describes the design features of the power supply system as well as the current fabrication condition of its main components.

  9. Power system stabilizers based on distributed energy resources for damping of inter-area oscillations

    Directory of Open Access Journals (Sweden)

    Stefanov Predrag Č.

    2014-01-01

    Full Text Available This paper deals with inter-area power oscillations damping enhancement by distributed energy resources contained in typical micro grid. Main idea behind this work is to use distributed generation and distributed storage, such as battery energy storage to mimic conventional power system stabilizer, but with regulating active power output, rather than reactive power, as in standard power system stabilizer realization. The analysis of the small signal stability is established for four-machine, two-area system, with inverter based micro grids in each area. Dynamic simulation results are included in this work and they show that proposed controller provides additional damping effect to this test system.

  10. Advanced power supply and distribution systems for Columbus

    Science.gov (United States)

    Eggers, Gert

    1988-01-01

    The paper describes power supply and distribution systems to be used on unmanned/man-tended Columbus elements, capable of supplying 10 kW to 30 kW to a variety of users in low earth orbits (LEO's). For the definition of the Electrical Power System (EPS) challenging requirements as the provision of high power levels under hard LEO conditions, maintainability, commonality etc. are to be taken into account. These requirements are to be seen in conjunction with the Columbus IOC (initial operational capability) scenario stipulating that EPS hardware shall be used on the Polar Platform, the Pressurized Module attached to the U.S. Space Station and the Man-Tended Free Flier. According to the availability of European technologies, the baseline in the power generation area is a photovoltaic system which provides three regulated main buses (150 V d.c.) to the users. In order to maintain power supply during eclipse phases, nickel hydrogen batteries will be used for energy storage purposes with nickel cadmium as back-up solution. The power distribution system needs special attention. Due to the elevated voltage levels mechanical switch gear cannot be used any longer. It is to be replaced by solid state power controllers (SSPC). Because these devices show a totally different behaviour with regard to conventional relay contacts, new approaches in the area of switching and protection are necessary. In view of the crucial role of this new technology for the realization of medium voltage d.c. systems, it is of great importance for Columbus and, hence will receive adequate consideration in the paper. In order to cater for effective management and control of the power supply and distribution hardware, a so called power system internal data processing assembly (PINDAP) has been introduced in the EPS. PINDAP is the key to reduced dependence on ground stations (alleviated ground support requirements); it keeps crew involvement in the EPS control process to as minimum and provides

  11. Alarm system for ABWR main control panels

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yuji; Saito, Koji [Toshiba Corp., Yokohoma (Japan)

    1997-09-01

    TOSHIBA has developed integrated digital control and instrumentation system for ABWR, which is the third-generation man machine interface system for main control room that we call A-PODIA (Advanced PODIA). A-Podia has been introduced the first actual ABWR plant in Japan. in A-PODIA, TOSHIBA has realized improvement of alarm system that all operator crews in the control room can recognize plant anomalies easily. The alarm system can recognize essential alarms for plant safety easily and understand annunciators with each integrated annunciators and their prioritized color easily by classifying alarms into plant-level essential annunciators, system-level integrated annunciators and equipment level individual annunciators with hierarchical structure. This paper describes conventional alarm system and the design philosophy, alarm system design and operation of ``Alarm System for ABWR Main Control Panels``. (author). 5 refs, 8 figs, 1 tab.

  12. Alarm system for ABWR main control panels

    International Nuclear Information System (INIS)

    Kobayashi, Yuji; Saito, Koji

    1997-01-01

    TOSHIBA has developed integrated digital control and instrumentation system for ABWR, which is the third-generation man machine interface system for main control room that we call A-PODIA (Advanced PODIA). A-Podia has been introduced the first actual ABWR plant in Japan. in A-PODIA, TOSHIBA has realized improvement of alarm system that all operator crews in the control room can recognize plant anomalies easily. The alarm system can recognize essential alarms for plant safety easily and understand annunciators with each integrated annunciators and their prioritized color easily by classifying alarms into plant-level essential annunciators, system-level integrated annunciators and equipment level individual annunciators with hierarchical structure. This paper describes conventional alarm system and the design philosophy, alarm system design and operation of ''Alarm System for ABWR Main Control Panels''. (author). 5 refs, 8 figs, 1 tab

  13. Thermal expansion measurement of turbine and main steam piping by using strain gages in power plants

    International Nuclear Information System (INIS)

    Na, Sang Soo; Chung, Jae Won; Bong, Suk Kun; Jun, Dong Ki; Kim, Yun Suk

    2000-01-01

    One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shaft alignment problem which sometimes is changed by thermal expansion and external force, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants

  14. A design of electric power supply system for gamma irradiator ISG-500

    International Nuclear Information System (INIS)

    Harno Garnito; Enggar; Harjani; Ari Satmoko; Sutomo Budihaharjo

    2010-01-01

    Reliability of electrical power system in Irradiator system is absolutely necessary during the life cycle. Electrical energy is used as the main supporting element for both Irradiator operation of mechanical system, lighting, as well as for instrumentation and control systems. The reliability of electrical power system in the system can be achieved by paying attention Irradiator safety, simplicity of operation, ease of maintenance and possible future development. Distribution network of the most commonly used is the Radial network system, for the simple and in accordance with the criteria demanded by a distribution system. In addition to the network system, to get the reliability of electric power supply system is the selection of equipment/materials that meet the standards, and the installation of which provide facilities for maintenance and repairs. (author)

  15. Study on the identification of main drivers affecting the performance of human operators during low power and shutdown operation

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Park, Jinkyun; Kim, Ji Tae; Kim, Jaewhan; Seong, Poong Hyun

    2016-01-01

    Highlights: • The performance of human operator during LPSD operation is significantly important. • Human performance is affected by drivers such as procedure, training, and etc. • Main drivers during LPSD operation at domestic NPPs were suggested. • It is expected that it will be used for estimating human reliability during LPSD operation. - Abstract: In the past, many researchers believed that a reactor during low power and shutdown operation was sufficiently safe. This belief has been changed by the number of accidents during such types of operation, which is significantly high. Also, it was pointed out that one of the main differences between low power and shutdown operation and full power operation is the significance of human action because there are huge amounts of human actions due to extensive maintenance and testing while automatic control and safety functions may be disabled and procedures are insufficient or incomplete. This paper suggests the main drivers in performing human reliability analysis. For this study, we reviewed eight reports relating to human performance during low power and shutdown operation and applied a root cause analysis method for 53 human or human-related events at domestic nuclear power plants to derive the main drivers that affect the occurrence of those events. As a result, several main drivers were derived, such as procedures, training, experience of personnel, and workload/stress. It is expected that these main drivers will be used to perform human reliability analysis for low power and shutdown operation.

  16. Investigation of modeling and simulation on a PWR power conversion system with RELAP5

    International Nuclear Information System (INIS)

    Rui Gao; Yang Yanhua; Lin Meng; Yuan Minghao; Xie Zhengrui

    2007-01-01

    Based on the power conversion system of nuclear and conventional islands of Dayabay nuclear power station, this paper models the thermal-hydraulic systems for PWR by using the best-estimate program, RELAP5. To simulate the full-scope power conversion system, not only the reactor coolant system (RCP) of nuclear island, but also the main steam system (VVP), turbine steam and drain system (GPV), bypass system (GCT), feedwater system (FW), condensate extraction system (CEX), moisture separator reheater system (GSS), turbine-driven feedwater pump (APP), low-pressure and high-pressure feedwater heater systems (ABP and AHP) of conventional island are considered and modeled. A comparison between the simulated results and the actual data of reactor under full-power demonstrates a fine match for Dayabay, and also manifests the feasibility in simulating full-scope power conversion system of PWR with RELAP5. (author)

  17. Autonomously managed electrical power systems

    Science.gov (United States)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  18. Improvement of Transient Stability of Power System by System Damping Series Resistor (SDSR)

    OpenAIRE

    上里, 勝実; 千住, 智信; 当銘, 秀之; 高原, 景滋; Uezato, Katsumi; Senjyu, Tomonobu; Toume, Hideyuki; Takahara, Keiji

    1990-01-01

    The system damping resistor is one of the method for improving the transient stability of power systems. The main circuit is the simple construction so that is low cost and is few abnormal surge, and is superior in ability of economy, reliability and maintenance. Conventionally, most of all system damping resistors have adopted the paralleled resistor, whereas the series resistor is used little.In this paper, we investigate the characteristics of the series resistor by comparing with the para...

  19. Price-based Optimal Control of Electrical Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jokic, A.

    2007-09-10

    The research presented in this thesis is motivated by the following issue of concern for the operation of future power systems: Future power systems will be characterized by significantly increased uncertainties at all time scales and, consequently, their behavior in time will be difficult to predict. In Chapter 2 we will present a novel explicit, dynamic, distributed feedback control scheme that utilizes nodal-prices for real-time optimal power balance and network congestion control. The term explicit means that the controller is not based on solving an optimization problem on-line. Instead, the nodal prices updates are based on simple, explicitly defined and easily comprehensible rules. We prove that the developed control scheme, which acts on the measurements from the current state of the system, always provide the correct nodal prices. In Chapter 3 we will develop a novel, robust, hybrid MPC control (model predictive controller) scheme for power balance control with hard constraints on line power flows and network frequency deviations. The developed MPC controller acts in parallel with the explicit controller from Chapter 2, and its task is to enforce the constraints during the transient periods following suddenly occurring power imbalances in the system. In Chapter 4 the concept of autonomous power networks will be presented as a concise formulation to deal with economic, technical and reliability issues in power systems with a large penetration of distributed generating units. With autonomous power networks as new market entities, we propose a novel operational structure of ancillary service markets. In Chapter 5 we will consider the problem of controlling a general linear time-invariant dynamical system to an economically optimal operating point, which is defined by a multiparametric constrained convex optimization problem related with the steady-state operation of the system. The parameters in the optimization problem are values of the exogenous inputs to

  20. Long-Term Planning in Restructured Power Systems

    International Nuclear Information System (INIS)

    Botterud, Audun

    2003-01-01

    model which calculates the optimal investment strategy for a profit maximising investor considering investments in new power generation capacity. The model is based on real options theory, which is an alternative to static discounted cash flow evaluations of investments projects under uncertainty. In the model we represent load growth as a stochastic variable. A stochastic dynamic programming algorithm is applied in order to solve the investment problem. Prices and profits are calculated in a separate model, whose parameters can be estimated based on historical data for load, prices and installed capacity in the power system. In Chapter 5, we extend the stochastic dynamic optimisation model from Chapter 4, so that the investor now can choose between two different power generation technologies to invest in. An alternative representation of the power market is also implemented, which makes it possible to use either a profit or a social welfare objective in the optimisation. With this model we can compare the optimal investment decisions, and the dynamics of investments, prices and reliability, which follow from centralised and decentralised decision making. The main scientific contributions in the thesis lie in the combined use of economic theory for restructured power systems and theory for optimal investments under uncertainty. With an explicit representation of the power market, the dynamic investment models can identify profit maximising investment strategies under different regulations and market designs. The use of physical state variables in the models also facilitates analyses of the long-term consequences for the power system, which result from the optimal decentralised investment decisions. Decision support models for expansion planning in the regulated power industry do not address the aspect of competition and decentralised decision making. At the same time, long-term uncertainties and their impact on optimal investment decisions are rarely represented in

  1. High resolution ADC interface to main magnet power supply at the NSLS

    International Nuclear Information System (INIS)

    Bordoley, M.

    1993-01-01

    Previous readings of DCCT were limited to 11 bits of resolution with large offsets and drifts, providing inaccurate data. The current design overcomes this limitation by using Analog Device's AD7703 20 bit serial output ADC to digitize the main magnet DCCT at the power supply, and transmit the data serially at 2KHz over to the VME controller

  2. Nuclear power system

    International Nuclear Information System (INIS)

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-01-01

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules

  3. DC power supplies power management and surge protection for power electronic systems

    CERN Document Server

    Kularatna, Nihal

    2011-01-01

    Modern electronic systems, particularly portable consumer electronic systems and processor based systems, are power hungry, compact, and feature packed. This book presents the most essential summaries of the theory behind DC-DC converter topologies of both linear and switching types. The text discusses power supply characteristics and design specifications based on new developments in power management techniques and modern semiconductors entering into the portable electronics market. The author also addresses off-the-line power supplies, digital control of power supply, power supply protection

  4. Simulation and study on reactivity disturbs dynamic character of HTR-10 nuclear power system

    International Nuclear Information System (INIS)

    Huang Xiaojin; Feng Yuankun

    2002-01-01

    In order to not only know 10 MW High Temperature Gas Cooled Reactor (HTR-10) nuclear power system's dynamic character more deeply but also to satisfy requirements of control system's design and analysis, the dynamic model of HTR-10 nuclear power system is established on the basis of dynamic model of HTR-10 nuclear system, which supplies turbine and generate electricity system model. Using this model, system's main variables' dynamic processes are simulated when control rod takes step reactivity disturb. The concussive progresses which is caused by reactivity disturb are analyzed. The results indicate that fuel temperature changing more slowly than nuclear power makes reactivity negative feedback not to restrain power changing, and then power concussive progress comes to being

  5. Fuzzy Controller for a Voltage-Regulated Solar-Powered MPPT System for Hybrid Power System Applications

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2015-04-01

    Full Text Available This paper presents the design of a fuzzy-logic-based voltage-regulated solar power maximum power point tracking (MPPT system for applications involving hybrid power systems. The system contains a solar power system and battery as the primary and secondary power sources, respectively. The solar system alone supplies power to the electric motor and maintains the output voltage at a predetermined level when it has sufficient power. When the solar power is insufficient, the solar system is operated at its maximum power point (MPP and the battery is engaged to compensate for the insufficiency. First, a variant of the incremental conductance MPP condition was established. Under the MPP condition, the voltage-regulated MPPT system was formulated as a feedback control system, where the MPP condition and voltage regulation requirements were used as the system inputs. Next, a fuzzy controller was developed to perform the voltage-regulated MPPT function for the hybrid power system. A simulation model based on Matrix laboratory (MATLAB/SIMULINK (a block diagram environment for multi-domain simulation and model-based design and a piecewise linear electric circuit simulation (PLECS tool for controlling the dc motor velocity was developed to verify the voltage-regulated solar power MPPT system.

  6. Comparative modeling for power generating systems with interaction phenomena

    International Nuclear Information System (INIS)

    Kim, Seong Ho; Kim, Tae Woon

    2007-01-01

    From a conflicting viewpoint, comprehensive assessment of various national power systems can be treated as a multicriteria decision-making (MCDM) problem. In reality, there are interaction phenomena among the decision elements. The main objective of this work is to propose a comprehensive framework to determinate the priority of appropriate national power sources involving various degrees of interaction among the decision elements (e.g., decision goal, decision criteria, and decision alternatives) such as inner dependence, outer dependence, and feedback effect. In the context of a generic hierarchical network (or hiernet) structure instead of one-way directional tree structure, the impact of the interaction phenomena on the grade of priority is investigated using a supermatrix technique or an analytic network process (ANP) method. Moreover, the three types of attitudes towards nuclear power system of the multiple actors are incorporated into the network structure to figure out the effect of characteristics of power systems. An illustrative example of the generic hiernet structure is demonstrated in comparison to the specific hierarchy structure without any interaction among the decision elements. The proposed framework can be applied to select the appropriate power systems, to understand the effect of its underlying decision structures, and to include risk attitudes towards a certain alternative. (author)

  7. Battery Recharging Issue for a Two-Power-Level Flywheel System

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves de Oliveira

    2010-01-01

    Full Text Available A novel battery recharging system for an all-electric driveline comprising a flywheel with a permanent magnet double wound synchronous machine (motor/generator is presented. The double winding enables two voltage levels and two different power levels. This topology supersedes other all-electric drivelines. The battery operates in a low-power regime supplying the average power whereas the flywheel delivers and absorbs power peaks, which are up to a higher order of magnitude. The topology presents new challenges for the power conversion system, which is the focus of this investigation. The main challenge is the control of the power flow to the battery when the vehicle is parked despite the decay of the flywheel machine voltage; which is dependent on its charge state, that is, rotational speed. The design and simulation of an unidirectional DC/DC buck/boost converter for a variable rotational speed flywheel is presented. Conventional power electronic converters are used in a new application, which can maintain a constant current or voltage on the battery side. Successful PI current control has been implemented and simulated, together with the complete closed loop system.

  8. Main Characteristics of Nuclear Power Plants in the European Union and Candidate Countries

    International Nuclear Information System (INIS)

    Lillington, J.N.; Turland, B.D.; Haste, T.J.; Seiler, J.M.; Tapia, J.; Carretero, A.; Perez, T.; Geutges, A.; Sehgal, B.R.; Mattila, L.; Holmstrom, H.; Karwat, H.; Maroti, L.; Husarcek, J.

    2001-10-01

    The main objective was to advise the EC on future challenges and opportunities in terms of enhanced co-operation in the area of nuclear safety and harmonization of safety requirements and practices in an enlarged European Union Part of this activity was to provide a summary of the plant characteristics of the operating civil nuclear power plants in the EU Member and Candidate Countries. The present report provides these data in three formats: A reference table which lists the main characteristics of nuclear power-producing reactors operating in the European Union (EU) and Candidate Countries, as at 31 December 1999. Also included, for the sake of completeness, are data for reactors in the former Soviet Union, such as Russia and the Ukraine. The format adopted follows that in the annual International Atomic Energy Agency (IAEA) reference data report ''Nuclear Power Reactors of the World'', from which much of the information was taken; A summary table indicating totals by reactor type covering Western and Eastern Europe separately, again from IAEA sources, giving number of plant, total generating capacity and total years in operation. A list of the abbreviations for different reactor types is also provided; A set of detailed data sheets giving main plant characteristics for different reactor types ordered by country. These data sheets cover reactors in EU Member and Candidate Countries only. Details are provided on the origin of the data where these are available, so that further information may be obtained if desired and where permitted by commercial and/or proprietary considerations. (author)

  9. Integration of wind power in the Danish generation system. EC wind power penetration study, phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-06-01

    The Commission of the European Communities has asked utilities in the member countries to carry out a coordinated study of the wind energy potential. The main objective is to show the consequences for the future electricity system when integrating wind power production covering 5, 10 or 15% of total demand. In addition to the best estimate scenario believed to be operational, some additional calculations have been carried out: wind power production as a negative load only (not operational for the total system); different levels of investment in wind farms. The methodology is based on the following steps: define a reference scenario for year 2000; define an alternative scenario with a certain amount of wind power production; calculate time-series for electrical load and district heating from combined heat/power production; calculate time-series for wind power production; make economic evaluation and sensitivity analysis; show environmental differences. Incorporation of wind power into the ELSAM power system, with the wind energy meeting, about 5% of demand will give rise to additional control capacity, or call for new contracts with neighbouring countries. The study includes estimated network investments. The simulations have been made with the SIM and SLUMP computer programmes. The economic analyses and the sensitivity analyses have been carried out using spreadsheets. The conclusion concerning profitability - based on the best estimate assumptions - is that the studied wind power scenarios are unprofitable. (EG)

  10. Transient analysis of an HTS DC power cable with an HVDC system

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-01-01

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system

  11. Transient analysis of an HTS DC power cable with an HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@cwnu.ac.kr [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yang, Byeongmo [Korea Electric Power Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejon 305-760 (Korea, Republic of)

    2013-11-15

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  12. IAEA activity on operator support systems in nuclear power plants

    International Nuclear Information System (INIS)

    Dounaev, V.; Fujita, Y.; Juslin, K.; Haugset, K.; Lux, I.; Naser, J.

    1994-01-01

    Various operator support systems for nuclear power plants are already operational or under development in the IAEA Member States. Operator support systems are based on intelligent data processing and, in addition to plant operation, they are also becoming more important for safety. A key feature of operator support systems is their availability to restructure data to increase its relevance for a given situation. This can improve the user's ability to identify plant mode, system state, and component state and to identify and diagnose faults. Operator support systems can also assist the user in planning and implementing corrective actions to improve the nuclear power plant's availability and safety. In September 1991, the IAEA Committee for Contractual Scientific Services approved the Co-ordinated Research Programme (CRP) on ''Operator Support Systems in Nuclear Power Plants'' in the framework of the Project ''Man-Machine Interface Studies''. The main objective of this programme is to provide guidance and technology transfer for the development and implementation of operator support systems. This includes the experience with human-machine interfaces and closely related issues such as instrumentation and control, the use of computers in nuclear power plants, and operator qualification. (author)

  13. A Wireless Capsule Endoscope System With Low-Power Controlling and Processing ASIC.

    Science.gov (United States)

    Xinkai Chen; Xiaoyu Zhang; Linwei Zhang; Xiaowen Li; Nan Qi; Hanjun Jiang; Zhihua Wang

    2009-02-01

    This paper presents the design of a wireless capsule endoscope system. The proposed system is mainly composed of a CMOS image sensor, a RF transceiver and a low-power controlling and processing application specific integrated circuit (ASIC). Several design challenges involving system power reduction, system miniaturization and wireless wake-up method are resolved by employing optimized system architecture, integration of an area and power efficient image compression module, a power management unit (PMU) and a novel wireless wake-up subsystem with zero standby current in the ASIC design. The ASIC has been fabricated in 0.18-mum CMOS technology with a die area of 3.4 mm * 3.3 mm. The digital baseband can work under a power supply down to 0.95 V with a power dissipation of 1.3 mW. The prototype capsule based on the ASIC and a data recorder has been developed. Test result shows that proposed system architecture with local image compression lead to an average of 45% energy reduction for transmitting an image frame.

  14. Power System for Intelligent House

    Directory of Open Access Journals (Sweden)

    Michal Jahelka

    2010-01-01

    Full Text Available Power supply of intelligent houses or house phones is possible to do with standard transformer with voltage stabilizer or with intelligent power supply. Standard solution can has as a result of failure fuse blown or fire occurrence. Intelligent power supply switch off power and tests with little current whether short circuit is removed. After it resume system power supply. At the same time it cares of system backup with accumulator, informs control system about short circuit or failure net power supply, or can switch off all system power after command from control system.

  15. Advanced methods in evaluation of thermal power systems effectiveness

    International Nuclear Information System (INIS)

    Barnak, N.; Jakubcek, P.; Zadrazil, J.

    1993-01-01

    The universal method for thermodynamic systems process irreversibility evaluation based on exergetic approach is elaborated in this article. The method uses the basic property of exergy as extensive state parameter -additivity. Division of the system onto some hierarchic levels is considered and relation between exergetic system characteristics and its parts is defined. There are system structure coefficients in common form expressed article they are analysed. The criteria for technical and economical optimization of the system using expressed structure coefficients are defined. In the article, there are common approaches defined for the method application in the area of nuclear power plant secondary circuits and the method is used for nuclear power plant WWER-1000 secondary circuit analysis. For this, individual exergetic characteristics of secondary circuit and its parts are expressed and some of secondary circuit parameters are optimized. Proposals for practical realisation of the results are stated in the conclusions of the article, mainly in the area of computerized evaluation of technical and economical parameters of nuclear power plant and effectiveness of its operation

  16. POWER STABILITY MONITORING BASED ON VOLTAGE INSTABILITY PREDICTION APPROACH THROUGH WIDE AREA SYSTEM

    OpenAIRE

    H. H. Goh; Q. S. Chua; S. W. Lee; B. C. Kok; K. C. Goh; K. T.K. Teo

    2014-01-01

    Nowadays, power systems are being forced to operate closer to its security limit due to current economic growth and the difficulties to upgrade the existing grid infrastructure. With the sudden increment of power demand, voltage instability problem has become a main concern to the power system operator because voltage instability has led or crucially contributed to some major blackouts throughout the world. Hence, methods for early warning and early prevention are required to prevent the powe...

  17. An improved AVC strategy applied in distributed wind power system

    Science.gov (United States)

    Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.

    2016-08-01

    Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.

  18. Electric power system applications of optimization

    CERN Document Server

    Momoh, James A

    2008-01-01

    Introduction Structure of a Generic Electric Power System  Power System Models  Power System Control Power System Security Assessment  Power System Optimization as a Function of Time  Review of Optimization Techniques Applicable to Power Systems Electric Power System Models  Complex Power Concepts Three-Phase Systems Per Unit Representation  Synchronous Machine Modeling Reactive Capability Limits Prime Movers and Governing Systems  Automatic Gain Control Transmission Subsystems  Y-Bus Incorporating the Transformer Effect  Load Models  Available Transfer Capability  Illustrative Examples  Power

  19. Automated control system for the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Labik, V.

    1990-01-01

    Instrumentation of the automated control system of the Temelin nuclear power plant in the section of the main production unit and of the major auxiliary equipment is described, the results of testing are reported, and the present status of design activities is assessed. The suitability of application of Czechoslovak automation facilities to the instrumentation of the automated control system of the power plant was confirmed by the Soviet designer and supplier based on favorable results of polygonal testing. Capacity problems in the development of the designs and user software are alleviated by extensive cooperation. It is envisaged that all tasks will be fulfilled as planned. (P.A.). 1 fig., 5 refs

  20. Transient Stability Improvement of IEEE 9 Bus System Using Power World Simulator

    Directory of Open Access Journals (Sweden)

    Kaur Ramandeep

    2016-01-01

    Full Text Available The improvement of transient stability of power system was one of the most challenging research areas in power engineer.The main aim of this paper was transient stability analysis and improvement of IEEE 9 bus system. These studies were computed using POWER WORLD SIMULATOR. The IEEE 9 bus system was modelled in power world simulator and load flow studies were performed to determine pre-fault conditions in the system using Newton-Raphson method. The transient stability analysis was carried out using Runga method during three-phase balanced fault. For the improvement transient stability, the general methods adopted were fast acting exciters, FACT devices and addition of parallel transmission line. These techniques play an important role in improving the transient stability, increasing transmission capacity and damping low frequency oscillations.

  1. Power-Electronics Issues of Modern Electric Railway Systems

    Directory of Open Access Journals (Sweden)

    STEIMEL, A.

    2010-05-01

    Full Text Available After de-regulation of the former state-owned railways and severe restructuring of the railway industry in the last 15 years, more innovative vehicle concepts saw the light of the day. Power electronics, already formerly being a pacemaker for progress of traction vehicles, brought forth an utmost standardization of the main drive by means of the IGBT-converter-fed induction motor drive. This is independent of the railway supply voltage system or of a diesel prime mover, for locomotives, high-speed and mass-transit trains as well as for tramways. Vehicles able to operate on all four European railway voltage systems have become feasible and are used now widely. New trends as Permanent-Magnet Synchronous Motors or Medium-Frequency Transformers are discussed, and a short overlook over actual field-oriented high-performance motor control systems - including a speed-sensorless variant - is given. Power electronics dominates the field of conversion of the 16.7-Hz railway supply power, typical for Central Europe, from the 50-Hz three-phase utility grid.

  2. Development of Early Warning Methods for Electric Power Systems

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur

    This thesis concerns the development of methods that can provide, in realtime, an early warning for an emerging blackout in electric power systems. The blackout in E-Denmark and S-Sweden on September 23, 2003 is the main motivation for the method development. The blackout was caused by occurrence...

  3. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    Directory of Open Access Journals (Sweden)

    Qi Zheng

    2015-09-01

    Full Text Available Microbial fuel cells (MFCs are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  4. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System.

    Science.gov (United States)

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-09-11

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  5. Computer-aided analysis of power-electronic systems simulation of a high-voltage power converter

    International Nuclear Information System (INIS)

    Bordry, F.; Isch, H.W.; Proudlock, P.

    1987-01-01

    In the study of semiconductor devices, simulation methods play an important role in both the design of systems and the analysis of their operation. The authors describe a new and efficient computer-aided package program for general power-electronic systems. The main difficulty when taking into account non-linear elements, such as semiconductors, lies in determining the existence and the relations of the elementary sequences defined by the conduction or nonconduction of these components. The method does not require a priori knowledge of the state sequences of the semiconductor nor of the commutation instants, but only the circuit structure, its parameters and the commands to the controlled switches. The simulation program computes automatically both transient and steady-state waveforms for any circuit configuration. The simulation of a high-voltage power converter is presented, both for its steady-state and transient overload conditions. This 100 kV power converter (4 MW) will feed two klystrons in parallel

  6. Thermal Heat and Power Production with Models for Local and Regional Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Sturla

    1999-07-01

    The primary goal of this thesis is the description and modelling of combined heat and power systems as well as analyses of thermal dominated systems related to benefits of power exchange. Large power plants with high power efficiency (natural gas systems) and heat production in local heat pumps can be favourable in areas with low infrastructure of district heating systems. This system is comparable with typical combined heat and power (CHP) systems based on natural gas with respect to efficient use of fuel energy. The power efficiency obtainable from biomass and municipal waste is relatively low and the advantage of CHP for this system is high compared to pure power production with local heat pumps for heat generation. The advantage of converting pure power systems into CHP systems is best for power systems with low power efficiency and heat production at low temperature. CHP systems are divided into two main groups according to the coupling of heat and power production. Some CHP systems, especially those with strong coupling between heat and power production, may profit from having a thermal heat storage subsystem. District heating temperatures direct the heat to power ratio of the CHP units. The use of absorption chillers driven by district heating systems are also evaluated with respect to enhancing the utilisation of district heating in periods of low heat demand. Power exchange between a thermal dominated and hydropower system is found beneficial. Use of hydropower as a substitute for peak power production in thermal dominated systems is advantageous. Return of base load from the thermal dominated system to the hydropower system can balance in the net power exchange.

  7. Parallel power electronics filters in three-phase four-wire systems principle, control and design

    CERN Document Server

    Wong, Man-Chung; Lam, Chi-Seng

    2016-01-01

    This book describes parallel power electronic filters for 3-phase 4-wire systems, focusing on the control, design and system operation. It presents the basics of power-electronics techniques applied in power systems as well as the advanced techniques in controlling, implementing and designing parallel power electronics converters. The power-quality compensation has been achieved using active filters and hybrid filters, and circuit models, control principles and operational practice problems have been verified by principle study, simulation and experimental results. The state-of-the-art research findings were mainly developed by a team at the University of Macau. Offering background information and related novel techniques, this book is a valuable resource for electrical engineers and researchers wanting to work on energy saving using power-quality compensators or renewable energy power electronics systems. .

  8. The electric power engineering handbook power systems

    CERN Document Server

    2012-01-01

    Power Systems, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) covers all aspects of power system protection, dynamics, stability, operation, and control. Under the editorial guidance of L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Andrew Hanson, Pritindra Chowdhuri, Gerry Sheble, and Mark Nelms, this carefully crafted reference includes substantial new and revised contributions from worldwide leaders in the field. This content provides convenient access to overviews and detailed information on a diverse arr

  9. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    Science.gov (United States)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  10. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal......The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  11. High resolution ADC interface to main magnet power supply at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    Bordoley, M.

    1993-07-01

    Previous readings of DCCT were limited to 11 bits of resolution with large offsets and drifts, providing inaccurate data. The current design overcomes this limitation by using Analog Device`s AD7703 20 bit serial output ADC to digitize the main magnet DCCT at the power supply, and transmit the data serially at 2KHz over to the VME controller.

  12. High resolution ADC interface to main magnet power supply at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    Bordoley, M.

    1993-01-01

    Previous readings of DCCT were limited to 11 bits of resolution with large offsets and drifts, providing inaccurate data. The current design overcomes this limitation by using Analog Device's AD7703 20 bit serial output ADC to digitize the main magnet DCCT at the power supply, and transmit the data serially at 2KHz over to the VME controller.

  13. Robust stability analysis of large power systems using the structured singular value theory

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, R.; Sarmiento, H. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Messina, A.R. [Cinvestav, Graduate Program in Electrical Engineering, Guadalajara, Jalisco (Mexico)

    2005-07-01

    This paper examines the application of structured singular value (SSV) theory to analyse robust stability of complex power systems with respect to a set of structured uncertainties. Based on SSV theory and the frequency sweep method, techniques for robust analysis of large-scale power systems are developed. The main interest is focused on determining robust stability for varying operating conditions and uncertainties in the structure of the power system. The applicability of the proposed techniques is verified through simulation studies on a large-scale power system. In particular, results for the system are considered for a wide range of uncertainties of operating conditions. Specifically, the developed technique is used to estimate the effect of variations in the parameters of a major system inter-tie on the nominal stability of a critical inter-area mode. (Author)

  14. Power quality load management for large spacecraft electrical power systems

    Science.gov (United States)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  15. Control of power plants and power systems. Proceedings

    International Nuclear Information System (INIS)

    Canales-Ruiz, R.

    1996-01-01

    The 88 papers in this volume constitute the proceedings of the International Federation of Automatic Control Symposium held in Mexico in 1995. The broad areas which they cover are: self tuning control; power plant operations; dynamic stability; fuzzy logic applications; power plants modelling; artificial intelligence applications; power plants simulation; voltage control; control of hydro electric units; state estimation; fault diagnosis and monitoring systems; system expansion and operation planning; security assessment; economic dispatch and optimal load flow; adaptive control; distribution; transient stability and preventive control; modelling and control of nuclear plant; knowledge data bases for automatic learning methods applied to power system dynamic security assessment; control of combined cycle units; power control centres. Separate abstracts have been prepared for the three papers relating to nuclear power plants. (UK)

  16. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    Science.gov (United States)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  17. Development of management system for nuclear power plant maintenance and information

    International Nuclear Information System (INIS)

    Nomoto, Toshihiro

    1997-01-01

    In Chubu Electric Power Co., Inc., in order to make maintenance works efficient and improve the management, 'Management system for nuclear power plant maintenance and information' was developed, and its operation on full scale was begun in Hamaoka Nuclear Power Station in October, 1996. This system is composed of equipment management system, maintenance and repair management system and work management system. As the features of the system, the dispersion of functions by client/server method, the installation of the server machines for exclusive use in power stations, the adoption of optical communication network and the ensuring of reliability by the doubled system are mentioned. This system is the function dispersion system by client/server method utilizing the in-plant LAN, and has two server computers with double hot standby constitution. The main functions of three subsystems are described. These three subsystems and piping and instrumentation chart management system and whole company work budget system are connected so as to make dealing works quick and efficient. Hereafter, by reflecting the opinions of the users through the operation, further efficient works are to be aimed at. (K.I.)

  18. 8 GHz, high power, microwave system for heating of thermonuclear plasmas

    International Nuclear Information System (INIS)

    Di Giovenale, S.; Fortunato, T.; Mirizzi, F.; Roccon, M.; Sassi, M.; Tuccillo, A.A.; Maffia, G.; Baldi, L.

    1993-01-01

    The Frascati Tokamak Upgrade (FTU) is a machine included in the European Thermonuclear Fusion Program aimed at investigating high density plasmas in the presence of powerful additional RF heating systems. The Lower Hybrid Resonant Heating (LHRH) system, based on 9 independent modules, works at 8 GHz, and will generate, at full performances, a total amount of 9 MW, in the pulsed regime (pulse length = 1 s, duty cycle = 1/600). The microwave power source is a gyrotron oscillator, developed by Thomson Tubes Electroniques (France) for this specific application, and capable of producing up to 1 MW. An overmoded, low loss, circular waveguide transmits the RF power toward the plasma; an array of 12x4 rectangular waveguides (the 'grill') launches this power into the plasma. The paper describes the LHRH system for FTU and analyses both its main performances and experimental results

  19. MECAR (Main Ring Excitation Controller and Regulator): A real time learning regulator for the Fermilab Main Ring or the Main Injector synchrotron

    International Nuclear Information System (INIS)

    Flora, R.; Martin, K.; Moibenko, A.; Pfeffer, H.; Wolff, D.; Prieto, P.; Hays, S.

    1995-04-01

    The real time computer for controlling and regulating the FNAL Main Ring power supplies has been upgraded with a new learning control system. The learning time of the system has been reduced by an order of magnitude, mostly through the implementation of a 95 tap FIR filter in the learning algorithm. The magnet system consists of three buses, which must track each other during a ramp from 100 to 1700 amps at a 2.4 second repetition rate. This paper will present the system configuration and the tools used during development and testing

  20. On-line test of power distribution prediction system for boiling water reactors

    International Nuclear Information System (INIS)

    Nishizawa, Y.; Kiguchi, T.; Kobayashi, S.; Takumi, K.; Tanaka, H.; Tsutsumi, R.; Yokomi, M.

    1982-01-01

    A power distribution prediction system for boiling water reactors has been developed and its on-line performance test has proceeded at an operating commercial reactor. This system predicts the power distribution or thermal margin in advance of control rod operations and core flow rate change. This system consists of an on-line computer system, an operator's console with a color cathode-ray tube, and plant data input devices. The main functions of this system are present power distribution monitoring, power distribution prediction, and power-up trajectory prediction. The calculation method is based on a simplified nuclear thermal-hydraulic calculation, which is combined with a method of model identification to the actual reactor core state. It has been ascertained by the on-line test that the predicted power distribution (readings of traversing in-core probe) agrees with the measured data within 6% root-mean-square. The computing time required for one prediction calculation step is less than or equal to 1.5 min by an HIDIC-80 on-line computer

  1. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    OpenAIRE

    Morel, Jorge; Obara, Shin’ya; Morizane, Yuta

    2015-01-01

    This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to...

  2. Digital Components in Swedish NPP Power Systems

    International Nuclear Information System (INIS)

    Karlsson, Mattias; Eriksson, Tage

    2015-01-01

    Swedish nuclear power plants have over the last 20 years of operation modernised or exchanged several systems and components of the electrical power system. Within these works, new components based on digital technology have been employed in order to realize functionality that was previously achieved by using electro-mechanical or analogue technology. Components and systems such as relay protection, rectifiers, inverters, variable speed drives and diesel-generator sets are today equipped with digital components. Several of the systems and components fulfil functions with a safety-role in the NPP. Recently, however, a number of incidents have occurred which highlight deficiencies in the design or HMI of the equipment, which warrants questions whether there are generic problems with some applications of digital components that needs to be addressed. The use of digital components has presented cost effective solutions, or even the only available solution on the market enabling a modernisation. The vast majority of systems using digital components have been operating without problems and often contribute to improved safety but the challenge of non-detectable, or non-identifiable, failure modes remain. In this paper, the extent to which digital components are used in Swedish NPP power systems will be presented including a description of typical applications. Based on data from maintenance records and fault reports, as well as interviews with designers and maintenance personnel, the main areas where problems have been encountered and where possible risks have been identified will be described. The paper intends to investigate any 'tell-tales' that could give signals of unwanted behaviour. Furthermore, particular benefits experienced by using digital components will be highlighted. The paper will also discuss the safety relevance of these findings and suggest measures to improve safety in the application of digital components in power systems. (authors)

  3. Explicit model predictive control applications in power systems: an AGC study for an isolated industrial system

    DEFF Research Database (Denmark)

    Jiang, Hao; Lin, Jin; Song, Yonghua

    2016-01-01

    Model predictive control (MPC), that can consider system constraints, is one of the most advanced control technology used nowadays. In power systems, MPC is applied in a way that an optimal control sequence is given every step by an online MPC controller. The main drawback is that the control law...

  4. Power system health analysis

    International Nuclear Information System (INIS)

    Billinton, Roy; Fotuhi-Firuzabad, Mahmud; Aboreshaid, Saleh

    1997-01-01

    This paper presents a technique which combines both probabilistic indices and deterministic criteria to reflect the well-being of a power system. This technique permits power system planners, engineers and operators to maximize the probability of healthy operation as well as minimizing the probability of risky operation. The concept of system well-being is illustrated in this paper by application to the areas of operating reserve assessment and composite power system security evaluation

  5. Hydro power flexibility for power systems with variable renewable energy sources: an IEA Task 25 collaboration: Hydro power flexibility for power systems

    Energy Technology Data Exchange (ETDEWEB)

    Huertas-Hernando, Daniel [Department of Energy Systems, SINTEF, Trondheim Norway; Farahmand, Hossein [Department of Electric Power Engineering, Norwegian University of Science and Technology (NTNU), Trondheim Norway; Holttinen, Hannele [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Kiviluoma, Juha [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Rinne, Erkka [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Söder, Lennart [Department of Electrical Engineering, KTH University, Stockholm Sweden; Milligan, Michael [Transmission and Grid Integration Group, National Renewable Energy Laboratory' s National Wind Technology Center, Golden CO USA; Ibanez, Eduardo [Transmission and Grid Integration Group, National Renewable Energy Laboratory' s National Wind Technology Center, Golden CO USA; Martínez, Sergio Martín [Department of Electrical Engineering, Electronics, Automation and Communications, Universidad de Castilla-La Mancha, Albacete Spain; Gomez-Lazaro, Emilio [Department of Electrical Engineering, Electronics, Automation and Communications, Universidad de Castilla-La Mancha, Albacete Spain; Estanqueiro, Ana [National Laboratory of Energy and Geology - LNEG, Lisbon Portugal; Rodrigues, Luis [National Laboratory of Energy and Geology - LNEG, Lisbon Portugal; Carr, Luis [Research Association for Energy Economics (FfE GmbH), Munich Germany; van Roon, Serafin [Research Association for Energy Economics (FfE GmbH), Munich Germany; Orths, Antje Gesa [Energinet.dk, Fredericia Denmark; Eriksen, Peter Børre [Energinet.dk, Fredericia Denmark; Forcione, Alain [Hydro Quebec, Montréal Canada; Menemenlis, Nickie [Hydro Quebec, Montréal Canada

    2016-06-20

    Hydro power is one of the most flexible sources of electricity production. Power systems with considerable amounts of flexible hydro power potentially offer easier integration of variable generation, e.g., wind and solar. However, there exist operational constraints to ensure mid-/long-term security of supply while keeping river flows and reservoirs levels within permitted limits. In order to properly assess the effective available hydro power flexibility and its value for storage, a detailed assessment of hydro power is essential. Due to the inherent uncertainty of the weather-dependent hydrological cycle, regulation constraints on the hydro system, and uncertainty of internal load as well as variable generation (wind and solar), this assessment is complex. Hence, it requires proper modeling of all the underlying interactions between hydro power and the power system, with a large share of other variable renewables. A summary of existing experience of wind integration in hydro-dominated power systems clearly points to strict simulation methodologies. Recommendations include requirements for techno-economic models to correctly assess strategies for hydro power and pumped storage dispatch. These models are based not only on seasonal water inflow variations but also on variable generation, and all these are in time horizons from very short term up to multiple years, depending on the studied system. Another important recommendation is to include a geographically detailed description of hydro power systems, rivers' flows, and reservoirs as well as grid topology and congestion.

  6. Power system protection 2 systems and methods

    CERN Document Server

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  7. ISABELLE magnet power supply system performance analysis

    International Nuclear Information System (INIS)

    Edwards, R.J.

    1981-01-01

    The power supply system that will energize the superconducting magnets in the ISABELLE 400 x 400 GeV accelerator must supply various voltages and currents. The voltages for the correction winding range from ten to one hundred twenty-five volts unipolar and bipolar with current rating of 50 to 300 amperes. The main field winding requires voltages from 90V (at flattop) to 600V during maximum ramp rate or acceleration cycle. The power supplies are programmable over their full range of output current with a reproducibility error varying from +- 10 ppM to +- 400 ppM of full scale. Included within the reproducibility error are the long and short term stability requirements of the power supplies. The purpose of this paper is to define some of the design goals and outline the approach taken in reaching these goals

  8. In-service diagnostics of main circulating circuit pipes of WWER nuclear power plants

    International Nuclear Information System (INIS)

    Svoboda, V.; Merta, J.; Merta, V.

    1982-01-01

    The application is discussed of the acoustic emission method for testing the integrity of the components of the main circulating circuit of the WWER 440 nuclear power plant. A description is given of the main circulating circuit and a stress analysis on the basis of strength computations considering operating modes is presented. An analysis is also presented of the possible damage of the pipe material as related to the application of the acoustic emission method for in-service inspection of the pipes. Certain practical problems of application are discussed. (author)

  9. 46 CFR 58.25-10 - Main and auxiliary steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Main and auxiliary steering gear. 58.25-10 Section 58.25... AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-10 Main and auxiliary steering gear. (a) Power-operated main and auxiliary steering gear must be separate systems that are independent throughout their...

  10. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  11. Distributed cooperative regulation for multiagent systems and its applications to power systems: a survey.

    Science.gov (United States)

    Hu, Jianqiang; Li, Yaping; Yong, Taiyou; Cao, Jinde; Yu, Jie; Mao, Wenbo

    2014-01-01

    Cooperative regulation of multiagent systems has become an active research area in the past decade. This paper reviews some recent progress in distributed coordination control for leader-following multiagent systems and its applications in power system and mainly focuses on the cooperative tracking control in terms of consensus tracking control and containment tracking control. Next, methods on how to rank the network nodes are summarized for undirected/directed network, based on which one can determine which follower should be connected to leaders such that partial followers can perceive leaders' information. Furthermore, we present a survey of the most relevant scientific studies investigating the regulation and optimization problems in power systems based on distributed strategies. Finally, some potential applications in the frequency tracking regulation of smart grids are discussed at the end of the paper.

  12. NSTX Electrical Power Systems

    International Nuclear Information System (INIS)

    A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

    1999-01-01

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems

  13. Argentina's operator support systems in nuclear power plants

    International Nuclear Information System (INIS)

    Goldstein, M.; Palamidessi, H.

    1996-01-01

    The development of operator support systems for nuclear power plants started in Argentina a few years ago. Four systems are at present deployed or under development. The participation of utility personnel in the co-ordinated research program has helped in revising the current experience and in selecting and specifying the systems to be developed and the resources needed for their implementation. Main efforts will be aimed to the selection of those systems that can be more easily implemented, to improve the data retrieval and handling, to develop diverse supplies of software products and to promote the understanding of support systems among the potential end users. (author). 12 refs

  14. Duct corrosion in the ventilating air conditioning system for Main Control Room

    International Nuclear Information System (INIS)

    Yamada, Kohei; Kobayashi, Takashi; Minami, Akiko; Fukuba, Kazushi

    2014-01-01

    Higashidori Nuclear Power Station, start-of-operation in December 2005, is a relatively new plant. We decided to get original data of air duct condition to determine maintenance policy of air duct, because planned maintenance of air duct has never been done and the corrosion of air duct has occurred in other plant. In January 2014, we found a corrosion-hole at the downstream of the inlet damper in the ventilating air conditioning system for Main Control Room (MCR). We supposed that the cause of rapid corrosion is related to the characteristic environment of this site. (author)

  15. Optimal and Modular Configuration of Wind Integrated Hybrid Power Plants for Off-Grid Systems

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin; Tarnowski, German Claudio

    2018-01-01

    This paper focusses on the system configuration of offgrid hybrid power plants including wind power generation. First, a modular and scalable system topology is proposed. Secondly, an optimal sizing algorithm is developed in order to determine the installed capacities of wind turbines, PV system......, battery energy storage system and generator sets. The novelty of this work lies in a robust sizing algorithm with respect to the required resolution of resource data in order to account for intra-hour power variations. Moreover, the involvement of the electrical infrastructure enables a precise estimation...... of power losses within the hybrid power plant as well as the consideration of both active and reactive power load demand for optimally sizing the plant components. The main outcome of this study is a methodology to determine feasible system configurations of modular and scalable wind integrated hybrid...

  16. Backfitting of the nuclear plant V1 power control system

    International Nuclear Information System (INIS)

    Karpeta, C.; Rubek, J.; Stirsky, P.

    1985-01-01

    The paper deals with some aspects of implementation of modifications into the Czechoslovak nuclear plant V1 control system as called for on the basis of experience gained during the first period of the plant operation. Brief description of the plant power control system and its main functions is given. Some deficiencies in the system performance during abnormal conditions are outlined and measures taken to overcome them are presented. (author)

  17. A distributed control approach for power and energy management in a notional shipboard power system

    Science.gov (United States)

    Shen, Qunying

    The main goal of this thesis is to present a power control module (PCON) based approach for power and energy management and to examine its control capability in shipboard power system (SPS). The proposed control scheme is implemented in a notional medium voltage direct current (MVDC) integrated power system (IPS) for electric ship. To realize the control functions such as ship mode selection, generator launch schedule, blackout monitoring, and fault ride-through, a PCON based distributed power and energy management system (PEMS) is developed. The control scheme is proposed as two-layer hierarchical architecture with system level on the top as the supervisory control and zonal level on the bottom as the decentralized control, which is based on the zonal distribution characteristic of the notional MVDC IPS that was proposed as one of the approaches for Next Generation Integrated Power System (NGIPS) by Norbert Doerry. Several types of modules with different functionalities are used to derive the control scheme in detail for the notional MVDC IPS. Those modules include the power generation module (PGM) that controls the function of generators, the power conversion module (PCM) that controls the functions of DC/DC or DC/AC converters, etc. Among them, the power control module (PCON) plays a critical role in the PEMS. It is the core of the control process. PCONs in the PEMS interact with all the other modules, such as power propulsion module (PPM), energy storage module (ESM), load shedding module (LSHED), and human machine interface (HMI) to realize the control algorithm in PEMS. The proposed control scheme is implemented in real time using the real time digital simulator (RTDS) to verify its validity. To achieve this, a system level energy storage module (SESM) and a zonal level energy storage module (ZESM) are developed in RTDS to cooperate with PCONs to realize the control functionalities. In addition, a load shedding module which takes into account the reliability

  18. The MISO Wiretap Channel with Noisy Main Channel Estimation in the High Power Regime

    KAUST Repository

    Rezki, Zouheir

    2017-02-07

    We improve upon our previous upper bound on the secrecy capacity of the wiretap channel with multiple transmit antennas and single-antenna receivers, with noisy main channel state information (CSI) at the transmitter (CSI-T). Specifically, we show that if the main CSI error does not scale with the power budget at the transmitter P̅, then the secrecy capacity is )bounded above essentially by log log (P̅ yielding a secure degree of freedom (sdof) equal to zero. However, if the main CSI error scales as O(P̅-β), for β ∈ [0,1], then the sdof is equal to β.

  19. The MISO Wiretap Channel with Noisy Main Channel Estimation in the High Power Regime

    KAUST Repository

    Rezki, Zouheir; Chaaban, Anas; Alomair, Basel; Alouini, Mohamed-Slim

    2017-01-01

    We improve upon our previous upper bound on the secrecy capacity of the wiretap channel with multiple transmit antennas and single-antenna receivers, with noisy main channel state information (CSI) at the transmitter (CSI-T). Specifically, we show that if the main CSI error does not scale with the power budget at the transmitter P̅, then the secrecy capacity is )bounded above essentially by log log (P̅ yielding a secure degree of freedom (sdof) equal to zero. However, if the main CSI error scales as O(P̅-β), for β ∈ [0,1], then the sdof is equal to β.

  20. The electric power engineering handbook power system stability and control

    CERN Document Server

    Grisby, Leonard L

    2012-01-01

    With contributions from worldwide leaders in the field, Power System Stability and Control, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) updates coverage of recent developments and rapid technological growth in essential aspects of power systems. Edited by L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Miroslav Begovic, Prabha Kundur, and Bruce Wollenberg, this reference presents substantially new and revised content. Topics covered include: * Power System Protection * Power System Dynamics and Stability *

  1. Computer-aided power systems analysis

    CERN Document Server

    Kusic, George

    2008-01-01

    Computer applications yield more insight into system behavior than is possible by using hand calculations on system elements. Computer-Aided Power Systems Analysis: Second Edition is a state-of-the-art presentation of basic principles and software for power systems in steady-state operation. Originally published in 1985, this revised edition explores power systems from the point of view of the central control facility. It covers the elements of transmission networks, bus reference frame, network fault and contingency calculations, power flow on transmission networks, generator base power setti

  2. Life cycle assessment of solar aided coal-fired power system with and without heat storage

    International Nuclear Information System (INIS)

    Zhai, Rongrong; Li, Chao; Chen, Ying; Yang, Yongping; Patchigolla, Kumar; Oakey, John E.

    2016-01-01

    Highlights: • The comprehensive performances of three kinds of different systems were compared through LCA. • The comprehensive results of all systems were evaluated by grey relation theory. • The effects of life span, coal price, and solar collector field cost, among other factors, on the results were explored. - Abstract: Pollutant emissions from coal-fired power system have been receiving increasing attention over the past few years. Integration of solar thermal energy can greatly reduce pollutant emissions from these power stations. The performances of coal-fired power system (S1), solar aided coal-fired power system with thermal storage (S2), and solar aided coal-fired power system without thermal storage (S3) with three capacities of each kind of system (i.e., nine subsystems) were analyzed over the entire life span. The pollutant emissions and primary energy consumptions (PECs) of S1, S2, and S3 were estimated using life cycle assessment (LCA). The evaluation value of global warming potential (GWP), acidification potential (AP), respiratory effects potential (REP) and PEC were obtained based on the LCA results. Furthermore, the system investments were estimated, and grey relation theory was used to evaluate the performance of the three types of systems comprehensively. Finally, in order to find the effect of some main factors on the solar aided coal-fired power system (SACFPS), uncertainty analysis has been carried out. The LCA results show that the pollutant emissions and PEC mainly take place in the fuel processing and operation stages for all three system types, and S2 performs the best among the three systems based on the grey relation analysis results. And the uncertainty analysis shows that with longer life span, the power system have better performance; with higher coal price, the power system will have worse performance; with lower solar collector field cost, the solar aided coal-fired power system will be more profitable than the base

  3. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  4. Estimation of power system variability due to wind power

    NARCIS (Netherlands)

    Papaefthymiou, G.; Verboomen, J.; Van der Sluis, L.

    2007-01-01

    The incorporation of wind power generation to the power system leads to an increase in the variability of the system power flows. The assessment of this variability is necessary for the planning of the necessary system reinforcements. For the assessment of this variability, the uncertainty in the

  5. FPGA based control system for -100 kV, 25 A Crowbarless DC power supply

    International Nuclear Information System (INIS)

    Upadhyay, R.; Tripathi, A.; Badapanda, M.K.; Lad, M.

    2015-01-01

    FPGA based digital control system has been developed for -100 kV, 25 A solid state modular crowbarless DC klystron bias power supply of 1 MW, 352.2 MHz RF test stand. The control system has capability to operate this power supply either in CW or pulse mode. Central controller, PSM controller and graphical user interface are key parts of this control system. Central controller monitors the status of various subsystems of this power supply like 11 kV step start unit, four numbers of main transformers each having 44 numbers of secondary windings and 176 numbers of switch power modules for deciding the number of power modules to be put ON and their duty cycles depending on the set output voltage and current. PSM controller sends appropriate control signal to the switch power modules through fibre optic lines and communicates it to the central controller. Linux based graphical user interface has been developed which enables the user to set the operating parameters along with their trip limits and displays the information of critical parameters of this power supply on a local touch screen panel. Provision for remote control and supervision is also provided through a separate PC connected to the main control system via Ethernet. The control system has capability to trip the power supply within 5 μsec in case any parameter exceeds its set limit. Suitable data logging feature is incorporated for offline fault analysis. The control system architecture along with its software protection interlocks are presented in this paper. The performance of the control system has been verified during operation of -100 kV, 25 A DC power supply with 1 MW, 352.2 MHz klystron amplifier. (author)

  6. SP-100/Brayton power system concepts

    International Nuclear Information System (INIS)

    Owen, D.F.

    1989-01-01

    Use of closed Brayton cycle (CBC) power conversion technology has been investigated for use with SP-100 reactors for space power systems. The CBC power conversion technology is being developed by Rockwell International under the Dynamic Isotype Power System (DIPS) and Space Station Freedom solar dynamic power system programs to provide highly efficient power conversion with radioisotype and solar collector heat sources. Characteristics including mass, radiator area, thermal power, and operating temperatures for systems utilizing SP-100 reactor and CBC power conversion technology were determined for systems in the 10-to 100-kWe power range. Possible SP-100 reactor/CBC power system configurations are presented. Advantages of CBC power conversion technology with regard to reactor thermal power, operating temperature, and development status are discussed

  7. Wireless Power Transfer System Architectures for Portable or Implantable Applications

    Directory of Open Access Journals (Sweden)

    Yan Lu

    2016-12-01

    Full Text Available This paper discusses the near-field inductive coupling wireless power transfer (WPT at the system level, with detailed analyses on each state-of-the-art WPT output voltage regulation topologies. For device miniaturization and power loss reduction, several novel architectures for efficient WPT were proposed in recent years to reduce the number of passive components as well as to improve the system efficiency or flexibility. These schemes are systematically studied and discussed in this paper. The main contribution of this paper is to provide design guidelines for WPT system design. In addition, possible combinations of the WPT building block configurations are summarized, compared, and investigated for potential new architectures.

  8. Shaking table test of a base isolated model in main control room of nuclear power plant using LRB (lead rubber bearing)

    International Nuclear Information System (INIS)

    Ham, K. W.; Lee, K. J.; Suh, Y. P.

    2005-01-01

    LRB(Lead Rubber Bearing) is a widely used isolation system which is installed between equipment and foundation to reduce seismic vibration from ground. LRB is consist of bearings which are resistant to lateral motion and torsion and has a high vertical stiffness. For that reason, several studies are conducted to apply LRB to the nuclear power plant. In this study, we designed two types of main control floor systems (type I, type II) and a number of shaking table tests with and without isolation system were conducted to evaluate floor isolation effectiveness of LRB

  9. Steady state security assessment in deregulated power systems

    Science.gov (United States)

    Manjure, Durgesh Padmakar

    Power system operations are undergoing changes, brought about primarily due to deregulation and subsequent restructuring of the power industry. The primary intention of the introduction of deregulation in power systems was to bring about competition and improved customer focus. The underlying motive was increased economic benefit. Present day power system analysis is much different than what it was earlier, essentially due to the transformation of the power industry from being cost-based to one that is price-based and due to open access of transmission networks to the various market participants. Power is now treated as a commodity and is traded in an open market. The resultant interdependence of the technical criteria and the economic considerations has only accentuated the need for accurate analysis in power systems. The main impetus in security analysis studies is on efficient assessment of the post-contingency status of the system, accuracy being of secondary consideration. In most cases, given the time frame involved, it is not feasible to run a complete AC load flow for determining the post-contingency state of the system. Quite often, it is not warranted as well, as an indication of the state of the system is desired rather than the exact quantification of the various state variables. With the inception of deregulation, transmission networks are subjected to a host of multilateral transactions, which would influence physical system quantities like real power flows, security margins and voltage levels. For efficient asset utilization and maximization of the revenue, more often than not, transmission networks are operated under stressed conditions, close to security limits. Therefore, a quantitative assessment of the extent to which each transaction adversely affects the transmission network is required. This needs to be done accurately as the feasibility of the power transactions and subsequent decisions (execution, curtailment, pricing) would depend upon the

  10. Long-Range Untethered Real-Time Live Gas Main Robotic Inspection System

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf; Daphne D' Zurko

    2004-10-31

    Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype was functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.

  11. Post-main-sequence planetary system evolution

    Science.gov (United States)

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  12. Design and analysis of solar thermoelectric power generation system

    Science.gov (United States)

    Vatcharasathien, Narong; Hirunlabh, Jongjit; Khedari, Joseph; Daguenet, Michel

    2005-09-01

    This article reports on the design and performance analysis of a solar thermoelectric power generation plant (STEPG). The system considers both truncated compound parabolic collectors (CPCs) with a flat receiver and conventional flat-plate collectors, thermoelectric (TE) cooling and power generator modules and appropriate connecting pipes and control devices. The design tool uses TRNSYS IIsibat-15 program with a new component we developed for the TE modules. The main input data of the system are the specifications of TE module, the maximum hot side temperature of TE modules, and the desired power output. Examples of the design using truncated CPC and flat-plate collectors are reported and discussed for various slope angle and half-acceptance angle of CPC. To minimize system cost, seasonal adjustment of the slope angle between 0° and 30° was considered, which could give relatively high power output under Bangkok ambient condition. Two small-scale STEPGs were built. One of them uses electrical heater, whereas the other used a CPC with locally made aluminum foil reflector. Measured data showed reasonable agreement with the model outputs. TE cooling modules were found to be more appropriate. Therefore, the TRNSYS software and the developed TE component offer an extremely powerful tool for the design and performance analysis of STEPG plant.

  13. Optimum voltage of auxiliary systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Segawa, Motomichi

    1979-01-01

    In the power plants in Japan, their unit power output has been greatly enhanced since the introduction of new powerful thermal power plants from 1950's to 1960's. In both thermal and nuclear power plants, 1,000 MW machines have been already in operation. The increase of unit power output results in the increase of in-plant load capacity. Of these the voltage adopted for in-plant low voltage systems is now mainly 440 V at load terminals, and the voltage for in-plant high voltage systems has been changing to 6 kV level via 3 kV and 4 kV levels. As plant capacity increases, the load of low voltage systems significantly increases, and it is required to raise the voltage of 400 V level. By the way, the low voltage in AC is specified to be not higher than 600 V. This makes the change within the above range comparatively easy. Considering these conditions, it is recommended to change the voltage for low voltage systems to 575 V at power source terminals and 550 V at load terminals. Some merits in constructing power systems and in economy by raising the voltage were examined. Though demerits are also found, they are only about 15% of total merits. The most advantageous point in raising the voltage is to be capable of increasing the supplying range to low voltage system loads. (Wakatsuki, Y.)

  14. Power system stabilization by SMES using current-fed pwm power conditioner

    International Nuclear Information System (INIS)

    Ishikawa, T.; Akita, S.; Taniguchi, H.; Kosho, S.; Tanaka, T.

    1988-01-01

    A superconducting magnetic energy storage (SMES) unit, consisted of superconducting coil and AC/DC power conditioner, can be used to suppress various kinds of instability that may cause service interruption in electric power system as it has high controllability of input/output electric power. Power system stabilizing ability of SMES has been examined experimentally by using model power system and small SMES unit. Current-fed PWM power conditioner was used to obtain maximum stabilizing effect by controlling active and reactive power simultaneously and independently. Power conditioner configuration, operating characteristics and control scheme for power system stabilization are also described. Results from experiments show the effectiveness of SMES on power system stabilization

  15. Identification of Characterization Factor for Power System Oscillation Based on Multiple Synchronized Phasor Measurements

    Science.gov (United States)

    Hashiguchi, Takuhei; Watanabe, Masayuki; Matsushita, Akihiro; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro; Hojo, Masahide; Ukai, Hiroyuki

    Electric power systems in Japan are composed of remote and distributed location of generators and loads mainly concentrated in large demand areas. The structures having long distance transmission tend to produce heavy power flow with increasing electric power demand. In addition, some independent power producers (IPP) and power producer and suppliers (PPS) are participating in the power generation business, which makes power system dynamics more complex. However, there was little observation as a whole power system. In this paper the authors present a global monitoring system of power system dynamics by using the synchronized phasor measurement of demand side outlets. Phasor Measurement Units (PMU) are synchronized based on the global positioning system (GPS). The purpose of this paper is to show oscillation characteristics and methods for processing original data obtained from PMU after certain power system disturbances triggered by some accidents. This analysis resulted in the observation of the lowest and the second lowest frequency mode. The derivation of eigenvalue with two degree of freedom model brings a monitoring of two oscillation modes. Signal processing based on Wavelet analysis and simulation studies to illustrate the obtained phenomena are demonstrated in detail.

  16. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    Science.gov (United States)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  17. Impacts of Demand-Side Management on Electrical Power Systems: A Review

    Directory of Open Access Journals (Sweden)

    Hussein Jumma Jabir

    2018-04-01

    Full Text Available Electricity demand has grown over the past few years and will continue to grow in the future. The increase in electricity demand is mainly due to industrialization and the shift from a conventional to a smart-grid paradigm. The number of microgrids, renewable energy sources, plug-in electric vehicles and energy storage systems have also risen in recent years. As a result, future electricity grids have to be revamped and adapt to increasing load levels. Thus, new complications associated with future electrical power systems and technologies must be considered. Demand-side management (DSM programs offer promising solutions to these issues and can considerably improve the reliability and financial performances of electrical power systems. This paper presents a review of various initiatives, techniques, impacts and recent developments of the DSM of electrical power systems. The potential benefits derived by implementing DSM in electrical power networks are presented. An extensive literature survey on the impacts of DSM on the reliability of electrical power systems is also provided for the first time. The research gaps within the broad field of DSM are also identified to provide directions for future work.

  18. Uranium requirements for advanced fuel cycles in expanding nuclear power systems

    International Nuclear Information System (INIS)

    Banerjee, S.; Tamm, H.

    1978-01-01

    When considering advanced fuel cycle strategies in rapidly expanding nuclear power systems, equilibrium analyses do not apply. A computer simulation that accounts for system delay times and fissile inventories has been used to study the effects of different fuel cycles and different power growth rates on uranium consumption. The results show that for a given expansion rate of installed capacity, the main factors that affect resource requirements are the fissile inventory needed to introduce the advanced fuel cycle and the conversion (or breeding) ratio. In rapidly expanding systems, the effect of fissile inventory dominates, whereas in slowly expanding systems, conversion or breeding ratio dominates. Heavy-water-moderated and -cooled reactors, with their high conversion ratios, appear to be adaptable vehicles for accommodating fuel cycles covering a wide range of initial fissile inventories. They are therefore particularly suitable for conserving uranium over a wide range of nuclear power system expansion rates

  19. Power quality improvement of unbalanced power system with distributed generation units

    DEFF Research Database (Denmark)

    Hu, Y.; Chen, Zhe; Excell, P.

    2011-01-01

    This paper presents a power electronic system for improving the power quality of the unbalanced distributed generation units in three-phase four-wire system. In the system, small renewable power generation units, such as small PV generator, small wind turbines may be configured as single phase...... and control of the converter are described. Simulation results have demonstrated that the system can effectively correct the unbalance and enhance the system power quality....... generation units. The random nature of renewable power sources may result in significant unbalance in the power network and affect the power quality. An electronic converter system is proposed to correct the system unbalance and harmonics so as to deal with the power quality problems. The operation...

  20. Power quality in power systems and electrical machines

    CERN Document Server

    Fuchs, Ewald

    2015-01-01

    The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable

  1. Skylab technology electrical power system

    Science.gov (United States)

    Woosley, A. P.; Smith, O. B.; Nassen, H. S.

    1974-01-01

    The solar array/battery power systems for the Skylab vehicle were designed to operate in a solar inertial pointing mode to provide power continuously to the Skylab. Questions of power management are considered, taking into account difficulties caused by the reduction in power system performance due to the effects of structural failure occurring during the launching process. The performance of the solar array of the Apollo Telescope Mount Power System is discussed along with the Orbital Workshop solar array performance and the Airlock Module power conditioning group performance. A list is presented of a number of items which have been identified during mission monitoring and are recommended for electrical power system concepts, designs, and operation for future spacecraft.

  2. Columbia River System Operation Review final environmental impact statement. Appendix I: Power

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix discusses the work performed by the SOR Power Work Group. The Power Work Group (PWG) had several major responsibilities: first, to determine the effects of each of the various system operating strategies (SOS) on the Northwest regional power system; second, given these effects, to determine what, if any, actions are required to meet forecasted regional energy consumption; and finally, to estimate the cost for serving the forecasted regional energy consumption. The Northwest regional power system consists of Federal and non-Federal hydroelectric power projects (hydropower or hydro projects) on the main stem of the Columbia and Snake Rivers, numerous smaller hydro projects on other river reaches, and a number of thermal plants (coal, nuclear and combustion turbines)

  3. Economic impacts of power electronics on electricity distribution systems

    International Nuclear Information System (INIS)

    Duarte, Carlos Henrique; Schaeffer, Roberto

    2010-01-01

    To achieve more efficient energy use, power electronics (PEs) may be employed. However, these introduce nonlinear loads (NLLs) into the system by generating undesired frequencies that are harmonic in relation to (multiples of) the fundamental frequency (60 Hz in Brazil). Consequently, devices using PEs are more efficient but also contribute significantly to degradation of power quality. Besides this, both the conventional rules on design and operation of power systems and the usual premises followed in energy efficiency programs (without mentioning the electricity consumed by the devices themselves) consider the sinusoidal voltage and current waveforms at the fixed fundamental frequency of the power grid. Thus, analysis of electricity consumption reductions in energy efficiency programs that include the use of PEs considers the reduction of kWh to the final consumer but not the additional losses caused by the increase in harmonic distortion. This article contributes to a better understanding of this problem by reporting the results of a case study of the ownership and use of television sets (TV sets) to estimate the economic impacts of residential PEs on a mainly residential electricity distribution system. (author)

  4. The PADE dosimetry system at the Brokdorf nuclear power station

    International Nuclear Information System (INIS)

    Poetter, Karl-Friedrich; Eckelmann, Joerg; Kuegow, Mario; Spahn, Werner; Franz, Manfred

    2002-01-01

    The PADE program system is used in nuclear power plants for personnel and workplace dosimetry and for managing access to the controlled area. On-line interfaces with existing dose determination systems allow collection, surveillance and evaluation functions to be achieved for person-related and workplace-related dose data. This is managed by means of open, non-proprietary communication of PADE with the computer system coupled via interfaces. In systems communication, PADE is limited to main interventions into outside systems, thus ensuring flexible adaptation to existing systems. As a client-server solution, PADE has been developed on the basis of an ORACLE-8 database; the version presented here runs on a Windows NT server. The system described has been used at the Brokdorf Nuclear Power Station since early 2000 and has so far reliably managed more than one million individual access movements of more than 6 000 persons. It is currently being integrated into a comprehensive plant operations management system. Among other things, PADE offers a considerable development potential for a tentatively planned future standardization of parts of the dosimetry systems in German nuclear power plants and for the joint management of in-plant and official dose data. (orig.) [de

  5. Cyber Security on Nuclear Power Plant's Computer Systems

    International Nuclear Information System (INIS)

    Shin, Ick Hyun

    2010-01-01

    Computer systems are used in many different fields of industry. Most of us are taking great advantages from the computer systems. Because of the effectiveness and great performance of computer system, we are getting so dependable on the computer. But the more we are dependable on the computer system, the more the risk we will face when the computer system is unavailable or inaccessible or uncontrollable. There are SCADA, Supervisory Control And Data Acquisition, system which are broadly used for critical infrastructure such as transportation, electricity, water management. And if the SCADA system is vulnerable to the cyber attack, it is going to be nation's big disaster. Especially if nuclear power plant's main control systems are attacked by cyber terrorists, the results may be huge. Leaking of radioactive material will be the terrorist's main purpose without using physical forces. In this paper, different types of cyber attacks are described, and a possible structure of NPP's computer network system is presented. And the paper also provides possible ways of destruction of the NPP's computer system along with some suggestions for the protection against cyber attacks

  6. The armenian power system operation stability investigation accounting putting new power systems into operation

    International Nuclear Information System (INIS)

    Yeghiazaryan, L.V.; Hakobyan, S.G.; Gharibyan, G.V.; Harutyunyan, G.S.; Galstyan, G.H.

    2010-01-01

    The description of the power systems operation stability failure caused by the system significant emergency states occurred during the last working period in Armenian and USA power systems is performed. With the use of PSSTME-31 software portfolio of Siemens Firm a design model is developed and transient electromechanical process calculations for Armenian power system are performed. The accuracy of the model is checked by comparing real-time transient state parameters and their reproduction calculation results.The Armenia - Iran current power transmission lines permissible limit under the condition of the static and dynamic stability requirements and in case of the new thermal power units maintenance are defined

  7. Main Experimental Results of ISTC-1606 for Recycling and Transmutation in Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, Victor; Feynberg, Olga; Merzlyakov, Aleksandr; Surenkov, Aleksandr [Russian Research Center - Kurchatov Institute, Kurchatov sq. 1, Moscow, RF, 123182 (Russian Federation); Subbotin, Vladimir; Zakirov, Raul; Toropov, Andrey; Panov, Aleksandr [Russian Federal Nuclear Center - Institute of Technical Physics, Snezhinsk (Russian Federation); Afonichkin, Valery [Institute of High-Temperature Electrochemistry, Ekaterinburg (Russian Federation)

    2008-07-01

    To examine and demonstrate the feasibility of molten salt reactors (MSR) to reduce long lived waste toxicity and to produce efficiently electricity in closed fuel cycle, some national and international studies were initiated last years. In this paper main focus is placed on experimental evaluation of single stream Molten Salt Actinide Recycler and Transmuter (MOSART) system fuelled with different compositions of plutonium plus minor actinide trifluoride (AnF{sub 3}) from LWR spent nuclear fuel without U-Th support. This paper summarizes main experimental results of ISTC-1606 related to physical and chemical properties of fuel salt, container materials for fuel circuit, and fuel salt clean up of MOSART system. As result of ISTC-1606 studies claim is made, that the {sup 7}Li,Na,Be/F and {sup 7}Li,Be/F solvents selected for primary system appear to resolve main reactor physics, thermal hydraulics, materials compatibility, fuel salt clean up and safety problems as applied to the MOSART concept development. The created experimental facilities and the database on properties of fuel salt mixtures and container materials are used for a choice and improvement fuel salts and coolants for new applications of this high temperature technology for sustainable nuclear power development. (authors)

  8. Main Experimental Results of ISTC-1606 for Recycling and Transmutation in Molten Salt Systems

    International Nuclear Information System (INIS)

    Ignatiev, Victor; Feynberg, Olga; Merzlyakov, Aleksandr; Surenkov, Aleksandr; Subbotin, Vladimir; Zakirov, Raul; Toropov, Andrey; Panov, Aleksandr; Afonichkin, Valery

    2008-01-01

    To examine and demonstrate the feasibility of molten salt reactors (MSR) to reduce long lived waste toxicity and to produce efficiently electricity in closed fuel cycle, some national and international studies were initiated last years. In this paper main focus is placed on experimental evaluation of single stream Molten Salt Actinide Recycler and Transmuter (MOSART) system fuelled with different compositions of plutonium plus minor actinide trifluoride (AnF 3 ) from LWR spent nuclear fuel without U-Th support. This paper summarizes main experimental results of ISTC-1606 related to physical and chemical properties of fuel salt, container materials for fuel circuit, and fuel salt clean up of MOSART system. As result of ISTC-1606 studies claim is made, that the 7 Li,Na,Be/F and 7 Li,Be/F solvents selected for primary system appear to resolve main reactor physics, thermal hydraulics, materials compatibility, fuel salt clean up and safety problems as applied to the MOSART concept development. The created experimental facilities and the database on properties of fuel salt mixtures and container materials are used for a choice and improvement fuel salts and coolants for new applications of this high temperature technology for sustainable nuclear power development. (authors)

  9. Security assessment for intentional island operation in modern power system

    DEFF Research Database (Denmark)

    Chen, Yu; Xu, Zhao; Østergaard, Jacob

    2011-01-01

    be increased. However, when to island or how to ensure the islanded systems can survive the islanding transition is uncertain. This article proposes an Islanding Security Region (ISR) concept to provide security assessment of island operation. By comparing the system operating state with the ISR, the system......There has been a high penetration level of Distributed Generations (DGs) in distribution systems in Denmark. Even more DGs are expected to be installed in the coming years. With that, to utilize them in maintaining the security of power supply is of great concern for Danish utilities. During...... the emergency in the power system, some distribution networks may be intentionally separated from the main grid to avoid complete system collapse. If DGs in those networks could continuously run instead of immediately being shut down, the blackout could be avoided and the reliability of supply could...

  10. Main lessons based on the Chernobyl nuclear power plant accident liquidation experience

    International Nuclear Information System (INIS)

    Vasil'chenko, V.N.; Nosovskij, A.V.

    2006-01-01

    The authors review the main lessons of the Chernobyl nuclear power plant accident and the liquidation of its consequences in the area of the nuclear reactors safety operation, any major accident management, liquidation accident consequences criteria, emergency procedures, preventative measures and treatment irradiated victims, the monitoring methods etc. The special emphasis is put on the questions of the emergency response and the antiaccidental measures planning in frame of international cooperation program

  11. Safety Analysis for Power Reactor Protection System

    International Nuclear Information System (INIS)

    Eisawy, E.A.; Sallam, H.

    2012-01-01

    The main function of a Reactor Protection System (RPS) is to safely shutdown the reactor and prevents the release of radioactive materials. The purpose of this paper is to present a technique and its application for used in the analysis of safety system of the Nuclear Power Plant (NPP). A more advanced technique has been presented to accurately study such problems as the plant availability assessments and Technical Specifications evaluations that are becoming increasingly important. The paper provides the Markov model for the Reactor Protection System of the NPP and presents results of model evaluations for two testing policies in technical specifications. The quantification of the Markov model provides the probability values that the system will occupy each of the possible states as a function of time.

  12. IAEA activities and main achievements on human resource management and training of nuclear power plant personnel

    International Nuclear Information System (INIS)

    Kossilov, A.

    2002-01-01

    The Nuclear Power Engineering Section is responsible for implementation of the Agency's sub-programme on Engineering and Management Support for Competitive Nuclear Power. The objectives of the sub-programme is to increase Member State capabilities in utilizing the best engineering and management practices for improving NPP performance and competitiveness, optimizing plant service life and decommissioning and strengthening nuclear power infrastructure. NPES' main activities cover: Nuclear power infrastructure, Knowledge management, Personal training and qualification, Quality Management and QA, NPP life management including databases, Modern NPP control and instrumentation, and NPP performance management

  13. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  14. Development and experiment of a 60 kW horizontal-axis marine current power system

    International Nuclear Information System (INIS)

    Xu, Quan-kun; Liu, Hong-wei; Lin, Yong-gang; Yin, Xiu-xing; Li, Wei; Gu, Ya-jing

    2015-01-01

    A 60 kW horizontal-axis marine current power system is designed, built and tested to provide potentially cost-competitive electrical power for residents in remote islands. This power system mainly consists of a three-bladed marine current turbine, a drive-train system, power electronics and a control console. The turbine blade parameters are reasonably calculated and optimized based on the blade element momentum theory. The hydrodynamic performances of this turbine are predicted over a wide range of operating conditions. An adequate drive-train system is carefully designed to make the marine power system work smoothly and quietly even under harsh marine current conditions. The control console is also developed to facilitate the condition monitoring and generator power and speed regulations for this power system by adequately controlling the onshore power electronics. This power system has been tested under real marine current conditions to thoroughly evaluate its dynamic characteristics and effectiveness. - Highlights: • A 60°kW horizontal-axis marine current power system is designed, built and tested. • Detailed design procedure and experimental data are provided. • Experimental results demonstrate high power convention efficiency of the system

  15. Development of a computerized operator support system for BWR power plant

    International Nuclear Information System (INIS)

    Monta, K.; Sekimizu, K.; Sato, N.; Araki, T.; Mori, N.

    1985-01-01

    A computerized operator support system for BWR power plant has been developed since 1980 supported by the Japanese government. The main functions of the systems are post trip operational guidance, disturbance analysis, standby system management, operational margin monitoring and control rod operational guidance. The former two functions aim at protection against incidents during operation of nuclear power plants and the latter three functions aim at their prevention. As the final stage of the development, these functions are combined with the plant supervision function and are organized as an advanced man-machine interface for BWR power plant. During the above process, operator task analyses are performed to enable synthesis of these support functions for right fit to operator tasks and to realize a hierarchical structure for CRT displays for right fit to operators cognitive needs. (author)

  16. Policy planning for nuclear power: an overview of the main issues and requirements

    International Nuclear Information System (INIS)

    1995-05-01

    The report contains information on the political, governmental, economic, financial and technical issues and requirements associated with planning and implementing a safe, economic and reliable nuclear power programme. It highlights the main areas in which policies must be developed and decisions taken, as well as the role and responsibilities of government, the plant owner and national industry. Also presented are the main criteria to assist policy planners in defining options and strategies which can achieve a balance among such objectives as cost effective and efficient electricity production, realistic and acceptable financing arrangements, national development requirements, safety and environmental protection. (NHA)

  17. Research on the Application of Risk-based Inspection for the Boiler System in Power Plant

    Science.gov (United States)

    Li, Henan

    2017-12-01

    Power plant boiler is one of the three main equipment of coal-fired power plants, is very tall to the requirement of the safe and stable operation, in a significant role in the whole system of thermal power generation, a risk-based inspection is a kind of pursuit of security and economy of unified system management idea and method, can effectively evaluate equipment risk and reduce the operational cost.

  18. 14 CFR 27.695 - Power boost and power-operated control system.

    Science.gov (United States)

    2010-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  19. 14 CFR 29.695 - Power boost and power-operated control system.

    Science.gov (United States)

    2010-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  20. Fiscal 2000 achievement report. International demonstrative development of photovoltaic power generation system (Demonstrative study on grid-connected photovoltaic power generation system in Thailand); 2000 nendo seika hokokusho. Taiyoko hatsuden system kokusai kyodo jissho kaihatsu - Taiyoko hatsuden keitou renkei system jissho kenkyu (Tai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    A demonstrative study was conducted in Thailand for grasping the effect on small electricity grids when several photovoltaic power generation systems, including AC modules, are connected to the grid. In fiscal 2000, surveys and studies were conducted about the data of the local power system, where to install the demonstrative system, and how to install the same, which were necessary for working out a basic design for Libong Island newly designated as the site for the demonstrative system. It was then concluded that the demonstrative system be a grid-connected 100 kW-level photovoltaic system comprising one main photovoltaic power station (85 kW), photovoltaic power systems for school buildings (3-6 kW, three schools), and AC modules (110 W, 10 locations). The manufacture of solar cell modules, grid-connected power conditioners, and measuring devices were completed. Civil engineering work and construction were under way on the site, including the construction of a management building, installation of concrete bases for solar cell arrays, construction of fences surrounding the site, and so forth. (NEDO)

  1. PEP magnet power supply systems

    International Nuclear Information System (INIS)

    Jackson, L.T.

    1977-01-01

    The dc electrical requirements of the PEP magnets fall mainly into two categories: (1) high power and current of single polarity and (2) low-power bi-polar. The first category will be thyristor-chopper controlled off common 600 V dc busses. The second group will utilize continuously controlled push-pull transistor actuators

  2. Distributed Cooperative Regulation for Multiagent Systems and Its Applications to Power Systems: A Survey

    Science.gov (United States)

    Li, Yaping; Yong, Taiyou; Yu, Jie; Mao, Wenbo

    2014-01-01

    Cooperative regulation of multiagent systems has become an active research area in the past decade. This paper reviews some recent progress in distributed coordination control for leader-following multiagent systems and its applications in power system and mainly focuses on the cooperative tracking control in terms of consensus tracking control and containment tracking control. Next, methods on how to rank the network nodes are summarized for undirected/directed network, based on which one can determine which follower should be connected to leaders such that partial followers can perceive leaders' information. Furthermore, we present a survey of the most relevant scientific studies investigating the regulation and optimization problems in power systems based on distributed strategies. Finally, some potential applications in the frequency tracking regulation of smart grids are discussed at the end of the paper. PMID:25243199

  3. Compensating active power imbalances in power system with large-scale wind power penetration

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2016-01-01

    Large-scale wind power penetration can affectthe supply continuity in the power system. This is a matterof high priority to investigate, as more regulating reservesand specified control strategies for generation control arerequired in the future power system with even more highwind power penetrat...

  4. Transfer system development for a remote inspection robot in nuclear power plants

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohnuma, M.; Hamada, K.; Mizutani, T.; Shimada, A.; Segawa, M.; Kubo, K.

    1984-01-01

    A remote operated robot system has been developed for inspection inside the primary containment vessel (PCV) of nuclear power plants. This system consists of an inspection vehicle, a monorail driving system, a signal transmission system, a power supply system and an operator console.. The system has two main features. First is that the operator can transfer the vehicle at any time from outside the PCV to inside or vice versa through a personnel airlock. The second feature is that the vehicle can be transported from one inspection route to another route at junction points. A prototype inspection robot system was fabricated on a trial basis. Running and inspection performances were confirmed utilizing actual size test apparatus

  5. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  6. Power oscillation suppression by robust SMES in power system with large wind power penetration

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Cuk Supriyadi, A.N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions

  7. Power oscillation suppression by robust SMES in power system with large wind power penetration

    Science.gov (United States)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  8. Determining the reliability function of the thermal power system in power plant "Nikola Tesla, Block B1"

    Directory of Open Access Journals (Sweden)

    Kalaba Dragan V.

    2015-01-01

    Full Text Available Representation of probabilistic technique for evaluation of thermal power system reliability is the main subject of this paper. The system of thermal power plant under study consists of three subsystems and the reliability assessment is based on a sixteen-year failure database. By applying the mathematical theory of reliability to exploitation research data and using complex two-parameter Weibull distribution, the theoretical reliability functions of specified system have been determined. Obtained probabilistic laws of failure occurrence have confirmed a hypothesis that the distribution of the observed random variable fully describes behaviour of such a system in terms of reliability. Shown results make possible to acquire a better knowledge of current state of the system, as well as a more accurate estimation of its behavior during future exploitation. Final benefit is opportunity for potential improvement of complex system maintenance policies aimed at the reduction of unexpected failure occurrences.

  9. The role of nuclear power in the global electric power system

    International Nuclear Information System (INIS)

    Sidorenko, V.A.; Chernilin, Yu.F.

    1992-01-01

    Basic conclusions and recommendations developed in the process of preparing and conducting the symposium discussed are presented. All methods of electric power production, their prospects and effects on man and environment were discussed during the symposium. This paper is devoted mainly to nuclear power engineering only, its prospects and possible role in general electric power generation

  10. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  11. Wide Area Measurement Based Security Assessment & Monitoring of Modern Power System: A Danish Power System Case Study

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2013-01-01

    Power System security has become a major concern across the global power system community. This paper presents wide area measurement system (WAMS) based security assessment and monitoring of modern power system. A new three dimensional security index (TDSI) has been proposed for online security...... monitoring of modern power system with large scale renewable energy penetration. Phasor measurement unit (PMU) based WAMS has been implemented in western Danish Power System to realize online security monitoring and assessment in power system control center. The proposed security monitoring system has been...

  12. Electrical power systems for Space Station

    Science.gov (United States)

    Simon, W. E.

    1984-01-01

    Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.

  13. An intelligent man-machine system for future nuclear power plants

    International Nuclear Information System (INIS)

    Takizawa, Yoji; Hattori, Yoshiaki; Itoh, Juichiro; Fukumoto, Akira

    1994-01-01

    The objective of the development of an intelligent man-machine system for future nuclear power plants is enhancement of operational reliability by applying recent advances in cognitive science, artificial intelligence, and computer technologies. To realize this objective, the intelligent man-machine system, aiming to support a knowledge-based decision making process in an operator's supervisory plant control tasks, consists of three main functions, i.e., a cognitive model-based advisor, a robust automatic sequence controller, and an ecological interface. These three functions have been integrated into a console-type nuclear power plant monitoring and control system as a validation test bed. The validation tests in which experienced operator crews participated were carried out in 1991 and 1992. The test results show the usefulness of the support functions and the validity of the system design approach

  14. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  15. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    -link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...... for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...... electronic converter systems; anomaly detection and remaining-life prediction for power electronics; reliability of DC-link capacitors in power electronic converters; reliability of power electronics packaging; modeling for life-time prediction of power semiconductor modules; minimization of DC...

  16. Handbook of power systems engineering with power electronics applications

    CERN Document Server

    Hase, Yoshihide

    2012-01-01

    Formerly known as Handbook of Power System Engineering, this second edition provides rigorous revisions to the original treatment of systems analysis together with a substantial new four-chapter section on power electronics applications. Encompassing a whole range of equipment, phenomena, and analytical approaches, this handbook offers a complete overview of power systems and their power electronics applications, and presents a thorough examination of the fundamental principles, combining theories and technologies that are usually treated in separate specialised fields, in a single u

  17. The IAEA power reactor information system - PRIS

    International Nuclear Information System (INIS)

    Laue, H.J.; Qureshi, A.; Skjoeldebrand, R.; White, D.

    1983-01-01

    The IAEA Power Reactor Information System, PRIS, is based on a collection of basic design data and operating experience data which the IAEA started in 1970. PRIS is used for annual publications on 'Power Reactors in Member States', 'Operating Experience with Nuclear Power Stations in Member States', which gives annual operating information for individual plants, and a 'Performance Analysis Report' summarizing each year's and earlier experience. Since 1973 information has been collected in a systematic manner on significant plant outages (= more than 10 full power hours). There is now information on more than 10,000 outages in the system which permits some conclusions to be drawn both in regard to individual plants and to categories of plants on the significance of different outage reasons and different types of equipment failures. PRIS has not been intended to be a component reliability information system as an international data collection must stop short of the level of detail which would be needed for that purpose. The objectives of PRIS have been to provide a factual background for assumptions on parameters which are essential for economic evaluations and for systems operation planning (load factor and availability). The outage information does, however, lend itself to conclusions about generic problems in different categories of plants and it can be used by an individual operator to find other plants where information about particular problems can be obtained. It would also now be possible to use PRIS for setting availability goals based on experience and not only on theoretical design considerations. The paper demonstrates the conclusions which can be drawn from 662 reactor years of operation of light and heavy water pressurized reactors and 390 reactor years of boiling water reactors and, in particular, the role that the main heat removal system and its components have played in the equipment failure category

  18. The introduction of wind powered pumped storage Systems in Greek isolated systems. Experiences and perspectives

    International Nuclear Information System (INIS)

    Katsaprakakis, Dimitris Al.; Christakis, Dimitris G.

    2009-01-01

    Full text: In the present paper, the experiences gained from the study of Wind Powered Pumped Storage Systems (WP-PSS), introduced in Greek isolated power production systems, are presented. The presented systems were studied in the frames of either research or development projects, financed by the public or private sector. Two main categories of WP-PSS are presented: The introduction of WP-PSS for power peak saving. The construction and the operation framework of these systems are fully defined in the relevant Greek laws. These systems were studied in the frames of individual development projects. The introduction of WPPSS aiming at the maximisation of wind power. These systems are not yet fully defined in the Greek legislation and were studied in the frames of research works. More than ten WP-PSS have been technically and economically studied so far. Each one of them has been introduced in a Greek isolated insular power system, integrated according to the to the specific design parameters of the examined insular system (power demand, wind potential, land morphology, etc). All the accomplished studies may be considered as parts of one long-time unified project, aiming at the investigation of the prerequisites for the maximisation of the Renewable Energy Sources (R.E.S.) exploitation in Greece. The general conclusions arisen from the so far accomplished work are: The R.E.S. penetration percentage in the Greek insular systems may exceed 80% of the annual energy demand, by introducing pumped storage systems as storage device. The electricity production cost is minimized, even in the isolated systems of small size. The corresponding investments exhibit very good economical indexes, regardless the possible availability of initial capitals subsidy. In case of initial capitals subsidy availability, the investments exhibit quite attractive economical indexes. The dynamic security of the proposed systems (author)

  19. The Application of Supercritical CO{sub 2} Power Cycle to Various Nuclear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The main reason why the S-CO{sub 2} Brayton cycle has these advantages is that the compressor operates near the critical point of CO{sub 2} (30.98 .deg. C, 7.38MPa) to reduce the compression work significantly compared to the other Brayton cycles. In this paper, various applications of supercritical CO{sub 2} power cycle to nuclear systems will be presented and summarized. The S-CO{sub 2} cycle can achieve relatively high efficiency within the mild turbine inlet temperature range (450 - 850 .deg. C) compared with other power conversion systems. The main benefit of the S-CO{sub 2} cycle is the small size of the overall system and its application includes not only the next generation nuclear reactors but also conventional water-cooled reactors too. Various layouts were compared and the recompression cycle shows the best efficiency. The layout is suitable for application to advanced nuclear reactor systems. To evaluate the S-CO{sub 2} cycle performance, various countries constructed and demonstrated S-CO{sub 2} integral system test loops and similar research works are ongoing in Korea as well. However, to evaluate the commercial S-CO{sub 2} power systems, development of a large scale (> 10 MW) prototype S-CO{sub 2} system is necessary.

  20. Dynamic analysis of Boushehr Nuclear Power Plant in connected to grid system

    International Nuclear Information System (INIS)

    Karimi Fard, A.

    1999-01-01

    Models of generating with the pressurized water reactor (PWR) have been developed for simulating. the plant dynamics under system disturbances. These models include power plant, energy sources, turbine, transmission system and control system such as Avr and govern and other local control devices. Simulink toolbox of Matlab software is used for simulations. The study is mainly based on the Bushehr Nuclear Power Plants (BNPP) parameters. Assuming that BNPP is connected to infinite bus with double tie line. Four cases are studied to examine the internal dynamic behavior of BNPP. First and second cases are used to load following studies in nuclear power plant. Another cases are used to study the dynamic behavior after short circuit fault and line outages in transmission systems. The results discussed in the thesis

  1. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  2. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    International Nuclear Information System (INIS)

    Holcomb, R.S.

    1992-01-01

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion system was carried out in the 1960's which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper

  3. Power conditioning unit for photovoltaic power systems

    Science.gov (United States)

    Beghin, G.; Nguyen Phuoc, V. T.

    Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.

  4. Power system operational security analysis to obtain sustainable, strategic and economic dispatch

    International Nuclear Information System (INIS)

    Khan, R.A.J.; Alemadi, N.; Mulla, Y.A.; Choudhry, T.M.

    2006-01-01

    This paper addresses the most critical question that is static/online security system n power system operation and managements. Therefore, we do originated couple of models with their operational scenarios. How to identify the main security constraints and their most suitable reinforcements needed to maintain the system security as per determine boundary. It would also render instrumental approach to enhance the security operational constraints. Therefore, it will also provide the system operator to take preventive action or formulate the action plan prior to contingencies occurred In past the both demand side management system and load shedding have been used for to provide reliable power system under normal or emergency operation and control [4,5 J.) (author)

  5. Power control and management of the grid containing largescale wind power systems

    Science.gov (United States)

    Aula, Fadhil Toufick

    The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two

  6. Load shedding and emergency load sequencing system at Sizewell B power station

    International Nuclear Information System (INIS)

    Bowcock, S.; Miller, D.

    1992-01-01

    Sizewell B Nuclear Power Station has a main electrical system that connects together the main turbo-generators, generating at 23.5kV, the 400kV grid and the auxiliary equipment required to operate the station. A separate essential electrical system fed from the main electrical system, supplies all the auxiliaries required to shut-down the nuclear reactor and maintain it in a safe shut-down condition. For safety reasons four similar independent essential electrical systems are provided, each headed by a 3.3kV switchboard and a stand-by 8MW diesel generator. Feeds from the 3.3kV switchboards in turn supply the essential 3.3kV drives and transformer fed 415V essential switchboards. The function of the Load Shedding and Emergency Load Sequencing (LSELS) System is to monitor the condition of the 3.3kV incoming supply from the main electrical system to each essential 3.3kV switchboard and initiate its replacement, with the supply from the associated diesel generator, if it is outside set parameters. In order to achieve this transfer the essential electrical system load must be reduced to a level which the diesel can accommodate as a standing load and then allow the sequenced reconnection of required loads so as not to overload the diesel. The LSELS equipment is categorised as Safety Category 1E and has a significant importance to the safe operation of the power station. Therefore the design of the system must be highly reliable and the purpose of this paper is to detail the design approach used to ensure that a high system reliability is achieved. (Author)

  7. Space Shuttle Main Propulsion System Anomaly Detection: A Case Study

    Data.gov (United States)

    National Aeronautics and Space Administration — The space shuttle main engine (SSME) is part of the Main Propnlsion System (MPS) which is an extremely complex system containing several sub-systems and components,...

  8. Power quality enhancement of renewable energy source power network using SMES system

    International Nuclear Information System (INIS)

    Seo, H.R.; Kim, A.R.; Park, M.; Yu, I.K.

    2011-01-01

    Power quality enhancement of a renewable energy source power network is performed by a real-toroidal-type SMES coil. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation. The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality. This paper deals with power quality enhancement of renewable energy source power network using SMES system and describes the operation characteristics of HTS SMES system using real-toroidal-type SMES coil for smoothening the fluctuation of large-scale renewable energy source such as photovoltaic (PV) power generation system. It generates maximum power of PV array under various weather conditions. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The SMES unit is controlled according to the PV array output and the utility power quality conditions. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation (PHILS). The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality in power network including large-scale renewable energy source, especially PV power generation system.

  9. System-Level Power Consumption Analysis of the Wearable Asthmatic Wheeze Quantification

    Directory of Open Access Journals (Sweden)

    Dinko Oletic

    2018-01-01

    Full Text Available Long-term quantification of asthmatic wheezing envisions an m-Health sensor system consisting of a smartphone and a body-worn wireless acoustic sensor. As both devices are power constrained, the main criterion guiding the system design comes down to minimization of power consumption, while retaining sufficient respiratory sound classification accuracy (i.e., wheeze detection. Crucial for assessment of the system-level power consumption is the understanding of trade-off between power cost of computationally intensive local processing and communication. Therefore, we analyze power requirements of signal acquisition, processing, and communication in three typical operating scenarios: (1 streaming of uncompressed respiratory signal to a smartphone for classification, (2 signal streaming utilizing compressive sensing (CS for reduction of data rate, and (3 respiratory sound classification onboard the wearable sensor. Study shows that the third scenario featuring the lowest communication cost enables the lowest total sensor system power consumption ranging from 328 to 428 μW. In such scenario, 32-bit ARM Cortex M3/M4 cores typically embedded within Bluetooth 4 SoC modules feature the optimal trade-off between onboard classification performance and consumption. On the other hand, study confirms that CS enables the most power-efficient design of the wearable sensor (216 to 357 μW in the compressed signal streaming, the second scenario. In such case, a single low-power ARM Cortex-A53 core is sufficient for simultaneous real-time CS reconstruction and classification on the smartphone, while keeping the total system power within budget for uncompressed streaming.

  10. International comparison of requirements for connection of wind turbines to power systems

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C. [Risoe National Lab., Roskilde (Denmark). Dept. of Wind Energy; Matevosyan, J.; Ackermann, T. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Electrical Engineering; Bolik, S. [Vestas Wind Systems A/S, Ringkoebing (Denmark)

    2005-07-01

    Power production from wind turbines has increased considerably during the last decade. Therefore today's wind turbines, which are typically set up in wind farms, have a significant influence on the operation of power systems. The efficient and secure operation of power systems is supported by grid codes, which are sets of requirements for all network users (suppliers, customers, etc.). In Europe, several transmission network operators have introduced special grid connection requirements for wind farms. These requirements are mainly based on existing grid codes, initially written for conventional power plants usually equipped with synchronous generators. This article presents a comparison of grid connection requirements for wind farms issued, or proposed as a draft, by transmission network operators in Denmark, Sweden, Germany, Scotland and Ireland. (author)

  11. Multi-time scale dynamics in power electronics-dominated power systems

    Science.gov (United States)

    Yuan, Xiaoming; Hu, Jiabing; Cheng, Shijie

    2017-09-01

    Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.

  12. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  13. A portable wireless power transmission system for video capsule endoscopes.

    Science.gov (United States)

    Shi, Yu; Yan, Guozheng; Zhu, Bingquan; Liu, Gang

    2015-01-01

    Wireless power transmission (WPT) technology can solve the energy shortage problem of the video capsule endoscope (VCE) powered by button batteries, but the fixed platform limited its clinical application. This paper presents a portable WPT system for VCE. Besides portability, power transfer efficiency and stability are considered as the main indexes of optimization design of the system, which consists of the transmitting coil structure, portable control box, operating frequency, magnetic core and winding of receiving coil. Upon the above principles, the correlation parameters are measured, compared and chosen. Finally, through experiments on the platform, the methods are tested and evaluated. In the gastrointestinal tract of small pig, the VCE is supplied with sufficient energy by the WPT system, and the energy conversion efficiency is 2.8%. The video obtained is clear with a resolution of 320×240 and a frame rate of 30 frames per second. The experiments verify the feasibility of design scheme, and further improvement direction is discussed.

  14. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  15. Analysis of Balancing Requirements in Future Sustainable and Reliable Power Systems

    International Nuclear Information System (INIS)

    Frunt, J.

    2011-01-01

    This thesis elaborates on the rules for power balancing, provides a method for quantifying balancing requirements and examines the effect of future changes on balancing. Chapter 2 elaborates on system balancing and the different actors and entities in the electricity delivery system. The necessity and implementation of power balancing are explained. Also different subsequent markets (i.e., day-ahead markets, intraday markets and imbalance settlement systems) and options to trade electricity are discussed. As the research focusses mainly on the Netherlands, properties of the Dutch imbalance settlement system are analyzed. Based on this framework an in-depth analysis of imbalances and calls for balancing capacity with the corresponding prices is given. This shows the incentives to minimize the amount of imbalance in the system and to participate in the imbalance settlement system. Chapter 3 elaborates on the level of aggregation that the entities, involved in the imbalance settlement system, in electricity markets can have. Based on current market rules, incentives to either grow or shrink and by aggregating more or less entities are discussed. The level of aggregation will directly influence the functioning of the imbalance settlement system. It is shown that larger aggregations benefit more from the canceling out of imbalances. The imbalances of the Netherlands and Belgium have been aggregated to illustrate the possible benefits of aggregating multiple national imbalance settlement systems. The increased penetration of renewable generation strongly influences the planning and operation of the power system. As many renewable energy generators have a fluctuating power output, several methods are discussed in chapter 4 that can be used to classify and quantify the balancing requirements to counteract these fluctuations. Chapter 4 discusses the multiple existing classes of balancing capacity and the corresponding methods to quantify their needs. Due to the

  16. Analysis of Balancing Requirements in Future Sustainable and Reliable Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Frunt, J.

    2011-06-01

    This thesis elaborates on the rules for power balancing, provides a method for quantifying balancing requirements and examines the effect of future changes on balancing. Chapter 2 elaborates on system balancing and the different actors and entities in the electricity delivery system. The necessity and implementation of power balancing are explained. Also different subsequent markets (i.e., day-ahead markets, intraday markets and imbalance settlement systems) and options to trade electricity are discussed. As the research focusses mainly on the Netherlands, properties of the Dutch imbalance settlement system are analyzed. Based on this framework an in-depth analysis of imbalances and calls for balancing capacity with the corresponding prices is given. This shows the incentives to minimize the amount of imbalance in the system and to participate in the imbalance settlement system. Chapter 3 elaborates on the level of aggregation that the entities, involved in the imbalance settlement system, in electricity markets can have. Based on current market rules, incentives to either grow or shrink and by aggregating more or less entities are discussed. The level of aggregation will directly influence the functioning of the imbalance settlement system. It is shown that larger aggregations benefit more from the canceling out of imbalances. The imbalances of the Netherlands and Belgium have been aggregated to illustrate the possible benefits of aggregating multiple national imbalance settlement systems. The increased penetration of renewable generation strongly influences the planning and operation of the power system. As many renewable energy generators have a fluctuating power output, several methods are discussed in chapter 4 that can be used to classify and quantify the balancing requirements to counteract these fluctuations. Chapter 4 discusses the multiple existing classes of balancing capacity and the corresponding methods to quantify their needs. Due to the

  17. Distributed control system for CANDU 9 nuclear power plant

    International Nuclear Information System (INIS)

    Harber, J.E.; Kattan, M.K.; Macbeth, M.J.

    1996-01-01

    Canadian designed CANDU pressurized heavy water nuclear reactors have been world leaders in electrical power generation. The CANDU 9 project is AECL's next reactor design. The CANDU 9 plant monitoring, annunciation, and control functions are implemented in two evolutionary systems; the distributed control system (DCS) and the plant display system (PDS). The CDS implements most of the plant control functions in a single hardware platform. The DCS communicates with the PDS to provide the main operator interface and annunciation capabilities of the previous control computer designs along with human interface enhancements required in a modern control system. (author)

  18. Overview of the Habitat Demonstration Unit Power System Integration and Operation at Desert RATS 2010

    Science.gov (United States)

    Colozza, Anthony J.; George, Pat; Gambrell, Ronnie; Chapman, Chris

    2013-01-01

    A habitat demonstration unit (HDU) was constructed at NASA Johnson Space Center (JSC) and designed by a multicenter NASA team led out of NASA Kennedy Space Center (KSC). The HDU was subsequently utilized at the 2010 Desert Research and Technology Studies (RATS) program held at the Black Point Lava Flow in Arizona. This report describes the power system design, installation and operation for the HDU. The requirements for the power system were to provide 120 VAC, 28 VDC, and 120 VDC power to the various loads within the HDU. It also needed to be capable of providing power control and real-time operational data on the load's power consumption. The power system had to be capable of operating off of a 3 phase 480 VAC generator as well as 2 solar photovoltaic (PV) power systems. The system operated well during the 2 week Desert RATS campaign and met all of the main goals of the system. The power system is being further developed to meet the future needs of the HDU and options for this further development are discussed.

  19. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  20. Security region-based small signal stability analysis of power systems with FSIG based wind farm

    Science.gov (United States)

    Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong

    2018-02-01

    Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.

  1. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  2. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  3. Advanced in-core monitoring system for high-power reactors

    International Nuclear Information System (INIS)

    Mitin, V.I.; Alekseev, A.N.; Golovanov, M.N.; Zorin, A.V.; Kalinushkin, A.E.; Kovel, A.I.; Milto, N.V.; Musikhin, A.M.; Tikhonova, N.V.; Filatov, V.P.

    2006-01-01

    This paper encompasses such section as objective, conception and engineering solution for construction of advanced in-core instrumentation system for high power reactor, including WWER-1000. The ICIS main task is known to be an on-line monitoring of power distribution and functionals independently of design programs to avoid a common cause error. This paper shows in what way the recovery of power distribution has been carried out using the signals from in-core neutron detectors or temperature sensors. On the basis of both measured and processed data, the signals of preventive and emergency protection on local parameters (linear power of the maximum intensive fuel rods, departure from nucleate boiling ratio peaking factor) have been automatically generated. The paper presents a detection technology and processing methods for signals from SPNDs and TCs, ICIS composition and structure, computer hardware, system and applied software. Structure, composition and the taken decisions allow combining class IE and class B and C tasks in accordance with international standards of separation and safety category realization. Nowadays, ICIS-M is a system that is capable to ensure: monitoring, safety, information display and diagnostics function, which allow securing actual increase of quality, reliability and safety in operation of nuclear fuel and power units. Meanwhile, it reduce negative influence of human factor on thermal technical reliability in the operational process (Authors)

  4. DSOGI-PLL Based Power Control Method to Mitigate Control Errors Under Disturbances of Grid Connected Hybrid Renewable Power Systems

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Meral

    2018-01-01

    Full Text Available The control of power converter devices is one of the main research lines in interfaced renewable energy sources, such as solar cells and wind turbines. Therefore, suitable control algorithms should be designed in order to regulate power or current properly and attain a good power quality for some disturbances, such as voltage sag/swell, voltage unbalances and fluctuations, long interruptions, and harmonics. Various synchronisation techniques based control strategies are implemented for the hybrid power system applications under unbalanced conditions in literature studies. In this paper, synchronisation algorithms based Proportional-Resonant (PR power/current controller is applied to the hybrid power system (solar cell + wind turbine + grid, and Dual Second Order Generalized Integrator-Phase Locked Loop (DSOGI-PLL based PR controller in stationary reference frame provides a solution to overcome these problems. The influence of various cases, such as unbalance, and harmonic conditions, is examined, analysed and compared to the PR controllers based on DSOGI-PLL and SRF-PLL. The results verify the effectiveness and correctness of the proposed DSOGI-PLL based power control method.

  5. Limits to power system growth

    International Nuclear Information System (INIS)

    Slater, S.M.; Klein, A.C.; Webb, B.J.; Pauley, K.A.

    1993-01-01

    In the design of space nuclear power systems a variety of conversion techniques may be used, each with its own advantages and disadvantages. A study was performed which analyzed over 120 proposed system designs. The designs were compared to identify the optimum conversion system as a function of power level and find limits to specific mass (kg/kWe) for each power cycle. Furthermore, the component masses were studied to determine which component of the overall design contributes the most to total system mass over a variety of power levels. The results can provide a focus for future research efforts by selecting the best conversion technology for the desired power range, and optimizing the system component which contributes most to the total mass

  6. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  7. Investigating power control in autonomous power systems with increasing wind power penetration

    Energy Technology Data Exchange (ETDEWEB)

    Margaris, Ioannis D. [National Technical Univ. of Athens (Greece). Electric Energy Systems Lab.; Hansen, Anca D.; Sorensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Hatziargyriou, Nikos D. [National Technical Univ. of Athens (Greece). Electric Energy Systems Lab.; Public Power Corporation S.A., Athens (Greece)

    2009-07-01

    Increasing levels of wind penetration in autonomous power systems has set intensively high standards with respect to wind turbine technology during the last years. Special features of non-interconnected power systems make security issues rather critical, as the operation of large wind farms like conventional power plants is becoming a necessity. This paper includes the study case of Rhodos island, in Greece, where rapidly increasing wind penetration has started to impose serious security issues for the immediate future. The scenarios studied here correspond to reference year of study 2012 and include wind farms with three different wind turbine technologies - namely Doubly Fed Induction Generator (DFIG), Permanent Magnet Synchronous Generator (PMSG) and Active Stall Induction Generator (ASIG) based wind turbines. Aggregated models of the wind farms are being used and results for different load cases are being analyzed and discussed. The ability of wind farms to assist in some of the power system control services traditionally carried out by conventional synchronous generation is being investigated and discussed. The power grid of the island, including speed governors and automatic voltage regulators, is simulated in the dedicated power system simulation program Power Factory from DIgSILENT. (orig.)

  8. ECONOMIC PRINCIPLES FOR SELECTION OF OPTIMUM POWER-SUPPLY SYSTEM DEVELOPMENT IN BELARUS

    Directory of Open Access Journals (Sweden)

    L. P. Padalko

    2008-01-01

    Full Text Available The paper considers main directions of the technological development of the Belarusian power-supply system. Comparative analysis of the economic efficiency of thermal power station modernization on the basis of steam- and gas technology, nuclear technology development and simple renovation of the worn-out generating capacities of thermal power stations has been carried out in the paper. Selection of the priority direction pertaining to optimization of industrial structure of the Belarusian power-supply system has been made on the basis of the presented minimum-specific cost criterion. The paper reveals that in the medium-term period the most optimum development of the Belarusian electrical power engineering is a technological  modernization  due to predicted  changes in natural gas and nuclear fuel costs. The modernization presupposes construction of topping plants in addition to the existing steam- and turbine equipment at thermal power stations. 

  9. Towards Flexible Self-powered Micro-scale Integrated Systems

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-04-01

    Today’s information-centered world leads the ever-increasing consumer demand for more powerful, multifunctional portable devices. Additionally, recent developments on long-lasting energy sources and compliant, flexible systems, have introduced new required features to the portable devices industry. For example, wireless sensor networks are in urgent need of self-sustainable, easy-to-deploy, mobile platforms, wirelessly interconnected and accessible through a cloud computing system. The objective of my doctoral work is to develop integration strategies to effectively fabricate mechanically flexible, energy-independent systems, which could empower sensor networks for a great variety of new exciting applications. The first module, flexible electronics, can be achieved through several techniques and materials. Our main focus is to bring mechanical flexibility to the state-of-the-art high performing silicon-based electronics, with billions of ultra-low power, nano-sized transistors. Therefore, we have developed a low-cost batch fabrication process to transform standard, rigid, mono-crystalline silicon (100) wafer with devices, into a thin (5-20 m), mechanically flexible, optically semi-transparent silicon fabric. Recycling of the remaining wafer is possible, enabling generation of multiple fabrics to ensure lowcost and optimal utilization of the whole substrate. We have shown mono, amorphous and poly-crystalline silicon and silicon dioxide fabrics, featuring industry’s most advanced high-/metal-gate based capacitors and transistors. The second module consists on the development of efficient energy scavenging systems. First, we have identified an innovative and relatively young technology, which can address at the same time two of the main concerns of human kind: water and energy. Microbial fuel cells (MFC) are capable of producing energy out the metabolism of bacteria while treating wastewater. We have developed two micro-liter MFC designs, one with carbon

  10. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  11. Flexible fault ride through strategy for wind farm clusters in power systems with high wind power penetration

    International Nuclear Information System (INIS)

    Wang, Songyan; Chen, Ning; Yu, Daren; Foley, Aoife; Zhu, Lingzhi; Li, Kang; Yu, Jilai

    2015-01-01

    Highlights: • A flexible fault ride through strategy is proposed. • The strategy comprises of grid code requirements and power restrictions. • Slight faults and moderate faults are the main defending objectives. • Temporary overloading capability of the doubly fed induction generator is considered. - Abstract: This paper investigates a flexible fault ride through strategy for power systems in China with high wind power penetration. The strategy comprises of adaptive fault ride through requirements and maximum power restrictions of the wind farms with weak fault ride through capabilities. The slight faults and moderate faults with high probability are the main defending objective of the strategy. The adaptive fault ride through requirement in the strategy consists of two sub fault ride through requirements, a temporary slight voltage ride through requirement corresponding to a slight fault incident, with a moderate voltage ride through requirement corresponding to a moderate fault. The temporary overloading capability of the wind farm is reflected in both requirements to enhance the capability to defend slight faults and to avoid tripping when the crowbar is disconnected after moderate faults are cleared. For those wind farms that cannot meet the adaptive fault ride through requirement, restrictions are put on the maximum power output. Simulation results show that the flexible fault ride through strategy increases the fault ride through capability of the wind farm clusters and reduces the wind power curtailment during faults

  12. Power system protection 3 application

    CERN Document Server

    1995-01-01

    The worldwide growth in demand for electricity has forced the pace of developments in electrical power system design to meet consumer needs for reliable, secure and cheap supplies. Power system protection, as a technology essential to high quality supply, is widely recognised as a specialism of growing and often critical importance, in which power system needs and technological progress have combined to result in rapid developments in policy and practice in recent years. In the United Kingdom, the need for appropriate training in power system protection was recognised in the early 1960s with t

  13. A microprocessor-based power control data acquisition system

    International Nuclear Information System (INIS)

    Greenberg, S.

    1982-10-01

    The project reported deals with one of the aspects of power plant control and management. In order to perform optimal distribution of power and load switching, one has to solve a specific optimization problem. In order to solve this problem one needs to collect current and power expenditure data from a large number of channels and have them processed. This particular procedure is defined as data acquisition and it constitutes the main topic of this project. A microprocessor-based data acquisition system for power management is investigated and developed. The current and power data of about 100 analog channels are sampled and collected in real-time. These data are subsequently processed to calculate the power factor (cos phi) for each channel and the maximum demand. The data is processed by an AMD 9511 Arithmetic Processing Unit and the whole system is controlled by an Intel 8080A CPU. All this information is then transfered to a universal computer through a synchronized communication channel. The optimization computations would be performed by the high level computer. Different ways of performing the search of data over a large number of channels have been investigated. A particular solution to overcome the gain and offset drift of the A/D converter, using software, has been proposed. The 8080A supervises the collection and routing of data in real time, while the 9511 performs calculation, using these data. (Author)

  14. Investigation of the impact of main control room digitalization on operators cognitive reliability in nuclear power plants.

    Science.gov (United States)

    Zhou, Yong; Mu, Haiying; Jiang, Jianjun; Zhang, Li

    2012-01-01

    Currently, there is a trend in nuclear power plants (NPPs) toward introducing digital and computer technologies into main control rooms (MCRs). Safe generation of electric power in NPPs requires reliable performance of cognitive tasks such as fault detection, diagnosis, and response planning. The digitalization of MCRs has dramatically changed the whole operating environment, and the ways operators interact with the plant systems. If the design and implementation of the digital technology is incompatible with operators' cognitive characteristics, it may have negative effects on operators' cognitive reliability. Firstly, on the basis of three essential prerequisites for successful cognitive tasks, a causal model is constructed to reveal the typical human performance issues arising from digitalization. The cognitive mechanisms which they impact cognitive reliability are analyzed in detail. Then, Bayesian inference is used to quantify and prioritize the influences of these factors. It suggests that interface management and unbalanced workload distribution have more significant impacts on operators' cognitive reliability.

  15. Power fluctuation reduction methodology for the grid-connected renewable power systems

    Science.gov (United States)

    Aula, Fadhil T.; Lee, Samuel C.

    2013-04-01

    This paper presents a new methodology for eliminating the influence of the power fluctuations of the renewable power systems. The renewable energy, which is to be considered an uncertain and uncontrollable resource, can only provide irregular electrical power to the power grid. This irregularity creates fluctuations of the generated power from the renewable power systems. These fluctuations cause instability to the power system and influence the operation of conventional power plants. Overall, the power system is vulnerable to collapse if necessary actions are not taken to reduce the impact of these fluctuations. This methodology aims at reducing these fluctuations and makes the generated power capability for covering the power consumption. This requires a prediction tool for estimating the generated power in advance to provide the range and the time of occurrence of the fluctuations. Since most of the renewable energies are weather based, as a result a weather forecast technique will be used for predicting the generated power. The reduction of the fluctuation also requires stabilizing facilities to maintain the output power at a desired level. In this study, a wind farm and a photovoltaic array as renewable power systems and a pumped-storage and batteries as stabilizing facilities are used, since they are best suitable for compensating the fluctuations of these types of power suppliers. As an illustrative example, a model of wind and photovoltaic power systems with battery energy and pumped hydro storage facilities for power fluctuation reduction is included, and its power fluctuation reduction is verified through simulation.

  16. 49 CFR 229.49 - Main reservoir system.

    Science.gov (United States)

    2010-10-01

    ... automatic air brake system shall be adjusted so that the compressor will start when the main reservoir..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.49... least one safety valve that shall prevent an accumulation of pressure of more than 15 pounds per square...

  17. MCD 80: A modular coupling system for power line carrier transmission

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, B; Mayer, M

    1983-05-01

    Power line carrier (PLC) links are of great importance to power supply utilities. The communications equipment is linked to the H.V. system by a coupling device. Brown Boveri have developed a new modular coupling system MCD 80 which is compact, programmable and economical. The benefit of years of experience in the field went into its development. With the new system, optimum PLC couplings, R.F. through-connections and junction networks are possible for all H.V. transmission systems. A general look at the subject of PLC couplings is followed by a closer look at the main components, such as the programmable high pass coupling unit, band pass coupling unit, hybrid, separating filter, R.F. junction network and attenuator. Some typical examples are described.

  18. Research on cognitive reliability model for main control room considering human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Jiang Jianjun; Zhang Li; Wang Yiqun; Zhang Kun; Peng Yuyuan; Zhou Cheng

    2012-01-01

    Facing the shortcomings of the traditional cognitive factors and cognitive model, this paper presents a Bayesian networks cognitive reliability model by taking the main control room as a reference background and human factors as the key points. The model mainly analyzes the cognitive reliability affected by the human factors, and for the cognitive node and influence factors corresponding to cognitive node, a series of methods and function formulas to compute the node cognitive reliability is proposed. The model and corresponding methods can be applied to the evaluation of cognitive process for the nuclear power plant operators and have a certain significance for the prevention of safety accidents in nuclear power plants. (authors)

  19. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  20. Concept for a power system controller for large space electrical power systems

    Science.gov (United States)

    Lollar, L. F.; Lanier, J. R., Jr.; Graves, J. R.

    1981-01-01

    The development of technology for a fail-operatonal power system controller (PSC) utilizing microprocessor technology for managing the distribution and power processor subsystems of a large multi-kW space electrical power system is discussed. The specific functions which must be performed by the PSC, the best microprocessor available to do the job, and the feasibility, cost savings, and applications of a PSC were determined. A limited function breadboard version of a PSC was developed to demonstrate the concept and potential cost savings.

  1. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1991-12-31

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  2. A Development Method of Mobile Computerized Procedure System for the Cooperation among Field Workers and Main Control Room Operators in Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Sun Jin; Seong, No Kyu; Jung, Yeon Sub

    2014-01-01

    Human errors can occur during the test and maintenance of steam generator, safety injection system and other various systems and devices in nuclear power plants (NPPs). Most of human errors can be improved by the human error prevention techniques such as self-check, peer-check, concurrent verification and etc. Another important technique is to share work information among main control room (MCR) operators and field workers. Various field service automation tools have been developed with recent information technology in many countries. APR1400 computerized procedure system (CPS) has been developed for the MCR operators of Shin-Kori 3 and 4 units. Especially, the concurrent verification support design is applied in the construction project of Shin-Hanul 1 and 2 CPS. It is expected that the proposed mobile CPS can enhance the reduction of human errors by supporting human error prevention techniques and information sharing. This paper describes the technical issues of the mobile CPS (mobile CPS) in the initial development stage. Based on the design of APR1400, CRI CPS has been developed and operated for SKN 3 and 4 HFE V and V and license test for the MCR operating staff. Therefore the mobile CPS will be developed by upgrading the CRI CPS with improved features

  3. A Development Method of Mobile Computerized Procedure System for the Cooperation among Field Workers and Main Control Room Operators in Korean Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun Jin; Seong, No Kyu; Jung, Yeon Sub [KHNP ,Daejeon (Korea, Republic of)

    2014-08-15

    Human errors can occur during the test and maintenance of steam generator, safety injection system and other various systems and devices in nuclear power plants (NPPs). Most of human errors can be improved by the human error prevention techniques such as self-check, peer-check, concurrent verification and etc. Another important technique is to share work information among main control room (MCR) operators and field workers. Various field service automation tools have been developed with recent information technology in many countries. APR1400 computerized procedure system (CPS) has been developed for the MCR operators of Shin-Kori 3 and 4 units. Especially, the concurrent verification support design is applied in the construction project of Shin-Hanul 1 and 2 CPS. It is expected that the proposed mobile CPS can enhance the reduction of human errors by supporting human error prevention techniques and information sharing. This paper describes the technical issues of the mobile CPS (mobile CPS) in the initial development stage. Based on the design of APR1400, CRI CPS has been developed and operated for SKN 3 and 4 HFE V and V and license test for the MCR operating staff. Therefore the mobile CPS will be developed by upgrading the CRI CPS with improved features.

  4. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  5. Hydrogen treatment system in the Genkai nuclear power plant No. 2

    International Nuclear Information System (INIS)

    Nakamura, Masayuki; Kodama, Hideo; Murashima, Masayasu

    1977-01-01

    The new hydrogen treatment system which injects hydrogen into the volume control tank for purging the mixed waste gas of Kr, Xe, etc. is adopted in the Genkai nuclear power plant No. 2. The system is composed of mainly the waste gas pretreatment equipment, a palladium alloy membrane type hydrogen separator, a hydrogen compressor, and a waste gas decay tank. The outline of the primary cooling system and the chemical volume control system of PWR, the hydrogen treatment system, and the gaseous waste disposal system of original and new types for the Genkai nuclear power plants No. 1 and 2 are explained in this paper. This newly added hydrogen treatment system will be able to reduce the rare gas concentration rate in the primary coolant to about 1/2 and 1/5 for Kr 85 and Xe 133 , respectively. (auth.)

  6. Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services

    Science.gov (United States)

    Parkinson, Simon Christopher

    Widespread access to renewable electricity is seen as a viable method to mitigate carbon emissions, although problematic are the issues associated with the integration of the generation systems within current power system configurations. Wind power plants are the primary large-scale renewable generation technology applied globally, but display considerable short-term supply variability that is difficult to predict. Power systems are currently not designed to operate under these conditions, and results in the need to increase operating reserve in order to guarantee stability. Often, operating conventional generation as reserve is both technically and economically inefficient, which can overshadow positive benefits associated with renewable energy exploitation. The purpose of this thesis is to introduce and assess an alternative method of enhancing power system operations through the control of electric loads. In particular, this thesis focuses on managing highly-distributed sustainable demand-side infrastructure, in the form of heat pumps, electric vehicles, and electrolyzers, as dispatchable short-term energy balancing resources. The main contribution of the thesis is an optimal control strategy capable of simultaneously balancing grid- and demand-side objectives. The viability of the load control strategy is assessed through model-based simulations that explicitly track end-use functionality of responsive devices within a power systems analysis typically implemented to observe the effects of integrated wind energy systems. Results indicate that there is great potential for the proposed method to displace the need for increased reserve capacity in systems considering a high penetration of wind energy, thereby allowing conventional generation to operate more efficiently and avoid the need for possible capacity expansions.

  7. Improvement of main control room

    International Nuclear Information System (INIS)

    Chae, Sung Ki; Ham, Chang Sik; Kwon, Ki Chun

    1991-07-01

    Information display system, advanced alarm system and fiber optical communication system were developed to improve the main control room in nuclear power plant. Establishing the new hierachical information structure of plant operation data, plant overview status board(POSB) and digital indicator(DI) were designed and manufactured. The prototype advanced alarm system which employed the new alarm logics and algorithm compared with the conventional alarm system were developed and its effectiveness was proved. Optical communication system which has multi-drop feature and capability of upgrading to large-scale system by using BITBUS communication protocol which is proven technology, were developed. Reliability of that system was enhanced by using distributed control. (Author)

  8. Membrane systems and their use in nuclear power plants. Treatment of primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Skala, Martin; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits Innovation Dept.; Zach, Vaclav; Kopa, Roman [CEZ a.s., Temelin (Czech Republic). Nuclear Power Plant Temelin

    2016-03-15

    In nuclear power plants, drained primary coolant containing boric acid is currently treated in the system of evaporators and by ion exchangers. Replacement of the system of evaporators by membrane system (MS) will result in lower operating cost mainly due to lower operation temperature. In membrane systems the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of the concentrated boric acid solution together with other components, while permeate stream consists of purified water. Results are presented achieved by testing a pilot-plant unit of reverse osmosis in nuclear power plant (NPP) Temelin.

  9. Coordinated system services from offshore wind power plants connected through HVDC networks

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Glasdam, Jakob; Hesselbæk, Bo

    2014-01-01

    This paper presents an overview of power system services in networks involving multiple onshore power systems, a voltage sourced converter (VSC) based high voltage direct current (HVDC) offshore network and an offshore wind power plant (OWPP). A comprehensive list of services regarding onshore...... as well as offshore network operation – both AC and DC – will be discussed from a state of the art perspective. Among them, the most interesting have been selected and will be treated in more detail and the main contribution of this paper will be to shed light on the most relevant aspects related...... to their implementation. For example, new findings on onshore AC voltage control are reported, that help the characterisation of potential AC voltage control that a VSC-HVDC station may offer to an onshore AC grid. The HVDC system behind the VSC-HVDC station may connect, through other converters, to another AC power...

  10. Open-Phase Condition Detecting System for Transformers in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ha, Che-Wung; Lee, Do-Hwan

    2015-01-01

    Recently, several events involving the loss of one of the three phases of the offsite power circuit occurred in the US nuclear power plants (NPPs).. In some cases, the open-phase condition existed undetected for an extended period and in other case, was not properly responded to. Accordingly, the Nuclear Regulatory Commission (NRC) requested all license holders to take corrective actions to address the open-phase condition. It was also requested that all holders or applicant for a standard design certification (DC) include a description of a protection system to detect and separate the open circuit into design control document (DCD). Currently, NPPs including Duke Energy, Exelon, and institutes including Electric Power Research Institute (EPRI) are working together to resolve issues associated with detecting an open-phase condition. This paper, using Electromagnetic Transients Program (EMTP), presents a system to detect and address the loss of one of three phases of the offsite power circuit connected to main, auxiliary and standby transformers, which is hard to be detected in the current protection system. This paper, using EMTP, presents a system to detect and address the loss of one of three phases of the offsite power circuit running to MT, UAT or SAT which is hard to be detected in the current protection system. The system presented in this paper will be useful not only for the KHNP to meet the NRC requirement, but also for nuclear power plants at home and abroad to take corrective actions to provide protection from a single phase open circuit condition for offsite power sources

  11. Open-Phase Condition Detecting System for Transformers in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Che-Wung; Lee, Do-Hwan [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Recently, several events involving the loss of one of the three phases of the offsite power circuit occurred in the US nuclear power plants (NPPs).. In some cases, the open-phase condition existed undetected for an extended period and in other case, was not properly responded to. Accordingly, the Nuclear Regulatory Commission (NRC) requested all license holders to take corrective actions to address the open-phase condition. It was also requested that all holders or applicant for a standard design certification (DC) include a description of a protection system to detect and separate the open circuit into design control document (DCD). Currently, NPPs including Duke Energy, Exelon, and institutes including Electric Power Research Institute (EPRI) are working together to resolve issues associated with detecting an open-phase condition. This paper, using Electromagnetic Transients Program (EMTP), presents a system to detect and address the loss of one of three phases of the offsite power circuit connected to main, auxiliary and standby transformers, which is hard to be detected in the current protection system. This paper, using EMTP, presents a system to detect and address the loss of one of three phases of the offsite power circuit running to MT, UAT or SAT which is hard to be detected in the current protection system. The system presented in this paper will be useful not only for the KHNP to meet the NRC requirement, but also for nuclear power plants at home and abroad to take corrective actions to provide protection from a single phase open circuit condition for offsite power sources.

  12. Real-time impact of power balancing on power system operation with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2017-01-01

    Highly wind power integrated power system requires continuous active power regulation to tackle the power imbalances resulting from the wind power forecast errors. The active power balance is maintained in real-time with the automatic generation control and also from the control room, where...... power system model. The power system model takes the hour-ahead regulating power plan from power balancing model and the generation and power exchange capacities for the year 2020 into account. The real-time impact of power balancing in a highly wind power integrated power system is assessed...

  13. Low-temperature thermionics in space nuclear power systems with the safe-type fast reactor

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Yarygin, V.I.; Lazarenko, G.E.; Zabudko, A.N.; Ovcharenko, M.K.; Pyshko, A.P.; Mironov, V.S.; Kuznetsov, R.V.

    2007-01-01

    The potentialities of the use of the low-temperature thermionic converters (TIC) with the emitter temperature ≤ 1500 K in the space nuclear power system (SNPS) with the SAFE-type (Safe Affordable Fission Engine) fast reactor proposed and developed by common efforts of American experts have been considered. The main directions of the 'SAFE-300-TEG' SNPS (300 kW(thermal)) design update by replacing the thermoelectric converters with the low-temperature high-performance thermionic converters (with the barrier index V B ≤ 1.9 eV and efficiency ≥ 10%) meant for a long-term operation (5 years at least) as the components of the SAFE-300-TIC SNPS for a Lunar base have been discussed. The concept of the SNPS with the SAFE-type fast reactor and low-temperature TICs with specific electric power of about 1.45 W/cm 2 as the components of the SAFE-300-TIC system meeting the Nasa's initial requirements to a Lunar base with the electric power demand of about 30 kW(electrical) for robotic mission has been considered. The results, involving optimization and mass-and-size estimation, show that the SAFE-300-TIC system meets the initial requirements by Nasa to the lunar base power supply. The main directions of the system update aimed at the output electric power increase up to 100 kW(electrical) have also been presented. (authors)

  14. A master system for power system fault phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Myung Ho; Jang, Sang Ho; Hong, Joon Hee; Min, Wan Ki; Yoo, Chang Hwan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    This report includes as follows - Real time digital simulator - Remote measuring, analyzing and reproducing system of power system fault data -Power system reduction method program using EMTP -Test system for protection device. (author). 22 refs., 38 figs.

  15. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  16. Optimal Planning and Operation Management of a Ship Electrical Power System with Energy Storage System

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Meng, Lexuan

    2016-01-01

    Next generation power management at all scales is highly relying on the efficient scheduling and operation of different energy sources to maximize efficiency and utility. The ability to schedule and modulate the energy storage options within energy systems can also lead to more efficient use...... of the generating units. This optimal planning and operation management strategy becomes increasingly important for off-grid systems that operate independently of the main utility, such as microgrids or power systems on marine vessels. This work extends the principles of optimal planning and economic dispatch...... for the proposed plan is derived based on the solution from a mixed-integer nonlinear programming (MINLP) problem. Simulation results showed that including well-sized energy storage options together with optimal operation management of generating units can improve the economic operation of the test system while...

  17. High-power density miniscale power generation and energy harvesting systems

    International Nuclear Information System (INIS)

    Lyshevski, Sergey Edward

    2011-01-01

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro (∼100 μW) to medium (∼100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems.

  18. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2015-06-01

    Full Text Available This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to a reduction in the total inertia of the system because renewable generators are connected to the grid by power converters, and transient stability becomes a significant issue. Simulation results show that sodium-sulfur batteries can keep the system in operation and stable after strong transient disturbances, especially for an isolated system. The results also show how the reduction of the inertia in the system can be mitigated by exploiting the kinetic energy of wind turbines.

  19. Determining the theoretical reliability function of thermal power system using simple and complex Weibull distribution

    Directory of Open Access Journals (Sweden)

    Kalaba Dragan V.

    2014-01-01

    Full Text Available The main subject of this paper is the representation of the probabilistic technique for thermal power system reliability assessment. Exploitation research of the reliability of the fossil fuel power plant system has defined the function, or the probabilistic law, according to which the random variable behaves (occurrence of complete unplanned standstill. Based on these data, and by applying the reliability theory to this particular system, using simple and complex Weibull distribution, a hypothesis has been confirmed that the distribution of the observed random variable fully describes the behaviour of such a system in terms of reliability. Establishing a comprehensive insight in the field of probabilistic power system reliability assessment technique could serve as an input for further research and development in the area of power system planning and operation.

  20. The main features of control and operation of steam turbines at nuclear power plants

    International Nuclear Information System (INIS)

    Czinkoczky, B.

    1981-01-01

    The output and speed control of steam turbines at nuclear power plants as well as the combination of both controls are reviewed and evaluated. At the same time the tasks of unit control at nuclear power plants, the control of steady main steam pressure and medium pressure of primary circuit, further the connection of reactor and turbine controls and the self-controlling properties of pressurized water reactor are dealt with. Hydraulic and electro-hydraulic speed control, the connection of cach-up dampers and speed control and the application of electro-hydraulic signal converters are discussed. The accomplishment of protection is also described. (author)

  1. Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system

    International Nuclear Information System (INIS)

    Atlam, Ozcan; Kolhe, Mohan

    2013-01-01

    Photovoltaic (PV) powered directly coupled electro-mechanical system has wide applications (e.g. PV powered cooling fans in green houses, PV water pumping system, solar vehicles). The objective of this work is to analyse the operation of directly PV powered DC PM (direct current permanent magnet) motor – propeller system for selection of motor parameters. The performance of such system mainly depends on the incident solar radiation, operating cell temperature, DC motor and propeller load parameters. It is observed that the operating points of the PV DC PM motor – propeller system matches very closely with the maximum power points (MPPs) of the PV array, if the DC PM motor – propeller parameters have been properly selected. It is found that for a specific application of such type of system, matching of torque–speed operating points with respect to the maximum power points of PV array are very important. It is ascertained through results that the DC PM motor's armature resistance, magnetic field constant, starting current to overcome the starting torque and torque coefficient are the main parameters. In designing a PV powered DC PM motor for a specific application, selection of these parameters are important for maximum utilization of the PV array output. The results of this system are useful for designing of directly PV powered DC PM motor's for aerodynamic applications. - Highlights: • We analyse the performance of directly PV powered DC PM motor – propeller system. • We examine PV electro-mechanical system for selection of DC motor parameters. • Matching of torque–speed curve to maximum power points of PV array is important

  2. MITI project on advanced man-machine system for nuclear power plants

    International Nuclear Information System (INIS)

    Kato, Kanji; Watanabe, Takao; Hayakawa, Hiroyasu; Naito, Norio; Masui, Takao; Ogino, Takamichi.

    1988-01-01

    A computerized operator support system (COSS) against abnormal plant conditions was developed as a five-year project from 1980 to 1984, under the sponsorship of the Ministry of International Trade and Industry. The main purpose of the COSS development was to implement the lessons learned from the Three Mile Island accident. The main nuclear industries in Japan participated in the project. The design concept of the operator support functions and the method to implement it were established, and the prototype systems of the COSS for BWR and PWR plants were developed. After the completion of the COSS development, the above participant group once again joined for the work on an advanced man-machine system for nuclear power plants (MMS-NPP). This eight-year project aims at realizing an advanced operator support system by applying artificial intelligence, especially knowledge engineering, and sophisticated man-machine interface devices. Its main objectives are shown. This system configuration, operating method decision system, man-machine communication system, operation and maintenance support functions and so on are described. (Kako, I.)

  3. Experimental study on a resorption system for power and refrigeration cogeneration

    International Nuclear Information System (INIS)

    Jiang, L.; Wang, L.W.; Liu, C.Z.; Wang, R.Z.

    2016-01-01

    Energy conversion technologies, especially for power generation and refrigeration technologies driven by the low temperature heat, are gathering the momentum recently. This paper presents a novel resorption system for electricity and refrigeration cogeneraion. Compared with adsorption refrigeration system, resorption refrigeration is characterized as safety and simple structure since there is no ammonia liquid in the system. The cogeneration system is mainly composed of three HTS (high temperature salt) unit beds; three LTS (low temperature salts) unit beds, one expander, three ammonia valves, two oil valves, four water valves and connection pipes. Chemical working pair of MnCl 2 –CaCl 2 –NH 3 is selected. Since scroll expander is suitable for small type power generation system, it is chosen for expansion process. 4.8 kg MnCl 2 and 3.9 kg CaCl 2 impregnated in expanded natural graphite treated with sulfuric acid (ENG-TSA) are filled in the cogeneration system. Experimental results show that maximum cooling power 2.98 kW is able to be obtained while maximum shaft power is about 253 W with 82.3 W average value. The cogeneration system can be utilized for the heat source temperature lower than 170 °C. Total energy efficiency increases from 0.293 to 0.417 then decreases to 0.407 while exergy efficiency increases from 0.12 to 0.16. - Highlights: • A resorption system for power and refrigeration cogeneration is established and investigated. • ENG-TSA as the additive improves the heat and mass performance of composite adsorbent. • The highest shaft power and refrigeration power are 253 W and 2.98 kW, respectively. • Total energy efficiency of the system increases from 0.293 to 0.417 then decreases to 0.407.

  4. Power generation and power system development for the period after 2000

    International Nuclear Information System (INIS)

    Fushtikj, Vangel

    1998-01-01

    The paper presents an overview of the power generation and power system development worldwide in terms of forecast power and energy production. The conditions of power system ability to meet the changes, caused by the new technologies development and regulatory policy, in the next intensive energy period are also considered. Identified key issues are used to emphasize the guided concepts and principles in power system evolution. (Author)

  5. System Study: Emergency Power System 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the emergency power system (EPS) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. An extremely statistically significant increasing trend was observed for EPS system unreliability for an 8-hour mission. A statistically significant increasing trend was observed for EPS system start-only unreliability.

  6. Implementation of the frequency dependent line model in a real-time power system simulator

    Directory of Open Access Journals (Sweden)

    Reynaldo Iracheta-Cortez

    2017-09-01

    Full Text Available In this paper is described the implementation of the frequency-dependent line model (FD-Line in a real-time digital power system simulator. The main goal with such development is to describe a general procedure to incorporate new realistic models of power system components in modern real-time simulators based on the Electromagnetic Transients Program (EMTP. In this procedure are described, firstly, the steps to obtain the time domain solution of the differential equations that models the electromagnetic behavior in multi-phase transmission lines with frequency dependent parameters. After, the algorithmic solution of the FD-Line model is implemented in Simulink environment, through an S-function programmed in C language, for running off-line simulations of electromagnetic transients. This implementation allows the free assembling of the FD Line model with any element of the Power System Blockset library and also, it can be used to build any network topology. The main advantage of having a power network built in Simulink is that can be executed in real-time by means of the commercial eMEGAsim simulator. Finally, several simulation cases are presented to validate the accuracy and the real-time performance of the FD-Line model.

  7. Power Electronics in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2006-01-01

    the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...... electronics is changing from being a minor energy source to be acting as an important power source in the energy system. By that wind power is also getting an added value in the power system operation....

  8. Planning Mechanisms for Regional Electric Power Supply System Development

    Directory of Open Access Journals (Sweden)

    Evgeniy Anatolyevich Malyshev

    2015-12-01

    Full Text Available Key problems of the regional electric power supply systems are examined. These problems result from a lack of regulated interaction mechanisms for uniting the different entities’ resources aimed at the realization of investment activities. One of the main problems of the power supply industry is physical and moral aging of both generating and networking equipment. In the article, the necessity of management system formation to control the development of power sector has been proved. The deficiencies of the modern investment procedure in power companies are described. The absence of continuity between the regional and local strategic planning documents and investment planning of a power company has been found out. The possibility to develop a new mechanism for attracting investment has been proposed. The regulation of joint activities to implement the development program for the regional power supply industry has been proposed. The management system to develop the Russian power industry has been proposed. The comparative analysis of generating capacity development mechanisms has been carried out, such as capacity supply agreement (CSA, investment support mechanism (ISM, and long-term power market (LPM. The interaction procedure of the planning of the power supply infrastructure development has been described. The mechanism connecting the state sectoral and regional planning and corporate planning of power supply infrastructure development has been proposed. The regional aspects of industrial policy and its legislative support have been considered. To successfully implement the public-private-partnership (PPP projects, it is necessary to create the effective PPP model within the federal and regional legislation framework; to develop the financial model providing the recoverability of investments; to provide a mutually beneficial cooperation between executive bodies and private investors. The possibility to apply the PPP mechanism for regional

  9. New high power 200 MHz RF system for the LANSCE drift tube linac

    International Nuclear Information System (INIS)

    Lyles, J.; Friedrichs, C.; Lynch, M.

    1998-01-01

    The Los Alamos Neutron Science Center (LANSCE) linac provides an 800 MeV direct H + proton beam, and injects H - to the upgraded proton storage ring for charge accumulation for the Short Pulse Spallation Source. Accelerating these interlaced beams requires high average power from the 201.25 MHz drift tube linac (DTL) RF system. Three power amplifiers have operated at up to three Megawatts with 12% duty factor. The total number of electron power tubes in the RF amplifiers and their modulators has been reduced from fifty-two to twenty-four. The plant continues to utilize the original design of a tetrode driving a super power triode. Further increases in the linac duty factor are limited, in part, by the maximum dissipation ratings of the triodes. A description of the system modifications proposed to overcome these limitations includes new power amplifiers using low-level RF modulation for tank field control. The first high power Diacrode reg-sign is being delivered and a new amplifier cavity is being designed. With only eight power tubes, the new system will deliver both peak power and high duty factor, with lower mains power and cooling requirements. The remaining components needed for the new RF system will be discussed

  10. Advances in Optimizing Weather Driven Electric Power Systems.

    Science.gov (United States)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.

  11. Power system damping - Structural aspects of controlling active power

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, O.

    1997-04-01

    Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs

  12. A portable solar-powered air-cooling system based on phase-change materials for a vehicle cabin

    International Nuclear Information System (INIS)

    Qi, Lingfei; Pan, Hongye; Zhu, Xin; Zhang, Xingtian; Salman, Waleed; Zhang, Zutao; Li, Li; Zhu, Miankuan; Yuan, Yanping; Xiang, Bo

    2017-01-01

    Graphical abstract: This paper proposed a portable solar-powered air cooling system for a vehicle cabin based on Phase-change Materials. The cooling system contains three main parts: a solar-energy collection module, an energy-storage module and a phase-change cooling module. The operating principle can be described as follows. For energy input, the solar-energy-collection module harvests solar energy and converts it to electricity. The power-storage module stores the electrical energy in the supercapacitor to power the electrical equipment, mainly the air pump (AP) and water pump (WP) of the phase-change cooling module. Finally, the phase-change cooling module provides cold air for the vehicle cabin to create a comfortable vehicle interior in a hot summer. The proposed system is demonstrated through thermal simulations, which show the long-duration cooling effect of the system. Temperature drops of were obtained in field tests, predicting that the proposed cooling system is beneficial and practical for cooling vehicle cabins. - Highlights: • A novel portable air cooling system based on PCMs is presented. • Solar energy was adopted to power the proposed air cooling system. • This proposed system is used for cooling vehicle cabins exposed to the sun. • Experimental results show that the proposed system has a good cooling effect. - Abstract: In summer, the temperature is very high inside vehicles parked under the hot sun. This causes consuming more fossil energy to power the air conditioner and generation of harmful gases. There is currently no effective method to address this problem in an energy-saving and environmentally friendly manner. In this paper, a novel solar-powered air-cooling system for vehicle cabins is proposed based on Phase-change Materials (PCMs); the system prevents the temperature inside a vehicle cabin from rising too high when the vehicle is parked outdoor exposure to the sun. The proposed system consists of three main parts: a solar

  13. Power systems engineering and mathematics

    CERN Document Server

    Knight, U G

    1972-01-01

    Power Systems Engineering and Mathematics investigates the application of mathematical aids, particularly the techniques of resource planning, to some of the technical-economic problems of power systems engineering. Topics covered include the process of engineering design and the use of computers in system design and operation; power system planning and operation; time scales and computation in system operation; and load prediction and generation capacity. This volume is comprised of 13 chapters and begins by outlining the stages in the synthesis of designs (or operating states) for engineerin

  14. Handbook of power systems I

    CERN Document Server

    Pardalos, P M; Pereira, Mario V; Iliadis, Niko A

    2010-01-01

    Energy is one of the world's most challenging problems, and power systems are an important aspect of energy-related issues. The Handbook of Power Systems contains state-of-the-art contributions on power systems modeling. In particular, it covers topics like operation planning, expansion planning, transmission and distribution modelling, computing technologies in energy systems, energy auctions, risk management, market regulation, stochastic programming in energy, and forecasting in energy. The book is separated into nine sections, which cover the most important areas of energy systems. The con

  15. Rejoinder on: Space-time wind speed forecasting for improved power system dispatch

    KAUST Repository

    Zhu, Xinxin

    2014-02-27

    We are thankful to the four reviewers for providing very valuable and insightful comments. We have divided our rejoinder into two main parts: (1) the rotating RSTD model; and (2) the integration of wind power into a power system. In each part, we present our views on the various comments of the discussants and provide further discussion. © 2014 Sociedad de Estadística e Investigación Operativa.

  16. Rejoinder on: Space-time wind speed forecasting for improved power system dispatch

    KAUST Repository

    Zhu, Xinxin; Genton, Marc G.; Gu, Yingzhong; Xie, Le

    2014-01-01

    We are thankful to the four reviewers for providing very valuable and insightful comments. We have divided our rejoinder into two main parts: (1) the rotating RSTD model; and (2) the integration of wind power into a power system. In each part, we present our views on the various comments of the discussants and provide further discussion. © 2014 Sociedad de Estadística e Investigación Operativa.

  17. Requirements for the support power systems of CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1990-08-01

    This Standard covers principal criteria and requirements for design, fabrication, installation, qualification, inspection, and documentation for assurance that support power will be available as required. The minimum requirements for support power are determined by the special safety systems and other safety-related systems that must function to ensure that the public health risk is acceptably low. Support power systems of a CANDU nuclear power plant include those parts of the electrical systems and instrument air systems that are necessary for the operation of safety-related systems

  18. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems

    Science.gov (United States)

    Xu, D.; Kang, L.

    2015-06-01

    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  19. Interdependencies and reliability in the combined ICT and power system: An overview of current research

    Directory of Open Access Journals (Sweden)

    Inger Anne Tøndel

    2018-01-01

    Full Text Available The smart grid vision implies extensive use of ICT in the power system, enabling increased flexibility and functionality and thereby meeting future demands and strategic goals. Consequently, power system reliability will increasingly depend on ICT components and systems. While adding functionality, ICT systems also contribute to failures, such as hidden failures in protection systems, as has been exemplified by recent power outages. It also brings new threats, such as that of cyber-attacks. To ensure effective power system reliability, the interdependencies between power and ICT systems need to be properly understood. This paper provides an overview of main interdependency categories, as well as methods that can be used to identify and study interdependencies. Based on a study of recent papers in major archival journals, we conclude that appropriate methods for identification of interdependencies between power and ICT systems seem to be lacking. In addition, current methods seem unable to both cover the power system at large, and at the same time take into account the full array of intentional and accidental threats. Based on these findings, we make recommendations for future research in this field.

  20. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show......Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...

  1. High-power density miniscale power generation and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, Sergey Edward [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, NY 14623-5603 (United States)

    2011-01-15

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro ({proportional_to}100 {mu}W) to medium ({proportional_to}100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems. (author)

  2. Calorimetric Measuring Systems for Characterizing High Frequency Power Losses in Power Electronic Components and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Pedersen, John Kim; Ritchie, Andrew Ewen

    2002-01-01

    High frequency power losses in power electronic components and systems are very difficult to measure. The same applies to the efficiency of high-efficiency systems and components. An important method to measure losses with high accuracy is the calorimetric measuring systems. This paper describes...... to calibrate such systems are proposed and different applications of the system are given. Two practical examples end the description of the research. It is concluded that such systems have a relative long time-constant but they are accurate and useful for precise power loss measurement....

  3. Bright future of photovoltaic-hybrid systems as main option for electricity generation in remote communities

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, Ahmad [Solar Energy Applications Research Group (Australia)

    2000-07-01

    The most common power option for remotely located communities, facilities, schools, etc., is the engine generator powered by diesel fuel. Over the past 15 years, many remote communities with limited and costly site access for maintenance and fuel delivery have had their engine-based power systems modified to photovoltaic hybrid power systems. As a result, hybrid power systems with photovoltaic as the main generator are becoming the preferred power option. The reasons for this change are simple: the engine-based power systems require regular oil and filter changes (in average after 150 hrs of operation); the maintenance cost is relatively high; the cost of travel to and from the site to perform maintenance is restricted during certain time of the year and can be more expensive than the actual maintenance itself. Photovoltaic generators are gradually replacing the diesel generators and thus are becoming the primary source in remote communities. As electricity is required for 24 hours of operation and photovoltaic are not able to generate power for 24 h, batteries are added to the system as storage units, and the diesel generators are used as a back-up power supply. The objective of this paper is to present the results obtained from a study which has been carried out on a PV-hybrid power system from the desired performance point of view. [Spanish] La opcion mas comun de energia para las comunidades, instalaciones, escuelas, etc. localizadas en lugares remotos, es el generador que utiliza diesel como combustible. En los ultimos 15 anos, muchas comunidades remotas con acceso limitado y costoso para el mantenimiento y la entrega de combustible han modificado sus sistemas de energia basados en motores por sistemas de energia hibridos fotovoltaicos. Como resultado, los sistemas hibridos de energia con generadores fotovoltaicos como principal generador se estan convirtiendo en la opcion preferida de generacion de electricidad. Las razones para este cambio son simples: los

  4. Potential Applications for Radioisotope Power Systems in Support of Human Exploration Missions

    Science.gov (United States)

    Cataldo, Robert L.; Colozza, Anthony J.; Schmitz, Paul C.

    2013-01-01

    Radioisotope power systems (RPS) for space applications have powered over 27 U.S. space systems, starting with Transit 4A and 4B in 1961, and more recently with the successful landing of the Mars Science Laboratory rover Curiosity in August 2012. RPS enable missions with destinations far from the Sun with faint solar flux, on planetary surfaces with dense or dusty atmospheres, and at places with long eclipse periods where solar array sizes and energy storage mass become impractical. RPS could also provide an enabling capability in support of human exploration activities. It is envisioned that with the higher power needs of most human mission concepts, a high efficiency thermal-to-electric technology would be required such as the Advanced Stirling Radioisotope generator (ASRG). The ASRG should be capable of a four-fold improvement in efficiency over traditional thermoelectric RPS. While it may be impractical to use RPS as a main power source, many other applications could be considered, such as crewed pressurized rovers, in-situ resource production of propellants, back-up habitat power, drilling, any mobile or remote activity from the main base habitat, etc. This paper will identify potential applications and provide concepts that could be a practical extension of the current ASRG design in providing for robust and flexible use of RPS on human exploration missions.

  5. Dynamic Influences of Wind Power on The Power System

    DEFF Research Database (Denmark)

    Rosas, Pedro Andrè Carvalho

    2004-01-01

    between different wind turbines.Here the wind speed model is applied to a constant rotational speed wind turbine/farm, but the model is suit-able to variable speed wind turbine/farm as well. The cases presented here illustrate the influences of the wind power on the power systemquality and stability...... integration due to the low spatial correlation of the wind speed. The voltage quality analysed in a Brazilian power system and in the Nordel power system from connecting largeamount of wind power showed very small voltage variations. The frequency variations analysed from the Nordel showed also small varia...

  6. A Technical, Economic, and Environmental Performance of Grid-Connected Hybrid (Photovoltaic-Wind) Power System in Algeria

    OpenAIRE

    Saheb-Koussa, Djohra; Koussa, Mustapha; Said, Nourredine

    2013-01-01

    This paper studies the technical, economic, and environmental analysis of wind and photovoltaic power systems connected to a conventional grid. The main interest in such systems is on-site consumption of the produced energy, system hybridization, pooling of resources, and contribution to the environment protection. To ensure a better management of system energy, models have been used for determining the power that the constituting subsystems can deliver under specific weather conditions. Simu...

  7. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  8. A high pulsed power supply system designed for pulsed high magnetic field

    International Nuclear Information System (INIS)

    Liu Kefu; Wang Shaorong; Zhong Heqing; Xu Yan; Pan Yuan

    2008-01-01

    This paper introduces the design of high pulsed power supply system for producing pulsed high magnetic field up to 70 T. This system consists of 58 sets of 55 μF of capacitor bank which provides 1.0 MJ energy storage. A set of vacuum closing switch is chosen as main switch for energy discharge into magnetic coil. A crowbar circuit with high power diodes in series with resistor is used to absorb the redundant energy and adjust pulse width. The resistance of magnetic coil changing with current is deduced by energy balance equations. A capacitor-charging power supply using a series-resonant, constant on-time variable frequency control, and zero-current switching charges the capacitor bank in one minute time with high efficiency. The pulsed power supply provides adjustable current and pulse width with 30 kA peak and 30 ms maximum. The primary experiments demonstrate the system reliability. This work provides an engineering guidance for future development of pulsed high magnetic field. (authors)

  9. Design and evaluation of warning systems: application to nuclear power plants

    International Nuclear Information System (INIS)

    Pe Benito-Claudio, C.

    1986-01-01

    This study starts by defining and explaining key concepts about warning, both as a process and a system. Thereafter, it presents a quantitative, probabilistic, and decision-oriented methodology for designing and evaluating a warning system. It illustrates the methodology for the case of rare, controllable, and potentially disastrous technological events, such as accidents in nuclear power plants. The methodology covers and links the three principal components of a warning system - signal (which is mainly technical), warning dissemination, and warning response (which are mainly social) - thereby allowing the relative evaluation of technological and social measures for reducing risks. Analytical principles and techniques of risk and decision analyses are applied. It defines a probabilistic performance measure to characterize each component of a warning system, and a value measure to assess the overall effectiveness of the system. An important aspect of this work is the integration, into one analytical model, of the results of engineering studies, such as probabilistic risk assessments of nuclear power plants, and of empirical findings on human response to warning in sociological research. The models, calculations, and sensitivity analyses are done with influence diagrams that are both intuitive and mathematical. This work puts particular emphasis on the study of behavioral response of individuals to warning

  10. Advanced man-machine system for nuclear power plants

    International Nuclear Information System (INIS)

    Masui, Takao; Naito, Norio; Kato, Kanji.

    1990-01-01

    Recent development of artificial intelligence(AI) seems to offer new possibility to strengthen the performance of the operator support system. From this point of view, a national project of Advanced Man-Machine System Development for Nuclear Power Plant (MMS-NPP) has been carried out since 1984 as 8-year project. This project aims at establishing advanced operator support functions which support operators in their knowledge-based behaviors and smoother interface with the system. This paper describes the role of MMS-NPP, the support functions and the main feature of the MMS-NPP detailed design with its focus placed on the realization methods using AI technology of the support functions for BWR and PWR plants. (author)

  11. Fuzzy control applied to nuclear power plant pressurizer system

    International Nuclear Information System (INIS)

    Oliveira, Mauro V.; Almeida, Jose C.S.

    2011-01-01

    In a pressurized water reactor (PWR) nuclear power plants (NPPs) the pressure control in the primary loop is very important for keeping the reactor in a safety condition and improve the generation process efficiency. The main component responsible for this task is the pressurizer. The pressurizer pressure control system (PPCS) utilizes heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and limits the pressure changes, during transient conditions. Relief and safety valves provide overpressure protection for the reactor coolant system (RCS) to ensure system integrity. Various protective reactor trips are generated if the system parameters exceed safe bounds. Historically, a proportional-integral derivative (PID) controller is used in PWRs to keep the pressure in the set point, during those operation conditions. The purpose of this study has two main goals: first is to develop a pressurizer model based on artificial neural networks (ANNs); second is to develop a fuzzy controller for the PWR pressurizer pressure, and compare its performance with the P controller. Data from a simulator PWR plant was used to test the ANN and the controllers as well. The reference simulator is a Westinghouse 3-loop PWR plant with a total thermal output of 2785 MWth. The simulation results show that the pressurizer ANN model response are in reasonable agreement with the simulated power plant, and the fuzzy controller built in this study has better performance compared to the P controller. (author)

  12. Fuzzy control applied to nuclear power plant pressurizer system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mauro V.; Almeida, Jose C.S., E-mail: mvitor@ien.gov.b, E-mail: jcsa@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In a pressurized water reactor (PWR) nuclear power plants (NPPs) the pressure control in the primary loop is very important for keeping the reactor in a safety condition and improve the generation process efficiency. The main component responsible for this task is the pressurizer. The pressurizer pressure control system (PPCS) utilizes heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and limits the pressure changes, during transient conditions. Relief and safety valves provide overpressure protection for the reactor coolant system (RCS) to ensure system integrity. Various protective reactor trips are generated if the system parameters exceed safe bounds. Historically, a proportional-integral derivative (PID) controller is used in PWRs to keep the pressure in the set point, during those operation conditions. The purpose of this study has two main goals: first is to develop a pressurizer model based on artificial neural networks (ANNs); second is to develop a fuzzy controller for the PWR pressurizer pressure, and compare its performance with the P controller. Data from a simulator PWR plant was used to test the ANN and the controllers as well. The reference simulator is a Westinghouse 3-loop PWR plant with a total thermal output of 2785 MWth. The simulation results show that the pressurizer ANN model response are in reasonable agreement with the simulated power plant, and the fuzzy controller built in this study has better performance compared to the P controller. (author)

  13. Three-phase electronic power converter for photovoltaic system connected to power line; Conversor eletronico de potencia trifasico para sistema fotovoltaico conectado a rede eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Villalva, Marcelo Gradella

    2010-10-15

    This work is a contribution to the study of power converters for photovoltaic distributed generation systems. The main objective is to present the development and results of a three phase power converter for a grid-connected photovoltaic plant. The work presents experimental results and theoretical studies on the modeling and simulation of photovoltaic devices, regulation of the photovoltaic voltage, maximum power point tracking, and the modeling and control of a two-stage grid-connected power converter. (author)

  14. From mains frequency to converter power supply in foundry melting operations; Von der Netzfrequenz- zur Umrichter-Stromversorgung im Schmelzbetrieb der Eisengiesserei

    Energy Technology Data Exchange (ETDEWEB)

    Doetsch, Erwin; Yildir, Yilmaz [ABP Induction Systems GmbH, Dortmund (Germany); Koch, Frank [Gusstec Weiherhammer GmbH, Weiherhammer (Germany)

    2010-06-15

    As is well known, converter-based power feed has now largely superseded line-frequency technology as state-of-the-art in supply of induction melting facilities. Replacement of LF power supply systems with converters is therefore the main priority in the context of projects for modernization of existing induction installations. The objective is generally to leave the crucible furnace and its peripherals effectively as they are, and match the output and frequency of the converter to their needs. The following article states the criteria that need to be taken into account in this context and examines a specific modernization project, using the example of Gusstec Weiherhammer GmbH's iron melting installation. (orig.)

  15. Building High-Performing and Improving Education Systems. Systems and Structures: Powers, Duties and Funding. Review

    Science.gov (United States)

    Slater, Liz

    2013-01-01

    This Review looks at the way high-performing and improving education systems share out power and responsibility. Resources--in the form of funding, capital investment or payment of salaries and other ongoing costs--are some of the main levers used to make policy happen, but are not a substitute for well thought-through and appropriate policy…

  16. Fault Analysis of ITER Coil Power Supply System

    International Nuclear Information System (INIS)

    Song, In Ho; Jun, Tao; Benfatto, Ivone

    2009-01-01

    The ITER magnet coils are all designed using superconductors with high current carrying capability. The Toroidal Field (TF) coils operate in a steadystate mode with a current of 68 kA and discharge the stored energy in case of quench with using 9 interleaved Fast Discharge Units (FDUs). The Central Solenoid (CS) coils and Poloidal Field (PF) coils operate in a pulse mode with currents of up to 45 kA and require fast variation of currents inducing more than 10 kV during normal operation on the coil terminals using Switching Network (SN) systems (CSs, PF1 and 6) and Booster and VS converters (PF2 to 5), which are series connected to Main converters. SN and FDU systems comprise high current DC circuit breakers and resistors for generating high voltage (SN) and to dissipate magnetic energy (FDUs). High transient voltages can arise due to the switching operation of SN and FD and the characteristics of resistors and stray components of DC distribution systems. Also, faults in power supply control such as shorts or grounding faults can produce higher voltages between terminals and between terminal and ground. Therefore, the design of the coil insulation, coil terminal regions, feeders, feed throughs, pipe breaks and instrumentation must take account of these high voltages during normal and abnormal conditions. Voltage insulation level can be defined and it is necessary to test the coils at higher voltages, to be sure of reliable performance during the lifetime of operation. This paper describes the fault analysis of the TF, CS and PF coil power supply systems, taking account of the stray parameter of the power supply and switching systems and inductively coupled superconducting coil models. Resistor grounding systems are included in the simulation model and all fault conditions such as converter hardware and software faults, switching system hardware and software faults, DC short circuits and single grounding faults are simulated. The occurrence of two successive faults

  17. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter......This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...

  18. Demonstrative study for the wind and solar hybrid power system. 2; Furyoku taiyoko hybrid hatsuden system ni kansuru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y; Sakuma, H; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1996-10-27

    In order to verify the complementary relationship between wind and solar energy, the long-term field test of the hybrid power system was conducted at the natural energy square of Ashikaga Institute of Technology. The solar cell blade windmill composed of a Savonius windmill and flexible solar cells applied to swept buckets was also prepared. As a result, the wind power generation was promising mainly in the winter period including the late fall and early spring, while solar one was stable all the year through although it was slightly poor in winter. Stable power generation was thus achieved by combining wind energy with solar energy. As the whole data of other wind and solar power generation systems at the square were analyzed for every month, the same conclusion as the solar cell blade windmill was obtained as follows: the wind power generation in Ashikaga area is promising in Nov.-March from the field test result for 16 months, solar power generation is stable all the year through, the hybrid power system is effective in Nov.-April, and the solar cell blade windmill is equivalent to the hybrid power system. 3 refs., 5 figs.

  19. An enhanced decision support technique under uncertainty to power system design evaluation

    International Nuclear Information System (INIS)

    Eskandar, H.; Asgharpoor, M.J.

    2001-10-01

    Multiple attribute decision making (Madam) methods have been widely used in power systems decision problems. This paper presents an enhanced Madam method to help decision makers (DMS) study the influencing factors in the design of power systems. In many Madam problems, however, the information available to the Dm is often imprecise due to the inaccurate measurements and inconsistent priority judgments. The proposed Madam methodology is based on the analytical hierarchy process (Ah) incorporated into the construction procedure of linear additive utility models to quantify the various divergences of opinions, practices and events that lead to confusion and uncertainties in planning. Such practice could help the Dm gain insight into how the imprecise data may affect their choice toward the best solution and how a set of acceptable alternatives may be identified with certain confidence. Sample case study in the design of a hybrid solar-wind power system is provided to illustrate the concepts introduced in this paper. Factors in planning the design of a hybrid solar-wind power system relate mainly to political and social conditions, and to technical advances and economics

  20. Maintenance cost models in deregulated power systems under opportunity costs

    International Nuclear Information System (INIS)

    Al-Arfaj, K.; Dahal, K.; Azaiez, M.N.

    2007-01-01

    In a centralized power system, the operator is responsible for scheduling maintenance. There are different types of maintenance, including corrective maintenance; predictive maintenance; preventive maintenance; and reliability-centred maintenance. The main cause of power failures is poor maintenance. As such, maintenance costs play a significant role in deregulated power systems. They include direct costs associated with material and labor costs as well as indirect costs associated with spare parts inventory, shipment, test equipment, indirect labor, opportunity costs and cost of failure. In maintenance scheduling and planning, the cost function is the only component of the objective function. This paper presented the results of a study in which different components of maintenance costs were modeled. The maintenance models were formulated as an optimization problem with single and multiple objectives and a set of constraints. The maintenance costs models could be used to schedule the maintenance activities of power generators more accurately and to identify the best maintenance strategies over a period of time as they consider failure and opportunity costs in a deregulated environment. 32 refs., 4 tabs., 4 figs