WorldWideScience

Sample records for main iter components

  1. Three-dimensional tolerance investigation on main ITER components

    International Nuclear Information System (INIS)

    Reich, J.; Chiocchio, S.; Cordier, J.-J.; Gallix, R.; Guerin, O.; Halcrow, T.

    2009-01-01

    ITER has to focus on all processes that ensure the permanent consistency between the requirements of ITER and the performance attributes of its components. This includes integration tolerance studies. One of the main goals of this work is to establish a sufficient tolerance scheme for all main components. The investigation in sufficient tolerance studies at a very early stage of the project will result in cost savings during the installation process. Due to the complexity of the ITER components and their several interfaces to their surroundings, it is advantageous to perform tolerance studies with a specialised tool like 'three-dimensional control systems' (3DCS) that is compatible with the ITER CATIA-V5 CAD engineering system and Enovia PRC environment. On single components (e.g. Magnet TF Coils) detailed two-dimensional tolerance schemes have been developed from the beginning. Using them as a starting point, functional or key interface tolerances have to be defined. Furthermore the tolerance studies have to consider the different configurations of each component (e.g. manufacturing stages, assembly plan, integration with surrounding, operation conditions). Especially for assembly it is necessary to analyse the final ranges which have to be achieved during the installation process. From the integration point of view, the key tolerances of all main in-cryostat ITER components have to be brought together in a complete and consistent manner.

  2. F4E studies for the electromagnetic analysis of ITER components

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, P., E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Cau, F.; Portone, A. [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Albanese, R. [Associazione EURATOM/ENEA/CREATE, DIETI, Università Federico II di Napoli, Napoli (Italy); Juirao, J. [Numerical Analysis TEChnologies S.L. (NATEC), c/ Marqués de San Esteban, 52 Entlo D Gijón (Spain)

    2014-10-15

    Highlights: • Several ITER components have been analyzed from the electromagnetic point of view. • Categorization of DINA load cases is described. • VDEs, MDs and MFD have been studied. • Integral values of forces and moments components versus time have been computed for all the ITER components under study. - Abstract: Fusion for Energy (F4E) is involved in a relevant number of activities in the area of electromagnetic analysis in support of ITER general design and EU in-kind procurement. In particular several ITER components (vacuum vessel, blanket shield modules and first wall panels, test blanket modules, ICRH antenna) are being analyzed from the electromagnetic point of view. In this paper we give an updated description of our main activities, highlighting the main assumptions, objectives, results and conclusions. The plasma instabilities we consider, typically disruptions and VDEs, can be both toroidally symmetric and asymmetric. This implies that, depending on the specific component and loading conditions, FE models we use span from a sector of 10 up to 360° of the ITER machine. The techniques for simulating the electromagnetic phenomena involved in a disruption and the postprocessing of the results to obtain the loads acting on the structures are described. Finally we summarize the typical loads applied to different components and give a critical view of the results.

  3. ITER plasma facing components, design and development

    International Nuclear Information System (INIS)

    Vieider, G.; Cardella, A.; Akiba, M.; Matera, R.; Watson, R.

    1991-01-01

    The paper summarizes the collaborative effort of the ITER Conceptual Design Activity (CDA) on Plasma Facing Components (PFC) which focused on the following main tasks: (a) The definition of basic design concepts for the First Wall (FW) and Divertor Plates (DP), (b) the analysis of the performance and likely lifetime of these PFC designs including the identification of major critical issues, (c) the start of R and D work giving already first results, and the definition of the required further R and D program to support the contemplated ITER Engineering Design Activity (EDA). From the ITER CDA effort on PFC it is mainly concluded that: (a) The expected PFC operating conditions lead to design solutions at the limit of present technology in particular for the divertor, which may constrain the overall machine performance, (b) the development of convincing PFC designs requires an intensified R and D effort both on PFC technology and plasma physics. (orig.)

  4. Main maintenance operations for Test Blanket Systems in ITER TBM port cells

    Energy Technology Data Exchange (ETDEWEB)

    Pascal, R., E-mail: romain.pascal@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Cortes, P.; Friconneau, J.-P.; Giancarli, L.M.; Gotewal, K.K.; Iseli, M.; Kim, B.Y.; Levesy, B.; Martins, J.-P.; Merola, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Nevière, J.-C. [Comex-Nucleaire, 13115 Saint Paul Lez Durance (France); Patisson, L. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Siarras, A. [Sogetti, Parc de la Duranne, 13857 Aix-en-Provence (France); Tesini, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: • The Test Blanket System components layout in Port Cell room is described. • The maintenance of the two Test Blanket Systems in ITER port cell is addressed. • The overall replacement/maintenance strategy is defined. • The main maintenance tasks of the systems are discussed. • The maintenance strategy and required tools are presented. -- Abstract: Each Test Blanket System in ITER is formed by an in-vessel component, the Test Blanket Module, and several associated ancillary systems (coolant and Tritium systems, instrumentation and control systems). The paper describes the overall replacement/maintenance strategy and the main maintenance tasks that have to be considered in the design of the systems. It shows that there are no critical issues.

  5. Guidelines for Remote Handling Maintenance of ITER Neutral Beam Components

    International Nuclear Information System (INIS)

    Cordier, J.-J.; Hemsworth, R.; Bayetti, P.

    2006-01-01

    Remote handling maintenance of ITER components is one of the main challenges of the ITER project. This type of maintenance shall be operational for the nuclear phase of exploitation of ITER, and be considered at a very early stage since it significantly impacts on the components design, interfaces management and integration business. A large part of the R/H equipment will be procured by the EU partner, in particular the whole Neutral Beam Remote Handling (RH) equipment package. A great deal of work has already been done in this field during the EDA phase of ITER project, but improvements and alternative option that are now proposed by ITER lead to added RH and maintenance engineering studies. The Neutral Beam Heating -and- Current Drive system 1 is being revisited by the ITER project. The vertical maintenance scheme that is presently considered by ITER, may significantly impact on the reference design of the Neutral Beam (NB) system and associated components and lead to new design of the NB box itself. In addition, revision of both NB cell radiation level zoning and remote handling classification of the beam line injector will also significantly impact on components design and maintenance. Based on the experience gained on the vertical maintenance scheme, developed in detail for the ITER Neutral Beam Test Facility 2 to be built in Europe in a near future, guidelines for the revision of the design and preliminary feasibility study of the remote handling vertical maintenance scheme of beam line components are described in the paper. A maintenance option for the SINGAP3 accelerator is also presented. (author)

  6. A new visible spectroscopy diagnostic for the JET ITER-like wall main chamber

    OpenAIRE

    Maggi, C. F.; Brezinsek, S.; Zastrow, K.-D.; JET-EFDA Contributors; Stamp, M. F.; Griph, S.; Heesterman, P.; Hogben, C.; Horton, A.; Meigs, A.; Morlock, C.; Studholme, W.

    2012-01-01

    In preparation for ITER, JET has been upgraded with a new ITER-like wall (ILW), whereby the main plasma facing components, previously of carbon, have been replaced by mainly Be in the main chamber and W in the divertor. As part of the many diagnostic enhancements, a new, survey, visible spectroscopy diagnostic has been installed for the characterization of the ILW. An array of eight lines-of-sight (LOS) view radially one of the two JET neutral beam shine through areas (W coated carbon fibre c...

  7. European technology activities to prepare for ITER component procurement

    International Nuclear Information System (INIS)

    Gasparotto, M.

    2006-01-01

    phase. In particular the manufacturing feasibility of the superconducting strand for the toroidal and poloidal field coils and of the toroidal field coils has been demonstrated, Studies of manufacturing techniques for the vacuum vessel, blanket modules and divertor are also in progress, and a number of EU industries have been prepared to successfully participate to the ITER construction. The paper will report on the main R(and)D activities performed in the EU and the major achievements in preparation for ITER component procurement. (author)

  8. Technical meeting on materials for in-vessel components of ITER

    International Nuclear Information System (INIS)

    Kalinin, G.; Barabash, V.

    2000-01-01

    The Technical meeting on materials for in-vessel components of ITER was held at the ITER Joint Work Site in Garching from 31 January to 4 February. The main objectives of the meetings were: 1. to summarize the requirements, 2. to review new data, 3. to discuss in detail the R and D program and to discuss the material assessment report

  9. Technologies for ITER divertor vertical target plasma facing components

    International Nuclear Information System (INIS)

    Schlosser, J.; Escourbiac, F.; Merola, M.; Fouquet, S.; Bayetti, P.; Cordier, J.J.; Grosman, A.; Missirlian, M.; Tivey, R.; Roedig, M.

    2005-01-01

    The ITER divertor vertical target has to sustain heat fluxes up to 20 MW m -2 . The concept developed for this plasma facing component working at steady state is based on carbon fibre composite armour for the lower straight part and tungsten for the curved upper part. The main challenges involved in the use of such components include the removal of the high heat fluxes deposited and mechanically and thermally joining the armour to the metallic heat sink, despite the mismatch in the thermal expansions. Two solutions based on the use of a CuCrZr hardened copper alloy and an active metal casting (AMC (registered) ) process were investigated during the ITER EDA phase: the first one called 'flat tile geometry' was mainly developed for the Tore Supra pumped limiter, the second one called 'monoblock geometry' was developed by the EU Participating Team for the ITER project. This paper presents a review of these two solutions and analyses their assets and drawbacks: pressure drop, critical heat flux, surface temperature and expected behaviour during operation, risks during the manufacture, control of the armour defects during the manufacture and at the reception, and the possibility of repairing defective tiles

  10. ITER plasma facing components

    International Nuclear Information System (INIS)

    Kuroda, T.; Vieider, G.; Akiba, M.

    1991-01-01

    This document summarizes results of the Conceptual Design Activities (1988-1990) for the International Thermonuclear Experimental Reactor (ITER) project, namely those that pertain to the plasma facing components of the reactor vessel, of which the main components are the first wall and the divertor plates. After an introduction and an executive summary, the principal functions of the plasma-facing components are delineated, i.e., (i) define the low-impurity region within which the plasma is produced, (ii) absorb the electromagnetic radiation and charged-particle flux from the plasma, and (iii) protect the blanket/shield components from the plasma. A list of critical design issues for the divertor plates and the first wall is given, followed by discussions of the divertor plate design (including the issues of material selection, erosion lifetime, design concepts, thermal and mechanical analysis, operating limits and overall lifetime, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, and advanced divertor concepts) and the first wall design (armor material and design, erosion lifetime, overall design concepts, thermal and mechanical analysis, lifetime and operating limits, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, an alternative first wall design, and the limiters used instead of the divertor plates during start-up). Refs, figs and tabs

  11. Materials requirements for the ITER vacuum vessel and in-vessel components - approaching the construction phase

    International Nuclear Information System (INIS)

    Barabash, V.; Ioki, K.; Pick, M.; Girard, J.P.; Merola, M.

    2007-01-01

    Full text of publication follows: The ITER activities are fully devoted toward its construction. In accordance with the ITER integrated project schedule, the procurement specifications for the manufacturing of the Vacuum Vessel should be prepared by March 2008 and the procurement specifications for the in-vessel components (first wall/blanket, divertor) by 2009. To update the design, considering design and technology evolution, the ITER Design Review has been launched. Among the various topics being discussed are the important issues related to selection of materials, material procurement, and assessment of performance during operation. The main requirements related to materials for the vacuum vessel and the in-vessel components are summarized in the paper. The specific licensing requirements are to be followed for structural materials of pressure and nuclear pressure equipment components for construction of ITER. In addition, the procurements in ITER will be done mostly 'in-kind' and it is assumed that materials for these components will be produced by different Parties. However, in accordance with the regulatory requirements and quality requirements for operation, common specifications and the general rules to fulfill these requirements are to be adopted. For some ITER components (e.g. first wall, divertor high heat flux components), the ultimate qualification of the joining technologies (Be/Cu, SS/Cu, CFC/Cu, W/Cu) is under final evaluation. Successful accomplishment of the qualification program will allow to proceed with procurements of the components for ITER. The criteria for acceptance of these components and materials after manufacturing are described and the main results will be reported. Additional materials issues, which come from the on-going manufacturing R and D program, will be also described. Finally, further materials activity during the construction phase, needs for final qualification and acceptance of materials are discussed. (authors)

  12. Overview and status of ITER internal components

    International Nuclear Information System (INIS)

    Merola, Mario; Escourbiac, Frederic; Raffray, René; Chappuis, Philippe; Hirai, Takeshi; Martin, Alex

    2014-01-01

    Highlights: • Manufacturing technologies for the ITER internal components have been developed. • The Blanket System successfully went through its Final Design Review in April 2013. • The decision to start operation with a Divertor with a full-W armour has been taken. - Abstract: The internal components of ITER are one of the most design and technically challenging components of the ITER machine, and include the Blanket System and the Divertor. The Blanket System successfully went through its Final Design Review in April 2013 and now it is entering into the procurement phase. The design and qualification of the Divertor with a full-tungsten armour was successfully completed and this enabled the decision in November 2013 to start operation with this material option. This paper summarizes the engineering design, the R and D, the technology qualification and procurement status of the Blanket System and of the Divertor of the ITER machine

  13. Overview and status of ITER internal components

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Mario, E-mail: mario.merola@iter.org; Escourbiac, Frederic; Raffray, René; Chappuis, Philippe; Hirai, Takeshi; Martin, Alex

    2014-10-15

    Highlights: • Manufacturing technologies for the ITER internal components have been developed. • The Blanket System successfully went through its Final Design Review in April 2013. • The decision to start operation with a Divertor with a full-W armour has been taken. - Abstract: The internal components of ITER are one of the most design and technically challenging components of the ITER machine, and include the Blanket System and the Divertor. The Blanket System successfully went through its Final Design Review in April 2013 and now it is entering into the procurement phase. The design and qualification of the Divertor with a full-tungsten armour was successfully completed and this enabled the decision in November 2013 to start operation with this material option. This paper summarizes the engineering design, the R and D, the technology qualification and procurement status of the Blanket System and of the Divertor of the ITER machine.

  14. Design standard issues for ITER in-vessel components

    International Nuclear Information System (INIS)

    Majumdar, S.

    1994-01-01

    Unique requirements that must be addressed by a structural design code for the ITER have been summarized. Existing codes such as ASME Section III, or the French RCC-MR were developed primarily for fission reactor out-of-core components and are not directly applicable to the ITER. They may be used either as a guide for developing a design code for the ITER or as interim standards. However, new rules will be needed for handling the irradiation-induced embrittlement problems faced by the ITER blanket components. Design standards developed in the past for the design of fission reactor core components in the United States can be used as guides in this area

  15. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Schmidt, A.; Riccardi, B.; Bobin-Vastra, I.

    2011-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  16. Examination of high heat flux components for the ITER divertor after thermal fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Schmidt, A., E-mail: a.schmidt@fz-juelich.de [Forschungszentrum Juelich, IFE-2 (Germany); Riccardi, B., E-mail: Bruno.Riccardi@f4e.europa.eu [Fusion For Energy, E-08019 Barcelona (Spain); Bobin-Vastra, I., E-mail: isabelle.bobinvastra@areva.com [AREVA-NP, 71200 Le Creusot (France)

    2011-10-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a full-scale vertical target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses metallographic observations performed on both CFC and W part after this intensive thermal fatigue testing campaign for a better understanding of thermally induced mechanical stress within the component, especially close to the armour-heat sink interface.

  17. Status of R and D of the plasma facing components for the ITER divertor

    International Nuclear Information System (INIS)

    Mazul, I.V.; Akiba, M.; Arkhipov, I.

    2001-01-01

    The paper reports the progress made by the ITER Home Teams in the development of robust carbon and tungsten armoured plasma facing components for the ITER divertor. The activities on the development and study of armour materials, joining technologies, non-destructive evaluation techniques, high heat flux testing of manufactured components and neutron irradiation resistance studies are presented. The results of these activities confirm the feasibility of the main divertor components. Examples of the fruitful collaboration between Parties and future R and D needs are also described. (author)

  18. Transport, logistics and packaging of ITER components

    International Nuclear Information System (INIS)

    Guerin, Olivier; Couturier, Bruno; Maas, Akko

    2005-01-01

    Cadarache, the European site for ITER, is located at around 50km as the crow flies from the sea. The feasibility of the transport of large and heavy ITER components has thus been thoroughly studied. These studies have covered the following items: - possible itineraries between the most convenient harbour (Fos) and Cadarache; - packaging (in particular for the largest and heaviest components); - means of transport (two types of trailers allowing to avoid lifting and load transfers); - logistics (analysis of transfer kinematics, including temporary storage); - administrative procedures and planning for the road adaptation, taking benefit of the recent successful implementation in the south-west of France of an itinerary for the Airbus A380 components. These studies, performed between 2001 and 2003, led to a viable solution, with a reasonable cost, fully supported by the French authorities. The planning necessary to implement the road modifications is also fully compatible with the expected dates of ITER components delivery

  19. Carbon fiber composites application in ITER plasma facing components

    Science.gov (United States)

    Barabash, V.; Akiba, M.; Bonal, J. P.; Federici, G.; Matera, R.; Nakamura, K.; Pacher, H. D.; Rödig, M.; Vieider, G.; Wu, C. H.

    1998-10-01

    Carbon Fiber Composites (CFCs) are one of the candidate armour materials for the plasma facing components of the International Thermonuclear Experimental Reactor (ITER). For the present reference design, CFC has been selected as armour for the divertor target near the plasma strike point mainly because of unique resistance to high normal and off-normal heat loads. It does not melt under disruptions and might have higher erosion lifetime in comparison with other possible armour materials. Issues related to CFC application in ITER are described in this paper. They include erosion lifetime, tritium codeposition with eroded material and possible methods for the removal of the codeposited layers, neutron irradiation effect, development of joining technologies with heat sink materials, and thermomechanical performance. The status of the development of new advanced CFCs for ITER application is also described. Finally, the remaining R&D needs are critically discussed.

  20. Carbon fiber composites application in ITER plasma facing components

    International Nuclear Information System (INIS)

    Barabash, V.; Federici, G.; Matera, R.; Akiba, M.; Nakamura, K.; Bonal, J.P.; Pacher, H.D.; Roedig, M.; Vieider, G.; Wu, C.H.

    1998-01-01

    Carbon fiber composites (CFCs) are one of the candidate armour materials for the plasma facing components of the international thermonuclear experimental reactor (ITER). For the present reference design, CFC has been selected as armour for the divertor target near the plasma strike point mainly because of unique resistance to high normal and off-normal heat loads. It does not melt under disruptions and might have higher erosion lifetime in comparison with other possible armour materials. Issues related to CFC application in ITER are described in this paper. They include erosion lifetime, tritium codeposition with eroded material and possible methods for the removal of the codeposited layers, neutron irradiation effect, development of joining technologies with heat sink materials, and thermomechanical performance. The status of the development of new advanced CFCs for ITER application is also described. Finally, the remaining R and D needs are critically discussed. (orig.)

  1. Development of radiation hardness components for ITER remote maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yagi, Toshiaki; Morita, Yousuke

    1998-04-01

    In the ITER, in-vessel remote handling is required to assemble and maintain in-vessel components in DT operations. Since in-vessel remote handling systems must operate under intense gamma ray radiation exceeding 30 kGy/h, their components must have sufficiently high radiation hardness to allow maintenance long enough in ITER in-vessel environments. Thus, extensive radiation tests and quality improvement, including optimization of material compositions, have been conducted through the ITER R and D program to develop radiation hardness components that meet radiation doses from 10 to 100 MGy at 10 kGy/h. This paper presents the latest on radiation hardness component development conducted by the Japan Home Team as a contribution to the ITER. The remote handling components tested are categorized for use in robotic or viewing systems, or as common components. Radiation tests have been conducted on commercially available products for screening, on modified products, and on new products to improve the radiation hardness. (author)

  2. Development of radiation hardness components for ITER remote maintenance

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi; Ito, Akira; Yagi, Toshiaki; Morita, Yousuke

    1998-01-01

    In the ITER, in-vessel remote handling is required to assemble and maintain in-vessel components in DT operations. Since in-vessel remote handling systems must operate under intense gamma ray radiation exceeding 30 kGy/h, their components must have sufficiently high radiation hardness to allow maintenance long enough in ITER in-vessel environments. Thus, extensive radiation tests and quality improvement, including optimization of material compositions, have been conducted through the ITER R and D program to develop radiation hardness components that meet radiation doses from 10 to 100 MGy at 10 kGy/h. This paper presents the latest on radiation hardness component development conducted by the Japan Home Team as a contribution to the ITER. The remote handling components tested are categorized for use in robotic or viewing systems, or as common components. Radiation tests have been conducted on commercially available products for screening, on modified products, and on new products to improve the radiation hardness. (author)

  3. Beryllium application in ITER plasma facing components

    International Nuclear Information System (INIS)

    Raffray, A.R.; Federici, G.; Barabash, V.; Cardella, A.; Jakeman, R.; Ioki, K.; Janeschitz, G.; Parker, R.; Tivey, R.; Pacher, H.D.; Wu, C.H.; Bartels, H.W.

    1997-01-01

    Beryllium is a candidate armour material for the in-vessel components of the International Thermonuclear Experimental Reactor (ITER), namely the primary first wall, the limiter, the baffle and the divertor. However, a number of issues arising from the performance requirements of the ITER plasma facing components (PFCs) must be addressed to better assess the attractiveness of Be as armour for these different components. These issues include heat loading limits arising from temperature and stress constraints under steady state conditions, armour lifetime including the effects of sputtering erosion as well as vaporisation and loss of melt during disruption events, tritium retention and permeation, and chemical hazards, in particular with respect to potential Be/steam reaction. Other issues such as fabrication and the possibility of in-situ repair are not performance-dependent but have an important impact on the overall assessment of Be as PFC armour. This paper describes the present view on Be application for ITER PFCs. The key issues are discussed including an assessment of the current level of understanding based on analysis and experimental data; and on-going activities as part of the ITER EDA R and D program are highlighted. (orig.)

  4. Iterative Mixture Component Pruning Algorithm for Gaussian Mixture PHD Filter

    Directory of Open Access Journals (Sweden)

    Xiaoxi Yan

    2014-01-01

    Full Text Available As far as the increasing number of mixture components in the Gaussian mixture PHD filter is concerned, an iterative mixture component pruning algorithm is proposed. The pruning algorithm is based on maximizing the posterior probability density of the mixture weights. The entropy distribution of the mixture weights is adopted as the prior distribution of mixture component parameters. The iterative update formulations of the mixture weights are derived by Lagrange multiplier and Lambert W function. Mixture components, whose weights become negative during iterative procedure, are pruned by setting corresponding mixture weights to zeros. In addition, multiple mixture components with similar parameters describing the same PHD peak can be merged into one mixture component in the algorithm. Simulation results show that the proposed iterative mixture component pruning algorithm is superior to the typical pruning algorithm based on thresholds.

  5. Damage evaluation under thermal fatigue of a vertical target full scale component for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Escourbiac, F.; Merola, M.; Durocher, A.; Bobin-Vastra, I.; Schedler, B.

    2007-01-01

    An extensive development programme has been carried out in the EU on high heat flux components within the ITER project. In this framework, a Full Scale Vertical Target (VTFS) prototype was manufactured with all the main features of the corresponding ITER divertor design. The fatigue cycling campaign on CFC and W armoured regions, proved the capability of such a component to meet the ITER requirements in terms of heat flux performances for the vertical target. This paper discusses thermographic examination and thermal fatigue testing results obtained on this component. The study includes thermal analysis, with a tentative proposal to evaluate with finite element approach the location/size of defects and the possible propagation during fatigue cycling

  6. Guidelines for remote handling maintenance of ITER neutral beam line components: Proposal of an alternate supporting system

    International Nuclear Information System (INIS)

    Cordier, J.J.; Bayetti, P.; Hemsworth, R.; David, O.; Friconneau, J.P.

    2007-01-01

    Remote handling (R/H) maintenance of ITER components is one of the main challenges of the ITER project. This type of maintenance shall be operational for the assembly and nuclear phase of exploitation of ITER. It must be considered at a very early stage since it significantly impacts on the components design, interfaces management, assembly, maintenance and integration aspects. A large part of the R/H equipment will be procured by the EU Participating Team, including the whole Neutral Beam R/H Equipment. The Neutral Beam Heating and Current Drive system (NB and CD) design is being revisited by the ITER project. A vertical maintenance scheme is presently considered which may significantly impact on the reference design and associated components and lead to a new design of the NB and CD vacuum tank. In addition, NB line components remote handling solutions are being studied. The neutral beam test facility ITER to be built in Europe in the near future is also based on the vertical NB maintenance scheme of beam line components. New design guidelines compliant for both the ITER NB and CD system and the NB test facility proposed by the CEA association are described in the paper

  7. Development of design Criteria for ITER In-vessel Components

    International Nuclear Information System (INIS)

    Sannazzaro, G.; Barabash, V.; Kang, S.C.; Fernandez, E.; Kalinin, G.; Obushev, A.; Martínez, V.J.; Vázquez, I.; Fernández, F.; Guirao, J.

    2013-01-01

    Absrtract: The components located inside the ITER vacuum chamber (in-vessel components – IC), due to their specific nature and the environments they are exposed to (neutron radiation, high heat fluxes, electromagnetic forces, etc.), have specific design criteria which are, in this paper, referred as Structural Design Criteria for In-vessel Components (SDC-IC). The development of these criteria started in the very early phase of the ITER design and followed closely the criteria of the RCC-MR code. Specific rules to include the effect of neutron irradiation were implemented. In 2008 the need of an update of the SDC-IC was identified to add missing specifications, to implement improvements, to modernise rules including recent evolutions in international codes and regulations (i.e. PED). Collaboration was set up between ITER Organization (IO), European (EUDA) and Russian Federation (RFDA) Domestic Agencies to generate a new version of SDC-IC. A Peer Review Group (PRG) composed by members of the ITER Organization and all ITER Domestic Agencies and code experts was set-up to review the proposed modifications, to provide comments, contributions and recommendations

  8. Development and test of prototype components for ITER

    International Nuclear Information System (INIS)

    Biel, Wolfgang; Behr, Wilfried; Castano-Bardawil, David

    2015-08-01

    The scientific program of the project is divided into the following partial projects: (1.) ITER Diagnostic Port Plug for the charge-exchange spectroscopy (CXRS) with the subthemes: (a) Development of prototypes for critical mechanical components, (b) development of a roboter for the laser welding of vacuum seals and pipings at the Port Plug, (c) mirror studies, (d) CXRS prototype spectrometer, (2.) ITER tritium retention diagnostics (TR), (3.) ITER disruption mitigation ventile (DMV).

  9. Integration of remote refurbishment performed on ITER components

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Antola, L. [AMEC, 31 Parc du Golf, CS 90519, 13596 Aix en Provence (France); Beaudoin, V. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Dremel, C. [Westinghouse, Electrique France/Astare, 122 Avenue de Hambourg, 13008 Marseille (France); Evrard, D. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Friconneau, J.P. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Lemée, A. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Levesy, B.; Pitcher, C.S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • System engineering approach to consolidate requirements to modify the layout of the Hot Cell. • Illustration of the loop between requirement and design. • Verification process. - Abstract: Internal components of the ITER Tokamak are replaced and transferred to the Hot Cell by remote handling equipment. These components include port plugs, cryopumps, divertor cassettes, blanket modules, etc. They are brought to the refurbishment area of the ITER Hot Cell Building for cleaning and maintenance, using remote handling techniques. The ITER refurbishment area will be unique in the world, when considering combination of size, quantity of complex component to refurbish in presence of radiation, activated dust and tritium. The refurbishment process to integrate covers a number of workstations to perform specific remote operations fully covered by a mast on crane system. This paper describes the integration of the Refurbishment Area, explaining the functions, the methodology followed, some illustrations of trade-off and safety improvements.

  10. Development and test of prototype components for ITER; Entwicklung und Test von Prototypkomponenten fuer ITER

    Energy Technology Data Exchange (ETDEWEB)

    Biel, Wolfgang; Behr, Wilfried; Castano-Bardawil, David; and others

    2015-08-15

    The scientific program of the project is divided into the following partial projects: (1.) ITER Diagnostic Port Plug for the charge-exchange spectroscopy (CXRS) with the subthemes: (a) Development of prototypes for critical mechanical components, (b) development of a roboter for the laser welding of vacuum seals and pipings at the Port Plug, (c) mirror studies, (d) CXRS prototype spectrometer, (2.) ITER tritium retention diagnostics (TR), (3.) ITER disruption mitigation ventile (DMV).

  11. Technological challenges at ITER plasma facing components production in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Mazul, I.V., E-mail: mazuliv@niiefa.spb.su [Efremov Institute, 196641 St. Petersburg (Russian Federation); Belyakov, V.A.; Gervash, A.A.; Giniyatulin, R.N.; Guryeva, T.M.; Kuznetsov, V.E.; Makhankov, A.N.; Okunev, A.A. [Efremov Institute, 196641 St. Petersburg (Russian Federation); Sevryukov, O.N. [MEPhI, 115409 Moscow (Russian Federation)

    2016-11-01

    Highlights: • Technological aspects of ITER PFC manufacturing in Russia are presented. • Range of technologies to be used during manufacturing of ITER PFC at Efremov Institute has been, in general, defined and their complexity, originality and difficulty are described. • Some features and challenges of welding, brazing and various tests are discussed. - Abstract: Major part of ITER plasma facing components will be manufactured in the Russian Federation (RF). Operational conditions and other requirements to these components, as well as the scale of production, are quite unique. These unique features and related technological solutions found in the frame of the project are discussed. Procedure breakdown and results of qualification for the proposed technologies and potential producers are presented, based on mockups production and testing. Design of qualification mockups and prototypes, testing programs and results are described. Basic quantitative and qualitative parameters of manufactured components and methods of quality control are presented. Critical manufacturing issues and prospects for unique production for future fusion needs are discussed.

  12. A new visible spectroscopy diagnostic for the JET ITER-like wall main chamber

    International Nuclear Information System (INIS)

    Maggi, C. F.; Brezinsek, S.; Stamp, M. F.; Griph, S.; Heesterman, P.; Hogben, C.; Horton, A.; Meigs, A.; Studholme, W.; Zastrow, K.-D.; Morlock, C.

    2012-01-01

    In preparation for ITER, JET has been upgraded with a new ITER-like wall (ILW), whereby the main plasma facing components, previously of carbon, have been replaced by mainly Be in the main chamber and W in the divertor. As part of the many diagnostic enhancements, a new, survey, visible spectroscopy diagnostic has been installed for the characterization of the ILW. An array of eight lines-of-sight (LOS) view radially one of the two JET neutral beam shine through areas (W coated carbon fibre composite tiles) at the inner wall. In addition, one vertical LOS views the solid W tile at the outer divertor. The light emitted from the plasma is coupled to a series of compact overview spectrometers, with overall wavelength range of 380–960 nm and to one high resolution Echelle overview spectrometer covering the wavelength range 365–720 nm. The new survey diagnostic has been absolutely calibrated in situ by means of a radiometric light source placed inside the JET vessel in front of the whole optical path and operated by remote handling. The diagnostic is operated in every JET discharge, routinely monitoring photon fluxes from intrinsic and extrinsic impurities (e.g., Be, C, W, N, and Ne), molecules (e.g., BeD, D 2 , ND) and main chamber and divertor recycling (typically Dα, Dβ, and Dγ). The paper presents a technical description of the diagnostic and first measurements during JET discharges.

  13. Design evolution and integration of the ITER in-vessel components

    International Nuclear Information System (INIS)

    Martin, A.; Calcagno, B.; Chappuis, Ph.; Daly, E.; Dellopoulos, G.; Furmanek, A.; Gicquel, S.; Heitzenroeder, P.; Jiming, Chen; Kalish, M.; Kim, D.-H.; Khomiakov, S.; Labusov, A.; Loarte, A.; Loughlin, M.; Merola, M.; Mitteau, R.; Polunovski, E.; Raffray, R.; Sadakov, S.

    2013-01-01

    Highlights: ► The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. ► A set of in-vessel vertical stabilization (VS) coils and a set of in-vessel Edge Localized Mode (ELM) control coils have been implemented. ► The blanket system has been redesigned to include first wall (FW) shaping, to upgrade the FW heat removal capability and to allow for an “in situ” replacement. ► The blanket manifold system has been redesigned to improve leak detection and localisation. ► The introduction of a new set of in-vessel coils and the design evolution of the blanket system while the ITER project was entering the procurement phase have proven to be a major engineering challenge. -- Abstract: The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. A set of in-vessel vertical stabilization (VS) coils and a set of in-vessel Edge Localized Mode (ELM) control coils have been implemented. The blanket system has been redesigned to include first wall (FW) shaping, to upgrade the FW heat removal capability and to allow for an “in situ” replacement. The blanket manifold system has been redesigned to improve leak detection and localisation. The introduction of a new set of in-vessel coils and the design evolution of the blanket system while the ITER project was entering the procurement phase have proven to be a major engineering challenge. This paper describes the status of the redesign of the in-vessel components and the associated integration issues

  14. Integration of ITER in-vessel diagnostic components in the vacuum vessel

    International Nuclear Information System (INIS)

    Encheva, A.; Bertalot, L.; Macklin, B.; Vayakis, G.; Walker, C.

    2009-01-01

    The integration of ITER in-vessel diagnostic components is an important engineering activity. The positioning of the diagnostic components must correlate not only with their functional specifications but also with the design of the major parts of ITER torus, in particular the vacuum vessel, blanket modules, blanket manifolds, divertor, and port plugs, some of which are not yet finally designed. Moreover, the recently introduced Edge Localised Mode (ELM)/Vertical Stability (VS) coils mounted on the vacuum vessel inner wall call for not only more than a simple review of the engineering design settled down for several years now, but also for a change in the in-vessel distribution of the diagnostic components and their full impact has yet to be determined. Meanwhile, the procurement arrangement (a document defining roles and responsibilities of ITER Organization and Domestic Agency(s) (DAs) for each in-kind procurement including technical scope of work, quality assurance requirements, schedule, administrative matters) for the vacuum vessel must be finalized. These make the interface process even more challenging in terms of meeting the vacuum vessel (VV) procurement arrangement's deadline. The process of planning the installation of all the ITER diagnostics and integrating their installation into the ITER Integrated Project Schedule (IPS) is now underway. This paper covers the progress made recently on updating and issuing the interfaces of the in-vessel diagnostic components with the vacuum vessel, outlines the requirements for their attachment and summarises the installation sequence.

  15. Armour Materials for the ITER Plasma Facing Components

    Science.gov (United States)

    Barabash, V.; Federici, G.; Matera, R.; Raffray, A. R.; ITER Home Teams,

    The selection of the armour materials for the Plasma Facing Components (PFCs) of the International Thermonuclear Experimental Reactor (ITER) is a trade-off between multiple requirements derived from the unique features of a burning fusion plasma environment. The factors that affect the selection come primarily from the requirements of plasma performance (e.g., minimise impurity contamination in the confined plasma), engineering integrity, component lifetime (e.g., withstand thermal stresses, acceptable erosion, etc.) and safety (minimise tritium and radioactive dust inventories). The current selection in ITER is to use beryllium on the first-wall, upper baffle and on the port limiter surfaces, carbon fibre composites near the strike points of the divertor vertical target and tungsten elsewhere in the divertor and lower baffle modules. This paper provides the background for this selection vis-à-vis the operating parameters expected during normal and off-normal conditions. The reasons for the selection of the specific grades of armour materials are also described. The effects of the neutron irradiation on the properties of Be, W and carbon fibre composites at the expected ITER conditions are briefly reviewed. Critical issues are discussed together with the necessary future R&D.

  16. Armour materials for the ITER plasma facing components

    International Nuclear Information System (INIS)

    Barabash, V.; Federici, G.; Matera, R.; Raffray, A.R.

    1999-01-01

    The selection of the armour materials for the plasma facing components (PFCs) of the international thermonuclear experimental reactor (ITER) is a trade-off between multiple requirements derived from the unique features of a burning fusion plasma environment. The factors that affect the selection come primarily from the requirements of plasma performance (e.g., minimise impurity contamination in the confined plasma), engineering integrity, component lifetime (e.g., withstand thermal stresses, acceptable erosion, etc.) and safety (minimise tritium and radioactive dust inventories). The current selection in ITER is to use beryllium on the first-wall, upper baffle and on the port limiter surfaces, carbon fibre composites near the strike points of the divertor vertical target and tungsten elsewhere in the divertor and lower baffle modules. This paper provides the background for this selection vis-a-vis the operating parameters expected during normal and off-normal conditions. The reasons for the selection of the specific grades of armour materials are also described. The effects of the neutron irradiation on the properties of Be, W and carbon fibre composites at the expected ITER conditions are briefly reviewed. Critical issues are discussed together with the necessary future R and D. (orig.)

  17. Testing of high heat flux components manufactured by ENEA for ITER divertor

    International Nuclear Information System (INIS)

    Visca, Eliseo; Escourbiac, F.; Libera, S.; Mancini, A.; Mazzone, G.; Merola, M.; Pizzuto, A.

    2009-01-01

    ENEA is involved in the International Thermonuclear Experimental Reactor (ITER) R and D activities and in particular in the manufacturing of high heat flux plasma-facing components, such as the divertor targets. During the last years ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and HIPping. A new manufacturing process that combines two main techniques PBC (Pre-Brazed Casting) and the HRP (Hot Radial Pressing) has been set up and widely tested. A full monoblock medium scale vertical target, having a straight CFC armoured part and a curved W armoured part, was manufactured using this process. The ultrasonic method was used for the non-destructive examinations performed during the manufacturing of the component, from the monoblock preparation up to the final mock-up assembling. The component was also examined by thermography on SATIR facility (CEA, France), afterwards it was thermal fatigue tested at FE200 (200 kW electron beam facility, CEA/AREVA France). The successful results of the thermal fatigue testing performed according the ITER requirements (10 MW/m 2 , 3000 cycles of 10 s on both CFC and W part, then 20/15 MW/m 2 , 2000 cycles of 10 s on CFC/W part, respectively) have confirmed that the developed process can be considerate a candidate for the manufacturing of monoblock divertor components. Furthermore, a 35-MW/m 2 Critical Heat Flux was measured at relevant thermal-hydraulics conditions at the end of the testing campaign. This paper reports the manufacturing route, the thermal fatigue testing results, the pre and post non-destructive examination and the destructive examination performed on the ITER vertical target medium scale mock-up. These activities were performed in the frame of EFDA contracts (04-1218 with CEA, 93-851 JN with AREVA and 03-1054 with ENEA).

  18. Effect of ITER components manufacturing cycle on the irradiation behaviour of 316L(N)-IG steel

    International Nuclear Information System (INIS)

    Rodchenkov, B.S.; Prokhorov, V.I.; Makarov, O.Yu.; Shamardin, V.K.; Kalinin, G.M.; Strebkov, Yu.S.; Golosov, O.A.

    2000-01-01

    The main options for the manufacturing of high heat flux (HHF) components is hot isostatic pressing (HIP) using either solid pieces or powder. There was no database on the radiation behaviour of these materials, and in particular stainless steel (SS) 316L(N)-IG with ITER components manufacturing thermal cycle. Irradiation of wrought steel, powder-HIP, solid-HIP and HIPed joints has been performed within the framework of an ITER task. Specimens cut from 316L(N)-IG plate, HIP products, and solid-HIP joints were irradiated in the SM-3 reactor in Dimitrovgrad up to 4 and 10 dpa at 175 deg. C and 265 deg. C. The paper describes the results of post-irradiation tensile and fracture toughness tests

  19. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    International Nuclear Information System (INIS)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10 -4 Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  20. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10{sup -4} Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  1. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    Science.gov (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  2. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M; Richou, M; Loarer, T; Riccardi, B; Gavila, P; Constans, S

    2011-01-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m - 2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m - 2 for the CFC-armoured tiles and 15 MW m - 2 for the W-armoured tiles, respectively.

  3. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    Science.gov (United States)

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  4. Design of the ITER Plasma-Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Merola, M.

    2009-07-01

    The ITER plasma-facing components cover an area of about 850 m{sup 2} and consist of the Divertor, the Blanket and the Test Blanket Modules (TBMs) with their corresponding frames. The Divertor is located at the bottom of the plasma chamber and is aimed at exhausting the major part of the plasma thermal power (including alpha power) and at minimizing the helium and impurity content in the plasma. It consists of 54 cassette assemblies. Each assembly has 3 plasma-facing components (PFCs), namely the inner and outer target and the dome, which are mounted onto a steel support structure, the cassette body. The targets directly intercept the magnetic field lines and are designed to withstand heat fluxes as high as 20 MW/m{sup 2}. CFC is the reference design solution for the armour of the lower part of the targets. However, the resultant high erosion rate could potentially limit machine operation in the DT phase (due to co-deposition with T). Therefore, prior to the DT phase, the divertor PFCs will be replaced with a new set entirely covered with W armour. The Divertor is a RH Class 1 component, which is planned to be replaced 3 times during the 20 years of the ITER operation. The construction phase of the ITER Divertor is being launched. The Blanket covers the largest fraction of the plasma-facing surface. Each of the 440 Blanket modules consists of a first wall (FW) panel, which is mechanically attached onto a Shield Module (SM). The design heat flux is set up to 1 or 5 MW/m{sup 2}. The FW panels are covered by Be tiles, which are joined onto a copper alloy (CuCrZr) heat sink, which is in turn intimately joined onto a 316L(N) stainless steel part. The SM is a block of 316L(N)-IG steel, where an array of cooling channels are obtained by machining and welding. The TBMs are mock-ups of DEMO breeding blankets. There are three ITER equatorial ports devoted to TBM testing, each of them allocating two TBMs, inserted in a thick steel frame. The frame is a water-cooled 316L

  5. Design, manufacture and initial operation of the beryllium components of the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Riccardo, V., E-mail: valeria.riccardo@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Lomas, P.; Matthews, G.F. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Nunes, I. [Associação EURATOM-IST, IPFN – Laboratório Associado, IST, Lisbon (Portugal); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Thompson, V. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Villedieu, E. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: ► 40 m{sup 2} of plasma facing surface covered with bulk Be re-using existing supports, designed for C-based tiles (hence for much lower disruption loads). ► Optimization of power handling to allow compatibility with higher (×1.5) and longer (×2) neutral beam power. ► Beryllium re-cycling. ► Machining and cleaning to ultra high vacuum standards of <350 μm thin castellations in Be. ► Quality control to minimize installation problems (proto-types, full scale jigs, inspections). -- Abstract: The aim of the JET ITER-like wall project was to provide JET with the plasma facing material combination now selected for the DT phase of ITER (bulk beryllium main chamber limiters and a full tungsten divertor) and, in conjunction with the upgraded neutral beam heating system, to achieve ITER relevant conditions. The design of the bulk Be plasma facing components had to be compatible with increased heating power and pulse length, as well as to reuse the existing tile supports originally designed to cope with disruption loads from carbon based tiles and be installed by remote handling. Risk reduction measures (prototypes, jigs, etc.) were implemented to maximize efficiency during the shutdown. However, a large number of clashes with existing components not fully captured by the configuration model occurred. Restarting the plasma on the ITER-like Wall proved much easier than for the carbon wall and no deconditioning by disruptions was observed. Disruptions have been more threatening than expected due to the reduced radiative losses compared to carbon, leaving most of the plasma magnetic energy to be conducted to the wall and requiring routine disruption mitigation. The main chamber power handling has achieved and possibly exceeded the design targets.

  6. Design, manufacture and initial operation of the beryllium components of the JET ITER-like wall

    International Nuclear Information System (INIS)

    Riccardo, V.; Lomas, P.; Matthews, G.F.; Nunes, I.; Thompson, V.; Villedieu, E.

    2013-01-01

    Highlights: ► 40 m 2 of plasma facing surface covered with bulk Be re-using existing supports, designed for C-based tiles (hence for much lower disruption loads). ► Optimization of power handling to allow compatibility with higher (×1.5) and longer (×2) neutral beam power. ► Beryllium re-cycling. ► Machining and cleaning to ultra high vacuum standards of <350 μm thin castellations in Be. ► Quality control to minimize installation problems (proto-types, full scale jigs, inspections). -- Abstract: The aim of the JET ITER-like wall project was to provide JET with the plasma facing material combination now selected for the DT phase of ITER (bulk beryllium main chamber limiters and a full tungsten divertor) and, in conjunction with the upgraded neutral beam heating system, to achieve ITER relevant conditions. The design of the bulk Be plasma facing components had to be compatible with increased heating power and pulse length, as well as to reuse the existing tile supports originally designed to cope with disruption loads from carbon based tiles and be installed by remote handling. Risk reduction measures (prototypes, jigs, etc.) were implemented to maximize efficiency during the shutdown. However, a large number of clashes with existing components not fully captured by the configuration model occurred. Restarting the plasma on the ITER-like Wall proved much easier than for the carbon wall and no deconditioning by disruptions was observed. Disruptions have been more threatening than expected due to the reduced radiative losses compared to carbon, leaving most of the plasma magnetic energy to be conducted to the wall and requiring routine disruption mitigation. The main chamber power handling has achieved and possibly exceeded the design targets

  7. Manufacturing studies of double wall components for the ITER EC H and CD upper launcher

    International Nuclear Information System (INIS)

    Spaeh, P.; Aiello, G.; Goldmann, A.; Kleefeldt, K.; Kroiss, A.; Meier, A.; Obermeier, C.; Scherer, T.; Schreck, S.; Serikov, A.; Strauss, D.; Vaccaro, A.

    2012-01-01

    Highlights: ► Double wall manufacturing technologies for ITER In-vessel components. ► Rigid and safe accommodation of ECRH heating and current drive systems. ► Thermo hydraulic analysis of coolant flow in double-wall structures. - Abstract: To counteract plasma instabilities, Electron Cyclotron Launchers will be installed in four of the ITER Upper Ports. The structural system of an EC Upper Launcher accommodates the MM-wave-components and has to meet strong demands on alignment, removal of nuclear heat loads, mechanical strength and nuclear shielding. The EC Upper Launcher has successfully undergone the Preliminary Design Review in 2009 and is now in the final design phase. Nuclear heat loads from 0.1 W/cm 3 up to 0.8 W/cm 3 will affect the front area of the launcher main frame. To guarantee save and homogenous removal of those heat loads, the front part of the launcher main frame is designed as a double wall steel-casing with cooling channels inside the shell structure. To finalize the design of this double wall component, the main emphasis is now to define the cooling channels geometry and to identify the optimum manufacturing route to assure adequate flow of coolant and sufficient mechanical strength in compliance with required dimension tolerances and quality of the welds. Several manufacturing options have been investigated and were evaluated by computational analysis and fabrication of pre-prototypes. To come to a final design, the most promising route will be chosen to manufacture a full-size mock-up of the double wall main frame. It will be tested at the KIT Launcher Handling Test facility to check the compliance with the design goals related to geometrical accuracy and thermo-hydraulic characteristics. This paper describes the design and the manufacturing routes of the prototypic double wall main frame.

  8. Manufacturing studies of double wall components for the ITER EC H and CD upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Spaeh, P., E-mail: peter.spaeh@kit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, G. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Goldmann, A. [MAN Diesel and Turbo, D-94452 Deggendorf, P.O. Box 3640, D-76021 Karlsruhe (Germany); Kleefeldt, K. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Kroiss, A. [MAN Diesel and Turbo, D-94452 Deggendorf, P.O. Box 3640, D-76021 Karlsruhe (Germany); Meier, A. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Obermeier, C. [MAN Diesel and Turbo, D-94452 Deggendorf, P.O. Box 3640, D-76021 Karlsruhe (Germany); Scherer, T.; Schreck, S. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Serikov, A. [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Strauss, D.; Vaccaro, A. [Institute for Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Double wall manufacturing technologies for ITER In-vessel components. Black-Right-Pointing-Pointer Rigid and safe accommodation of ECRH heating and current drive systems. Black-Right-Pointing-Pointer Thermo hydraulic analysis of coolant flow in double-wall structures. - Abstract: To counteract plasma instabilities, Electron Cyclotron Launchers will be installed in four of the ITER Upper Ports. The structural system of an EC Upper Launcher accommodates the MM-wave-components and has to meet strong demands on alignment, removal of nuclear heat loads, mechanical strength and nuclear shielding. The EC Upper Launcher has successfully undergone the Preliminary Design Review in 2009 and is now in the final design phase. Nuclear heat loads from 0.1 W/cm{sup 3} up to 0.8 W/cm{sup 3} will affect the front area of the launcher main frame. To guarantee save and homogenous removal of those heat loads, the front part of the launcher main frame is designed as a double wall steel-casing with cooling channels inside the shell structure. To finalize the design of this double wall component, the main emphasis is now to define the cooling channels geometry and to identify the optimum manufacturing route to assure adequate flow of coolant and sufficient mechanical strength in compliance with required dimension tolerances and quality of the welds. Several manufacturing options have been investigated and were evaluated by computational analysis and fabrication of pre-prototypes. To come to a final design, the most promising route will be chosen to manufacture a full-size mock-up of the double wall main frame. It will be tested at the KIT Launcher Handling Test facility to check the compliance with the design goals related to geometrical accuracy and thermo-hydraulic characteristics. This paper describes the design and the manufacturing routes of the prototypic double wall main frame.

  9. VDE/disruption EM analysis for ITER in-vessel components

    International Nuclear Information System (INIS)

    Miki, N.; Ioki, K.; Ilio, F.; Kodama, T.; Chiocchio, S.; Williamson, D.; Roccella, M.; Barabaschi, P.; Sayer, R.S.

    1998-01-01

    This paper summarises the results of EM analyses for ITER in-vessel components, such as blanket modules, backplate and divertor modules. In the ITER design the following two disruption scenarios are taken into account: centered or radial disruption, and vertical displacement event (VDE). Eddy currents and forces due to plasma disruption were calculated using the 3D shell element code EDDYCUFF and the 3D solid element code EMAS. The plasma motion and current decay used in the EM analysis was supplied by 2-D axisymmetric plasma equilibrium codes, TSC and MAXFEA. (authors)

  10. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1998-01-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  11. Remote maintenance development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shibanuma, Kiyoshi

    1998-04-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  12. Principal components and iterative regression analysis of geophysical series: Application to Sunspot number (1750 2004)

    Science.gov (United States)

    Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.

    2008-11-01

    We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.

  13. Materials challenges for ITER - Current status and future activities

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, V. [ITER International Team, Boltsmannstrasse 2, 85748 Garching (Germany)]. E-mail: valdimir.barabash@iter.org; Peacock, A. [EFDA Close Support Unit, 85748 Garching (Germany); Fabritsiev, S. [D.V. Efremov Scientific Research Institute, 196641 St. Petersburg (Russian Federation); Kalinin, G. [ENES, P.O. Box 788, 101000 Moscow (Russian Federation); Zinkle, S. [Metals and Ceramics Division, ORNL, P.O. Box 2008, Oak Ridge, TN 37831-6138 (United States); Rowcliffe, A. [Metals and Ceramics Division, ORNL, P.O. Box 2008, Oak Ridge, TN 37831-6138 (United States); Rensman, J.-W. [NRG, P.O. Box 25, 1755 ZG Petten (Netherlands); Tavassoli, A.A. [Commissariat a l' Energie Atomique, CEA/Saclay, 91191 Gif sur Yvette cedex (France); Marmy, P. [CRPP, EPFL, Association EURATOM-Confederation Suisse, 5232, Villigen PSI (Switzerland); Karditsas, P.J. [EURATOM/UKAEA Fusion Association, Abingdon, Oxon OX14 3DB (United Kingdom); Gillemot, F. [AEKI Atomic Research Institute, 1121 Budapest, (Hungary); Akiba, M. [JAEA, Naka-machi, Naka-gun, Ibaraki-ken 311-0193 (Japan)

    2007-08-01

    ITER will be the first experimental fusion facility, which brings together the key physical, material and technological issues related to development of fusion reactors. The design of ITER is complete and the construction will start soon. This paper discusses the main directions of the project oriented materials activity and main challenges related to selection of materials for the ITER components. For each application in ITER the main materials issues were identified and these issues were addressed in the dedicated ITER R and D program. The justification of materials performance was fully documented, which allows traceability and reliability of design data. Several examples are given to illustrate the main achievements and recommendations from the recently updated ITER Materials Properties Handbook. The main ongoing and future materials activities are described.

  14. Seismic Design of ITER Component Cooling Water System-1 Piping

    Science.gov (United States)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  15. Supply of a prototype component for the ITER divertor baffle

    International Nuclear Information System (INIS)

    Bobin-Vastra, I.; Febvre, M.; Schedler, B.; Ploechl, L.; Bouveret, Y.; Cauvin, D.; Raisson, G.; Merola, M.

    2001-01-01

    The ITER divertor baffle is one of the Plasma facing components which are developed in the frame of the ITER concept. The supply consisted in the manufacturing of four panels with four First Wall geometries using macroblock or heat sink+armour concepts. DS-Copper, and CuCrZr were the materials for the heat sink, and CFC or Tungsten Plasma spray were the armour. The panels included two Copper-based tubes each. The final purpose is the comparison of the fabricability of each type and the performances of each panel under heat fluxes

  16. An operational non destructive examination for ITER divertor plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Durocher, A.; Escourbiac, F.; Farjon, J.L.; Vignal, N.; Cismondi, F. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Merola, M. [ITER International Team, Cadarache, 13 - St Paul Lez Durance (France); Riccardi, B. [CEFDA CSU-Garching, Garching bei Munchen (Germany)

    2007-07-01

    Full text of publication follows: To meet the power exhaust - heat flux of 20 MW/m{sup 2} - requirements of Plasma Facing Components (PFCs) during plasma operation requires control of their thermal and mechanical integrity. As heat exhaust capability and lifetime of PFCs during in-situ operation are linked to the manufacturing quality, it is an absolute requirement to develop reliable nondestructive examination methods, in particular of the CFC-CuCrZr joint, throughout the manufacturing process. Within the framework of Tokamak Tore Supra upgrade, a pioneering activity has been developed to evaluate the capability of the PFC to be efficiently cooled. In 1998 a test bed - so called SATIR - based on the heat transient method was developed by the CEA and is used today as an inspection tool in order to guarantee the PFCs performances. The technical procurement plan of ITER Divertor targets stated that all Cu cast layers on CFC armour should be subjected to 100% thermographic examination. Each ITER Party should demonstrate its technical capability to carry out the PFC with the required cooling efficiently. The ITER Divertor PFCs pose new challenges especially for the mono-block CFC thickness, and the number of full scale units to be tested which is higher than on any existing or under construction fusion machine. The SATIR method as functional inspection has been identified as the basis test to decide upon the final acceptance of the Divertor PFCs. In order to increase the detection sensitivity of SATIR test bed, several possibilities have been assessed i) the increase of the convective heat transfer coefficient, which improved in a significant way the sensitivity of SATIR diagnostic on ITER components. ii) the installation of a digital infrared camera and the improvement of the thermal signal processing, has led to a considerable increase of performances iii) an innovative process based on spatial image autocorrelation will allow to localize the interlayer defect

  17. The ITER Management Advisory Committee (MAC) meeting in Garching

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    1999-01-01

    The ITER management advisory committee meeting was held on 22-23 July 1999 in Garching, Germany. The main topics were the ITER EDA status, task status summary and work program, joint fund, information technology needs at the ITER joint work sites, the disposition of R and D components and a schedule of ITER meetings

  18. Assessment and selection of materials for ITER in-vessel components

    Science.gov (United States)

    Kalinin, G.; Barabash, V.; Cardella, A.; Dietz, J.; Ioki, K.; Matera, R.; Santoro, R. T.; Tivey, R.; ITER Home Teams

    2000-12-01

    During the international thermonuclear experimental reactor (ITER) engineering design activities (EDA) significant progress has been made in the selection of materials for the in-vessel components of the reactor. This progress is a result of the worldwide collaboration of material scientists and industries which focused their effort on the optimisation of material and component manufacturing and on the investigation of the most critical material properties. Austenitic stainless steels 316L(N)-IG and 316L, nickel-based alloys Inconel 718 and Inconel 625, Ti-6Al-4V alloy and two copper alloys, CuCrZr-IG and CuAl25-IG, have been proposed as reference structural materials, and ferritic steel 430, and austenitic steel 304B7 with the addition of boron have been selected for some specific parts of the ITER in-vessel components. Beryllium, tungsten and carbon fibre composites are considered as plasma facing armour materials. The data base on the properties of all these materials is critically assessed and briefly reviewed in this paper together with the justification of the material selection (e.g., effect of neutron irradiation on the mechanical properties of materials, effect of manufacturing cycle, etc.).

  19. Beryllium assessment and recommendation for application in ITER plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, V.; Tanaka, S.; Matera, R. [ITER Joint Central Team, Muenchen (Germany)

    1998-01-01

    The design status of the ITER Plasma Facing Components (PFC) is presented. The operational conditions of the armour material for the different components are summarized. Beryllium is the reference armour material for the Primary Wall, Baffle and Limiter and the back-up material for the Divertor Dome. The activities on the selection of the Be grades and the joining technologies are reviewed. (author)

  20. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it; Pasqualotto, R.; Spagnolo, S.; Spolaore, M. [Consorzio RFX, Padova 35127 (Italy); Sartori, E. [Consorzio RFX, Padova 35127 (Italy); Università degli Studi di Padova, Padova 35122 (Italy); Veltri, P. [Consorzio RFX, Padova 35127 (Italy); INFN-LNL, Legnaro (PD) 35020 (Italy)

    2016-11-15

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  1. ITER vacuum vessel, in vessel components and plasma facing materials

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Enoeda, M.; Federici, G.

    2007-01-01

    Design of the NB ports including duct liners under heat loads of the neutral beams has been developed. Design of the in-wall shielding has been developed in more details considering the supporting structure and the assembly method. The ferromagnetic inserts have previously not been installed in the outboard midplane region due to irregularity caused by the tangential ports for NB injection. Due to this configuration, the maximum ripple is relatively large (∝1 %) in a limited region of the plasma and the toroidal field flux lines fluctuate ∝10 mm in the FW region. To avoid these problems, additional ferromagnetic inserts are to be installed in the equatorial port region. Detailed studies were carried out on the ITER vacuum vessel to define appropriate codes and standards in the context of the ITER licensing in France. A set of draft documents regarding the ITER vacuum vessel structural code were prepared including an RCC-MR Addendum for the ITER VV with justified exceptions or modifications. The main deviation from the base Code is the extensive use of UT in lieu of radiography for the volumetric examination of all one-side access welds of the outer shell and field joint. The procurement allocation of blanket modules among 6 parties was fixed and the blanket module design has progressed in cooperation with parties. Fabrication of mock-ups for prequalification testing is under way and the tests will be performed in 2007-2008. Development of new beryllium materials is progressing in China and Russia. The ITER limiters will be installed in equatorial ports at two toroidal locations. The limiter plasma-facing surface protrudes ∝8 cm from the FW during the start-up and shutdown phase. In the new limiter concept, the limiters are retracted by ∝8 cm during the plasma flat top phase. This concept gives important advantages; (i) mitigation of the particle and heat loads due to disruptions, ELMs and blobs, (ii) improvement of the power coupling with the ICRH antenna

  2. Safety characteristics of options for plasma-facing components for ITER and beyond

    International Nuclear Information System (INIS)

    Piet, S.J.; McCarthy, K.A.; Holland, D.F.; Longhurst, G.R.; Merrill, B.J.

    1991-01-01

    Plasma-facing components (PFC) likely dominate the safety hazards of the International Thermonuclear Experimental Reactor (ITER) and post-ITER machines. To gain regulatory approval and for fusion energy to fulfill its ultimate attractive safety and environmental potential, safety must be considered when selecting among PFC options. This paper summarizes current PFC safety information. PFC safety issues fall into seven areas: disruption tolerance, disruption severity, tritium inventory and permeation, accidental energy release, activation/toxin hazards, cooling disturbances, and system issues. RFC options include current ITER mainline options (Be or W coating, C tiles), variants on current ITER options, and liquid metal (LM) divertors. No PFC option that we have examined is free of critical safety concerns. There are also innovative ideas that may improve any PFC's performance -- super-permeable vacuum ducts, helium self-pumping, and gaseous divertors. We conclude with recommendations and a future strategy. 17 refs., 1 fig., 3 tabs

  3. Millimetre wave attenuation of prototype diagnostic components for the ITER bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Meister, H., E-mail: meister@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Kasparek, W. [Universität Stuttgart, Institut für Grenzflächenverfahrenstechnik & Plasmatechnologie, Stuttgart (Germany); Zhang, D.; Hirsch, M. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Greifswald (Germany); Koll, J. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Zeitler, A. [Universität Stuttgart, Institut für Grenzflächenverfahrenstechnik & Plasmatechnologie, Stuttgart (Germany)

    2015-10-15

    Highlights: • Attenuation of ECRH stray radiation in ITER demonstrated for bolometer prototypes. • Collimator with microwave reflecting grid achieves >70 dB at 170 GHz (ITER frequency). • For frequencies >250 GHz (ECE radiation) ceramic coating showed 40 dB attenuation. • Good shielding at joints of components is prerequisite to prevent microwave leakage. • These methods prevent the impact of ECRH stray radiation on bolometer measurements. - Abstract: Bolometers in current and future fusion devices, in particular those in ITER, are vulnerable to stray radiation from electron cyclotron resonance heating (ECRH) which results in measurement errors for plasma radiation detection. To protect the detectors from this stray radiation in the millimetre wavelength range, dedicated diagnostic components have been designed and tested. One option is to place a top plate which contains a microwave-reflecting grid onto the collimators. Another option investigated is the coating of the collimator channels using a microwave absorbing ceramic. Measurements of the mm-wave attenuation of the collimator in front of the bolometer detectors with and without top plate or coated collimator channels have been performed in the frequency range of 125–420 GHz. The attenuation factor of the collimator channels at 170 GHz (the ECRH frequency for ITER) with neither microwave grid nor coating is typically 10 dB. The coating enhances this to 40 dB and including the microwave grid yields at least an attenuation factor of 70 dB, which is sufficient to reduce the residual ECRH induced signal significantly below the one due to plasma radiation. Placing a bolometer camera (collimator connected to detector housing) inside the isotropic microwave field of the test facility MISTRAL, the attenuation factor of the full diagnostic set-up using a top plate was determined to be in the order of 45 dB. This degraded attenuation implies that particular attention has to be paid to design and quality

  4. Structural materials for ITER in-vessel component design

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Gauster, W. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Matera, R. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Tavassoli, A.-A.F. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Rowcliffe, A. [Oak Ridge National Lab., TN (United States); Fabritsiev, S. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Kawamura, H. [JAERI, IMTR Project, Ibaraki (Japan). Blanket Irradiation Lab.

    1996-10-01

    The materials proposed for ITER in-vessel components have to exhibit adequate performance for the operating lifetime of the reactor or for specified replacement intervals. Estimates show that maximum irradiation dose to be up to 5-7 dpa (for 1 MWa/m{sup 2} in the basic performance phase (BPP)) within a temperature range from 20 to 300 C. Austenitic SS 316LN-ITER Grade was defined as a reference option for the vacuum vessel, blanket, primary wall, pipe lines and divertor body. Conventional technologies and mill products are proposed for blanket, back plate and manifold manufacturing. HIPing is proposed as a reference manufacturing method for the primary wall and blanket and as an option for the divertor body. The existing data show that mechanical properties of HIPed SS are no worse than those of forged 316LN SS. Irradiation will result in property changes. Minimum ductility has been observed after irradiation in an approximate temperature range between 250 and 350 C, for doses of 5-10 dpa. In spite of radiation-induced changes in tensile deformation behavior, the fracture remains ductile. Irradiation assisted corrosion cracking is a concern for high doses of irradiation and at high temperatures. Re-welding is one of the critical issues because of the need to replace failed components. It is also being considered for the replacement of shielding blanket modules by breeding modules after the BPP. (orig.).

  5. Involvement of the EU industry in ITER EDA

    International Nuclear Information System (INIS)

    Bogusch, E.

    2001-01-01

    Since the fifties, European industry has been involved in research and development in the field of nuclear fusion as a potential future source of energy. Early contributions mainly included deliveries of plant components and services to experimental facilities. In the Engineering Design Activities (EDA) phase of the planned multinational International Thermonuclear Experimental Reactor (ITER) in 1993 to 2001 this commitment of industry was intensified. Industries from seven European countries participated in the project with various contributions, e.g., in the development, design, and manufacture of components, and in the development of methods of planning and executing the complex ITER project. These activities were accompanied by an extensive R and D program. e.g., about materials and methods of manufacturing ITER components. In this way, European industry made an important contribution to the further development of nuclear fusion within the framework of ITER EDA activities, and will be able to continue this work intensively in the expected ITER construction phase to follow. (orig.) [de

  6. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.; Geli, F.; Graceffa, J.; Urbani, M.; Schunke, B.; Chareyre, J. [ITER Organisation, 13607 St. Paul-Lez-Durance Cedex (France); Dlougach, E.; Krylov, A. [RRC Kurchatov institute, 1, Kurchatov Sq, Moscow, 123182 (Russian Federation)

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths results in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER

  7. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1997-01-01

    This paper both describes the overall design concept of the ITER remote maintenance system, which has been developed mainly for use with in-vessel components such as divertor and blanket, and outlines of the ITER R and D program, which has been established to develop remote handling equipment/tools and radiation hard components. In ITER, the reactor structures inside cryostat have to be maintained remotely because of activation due to DT operation. Therefore, remote-handling technology is fundamental, and the reactor-structure design must be made consistent with remote maintainability. The overall maintenance scenario and design concepts of the required remote handling equipment/tools have been developed according to their maintenance classification. Technologies are also being developed to verify the feasibility of the maintenance design and include fabrication and testing of a fullscale remote-handling equipment/tools for in-vessel maintenance. (author)

  8. ITER, a major step toward nuclear fusion energy; ITER, une etape majeure vers l'energie de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Holtkamp, N.; Pick, M.; Gauche, F.; Garin, P.; Bigot, B.; Luciani, J.F.; Mougniot, J.C.; Watteau, J.P.; Saoutic, B.; Becoulet, A.; Libeyre, P.; Beaumont, B.; Simonin, A.; Giancarli, L.; Rosenvallon, S.; Gastaldi, O.; Marbach, G.; Boudot, C.; Ioki, K.; Mitchell, N.; Girard, J.Ph.; Giraud, B.; Lignini, F.; Giguet, E.; Bofusch, E.; Friconneau, J.P.; Di Pace, L.; Pampin, R.; Cook, I.; Maisonnier, D.; Campbell, D.; Hayward, J.; Li Puma, A.; Norajitra, P.; Sardain, P.; Tran, M.Q.; Ward, D.; Moslang, A.; Carre, F.; Serpantie, J.P

    2007-01-15

    This document gathers together a series of articles dedicated to ITER. They are organized into 5 parts. The first part describes the potential of fusion as a source of energy that will be able to face the challenge of a continuously increasing demand. After a reminder of the main fusion reactions and the conditions to obtain fusion, the second part focuses on the magnetic fusion based concepts with a special emphasis on the tokamak configuration. In the third part the main components of ITER are described: first the plasma facing components, then the vacuum vessel, the superconducting magnets and the heating systems. In the fourth part short papers concerning ITER safety, the maintenance through remote handling systems, the tritium breeding blanket, are given, along with a full article on the waste management. It is interesting to notice that the nuclear wastes will represent: -) between 1600 and 3800 tons of housekeeping and process wastes produced during the 20 years of operation of ITER (20% very low level waste, 75% low or medium activity with short life and 5% medium activity with long life), -) about 750 tons from component replacement during ITER active operation, and -) about 30000 tons from the decommissioning of ITER. The last part presents the European concepts for a power plant based on a fusion reactor. A basic design is given along with a state of the art of the research on the materials that will be used for the structures. It is highlighted that synergies between fission and fusion technologies exist in at least 4 areas: nuclear design code system, high temperature materials, safety approach, and in-service inspection, maintenance and dismantling. (A.C.)

  9. Design of the ITER Tokamak Assembly Tools

    International Nuclear Information System (INIS)

    Park, Hyunki; Her, Namil; Kim, Byungchul; Im, Kihak; Jung, Kijung; Lee, Jaehyuk; Im, Kisuk

    2006-01-01

    ITER (International Thermonuclear Experimental Reactor) Procurement allocation among the seven Parties, EU, JA, CN, IN , KO, RF and US had been decided in Dec. 2005. ITER Tokamak assembly tools is one of the nine components allocated to Korea for the construction of the ITER. Assembly tools except measurement and common tools are supplied to assemble the ITER Tokamak and classified into 9 groups according to components to be assembled. Among the 9 groups of assembly tools, large-sized Sector Sub-assembly Tools and Sector Assembly Tools are used at the first stage of ITER Tokamak construction and need to be designed faster than seven other assembly tools. ITER IT (International Team) proposed Korea to accomplish ITA (ITER Transitional Arrangements) Task on detailed design, manufacturing feasibility and contract specification of specific, large sized tools such as Upending Tool, Lifting Tool, Sector Sub-assembly Tool and Sector Assembly Tool in Oct. 2004. Based on the concept design by ITER IT, Korea carried out ITA Task on detailed design of large-sized and specific Sector Sub-assembly and Sector Assembly Tools until Mar. 2006. The Sector Sub-assembly Tools mainly consist of the Upending, Lifting, Vacuum Vessel Support and Bracing, and Sector Sub-assembly Tool, among which the design of three tools are herein. The Sector Assembly Tools mainly consist of the Toroidal Field (TF) Gravity Support Assembly, Sector In-pit Assembly, TF Coil Assembly, Vacuum Vessel (VV) Welding and Vacuum Vessel Thermal Shield (TS) Assembly Tool, among which the design of Sector In-pit Assembly Tool is described herein

  10. ITER driver blanket, European Community design

    International Nuclear Information System (INIS)

    Simbolotti, G.; Zampaglione, V.; Ferrari, M.; Gallina, M.; Mazzone, G.; Nardi, C.; Petrizzi, L.; Rado, V.; Violante, V.; Daenner, W.; Lorenzetto, P.; Gierszewski, P.; Grattarola, M.; Rosatelli, F.; Secolo, F.; Zacchia, F.; Caira, M.; Sorabella, L.

    1993-01-01

    Depending on the final decision on the operation time of ITER (International Thermonuclear Experimental Reactor), the Driver Blanket might become a basic component of the machine with the main function of producing a significant fraction (close to 0.8) of the tritium required for the ITER operation, the remaining fraction being available from external supplies. The Driver Blanket is not required to provide reactor relevant performance in terms of tritium self-sufficiency. However, reactor relevant reliability and safety are mandatory requirements for this component in order not to significantly afftect the overall plant availability and to allow the ITER experimental program to be safely and successfully carried out. With the framework of the ITER Conceptual Design Activities (CDA, 1988-1990), a conceptual design of the ITER Driver Blanket has been carried out by ENEA Fusion Dept., in collaboration with ANSALDO S.p.A. and SRS S.r.l., and in close consultation with the NET Team and CFFTP (Canadian Fusion Fuels Technology Project). Such a design has been selected as EC (European Community) reference design for the ITER Driver Blanket. The status of the design at the end of CDA is reported in the present paper. (orig.)

  11. Structural analysis of the ITER Divertor toroidal rails

    Energy Technology Data Exchange (ETDEWEB)

    Viganò, F., E-mail: Fabio.Vigano@LTCalcoli.it [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Escourbiac, F.; Gicquel, S.; Komarov, V. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Lucca, F. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Merola, M. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Ngnitewe, R. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy)

    2013-10-15

    The Divertor is one of the most technically challenging components of the ITER machine, which has the main function of extracting the power conducted in the scrape-off layer while maintaining the plasma purity. There are 54 Divertor cassettes installed in the vacuum vessel (VV). Each cassette body (CB) is fastened on the inner and outer concentric Divertor toroidal rails. The comprehensive assessment (in accordance with the Structural Design Criteria for ITER In-vessel Components: ITER SDC-IC) of the Divertor toroidal rails has been performed during design activity based on performing of thermal and stress analyses at operating conditions of neutron stage of ITER operation. This paper outlines the engineering aspects of the ITER Divertor toroidal rails and focuses on some critical regions of the present design highlighted by the performed structural assessment. The structural assessment has been performed with help of using Finite Element (FE) Abaqus code and based on criteria given by ITER SDC-IC.

  12. Magnetic field compatibility of components for ITER electrical distribution systems

    International Nuclear Information System (INIS)

    Hourtoule, J.; Van Houtte, D.; Hertout, P.; Fejoz, P.

    2004-01-01

    The electrical distribution boards and control cubicles, installed inside the ITER Tokamak building, can be subject to a constant or slowly variable magnetic field up to 70 mT, 10 mT/s induced by ITER coils. This is a very unusual environmental condition and there are almost no data available on static magnetic field compatibility for the standard industrial electrical and electronic components that might be used inside standard low voltage distribution boards and standard control boards. CEA has especially taken in charge the test of electronic, control and signal conditioning units. For this purpose a test bed composed of a solenoid and a 30 V, 800 A power supply, has been developed at CEA Cadarache. Its characteristics are the following: - Magnetic field capability: 40 mT; - Variation of field: up to 10 mT/s. Useful dimensions for equipment under test: 500 x 500 x 500 mm. The list of the components to be tested has been identified trying to find common and recent components of different manufacturers. Test procedures have been written following the most relevant IEC standards and manufacturing recommendations and procedures. Magnetic compatibility tests on the basic components of standard low voltage control boards has been performed. All components tested are more or less sensitive to magnetic fields and the effect varies from the simple perturbation of the output signals to the partial destruction of some electronic card. The most sensitive are the ferromagnetic components like small power supplies transformers, relays, on inductors. For power supplies the most important consequence is the increase of the consumption (primary current). For most of the conditioning units the operational limits were found in the range of 30 mT (destruction of materials and overload of the supply) For PLC (Programme Logic Control) central units tested, the limit is in the order of 40 mT (components permanently out of service) Relays are limited to 15 mT (outputs oscillations, no

  13. Maintenance implications of critical components in ITER CXRS upper port plug design

    International Nuclear Information System (INIS)

    Koning, Jarich; Jaspers, Roger; Doornink, Jan; Ouwehand, Bernard; Klinkhamer, Friso; Snijders, Bart; Sadakov, Sergey; Heemskerk, Cock

    2009-01-01

    Already in the early phase of a design for ITER, the maintenance aspects should be taken into account, since they might have serious implications. This paper presents the arguments in support of the case for the maintainability of the design, notably if this maintenance is to be performed by advanced remote methods. This structure is compliant to the evolving maintenance strategy of ITER. Initial results of a Failure Mode Effects and Criticality Analysis (FMECA) and a development risk analysis for the ITER upper port plug no. 3, housing the Charge Exchange Recombination Spectroscopy (CXRS) diagnostic, are employed for the definition of the maintenance strategy. The CXRS upper port plug is essentially an optical system which transfers visible light from the plasma into a fiber bundle. The most critical component in this path is the first mirror (M1) whose reflectivity degrades during operation due to deposition and/or erosion dominated effects. Amongst other measures to mitigate these effects, the strategy is to allow for a replacement of this mirror. Therefore it is mounted on a retractable central tube. The main purpose of this tube is to make frequent replacements possible without hindering operation. The maintenance method in terms of time, geometry and spare part policy has a large impact on cost of the system and time usage in the hot cell. Replacement of the tube under vacuum and magnetic field seems infeasible due to the operational risk involved. The preferred solution is to have a spare tube available which is replaced in parallel with other maintenance operations on the vessel, as to avoid any interference in the hot cell with the shutdown scheduling. This avoids having to refurbish a full port plug and also allows for a more frequent replacement of M1, as we can replace the mirror anytime the vacuum vessel is vented, estimated to be once a year.

  14. The WEST project: Current status of the ITER-like tungsten divertor

    International Nuclear Information System (INIS)

    Missirlian, M.; Bucalossi, J.; Corre, Y.; Ferlay, F.; Firdaouss, M.; Garin, P.; Grosman, A.; Guilhem, D.; Gunn, J.; Languille, P.; Lipa, M.; Richou, M.; Tsitrone, E.

    2014-01-01

    Highlights: • We presented the ITER-like W components occurred for the WEST divertor. • The main features including key elements of the design were detailed. • The main results of studies investigating the integration constraints or issues were reported. • The WEST ITER-like divertor design reached a mature stage to enable the launching of the procurement phase. - Abstract: The WEST (W – for tungsten – Environment in Steady-state Tokamak) project is an upgrade of Tore Supra from a limiter based tokamak with carbon PFCs into an X-point divertor tokamak with full-tungsten armour while keeping its long discharge capability. The WEST project will primarily offer the key capability of testing for the first time the ITER technology in real plasma environment. In particular, the main divertor (i.e. the lower divertor) of the WEST project will be based on actively cooled tungsten monoblock components and will follow as closely as possible the design and the assembling technology, foreseen for the ITER divertor units. The current design of WEST ITER-like tungsten divertor has now reached a mature stage following the 2013 WEST Final Design Review. This paper presents the key elements of the design, reports the technological requirements and reviews the main design and integration issues

  15. The WEST project: Current status of the ITER-like tungsten divertor

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr; Bucalossi, J.; Corre, Y.; Ferlay, F.; Firdaouss, M.; Garin, P.; Grosman, A.; Guilhem, D.; Gunn, J.; Languille, P.; Lipa, M.; Richou, M.; Tsitrone, E.

    2014-10-15

    Highlights: • We presented the ITER-like W components occurred for the WEST divertor. • The main features including key elements of the design were detailed. • The main results of studies investigating the integration constraints or issues were reported. • The WEST ITER-like divertor design reached a mature stage to enable the launching of the procurement phase. - Abstract: The WEST (W – for tungsten – Environment in Steady-state Tokamak) project is an upgrade of Tore Supra from a limiter based tokamak with carbon PFCs into an X-point divertor tokamak with full-tungsten armour while keeping its long discharge capability. The WEST project will primarily offer the key capability of testing for the first time the ITER technology in real plasma environment. In particular, the main divertor (i.e. the lower divertor) of the WEST project will be based on actively cooled tungsten monoblock components and will follow as closely as possible the design and the assembling technology, foreseen for the ITER divertor units. The current design of WEST ITER-like tungsten divertor has now reached a mature stage following the 2013 WEST Final Design Review. This paper presents the key elements of the design, reports the technological requirements and reviews the main design and integration issues.

  16. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10 6 R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  17. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan)] [and others

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10{sup 6} R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  18. Solutions to mitigate heat loads due to electrons on sensitive components of ITER HNB beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Emanuele, E-mail: emanuele.sartori@gmail.com [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Veltri, Pierluigi; Dalla Palma, Mauro; Agostinetti, Piero [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy); Hemsworth, Ronald; Singh, Mahendrajit [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Serianni, Gianluigi [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), C.so Stati Uniti 4, 35127 Padova (Italy)

    2016-11-01

    Highlights: • Energetic electrons leaking out of the ITER HNB accelerator are simulated. • Electrons generated along the ITER HNB beamline are simulated. • Heat loads and heat load maps on cryopumps are calculated for ITER HNB and test facility. • Protection solutions that will be installed are presented and their effect discussed. - Abstract: The operation of neutral beam injectors for plasma heating and current drive in a fusion device provides challenges in the thermal management of beamline components. Sensitive components such as the cryogenic pumps at beamline periphery shall be protected from the heat flux due to stray electrons. These are emitted by the negative ion accelerator or generated along the beamline by interaction of fast electrons, ions or atoms with background gas and surfaces. In this article the case of the ITER Heating Neutral Beam (HNB) and its test facility MITICA is discussed, for which the beam parameters and the required pulse length of one hour is a major leap forward with respect to the present experience with neutral beam systems. The engineering solutions adopted for effective cryopump protection against the heat load from electrons are described. The use of three-dimensional numerical simulations of particle trajectories in the complex geometry of the beamline was needed for the quantitative estimations of the heat loads. The presented solutions were optimized to minimize the impact on gas pumping and on the functionality of other components.

  19. ITER, a major step toward nuclear fusion energy

    International Nuclear Information System (INIS)

    Ikeda, K.; Holtkamp, N.; Pick, M.; Gauche, F.; Garin, P.; Bigot, B.; Luciani, J.F.; Mougniot, J.C.; Watteau, J.P.; Saoutic, B.; Becoulet, A.; Libeyre, P.; Beaumont, B.; Simonin, A.; Giancarli, L.; Rosenvallon, S.; Gastaldi, O.; Marbach, G.; Boudot, C.; Ioki, K.; Mitchell, N.; Girard, J.Ph.; Giraud, B.; Lignini, F.; Giguet, E.; Bofusch, E.; Friconneau, J.P.; Di Pace, L.; Pampin, R.; Cook, I.; Maisonnier, D.; Campbell, D.; Hayward, J.; Li Puma, A.; Norajitra, P.; Sardain, P.; Tran, M.Q.; Ward, D.; Moslang, A.; Carre, F.; Serpantie, J.P.

    2007-01-01

    This document gathers together a series of articles dedicated to ITER. They are organized into 5 parts. The first part describes the potential of fusion as a source of energy that will be able to face the challenge of a continuously increasing demand. After a reminder of the main fusion reactions and the conditions to obtain fusion, the second part focuses on the magnetic fusion based concepts with a special emphasis on the tokamak configuration. In the third part the main components of ITER are described: first the plasma facing components, then the vacuum vessel, the superconducting magnets and the heating systems. In the fourth part short papers concerning ITER safety, the maintenance through remote handling systems, the tritium breeding blanket, are given, along with a full article on the waste management. It is interesting to notice that the nuclear wastes will represent: -) between 1600 and 3800 tons of housekeeping and process wastes produced during the 20 years of operation of ITER (20% very low level waste, 75% low or medium activity with short life and 5% medium activity with long life), -) about 750 tons from component replacement during ITER active operation, and -) about 30000 tons from the decommissioning of ITER. The last part presents the European concepts for a power plant based on a fusion reactor. A basic design is given along with a state of the art of the research on the materials that will be used for the structures. It is highlighted that synergies between fission and fusion technologies exist in at least 4 areas: nuclear design code system, high temperature materials, safety approach, and in-service inspection, maintenance and dismantling. (A.C.)

  20. Design and issues of the ITER in-vessel components: ITER Joint central team and home teams

    International Nuclear Information System (INIS)

    Parker, R.R.

    1998-01-01

    This paper surveys the status of the design of the in-vessel components for ITER, in particular the major components, namely the vacuum vessel, blanket and first wall, and divertor, and the interface of selected ancillary systems such as those used for RF heating and current drive, and for diagnostics. The vacuum vessel is a double-walled structure constructed from two toroidal shells joined by ribs. The space between the skins is filled with shield plates directly cooled by water. The structural material is 316 LN IG (ITER grade). Toroidal supports joining the vessel midplane ports with the TF structure limit possible differential toroidal displacements, as might occur due to seismic or vertical displacement events (VDEs). A variety of load conditions corresponding to normal and off-normal loads have been considered and in all cases peak vessel stresses are within allowables. The blanket system consists of approximately 700 modules, each weighing ∝4 t. The integrated first wall consists of a beryllium-tiled copper mat bonded to the water-cooled SS shield block. The copper mat functions as a heat sink and has imbedded in it an array of SS tubes providing water cooling. The modules are mechanically attached to a toroidal backplate. Loads due to centered disruptions are reacted via hoop stress in the backplate, whereas net vertical and horizontal loads such as those arising from VDEs are transferred through the backplate and divertor supports to the vessel. (orig.)

  1. Fabrication of divertor cassette for ITER

    International Nuclear Information System (INIS)

    Sanguinetti, G.P.

    2008-01-01

    The Divertor is the component located on the bottom of the ITER vacuum vessel, whose main function is to adsorb the high thermal flux generated by the plasma whilst keeping the plasma impurity at a reasonable low level. The divertor consist of 54 units, each comprising outer components, facing the plasma and a component supporting the plasma facing components (PFC) and providing coolant distribution to them (divertor cassette). The divertor cassette is a box structure, butt welded and machined, made from plates and forgins of austenitic stainless steels. The cassette fabrication, which is in detail described, includes manufacturing of the attachments of the PFC to the cassette, the coolant distribution channels, and the cassette to vacuum vessel locking system. The divertor cassette is a pressure component (the cooling water runs at 40 bar) and therefore divertor cassette design, fabrication and service shall comply with the European PED and the applicable French law for the ITER. (orig.)

  2. Final report of the ITER EDA. Final report of the ITER Engineering Design Activities. Prepared by the ITER Council

    International Nuclear Information System (INIS)

    2001-01-01

    This is the Final Report by the ITER Council on work carried out by ITER participating countries on cooperation in the Engineering Design Activities (EDA) for the ITER. In this report the main ITER EDA technical objectives, the scope of ITER EDA, its organization and resources, engineering design of ITER tokamak and its main parameters are presented. This Report also includes safety and environmental assessments, site requirements and proposed schedule and estimates of manpower and cost as well as proposals on approaches to joint implementation of the project

  3. The Plasma-Facing Components Transporter (PFCT) : a Prototype System for PFC Replacement on the new ITER 2001 Cassette Mock-up

    International Nuclear Information System (INIS)

    Micciche, G.; Lorenzelli, L.; Muro, L.; Irving, M.

    2006-01-01

    The remote maintainability of the early ITER divertor cassette (based on the ITER 1998 design) was successfully proved during test campaigns carried out in the Divertor Refurbishment Platform (DRP) at the ENEA research centre at Brasimone over the period 1999-2003. Due to subsequent major modifications in the ITER divertor cassette design, the main focus over the past few years has been on the design and manufacture of the various components, devices and tools needed for refurbishment of the new ITER 2001 Divertor Cassette. The design of this new cassette differs substantially from the earlier version: in particular the shape, weight and attachment system of the Plasma Facing Components (PFC's) has been completely revised, and this also entailed a review of the procedures adopted for its refurbishment. One of the major requirements of the cassette refurbishment process is removal and replacement of the three PFC's. In the old cassette concept, target replacement was performed by means of a purpose-built '' C '' frame slung from a standard bridge crane. The 2001 cassette design precludes such handling methods for a number of reasons, notably because of the extremely tight inter-PFC clearances, and the need for controlled inclination of the target in addition to normal translational movements, both impossible with a simple Cartesian crane. To demonstrate the refurbishment feasibility operations for the new ITER Divertor 2001 cassettes, an experimental machine known as the Plasma-Facing Component Transporter (PFCT) has been designed, fabricated and commissioned in the years 2004-5. This full six degree-of-freedom system has been designed to handle payloads of up to 5 tonnes with good positional accuracy, and axes capable of very low joint velocities, including inclination of the PFC's over the range of ± 10 o in both horizontal axes, and controlled rotation about the vertical axis. Preliminary trials carried out during the commissioning phase have proved its

  4. Extending ITER materials design to welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. [DMN/Dir, CEA/Saclay, Commissariat a l' Energie Atomique, 91191 Gif sur Yvette cedex (France)]. E-mail: tavassoli@cea.fr

    2007-08-01

    This paper extends the ITER materials properties documentation to weld metals and incorporates the needs of Test Blanket Modules for higher temperature materials properties. Since the main structural material selected for ITER is type 316L(N)-IG, the paper is focused on weld metals and joining techniques for this steel. Materials properties data are analysed according to the French design and construction rules for nuclear components (RCC-MR) and design allowables are equally derived using the same rules. Particular attention is paid to the type of weld metal, to the type and position of welding and their influence on the materials properties data and design allowables. The primary goal of this work, starting with 19-12-2 weld metal, is to produce comprehensive materials properties documentations that when combined with codification and inspection documents would satisfy ITER licensing needs. As a result, structural stability and capability of welded joints during manufacturing of ITER components and their subsequent service, including the effects of irradiation and eventual incidental or accidental situations, are also covered.

  5. ITER In-Cryostat inspection and repair feasibility studies

    International Nuclear Information System (INIS)

    Reich, J.; Cordier, J.-J.; Houtte, D. van; Evrard, D.; Mercier, E.; Popa, T.; Doshi, B.

    2011-01-01

    The ITER In-Cryostat maintenance study is an important precondition to guarantee the operation over the ITER lifetime. The ITER operation is subdivided mainly into two phases: 1.Hydrogen phase (non-nuclear operation phase). 2.Deuterium/Tritium phase (nuclear DT phase). The commissioning phase includes the initial phase of assembly. Within the first phase the ITER components will be tested; afterwards they will go into operation. The In-Cryostat maintenance shall facilitate all operations that could be required by In-Cryostat systems and the Cryostat itself. In cases of failures or unlikely events (e.g. earthquakes) it is necessary to provide man and tool access to In-Cryostat components. Overall functions which have to be implemented are: ·Inspection of components including leak localization (helium, water, air). ·Repair and replacement of component (instrumentation, parts or complete components). ·Regulatory inspections. It is presumed that most of component failure would occur at the beginning of the operational phase. This failure rate is expected to be very unlikely when ITER is being operating during the nuclear phase. For maintenance activities it is assumed that: ·The intervention frequency on each component is limited during its lifetime (e.g. inspections/repair during global shutdown). ·Most of these interventions will be required during the inactive phase. According to ALARA (As Low as Reasonable Achievable) rules maintenance activities will be planned in order to minimize the required human interventions during the active phase. Different tools have to be designed to perform the maintenance actions. As there are quiet all heavy components to be handled and removed, humans cannot perform the work without semi hands-on tools. The required permanent fixtures and tools are considered and pre-designed.

  6. ITER In-Cryostat inspection and repair feasibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J., E-mail: Jens.Reich@iter.org [ITER Organization, CS 90 046, 13115 St Paul lez Durance Cedex (France); Cordier, J.-J.; Houtte, D. van [ITER Organization, CS 90 046, 13115 St Paul lez Durance Cedex (France); Evrard, D. [Sogeti High Tech, 180 rue Rene Descartes, 13857 Aix en Provence (France); Mercier, E. [AREVA CNIM KAH System Engineering Support, CS 50497, 13593 Aix en Provence Cedex 3 (France); Popa, T.; Doshi, B. [ITER Organization, CS 90 046, 13115 St Paul lez Durance Cedex (France)

    2011-10-15

    The ITER In-Cryostat maintenance study is an important precondition to guarantee the operation over the ITER lifetime. The ITER operation is subdivided mainly into two phases: 1.Hydrogen phase (non-nuclear operation phase). 2.Deuterium/Tritium phase (nuclear DT phase). The commissioning phase includes the initial phase of assembly. Within the first phase the ITER components will be tested; afterwards they will go into operation. The In-Cryostat maintenance shall facilitate all operations that could be required by In-Cryostat systems and the Cryostat itself. In cases of failures or unlikely events (e.g. earthquakes) it is necessary to provide man and tool access to In-Cryostat components. Overall functions which have to be implemented are: {center_dot}Inspection of components including leak localization (helium, water, air). {center_dot}Repair and replacement of component (instrumentation, parts or complete components). {center_dot}Regulatory inspections. It is presumed that most of component failure would occur at the beginning of the operational phase. This failure rate is expected to be very unlikely when ITER is being operating during the nuclear phase. For maintenance activities it is assumed that: {center_dot}The intervention frequency on each component is limited during its lifetime (e.g. inspections/repair during global shutdown). {center_dot}Most of these interventions will be required during the inactive phase. According to ALARA (As Low as Reasonable Achievable) rules maintenance activities will be planned in order to minimize the required human interventions during the active phase. Different tools have to be designed to perform the maintenance actions. As there are quiet all heavy components to be handled and removed, humans cannot perform the work without semi hands-on tools. The required permanent fixtures and tools are considered and pre-designed.

  7. The ITER reduced cost design

    International Nuclear Information System (INIS)

    Aymar, R.

    2000-01-01

    Six years of joint work under the international thermonuclear experimental reactor (ITER) EDA agreement yielded a mature design for ITER which met the objectives set for it (ITER final design report (FDR)), together with a corpus of scientific and technological data, large/full scale models or prototypes of key components/systems and progress in understanding which both validated the specific design and are generally applicable to a next step, reactor-oriented tokamak on the road to the development of fusion as an energy source. In response to requests from the parties to explore the scope for addressing ITER's programmatic objective at reduced cost, the study of options for cost reduction has been the main feature of ITER work since summer 1998, using the advances in physics and technology databases, understandings, and tools arising out of the ITER collaboration to date. A joint concept improvement task force drawn from the joint central team and home teams has overseen and co-ordinated studies of the key issues in physics and technology which control the possibility of reducing the overall investment and simultaneously achieving the required objectives. The aim of this task force is to achieve common understandings of these issues and their consequences so as to inform and to influence the best cost-benefit choice, which will attract consensus between the ITER partners. A report to be submitted to the parties by the end of 1999 will present key elements of a specific design of minimum capital investment, with a target cost saving of about 50% the cost of the ITER FDR design, and a restricted number of design variants. Outline conclusions from the work of the task force are presented in terms of physics, operations, and design of the main tokamak systems. Possible implications for the way forward are discussed

  8. Procurement of the ITER magnet components supplied by F4E

    International Nuclear Information System (INIS)

    Sborchia, Carlo; Oliva, Alessandro Bonito; Rajainmaeki, Hannu; Vostner, Alexander

    2009-01-01

    Fusion for Energy (F4E) will manage the in-kind contribution from Europe (EU) to ITER of about one quarter of the machine magnet components. This contribution will consist in 10 Toroidal Field (TF) coils, 5 (out of 6) Poloidal Field (PF) coils, 20% of the Nb3Sn conductor used in the TF coils and 15% of the PF coil NbTi conductor. In addition, 12 pre-compression fibreglass rings for the TF system will be procured. This paper presents the complex organization and status of the procurement activities of the F4E magnet components. The technical and managerial challenges, in terms of fabrication, quality assurance and schedule, are also highlighted.

  9. Progress and achievements of the ITER L-4 blanket project

    International Nuclear Information System (INIS)

    Daenner, W.; Toschi, R.; Cardella, A.

    2001-01-01

    The L-4 Blanket Project embraces the R and D of the ITER Shielding Blanket, and its main objective is the fabrication of prototype components. This paper summarises the main conclusions from the materials R and D and the development of technologies which were required for the prototype specifications and manufacturing. The main results of the ongoing testing activities, and of the component manufacture are outlined. The main objectives of the project have been achieved including improvements of the material properties and of joining technologies, which resulted in good component quality and high performance in qualification tests. (author)

  10. Progress and achievements of the ITER L-4 blanket project

    International Nuclear Information System (INIS)

    Daenner, W.; Toschi, R.; Cardella, A.

    1999-01-01

    The L-4 Blanket Project embraces the R and D of the ITER Shielding Blanket, and its main objective is the fabrication of prototype components. This paper summarises the main conclusions from the materials R and D and the development of technologies which were required for the prototype specifications and manufacturing. The main results of the ongoing testing activities, and of the component manufacture are outlined.The main objectives of the project have been achieved including improvements of the material properties and of joining technologies, which resulted in good component quality and high performance in qualification tests. (author)

  11. Initial results for a 170 GHz high power ITER waveguide component test stand

    Science.gov (United States)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  12. Structural analysis of ITER TBM Frame and Dummy TBM

    International Nuclear Information System (INIS)

    Marin, Anna; Kim, Byoung Yoon; Bertolini, Claudio; Lucca, Flavio; Komarov, Victor; Merola, Mario; Giancarli, Luciano; Gicquel, Stefan

    2013-01-01

    One of the main engineering performance goals of ITER is to test and validate design concepts of tritium breeding blankets. To accomplish these goals, three ITER equatorial ports are dedicated to the test of Test Blanket Modules (TBMs) that are mock-ups of tritium breeding blankets. These TBMs, associated with appropriate shield blocks, will also provide the same thermal and nuclear shielding as the main blanket. The main function of TBM Port Plug (PP) is to accommodate TBMs and provide a standardized interface with the vacuum vessel (VV)/port structure. The feasibility of the design concept of the Frame including two Dummy TBMs has been investigated by proposing design improvements of the reference design through an extensive set of thermal, electromagnetic (EM) and stress analyses. As well, the related static strength was evaluated in accordance with the structural design criteria for ITER in-vessel components (SDC-IC). This paper outlines the engineering aspects of the ITER TBM Frame and Dummy TBM and focuses on the feasibility of the present design by structural assessment

  13. Technical basis for the ITER detailed design report, cost review and safety analysis (DDR)

    International Nuclear Information System (INIS)

    1997-01-01

    The ITER Detailed Design Report (DDR), Cost Review and Safety Analysis is the 3rd major milestone representing the progress made in the ITER Engineering Design Activities. With the approval of the Interim Design Report (IDR), it has been possible to freeze the main concepts and system approaches for ITER and to develop the design in more detail for the individual components and sub-systems. This report, although designed to be fully understandable as a separate document, focusses particularly on the main changes since the IDR

  14. Process and overview of diagnostics integration in ITER ports

    International Nuclear Information System (INIS)

    Drevon, J.M.; Walsh, M.; Andrew, P.; Barnsley, R.; Bertalot, L.; Bock, M. de; Bora, D.; Bouhamou, R.; Direz, M.F.; Encheva, A.; Fang, T.; Feder, R.; Giacomin, T.; Hellermann, M. von; Jakhar, S.; Johnson, D.; Kaschuk, Y.; Kusama, Y.; Lee, H.G.; Levesy, B.

    2013-01-01

    Highlights: ► An overview of the Port Integration hardware for tenant system hosting inside ITER diagnostics ports is given. ► The main challenges for diagnostic port integration engineering are presented. ► The actions taken for a common modular approach and a coordinated design are detailed. -- Abstract: ITER will have a set of 45 diagnostics to ensure controlled operation. Many of them are integrated in the ITER ports. This paper addresses the integration process of the diagnostic systems and the approach taken to enable coordinated progress. An overview of the Port Integration hardware introduces the various structures needed for hosting tenant systems inside ITER diagnostics ports. The responsibilities of the different parties involved (ITER Organization and the Domestic Agencies) are outlined. The main challenges for diagnostic port integration engineering are summarized. The plan for a common approach to design and manufacture of the supporting structures, in particular the Port Plug is detailed. A coordinated design including common components and a common approach for neutronic analyses is proposed. One particular port, the equatorial port 11, is used to illustrate the approach

  15. Activation analyses updating the ITER radioactive waste assessment

    International Nuclear Information System (INIS)

    Pampin, R.; Zheng, S.; Lilley, S.; Na, B.C.; Loughlin, M.J.; Taylor, N.P.

    2012-01-01

    Highlights: ► Comprehensive updated of ITER radwaste assessment. ► Latest coupled neutronics and activation methods. ► Type A waste at shutdown decays to TFA within 100 years. ► Most type B waste at shutdown is still type B after 100 years. - Abstract: A study is reported which computes the radiation transport and activation response throughout the ITER machine and updates the ITER radioactive waste assessment using modern 3D models and up-to-date methods. The latest information on component design, maintenance, replacement schedules and materials is adopted. The radwaste classification is revised for all the major components of ITER, as well as several representative port plugs. Results include categorisation snapshots at different decay times, time histories of radiological quantities throughout the machine, and guidelines on interim decay times for components. All plasma-facing materials except tungsten are found to classify as type B due to the transmutation of their main constituents. Major contributors to the IRAS index of all materials are reported. Elemental concentration limits for type A classification of first wall and divertor materials are obtained; for the steels, only a reduction in service lifetime can reduce the waste class. Comparison of total waste amounts with earlier assessments is limited by the fact that analyses of some components are still preliminary; the trend, however, indicates a potential reduction in the total amount of waste if component segregation is demonstrated.

  16. Technical basis for the ITER detailed design report, cost review and safety analysis (DDR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The ITER Detailed Design Report (DDR), Cost Review and Safety Analysis is the 3rd major milestone representing the progress made in the ITER Engineering Design Activities. With the approval of the Interim Design Report (IDR), it has been possible to freeze the main concepts and system approaches for ITER and to develop the design in more detail for the individual components and sub-systems. This report, although designed to be fully understandable as a separate document, focusses particularly on the main changes since the IDR. Refs, figs, tabs

  17. Engineering challenges and development of the ITER Blanket System and Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Mario, E-mail: mario.merola@iter.org; Escourbiac, Frederic; Raffray, Alphonse Rene; Chappuis, Philippe; Hirai, Takeshi; Gicquel, Stefan

    2015-10-15

    The ITER Blanket System and the Divertor are the main components which directly face the plasma. Being the first physical barrier to the plasma, they have very demanding design requirements, which include accommodating: (1) surface heat flux and neutronic volumetric heating, (2) electromagnetic loads, (3) nuclear shielding function, (4) capability of being assembled and remote-handled, (5) interfaces with other in-vessel components, and (6) high heat flux technologies and complex welded structures in the design. The main functions of the Blanket System have been substantially expanded and it has now also to provide limiting surfaces that define the plasma boundary during startup and shutdown. As regards the Divertor, the ITER Council decided in November 2013 to start the ITER operation with a full-tungsten armour in order to minimize costs and already gain operational experience with tungsten during the non-active phase of the machine. This paper gives an overview of the design and technology qualification of the Blanket System and the Divertor.

  18. Progress on corrugated waveguide components suitable for ITER ECH&CD transmission lines

    Directory of Open Access Journals (Sweden)

    Murphy C.J.

    2012-09-01

    Full Text Available The 2 MW cw requirement for ITER EC transmission lines has led GA to design a number of new and modified components, namely power monitors and polarizers to meet this requirement. In addition, the ITER transmission lines may require sliding joints or bellows to accommodate the thermal expansion of the lines and/or vessel motion. The ex-vessel sections of the EC launchers require double seal waveguides, miter bends and possibly double seal sliding joints to assure tritium retention in this region. GA has developed designs for many of these components and some of them have already been tested at high power at the JAEA RF Test Stand. Thermal analyses of the standard GA power monitor miter bend show that our standard design is suitable for 1 MW cw operation when the H-field is in the plane of the miter bend. For 2 MW cw operation a modified design, which also requires H-plane orientation, has been developed and a prototype has been fabricated and is ready for testing. For long pulse/cw operation, a 2 MW calorimetric miter bend with thermally isolated mirror has been designed and a prototype has been fabricated. Since the mirror is thermally isolated, calorimetry on the mirror cooling water can provide a measure of absorbed power. Such a miter bend, when made in a double seal version, could be useful for monitoring total power at the end of an EC transmission line just before the in-vessel section of an EC launcher. A mode analyzer using an all metal water-cooled beam splitter is being developed for use in measuring in real time the HE11 and higher order mode content or total power in EC transmission lines. Such a high power diagnostic can be very useful in optimizing the alignment of the MOU output into a transmission line and in monitoring the HE11 mode purity at various locations in a transmission line. Prior to making a 63.5 mm 170 GHz version suitable for use on ITER, several prototype 31.75 mm 110 GHz versions have been fabricated and tested at

  19. ITER nuclear components, preparing for the construction and R&D results

    Science.gov (United States)

    Ioki, K.; Akiba, M.; Barabaschi, P.; Barabash, V.; Chiocchio, S.; Daenner, W.; Elio, F.; Enoeda, M.; Ezato, K.; Federici, G.; Gervash, A.; Grebennikov, D.; Jones, L.; Kajiura, S.; Krylov, V.; Kuroda, T.; Lorenzetto, P.; Maruyama, S.; Merola, M.; Miki, N.; Morimoto, M.; Nakahira, M.; Ohmori, J.; Onozuka, M.; Rozov, V.; Sato, K.; Strebkov, Yu; Suzuki, S.; Tanchuk, V.; Tivey, R.; Utin, Yu

    2004-08-01

    Progress has been made in the preparation of the procurement specifications for key nuclear components of ITER. Detailed design of the vacuum vessel (VV) and in-vessel components is being performed to consider fabrication methods and non-destructive tests (NDT). R&D activities are being carried out on vacuum vessel UT inspection with waves launched at an angle of 20° or 30°, on flow distribution tests of a two-channel model, on fabrication and testing of FW mock-ups and panels, on the blanket flexible support as a complete system including the housing, on the blanket co-axial pipe connection with guard vacuum for leak detection, and on divertor vertical target prototypes. The results give confidence in the validity of the design and identify possibilities of attractive alternate fabrication methods.

  20. News from ITER controls - a status report

    International Nuclear Information System (INIS)

    Wallander, A.; Abadie, L.; Di Maio, F.; Evrard, B.; Fourneron, J.M.; Gulati, H.; Hansalia, C.; Journeaux, J.Y.; Kim, C.; Klotz, W.D.; Mahajan, K.; Makijarvi, P; Matsumoto, Y.; Pande, S.; Simrock, S.; Stepanov, D.; Utzel, N.; Vergara, A.; Winter, A.; Yonekawa, I.

    2012-01-01

    Construction of ITER has started at the Cadarache site in southern France. The first buildings are taking shape and more than 60 % of the in-kind procurement has been committed by the seven ITER member states (China, Europe, India, Japan, Korea, Russia and United States). The design and manufacturing of the main components of the machine is now underway all over the world. Each of these components comes with a local control system, which must be integrated in the central control system. The control group at ITER has developed two products to facilitate it; the plant control design handbook (PCDH) and the control, data access and communication (CODAC) core system. PCDH is a document which prescribes the technologies and methods to be used in developing local control systems and sets the rules applicable to the in-kind procurements. CODAC core system is a software package, distributed to all in-kind procurement developers, which implements the PCDH and facilitates the compliance of the local control system. In parallel, the ITER control group is proceeding with the design of the central control system to allow fully integrated and automated operation of ITER. In this paper we report on the progress of the design and technology choices and we discuss justifications of those choices. We also report on the results of some pilot projects aimed at validating the design and technologies. (authors)

  1. ITER and the fusion reactor: status and challenge to technology

    International Nuclear Information System (INIS)

    Lackner, K.

    2001-01-01

    Fusion has a high potential, but requires an integrated physics and technology effort without precedence in non-military R and D, the basic physics feasibility demonstration will be concluded with ITER, although R and D for efficiency improvement will continue. The essential technological issues remaining at the start of ITER operation concern materials questions: first wall components and radiation tolerant (low activation materials). This paper comprised just the copy of the slides presentation with the following subjects: magnetic confinement fusion, the Tokamak, progress in Tokamak performance, ITER: its geneology, physics basis-critical issues, cutaway of ITER-FEAT, R and D - divertor cassette (L-5), differences power plant-ITER, challenges for ITER and fusion plants, main technological problems (plasma facing materials), structural and functional materials for fusion power plants, ferritic steels, EUROFER development, improvements beyond ferritic steels, costing among others. (nevyjel)

  2. Specification of properties and design allowables for copper alloys used in HHF components of ITER

    DEFF Research Database (Denmark)

    Kalinin, G.M.; Fabritziev, S.A.; Singh, B.N.

    2002-01-01

    CrZr and CuAl25 are not yet fully characterised. The performed R&D gives a basis for the specification of physical and mechanical properties required for the design analysis in accordance with the ITER Structural Design Criteria for In-vessel Components (SDC-IC). For both CuCrZr-IG and CuAl25-IG alloys......Two types of copper alloys, precipitation hardened (PH) Cu (CuCrZr-IG) and dispersion strengthened (DS) Cu (CuAl25-IG), are proposed as heat sink materials for the high heat flux (HHF) components of ITER. However, copper alloys are not included in any national codes, and properties of both Cu......, the statistical evaluation of available experimental data has been used to calculate the temperature dependence of the average value and of the 95% confidence limit of tensile properties. The stress limits, Sm, Se, and Sd, have been estimated on the basis of available data. The procedure used for specification...

  3. Development of technology and properties investigation of steel/bronze joints proposed for ITER HHF components manufacturing

    International Nuclear Information System (INIS)

    Kalinin, G.; Krestnikov, N.S.; Strebkov, Y.S.; Abramov, V.Y.; Gervash, A.; Mazul, I.; Zolotarev, V.B.; Fabritsiev, S.A.

    2007-01-01

    Full text of publication follows: During the development of ITER HHF components manufacturing it is necessary to provide reliable joints between heat sink material made of CuCrZr bronze and the supporting construction made of austenitic steel. Four different methods have been tried out: - Hot Isostatic Pressing (HIP), - HIP assisted brazing, - furnace assisted brazing, - Casting. The investigation of structure and properties of joints show that HIP and casting provide the better results than the other technologies. However, HIP is relatively expensive technology, and big size HIP furnace is required for the full scale components manufacturing that are not available n RF now. Therefore, casting was selected as a reference manufacturing technology for the primary wall of ITER modules n RF. The paper summarizes the results of bronze/steel joints manufacturing and investigation of their properties. (authors)

  4. ITER: a technology test bed for a fusion reactor

    International Nuclear Information System (INIS)

    Huguet, M.; Green, B.J.

    1996-01-01

    The ITER Project aims to establish nuclear fusion as an energy source that has potential safety and environmental advantages, and to develop the technologies required for a fusion reactor. ITER is a collaborative project between the European Union, Japan, the Russian Federation and the United States of America. During the current phase of the Project, an R and D programme of about 850 million dollars is underway to develop the technologies required for ITER. This technological effort should culminate in the construction of the components and systems of the ITER machine and its auxiliaries. The main areas of technological development include the first wall and divertor technology, the blanket technology and tritium breeding, superconducting magnet technology, pulsed power technology and remote handling. ITER is a test bed and an essential step to establish the technology of future fusion reactors. Many of the ITER technologies are of potential interest to other fields and their development is expected to benefit the industries involved. (author)

  5. Status of ITER

    International Nuclear Information System (INIS)

    Aymar, R.

    2002-01-01

    At the end of engineering design activities (EDA) in July 2001, all the essential elements became available to make a decision on construction of ITER. A sufficiently detailed and integrated engineering design now exists for a generic site, has been assessed for feasibility, and costed, and essential physics and technology R and D has been carried out to underpin the design choices. Formal negotiations have now begun between the current participants--Canada, Euratom, Japan, and the Russian Federation--on a Joint Implementation Agreement for ITER which also establishes the legal entity to run ITER. These negotiations are supported on technical aspects by Coordinated Technical Activities (CTA), which maintain the integrity of the project, for the good of all participants, and concentrate on preparing for procurement by industry of the longest lead items, and for formal application for a construction license with the host country. This paper highlights the main features of the ITER design. With cryogenically-cooled magnets close to neutron-generating plasma, the design of shielding with adequate access via port plugs for auxiliaries such as heating and diagnostics, and of remote replacement and refurbishing systems for in-vessel components, are particularly interesting nuclear technology challenges. Making a safety case for ITER to satisfy potential regulators and to demonstrate, as far as possible at this stage, the environmental attractiveness of fusion as an energy source, is also important. The paper gives illustrative details on this work, and an update on the progress of technical preparations for construction, as well as the status of the above negotiations

  6. Prediction for disruption erosion of ITER plasma facing components; a comparison of experimental and numerical results

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Akiba, M.; Seki, M.; Hassanein, A.; Tanchuk, V.

    1991-01-01

    An evaluation is given for the prediction for disruption erosion in the International Thermonuclear Engineering Reactor (ITER). At first, a description is given of the relation between plasma operating paramters and system dimensions to the predictions of loading parameters of Plasma Facing Components (PFC) in off-normal events. Numerical results from ITER parties on the prediction of disruption erosion are compared for a few typical cases and discussed. Apart from some differences in the codes, the observed discrepancies can be ascribed to different input data of material properties and boundary conditions. Some physical models for vapour shielding and their effects on numerical results are mentioned. Experimental results from ITER parties, obtained with electron and laser beams, are also compared. Erosion rates for the candidate ITER PFC materials are shown to depend very strongly on the energy deposition parameters, which are based on plasma physics considerations, and on the assumed material loss mechanisms. Lifetimes estimates for divertor plate and first wall armour are given for carbon, tungsten and beryllium, based on the erosion in the thermal quench phase. (orig.)

  7. Thermo-mechanical analysis of ITER first mirrors and its use for the ITER equatorial visible/infrared wide angle viewing system optical design

    International Nuclear Information System (INIS)

    Joanny, M.; Salasca, S.; Dapena, M.; Cantone, B.; Travère, J. M.; Thellier, C.; Fermé, J. J.; Marot, L.; Buravand, O.; Perrollaz, G.; Zeile, C.

    2012-01-01

    ITER first mirrors (FMs), as the first components of most ITER optical diagnostics, will be exposed to high plasma radiation flux and neutron load. To reduce the FMs heating and optical surface deformation induced during ITER operation, the use of relevant materials and cooling system are foreseen. The calculations led on different materials and FMs designs and geometries (100 mm and 200 mm) show that the use of CuCrZr and TZM, and a complex integrated cooling system can limit efficiently the FMs heating and reduce their optical surface deformation under plasma radiation flux and neutron load. These investigations were used to evaluate, for the ITER equatorial port visible/infrared wide angle viewing system, the impact of the FMs properties change during operation on the instrument main optical performances. The results obtained are presented and discussed.

  8. Main components and content of sports volunteer activities

    OpenAIRE

    Петренко, Ірина

    2017-01-01

    Iryna PetrenkоPurpose: identification of the main structural components and content of sports volunteer activities. Material & Methods: used analysis of literature and documents, organizational analysis. Result: basic structural components of sports volunteer activity are defined. The content of sports volunteer activity is disclosed. Conclusion: sports volunteer activity includes the following structural components: subject, object, purpose, motivation, means, actions; subject is a sport...

  9. Investigation on bonding defects in ITER first wall beryllium armour components by combining analytical and experimental methods

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Germán, E-mail: german.perez.pichel@gmail.com; Mitteau, Raphaël; Eaton, Russell; Raffray, René

    2015-12-15

    Highlights: • Bonding defects at the ITER first wall beryllium armour are studied. • Experimental and analytical methods are combined. • Models supporting test results interpretation are proposed. • Guidelines for new experimental protocols are suggested. • Contribution to the definition of defects acceptance criteria. - Abstract: The reliability of the plasma facing components (PFCs) is essential for the efficient plasma operation in a fusion machine. This concerns especially the bond between the armour tiles facing the plasma and the heat sink material (copper alloy). The different thermal expansions of the bonded materials cause a stress distribution in the bond, which peaks at the bond edge. Under cyclic heat flux and accounting for the possible presence of bonding defects, this stress could reach a level where the component might be jeopardised. Because of the complexity of describing realistically by analyses and models the stress evolution in the bond, “design by experiments” is the main procedure for defining and qualifying the armour joint. Most of the existing plasma operation know-how on actively cooled PFCs has been obtained with carbon composite armour tiles. In ITER, the tiles of the first wall are made out of beryllium, which means that the know-how is progressively adapted to this specific bimetallic pair. Nonetheless, analyses are still performed for supporting the R&D experimental programme. This paper: explores methods for combining experimental results with finite element and statistical analyses; benchmarks test results; proposes hypothesis and rationales consistent with test results interpretations; suggests guidelines for defining possible further experimental protocols; and contributes to the definition of defects acceptance criteria.

  10. Investigation on bonding defects in ITER first wall beryllium armour components by combining analytical and experimental methods

    International Nuclear Information System (INIS)

    Pérez, Germán; Mitteau, Raphaël; Eaton, Russell; Raffray, René

    2015-01-01

    Highlights: • Bonding defects at the ITER first wall beryllium armour are studied. • Experimental and analytical methods are combined. • Models supporting test results interpretation are proposed. • Guidelines for new experimental protocols are suggested. • Contribution to the definition of defects acceptance criteria. - Abstract: The reliability of the plasma facing components (PFCs) is essential for the efficient plasma operation in a fusion machine. This concerns especially the bond between the armour tiles facing the plasma and the heat sink material (copper alloy). The different thermal expansions of the bonded materials cause a stress distribution in the bond, which peaks at the bond edge. Under cyclic heat flux and accounting for the possible presence of bonding defects, this stress could reach a level where the component might be jeopardised. Because of the complexity of describing realistically by analyses and models the stress evolution in the bond, “design by experiments” is the main procedure for defining and qualifying the armour joint. Most of the existing plasma operation know-how on actively cooled PFCs has been obtained with carbon composite armour tiles. In ITER, the tiles of the first wall are made out of beryllium, which means that the know-how is progressively adapted to this specific bimetallic pair. Nonetheless, analyses are still performed for supporting the R&D experimental programme. This paper: explores methods for combining experimental results with finite element and statistical analyses; benchmarks test results; proposes hypothesis and rationales consistent with test results interpretations; suggests guidelines for defining possible further experimental protocols; and contributes to the definition of defects acceptance criteria.

  11. ITER overview

    International Nuclear Information System (INIS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V.; Huguet, M.; Parker, R.R.

    2001-01-01

    This report summarizes technical works of six years done by the ITER Joint Central Team and Home Teams under terms of Agreement of the ITER Engineering Design Activities. The major products are as follows: complete and detailed engineering design with supporting assessments, industrial-based cost estimates and schedule, non-site specific comprehensive safety and environmental assessment, and technology R and D to validate and qualify design including proof of technologies and industrial manufacture and testing of full size or scalable models of key components. The ITER design is at an advanced stage of maturity and contains sufficient technical information for a construction decision. The operation of ITER will demonstrate the availability of a new energy source, fusion. (author)

  12. ITER Overview

    International Nuclear Information System (INIS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V.; Huguet, M.; Parker, R.

    1999-01-01

    This report summarizes technical works of six years done by the ITER Joint Central Team and Home Teams under terms of Agreement of the ITER Engineering Design Activities. The major products are as follows: complete and detailed engineering design with supporting assessments, industrial-based cost estimates and schedule, non-site specific comprehensive safety and environmental assessment, and technology R and D to validate and qualify design including proof of technologies and industrial manufacture and testing of full size or scalable models of key components. The ITER design is at an advanced stage of maturity and contains sufficient technical information for a construction decision. The operation of ITER will demonstrate the availability of a new energy source, fusion. (author)

  13. ITER nuclear components, preparing for the construction and R and D results

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K. E-mail: iokik@itereu.de; Akiba, M.; Barabaschi, P.; Barabash, V.; Chiocchio, S.; Daenner, W.; Elio, F.; Enoeda, M.; Ezato, K.; Federici, G.; Gervash, A.; Grebennikov, D.; Jones, L.; Kajiura, S.; Krylov, V.; Kuroda, T.; Lorenzetto, P.; Maruyama, S.; Merola, M.; Miki, N.; Morimoto, M.; Nakahira, M.; Ohmori, J.; Onozuka, M.; Rozov, V.; Sato, K.; Strebkov, Yu.; Suzuki, S.; Tanchuk, V.; Tivey, R.; Utin, Yu

    2004-08-01

    Progress has been made in the preparation of the procurement specifications for key nuclear components of ITER. Detailed design of the vacuum vessel (VV) and in-vessel components is being performed to consider fabrication methods and non-destructive tests (NDT). R and D activities are being carried out on vacuum vessel UT inspection with waves launched at an angle of 20 deg. or 30 deg. , on flow distribution tests of a two-channel model, on fabrication and testing of FW mock-ups and panels, on the blanket flexible support as a complete system including the housing, on the blanket co-axial pipe connection with guard vacuum for leak detection, and on divertor vertical target prototypes. The results give confidence in the validity of the design and identify possibilities of attractive alternate fabrication methods.

  14. ITER Construction--Plant System Integration

    International Nuclear Information System (INIS)

    Tada, E.; Matsuda, S.

    2009-01-01

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  15. Manufacturing and testing in reactor relevant conditions of brazed plasma facing components of the ITER divertor

    International Nuclear Information System (INIS)

    Bisio, M.; Branca, V.; Marco, M. Di; Federici, A.; Grattarola, M.; Gualco, G.; Guarnone, P.; Luconi, U.; Merola, M.; Ozzano, C.; Pasquale, G.; Poggi, P.; Rizzo, S.; Varone, F.

    2005-01-01

    A fabrication route based on brazing technology has been developed for the realization of the high heat flux components for the ITER vertical target and Dome-Liner. The divertor vertical target is armoured with carbon fiber reinforced carbon and tungsten in the lower straight part and in the upper curved part, respectively. The armour material is joined to heat sinks made of precipitation hardened copper-chromium-zirconium alloy. The plasma facing units of the dome component are based on a tungsten flat tile design with hypervapotron cooling. An innovative brazing technique based on the addition of carbon fibers to the active brazing alloy, developed by Ansaldo Ricerche for applications in the field of the energy production, has been used for the carbon fiber composite to copper joint to reduce residual stresses. The tungsten-copper joint has been realized by direct casting. A proper brazing thermal cycle has been studied to guarantee the required mechanical properties of the precipitation hardened alloy after brazing. The fabrication route of plasma facing components for the ITER vertical target and dome based on the brazing technology has been proved by means of thermal fatigue tests performed on mock-ups in reactor relevant conditions

  16. European Technological Effort in Preparation of ITER Construction

    International Nuclear Information System (INIS)

    Andreani, Roberto

    2005-01-01

    Europe has started since the '80s with the preparatory work done on NET, the Next European Torus, the successor of JET, to prepare for the construction of the next generation experiment on the road to the fusion reactor. In 2000 the European Fusion Development Agreement (EFDA) has been signed by sixteen countries, including Switzerland, not a member of the Union. Now the signatory countries have increased to twenty-five. A vigorous programme of design and R and D in support of ITER construction has been conducted by EFDA through the coordinated effort of the national institutes and laboratories supported financially, in the framework of the VI European Framework Research Programme (2002-2006), by contracts of association with EURATOM. In the last three years, with the expenditure of 160 M[Euro], the accent has been particularly put on the preparation of the industrial manufacturing activities of components and systems for ITER. Prototypes and manufacturing methods have been developed in all the main critical areas of machine construction with the objective of providing sound and effective solutions: vacuum vessel, toroidal field coils, poloidal field coils, remote handling equipment, plasma facing components and divertor components, electrical power supplies, generators and power supplies for the Heating and Current Drive Systems and other minor subsystems.Europe feels to be ready to host the ITER site and to provide adequate support and guidance for the success of construction to our partners in the ITER collaboration, wherever needed

  17. Integrating supervision, control and data acquisition—The ITER Neutral Beam Test Facility experience

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, A., E-mail: adriano.luchetta@igi.cnr.it; Manduchi, G.; Taliercio, C.; Breda, M.; Capobianco, R.; Molon, F.; Moressa, M.; Simionato, P.; Zampiva, E.

    2016-11-15

    Highlights: • The paper describes the experience gained in the integration of different systems for the control and data acquisition system of the ITER Neutral Beam Test Facility. • It describes the way the different frameworks have been integrated. • It reports some lessons learnt during system integration. • It reports some authors’ considerations about the development the ITER CODAC. - Abstract: The ITER Neutral Beam (NBI) Test Facility, under construction in Padova, Italy consists in the ITER full scale ion source for the heating neutral beam injector, referred to as SPIDER, and the full size prototype injector, referred to as MITICA. The Control and Data Acquisition System (CODAS) for SPIDER has been developed and is going to be in operation in 2016. The system is composed of four main components: Supervision, Slow Control, Fast Control and Data Acquisition. These components interact with each other to carry out the system operation and, since they represent a common pattern in fusion experiments, software frameworks have been used for each (set of) component. In order to reuse as far as possible the architecture developed for SPIDER, it is important to clearly define the boundaries and the interfaces among the system components so that the implementation of any component can be replaced without affecting the overall architecture. This work reports the experience gained in the development of SPIDER components, highlighting the importance in the definition of generic interfaces among component, showing how the specific solutions have been adapted to such interfaces and suggesting possible approaches for the development of other ITER subsystems.

  18. Integrating supervision, control and data acquisition—The ITER Neutral Beam Test Facility experience

    International Nuclear Information System (INIS)

    Luchetta, A.; Manduchi, G.; Taliercio, C.; Breda, M.; Capobianco, R.; Molon, F.; Moressa, M.; Simionato, P.; Zampiva, E.

    2016-01-01

    Highlights: • The paper describes the experience gained in the integration of different systems for the control and data acquisition system of the ITER Neutral Beam Test Facility. • It describes the way the different frameworks have been integrated. • It reports some lessons learnt during system integration. • It reports some authors’ considerations about the development the ITER CODAC. - Abstract: The ITER Neutral Beam (NBI) Test Facility, under construction in Padova, Italy consists in the ITER full scale ion source for the heating neutral beam injector, referred to as SPIDER, and the full size prototype injector, referred to as MITICA. The Control and Data Acquisition System (CODAS) for SPIDER has been developed and is going to be in operation in 2016. The system is composed of four main components: Supervision, Slow Control, Fast Control and Data Acquisition. These components interact with each other to carry out the system operation and, since they represent a common pattern in fusion experiments, software frameworks have been used for each (set of) component. In order to reuse as far as possible the architecture developed for SPIDER, it is important to clearly define the boundaries and the interfaces among the system components so that the implementation of any component can be replaced without affecting the overall architecture. This work reports the experience gained in the development of SPIDER components, highlighting the importance in the definition of generic interfaces among component, showing how the specific solutions have been adapted to such interfaces and suggesting possible approaches for the development of other ITER subsystems.

  19. Nuclear Analysis of an ITER Blanket Module

    Science.gov (United States)

    Chiovaro, P.; Di Maio, P. A.; Parrinello, V.

    2013-08-01

    ITER blanket system is the reactor's plasma-facing component, it is mainly devoted to provide the thermal and nuclear shielding of the Vacuum Vessel and external ITER components, being intended also to act as plasma limiter. It consists of 440 individual modules which are located in the inboard, upper and outboard regions of the reactor. In this paper attention has been focused on to a single outboard blanket module located in the equatorial zone, whose nuclear response under irradiation has been investigated following a numerical approach based on the Monte Carlo method and adopting the MCNP5 code. The main features of this blanket module nuclear behaviour have been determined, paying particular attention to energy and spatial distribution of the neutron flux and deposited nuclear power together with the spatial distribution of its volumetric density. Moreover, the neutronic damage of the structural material has also been investigated through the evaluation of displacement per atom and helium and hydrogen production rates. Finally, an activation analysis has been performed with FISPACT inventory code using, as input, the evaluated neutron spectrum to assess the module specific activity and contact dose rate after irradiation under a specific operating scenario.

  20. ITER Safety and Licensing

    International Nuclear Information System (INIS)

    Girard, J-.P; Taylor, N.; Garin, P.; Uzan-Elbez, J.; GULDEN, W.; Rodriguez-Rodrigo, L.

    2006-01-01

    The site for the construction of ITER has been chosen in June 2005. The facility will be implemented in Europe, south of France close to Marseille. The generic safety scheme is now under revision to adapt the design to the host country regulation. Even though ITER will be an international organization, it will have to comply with the French requirements in the fields of public and occupational health and safety, nuclear safety, radiation protection, licensing, nuclear substances and environmental protection. The organization of the central team together with its partners organized in domestic agencies for the in-kind procurement of components is a key issue for the success of the experimentation. ITER is the first facility that will achieve sustained nuclear fusion. It is both important for the experimental one-of-a-kind device, ITER itself, and for the future of fusion power plants to well understand the key safety issues of this potential new source of energy production. The main safety concern is confinement of the tritium, activated dust in the vacuum vessel and activated corrosion products in the coolant of the plasma-facing components. This is achieved in the design through multiple confinement barriers to implement the defence in depth approach. It will be demonstrated in documents submitted to the French regulator that these barriers maintain their function in all postulated incident and accident conditions. The licensing process started by examination of the safety options. This step has been performed by Europe during the candidature phase in 2002. In parallel to the final design, and taking into account the local regulations, the Preliminary Safety Report (RPrS) will be drafted with support of the European partner and others in the framework of ITER Task Agreements. Together with the license application, the RPrS will be forwarded to the regulatory bodies, which will launch public hearings and a safety review. Both processes must succeed in order to

  1. ITER plasma facing materials. Some critical considerations

    International Nuclear Information System (INIS)

    Barabash, V.; Dietz, K.J.; Federici, G.; Janeschitz, G.; Matera, R.; Tanaka, S.

    1995-01-01

    The description of current status with the choice of materials for ITER plasma facing components is presented. The main problem with lifetime of divertor elements is the particle and energy-induced erosion of armour materials. A solution for the first operation phase consists in using Be as an armour for the first wall and the divertor, however other possible materials (e.g. W) could be considered. (orig.)

  2. Plasma position and shape control for ITER

    International Nuclear Information System (INIS)

    Portone, A.; Gribov, Y.; Huguet, M.

    1995-01-01

    Key features and main results about the control of the plasma shape in ITER are presented. A control algorithm is designed to control up to 6 gaps between the plasma separatrix and the plasma facing components during the reference burn phase. Nonlinear simulations show the performances of the controller in the presence of plasma vertical position offsets, beta drops and power supply voltage saturation

  3. Assembly process of the ITER neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Graceffa, J., E-mail: joseph.graceffa@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Boilson, D.; Hemsworth, R.; Petrov, V.; Schunke, B.; Urbani, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Pilard, V. [Fusion for Energy, C/ Josep Pla, n°2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam (NB) injectors are used for heating and diagnostics operations. There are 4 injectors in total, 3 heating neutral beam injectors (HNBs) and one diagnostic neutral beam injector (DNB). Two HNBs and the DNB will start injection into ITER during the hydrogen/helium phase of ITER operations. A third HNB is considered as an upgrade to the ITER heating systems, and the impact of the later installation and use of that injector have to be taken into account when considering the installation and assembly of the whole NB system. It is assumed that if a third HNB is to be installed, it will be installed before the nuclear phase of the ITER project. The total weight of one injector is around 1200 t and it is composed of 18 main components and 36 sets of shielding plates. The overall dimensions are length 20 m, height 10 m and width 5 m. Assembly of the first two HNBs and the DNB will start before the first plasma is produced in ITER, but as the time required to assemble one injector is estimated at around 1.5 year, the assembly will be divided into 2 steps, one prior to first plasma, and the second during the machine second assembly phase. To comply with this challenging schedule the assembly sequence has been defined to allow assembly of three first injectors in parallel. Due to the similar design between the DNB and HNBs it has been decided to use the same tools, which will be designed to accommodate the differences between the two sets of components. This reduces the global cost of the assembly and the overall assembly time for the injector system. The alignment and positioning of the injectors is a major consideration for the injector assembly as the alignment of the beamline components and the beam source are critical if good injector performance is to be achieved. The theoretical axes of the beams are defined relative to the duct liners which are installed in the NB ports. The concept adopted to achieve the required alignment accuracy is to use the

  4. The ITER remote maintenance system

    International Nuclear Information System (INIS)

    Tesini, A.; Palmer, J.

    2007-01-01

    ITER is a joint international research and development project that aims to demonstrate the scientific and technological feasibility of fusion power. As soon as the plasma operation begins using tritium, the replacement of the vacuum vessel internal components will need to be done with remote handling techniques. To accomplish these operations ITER has equipped itself with a Remote Maintenance System; this includes the Remote Handling equipment set and the Hot Cell facility. Both need to work in a cooperative way, with the aim of minimizing the machine shutdown periods and to maximize the machine availability. The ITER Remote Handling equipment set is required to be available, robust, reliable and retrievable. The machine components, to be remotely handle-able, are required to be designed simply so as to ease their maintenance. The baseline ITER Remote Handling equipment is described. The ITER Hot Cell Facility is required to provide a controlled and shielded area for the execution of repair operations (carried out using dedicated remote handling equipment) on those activated components which need to be returned to service, inside the vacuum vessel. The Hot Cell provides also the equipment and space for the processing and temporary storage of the operational and decommissioning radwaste. A conceptual ITER Hot Cell Facility is described. (orig.)

  5. Design and analysis of breeding blanket with helium cooled solid breeder for ITER-TBM

    International Nuclear Information System (INIS)

    Yuan Tao; Feng Kaiming; Chen Zhi; Wang Xiaoyu

    2007-01-01

    Test blanket module (TBM) is one of important components in ITER. Some of related blanket technologies of future fusion, such as tritium self-sufficiency, the exaction of high-grade heat, design criteria and safety requirements and environmental impacts, will be demonstrated in ITER-TBM. In ITER device, the three equatorial ports have allocated for TBM testing. China had proposed to develop independently the ITER-TBM with helium cooled solid breeder in 12th meeting of test blanket workgroup (TBWG-12). In this work, the preliminary design and analysis for Chinese HCSB TBM will be carried out. The TBM must be contains the function of the first wall, breeding blanket, shield and structure. Finally, in the period of preliminary investigation, HCSB TBM design adopt modularization concept which is helium as coolant and tritium purge gas, ferritic/martensitic steel as structural material, Lithium orthosilicate (Li 4 SiO 4 ) as tritium breeder, beryllium pebble as neutron multiplier. TBM is allocated in standard vertical frame port. HCSB TBM consist of first wall, backplate, breeding sub-modules, caps, grid and support plate, and breeding sub-modules is arranged by layout of 2 x 6 in blanket box. In this paper, main components of HCSB TBM will be described in detail, also performance analysis of main components have been completed. (authors)

  6. Development of radiation hard components for ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Makiko, E-mail: saito.makiko@jaea.go.jp; Anzai, Katsunori; Maruyama, Takahito; Noguchi, Yuto; Ueno, Kenichi; Takeda, Nobukazu; Kakudate, Satoshi

    2016-11-01

    Highlights: • Clarify the components that will degrade by gamma ray irradiation. • Perform the irradiation tests to BRHS components. • Optimize the materials to increase the radiation hardness. - Abstract: The ITER blanket remote handling system (BRHS) will be operated in a high radiation environment (250 Gy/h max.) and must stably handle the blanket modules, which weigh 4.5 t and are more than 1.5 m in length, with a high degree of position and posture accuracy. The reliability of the system can be improved by reviewing the failure events of the system caused by high radiation. A failure mode and effects analysis (FMEA) identified failure modes and determined that lubricants, O-rings, and electric insulation cables were the dominant components affecting radiation hardness. Accordingly, we tried to optimize the lubricants and cables of the AC servo motors by using polyphenyl ether (PPE)-based grease and polyether ether ketone (PEEK), respectively. Materials containing radiation protective agents were also selected for the cable sheaths and O-rings to improve radiation hardness. Gamma ray irradiation tests were performed on these components and as a result, a radiation hardness of 8 MGy was achieved for the AC servo motors. On the other hand, to develop the radiation hardness and BRHS compatibility furthermore, the improvement of materials of cable and O ring were performed.

  7. Power converters for ITER

    CERN Document Server

    Benfatto, I

    2006-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a thermonuclear fusion experiment designed to provide long deuterium– tritium burning plasma operation. After a short description of ITER objectives, the main design parameters and the construction schedule, the paper describes the electrical characteristics of the French 400 kV grid at Cadarache: the European site proposed for ITER. Moreover, the paper describes the main requirements and features of the power converters designed for the ITER coil and additional heating power supplies, characterized by a total installed power of about 1.8 GVA, modular design with basic units up to 90 MVA continuous duty, dc currents up to 68 kA, and voltages from 1 kV to 1 MV dc.

  8. Joining technologies for the plasma facing components of ITER

    International Nuclear Information System (INIS)

    Barabash, V.; Kalinin, G.; Matera, R.

    1998-01-01

    An extensive R and D program on the development of the joining technologies between armour (beryllium, tungsten and carbon fibre composites)/copper alloys heat sink and copper alloys/ stainless steel has been carried out by ITER Home Teams. A brief review of this R and D program is presented in this paper. Based on the results, reference technologies for use in ITER have been selected and recommended for further development. (author)

  9. ITER ITA newsletter. No. 8, September 2003

    International Nuclear Information System (INIS)

    2003-10-01

    This issue of ITER ITA (ITER transitional Arrangements) newsletter contains concise information about ITER related activities including Robert Aymar's leaving ITER for CERN, ITER related issues at the IAEA General Conference and status and prospects of thermonuclear power and activity during the ITA on materials foe vessel and in-vessel components

  10. Development of an original active thermography method adapted to ITER plasma facing components control

    Energy Technology Data Exchange (ETDEWEB)

    Durocher, A.; Vignal, N.; Escourbiac, F.; Farjon, J.L.; Schlosser, J. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France); Cismondi, F. [Toulon Univ., 83 - La Garde (France)

    2004-07-01

    Among all Non-Destructive Examinations (NDE), active infrared thermography is becoming recognised as a technique available today for improving quality control of many materials and structures involved in heat transfer. The infrared thermography allows to characterise the bond between two materials having different thermal physical properties. In order to increase the defect detection limit of the SATIR test bed, several possibilities have been evaluated to improve the infrared thermography inspection. The implementation in 2003 of a micro-bolometer camera and the improving of the thermo-signal process allowed to increase considerably the detection sensitivity of the SATIR facility. The quality, the spatial stability of infrared image and the detection of edge defect have been also improved. The coupling on the same test bed of SATIR method with a lock-in thermography will be evaluated in this paper. An improvement of the global reliability is expected by data merging produced by the two thermal excitation sources. A new enhanced facility named SATIRPACA has been designed for the full Non Destructive Examination of the High Heat Flux ITER components taking into account these main improvements. These systematic acceptance tests obviously need tools for quality control of critical parts. (authors)

  11. Development of an original active thermography method adapted to ITER plasma facing components control

    International Nuclear Information System (INIS)

    Durocher, A.; Vignal, N.; Escourbiac, F.; Farjon, J.L.; Schlosser, J.; Cismondi, F.

    2004-01-01

    Among all Non-Destructive Examinations (NDE), active infrared thermography is becoming recognised as a technique available today for improving quality control of many materials and structures involved in heat transfer. The infrared thermography allows to characterise the bond between two materials having different thermal physical properties. In order to increase the defect detection limit of the SATIR test bed, several possibilities have been evaluated to improve the infrared thermography inspection. The implementation in 2003 of a micro-bolometer camera and the improving of the thermo-signal process allowed to increase considerably the detection sensitivity of the SATIR facility. The quality, the spatial stability of infrared image and the detection of edge defect have been also improved. The coupling on the same test bed of SATIR method with a lock-in thermography will be evaluated in this paper. An improvement of the global reliability is expected by data merging produced by the two thermal excitation sources. A new enhanced facility named SATIRPACA has been designed for the full Non Destructive Examination of the High Heat Flux ITER components taking into account these main improvements. These systematic acceptance tests obviously need tools for quality control of critical parts. (authors)

  12. RAMI analysis of the ITER Central Safety System

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Sin-iti, E-mail: kitazawa.siniti@jaea.go.jp [ITER Project Unit, Japan Atomic Energy Agency (JAEA), Naka, 311-0193 Ibaraki (Japan); Okayama, Katsumi [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Neyatani, Yuzuru [ITER Project Unit, Japan Atomic Energy Agency (JAEA), Naka, 311-0193 Ibaraki (Japan); Sagot, Francois; Houtte, Didier van [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-06-15

    Highlights: • We performed the functional analysis of the ITER CSS. • We performed a failure mode analysis of the ITER CSS. • We estimated the reliability and availability of the ITER CSS. • The ITER RAMI approach was applied to the ITER CSS for technical risk control in the design phase. - Abstract: ITER is the first worldwide international project aiming to design a facility to produce nuclear fusion energy. The technical requirements of its plant systems have been established in the ITER Project Baseline. In the project, the Reliability, Availability, Maintainability and Inspectability (RAMI) approach has been adopted for technical risk control to help aid the design of the components in preparation for operation and maintenance. A RAMI analysis was performed on the conceptual design of the ITER Central Safety System (CSS). A functional breakdown was prepared in a bottom-up approach, resulting in the system being divided into 2 main functions and 20 sub-functions. These functions were described using the IDEF0 method. Reliability block diagrams were prepared to estimate the reliability and availability of each function under the stipulated operating conditions. Initial and expected scenarios were analyzed to define risk-mitigation actions. The inherent availability of the ITER CSS expected after implementation of mitigation actions was calculated to be 99.80% over 2 years, which is the typical interval of the scheduled maintenance cycles. This is consistent with the project required value of 99.9 ± 0.1%. A Failure Modes, Effects and Criticality Analysis was performed with criticality charts highlighting the risk level of the different failure modes with regard to their probability of occurrence and their effects on the availability of the plasma operation. This analysis defined when risk mitigation actions were required in terms of design, testing, operation procedures and/or maintenance to reduce the risk levels and increase the availability of the

  13. Significance of ITER IWS Material Selection and Qualification

    Science.gov (United States)

    Mehta, Bhoomi K.; Raval, Jigar; Maheshwari, Abha; Laad, Rahul; Singh, Gurlovleen; Pathak, Haresh

    2017-04-01

    In-Wall Shielding (IWS) is one of the important components of ITER Vacuum Vessel (VV) which fills the space between double walls of VV with cooling water. Procurement Arrangement (PA) for IWS has been signed with Indian Domestic Agency (INDA). Procurement of IWS materials, fabrication of IWS blocks and its delivery to respective Domestic Agency (DA) and ITER Organization (IO) are the main scope of this PA. Hence, INDIA is the only country which is contributing to VV IWS among all seven ITER partners. The main functions of the IWS are to provide Neutron Shielding with blanket, VV shells and water during plasma operations and to reduce ripple of the Toroidal Magnetic Field. To meet these functional requirements IWS blocks are made up of special materials (Borated Steels SS304 B4 & SS304 B7, Ferritic Steels SS 430, Austenitic Steel SS 316 L (N)-IG, XM-19 and Inconel-625) which are qualified, reliable and traceable for the design assessment. The choice of these materials has a significant influence on performance, maintainability, licensing, detailed design parameters and waste disposal. The main reasons for the materials selected for IWS are its high mechanical strength at operating temperatures, water chemistry properties, excellent fabrication characteristics and low cost relative to other similar materials. All the materials are qualified with respect to their respective codes (ASTM/EN standards with additional requirements as described in RCC-MR code 2007) and ITER requirements. Agreed Notified Body (ANB) has control conformity of materials certificates with approved material specification and traceability procedure for Safety Important Component (SIC). The procurement strategy for all the IWS materials has been developed in close collaboration with IO, ANB and Industries as per Product Procurement Specification (PPS). The R&D for sample, bulk material production, testing, inspection and handling as required are carried out by IN DA and IO. At present almost all

  14. A Conceptual Design and Structural Analysis for ITER Mid-plane Brace Tools

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Jae Hyuk; Kim, Kyung kyu [SFA Engineering Corp., Changwon (Korea, Republic of); Im, Kihak; Robert, Shaw [ITER Organization, St Paul lez Durance Cedex (France)

    2010-10-15

    The ITER, International Thermonuclear Experimental Reactor, Tokamak machine is mainly composed of 9 vacuum vessel (VV)/toroidal field coils (TFCs)/vacuum vessel thermal shields (VVTS) 40 .deg. sectors. Each VV/TFCs/VVTS 40 .deg. sector is made up of one 40 .deg. VV, two 20 .deg. TFCs and associated VVTS segments. The ITER Tokamak assembly tools are purpose-built tools to assemble the ITER Tokamak machine which includes the cryostat and the components contained therein. Based on the design description document prepared by the IO (ITER international organization), Korea has carried out the conceptual design of assembly tools with IO cooperation. The 40 .deg. sector assemblies attached mid-plane brace tools sub-assembled at assembly hall are transferred to Tokamak hall using the lifting tool operated by Tokamak main cranes. The sector sub-assembly tools are composed of the upending tool, the sector sub-assembly tool, the sector lifting tool and the vacuum vessel support and mid-plane brace tools. The mid-plane brace tool is assembled to inner surface of VV and TFCs in phase of sector sub-assembly after completion of all sector components. VV, TFC and VVTS are separated fully before completion of 9 sectors at Tokamak in-pit. In this paper the mid-plane brace tools is introduced about function, structure and status of research and development are also described

  15. R and D of atmosphere detritiation system for ITER in JAEA

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Takumi, E-mail: hayashi.takumi@jaea.go.jp [Tritium Technol. Gr.: Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki Pref. 319-1195 (Japan); Iwai, Yasunori; Kobayashi, Kazuhiro; Nakamura, Hirofumi; Yamanishi, Toshihiko [Tritium Technol. Gr.: Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki Pref. 319-1195 (Japan); Perevezentsev, Alexander [Tritium Plant Gr.: ITER Organization, Cadarache Site (France)

    2010-12-15

    In order to establish an effective ITER atmosphere detritiation system (DS), JAEA (Japan Atomic Energy Agency) has investigated the performance and the durability of the system at various incident/accident conditions in support of finalizing the DS conceptual design through the ITER design review. The current DS as the Safety Important Component (SIC) has been discussed and mainly consists of catalytic reactors, wet scrubber columns (SCs), and blowers. The functional failure of the DS designed with SC was evaluated using a database of failure experiences of various valves, controllers, and components. Regarding the tritium release into the biggest confinement sector of the Tokamak gallery, this design is improved by more than two orders of magnitude compared to the original DS designed with molecular sieves (MSs) dryer beds in the 2001 design report. This improvement is achieved mainly by the reduction of frequency of valve operation, like MS dryers requiring periodical regeneration, and by the standardized module arrangement of the DS with SC.

  16. ITER status, design and material objectives

    International Nuclear Information System (INIS)

    Aymar, R.

    2002-01-01

    During the ITER Engineering Design Activities (EDA), completed in July 2001, the Joint Central Team and Home Teams developed a robust design of ITER, summarised in this paper, with parameters which fully meet the required scientific and technological objectives, construction costs and safety requirements, with appropriate margins. The design is backed by R and D to qualify the technology, including materials R and D. Materials for ITER components have been selected largely because of their availability and well-established manufacturing technologies, taking account of the low fluence experienced during neutron irradiation, and the experimental nature of the device. Nevertheless, for specific needs relevant to a future fusion reactor, improved materials, in particular for magnet structures, in-vessel components, and joints between the different materials needed for plasma facing components, have been successfully developed. Now, with the technical readiness to decide on ITER construction, negotiations, supported by coordinated technical activities of an international team and teams from participant countries, are underway on joint construction of ITER with a view to the signature/ratification of an agreement in 2003

  17. Efficiency of thermal outgassing for tritium retention measurement and removal in ITER

    Directory of Open Access Journals (Sweden)

    G. De Temmerman

    2017-08-01

    Full Text Available As a licensed nuclear facility, ITER must limit the in-vessel tritium (T retention to reduce the risks of potential release during accidents, the inventory limit being set at 1kg. Simulations and extrapolations from existing experiments indicate that T-retention in ITER will mainly be driven by co-deposition with beryllium (Be eroded from the first wall, with co-deposits forming mainly in the divertor region but also possibly on the first wall itself. A pulsed Laser-Induced Desorption (LID system, called Tritium Monitor, is being designed to locally measure the T-retention in co-deposits forming on the inner divertor baffle of ITER. Regarding tritium removal, the baseline strategy is to perform baking of the plasma-facing components, at 513K for the FW and 623K for the divertor. Both baking and laser desorption rely on the thermal desorption of tritium from the surface, the efficiency of which remains unclear for thick (and possibly impure co-deposits. This contribution reports on the results of TMAP7 studies of this efficiency for ITER-relevant deposits.

  18. ITER Port Plug Engineering Trainee Program: Design, manufacturing and integration of structural components (analysis of the attachment)

    International Nuclear Information System (INIS)

    Zeile, Christian; Neuberger, Heiko; Dolensky, Bernhard

    2011-01-01

    The structural connection of helium cooled plasma facing components in ITER to the water cooled structural port plug shield requires an attachment system, which is able to cope with two main contradicting requirements: The attachment system has to be rigid in order to withstand mechanical loads, e.g. due to the deadweight or static and transient electro-magnetic loads. On the other hand, the attachment system has to be flexible in order to compensate the different thermal strains in between the plasma facing test devices (300-550 deg. C) and the port plug structure (∼120 deg. C). The paper presents the latest developments of an attachment system consisting of flexible attachment blocks with lamellae. The optimization steps as well as the connection to the shield are described. The results of the thermo-mechanical analyses under a defined worst-case scenario confirm the feasibility of the lamella design. This work has been performed in the frame of the EFDA goal orientated trainee program on port plug engineering.

  19. Status of international collaborative efforts on selected ITER materials

    International Nuclear Information System (INIS)

    Belyakov, V.A.; Fabritsiev, S.A.; Mazul, I.V.; Rowcliffe, A.F.

    2000-01-01

    The paper presents an overview of the performance of refractory metals, beryllium, and copper alloys, for the international thermonuclear experimental reactor (ITER) high heat flux structures. High temperature brazing, hot isostatic pressing (HIP), friction welding, explosive bonding, and other methods were explored to join copper alloys to 316 stainless steel for first wall and limiter applications. It is concluded that the main material problems for the ITER high heat flux components are: (a) degradation of properties after the manufacturing cycle (especially for Be/Cu and Cu/stainless steel (SS) joints); (b) helium embrittlement of Be, and Cu, and; (c) radiation-induced loss of fracture toughness for Be, W, and Cu alloys

  20. Challenges of ITER diagnostic electrical services

    Energy Technology Data Exchange (ETDEWEB)

    Encheva, A., E-mail: anna.encheva@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Omran, H. [Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); Pérez-Lasala, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain); Alekseev, A. [Efremov Institute, Metallostroy, Doroga na Metallostroy, 3 bld., Saint-Petersburg 196641 (Russian Federation); Arshad, S. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain); Bede, O. [Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); Bender, S. [Efremov Institute, Metallostroy, Doroga na Metallostroy, 3 bld., Saint-Petersburg 196641 (Russian Federation); Bertalot, L.; Direz, M.-F.; Drevon, J.-M.; Jakhar, S.; Kaschuk, Y.; Komarov, V.; Lebarbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Lucca, F. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Macklin, B.; Maquet, P. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Marin, A. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Martin, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Mills, S. [Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); and others

    2013-10-15

    Highlights: • A brief description of all major components part of diagnostic electrical services has been given. • The integration challenges have been presented. • Design assumptions and requirements for the components have been described. • The design of the conduit/loom and the relevant analysis has been highlighted. -- Abstract: Diagnostic electrical services provide the electrical infrastructure to serve diagnostic components installed on the ITER tokamak. This infrastructure is composed of cables, connectors, cable tails, looms, conduits and feedthroughs. The diagnostic services offer as well a shelter for various instrumentations – vacuum vessel (VV), blanket and divertor. The diagnostic sensors are located on the inner and outer VV wall, on blanket shield modules, divertor cassettes and in port plugs. They require electrical cabling to extract the measurement and, in some cases, to supply electrical power to the sensors. These cables run from the sensors to feedthroughs on the VV and the port interspace or cryostat. The design and integration of all components that are part of diagnostic electrical services is an important engineering activity that is being challenged by the multiple requirements and constraints which have to be satisfied while at the same time delivering the required diagnostic performance. The positioning of the components must correlate not only with their functional specifications but also with the design of the major ITER components. This is a particular challenge because not all systems have reached the same level of design maturity. This paper outlines the engineering challenges of ITER diagnostics electrical services. The environmental conditions inside the VV will have an important impact. Leading risks to these components include poor electrical contact at connectors, the effects of exposure to nuclear irradiation, such as material transmutation, heating, and generation of spurious electrical signals etc., failure due to

  1. Main components and content of sports volunteer activities

    Directory of Open Access Journals (Sweden)

    Iryna Petrenkо

    2017-12-01

    Full Text Available Purpose: identification of the main structural components and content of sports volunteer activities. Material & Methods: used analysis of literature and documents, organizational analysis. Result: basic structural components of sports volunteer activity are defined. The content of sports volunteer activity is disclosed. Conclusion: sports volunteer activity includes the following structural components: subject, object, purpose, motivation, means, actions; subject is a sports volunteer, the object is a sports competition, the goal is to provide gratuitous assistance for a quality competition, the means are the special knowledge, skills, communication abilities of sports volunteers, actions should be understood as types of volunteer activities and functions that volunteers perform during the preparation and conduct of competitions. Main types of sports volunteer activity are: 1 organizational; 2 judiciary; 3 coaching; 4 legal; 5 medical. Functions that volunteers perform in the competition system are general and special. Content of the functions of sports volunteering depends on the specifics of the sports, the rank of the competition, the specifics of the competition for people with special needs.

  2. Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.; Varela, P. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2016-11-15

    The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.

  3. ITER and research works on magnetic confinement fusion

    International Nuclear Information System (INIS)

    Jacquinot, J.

    2013-01-01

    This article presents the main features of the ITER tokamak and its implications in terms of research concerning plasma instabilities, confinement and materials. It also shows how the financial and technological responsibilities have been shared between the 7 partners (European Union, China, South-Korea, Russia, Japan, India and United-States) and also gives a progress update of the fabrication of the components at the date of September 2012

  4. RAMI analysis for ITER radial X-ray camera system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shijun, E-mail: sjqin@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Liqun; Chen, Kaiyun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Barnsley, Robin; Sirinelli, Antoine [ITER Organization, Route Vinon sur Verdon, CS 90046, 13067, St. Paul lez Durance, Cedex (France); Song, Yuntao; Lu, Kun; Yao, Damao; Chen, Yebin; Li, Shi; Cao, Hongrui; Yu, Hong; Sheng, Xiuli [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • The functional analysis of the ITER RXC system was performed. • A failure modes, effects and criticality analysis of the ITER RXC system was performed. • The reliability and availability of the ITER RXC system and its main functions were calculated. • The ITER RAMI approach was applied to the ITER RXC system for technical risk control in the preliminary design phase. - Abstract: ITER is the first international experimental nuclear fusion device. In the project, the RAMI approach (reliability, availability, maintainability and inspectability) has been adopted for technical risk control to mitigate all the possible failure of components in preparation for operation and maintenance. RAMI analysis of the ITER Radial X-ray Camera diagnostic (RXC) system during preliminary design phase was required, which insures the system with a very high performance to measure the X-ray emission and research the MHD of plasma with high accuracy on the ITER machine. A functional breakdown was prepared in a bottom-up approach, resulting in the system being divided into 3 main functions, 6 intermediate functions and 28 basic functions which are described using the IDEFØ method. Reliability block diagrams (RBDs) were prepared to calculate the reliability and availability of each function under assumption of operating conditions and failure data. Initial and expected scenarios were analyzed to define risk-mitigation actions. The initial availability of RXC system was 92.93%, while after optimization the expected availability was 95.23% over 11,520 h (approx. 16 months) which corresponds to ITER typical operation cycle. A Failure Modes, Effects and Criticality Analysis (FMECA) was performed to the system initial risk. Criticality charts highlight the risks of the different failure modes with regard to the probability of their occurrence and impact on operations. There are 28 risks for the initial state, including 8 major risks. No major risk remains after taking into

  5. Design analysis of the ITER divertor

    International Nuclear Information System (INIS)

    Samuelli, G.; Marin, A.; Roccella, M.; Lucca, F.; Merola, M.; Riccardi, B.; Petrizzi, L.; Villari, R.

    2007-01-01

    The divertor is one of the most challenging components of the ITER machine. Its function is to reduce the impurity in the plasma and consists essentially of two parts: the plasma facing components (PFCs) and a massive support structure called the cassette body (CB). Considerable R and D effort (developed by EFDA CSU GARCHING and the ITER International Team together with the EU Associations and the EU Industries) has been spent in designing divertor components capable of withstanding the expected electromagnetic (EM) loads and to take into account the latest ITER design conditions. In support of such efforts extensive and very detailed Neutronic, Thermal, EM and Structural analyses have been performed. A summary of the analyses performed will be presented. One of the main result is a typical exercise of integration between the different kind of analyses and the importance of keeping the consistency between the different assumptions and simplifications. The models used for the numerical analyses include a detailed geometrical description of the CB, the inlet, outlet hydraulic manifolds, the CB to vacuum vessel locking system and three configurations of the PFU. The effect of electrical bridging, both in poloidal and toroidal direction, of the PFU castellation, due to a possible melting at the W mono-block or tiles, occurring during the plasma disruptions, has been analyzed. For all these configurations 2 VDE scenarios including the effect of the Toroidal Field Variation and the HaloCurrent with the related out of plane induced EM forces have been extensively analyzed and a detailed poloidal and radial distribution of the nuclear heating has been used for the neutronic flux on the divertor components. The aim of this activity is to produce a comprehensive design and assessment of the ITER divertor via: -The estimation of the neutronic heat deposition and shielding capability; -The calculation of the related thermal and mechanical effects and the comparison of the

  6. Design analysis of the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Samuelli, G.; Marin, A.; Roccella, M.; Lucca, F. [L.T. Calcoli SaS, Merate (Lecco) (Italy); Merola, M. [ITER Team, Cadarache (France); Riccardi, B. [EFDA CSU Garching (Germany); Petrizzi, L.; Villari, R. [CRE ENEA sulla Fusione Frascati, Roma (Italy)

    2007-07-01

    The divertor is one of the most challenging components of the ITER machine. Its function is to reduce the impurity in the plasma and consists essentially of two parts: the plasma facing components (PFCs) and a massive support structure called the cassette body (CB). Considerable R and D effort (developed by EFDA CSU GARCHING and the ITER International Team together with the EU Associations and the EU Industries) has been spent in designing divertor components capable of withstanding the expected electromagnetic (EM) loads and to take into account the latest ITER design conditions. In support of such efforts extensive and very detailed Neutronic, Thermal, EM and Structural analyses have been performed. A summary of the analyses performed will be presented. One of the main result is a typical exercise of integration between the different kind of analyses and the importance of keeping the consistency between the different assumptions and simplifications. The models used for the numerical analyses include a detailed geometrical description of the CB, the inlet, outlet hydraulic manifolds, the CB to vacuum vessel locking system and three configurations of the PFU. The effect of electrical bridging, both in poloidal and toroidal direction, of the PFU castellation, due to a possible melting at the W mono-block or tiles, occurring during the plasma disruptions, has been analyzed. For all these configurations 2 VDE scenarios including the effect of the Toroidal Field Variation and the HaloCurrent with the related out of plane induced EM forces have been extensively analyzed and a detailed poloidal and radial distribution of the nuclear heating has been used for the neutronic flux on the divertor components. The aim of this activity is to produce a comprehensive design and assessment of the ITER divertor via: -The estimation of the neutronic heat deposition and shielding capability; -The calculation of the related thermal and mechanical effects and the comparison of the

  7. The ITER Neutral Beam Test Facility towards SPIDER operation

    Science.gov (United States)

    Toigo, V.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Gambetta, G.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Piovan, R.; Recchia, M.; Rizzolo, A.; Sartori, E.; Siragusa, M.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Nocentini, R.; Riedl, R.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Cavenago, M.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Hemsworth, R.

    2017-08-01

    SPIDER is one of two projects of the ITER Neutral Beam Test Facility under construction in Padova, Italy, at the Consorzio RFX premises. It will have a 100 keV beam source with a full-size prototype of the radiofrequency ion source for the ITER neutral beam injector (NBI) and also, similar to the ITER diagnostic neutral beam, it is designed to operate with a pulse length of up to 3600 s, featuring an ITER-like magnetic filter field configuration (for high extraction of negative ions) and caesium oven (for high production of negative ions) layout as well as a wide set of diagnostics. These features will allow a reproduction of the ion source operation in ITER, which cannot be done in any other existing test facility. SPIDER realization is well advanced and the first operation is expected at the beginning of 2018, with the mission of achieving the ITER heating and diagnostic NBI ion source requirements and of improving its performance in terms of reliability and availability. This paper mainly focuses on the preparation of the first SPIDER operations—integration and testing of SPIDER components, completion and implementation of diagnostics and control and formulation of operation and research plan, based on a staged strategy.

  8. Remote handling demonstration of ITER blanket module replacement

    International Nuclear Information System (INIS)

    Kakudate, S.; Nakahira, M.; Oka, K.; Taguchi, K.; Obara, K.; Tada, E.; Shibanuma, K.; Tesini, A.; Haange, R.; Maisonnier, D.

    2001-01-01

    In ITER, the in-vessel components such as blanket are to be maintained or replaced remotely since they will be activated by 14 MeV neutrons, and a complete exchange of shielding blanket with breeding blanket is foreseen after the Basic Performance Phase. The blanket is segmented into about seven hundred modules to facilitate remote maintainability and allow individual module replacement. For this, the remote handing equipment for blanket maintenance is required to handle a module with a dead weight of about 4 tonne within a positioning accuracy of a few mm under intense gamma radiation. According to the ITER R and D program, a rail-mounted vehicle manipulator system was developed and the basic feasibility of this system was verified through prototype testing. Following this, development of full-scale remote handling equipment has been conducted as one of the ITER Seven R and D Projects aiming at a remote handling demonstration of the ITER blanket. As a result, the Blanket Test Platform (BTP) composed of the full-scale remote handling equipment has been completed and the first integrated performance test in March 1998 has shown that the fabricate remote handling equipment satisfies the main requirements of ITER blanket maintenance. (author)

  9. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    International Nuclear Information System (INIS)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A; Constans, S; Merola, M; Riccardi, B

    2009-01-01

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  10. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Science.gov (United States)

    Escourbiac, F.; Richou, M.; Guigon, R.; Constans, S.; Durocher, A.; Merola, M.; Schlosser, J.; Riccardi, B.; Grosman, A.

    2009-12-01

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  11. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A [CEA/IRFM, F-13108, Saint-Paul-lez-Durance (France); Constans, S [AREVA-NP, Le Creusot (France); Merola, M [ITER Organization, Cadarache (France); Riccardi, B [Fusion For Energy, Barcelona (Spain)], E-mail: frederic.escourbiac@cea.fr

    2009-12-15

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  12. Structural analysis of ITER sub-assembly tools

    International Nuclear Information System (INIS)

    Nam, K.O.; Park, H.K.; Kim, D.J.; Ahn, H.J.; Lee, J.H.; Kim, K.K.; Im, K.; Shaw, R.

    2011-01-01

    The ITER Tokamak assembly tools are purpose-built assembly tools to complete the ITER Tokamak machine which includes the cryostat and the components contained therein. The sector sub-assembly tools descried in this paper are main assembly tools to assemble vacuum vessel, thermal shield and toroidal filed coils into a complete 40 o sector. The 40 o sector sub-assembly tools are composed of sector sub-assembly tool, including radial beam, vacuum vessel supports and mid-plane brace tools. These tools shall have sufficient strength to transport and handle heavy weight of the ITER Tokamak machine reached several hundred tons. Therefore these tools should be designed and analyzed to confirm both the strength and structural stability even in the case of conservative assumptions. To verify structural stabilities of the sector sub-assembly tools in terms of strength and deflection, ANSYS code was used for linear static analysis. The results of the analysis show that these tools are designed with sufficient strength and stiffness. The conceptual designs of these tools are briefly described in this paper also.

  13. Validated design of the ITER main vacuum pumping systems

    International Nuclear Information System (INIS)

    Day, Chr.; Antipenkov, A.; Dremel, M.; Haas, H.; Hauer, V.; Mack, A.; Boissin, J.-C.; Class, G.; Murdoch, D.K.; Wykes, M.

    2005-01-01

    Forschungszentrum Karlsruhe is developing the ITER high vacuum cryogenic pumping systems (torus, cryostat, NBI) as well as the corresponding mechanical roughing pump trains. All force-cooled big cryopumps incorporate similar design of charcoal coated cryopanels cooled to 5 K with supercritical helium. A model of the torus exhaust cryopump was comprehensively characterised in the TIMO testbed at Forschungszentrum. This paper discusses the vacuum performance results of the model pump and outlines how these data were incorporated in a sound design of the whole ITER torus exhaust pumping system. To do this, the dedicated software package ITERVAC was developed which is able to describe gas flow in viscous, transitional and molecular flow regimes as needed for the gas coming through the divertor slots and along the pump ducts into the cryopumps. The entrance section between the divertor cassettes and each pumping duct was identified to be the bottleneck of the gas flow. The interrelation of achievable throughputs as a function of the divertor pressure and the cryopump pumping speed is discussed. The system design is completed by assessment of the NBI cryopump system and integrating performance curves for the roughing pump trains needed during the regeneration phases of the cryopumps. (author)

  14. Preparation of acceptance tests and criteria for the Test Blanket Systems to be operated in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der, E-mail: JaapG.vanderLaan@iter.org [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Cuquel, B. [AIRBUS Defence and Space S.A.S., 13115 Saint Paul Lez Durance (France); Demange, D.; Ghidersa, B.-E. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Giancarli, L.M.; Iseli, M.; Jourdan, T. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Nevière, J.-C. [Comex-Nucleaire, 13115 Saint Paul Lez Durance (France); Pascal, R.; Ring, W. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • Initial guideline for acceptance testing and acceptance criteria for Test Blanket Systems in ITER. • These tests complement those required by the applicable codes and standards, and regulations. • Completion of TBS manufacture will be followed by Factory Acceptance Testing, prior to shipment. • Next steps are “Reception Inspection Tests”, and on-site pre-installation and components tests. • This guideline allows the detailing of the TBS specific test plans and their scheduling. - Abstract: This paper describes the main acceptance criteria and required acceptance tests for the components of the six Test Blanket Systems to be installed and operated in ITER. It summarizes the guide-line toward the establishment of detailed test plans for the TBS, starting from the end-product at the ITER Members factories, and to generally define the type of tests that have to be performed on the ITER site after shipment, and/or prior to the systems final commissioning phase.

  15. Potential failure mode and effects analysis for the ITER NB injector

    International Nuclear Information System (INIS)

    Boldrin, M.; De Lorenzi, A.; Fiorentin, A.; Grando, L.; Marcuzzi, D.; Peruzzo, S.; Pomaro, N.; Rigato, W.; Serianni, G.

    2009-01-01

    The failure mode and effects analysis (FMEA) is a widely used analytical technique that helps in identifying and reducing the risks of failure in a system, component or process. The application of a systematic method like the FMEA was deemed necessary and adequate to support the design process of the ITER NBI (neutral beam injector). The approach adopted was to develop a FMEA at a general 'system level', focusing the study on the main functions of the system and ensuring that all the interfaces and interactions are covered among the various subsystems. The FMEA was extended to the whole NBI system taking into account the present design status. The FMEA procedure will be then applied to the detailed design phase at the component level, in particular to identify (or define) the ITER Class of Risk. Several important failure modes were evidenced, and estimates of subsystems and components reliability are now available. FMEA procedure resulted essential to identify and confirm the diagnostic systems required for protection and control, and the outcome of this analysis will represent the baseline document for the design of the NBI and NBTF integrated protection system. In the paper, rationale and background of the FMEA for ITER NBI are presented, methods employed are described and most interesting results are reported and discussed.

  16. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.; Janeschitz, G. [Forschungszentrum Karlsruhe GmbH, FZK, Karlsruhe (Germany); Landman, I.; Pestchanyi, S. [FZK-Forschungszentrum Karlsruhe, Association Euratom-FZK, Technik und Umwelt, Karlsruhe (Germany); Loarte, A. [EFDA Close Support Unit Garching, Garching bei Munchen(Germany)

    2007-07-01

    Full text of publication follows: Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto divertor and the first wall by multiple ELMs (about 10{sup 4} ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. It is expected that about 50-70 % of the ELM energy releases onto divertor armour and the rest is dumped onto the First Wall (FW) armour. The expected energy heat loads on the ITER divertor and FW during Type I ELM are in range 0.5 - 4 MJ/m{sup 2} in timescales of 0.3-0.6 ms. In case of the ITER disruptions the material evaporated from the divertor expands into the SOL and generates significant radiation heating of the FW armour up to several GW/m2 during a few milliseconds that can also lead to the its melting and noticeable damage. Beryllium macro-brush armour (Be-brushes) is foreseen as plasma FW facing component (PFC) in ITER. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of Be-erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations using the codes MEMOS and PHEMOBRID validated against experimental data obtained at the plasma gun facilities QSPA-T, MK-200UG and QSPA-Kh50 that provide a way to simulate the energy loads expected in ITER in laboratory experiments. The numerical simulations were carried out for the expected ITER ELMs for the heat loads in the range 0.5 - 3.0 MJ/m{sup 2} and the timescale up 0.6 ms and ITER disruptions for the heat loads in the range 2 - 13 MJ/m{sup 2} in timescales of 1-5 ms. Radiation heat loads at the FW armour from the vapour expanded into the SOL were calculated using the codes FOREV-2 and TOKES for both ITER ELM and ITER disruption scenarios. Melt layer damage of the Be

  17. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    International Nuclear Information System (INIS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2007-01-01

    Full text of publication follows: Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto divertor and the first wall by multiple ELMs (about 10 4 ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. It is expected that about 50-70 % of the ELM energy releases onto divertor armour and the rest is dumped onto the First Wall (FW) armour. The expected energy heat loads on the ITER divertor and FW during Type I ELM are in range 0.5 - 4 MJ/m 2 in timescales of 0.3-0.6 ms. In case of the ITER disruptions the material evaporated from the divertor expands into the SOL and generates significant radiation heating of the FW armour up to several GW/m2 during a few milliseconds that can also lead to the its melting and noticeable damage. Beryllium macro-brush armour (Be-brushes) is foreseen as plasma FW facing component (PFC) in ITER. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of Be-erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations using the codes MEMOS and PHEMOBRID validated against experimental data obtained at the plasma gun facilities QSPA-T, MK-200UG and QSPA-Kh50 that provide a way to simulate the energy loads expected in ITER in laboratory experiments. The numerical simulations were carried out for the expected ITER ELMs for the heat loads in the range 0.5 - 3.0 MJ/m 2 and the timescale up 0.6 ms and ITER disruptions for the heat loads in the range 2 - 13 MJ/m 2 in timescales of 1-5 ms. Radiation heat loads at the FW armour from the vapour expanded into the SOL were calculated using the codes FOREV-2 and TOKES for both ITER ELM and ITER disruption scenarios. Melt layer damage of the Be FW macro

  18. IVVS actuating system compatibility test to ITER gamma radiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [Associazione EURATOM-ENEA sulla Fusione, 45 Via Enrico Fermi, 00044 Frascati, Rome (Italy); Collibus, M. Ferri de; Florean, M.; Monti, C.; Mugnaini, G.; Neri, C.; Pillon, M.; Pollastrone, F. [Associazione EURATOM-ENEA sulla Fusione, 45 Via Enrico Fermi, 00044 Frascati, Rome (Italy); Baccaro, S.; Piegari, A. [ENEA CR Casaccia, 301 Via Anguillarese, 00123 Santa Maria di Galeria, Rome (Italy); Damiani, C.; Dubus, G. [Fusion For Energy c/Josep Pla, n° 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2013-10-15

    Highlights: • ENEA developed and tested a prototype of a laser In Vessel Viewing and ranging System (IVVS) for ITER. • One piezo-motor prototype has been tested on the ENEA Calliope gamma irradiation facility to verify its compatibility to ITER gamma radiation conditions. • After a total dose of more than 4 MGy the piezo-motor maintained almost the same working parameters monitored before test without any evident and significant degradation of functionality. • After the full gamma irradiation test, the same piezo-motor assembly will be tested with 14 MeV neutrons irradiation using ENEA FNG facility. -- Abstract: The In Vessel Viewing System (IVVS) is a fundamental remote handling equipment, which will be used to make a survey of the status of the blanket first wall and divertor plasma facing components. A design and testing activity is ongoing, in the framework of a Fusion for Energy (F4E) grant agreement, to make the IVVS probe design compatible with ITER operating conditions and in particular, but not only, with attention to neutrons and gammas fluxes and both space constraints and interfaces. The paper describes the testing activity performed on the customized piezoelectric motors and the main components of the actuating system of the IVVS probe with reference to ITER gamma radiation conditions. In particular the test is performed on the piezoelectric motor, optical encoder and small scale optical samples .The test is carried out on the ENEA Calliope gamma irradiation facility at ITER relevant gamma fields at rate of about 2.5 kGy/h and doses of 4 MGy. The paper reports in detail the setup arrangement of the test campaign in order to verify significant working capability of the IVVS actuating components and the results are shown in terms of functional performances and parameters. The overall test campaign on IVVS actuating system will be completed on other ENEA testing facilities in order to verify compatibility to Magnetic field, neutrons and thermal

  19. IVVS actuating system compatibility test to ITER gamma radiation conditions

    International Nuclear Information System (INIS)

    Rossi, Paolo; Collibus, M. Ferri de; Florean, M.; Monti, C.; Mugnaini, G.; Neri, C.; Pillon, M.; Pollastrone, F.; Baccaro, S.; Piegari, A.; Damiani, C.; Dubus, G.

    2013-01-01

    Highlights: • ENEA developed and tested a prototype of a laser In Vessel Viewing and ranging System (IVVS) for ITER. • One piezo-motor prototype has been tested on the ENEA Calliope gamma irradiation facility to verify its compatibility to ITER gamma radiation conditions. • After a total dose of more than 4 MGy the piezo-motor maintained almost the same working parameters monitored before test without any evident and significant degradation of functionality. • After the full gamma irradiation test, the same piezo-motor assembly will be tested with 14 MeV neutrons irradiation using ENEA FNG facility. -- Abstract: The In Vessel Viewing System (IVVS) is a fundamental remote handling equipment, which will be used to make a survey of the status of the blanket first wall and divertor plasma facing components. A design and testing activity is ongoing, in the framework of a Fusion for Energy (F4E) grant agreement, to make the IVVS probe design compatible with ITER operating conditions and in particular, but not only, with attention to neutrons and gammas fluxes and both space constraints and interfaces. The paper describes the testing activity performed on the customized piezoelectric motors and the main components of the actuating system of the IVVS probe with reference to ITER gamma radiation conditions. In particular the test is performed on the piezoelectric motor, optical encoder and small scale optical samples .The test is carried out on the ENEA Calliope gamma irradiation facility at ITER relevant gamma fields at rate of about 2.5 kGy/h and doses of 4 MGy. The paper reports in detail the setup arrangement of the test campaign in order to verify significant working capability of the IVVS actuating components and the results are shown in terms of functional performances and parameters. The overall test campaign on IVVS actuating system will be completed on other ENEA testing facilities in order to verify compatibility to Magnetic field, neutrons and thermal

  20. ITER management advisory committee meeting

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    2001-01-01

    The ITER Management Advisory Committee (MAC) Meeting was held on 23 February in Garching, Germany. The main topics were: the consideration of the report by the Director on the ITER EDA Status, the review of the Work Programme, the review of the Joint Fund, the review of a schedule of ITER meetings, and the arrangements for termination and wind-up of the EDA

  1. The Research of Multiple Attenuation Based on Feedback Iteration and Independent Component Analysis

    Science.gov (United States)

    Xu, X.; Tong, S.; Wang, L.

    2017-12-01

    How to solve the problem of multiple suppression is a difficult problem in seismic data processing. The traditional technology for multiple attenuation is based on the principle of the minimum output energy of the seismic signal, this criterion is based on the second order statistics, and it can't achieve the multiple attenuation when the primaries and multiples are non-orthogonal. In order to solve the above problems, we combine the feedback iteration method based on the wave equation and the improved independent component analysis (ICA) based on high order statistics to suppress the multiple waves. We first use iterative feedback method to predict the free surface multiples of each order. Then, in order to predict multiples from real multiple in amplitude and phase, we design an expanded pseudo multi-channel matching filtering method to get a more accurate matching multiple result. Finally, we present the improved fast ICA algorithm which is based on the maximum non-Gauss criterion of output signal to the matching multiples and get better separation results of the primaries and the multiples. The advantage of our method is that we don't need any priori information to the prediction of the multiples, and can have a better separation result. The method has been applied to several synthetic data generated by finite-difference model technique and the Sigsbee2B model multiple data, the primaries and multiples are non-orthogonal in these models. The experiments show that after three to four iterations, we can get the perfect multiple results. Using our matching method and Fast ICA adaptive multiple subtraction, we can not only effectively preserve the effective wave energy in seismic records, but also can effectively suppress the free surface multiples, especially the multiples related to the middle and deep areas.

  2. ITER management advisory committee meeting in NAKA

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    1999-01-01

    The ITER Management Advisory Committee (MAC) Meeting was held on 17 December 1999 in Naka, Japan. The main topics were the ITER EDA Status, Task Status Summary and Work Program and a schedule of ITER meetings

  3. Integration of IC/EC systems in ITER

    International Nuclear Information System (INIS)

    Gassmann, T.; Beaumont, B.; Baruah, U.K.; Bonicelli, T.; Chiocchio, S.; Cox, D.; Darbos, C.; Decamps, H.; Denisov, G.; Henderson, M.; Kazarian, F.; Lamalle, P.U.; Mukherjee, A.; Rasmussen, D.; Saibene, G.; Sartori, R.; Sakamoto, K.; Tanga, A.

    2010-01-01

    The RF heating and current drive (H and CD) systems that are to be installed in ITER during the construction phase, are the electron cyclotron (EC) and ion cyclotron (IC) systems. They are complex assemblies of high voltage power supplies (HVPS), RF generators, transmission lines and antennas. Their design and integration are constrained by many interfaces, both internal, between the subsystems, and external, with the other ITER systems. In addition, some components must be compatible with a nuclear environment and are classified as Safety Important Component. This paper describes the processes implemented in ITER to ensure proper integration.

  4. ITER Operating Limits and Conditions

    International Nuclear Information System (INIS)

    Ciattaglia, S.; Barabaschi, P.; Carretero, J.A.

    2006-01-01

    The Operating Limits and Conditions (OLCs) are operating parameters and conditions, chosen among all system/components, which together define the domain of the safe operation of ITER in all foreseen ITER status (operation, maintenance, commissioning). At the same time they are selected to guarantee the required operation flexibility which is a critical factor for the success of an experimental machine such as ITER. System and components important for personnel or public safety (Safety Important Class, SIC) are identified from the overall plant safety analysis on functional importance to safety of the components. SIC classification has to be presented already inside the preliminary safety analysis report and approved by the licensing safety authority before the relevant construction. OLCs comprise the safety limits, i.e. that if exceeded could result in a potential safety hazard, the relevant settings that determine the intervention of SIC systems and the operational limits on equipment which warn from or stop a functional departure from a planned operational status that could challenge equipment and functions. The safety limits have to indicate clearly states that leave the nominal safety state of ITER; they are derived from the safety analysis of ITER. OLCs can represent in some cases few parameters grouping together. Some operational conditions, e.g. inventories, will be controlled through no real time measurements and procedures. Operating experience from present tokamaks, in particular JET, and from nuclear plants is considered at the maximum possible extent. This paper presents the guidelines to develop the ITER OLCs with particular reference to safety limits. A few examples are reported as well as open issues on some OLCs control and measurement and the relevant R-and-D planned to solve the issues. (author)

  5. ITER EDA status

    International Nuclear Information System (INIS)

    Aymar, R.

    2001-01-01

    The Project has focused on drafting the Plant Description Document (PDD), which will be published as the Technical Basis for the ITER Final Design Report (FDR), and its related documentation in time for the ITER review process. The preparations have involved continued intensive detailed design work, analyses and assessments by the Home Teams and the Joint Central Team, who have co-operated closely and efficiently. The main technical document has been completed in time for circulation, as planned, to TAC members for their review at TAC-17 (19-22 February 2001). Some of the supporting documents, such as the Plant Design Specification (PDS), Design Requirements and Guidelines (DRG1 and DRG2), and the Plant Safety Requirement (PSR) are also available for reference in draft form. A summary paper of the PDD for the Council's information is available as a separate document. A new documentation structure for the Project has been established. This hierarchical structure for documentation facilitates the entire organization in a way that allows better change control and avoids duplications. The initiative was intended to make this documentation system valid for the construction and operation phases of ITER. As requested, the Director and the JCT have been assisting the Explorations to plan for future joint technical activities during the Negotiations, and to consider technical issues important for ITER construction and operation for their introduction in the draft of a future joint implementation agreement. As charged by the Explorers, the Director has held discussions with the Home Team Leaders in order to prepare for the staffing of the International Team and Participants Teams during the Negotiations (Co-ordinated Technical Activities, CTA) and also in view of informing all ITER staff about their future directions in a timely fashion. One important element of the work was the completion by the Parties' industries of costing studies of about 83 ''procurement packages

  6. Ultrasonic techniques for quality assessment of ITER Divertor plasma facing component

    International Nuclear Information System (INIS)

    Martinez-Ona, Rafael; Garcia, Monica; Medrano, Mercedes

    2009-01-01

    The divertor is one of the most challenging components of ITER machine. Its plasma facing components contain thousands of joints that should be assessed to demonstrate their integrity during the required lifetime. Ultrasonic (US) techniques have been developed to study the capability of defect detection and to control the quality and degradation of these interfaces after the manufacturing process. Three types of joints made of carbon fibre composite to copper alloy, tungsten to copper alloy, and copper-to-copper alloy with two types of configurations have been studied. More than 100 samples representing these configurations and containing implanted flaws of different sizes have been examined. US techniques developed are detailed and results of validation samples examination before and after high heat flux (HHF) tests are presented. The results show that for W monoblocks the US technique is able to detect, locate and size the degradations in the two sample joints; for CFC monoblocks, the US technique is also able to detect, locate and size the calibrated defects in the two joints before the HHF, however after the HHF test the technique is not able to reliably detect defects in the CFC/Cu joint; finally, for the W flat tiles the US technique is able to detect, locate and size the calibrated defects in the two joints before HHF test, nevertheless defect location and sizing are more difficult after the HHF test.

  7. Analysis of the ITER cryoplant operational modes

    International Nuclear Information System (INIS)

    Henry, D.; Journeaux, J.Y.; Roussel, P.; Michel, F.; Poncet, J.M.; Girard, A.; Kalinin, V.; Chesny, P.

    2007-01-01

    In the framework of an EFDA task, CEA is carrying out an analysis of the various ITER cryoplant operational modes. According to the project integration document, ITER is designed to be operated 365 days per year in order to optimize the available time of the Tokamak. It is anticipated that operation will be performed in long periods separated by maintenance periods (e.g. 10 days continuous operation and 1 week break) with annual or bi-annual major shutdown periods of a few months for maintenance, further installation and commissioning. For this operation schedule, auxiliary subsystems like the cryoplant and the cryodistribution have to cope with different heat loads which depend on the different ITER operating states. The cryoplant consists of four identical 4.5 K refrigerators and two 80 K helium loops coupled with two LN2 modules. All of these cryogenic subsystems have to operate in parallel to remove the heat loads from the magnet, 80 K shields, cryopumps and other small users. After a brief recall of the main particularities of a cryogenic system operating in a Tokamak environment, the first part of this study is dedicated to the assessment of the main ITER operation states. A new design of refrigeration loop for the HTS current leads, the updated layout of the cryodistribution system and revised strategy for operations of the cryopumps have been taken into consideration. The relevant normal operating scenarios of the cryoplant are checked for the typical ITER operating states like plasma operation state, short term stand by, short term maintenance, or test and conditioning state. The second part of the paper is dedicated to the abnormal operating modes coming from the magnets and from those generated by the cryoplant itself. The occurrence of a fast discharge or a quench of the magnets generates large heat loads disturbances and produces exceptional high mass flow rates which have to be managed by the cryoplant, while a failure of a cryogenic component induces

  8. Mock-up test on key components of ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Matsumoto, Yasuhiro; Taguchi, Koh; Kozaka, Hiroshi; Shibanuma, Kiyoshi; Tesini, Alessandro

    2009-01-01

    The maintenance operation of the ITER in-vessel component, such as a blanket and divertor, must be executed by the remote equipment because of the high gamma-ray environment. During the Engineering Design Activity (EDA), the Japan Atomic Energy Agency (then called as Japan Atomic Energy Research Institute) had been fabricated the prototype of the vehicle manipulator system for the blanket remote handling and confirmed feasibility of this system including automatic positioning of the blanket and rail deployment procedure of the articulated rail. The ITER agreement, which entered into force in the last year, formally decided that Japan will procure the blanket remote handling system and the JAEA, as the Japanese Domestic Agency, is continuing several R and Ds so that the system can be procured smoothly. The residual key issues after the EDA are rail connection and cable handling. The mock-ups of the rail connection mechanism and the cable handling system were fabricated from the last year and installed at the JAEA Naka Site in this March. The former was composed of the rail connecting mechanism, two rail segments and their handling systems. The latter one utilized a slip ring, which implemented 80 lines for power and 208 lines for signal, because there is an electrical contact between the rotating spool and the fixed base. The basic function of these systems was confirmed through the mock-up test. The rail connection mechanism, for example, could accept misalignment of 1.5-2 mm at least. The future test plan is also mentioned in the paper.

  9. Structural analysis of the ITER Vacuum Vessel regarding 2012 ITER Project-Level Loads

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.-M., E-mail: jean-marc.martinez@live.fr [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Jun, C.H.; Portafaix, C.; Choi, C.-H.; Ioki, K.; Sannazzaro, G.; Sborchia, C. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); Cambazar, M.; Corti, Ph.; Pinori, K.; Sfarni, S.; Tailhardat, O. [Assystem EOS, 117 rue Jacquard, L' Atrium, 84120 Pertuis (France); Borrelly, S. [Sogeti High Tech, RE2, 180 rue René Descartes, Le Millenium – Bat C, 13857 Aix en Provence (France); Albin, V.; Pelletier, N. [SOM Calcul – Groupe ORTEC, 121 ancien Chemin de Cassis – Immeuble Grand Pré, 13009 Marseille (France)

    2014-10-15

    Highlights: • ITER Vacuum Vessel is a part of the first barrier to confine the plasma. • ITER Vacuum Vessel as Nuclear Pressure Equipment (NPE) necessitates a third party organization authorized by the French nuclear regulator to assure design, fabrication, conformance testing and quality assurance, i.e. Agreed Notified Body (ANB). • A revision of the ITER Project-Level Load Specification was implemented in April 2012. • ITER Vacuum Vessel Loads (seismic, pressure, thermal and electromagnetic loads) were summarized. • ITER Vacuum Vessel Structural Margins with regards to RCC-MR code were summarized. - Abstract: A revision of the ITER Project-Level Load Specification (to be used for all systems of the ITER machine) was implemented in April 2012. This revision supports ITER's licensing by accommodating requests from the French regulator to maintain consistency with the plasma physics database and our present understanding of plasma transients and electro-magnetic (EM) loads, to investigate the possibility of removing unnecessary conservatism in the load requirements and to review the list and definition of incidental cases. The purpose of this paper is to present the impact of this 2012 revision of the ITER Project-Level Load Specification (LS) on the ITER Vacuum Vessel (VV) loads and the main structural margins required by the applicable French code, RCC-MR.

  10. Iberdrola project engineering in the manufacture of the ITER superconducting coils

    International Nuclear Information System (INIS)

    Felipe, A.; Merino, A.

    2012-01-01

    ITER in a large-scale project that aims to demonstrate that it is possible to produce commercial energy from fusion. During its operational lifetime, ITER will test key technologies necessary for the next step: the demonstration fusion power plant that will prove that it is possible to capture fusion energy for commercial use. IBERDROLA Ingenieria y Construccion is the leader of a Consortium with ASG superconductors (Italy) and Elytt Energy (Spain) that is in charge of the manufacturing of one of the most relevant component: 10 Toroidal Field Coils. the development of this project presents significant technological challenges, where the main processes are the one related to high accuracy required during all manufacturing processes. (Author)

  11. The ITER divertor concept

    International Nuclear Information System (INIS)

    Janeschitz, G.; Borrass, K.; Federici, G.; Igitkhanov, Y.; Kukushkin, A.; Pacher, H.D.; Pacher, G.W.; Sugihara, M.

    1995-01-01

    The ITER divertor must exhaust most of the alpha particle power and the He ash at acceptable erosion rates. The high recycling regime of the ITER-CDA for present parameters would yield high power loads and erosion rates on conventional targets. Improvement by radiation in the SOL at constant pressure is limited in principle. To permit a higher radiation fraction, the plasma pressure along the field must be reduced by more than a factor 10, reducing also the target ion flux. This pressure reduction can be obtained by strong plasma-neutral interaction below the X-point. Under these conditions T e in the divertor can be reduced to <5 eV along a flame like ionisation front by impurity radiation and CX losses. Downstream of the front, neutrals undergo more CX or i-n collisions than ionisation events, resulting in significant momentum loss via neutrals to the divertor chamber wall. The pressure reduction by this mechanism depends on the along-field length for neutral-plasma interaction, the parallel power flux, the neutral density, the ratio of neutral-neutral collision length to the plasma-wall distance and on the Mach number of ions and neutrals. A supersonic transition in the main plasma-neutral interaction region, expected to occur near the ionisation front, would be beneficial for momentum removal. The momentum transfer fraction to the side walls is calculated: low Knudsen number is beneficial. The impact of the different physics effects on the chosen geometry and on the ITER divertor design and the lifetime of the various divertor components are discussed. ((orig.))

  12. Conceptual design of a test facility for the remote handling operations of the ITER Test Blanker Modules

    International Nuclear Information System (INIS)

    Marqueta, A.; Garcia, I.; Gomez, A.; Garcia, L.; Sedano, E.; Fernandez, I.

    2012-01-01

    Conceptual Design of a test facility for the remote handling operations of the ITER Test Blanket Modules. Conditions inside a fusion reactor are incompatible with conventional manual maintenance tasks. the same applies for ancillary equipment. As a consequence, it will become necessary to turn to remote visualization and remote handling techniques, which will have in consideration the extreme conditions, both physical and operating, of ITER. Main goal of the project has been the realization of the conceptual design for the test facility for the Test Blanket Modules of ITER and their associated systems, related to the Remote Handling operations regarding the Port Cell area. Besides the definition of the operations and the specification of the main components and ancillary systems of the TBM graphical simulation have been used for the design, verification and validation of the remote handling operations. (Author)

  13. Ceramics radiation effects issues for ITER

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1993-01-01

    The key radiation effects issues associated with the successful operation of ceramic materials in components of the planned International Thermonuclear Experimental Reactor (ITER) are discussed. Radiation-induced volume changes and degradation of the mechanical properties should not be a serious issue for the fluences planned for ITER. On the other hand, radiation-induced electrical degradation effects may severely limit the allowable exposure of ceramic insulators. Degradation of the loss tangent and thermal conductivity may also restrict the location of some components such as ICRH feedthrough insulators to positions far away from the first wall. In-situ measurements suggest that the degradation of physical properties in ceramics during irradiation is greater than that measured in postirradiation tests. Additional in-situ data during neutron irradiation are needed before engineering designs for ITER can be finalized

  14. ITER ITA newsletter. No. 2, March 2003

    International Nuclear Information System (INIS)

    2003-05-01

    This ITER ITA newsletter contains concise information about the JASS (Joint Assessment of Specific Sites) final report. The main conclusion is that all four sites are sound and fully capable to respond to all ITER Site Requirements and Design assumptions, as approved by the ITER Council in its January 2000 Meeting

  15. Component biomass equations for black spruce in Maine

    Science.gov (United States)

    M. M. Czapowskyj; D. J. Robison; R. D. Briggs; E. H. White; E. H. White

    1985-01-01

    Component biomass prediction equations are presented for young black spruce (Picea mariana B.S.P. (Mill,:)) in northern Maine. A weighted least squares model was used to construct the eq~iationsfo r small trees from 1 to 15 cm d.b.h., and an ordinary least squares model for trees less than 2 m in height. A linearized allometric model was also tested but was not used....

  16. Existence test for asynchronous interval iterations

    DEFF Research Database (Denmark)

    Madsen, Kaj; Caprani, O.; Stauning, Ole

    1997-01-01

    In the search for regions that contain fixed points ofa real function of several variables, tests based on interval calculationscan be used to establish existence ornon-existence of fixed points in regions that are examined in the course ofthe search. The search can e.g. be performed...... as a synchronous (sequential) interval iteration:In each iteration step all components of the iterate are calculatedbased on the previous iterate. In this case it is straight forward to base simple interval existence and non-existencetests on the calculations done in each step of the iteration. The search can also...... on thecomponentwise calculations done in the course of the iteration. These componentwisetests are useful for parallel implementation of the search, sincethe tests can then be performed local to each processor and only when a test issuccessful do a processor communicate this result to other processors....

  17. Main heat transfer components for SNR-300

    International Nuclear Information System (INIS)

    De Haas Van Dorsser, A.H.

    1976-01-01

    Early in the joint German-Belgium-Dutch fast breeder programme it was decided that all main components should be tested, if possible at full scale, before fabrication of the actual SNR-300 components. Descriptions are given of the results of testing, and subsequent modifications, of the pumps, intermediate heat exchangers, and steam generators. A full scale model of the primary pump, free surface vertical shaft centrifugal type, was constructed and tested in the 5000 cubic metres per hour pump test facility erected at Bensberg. A 70 MW model of an intermediate heat exchanger, straight tube type with floating head, was tested in the 50 MW steam generator test station at Hengelo. Also tested in the Hengelo facility was an almost full scale straight tube 50 MW steam generator and subsequently a 50 MW helical tube evaporator. The latter tests were of more than 3000 h operation and resulted in minor changes in design and manufacturing operation. (U.K.)

  18. ITER PF6 double pancakes winding line

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shuangsong [Institute of Plasma Physics, Chinese Academy of Science, Hefei (China); University of Science and Technology of China, Hefei (China); Wen, Wei, E-mail: wenwei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Science, Hefei (China); Chen, Jin; Wu, Weiyue; Song, Yuntao; Shen, Guang [Institute of Plasma Physics, Chinese Academy of Science, Hefei (China)

    2017-03-15

    Highlights: • ITER PF6 double pancakes “two-in-hand” winding line layout and main parameters were introduced, main winding sequences were also included. • Main features of each winding unit include de-spooling unit, straightening unit, sandblasting and cleaning unit, bending unit, turn insulation wrapping head, rotary table and automatic control system were depicted. • PF6 double pancake winding line was commissioned with PF5 empty jacket conductor after the installation and testing of each unit, ±0.5 mm turn positioning and ±2 turn to turn deviations were achieved. - Abstract: The Poloidal Field (PF) coils are one of the main sub-systems of the ITER magnets. The PF6 coil is being manufactured by the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) as per the Poloidal Field coils cooperation agreement signed between ASIPP and Fusion for Energy (F4E).The ITER PF6 winding pack is composed by stacking of 9 double pancakes. Each double pancake is wound with a “two-in-hand” configuration. This paper describes the ITER PF6 double pancakes winding line, including layout and main parameters of the winding line, features of main units and the commissioning trial with PF5 empty jacket conductor.

  19. Quality control in the design, fabrication and operation of the ITER magnets

    International Nuclear Information System (INIS)

    Mitchell, N.

    2006-01-01

    The ITER magnets are a complex system involving interfaces between many advanced technologies (superconductors, forging/welding/machining of massive structures, cryogenics, composites and moulding, high voltage electrical), yet at the same time form part of the ITER 'basic machine' which is required to operate at the design parameters, broadly failure free, for the design life of the tokamak. This imposes special quality control problems for the ITER project integration by the ITER International Team (IT) through the design, fabrication and operation. The magnets are not a test bed for new technology but in spite of this must use it, successfully. There is little previous experience of such a system but full functionality is required from the start, with limited opportunity for adjustment. And, finally, costs and schedule must be contained. The procurement strategy for the machine, with magnet components being supplied 'in kind', requires particular attention to the specifications, scheduling and quality control (QC). Special issues here are the testing requirements on magnet components, especially before final installation but also at critical intermediate stages. Unnecessary or ineffective quality control procedures cause delay and high costs, and divert attention from critical items. The main points of the magnet QC programme are summarised, including the use of codes and standards, qualification, manufacturing quality assurance, commissioning and in-service inspection

  20. ITER EDA newsletter. V. 3, no. 2

    International Nuclear Information System (INIS)

    1994-02-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the Fifth ITER Council Meeting held in Garching, Germany, 27-28 January 1994, a visit (28 January 1994) of an international group of Harvard Fellows to the San Diego Joint Work Site, the Inauguration Ceremony of the EC-hosted ITER joint work site in Garching (28 January 1994), on an ITER Technical Meeting on Assembly and Maintenance held in Garching, Germany, January 19-26, 1994, and a report on a Technical Committee Meeting on radiation effects on in-vessel components held in Garching, Germany, November 15-19, 1993, as well as an ITER Status Report

  1. Study of the layout plan in the tokamak complex building for ITER

    International Nuclear Information System (INIS)

    Sato, Kazuyoshi; Yagenji, Akira; Sekiya, Shigeki; Takahashi, Hideo; Tamura, Kousaku; Neyatani, Yuzuru; Hashimoto, Masayoshi; Ogino, Shunji; Nagamatsu, Nobuhide; Motohashi, Keiichi; Uehara, Masaharu; Kataoka, Takahiro; Ohashi, Hironori

    2006-03-01

    This report summarizes study of the layout plan in the ITER Tokamak complex building as an invite to set up its plant in Japan. To draw up this arrangement plan, final design report (FDR), which was designed for main components and determined for the non-site specific design, was reconstructed systematically for the Japanese site. A supplementary design was performed for the insufficiency parts of FDR. An additional study was also performed for the adaptation of a regulatory framework including technical safety requirements in Japan. We proposed the tokamak complex building with seismic isolation to combine with the hot cell building. Through the studies, a layout plan has been constructed including maintenance plan for personnel access and component route with in the building from assembly to operation period. This layout plan would be used as a basis in the construction period, although final decision will be done by ITER organization. (author)

  2. Microstructure investigation of bronze/steel brazed joints proposed for HHF components of ITER manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G.M. [Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation)], E-mail: gmk@nikiet.ru; Krestnikov, N.S. [Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation); Jarovinskiy, Yu.L.; Makhin, I.D.; Nikolaev, V.V. [Rocket and Space Corporation ' Energia' , Korolev, Lenina Street 4-a, Moscow 141070 (Russian Federation); Skladnov, K.S.; Strebkov, Yu.S.; Zolotarev, V.B. [Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation)

    2008-12-15

    Brazing is considered as one of the perspective option of high heat flux components of ITER manufacturing. CuCrZr bronze, austenitic steel AISI 321-type and PM-17-type (Ni-Mn-Fe-Si-Sn-B alloy) brazed material were used for the development of brazing technology. Two type of brazing have been studied within the framework of recent investigation: - Hot isostatic pressing (HIP)-assisted brazing. - Furnace-assisted brazing (with uniaxial compression loading). For the hydrostatic pressing (HIP) the brazed components were pressed out for about 175 MPa during 2.5 h at the temperature 1035-1040 deg. C. For the furnace-assisted brazing all components were inserted into the sealed can, vacuumed and heated up to brazing temperature {approx}950 deg. C. Fast cooling and ageing heat treatment (500 deg. C and 4 h) were applied to provide high strength of CuCrZr bronze. Microsections of specimens cut from the joints were studied by optical microscopy and by scanning electron microscopy (SEM). The microstructure, distribution of alloying elements of base metals and of brazed material components were studied in the joints. Results of these studies are discussed in this paper. The data shows that there is a potential for using more simple and cheap (in comparison with common HIP) technologies of bronze to steel joining with satisfactory quality.

  3. The ITER activity

    International Nuclear Information System (INIS)

    Glass, A.J.

    1991-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is a collaboration among four parties, the United States, the Soviet Union, Japan, and the European Communities, to demonstrate the scientific and technological feasibility of fusion power for peaceful purposes. ITER will demonstrate this through the construction of a tokamak fusion reactor capable of generating 1000 megawatts of fusion power. The ITER project has three missions, as follows: (1) Physics mission -- to demonstrate ignition and controlled burn, with pulse durations from 200 to 1000 S; (2) Technology mission -- to demonstrate the technologies essential to a reactor in an integrated system, operating with high reliability and availability in pulsed operation, with steady-state operation as the ultimate goal; and (3) Testing mission -- to test nuclear and high-heat-flux components at flux levels for 1 mw/m 2 , and fluences of order 1 mw-yr/m 2

  4. Modelling ELM heat flux deposition on the ITER main chamber wall

    Czech Academy of Sciences Publication Activity Database

    Kočan, M.; Pitts, R.A.; Lisgo, S.W.; Loarte, A.; Gunn, J. P.; Fuchs, Vladimír

    2015-01-01

    Roč. 463, July (2015), s. 709-713 ISSN 0022-3115. [International Conference on Plasma-Surface Interactions in Controlled Fusion Devices (PSI)/21./. Kanazawa, 26.05.2014-30.05.2014] Institutional support: RVO:61389021 Keywords : ELM * ITER Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 2.199, year: 2015

  5. Status and issues of the European contribution to ITER

    International Nuclear Information System (INIS)

    Bindslev, H.

    2015-01-01

    Highlights: • We describe the technical status of F4E's contributions to the ITER International Fusion Energy Project. • The foundations of the ITER Tokamak Complex have been completed. • We describe the production of the Toroidal Field coils and the achieved accuracy. • The first stage of ITER's pre-qualification programme for the ITER first wall panels was completed. • Technical developments for several other ITER components are described. - Abstract: Fusion for Energy (F4E), on behalf of Europe, is responsible for the procurement of most of the high-technology items for the ITER device. This paper provides an overview of the technical status of Europe's contributions to ITER and the related challenges. In particular, we report on progress in the construction of the buildings at the Cadarache site, the fabrication of the superconducting magnets and the vacuum vessel and the testing and qualification of the in-vessel components (first wall and divertor). The status of the design and development of the additional heating systems and the test blanket modules will also be described.

  6. The ITER remote maintenance system

    International Nuclear Information System (INIS)

    Tesini, A.; Palmer, J.

    2008-01-01

    The aim of this paper is to summarize the ITER approach to machine components maintenance. A major objective of the ITER project is to demonstrate that a future power producing fusion device can be maintained effectively and offer practical levels of plant availability. During its operational lifetime, many systems of the ITER machine will require maintenance and modification; this can be achieved using remote handling methods. The need for timely, safe and effective remote operations on a machine as complex as ITER and within one of the world's most hostile remote handling environments represents a major challenge at every level of the ITER Project organization, engineering and technology. The basic principles of fusion reactor maintenance are presented. An updated description of the ITER remote maintenance system is provided. This includes the maintenance equipment used inside the vacuum vessel, inside the hot cell and the hot cell itself. The correlation between the functions of the remote handling equipment, of the hot cell and of the radwaste processing system is also described. The paper concludes that ITER has equipped itself with a good platform to tackle the challenges presented by its own maintenance and upgrade needs

  7. ITER assembly and maintenance

    International Nuclear Information System (INIS)

    Honda, T.; Davis, F.; Lousteau, D.

    1991-01-01

    This document is intended to describe the work conducted by the ITER Assembly and Maintenance (A and M) Design Unit and the supporting home teams during the ITER Conceptual Design Activities, carried out from 1988 through 1990. Its content consists of two main sections, i.e., Chapter III, which describes the identified tasks to be performed by the A and M system and a general description of the required equipment; and Chapter IV, which provides a more detailed description of the equipment proposed to perform the assigned tasks. A two-stage R and D program is now planned, i.e., (1) a prototype equipment functional tests using full scale mock-ups and (2) a full scale integration demonstration test facility with real components (vacuum vessel with ports, blanket modules, divertor modules, armor tiles, etc.). Crucial in-vessel and ex-vessel operations and the associated remote handling equipment, including handling of divertor plates and blanket modules will be demonstrated in the first phase, whereby the database needed to proceed with the engineering phase will be acquired. The second phase will demonstrate the ability of the overall system to execute the required maintenance procedures and evaluate the performance of the prototype equipment

  8. ITER diagnostic system: Vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.M., E-mail: Kaushal.Patel@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Drevon, J.M. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Encheva, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Kashchuk, Y. [Institution “PROJECT CENTER ITER”, 1, Akademika Kurchatova pl., Moscow (Russian Federation); Maquet, Ph. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France)

    2013-10-15

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10{sup −7} Pa, irrespective of plasma operation, and a leak rate of less than 10{sup −10} Pa m{sup 3} s{sup −1}. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions

  9. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Patel, K.M.; Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L.; Drevon, J.M.; Encheva, A.; Kashchuk, Y.; Maquet, Ph.; Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J.

    2013-01-01

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10 −7 Pa, irrespective of plasma operation, and a leak rate of less than 10 −10 Pa m 3 s −1 . In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  10. ATHENA calculation model for the ITER-FEAT divertor cooling system. Final report with updates

    International Nuclear Information System (INIS)

    Eriksson, John; Sjoeberg, A.; Sponton, L.L.

    2001-05-01

    An ATHENA model of the ITER-FEAT divertor cooling system has been developed for the purpose of calculating and evaluating consequences of different thermal-hydraulic accidents as specified in the Accident Analysis Specifications for the ITER-FEAT Generic Site Safety Report. The model is able to assess situations for a variety of conceivable operational transients from small flow disturbances to more critical conditions such as total blackout caused by a loss of offsite and emergency power. The main objective for analyzing this type of scenarios is to determine margins against jeopardizing the integrity of the divertor cooling system components and pipings. The model of the divertor primary heat transport system encompasses the divertor cassettes, the port limiter systems, the pressurizer, the heat exchanger and all feed and return pipes of these components. The development was pursued according to practices and procedures outlined in the ATHENA code manuals using available modelling components such as volumes, junctions, heat structures and process controls

  11. The main objectives of lifetime management of reactor unit components

    International Nuclear Information System (INIS)

    Dragunov, Y.; Kurakov, Y.

    1998-01-01

    The main objectives of the work concerned with life management of reactor components in Russian Federation are as follows: development of regulations in the field of NPP components ageing and lifetime management; investigations of ageing processes; residual life evaluation taking into account the actual state of NPP systems, real loading conditions and number of load cycles, results of in-service inspections; development and implementation of measures for maintaining/enhancing the NPP safety

  12. Smart Grids: short history, main components and perspectives

    International Nuclear Information System (INIS)

    Belhomme, R.; Maire, J.

    2010-01-01

    This paper tries to describe the smart grids in their entirety. In a first part, two definitions are given for the smart grids, the main drivers for their development are briefly described, along with an overview of the initiatives and projects in different parts of the world: Europe, USA, Asia and Pacific area. The second part is devoted to the main components of the smart grids. The following are considered: distributed generation and renewables, energy storage, demand side integration, intelligent buildings, smart meters, communication infrastructures, distribution and transmission networks, micro-grids, flexibility of the generation park, electric vehicles and regulatory issues. Finally, the conclusion gives a short discussion of some important issues, as well as of the benefits of demonstration projects. (authors)

  13. ITER management advisory committee meeting

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    2001-01-01

    The ITER Management Advisory Committee (MAC) Meeting was held in Vienna on 16 July 2001. It was the last MAC Meeting and the main topics were consideration of the report by the Director on the ITER EDA status, review of the Work Programme, review of the Joint Fund and arrangements for termination and wind-up of the EDA

  14. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    Science.gov (United States)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  15. Experimental test campaign on an ITER divertor mock-up

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Orco, G. E-mail: giovanni.dellorco@brasimone.enea.it; Malavasi, A.; Merola, M.; Polazzi, G.; Simoncini, M.; Zito, D

    2002-11-01

    In 1998, in the frame of the European R and D on ITER high heat flux components, the fabrication of a full scale ITER Divertor Outboard mock-up was launched. It comprised a Cassette Body (CB), designed with some mechanical and hydraulic simplifications with respect to the reference body and its actively cooled Dummy Armour Prototype (DAP). This DAP consists of a Vertical Target (VT), a Wing (WI) and a Dump Target (DT), manufactured by European industries, which are integrated to the Gas Box Liner (GBL) supplied by the Russian Federation ITER Home Team. In 1999, in parallel with the manufacturing activity, the ITER European Home Team decided to assign to ENEA a Task for checking the component integration and performing the thermal-hydraulic and thermal mechanical testing of the DAP and CB. In 1999-2000, ENEA performed the experimental campaign at Brasimone Labs. The present work presents the experimental results of the component integration and the thermal-hydraulic and thermo-mechanical fatigue tests.

  16. Experimental test campaign on an ITER divertor mock-up

    International Nuclear Information System (INIS)

    Dell'Orco, G.; Malavasi, A.; Merola, M.; Polazzi, G.; Simoncini, M.; Zito, D.

    2002-01-01

    In 1998, in the frame of the European R and D on ITER high heat flux components, the fabrication of a full scale ITER Divertor Outboard mock-up was launched. It comprised a Cassette Body (CB), designed with some mechanical and hydraulic simplifications with respect to the reference body and its actively cooled Dummy Armour Prototype (DAP). This DAP consists of a Vertical Target (VT), a Wing (WI) and a Dump Target (DT), manufactured by European industries, which are integrated to the Gas Box Liner (GBL) supplied by the Russian Federation ITER Home Team. In 1999, in parallel with the manufacturing activity, the ITER European Home Team decided to assign to ENEA a Task for checking the component integration and performing the thermal-hydraulic and thermal mechanical testing of the DAP and CB. In 1999-2000, ENEA performed the experimental campaign at Brasimone Labs. The present work presents the experimental results of the component integration and the thermal-hydraulic and thermo-mechanical fatigue tests

  17. Disruptions in ITER and strategies for their control and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Lehnen, M., E-mail: michael.lehnen@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Aleynikova, K.; Aleynikov, P.B.; Campbell, D.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Drewelow, P. [Max-Planck-Institut für Plasmaphysik, Greifswald branch, EURATOM Ass., D-17491 Greifswald (Germany); Eidietis, N.W. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Gasparyan, Yu. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow 115409 (Russian Federation); Granetz, R.S. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Gribov, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Hartmann, N. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research—Plasma Physics, Association EURATOM-FZJ, Trilateral Euregio Cluster, 52425 Jülich (Germany); Hollmann, E.M. [University of California-San Diego, La Jolla, CA 92093 (United States); Izzo, V.A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Jachmich, S. [Laboratory for Plasma Physics, ERM/KMS, Association EURATOM – Belgian State, B-1000 Brussels (Belgium); Kim, S.-H.; Kočan, M. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Koslowski, H.R. [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research—Plasma Physics, Association EURATOM-FZJ, Trilateral Euregio Cluster, 52425 Jülich (Germany); Kovalenko, D. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Kruezi, U. [CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); and others

    2015-08-15

    The thermal and electromagnetic loads related to disruptions in ITER are substantial and require careful design of tokamak components to ensure they reach the projected lifetime and to ensure that safety relevant components fulfil their function for the worst foreseen scenarios. The disruption load specifications are the basis for the design process of components like the full-W divertor, the blanket modules and the vacuum vessel and will set the boundary conditions for ITER operations. This paper will give a brief overview on the disruption loads and mitigation strategies for ITER and will discuss the physics basis which is continuously refined through the current disruption R&D programs.

  18. A cryogenic system design for the international thermonuclear experimental reactor (ITER)

    International Nuclear Information System (INIS)

    Slack, D.S.

    1991-01-01

    A conceptual design for ITER was completed last year. The author developed a suitable cryogenic system for ITER as part of this conceptual design effort. An overview of the design is reported. Emphasis is on the fact that cryogenics is a mature science, and a system supporting ITER needs can be made from time-proven components without loss of efficiency or reliability. Because of the large size of the ITER cryogenic system, large numbers of compressors and expanders must be used. Very high reliability is assured by arranging these components in parallel banks where servicing of individual components can be done without interruption of operations. This and other ideas based on the author's experience with Mirror Fusion Test Facility (MFTF) operations are described. 5 refs., 3 figs

  19. Integration of an iterative methodology for exergoeconomic improvement of thermal systems with a process simulator

    International Nuclear Information System (INIS)

    Vieira, Leonardo S.; Donatelli, Joao L.; Cruz, Manuel E.

    2004-01-01

    In this paper, we present the development and automated implementation of an iterative methodology for exergoeconomic improvement of thermal systems integrated with a process simulator, so as to be applicable to real, complex plants. The methodology combines recent available exergoeconomic techniques with new qualitative and quantitative criteria for the following tasks: (i) identification of decision variables that affect system total cost and exergetic efficiency; (ii) hierarchical classification of components; (iii) identification of predominant terms in the component total cost; and (iv) choice of main decision variables in the iterative process. To show the strengths and potential advantages of the proposed methodology, it is here applied to the benchmark CGAM cogeneration system. The results obtained are presented and discussed in detail and are compared to those reached using a mathematical optimization procedure

  20. Myoepithelial cells are the main component in pleomorphic adenomas?

    Science.gov (United States)

    Ponce Bravo, Santa; Ledesma Montes, Constantino; López Becerril, Uriel; Morales Sánchez, Israel

    2007-03-01

    The aim of this study was to quantify by immunohistochemistry the number of myoepithelial cells (MyECs) in pleomorphic adenomas (PAs). We retrieved the paraffin cubes of 27 PAs, new slides were done and they were stained with anti-S100 protein antibody. The amount of S-100 protein positive cells was quantified, their morphology was recorded and comparison among MyEC number with age, gender and involved gland were also done. With S-100 protein, MyECs in normal salivary gland tissue were seen surrounding the ductual structures only. In the analysed PAs a mean of 27.4% of the neoplastic cells were positive to the antibody. With the exception of one PA, in all the analysed cases the plasmacytoid cells were the most commonly identified cells (48,6%). Results of this study suggest that MyECs do not constitute the main cellular component of the neoplastic compartment in PAs and corroborate the previously reported evidence by different authors, who studying the PAs suggested that MyECs does not comprise the main cellular neoplastic component of these entities.

  1. Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components

    Science.gov (United States)

    Torkashvand, Fatemeh; Vaziri, Behrouz

    2017-05-01

    The culture media optimization is an inevitable part of upstream process development in therapeutic monoclonal antibodies (mAbs) production. The quality by design (QbD) approach defines the assured quality of the final product through the development stage. An important step in QbD is determination of the main quality attributes. During the media optimization, some of the main quality attributes such as glycosylation pattern, charge variants, aggregates, and low-molecular-weight species, could be significantly altered. Here, we provide an overview of how cell culture medium components affects the main quality attributes of the mAbs. Knowing the relationship between the culture media components and the main quality attributes could be successfully utilized for a rational optimization of mammalian cell culture media for industrial mAbs production.

  2. Study for reducing radioactive solid waste at ITER decommissioning period

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shinichi; Araki, Masanori; Ohmori, Junji; Ohno, Isamu; Sato, Satoshi; Yamauchi, Michinori; Nishitani, Takeo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-11-01

    It is one of the foremost goals for ITER to demonstrate the attractiveness with regard to safety and environmental potential. This implies that the radioactive materials and waste at decommissioning phase should carefully be treated with prescribed regulations. As possible activities during the Coordinated Technical Activity (CTA), the authors have performed a feasibility study for searching the possibility of effective reduction in the activated level as reasonably achievable as possible by taking account of minimum material changes while keeping original design concept and structure. Major induced activation in ITER comes from activated nickel and cobalt so that it is effective for the major structural components to minimize their material contents. Employing less Ni and Co steel in place of high-Ni austenitic stainless steel for blanket shield block, vacuum vessel shield material and TF coil casing has been considered as one of the effective plans to reduce the activated materials at the decommissioning phase. In this study, two less-Ni austenitic stainless steels are evaluated; one is high-Mn austenitic stainless steel JK2 which is developing for jacket material of ITER CS coil and the other is SS204L/ASTM-XM-11 which is also high-Mn steel specified in the popular standards such as American Society of Testing and Material (ASTM). Based on the material changes, activation analyses have been performed to investigate the possibility of reducing radioactive wastes. As a most impressive result, at 40 years after the termination some of main components such as a TF coil casing will reach to the clearance level which is specified by IAEA, and most components will be categorized into extremely low level waste except for limited components. These results will give the appropriate short decommissioning period that is assumed to start at 100 years after the termination in the original design. (author)

  3. Selection of plasma facing materials for ITER

    International Nuclear Information System (INIS)

    Ulrickson, M.; Barabash, V.; Chiocchio, S.

    1996-01-01

    ITER will be the first tokamak having long pulse operation using deuterium-tritium fuel. The problem of designing heat removal structures for steady state in a neutron environment is a major technical goal for the ITER Engineering Design Activity (EDA). The steady state heat flux specified for divertor components is 5 MW/m 2 for normal operation with transients to 15 MW/m 2 for up to 10 s. The selection of materials for plasma facing components is one of the major research activities. Three materials are being considered for the divertor; carbon fiber composites, beryllium, and tungsten. This paper discusses the relative advantages and disadvantages of these materials. The final section of plasma facing materials for the ITER divertor will not be made until the end of the EDA

  4. ITER safety and operational scenario

    International Nuclear Information System (INIS)

    Shimomura, Y.; Saji, G.

    1998-01-01

    The safety and environmental characteristics of ITER and its operational scenario are described. Fusion has built-in safety characteristics without depending on layers of safety protection systems. Safety considerations are integrated in the design by making use of the intrinsic safety characteristics of fusion adequate to the moderate hazard inventories. In addition to this, a systematic nuclear safety approach has been applied to the design of ITER. The safety assessment of the design shows how ITER will safely accommodate uncertainties, flexibility of plasma operations, and experimental components, which is fundamental in ITER, the first experimental fusion reactor. The operation of ITER will progress step by step from hydrogen plasma operation with low plasma current, low magnetic field, short pulse and low duty factor without fusion power to deuterium-tritium plasma operation with full plasma current, full magnetic field, long pulse and high duty factor with full fusion power. In each step, characteristics of plasma and optimization of plasma operation will be studied which will significantly reduce uncertainties and frequency/severity of plasma transient events in the next step. This approach enhances reliability of ITER operation. (orig.)

  5. Experimental Simulation of Beryllium Armour Damage Under ITER-like Intense Transient Plasma Loads

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.; Basaleev, E.; Nikolaev, G.; Kurbatova, L., E-mail: igkupr@gmail.com [A.A. Bochvar High Technology Research Institute of Inorganic Material, Moscow (Russian Federation); Podkovyrov, V.; Zhitlukhin, A. [SRC RF TRINITI, Troitsk (Russian Federation); Khimchenko, L. L. [Project Centre of ITER, Moscow (Russian Federation)

    2012-09-15

    Full text: Beryllium will be used as a plasma facing material in the next generation of tokamaks such as ITER. During plasma operation in ITER, the plasma facing materials and components will be suffered by different kinds of loading which may affect their surface or their joint to the heat sink. In addition to quasi-stationary loadings which are caused by the normal cycling operation, the plasma facing components and materials may also be exposed to the intense short transient loads like disruptions, ELMs. All these events may lead to beryllium surface melting, cracking, evaporation and erosion. It is expected that the erosion of beryllium under transient plasma loads such as ELMs and disruptions will mainly determine a lifetime of ITER first wall. To obtain the experimental data for the evaluation of the beryllium armor lifetime and dust production under ITER-relevant transient loads, the advanced plasma gun QSPA-Be facility has been constructed in Bochvar Institute. This paper presents recent results of the experiments with Russian beryllium of TGP-56FW ITER grade. The mock-ups of a special design armored with two beryllium targets (80 x 80 x 10 mm{sup 3}) were tested by hydrogen plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat load of 0.5 and 1.0 MJ/m{sup 2}. Experiments were performed at RT temperature. The evolution of surface microstructure and profile, cracks morphology and mass loss/gain under erosion process on the beryllium surface exposed to up to 250 shots will be presented and discussed. (author)

  6. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Science.gov (United States)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-04-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  7. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)], E-mail: bazylev@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, Fusion, P.O. Box 3640, 76021 Karlsruhe (Germany); Landman, I.; Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)

    2009-04-30

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  8. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    International Nuclear Information System (INIS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-01-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  9. Assessment of radiation maps during activated divertor moving in the ITER building

    International Nuclear Information System (INIS)

    Ying Dongchuan; Zeng Qin; Qiu Yuefeng; Dang Tongqiang; Wu Yican; Loughlin, Michael

    2011-01-01

    As the main interface components between plasma and vacuum vessel, the divertor is foreseen to be removed to the hot cell for refurbishment during the 20 years of ITER operation. During this process, the activated divertor will cause a large increase of radiation in the ITER building. 3D analysis has been performed to assess the radiation maps throughout the ITER building for assisting the shielding design for personnel and sensitive equipment. The activation of the divertor has been determined by coupled neutron transport and inventory calculations, radiation maps have been obtained from gamma transport calculations. The neutron and gamma transport calculations have been performed by MCNP5 code with FENDL2.1library. The inventory calculations have been performed by FISPACT2007 code with EAF-2007 library. The results of these 3D decay gamma radiation maps are presented by pictures in this paper, including the biological dose maps and maps of heat deposition in electronic equipment.

  10. Development of ITER in-vessel viewing and metrology systems

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The ITER in-vessel viewing system is vital for detecting and locating damage to in-vessel components such as the blankets and divertors and in monitoring and assisting in-vessel maintenance. This system must be able to operate at high temperature (200degC) under intense gamma radiation ({approx}30 kGy/h) in a high vacuum or 1 bar inert gas. A periscope viewing system was chosen as a reference due to its clear, wide view and a fiberscope viewing system chosen as a backup for viewing in narrow confines. According to the ITER R and D program, both systems and a metrology system are being developed through the joint efforts of Japan, the U.S., and RF Home Teams. This paper outlines design and technology development mainly on periscope in-vessel viewing and laser metrology contributed by the Japan Home Team. (author)

  11. Development of ITER in-vessel viewing and metrology systems

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira

    1998-01-01

    The ITER in-vessel viewing system is vital for detecting and locating damage to in-vessel components such as the blankets and divertors and in monitoring and assisting in-vessel maintenance. This system must be able to operate at high temperature (200degC) under intense gamma radiation (∼30 kGy/h) in a high vacuum or 1 bar inert gas. A periscope viewing system was chosen as a reference due to its clear, wide view and a fiberscope viewing system chosen as a backup for viewing in narrow confines. According to the ITER R and D program, both systems and a metrology system are being developed through the joint efforts of Japan, the U.S., and RF Home Teams. This paper outlines design and technology development mainly on periscope in-vessel viewing and laser metrology contributed by the Japan Home Team. (author)

  12. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  13. Power and particle control for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S A; Cummings, J; Post, D E; Redi, M H [Princeton Univ., NJ (USA). Plasma Physics Lab.; Braams, B J [New York Univ., NY (USA). Courant Inst. of Mathematical Sciences; Brooks, J [Argonne National Lab., IL (USA); Engelmann, F; Pacher, G W; Pacher, H D [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.). NET Design Team; Harrison, M; Hotston, E [AEA Fusion, Culham (UK).

    1990-12-15

    Achievement of ITER's objectives, long-pulse ignited operation and nuclear component testing in quasi-steady-state, requires exhaust of power and helium ash, control of impurity content, and long lifetimes for plasma-facing components. In this paper we describe the data base and modeling results used to extrapolate present edge plasma parameters to ITER. Particular emphasis has been given to determining the uncertainties in predicted divertor performance. These analyses have been applied to four typical scenarios: A1 (ignited, reference Physics Phase), B1 (long pulse, hybrid, Technology Phase), B6 (steady-state, Technology Phase, impurity seeded) and B4 (steady-state, Technology Phase). 43 refs., 3 tabs.

  14. Third ITER International Industry Liaison Meeting

    International Nuclear Information System (INIS)

    Dautovich, D.

    2000-01-01

    Following previous meetings held in 1996 in San Diego and in 1997 in Tokyo, the Third ITER International Industry Liaison Meeting (IILM) meeting was held under the European Chairmanship in Toronto, Canada, November 7-9, 2000. The intention of such meetings is to provide a forum for industrialists of the ITER EDA parties and other interested countries to develop common understandings on important issues of the timing and nature of Industry involvement in the ITER project. This article describes the main views from Industry on the preconstruction and construction phases and the cost and benefit schemes, while summarizing the progress made by the ITER project since the Tokyo meeting

  15. ITER primary cryopump test facility

    International Nuclear Information System (INIS)

    Petersohn, N.; Mack, A.; Boissin, J.C.; Murdoc, D.

    1998-01-01

    A cryopump as ITER primary vacuum pump is being developed at FZK under the European fusion technology programme. The ITER vacuum system comprises of 16 cryopumps operating in a cyclic mode which fulfills the vacuum requirements in all ITER operation modes. Prior to the construction of a prototype cryopump, the concept is tested on a reduced scale model pump. To test the model pump, the TIMO facility is being built at FZK in which the model pump operation under ITER environmental conditions, except for tritium exposure, neutron irradiation and magnetic fields, can be simulated. The TIMO facility mainly consists of a test vessel for ITER divertor duct simulation, a 600 W refrigerator system supplying helium in the 5 K stage and a 30 kW helium supply system for the 80 K stage. The model pump test programme will be performed with regard to the pumping performance and cryogenic operation of the pump. The results of the model pump testing will lead to the design of the full scale ITER cryopump. (orig.)

  16. ITER operating limit definition criteria

    International Nuclear Information System (INIS)

    Ciattaglia, S.; Barabaschi, P.; Carretero, J.A.; Chiocchio, S.; Hureau, D.; Girard, J.Ph.; Gordon, C.; Portone, A.; Rodrigo, L. Rodriguez; Roldan, C.; Saibene, G.; Uzan-Elbez, J.

    2009-01-01

    The operating limits and conditions (OLCs) are operating parameters and conditions, chosen among all system/components, which, together, define the domain of the safe operation of ITER in all foreseen ITER states (operation, maintenance, commissioning). At the same time they are selected to guarantee the required operation flexibility which is a critical factor for the success of an experimental machine such as ITER. System and components that are important for personnel or public safety (safety important class, SIC) are identified considering their functional importance in the overall plant safety analysis. SIC classification has to be presented already in the preliminary safety analysis report and approved by the licensing authority before manufacturing and construction. OLCs comprise the safety limits that, if exceeded, could result in a potential safety hazard, the relevant settings that determine the intervention of SIC systems, and the operational limits on equipment which warn against or stop a functional deviation from a planned operational status that could challenge equipment and functions. Some operational conditions, e.g. in-Vacuum Vessel (VV) radioactive inventories, will be controlled through procedures. Operating experience from present tokamaks, in particular JET, and from nuclear plants, is considered to the maximum possible extent. This paper presents the guidelines for the development of the ITER OLCs with particular reference to safety limits.

  17. Critical Assessment of Pressure Gauges for ITER

    International Nuclear Information System (INIS)

    Tabares, Francisco L.; Tafalla, David; Garcia-Cortes, Isabel

    2008-01-01

    The density and flux of molecular species in ITER, largely dominated by the molecular form of the main plasma components and the He ash, is a valuable parameter of relevance not only for operation purposes but also for validating existing neutral particle models of direct implications in divertor performance. An accurate and spatially resolved monitoring of this parameter implies the proper selection of pressure gauges able to cope with the very unique and aggressive environment to be expected in a fusion reactor. To date, there is no standard gauge fulfilling all the requirements, which encompass high neutron and gamma fluxes, together with strong magnetic field and temperature excursions and dusty environment. In the present work, a review of the challenges to face in the measurement of neutral pressure in ITER, together with existing technologies and developments to be made in some of them for their application to the task is presented. Particular attention is paid to R and D needs of existing concepts with potential use in future designs

  18. Status of Conceptual Design Progress for ITER Sector Sub-assembly Tools

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Jae Hyuk; Kim, Kyung Kyu [SFA Engineering Corp., Changwon (Korea, Republic of); Im, Ki Hak; Robert, Shaw [ITER Organization, Paul lez Durance (France)

    2010-05-15

    The ITER (International Thermonuclear Experimental Reactor) Tokamak assembly tools are purpose-built tools to complete the ITER Tokamak machine which includes the cryostat and the components contained therein. Based on the design description document prepared by the ITER organization, Korea has carried out the conceptual design of assembly tools. The 40 .deg. sector assemblies sub-assembled at assembly hall are transferred to Tokamak hall using the lifting tool operated by Tokamak main cranes. In-pit assembly tools are the purpose-built assembly tools for the completion of final sector assembly at Tokamak hall. The 40 .deg. sector sub-assembly tools are composed of the upending tool, the sector sub-assembly tool, the sector lifting tool and the vacuum vessel support and bracing tools. The process of the ITER sector sub-assembly at assembly hall and status of research and development are described in this paper. The ITER Tokamak device is composed of 9 vacuum vessel (VV)/toroidal field coils (TFCs)/vacuum vessel thermal shields (VVTS) 40 .deg. sectors. Each VV/TFCs/VVTS 40 .deg. sector is made up of one 40 .deg. VV, two 20 .deg. TFCs and associated VVTS segments. The 40 .deg. sectors are sub-assembled at assembly hall respectively and then 9 sectors which sub-assembled at assembly hall are finally assembled at Tokamak hall. As a basic assembly component, the assembly strategy and tools for the 40 .deg. sector sub-assembly and final assembly at inpit should be developed to satisfy the basic assembly requirements of the ITER Tokamak device. Accordingly, the purpose-built assembly tools should be designed and manufactured considering assembly plan, available space, safety, easy operation, efficient maintenance, and so on. The 40 .deg. sector assembly tools are classified into 2 groups. One group is the sub-assembly tools including upending tool, lifting tool, sub-assembly tool, VV supports and bracing tools used at assembly hall and the other group is the in

  19. Studies for site preparation for ITER construction

    International Nuclear Information System (INIS)

    Fardeau, A.; Blanc, F.; Cardettini, J.D.; Mandine, J.R.; Guerin, R.; Patisson, L.; Bergegere, P.; Santagiustina, A.; Garin, P.

    2004-01-01

    The implantation of a nuclear facility such as ITER (about 20 buildings on 40 ha) requires many preparatory studies, particularly with respect to: Underground characteristics; Topography, layout; Deforestation, excavations; Networks, fences and roads; Impact of seismic hazard on design. This paper presents the main results of these studies, carried out within the European ITER Site Studies framework. A dedicated paper in the conference deals with the transport studies. To choose the site for ITER implantation, detailed geological, hydrogeological and geophysical investigations have been carried out. Taking into account the meteorological data (particularly the main wind direction), topography, access, electrical supply, fluids needs and constraints (gravity systems), buildings and roads have been implemented. (authors)

  20. A network analysis of the Chinese medicine Lianhua-Qingwen formula to identify its main effective components.

    Science.gov (United States)

    Wang, Chun-Hua; Zhong, Yi; Zhang, Yan; Liu, Jin-Ping; Wang, Yue-Fei; Jia, Wei-Na; Wang, Guo-Cai; Li, Zheng; Zhu, Yan; Gao, Xiu-Mei

    2016-02-01

    Chinese medicine is known to treat complex diseases with multiple components and multiple targets. However, the main effective components and their related key targets and functions remain to be identified. Herein, a network analysis method was developed to identify the main effective components and key targets of a Chinese medicine, Lianhua-Qingwen Formula (LQF). The LQF is commonly used for the prevention and treatment of viral influenza in China. It is composed of 11 herbs, gypsum and menthol with 61 compounds being identified in our previous work. In this paper, these 61 candidate compounds were used to find their related targets and construct the predicted-target (PT) network. An influenza-related protein-protein interaction (PPI) network was constructed and integrated with the PT network. Then the compound-effective target (CET) network and compound-ineffective target network (CIT) were extracted, respectively. A novel approach was developed to identify effective components by comparing CET and CIT networks. As a result, 15 main effective components were identified along with 61 corresponding targets. 7 of these main effective components were further experimentally validated to have antivirus efficacy in vitro. The main effective component-target (MECT) network was further constructed with main effective components and their key targets. Gene Ontology (GO) analysis of the MECT network predicted key functions such as NO production being modulated by the LQF. Interestingly, five effective components were experimentally tested and exhibited inhibitory effects on NO production in the LPS induced RAW 264.7 cell. In summary, we have developed a novel approach to identify the main effective components in a Chinese medicine LQF and experimentally validated some of the predictions.

  1. ITER parametric analysis and operational performance

    International Nuclear Information System (INIS)

    Perkins, L.J.; Spears, W.R.; Galambos, J.D.

    1991-01-01

    One of the key components of the ITER Conceptual Design Activities (CDA) is the determination of optimum design, investigation of operation in various modes, recommendation of baseline performance specifications, studies of sensitivity of ITER design to uncertainties in physics, investigation of operational flexibility, assessment of alternative designs, and determination of implications for extrapolation to prospective DEMO reactors. These terms of reference are reported in this document. Refs, figs and tabs

  2. Service Life Of Main Piping Component Due To Low Thermal Stresses.Fatigue

    International Nuclear Information System (INIS)

    Miroshnik, R.; Jeager, A.; Ben Haim, H.

    1998-01-01

    The paper deals with estimating the service life of the power station Main piping component and describing the repair process for extending of its service life. After a long period of service, several circular fatigue cracks have been discovered at the bottom of the Main piping component chamber. Finite element analyses of transient thermal stresses, caused by power station startup, are carried out in the paper. The calculation results show good agreement between the theoretical locations of the maximum stresses and the actual locations of the cracks. There is a good agreement between theoretical evaluation and actual service life, as well. The possibility of machining out the cracks in order to prevent their growing is examined here. The machining enables us to extend the power station component's life service

  3. Influence of visual feedback on human task performance in ITER remote handling

    NARCIS (Netherlands)

    Schropp, Gwendolijn Y R; Heemskerk, Cock J M; Kappers, Astrid M L; Bergmann Tiest, Wouter M; Elzendoorn, Ben S Q; Bult, David

    In ITER, maintenance operations will be largely performed by remote handling (RH). Before ITER can be put into operation, safety regulations and licensing authorities require proof of maintainability for critical components. Part of the proof will come from using standard components and procedures.

  4. ITER...ation

    International Nuclear Information System (INIS)

    Troyon, F.

    1997-01-01

    Recurrent attacks against ITER, the new generation of tokamak are a mix of political and scientific arguments. This short article draws a historical review of the European fusion program. This program has allowed to build and manage several installations in the aim of getting experimental results necessary to lead the program forwards. ITER will bring together a fusion reactor core with technologies such as materials, superconductive coils, heating devices and instrumentation in order to validate and delimit the operating range. ITER will be a logical and decisive step towards the use of controlled fusion. (A.C.)

  5. ITER technology R and D progress report. Report by the Director. ITER technical advisory committee meeting, 25-27 June 2000, St. Petersburg

    International Nuclear Information System (INIS)

    2001-01-01

    The overall philosophy for the ITER design has been to use established approaches through detailed analysis and to validate their application to ITER through technology R and D, including fabrication of full scale or scalable models of key components. All this R and D work has been done for ITER under collaboration among the Home Teams, with a total resource of about 660 KIUA. R and D issues for ITER-FEAT are almost the same as for the 1998 ITER design. Major developments and fabrication have been completed and tests have significantly progressed. The technical output from the R and D validates the technologies and confirms the manufacturing techniques and quality assurance incorporated in the ITER design, and supports the manufacturing cost estimates for important key cost drivers. The testing of models is continuing to demonstrate their performance margin and/or to optimize their operational use. Their realisation offers insights useful for a possible future collaborative construction activity. Valuable and relevant experience has already been gained in the management of industrial scale, cross-party ventures. The successful progress of these projects increases confidence in the possibility of jointly constructing ITER in an international project framework. The R and D present status is summarized in the following: details are given in Chapters 2 and 3. Significant efforts and resources have been devoted to the Seven Large R and D Projects which cover all the major key components of the basic machine of ITER and their maintenance tools

  6. Design improvements and R and D achievements for VV and in-vessel components towards ITER construction and implications for the R and D programme

    International Nuclear Information System (INIS)

    Ioki, K.

    2002-01-01

    Procurement specifications are now being finalised for ITER components whose construction is lengthy, yet which are needed early, such as the vacuum vessel. Although the basic concept of the vacuum vessel (VV) and in-vessel components of the ITER design has stayed the same as reported at the last conference, there have been several detailed design improvements resulting from efforts to raise reliability, to improve better maintainability and to save money. One of the most important achievements in the VV R and D is demonstration of the necessary assembly tolerances. Further development of advanced methods of cutting, welding and NDT for the VV have been continued in order to refine manufacturing and improve cost and technical performance. With regard to the related FW/blanket and divertor designs, the R and D has resulted in the development of suitable technologies. Prototypes of the FW panel, the blanket shield block and the divertor components have been successfully fabricated. This paper reviews the recent progress in the design as procurement nears. (author)

  7. A review of the US joining technologies for plasma facing components in the ITER fusion reactor

    International Nuclear Information System (INIS)

    Odegard, B.C. Jr.; Cadden, C.H.; Watson, R.D.; Slattery, K.T.

    1998-02-01

    This paper is a review of the current joining technologies for plasma facing components in the US for the International Thermonuclear Experimental Reactor (ITER) project. Many facilities are involved in this project. Many unique and innovative joining techniques are being considered in the quest to join two candidate armor plate materials (beryllium and tungsten) to a copper base alloy heat sink (CuNiBe, OD copper, CuCrZr). These techniques include brazing and diffusion bonding, compliant layers at the bond interface, and the use of diffusion barrier coatings and diffusion enhancing coatings at the bond interfaces. The development and status of these joining techniques will be detailed in this report

  8. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B., E-mail: boris.bazylev@kit.edu [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Igitkhanov, Yu.; Landman, I.; Pestchanyi, S. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)

    2011-10-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  9. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    International Nuclear Information System (INIS)

    Bazylev, B.; Igitkhanov, Yu.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2011-01-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  10. The Logical-Semantic Basis for Formation of Main Components of Enterprise Strategy

    Directory of Open Access Journals (Sweden)

    Polyakova Yana O.

    2016-11-01

    Full Text Available The modern interpretation of the essence of enterprise strategy implies transformation of internal characteristics of the enterprise into key success factors in accordance with conditions of the functioning of external environment in order to ensure its sustainable leadership position in the long term and is one of the main elements of the system of enterprise strategic management in today’s business environment. The result of the conducted research is the improvement of the logical-semantic structure of main components of enterprise strategy through the implementation of research by the inductive method, which allowed to determine the logical sequence of stages of forming key success factors, reveal the conditions for transformation of main elements of each stage and conduct a semantic evaluation of the structure of main components of enterprise strategy at each individual stage to implement the processes of goal setting and evaluate results of the implementation of the chosen business strategy.

  11. Chemical composition of Galla chinensis extract and the effect of its main component(s) on the prevention of enamel demineralization in vitro

    NARCIS (Netherlands)

    Huang, X.L.; Liu, M.D.; Li, J.Y.; Zhou, X.D.; ten Cate, J.M.

    2012-01-01

    To determine the chemical composition of Galla chinensis extract (GCE) by several analysis techniques and to compare the efficacy of GCE and its main component(s) in inhibition of enamel demineralization, for the development of future anticaries agents, main organic composition of GCE was

  12. ITER blanket designs

    International Nuclear Information System (INIS)

    Gohar, Y.; Parker, R.; Rebut, P.H.

    1995-01-01

    The ITER first wall, blanket, and shield system is being designed to handle 1.5±0.3 GW of fusion power and 3 MWa m -2 average neutron fluence. In the basic performance phase of ITER operation, the shielding blanket uses austenitic steel structural material and water coolant. The first wall is made of bimetallic structure, austenitic steel and copper alloy, coated with beryllium and it is protected by beryllium bumper limiters. The choice of copper first wall is dictated by the surface heat flux values anticipated during ITER operation. The water coolant is used at low pressure and low temperature. A breeding blanket has been designed to satisfy the technical objectives of the Enhanced Performance Phase of ITER operation for the Test Program. The breeding blanket design is geometrically similar to the shielding blanket design except it is a self-cooled liquid lithium system with vanadium structural material. Self-healing electrical insulator (aluminum nitride) is used to reduce the MHD pressure drop in the system. Reactor relevancy, low tritium inventory, low activation material, low decay heat, and a tritium self-sufficiency goal are the main features of the breeding blanket design. (orig.)

  13. Thermo-hydraulic and structural analysis for finger-based concept of ITER blanket first wall

    International Nuclear Information System (INIS)

    Kim, Byoung-Yoon; Ahn, Hee-Jae

    2011-01-01

    The blanket first wall is one of the main plasma facing components in ITER tokamak. The finger-typed first wall was proposed through the current design progress by ITER organization. In this concept, each first wall module is composed of a beam and twenty fingers. The main function of the first wall is to remove efficiently the high heat flux loading from the fusion plasma during its operation. Therefore, the thermal and structural performance should be investigated for the proposed finger-based design concept of first wall. The various case studies were performed for a unit finger model considering different loading conditions. The finite element model was made for a half of a module using symmetric boundary conditions to reduce the computational effort. The thermo-hydraulic analysis was performed to obtain the pressure drop and temperature profiles. Then the structural analysis was carried out using the maximum temperature distribution obtained in thermo-hydraulic analysis. Finally, the transient thermo-hydraulic analysis was performed for the generic first wall module to obtain the temperature evolution history considering cyclic heat flux loading with nuclear heating. After that, the thermo-mechanical analysis was performed at the time step when the maximum temperature gradient was occurred. Also, the stress analysis was performed for the component with a finger and a beam to check the residual stress of the component after thermal shrinkage assembly.

  14. The ITER Fast Plant System Controller ATCA prototype Real-Time Software Architecture

    International Nuclear Information System (INIS)

    Carvalho, B.B.; Santos, B.; Carvalho, P.F.; Neto, A.; Boncagni, L.; Batista, A.J.N.; Correia, M.; Sousa, J.; Gonçalves, B.

    2013-01-01

    Highlights: ► High performance ATCA systems for fast control and data acquisition. ► IEEE1588 timing system and synchronization. ► Plasma control algorithms. ► Real-time control software frameworks. ► Targeted for nuclear fusion experiments with long duration discharges. -- Abstract: IPFN is developing a prototype Fast Plant System Controller (FPSC) based in ATCA embedded technologies dedicated to ITER CODAC data acquisition and control tasks in the sub-millisecond range. The main goal is to demonstrate the usability of the ATCA standard and its enhanced specifications for the high speed, very high density parallel data acquisition needs of the most demanding ITER tokamak plasma Instrumentation and Control (I and C) systems. This effort included the in-house development of a new family of high performance ATCA I/O and timing boards. The standard ITER software system CODAC Core System (CCS) v3.1, with the control based in the EPICS system does not cover yet the real-time requirements fulfilled by this hardware, so a new set of software components was developed for this specific platform, attempting to integrate and leverage the new features in CSS, for example the Multithreaded Application Real Time executor (MARTe) software framework, the new Data Archiving Network (DAN) solution, an ATCA IEEE-1588-2008 timing interface, and the Intelligent Platform Management Interface (IPMI) for system monitoring and remote management. This paper presents the overall software architecture for the ATCA FPSC, as well a discussion on the ITER constrains and design choices and finally a detailed description of the software components already developed

  15. The ITER Fast Plant System Controller ATCA prototype Real-Time Software Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, B.B., E-mail: bernardo@ipfn.ist.utl.pt [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Santos, B.; Carvalho, P.F.; Neto, A. [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Boncagni, L. [Associazione Euratom-ENEA sulla Fusione, Frascati Research Centre, Division of Fusion Physics, Frascati, Rome (Italy); Batista, A.J.N.; Correia, M.; Sousa, J.; Gonçalves, B. [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal)

    2013-10-15

    Highlights: ► High performance ATCA systems for fast control and data acquisition. ► IEEE1588 timing system and synchronization. ► Plasma control algorithms. ► Real-time control software frameworks. ► Targeted for nuclear fusion experiments with long duration discharges. -- Abstract: IPFN is developing a prototype Fast Plant System Controller (FPSC) based in ATCA embedded technologies dedicated to ITER CODAC data acquisition and control tasks in the sub-millisecond range. The main goal is to demonstrate the usability of the ATCA standard and its enhanced specifications for the high speed, very high density parallel data acquisition needs of the most demanding ITER tokamak plasma Instrumentation and Control (I and C) systems. This effort included the in-house development of a new family of high performance ATCA I/O and timing boards. The standard ITER software system CODAC Core System (CCS) v3.1, with the control based in the EPICS system does not cover yet the real-time requirements fulfilled by this hardware, so a new set of software components was developed for this specific platform, attempting to integrate and leverage the new features in CSS, for example the Multithreaded Application Real Time executor (MARTe) software framework, the new Data Archiving Network (DAN) solution, an ATCA IEEE-1588-2008 timing interface, and the Intelligent Platform Management Interface (IPMI) for system monitoring and remote management. This paper presents the overall software architecture for the ATCA FPSC, as well a discussion on the ITER constrains and design choices and finally a detailed description of the software components already developed.

  16. Design of coolant distribution system (CDS) for ITER PF AC/DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Zhiquan, E-mail: zhquansong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Fu, Peng; Xu, Xuesong; Li, Chuan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Min; Dong, Lin [China International Nuclear Fusion Energy Program Execution Center, Beijing 100862 (China)

    2016-10-15

    Highlights: • System process and arrangement has been proposed to meet the multiple requirements from the converter system. • Thermal hydraulic analysis model has been developed to size and predict the system operation behavior. • Prototype test has been performed to validate the proposed design methodology. - Abstract: The Poloidal Field (PF) converter unit, playing an essential role in the plasma shape and position control in vertical and horizontal direction, which is an important part of ITER power supply system. As an important subsystem of the converter unit, the coolant distribution system has the function to distribute the cooling water from ITER component cooling water system (CCWS) to its main components at the required flow rate, pressure and temperature. This paper presents the thermal hydraulic design of coolant distribution system for the ITER PF converter unit. Different operational requirements of the PF converter unit regarding flow rate, temperature and pressure have been analyzed to design the system process and arrangement. A thermal-hydraulic analysis model has been built to size the system and predict the flow rate and temperature distribution of the system under the normal operation. Based on the system thermal-hydraulic analysis results, the system pressure profile has been plotted to evaluate the pressure behavior along each client flow path. A CDS prototype for the ITER PF converter has been constructed and some experiments have been performed on it. A good agreement of the flow distribution and temperature behavior between the simulated and test results validate the proposed design methodology.

  17. The JET ITER-like wall experiment: First results and lessons for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Lorne, E-mail: Lorne.Horton@jet.efda.org [EFDA-CSU Culham, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); European Commission, B-1049 Brussels (Belgium)

    2013-10-15

    Highlights: ► JET has recently completed the installation of an ITER-like wall. ► Important operational aspects have changed with the new wall. ► Initial experiments have confirmed the expected low fuel retention. ► Disruption dynamics have change dramatically. ► Development of wall-compatible, ITER-relevant regimes of operation has begun. -- Abstract: The JET programme is strongly focused on preparations for ITER construction and exploitation. To this end, a major programme of machine enhancements has recently been completed, including a new ITER-like wall, in which the plasma-facing armour in the main vacuum chamber is beryllium while that in the divertor is tungsten—the same combination of plasma-facing materials foreseen for ITER. The goal of the initial experimental campaigns is to fully characterise operation with the new wall, concentrating in particular on plasma-material interactions, and to make direct comparisons of plasma performance with the previous, carbon wall. This is being done in a progressive manner, with the input power and plasma performance being increased in combination with the commissioning of a comprehensive new real-time protection system. Progress achieved during the first set of experimental campaigns with the new wall, which took place from September 2011 to July 2012, is reported.

  18. Status of the ITER vacuum vessel construction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.H.; Sborchia, C.; Ioki, K.; Giraud, B.; Utin, Yu.; Sa, J.W. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Wang, X., E-mail: xiaoyuwww@gmail.com [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Teissier, P.; Martinez, J.M.; Le Barbier, R.; Jun, C.; Dani, S.; Barabash, V.; Vertongen, P.; Alekseev, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Jucker, P.; Bayon, A. [F4E, c/ Josep Pla, n. 2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Pathak, H.; Raval, J. [ITER-India, IPR, A-29, Electronics Estate, GIDC, Sector-25, Gandhinagar 382025 (India); Ahn, H.J. [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); and others

    2014-10-15

    Highlights: • Final design of the ITER vacuum vessel (VV). • Procurement of the ITER VV. • Manufacturing results of real scale mock-ups. • Manufacturing status of the VV in domestic agencies. - Abstract: The ITER vacuum vessel (VV) is under manufacturing by four domestic agencies after completion of engineering designs that have been approved by the Agreed Notified Body (ANB). Manufacturing designs of the VV have been being completed, component by component, by accommodating requirements of the RCC-MR 2007 edition. Manufacturing of the VV first sector has been started in February 2012 in Korea and in-wall shielding in May 2013 in India. EU will start manufacturing of its first sector from September 2013 and Russia the upper port by the end of 2013. All DAs have manufactured several mock-ups including real-size ones to justify/qualify and establish manufacturing techniques and procedures.

  19. ITER instrumentation and control-Status and plans

    International Nuclear Information System (INIS)

    Wallander, Anders; Abadie, Lana; Dave, Haresh; Di Maio, Franck; Gulati, Hitesh Kumar; Hansalia, Chandresh; Joonekindt, Didier; Journeaux, Jean-Yves; Klotz, Wolf-Dieter; Mahajan, Kirti; Makijarvi, Petri; Scibile, Luigi; Stepanov, Denis; Utzel, Nadine; Yonekawa, Izuru

    2010-01-01

    The ITER instrumentation and control (I and C) system is the term encompassing all hardware and software required to operate ITER. It has two levels of hierarchy: the central I and C systems and the plant systems I and C. The central I and C systems comprise CODAC (Control, Data Access and Communication), the central interlock system (CIS) and the central safety systems (CSS). The central I and C systems are 'in-fund', i.e. procured by ITER Organization (IO), while plant systems I and C are 'in-kind', i.e. procured by the seven ITER domestic agencies. This procurement model, together with the current estimate of 161 plant systems I and C, poses a major challenge for the realization and integration of the ITER I and C system. To address this challenge a main strategic focus of the CODAC group, formed in 2008, has been to establish good relations with the domestic agencies. By distributing the required R and D tasks and contracts fairly between the domestic agencies we build collaborations for the future at the same time as technical work proceed. The primary goal of ITER I and C system is to provide a fully integrated and automated control system for ITER. Standardization of plant systems I and C is of primary importance and has been the highest priority task during the last year. The target of associated R and D activities is to survey, benchmark and prototype main stream technologies, in order to choose the best and most widely used technology standards for plant systems I and C. In this paper we elaborate on our approach, both from a technical and a non-technical perspective, explain technology evaluation and decisions and finally present the way forward to ensure ITER I and C system will contribute and be instrumental in making ITER a success.

  20. Conceptual design of the hot cell facility universal docking station at ITER

    International Nuclear Information System (INIS)

    Dammann, A.; Benchikhoune, M.; Friconneau, J.P.; Ivanov, V.; Lemee, A.; Martins, J.P.; Tamassy, G.

    2011-01-01

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  1. Conceptual design of the hot cell facility universal docking station at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Benchikhoune, M.; Friconneau, J.P.; Ivanov, V. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Lemee, A. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France); Martins, J.P. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Tamassy, G. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France)

    2011-10-15

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  2. Erosion evaluation capability of the IVVS for ITER applications

    Energy Technology Data Exchange (ETDEWEB)

    Pollastrone, Fabio, E-mail: fabio.pollastrone@enea.it [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Ferri de Collibus, Mario; Florean, Marco; Francucci, Massimo; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Dubus, Gregory; Damiani, Carlo [Fusion For Energy c/Josep Pla, 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2014-10-15

    Highlights: •High resolution laser radar range images for hostile environment (IVVS). •Evaluation of the erosion on the surface scanned by IVVS laser radar. •Erosion evaluation procedure and software. •Test and results of the erosion evaluation procedure. -- Abstract: In ITER it is foreseen the use of the In Vessel Viewing System (IVVS), whose scanning head is a 3D laser imaging system able to obtain high-resolution intensity and range images in hostile environments. The IVVS will be permanently installed into a port extension, therefore it has to be compliant with ITER primary vacuum requirements. In the frame of a Fusion for Energy Grant, an investigation of the expected IVVS metrology performances was required to evaluate the device capability to detect erosions on ITER first wall and divertor and to estimate the amount of eroded material. In ENEA Frascati laboratories, an IVVS probe prototype was developed along with a method and a computational procedure applied to a reference erosion plate target simulating ITER vessel components and their possible erosions. Experimental tests were carried out by this system performing several scans of the reference target with different incidence angles, estimating the eroded volume and comparing this volume with its true value. A dedicated study has been also done by changing the power of the laser source; a discussion about the quality of the 3D laser images is reported. The main results obtained during laboratory tests and data processing are presented and discussed.

  3. Plasma facing components integration studies for the WEST divertor

    Energy Technology Data Exchange (ETDEWEB)

    Ferlay, Fabien, E-mail: fabien.ferlay@cea.fr; Missirlian, Marc; Guilhem, Dominique; Firdaouss, Mehdi; Richou, Marianne; Doceul, Louis; Faisse, Frédéric; Languille, Pascal; Larroque, Sébastien; Martinez, André; Proust, Maxime; Louison, Céphise; Jeanne, Florian; Saille, Alain; Samaille, Frank; Verger, Jean-Marc; Bucalossi, Jérôme

    2015-10-15

    Highlights: • The divertor PFU integration has been studied regarding existing environment. • Magnetic, electric, thermal, hydraulic, mechanical loads and assembly are considered. - Abstract: In the context of the Tokamak Tore-Supra evolution, the CEA aims at transforming it into a test bench for ITER actively cooled tungsten (ACW) plasma facing components (PFC). This project named WEST (Tungsten Environment in Steady state Tokamak) is especially focused on the divertor target. The modification of the machine, by adding two axisymmetric divertors will make feasible an H-mode with an X-point close to the lower divertor. This environment will allow exposing the divertor ACW components up to 20 MW/m{sup 2} heat flux during long pulse. These specifications are well suited to test the ITER-like ACW target elements, respecting the ITER design. One challenge in such machine evolution is to integrate components in an existing vacuum vessel in order to obtain the best achievable performance. This paper deals with the design integration of ITER ACW target elements into the WEST environment considering magnetic, electric, thermal and mechanical loads. The feasibility of installation and maintenance has to be strongly considered as these PFC could be replaced several times. The ports size allows entering a 30° sector of pre-installed tungsten targets which will be plugged as quickly and easily as possible. The main feature of steady state operation is the active cooling, which leads to have many embedded cooling channels and bulky pipes on the PFC module including many connections and sealings between vacuum and water channels. The 30° sector design is now finalized regarding the ITER ACW elements specifications. No major modifications are expected.

  4. ITER: the first experimental fusion reactor

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1995-01-01

    The International Thermonuclear Experimental Reactor (ITER) project is a multiphased project, at present proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement between the European Atomic Energy Community, the Government of Japan, the Government of the USA and the Government of Russia (''the parties''). The project is based on the tokamak, a Russian invention which has been brought to a high level of development and progress in all major fusion programs throughout the world.The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for commercial energy production and to test technologies for a demonstration fusion power plant. During the extended performance phase of ITER, it will demonstrate the characteristics of a fusion power plant, producing more than 1500MW of fusion power.The objective of the engineering design activity (EDA) phase is to produce a detailed, complete and fully integrated engineering design of ITER and all technical data necessary for the future decision on the construction of ITER.The ITER device will be a major step from present fusion experiments and will encompass all the major elements required for a fusion reactor. It will also require the development and the implementation of major new components and technologies.The inside surface of the plasma containment chamber will be designed to withstand temperature of up to 500 C, although normal operating temperatures will be substantially lower. Materials will have to be carefully chosen to withstand these temperatures, and a high neutron flux. In addition, other components of the device will be composed of state-of-the-art metal alloys, ceramics and composites, many of which are now in the early stage of development of testing. (orig.)

  5. Research and development needs for ITER engineering design

    International Nuclear Information System (INIS)

    Flanagan, C.; Alikaev, V.; Baker, C.

    1991-01-01

    In the series of documents that summarize the results of the Conceptual Design Activities (CDA) for the International Thermonuclear Experimental Reactor (ITER), this document describes the research and development (R and D) plans for 1991 - 1995. Part A describes the physics R and D, part B the technology R and D. The Physics R and D needs are presented in terms of task descriptions of an ITER-related R and D programme for 1991/1992 and beyond, while diagnostics R and D needs, although covered in Appendix A, are described in Part B. In Chapter II of Part A, ''ITER-related Physics R and D Needs for 91/92 and Beyond'', the following tasks are described as most crucial: (1) demonstration that (i) operation with a cold divertor plasma is possible, (ii) the peak heat flux onto the divertor plate can be kept below about 10 MW per square meter, (iii) and helium exhaust conditions allow a fractional burnup of about 3 percent or more; (2) a characterisation of disruptions that allows to specify their consequences for the plasma-facing-components, and that provides evidence that the number of disruptions expected allows acceptable plasma-facing-component lifetimes; (3) demonstration that steady-state operation in an enhanced-confinement regime and satisfactory plasma purity is possible, and provision of energy confinement scaling allowing the prediction of ITER performance; and (4) ensurance that the presence of a fast ion population does not jeopardize plasma performance in ITER. Part B, ''ITER Technology Research and Development Needs'', describes planning R and D for magnets, containment structure, assembly and maintenance, current drive and heating, plasma facing components, blanket, fuel cycle, structural materials, and diagnostics. A table of key milestones for Technology R and D is included, as well as cost estimates. Figs and tabs

  6. Fusion reactor blanket-main design aspects

    International Nuclear Information System (INIS)

    Strebkov, Yu.; Sidorov, A.; Danilov, I.

    1994-01-01

    The main function of the fusion reactor blanket is ensuring tritium breeding and radiation shield. The blanket version depends on the reactor type (experimental, DEMO, commercial) and its parameters. Blanket operation conditions are defined with the heat flux, neutron load/fluence, cyclic operation, dynamic heating/force loading, MHD effects etc. DEMO/commercial blanket design is distinguished e.g. by rather high heat load and neutron fluence - up to 100 W/cm 2 and 7 MWa/m 2 accordingly. This conditions impose specific requirements for the materials, structure, maintenance of the blanket and its most loaded components - FW and limiter. The liquid Li-Pb eutectic is one of the possible breeder for different kinds of blanket in view of its advantages one of which is the blanket convertibility that allow to have shielding blanket (borated water) or breeding one (Li-Pb eutectic). Using Li-Pb eutectic for both ITER and DEMO blankets have been considered. In the conceptual ITER design the solid eutectic blanket was carried out. The liquid eutectic breeder/coolant is suggested also for the advanced (high parameter) blanket

  7. Effects of ELMs on ITER divertor armour materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhitlukhin, A. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation)]. E-mail: zhitlukh@triniti.ru; Klimov, N. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Landman, I. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Linke, J. [Forschungszentrum Juelich, EURATOM-Association, Juelich (Germany)]. E-mail: j.linke@fz-juelich.de; Loarte, A. [EFDA, Boltzmannstr. 2, 85748 Garching (Germany); Merola, M. [EFDA, Boltzmannstr. 2, 85748 Garching (Germany); Podkovyrov, V. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Federici, G. [ITER JWS Garching, Boltzmannstr. 2, 85748 Garching (Germany); Bazylev, B. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Pestchanyi, S. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Safronov, V. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Hirai, T. [Forschungszentrum Juelich, EURATOM-Association, Juelich (Germany); Maynashev, V. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Levashov, V. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation); Muzichenko, A. [SRC RF TRINITI, Troitsk, 142190, Moscow Region (Russian Federation)

    2007-06-15

    This paper is concerned with investigation of an erosion of the ITER-like divertor plasma facing components under plasma heat loads expected during the Type I ELMs in ITER. These experiments were carried out on plasma accelerator QSPA at the SRC RF TRINITI under EU/RF collaboration. Targets were exposed by series repeated plasma pulses with heat loads in a range of 0.5-1.5 MJ/m{sup 2} and pulse duration 0.5 ms. Erosion of CFC macrobrushes was determined mainly by sublimation of PAN-fibres that was less than 2.5 {mu}m per pulse. The CFC erosion was negligible at the energy density less than 0.5 MJ/m{sup 2} and was increased to the average value 0.3 {mu}m per pulse at 1.5 MJ/m{sup 2}. The pure tungsten macrobrushes erosion was small in the energy range of 0.5-1.3 MJ/m{sup 2}. The sharp growth of tungsten erosion and the intense droplet ejection were observed at the energy density of 1.5 MJ/m{sup 2}.

  8. Effects of ELMs on ITER divertor armour materials

    Science.gov (United States)

    Zhitlukhin, A.; Klimov, N.; Landman, I.; Linke, J.; Loarte, A.; Merola, M.; Podkovyrov, V.; Federici, G.; Bazylev, B.; Pestchanyi, S.; Safronov, V.; Hirai, T.; Maynashev, V.; Levashov, V.; Muzichenko, A.

    2007-06-01

    This paper is concerned with investigation of an erosion of the ITER-like divertor plasma facing components under plasma heat loads expected during the Type I ELMs in ITER. These experiments were carried out on plasma accelerator QSPA at the SRC RF TRINITI under EU/RF collaboration. Targets were exposed by series repeated plasma pulses with heat loads in a range of 0.5-1.5 MJ/m2 and pulse duration 0.5 ms. Erosion of CFC macrobrushes was determined mainly by sublimation of PAN-fibres that was less than 2.5 μm per pulse. The CFC erosion was negligible at the energy density less than 0.5 MJ/m2 and was increased to the average value 0.3 μm per pulse at 1.5 MJ/m2. The pure tungsten macrobrushes erosion was small in the energy range of 0.5-1.3 MJ/m2. The sharp growth of tungsten erosion and the intense droplet ejection were observed at the energy density of 1.5 MJ/m2.

  9. Cooperation between CERN and ITER

    CERN Document Server

    2008-01-01

    CERN and the International Fusion Organisation ITER have just signed a first cooperation agreeement. Kaname Ikeda, the Director-General of the International Fusion Energy Organisation (ITER) (on the right) and Robert Aymar, Director-General of CERN, signing the agreement.The Director-General of the International Fusion Energy Organization, Mr Kaname Ikeda, and CERN Director-General, Robert Aymar, signed a cooperation agreement at a meeting on the Meyrin site on Thursday 6 March. One of the main purposes of this agreement is for CERN to give ITER the benefit of its experience in the field of technology as well as in administrative domains such as finance, procurement, human resources and informatics through the provision of consultancy services. Currently in its start-up phase at its Cadarache site, 70 km from Marseilles (France), ITER will focus its research on the scientific and technical feasibility of using fusion energy as a fu...

  10. ITER central solenoid model coil heat treatment complete and assembly started

    International Nuclear Information System (INIS)

    Thome, R.J.; Okuno, K.

    1998-01-01

    A major R and D task in the ITER program is to fabricate a Superconducting Model Coil for the Central Solenoid to establish the design and fabrication methods for ITER size coils and to demonstrate conductor performance. Completion of its components is expected in 1998, to be followed by assembly with structural components and testing in a facility at JAERI

  11. Failure Mode and Effect Analysis for remote handling transfer systems of ITER

    International Nuclear Information System (INIS)

    Pinna, T.; Caporali, R.; Tesini, A.

    2008-01-01

    A Failure Mode and Effect Analysis (FMEA) at component level was done to study safety-relevant implications arising from possible failures in performing remote handling (RH) operations at ITER facility . Autonomous air cushion transporter, pallet, sealed casks and tractor movers needed for port plug mounting/dismantling operation were analysed. For each sub-system, the breakdown of significant components was outlined and, for each component, possible failure modes have been investigated pointing out possible causes, possible actions to prevent the causes, consequences and actions to prevent or mitigate consequences. Off-normal events which may result in hazardous consequences to the public and the environment have been defined as Postulated Initiating Events (PIEs). Two safety-relevant PIEs have been defined by assessing elementary failures related to the analysed system. Each PIE has been discussed in order to qualitatively identify accident sequences arising from each of them. As an output of this FMEA study, possible incidental scenarios, where the intervention of rescue RH equipments is required to overcome critical situations determined by fault of RH components, were defined as well. Being rescue scenarios of main concern for ITER remote handling activities, such families could be helpful in defining the design requirements of port handling systems in general and on RH transfer system in particular. Furthermore, they could be useful in defining casks and vehicles to be used for rescue activities

  12. ITER fuel cycle

    International Nuclear Information System (INIS)

    Leger, D.; Dinner, P.; Yoshida, H.

    1991-01-01

    Resulting from the Conceptual Design Activities (1988-1990) by the parties involved in the International Thermonuclear Experimental Reactor (ITER) project, this document summarizes the design requirements and the Conceptual Design Descriptions for each of the principal subsystems and design options of the ITER Fuel Cycle conceptual design. The ITER Fuel Cycle system provides for the handling of all tritiated water and gas mixtures on ITER. The system is subdivided into subsystems for fuelling, primary (torus) vacuum pumping, fuel processing, blanket tritium recovery, and common processes (including isotopic separation, fuel management and storage, and processes for detritiation of solid, liquid, and gaseous wastes). After an introduction describing system function and conceptual design procedure, a summary of the design is presented including a discussion of scope and main parameters, and the fuel design options for fuelling, plasma chamber vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary and common processes. Design requirements are defined and design descriptions are given for the various subsystems (fuelling, plasma vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary/common processes). The document ends with sections on fuel cycle design integration, fuel cycle building layout, safety considerations, a summary of the research and development programme, costing, and conclusions. Refs, figs and tabs

  13. Wall conditioning for ITER: Current experimental and modeling activities

    Energy Technology Data Exchange (ETDEWEB)

    Douai, D., E-mail: david.douai@cea.fr [CEA, IRFM, Association Euratom-CEA, 13108 St. Paul lez Durance (France); Kogut, D. [CEA, IRFM, Association Euratom-CEA, 13108 St. Paul lez Durance (France); Wauters, T. [LPP-ERM/KMS, Association Belgian State, 1000 Brussels (Belgium); Brezinsek, S. [FZJ, Institut für Energie- und Klimaforschung Plasmaphysik, 52441 Jülich (Germany); Hagelaar, G.J.M. [Laboratoire Plasma et Conversion d’Energie, UMR5213, Toulouse (France); Hong, S.H. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Lomas, P.J. [CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Lyssoivan, A. [LPP-ERM/KMS, Association Belgian State, 1000 Brussels (Belgium); Nunes, I. [Associação EURATOM-IST, Instituto de Plasmas e Fusão Nuclear, 1049-001 Lisboa (Portugal); Pitts, R.A. [ITER International Organization, F-13067 St. Paul lez Durance (France); Rohde, V. [Max-Planck-Institut für Plasmaphysik, 85748 Garching (Germany); Vries, P.C. de [ITER International Organization, F-13067 St. Paul lez Durance (France)

    2015-08-15

    Wall conditioning will be required in ITER to control fuel and impurity recycling, as well as tritium (T) inventory. Analysis of conditioning cycle on the JET, with its ITER-Like Wall is presented, evidencing reduced need for wall cleaning in ITER compared to JET–CFC. Using a novel 2D multi-fluid model, current density during Glow Discharge Conditioning (GDC) on the in-vessel plasma-facing components (PFC) of ITER is predicted to approach the simple expectation of total anode current divided by wall surface area. Baking of the divertor to 350 °C should desorb the majority of the co-deposited T. ITER foresees the use of low temperature plasma based techniques compatible with the permanent toroidal magnetic field, such as Ion (ICWC) or Electron Cyclotron Wall Conditioning (ECWC), for tritium removal between ITER plasma pulses. Extrapolation of JET ICWC results to ITER indicates removal comparable to estimated T-retention in nominal ITER D:T shots, whereas GDC may be unattractive for that purpose.

  14. Outline and status of ITER program

    International Nuclear Information System (INIS)

    Kishimoto, Hiroshi; Shimomura, Yasuo

    2002-01-01

    ITER is an international joint program for the next-step fusion experimental reactor which aims to demonstrate extended/steady-state fusion burn of deuterium-tritium plasmas and to demonstrate the fusion technologies in an integrated manner as well as to perform integrated testing of components required to utilize fusion energy for practical purposes. On the basis of the recent scientific and engineering achievements in the world-wide tokamak research, the Engineering Design Activities for nine years were fully completed in July 2001. The so-called compact ITER with a finite Q≥10 was proposed and its detailed engineering design was developed along the line of world fusion research. Large scale engineering research and development were completed for superconducting coils, remote-maintenance technology, etc.. The four ITER Parties (Japan, the European Union, the Soviet Federation, and Canada) have initiated the governmental negotiations for the joint implementation of ITER. (author)

  15. Magnetic compatibility of standard components for electrical installations: Computation of the background field and consequences on the design of the electrical distribution boards and control boards for the ITER Tokamak building

    International Nuclear Information System (INIS)

    Benfatto, I.; Bettini, P.; Cavinato, M.; Lorenzi, A. De; Hourtoule, J.; Serra, E.

    2005-01-01

    Inside the proposed Tokamak building, the ITER poloidal field magnet system would produce a stray magnetic field up to 70 mT. This is a very unusual environmental condition for electrical installation equipment and limited information is available on the magnetic compatibility of standard components for electrical distribution boards and control boards. Because this information is a necessary input for the design of the electrical installation inside the proposed ITER Tokamak building specific investigations have been carried out by the ITER European Participant Team. The paper reports on the computation of the background magnetic field map inside the ITER Tokamak building and the consequences on the design of the electrical installations of this building. The effects of the steel inside the building structure and the feasibility of magnetic shields for electrical distribution boards and control boards are also reported in the paper. The results of the test campaigns on the magnetic field compatibility of standard components for electrical distribution boards and control boards are reported in companion papers published in these proceedings

  16. A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

    Directory of Open Access Journals (Sweden)

    Dong-Sup Lee

    2015-01-01

    Full Text Available Independent Component Analysis (ICA, one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: insta- bility and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to vali- date the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.

  17. Overview of the EU small scale mock-up tests for ITER high heat flux components

    International Nuclear Information System (INIS)

    Vieider, G.; Barabash, V.; Cardella, A.

    1998-01-01

    This task within the EU R and D for ITER was aimed at the development of basic manufacturing solutions for the high heat flux plasma facing components such as the divertor targets, the baffles and limiters. More than 50 representative small-scale mock-ups have been manufactured with beryllium, carbon and tungsten armour using various joining technologies. High heat flux testing of 20 of these mock-ups showed the carbon mono-blocks to be the most robust solution, surviving 2000 cycles at absorbed heat fluxes of up to 24 MW m -2 . With flat armour tiles rapid joint failures occurred at 5-16 MW m -2 depending on joining technology and armour material. These test results serve as a basis for the selection of manufacturing options and materials for the prototypes now being ordered. (orig.)

  18. Transient phenomena analysis of a DC-1 MV power supply for the ITER NBI

    International Nuclear Information System (INIS)

    Yamamoto, Masanori; Watanabe, Kazuhiro; Yamanaka, Haruhiko; Takemoto, Jumpei; Inoue, Takashi; Yamashita, Yasuo

    2010-08-01

    A power supply for the ITER Neutral Beam Injector (NBI) is a DC ultra-high voltage (UHV) power supply to accelerate negative ion beams of 40 A up to an energy of 1 MeV. Japan Atomic Energy Agency as the Japan Domestic Agency for ITER contributes procurement of dc -1 MV main components such as step-up -1 MV transformers rectifiers, a high voltage deck 2, a -1 MV insulating transformer, a transmission line, a surge reduction system and equipments for site test. Design of the surge suppression in the NBI power supply is one of the key issues to obtain the stable injector performance. This report describes the design study using EMTDC code on the surge suppression by optimizing the core snubber and additional elements in the -1 MV power supply. The results show that the input energy from the stray capacitance to the accelerator at the breakdown can be reduced to about 25 J that is smaller than design criteria for ITER. (author)

  19. Challenges and status of ITER conductor production

    International Nuclear Information System (INIS)

    Devred, A; Backbier, I; Bessette, D; Bevillard, G; Gardner, M; Jong, C; Lillaz, F; Mitchell, N; Romano, G; Vostner, A

    2014-01-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb 3 Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb–Ti strands. The required amount of Nb 3 Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb 3 Sn coil has ever experienced. Following a comprehensive R and D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been

  20. Challenges and status of ITER conductor production

    Science.gov (United States)

    Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A.

    2014-04-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb3Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb-Ti strands. The required amount of Nb3Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb3Sn coil has ever experienced. Following a comprehensive R&D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been encountered and

  1. Thermo-mechanical design methodology for ITER cryo-distribution cold boxes

    International Nuclear Information System (INIS)

    Shukla, Vinit; Patel, Pratik; Vaghela, Hiten; Das, Jotirmoy; Shah, Nitin; Bhattacharya, Ritendra; Sarkar, Biswanath; Chang, Hyun-sik

    2015-01-01

    The ITER cryo-distribution system is in charge of the proper distribution of the cryogen at required mass flow rate, pressure and temperature level to the users namely; the superconducting magnets and cryopumps. The cryo-distribution also acts as a thermal buffer in order to run the cryo-plant as much as possible at a steady state condition. A typical cryo-distribution cold box is equipped with mainly liquid helium bath with heat exchangers, cryogenic valves, cold circulating pump and cold compressor. During the intended operation life of ITER, several loads on the cryo-distribution system are envisaged, these are, gravity/assembly loads, nominal pressure/temperature, test pressure/temperature, purge pressure, thermo-mechanical loads due to break of insulation vacuum, transport acceleration and seismic loads. Single loads or combinations of them can act on the cryo-distribution system and its components; therefore, it is very important to analyze the behavior of the system and components under the influence of these loads or combinations. Possible load combinations for the cryo-distribution system will be analyzed and will lead to the basis of the design. This paper will focus on the understanding of the nature of the loads and their combinations for the ITER cryo-distribution as well as their impacts on the design. A representative model of a cold box is considered on which the load combinations have been applied in order to understand their impacts on the design of the cryo-distribution. Also the worst-impact loads or their combination which drive the design of cryo-distribution cold boxes will be derived. (author)

  2. Disruption modeling in support of ITER

    International Nuclear Information System (INIS)

    Bandyopadhyay, I.

    2015-01-01

    Plasma current disruptions and Vertical Displacement Events (VDEs) are one of the major concerns in any tokamak as they lead to large electromagnetic forces to tokamak first wall components and vacuum vessel. Their occurrence also means disruption to steady state operations of tokamaks. Thus future fusion reactors like ITER must ensure that disruptions and VDEs are minimized. However, since there is still finite probability of their occurrence, one must be able to characterize disruptions and VDEs and able to predict, for example, the plasma current quench time and halo current amplitude, which mainly determine the magnitude of the electromagnetic forces. There is a concerted effort globally to understand and predict plasma and halo current evolution during disruption in tokamaks through MHD simulations. Even though Disruption and VDEs are often 3D MHD perturbations in nature, presently they are mostly simulated using 2D axisymmetric MHD codes like the Tokamak Simulation Code (TSC) and DINA. These codes are also extensively benchmarked against experimental data in present day tokamaks to improve these models and their ability to predict these events in ITER. More detailed 3D models like M3D are only recently being developed, but they are yet to be benchmarked against experiments, as also they are massively computationally exhaustive

  3. Japanese contributions to containment structure, assembly and maintenance and reactor building for ITER

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Honda, Tsutomu; Kanamori, Naokazu

    1991-06-01

    Joint design work on Conceptual Design Activity of International Thermonuclear Experimental Reactor (ITER) with four parties, Japan, the United States, the Soviet Union and the European Community began in April 1988 and was successfully completed in December 1990. In Japan, the home team was established in wide range of collaboration between JAERI and national institute, universities and heavy industries. The Fusion Experimental Reactor (FER) Team at JAERI is assigned as a core of the Japanese home team to support the joint Team activity and mainly conducted the design and R and D in the area of containment structure, remote handling and plant system. This report mainly describes the Japanese contribution on the ITER containment structure, remote handling and reactor building design. Main areas of contributions are vacuum vessel, attaching locks, electromagnetic analysis, cryostat, port and service line layout for containment structure, in-vessel handling equipment design and analysis, blanket handling equipment design and related short term R and D for assembly and maintenance, and finally reactor building design and analysis based on the equipment and service line layout and components flow during assembly and maintenance. (author)

  4. Comprehensive simulation of vertical plasma instability events and their serious damage to ITER plasma facing components

    International Nuclear Information System (INIS)

    Hassanein, A.; Sizyuk, T.

    2008-01-01

    Safe and reliable operation is still one of the major challenges in the development of the new generation of ITER-like fusion reactors. The deposited plasma energy during major disruptions, edge-localized modes (ELMs) and vertical displacement events (VDEs) causes significant surface erosion, possible structural failure and frequent plasma contamination. While plasma disruptions and ELM will have no significant thermal effects on the structural materials or coolant channels because of their short deposition time, VDEs having longer-duration time could have a destructive impact on these components. Therefore, modelling the response of structural materials to VDE has to integrate detailed energy deposition processes, surface vaporization, phase change and melting, heat conduction to coolant channels and critical heat flux criteria at the coolant channels. The HEIGHTS 3D upgraded computer package considers all the above processes to specifically study VDE in detail. Results of benchmarking with several known laboratory experiments prove the validity of HEIGHTS implemented models. Beryllium and tungsten are both considered surface coating materials along with copper structure and coolant channels using both smooth tubes with swirl tape insert. The design requirements and implications of plasma facing components are discussed along with recommendations to mitigate and reduce the effects of plasma instabilities on reactor components.

  5. Major achievements of the European shield blanket R and D during the ITER EDA, and their relevance for future next step machines

    Energy Technology Data Exchange (ETDEWEB)

    Daenner, W. E-mail: daenner@ipp.mpg.de; Cardella, A.; Jones, L.; Lorenzetto, P.; Maisonnier, D.; Malavasi, G.; Peacock, A.; Rodgers, E.; Tavassoli, F

    2000-11-01

    In the frame of the international thermonuclear experimental reactors (ITER) collaboration, the European home team (EU HT) has committed significant efforts on the R and D for the Shield Blanket. This paper summarises the main achievements of this programme, which have been obtained over the last 7 years. The depth of R and D extends from generic activities up to the manufacture of prototypes, but has, in accordance with the design progress, reached different stages of maturity for the various components. New ITER options being considered since early 1998 have not made these activities irrelevant. With few exceptions, the results are still applicable for less ambitious next step machines, or transferable to components with similar functions or requirements.

  6. Fabrication of the wing and vertical target dummy armour prototypes of the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Grattarola, M. E-mail: gratta@ari.ansaldo.it; Bet, M.; Biagiotti, B.; Gandini, G.; Merola, M.; Ottonello, G.B.; Riccardi, B.; Vieider, G.; Zacchia, F

    2000-11-01

    The dummy armour prototypes are identical to the reference components in terms of geometry, cooling circuit and material except for the armour material, which is replaced by an equivalent thickness of copper alloy. The main objectives of the dummy armour prototypes are the demonstration of the overall engineering concept of the Divertor, the integration in a 3 deg. cassette together with components manufactured by the other ITER Home Teams and the successive thermo-hydraulic tests on the whole Divertor module. This paper describes the realization of both the wing and the vertical target dummy armour prototypes focusing on the critical aspects of the fabrication and their impact on a further industrialization of the components.

  7. Fabrication of the wing and vertical target dummy armour prototypes of the ITER divertor

    International Nuclear Information System (INIS)

    Grattarola, M.; Bet, M.; Biagiotti, B.; Gandini, G.; Merola, M.; Ottonello, G.B.; Riccardi, B.; Vieider, G.; Zacchia, F.

    2000-01-01

    The dummy armour prototypes are identical to the reference components in terms of geometry, cooling circuit and material except for the armour material, which is replaced by an equivalent thickness of copper alloy. The main objectives of the dummy armour prototypes are the demonstration of the overall engineering concept of the Divertor, the integration in a 3 deg. cassette together with components manufactured by the other ITER Home Teams and the successive thermo-hydraulic tests on the whole Divertor module. This paper describes the realization of both the wing and the vertical target dummy armour prototypes focusing on the critical aspects of the fabrication and their impact on a further industrialization of the components

  8. Evaluation of material integrity on electricity generator water steam cycles component (Main Steam Pipe)

    International Nuclear Information System (INIS)

    Sudardjo; Histori; Triyadi, Ari

    1998-01-01

    The evaluation of material integrity on electricity generator component has been done. That component was main steam pipe of Unit II Suralaya Coal Fired Power Plant. evaluation was done by replication technique. The damage was found are two porosity's, from two point samples of six points sample population. Based on cavity evaluation in steels, which proposed by Neubauer and Wedel that porosity's still at class A damage. For class A damage, its means no remedial action would be required until next major scheduled maintenance outage. That porosity's was grouped on isolated cavities and not need ti repair that main steam pipe component less than three year after replication test

  9. Fusion Power measurement at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-07-01

    Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)

  10. An investigation of pulsed phase thermography for detection of disbonds in HIP-bonded beryllium tiles in ITER normal heat flux first wall (NHF FW) components

    Energy Technology Data Exchange (ETDEWEB)

    Bushell, J., E-mail: joe.bushell@amec.com [AMEC Foster Wheeler, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ, England (United Kingdom); Sherlock, P. [AMEC Foster Wheeler, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ, England (United Kingdom); Mummery, P. [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, England (United Kingdom); Bellin, B.; Zacchia, F. [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, Barcelona (Spain)

    2015-10-15

    Highlights: • Pulsed phase thermography was trialled on Be-tiled plasma facing components. • Two components, one with known disbonds, one intact, were inspected and compared. • Finite element analysis was used to verify experimental observations. • PPT successfully detected disbonds in the failed component. • Good agreement found with ultrasonic test, though defect geometry was uncertain. - Abstract: Pulsed phase thermography (PPT) is a non destructive examination (NDE) technique, traditionally used in the Aerospace Industry for inspection of composite structures, which combines characteristics and benefits of flash thermography and lock-in thermography into a single, rapid inspection technique. The aim of this work was to evaluate the effectiveness of PPT as a means of inspection for the bond between the beryllium (Be) tiles and the copper alloy (CuCrZr) heatsink of the ITER NHF FW components. This is a critical area dictating the functional integrity of these components, as single tile detachment in service could result in cascade failure. PPT has advantages over existing thermography techniques using heated water which stress the component, and the non-invasive, non-contact nature presents advantages over existing ultrasonic methods. The rapid and non-contact nature of PPT also gives potential for in-service inspections as well as a quality measure for as-manufactured components. The technique has been appraised via experimental trials using ITER first wall mockups with pre-existing disbonds confirmed via ultrasonic tests, partnered with finite element simulations to verify experimental observations. This paper will present the results of the investigation.

  11. An investigation of pulsed phase thermography for detection of disbonds in HIP-bonded beryllium tiles in ITER normal heat flux first wall (NHF FW) components

    International Nuclear Information System (INIS)

    Bushell, J.; Sherlock, P.; Mummery, P.; Bellin, B.; Zacchia, F.

    2015-01-01

    Highlights: • Pulsed phase thermography was trialled on Be-tiled plasma facing components. • Two components, one with known disbonds, one intact, were inspected and compared. • Finite element analysis was used to verify experimental observations. • PPT successfully detected disbonds in the failed component. • Good agreement found with ultrasonic test, though defect geometry was uncertain. - Abstract: Pulsed phase thermography (PPT) is a non destructive examination (NDE) technique, traditionally used in the Aerospace Industry for inspection of composite structures, which combines characteristics and benefits of flash thermography and lock-in thermography into a single, rapid inspection technique. The aim of this work was to evaluate the effectiveness of PPT as a means of inspection for the bond between the beryllium (Be) tiles and the copper alloy (CuCrZr) heatsink of the ITER NHF FW components. This is a critical area dictating the functional integrity of these components, as single tile detachment in service could result in cascade failure. PPT has advantages over existing thermography techniques using heated water which stress the component, and the non-invasive, non-contact nature presents advantages over existing ultrasonic methods. The rapid and non-contact nature of PPT also gives potential for in-service inspections as well as a quality measure for as-manufactured components. The technique has been appraised via experimental trials using ITER first wall mockups with pre-existing disbonds confirmed via ultrasonic tests, partnered with finite element simulations to verify experimental observations. This paper will present the results of the investigation.

  12. ITER management advisory committee (MAC) meeting in Naka

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    2000-01-01

    The ITER Management Advisory Committee (MAC) Meeting was held on 28 June 2000 in Moskow, Russia. The main topics were the consideration of the report by the director on the ITER EDA status, the review of the work program, the review of the joint fund, the review of a schedule of ITER meetings and initial discussion and consideration on the disposition of R and D hardware and facilities and other dispositions relating to the termination of the EDA

  13. Towards the conceptual design of the ITER real-time plasma control system

    International Nuclear Information System (INIS)

    Winter, A.; Makijarvi, P.; Simrock, S.; Snipes, J.A.; Wallander, A.; Zabeo, L.

    2014-01-01

    Highlights: • We describe the main control areas and interfaces for the ITER real-time plasma control system and the current state of their design. • An overview is given for the implementation strategy for the plasma control system as part of the ITER control, data access and communication system. • Current efforts on the creation of simulation and development tools are presented. - Abstract: ITER will be the world's largest magnetic confinement tokamak fusion device and is currently under construction in southern France. The ITER Plasma Control System (PCS) is a fundamental component of the ITER Control, Data Access and Communication system (CODAC). It will control the evolution of all plasma parameters that are necessary to operate ITER throughout all phases of the discharge. The design and implementation of the PCS poses a number of unique challenges. The timescales of phenomena to be controlled spans three orders of magnitude, ranging from a few milliseconds to seconds. Novel control schemes, which have not been implemented at present-day machines need to be developed, and control schemes that are only done as demonstration experiments today will have to become routine. In addition, advances in computing technology and available physics models make the implementation of real-time or faster-than-real-time predictive calculations to forecast and subsequently to avoid disruptions or undesired plasma regimes feasible. This requires the PCS design to be adaptable in real-time to the results of these forecasting algorithms. A further novel feature is a sophisticated event handling system, which provides a means to deal with plasma related events (such as MHD instabilities or L-H transitions) or component failure. Finally, the schedule for design and implementation poses another challenge. The beginning of ITER operation will be in late 2020, but the conceptual design activity of the PCS has already commenced as required by the on-going development of

  14. Development of in-vessel neutron flux monitor equipped with microfission chambers to withstand the extreme ITER environment

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masao, E-mail: ishikawa.masao@jaea.go.jp; Takeda, Keigo; Itami, Kiyoshi

    2016-11-01

    Highlights: • The in-vessel components of MFC system must withstand the extreme ITER environment. • To verify this, the thermal cycle test and the vibration tests were conducted. • Both tests were conducted under much severer conditions than ITER environment. • Soundness verification tests after the tests indicated that no problemswere found. • It is shown that the in-vessel component is sufficiently robust ITER environment. - Abstract: Via thermal cycling and vibration tests, this study aims to demonstrate that the in-vessel components of the microfission chamber (MFC) system can withstand the extreme International Thermonuclear Experimental Reactor (ITER) environment. In thermal cycle tests, the signal cable of the device was bent into a smaller radius and it was given more bends than those in its actual configuration within ITER. A faster rate of temperature change than that under the typical ITER baking scenario was then imposed on in-vessel components. For the vibration tests, strong 10 G vibrational accelerations with frequencies ranging from 30 Hz to 2000 Hz were imposed to the detector and the connector of the in-vessel components to simulate various types of electromagnetic events. Soundness verification tests of the in-vessel components conducted after thermal cycling and vibration testing indicated that problems related to the signal transmission cable functioning were not found. Thus, it was demonstrated that the in-vessel components of the MFC can withstand the extreme environment within ITER.

  15. Iterative development of Stand Up Australia: a multi-component intervention to reduce workplace sitting

    Science.gov (United States)

    2014-01-01

    Background Sitting, particularly in prolonged, unbroken bouts, is widespread within the office workplace, yet few interventions have addressed this newly-identified health risk behaviour. This paper describes the iterative development process and resulting intervention procedures for the Stand Up Australia research program focusing on a multi-component workplace intervention to reduce sitting time. Methods The development of Stand Up Australia followed three phases. 1) Conceptualisation: Stand Up Australia was based on social cognitive theory and social ecological model components. These were operationalised via a taxonomy of intervention strategies and designed to target multiple levels of influence including: organisational structures (e.g. via management consultation), the physical work environment (via provision of height-adjustable workstations), and individual employees (e.g. via face-to-face coaching). 2) Formative research: Intervention components were separately tested for their feasibility and acceptability. 3) Pilot studies: Stand Up Comcare tested the integrated intervention elements in a controlled pilot study examining efficacy, feasibility and acceptability. Stand Up UQ examined the additional value of the organisational- and individual-level components over height-adjustable workstations only in a three-arm controlled trial. In both pilot studies, office workers’ sitting time was measured objectively using activPAL3 devices and the intervention was refined based on qualitative feedback from managers and employees. Results Results and feedback from participants and managers involved in the intervention development phases suggest high efficacy, acceptance, and feasibility of all intervention components. The final version of the Stand Up Australia intervention includes strategies at the organisational (senior management consultation, representatives consultation workshop, team champions, staff information and brainstorming session with information

  16. Plasma burn-through simulations using the DYON code and predictions for ITER

    International Nuclear Information System (INIS)

    Kim, Hyun-Tae; Sips, A C C; De Vries, P C

    2013-01-01

    This paper will discuss simulations of the full ionization process (i.e. plasma burn-through), fundamental to creating high temperature plasma. By means of an applied electric field, the gas is partially ionized by the electron avalanche process. In order for the electron temperature to increase, the remaining neutrals need to be fully ionized in the plasma burn-through phase, as radiation is the main contribution to the electron power loss. The radiated power loss can be significantly affected by impurities resulting from interaction with the plasma facing components. The DYON code is a plasma burn-through simulator developed at Joint European Torus (JET) (Kim et al and EFDA-JET Contributors 2012 Nucl. Fusion 52 103016, Kim, Sips and EFDA-JET Contributors 2013 Nucl. Fusion 53 083024). The dynamic evolution of the plasma temperature and plasma densities including the impurity content is calculated in a self-consistent way using plasma wall interaction models. The recent installation of a beryllium wall at JET enabled validation of the plasma burn-through model in the presence of new, metallic plasma facing components. The simulation results of the plasma burn-through phase show a consistent good agreement against experiments at JET, and explain differences observed during plasma initiation with the old carbon plasma facing components. In the International Thermonuclear Experimental Reactor (ITER), the allowable toroidal electric field is restricted to 0.35 (V m −1 ), which is significantly lower compared to the typical value (∼1 (V m −1 )) used in the present devices. The limitation on toroidal electric field also reduces the range of other operation parameters during plasma formation in ITER. Thus, predictive simulations of plasma burn-through in ITER using validated model is of crucial importance. This paper provides an overview of the DYON code and the validation, together with new predictive simulations for ITER using the DYON code. (paper)

  17. Remote handling maintenance of ITER

    International Nuclear Information System (INIS)

    Haange, R.

    1999-01-01

    The remote maintenance strategy and the associated component design of the International Thermonuclear Experimental Reactor (ITER) have reached a high degree of completeness, especially with respect to those components that are expected to require frequent or occasional remote maintenance. Large-scale test stands, to demonstrate the principle feasibility of the remote maintenance procedures and to develop the required equipment and tools, were operational at the end of the Engineering Design Activities (EDA) phase. The initial results are highly encouraging: major remote equipment deployment and component replacement operations have been successfully demonstrated. (author)

  18. Thermo-mechanical design of the SINGAP accelerator grids for ITER NB Injectors

    International Nuclear Information System (INIS)

    Agostinetti, P.; Dal Bello, S.; Palma, M.D.; Zaccaria, P.

    2006-01-01

    The SINGle Aperture - SINgle GAP (SINGAP) accelerator for ITER neutral beam injector foresees four grids for the extraction and acceleration of negative ions, instead of the seven grids of the Multi Aperture Multi Grid (MAMuG) reference configuration. Optimized geometry of the SINGAP grids (plasma, extraction, pre-acceleration, and grounded grid) was identified by CEA Association considering specific requirements for ions extraction and beam generation referring to experimental data and code simulations. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids carried out by Consorzio RFX for the design of the first ITER NB Injector and the ITER NB Test Facility. The cooling circuit design (position and shape of the channels) and the cooling parameters (water coolant temperatures, pressure and velocity) were optimized with thermo-hydraulic and thermo-mechanical sensitivity analyses in order to satisfy the grid functional requirements (temperatures, in plane and out of plane deformations). A complete and detailed thermo-structural design assessment of the SINGAP grids was accomplished applying the structural design rules for ITER in-vessel components and considering both the reference load conditions and the maximum load provided by the power supplies. The design required a complete modelling of the grids and their support frames by means of 3D FE and CAD models. The grids were finally integrated with the support and cooling systems inside the beam source vessel. The main results of the thermo-hydraulic and thermo-mechanical analyses are presented. The open issues are then reported, mainly regarding the material properties characterization (static and fatigue tests) and the qualification of technologies for OFHC copper electro-deposition, brazing, and welding of heterogeneous materials. (author)

  19. Environmental dose rate assessment of ITER using the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Karimian Alireza

    2014-01-01

    Full Text Available Exposure to radiation is one of the main sources of risk to staff employed in reactor facilities. The staff of a tokamak is exposed to a wide range of neutrons and photons around the tokamak hall. The International Thermonuclear Experimental Reactor (ITER is a nuclear fusion engineering project and the most advanced experimental tokamak in the world. From the radiobiological point of view, ITER dose rates assessment is particularly important. The aim of this study is the assessment of the amount of radiation in ITER during its normal operation in a radial direction from the plasma chamber to the tokamak hall. To achieve this goal, the ITER system and its components were simulated by the Monte Carlo method using the MCNPX 2.6.0 code. Furthermore, the equivalent dose rates of some radiosensitive organs of the human body were calculated by using the medical internal radiation dose phantom. Our study is based on the deuterium-tritium plasma burning by 14.1 MeV neutron production and also photon radiation due to neutron activation. As our results show, the total equivalent dose rate on the outside of the bioshield wall of the tokamak hall is about 1 mSv per year, which is less than the annual occupational dose rate limit during the normal operation of ITER. Also, equivalent dose rates of radiosensitive organs have shown that the maximum dose rate belongs to the kidney. The data may help calculate how long the staff can stay in such an environment, before the equivalent dose rates reach the whole-body dose limits.

  20. Wide area data replication in an ITER-relevant data environment

    International Nuclear Information System (INIS)

    Centioli, C.; Iannone, F.; Panella, M.; Vitale, V.; Bracco, G.; Guadagni, R.; Migliori, S.; Steffe, M.; Eccher, S.; Maslennikov, A.; Mililotti, M.; Molowny, M.; Palumbo, G.; Carboni, M.

    2005-01-01

    The next generation of tokamak experiments will require a new way of approaching data sharing issues among fusion organizations. In the fusion community, many researchers at different worldwide sites will analyse data produced by International Thermonuclear Experimental Reactor (ITER), wherever it will be built. In this context, an efficient availability of the data in the sites where the computational resources are located becomes a major architectural issue for the deployment of ITER computational infrastructure. The approach described in this paper goes beyond the usual site-centric model mainly devoted to granting access exclusively to experimental data stored at the device sites. To this aim, we propose a new data replication architecture relying on a wide area network, based on a Master/Slave model and on synchronization techniques producing mirrored data sites. In this architecture, data replication will affect large databases (TB) as well as large UNIX-like file systems, using open source-based software components, namely MySQL, as database management system, and RSYNC and BBFTP for data transfer. A test-bed has been set up to evaluate the performance of the software components underlying the proposed architecture. The test-bed hardware layout deploys a cluster of four Dual-Xeon Supermicro each with a raid array of 1 TB. High performance network line (1 Gbit over 400 km) provides the infrastructure to test the components on a wide area network. The results obtained will be thoroughly discussed

  1. ITER technical basis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    Following on from the Final Report of the EDA(DS/21), and the summary of the ITER Final Design report(DS/22), the technical basis gives further details of the design of ITER. It is in two parts. The first, the Plant Design specification, summarises the main constraints on the plant design and operation from the viewpoint of engineering and physics assumptions, compliance with safety regulations, and siting requirements and assumptions. The second, the Plant Description Document, describes the physics performance and engineering characteristics of the plant design, illustrates the potential operational consequences foe the locality of a generic site, gives the construction, commissioning, exploitation and decommissioning schedule, and reports the estimated lifetime costing based on data from the industry of the EDA parties.

  2. ITER technical basis

    International Nuclear Information System (INIS)

    2002-01-01

    Following on from the Final Report of the EDA(DS/21), and the summary of the ITER Final Design report(DS/22), the technical basis gives further details of the design of ITER. It is in two parts. The first, the Plant Design specification, summarises the main constraints on the plant design and operation from the viewpoint of engineering and physics assumptions, compliance with safety regulations, and siting requirements and assumptions. The second, the Plant Description Document, describes the physics performance and engineering characteristics of the plant design, illustrates the potential operational consequences foe the locality of a generic site, gives the construction, commissioning, exploitation and decommissioning schedule, and reports the estimated lifetime costing based on data from the industry of the EDA parties

  3. Multi-purpose deployer for ITER in-vessel maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang-Hwan, E-mail: Chang-Hwan.CHOI@iter.org [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul lez Durance (France); Tesini, Alessandro; Subramanian, Rajendran [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul lez Durance (France); Rolfe, Alan; Mills, Simon; Scott, Robin; Froud, Tim; Haist, Bernhard; McCarron, Eddie [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon, OXON (United Kingdom)

    2015-10-15

    Highlights: • ITER RH system called as the multi-purpose deployer (MPD) is introduced. • The MPD performs dust and tritium inventory control, in-service inspection. • The MPD performs leak localization, in-vessel diagnostics maintenance. • The MPD has nine degrees of freedom with a payload capacity up to 2 tons. - Abstract: The multi-purpose deployer (MPD) is a general purpose in-vessel remote handling (RH) system in the ITER RH system. The MPD provides the means for deployment and handling of in-vessel tools or components inside the vacuum vessel (VV) for dust and tritium inventory control, in-service inspection, leak localization, and in-vessel diagnostics. It also supports the operation of blanket first wall maintenance and neutral beam duct liner module maintenance operations. This paper describes the concept design of the MPD. The MPD is a cask based system, i.e. it stays in the hot cell building during the machine operation, and is deployed to the VV using the cask system for the in-vessel operations. The main part of the MPD is the articulated transporter which provides transportation and positioning of the in-vessel tools or components. The articulated transporter has nine degrees of freedom with a payload capacity up to 2 tons. The articulated transporter can cover the whole internal surface of the VV by switching between the four equatorial RH ports. Additionally it can use two non-RH equatorial ports to transfer large tools or components. A concept for in-cask tool exchange is developed which minimizes the cask transportation by allowing the MPD to stay in the VV during the tool exchange.

  4. An integrated architecture for the ITER RH control system

    International Nuclear Information System (INIS)

    Hamilton, David Thomas; Tesini, Alessandro

    2012-01-01

    Highlights: ► Control system architecture integrating ITER remote handling equipment systems. ► Standard control system architecture for remote handling equipment systems. ► Research and development activities to validate control system architecture. ► Standardization studies to select standard parts for control system architecture. - Abstract: The ITER remote handling (RH) system has been divided into 7 major equipment system procurements that deliver complete systems (operator interfaces, equipment controllers, and equipment) according to task oriented functional specifications. Each equipment system itself is an assembly of transporters, power manipulators, telemanipulators, vehicular systems, cameras, and tooling with a need for controllers and operator interfaces. From an operational perspective, the ITER RH systems are bound together by common control rooms, operations team, and maintenance team; and will need to achieve, to a varying degree, synchronization of operations, co-operation on tasks, hand-over of components, and sharing of data and resources. The separately procured RH systems must, therefore, be integrated to form a unified RH system for operation from the RH control rooms. The RH system will contain a heterogeneous mix of specially developed RH systems and off-the-shelf RH equipment and parts. The ITER Organization approach is to define a control system architecture that supports interoperable heterogeneous modules, and to specify a standard set of modules for each system to implement within this architecture. Compatibility with standard parts for selected modules is required to limit the complexity for operations and maintenance. A key requirement for integrating the control system modules is interoperability, and no module should have dependencies on the implementation details of other modules. The RH system is one of the ITER Plant systems that are integrated and coordinated through the hierarchical structure of the ITER CODAC system

  5. The remote handling systems for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Isabel, E-mail: mir@isr.ist.utl.pt [Institute for Systems and Robotics/Instituto Superior Tecnico, Lisboa (Portugal); Damiani, Carlo [Fusion for Energy, Barcelona (Spain); Tesini, Alessandro [ITER Organization, Cadarache (France); Kakudate, Satoshi [ITER Tokamak Device Group, Japan Atomic Energy Agency, Ibaraki (Japan); Siuko, Mikko [VTT Systems Engineering, Tampere (Finland); Neri, Carlo [Associazione EURATOM ENEA, Frascati (Italy)

    2011-10-15

    The ITER remote handling (RH) maintenance system is a key component in ITER operation both for scheduled maintenance and for unexpected situations. It is a complex collection and integration of numerous systems, each one at its turn being the integration of diverse technologies into a coherent, space constrained, nuclearised design. This paper presents an integrated view and recent results related to the Blanket RH System, the Divertor RH System, the Transfer Cask System (TCS), the In-Vessel Viewing System, the Neutral Beam Cell RH System, the Hot Cell RH and the Multi-Purpose Deployment System.

  6. Design and R&D for manufacturing the beamline components of MITICA and ITER HNBs

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it [Consorzio RFX, Padova (Italy); Sartori, E. [Consorzio RFX, Padova (Italy); Blatchford, P.; Chuilon, B. [CCFE, Culham Science Centre, Oxfordshire (United Kingdom); Graceffa, J. [ITER Organization, St Paul Lez Durance (France); Hanke, S. [KIT, Institute for Technical Physics, Eggenstein-Leopoldshafen (Germany); Hardie, C. [CCFE, Culham Science Centre, Oxfordshire (United Kingdom); Masiello, A. [F4E, Barcelona (Spain); Muraro, A. [Consorzio RFX, Padova (Italy); Ochoa, S. [KIT, Institute for Technical Physics, Eggenstein-Leopoldshafen (Germany); Shah, D. [ITER Organization, St Paul Lez Durance (France); Veltri, P.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Padova (Italy)

    2015-10-15

    Highlights: • Particle beam-component interaction was analysed developing and applying numerical codes. • Gas density distribution was calculated with AVOCADO code and applied for electrical analyses. • High heat flux components were designed, analysed with subcooled boiling, verified for fatigue. • Fracture behaviour of ceramics was analysed by finite element modelling and was verified. • R&D supports the design of the beamline components, especially for water-vacuum barriers. - Abstract: The design of the beamline components of MITICA, the full prototype of the ITER heating neutral beam injectors, is almost finalised and technical specifications for the procurement are under preparation. These components are the gas neutraliser, the electrostatic residual ion dump, and the calorimeter. Electron dump panels are foreseen each side of the upstream end of the neutraliser to protect the cryo-panels from electrons, created by stripping and other processes, that exit the 1 MeV accelerator. As the design of the components must fulfil requirements on the beam physics, insight on physical processes is required to identify performance trade-offs and constraints. The spatial gas distribution was simulated to verify the pumping requirements with electron dump panels and local conditions for breakdown voltage. Electrostatic analyses were carried out for the insulating elements of the RID to verify the limits of the electric field intensity. Different criteria were approached to investigate the fracture behaviour of ceramics considering the manufacturing implications and extrapolating the conditions for proof testing. Severe heating conditions will be applied steadily, as the maximum pulse duration is 1 h, and cyclically so requiring to fulfil fatigue and ratcheting verifications. High heat fluxes, up to 13 MW/m{sup 2} on the calorimeter, with enhanced heat transfer in subcooled boiling conditions will occur in the actively cooled CuCr1Zr panel elements provided with

  7. The ITER divertor cassette project

    International Nuclear Information System (INIS)

    Ulrickson, M.; Tivey, R.; Akiba, M.

    2001-01-01

    The divertor ''Large Project'' was conceived with the aim of demonstrating the feasibility of meeting the lifetime requirements by employing the candidate armor materials of beryllium, tungsten (W) and carbon-fiber-composite (CFC). At the start, there existed only limited experience with constructing water-cooled high heat flux armored components for tokamaks. To this was added the complication posed by the need to use a silver-free joining technique that avoids the transmutation of n-irradiated silver to cadmium. The research project involving the four Home Teams (HTs) has focused on the design, development, manufacture and testing of full-scale Plasma Facing Components (PFCs) suitable for ITER. The task addressed all the issues facing ITER divertor design, such as providing adequate armor erosion lifetime, meeting the required armor-heat sink joint lifetime and heat sink fatigue life, sustaining thermal-hydraulic and electromechanical loads, and seeking to identify the most cost-effective manufacturing options. This paper will report the results of the divertor large project. (author)

  8. The ITER divertor cassette project

    International Nuclear Information System (INIS)

    Ulrickson, M.; Tivey, R.; Akiba, M.

    1999-01-01

    The divertor 'Large Project' was conceived with the aim of demonstrating the feasibility of meeting the lifetime requirements by employing the candidate armor materials of beryllium, tungsten (W) and carbon-fiber-composite (CFC). At the start, there existed only limited experience with constructing water-cooled high heat flux armored components for tokamaks. To this was added the complication posed by the need to use a silver-free joining technique that avoids the transmutation of n-irradiated silver to cadmium. The research project involving the four Home Teams (HTs) has focused on the design, development, manufacture and testing of full-scale Plasma Facing Components (PFCs) suitable for ITER. The task addressed all the issues facing ITER divertor design, such as providing adequate armor erosion lifetime, meeting the required armor-heat sink joint lifetime and heat sink fatigue life, sustaining thermal-hydraulic and electromechanical loads, and seeking to identify the most cost-effective manufacturing options. This paper will report the results of the divertor large project. (author)

  9. Technical design of a solid tungsten divertor row for the ITER-like wall in the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, P.; Knaup, M.; Neubauer, O.; Sadakov, S.; Schweer, B.; Terra, A.; Samm, U. [Forschungszentrum Juelich, Association EURATOM-FZJ (DE). Inst. fuer Energieforschung IEF-4 (Plasmaphysik); Pintsuk, G. [Forschungszentrum Juelich, Association EURATOM-FZJ (DE). Inst. fuer Energieforschung IEF-2 (Werkstoffstruktur und Eigenschaften)

    2009-07-01

    ITER (originally International Thermonuclear Experimental Reactor) is now under construction in Cadarache, France. In order to investigate plasma scenarios compatible with an ITER relevant mix of materials, a new, complete inner wall will be installed in the JET tokamak vessel (Culham, UK) in 2010. The plasmafacing components in the main chamber will be made of beryllium whereas the exposed areas in the divertor shall be made of tungsten, mostly of tungsten coatings on a carbon-fibre composite substrate. A notable exception is the central row of tiles where the outer strike point is located. Fig. 1 illustrates it with a camera view during a suitable discharge which shows the emission of atomic hydrogen, hence the main interaction regions. Plasma-facing components at this position are exposed to very high particle fluxes which cause material sputtering, and to extremely high heat loads without active cooling, which is not available. It was accordingly decided to resort to solid tungsten in this particular case. An overview of the conceptual design was presented earlier. Manufacturing is just starting, so the technical design has been frozen to the largest extent as presented in the following. (orig.)

  10. A conceptual design of main components sizing for UMT PHEV powertrain

    Science.gov (United States)

    Haezah, M. N.; Norbakyah, J. S.; Atiq, W. H.; Salisa, A. R.

    2015-12-01

    This paper presents a conceptual design of main components sizing for Universiti Malaysia Terengganu plug-in hybrid electric vehicle (UMT PHEV) powertrain. In the design of hybrid vehicles, it is important to identify a proper component sizes. Component sizing significantly affects vehicle performance, fuel economy and emissions. The proposed UMT PHEV has only one electric machine (EM) which functions as either a motor or generator at a time and using batteries and ultracapacitors as an energy storage system (ESS). In this work, firstly, energy and power requirements based on parameters, specifications and performance requirements of vehicle are calculated. Then, the parameters for internal combustion engine, EM and ESS are selected based on the developed Kuala Terengganu drive cycle. The results obtained from this analysis are within reasonable range and satisfactory.

  11. ITER in-vessel system design and performance

    International Nuclear Information System (INIS)

    Parker, R.R.

    1999-01-01

    This paper reviews the design and performance of the in-vessel components of ITER as developed for the EDA Final Design Report (FDR). The double-wall vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g., the most intense VDE's and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature differences. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m 2 are expected and these are accommodated by HHF technology developed during the EDA. Disruptions and VDE's can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowables for all postulated disruption and seismic events. (author)

  12. ITER in-vessel system design and performance

    International Nuclear Information System (INIS)

    Parker, R.R.

    2001-01-01

    This paper reviews the design and performance of the in-vessel components of ITER as developed for the EDA Final Design Report (FDR). The double-wall vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g., the most intense VDE's and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature differences. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m 2 are expected and these are accommodated by HHF technology developed during the EDA. Disruptions and VDE's can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowables for all postulated disruption and seismic events. (author)

  13. Status of ITER neutron diagnostic development

    Science.gov (United States)

    Krasilnikov, A. V.; Sasao, M.; Kaschuck, Yu. A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V. S.; Popovichev, S.; Iguchi, T.; Jarvis, O. N.; Källne, J.; Fiore, C. L.; Roquemore, A. L.; Heidbrink, W. W.; Fisher, R.; Gorini, G.; Prosvirin, D. V.; Tsutskikh, A. Yu.; Donné, A. J. H.; Costley, A. E.; Walker, C. I.

    2005-12-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented.

  14. Status of ITER neutron diagnostic development

    International Nuclear Information System (INIS)

    Krasilnikov, A.V.; Sasao, M.; Kaschuck, Yu.A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V.S.; Popovichev, S.; Iguchi, T.; Jarvis, O.N.; Kaellne, J.; Fiore, C.L.; Roquemore, A.L.; Heidbrink, W.W.; Fisher, R.; Gorini, G.; Prosvirin, D.V.; Tsutskikh, A.Yu.; Donne, A.J.H.; Costley, A.E.; Walker, C.I.

    2005-01-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented

  15. Status of ITER neutron diagnostic development

    International Nuclear Information System (INIS)

    Sasao, M.; Krasilnikov, A.V.; Kaschuck, Yu.A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V.S.; Popovichev, S.; Jarvis, O.N.; Iguchi, T.; Kaellne, J.; Fiore, C.L.; Roquemore, A.L.; Heidbrink, W.W.; Fisher, R.; Gorini, G.; Donne, A.J.H.; Costley, A.E.; Walker, C.I.

    2005-01-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be well measured by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include: radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors, neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The neutron flux monitors need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented. (author)

  16. Baseline Architecture of ITER Control System

    Science.gov (United States)

    Wallander, A.; Di Maio, F.; Journeaux, J.-Y.; Klotz, W.-D.; Makijarvi, P.; Yonekawa, I.

    2011-08-01

    The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.

  17. ITER Central Solenoid Module Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John [General Atomics, San Diego, CA (United States)

    2016-09-23

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first

  18. Development of ITER PRM and standard parts catalogues in CATIA V5 for tritium-containing systems and components

    International Nuclear Information System (INIS)

    Lazar, Alin; Brad, Sebastian; Zamfirache, Marius; Soare, Sorin; Sofalca, Nicolae; Vijulie, Mihai

    2006-01-01

    CATIA V5 is a software chosen to perform the design and integration within ITER of both systems: fluid and mechanical systems. The broad range of applications provides the ability to develop the design process from the functional 2D design (P and ID) to the 3D plant layouts and detailed design. The 2D symbols for the equipment and piping components were developed in accordance with EN ISO 10628 standard, ISO 3511 (part I, II and IV) standard and DIN 28401 standard and considering the classification and settings done by FZK-team in the PRM-FZK-TLK in order to ensure compliance with the established design standards. These symbols were inserted in 2D catalogues linked with the main catalogue installed in PRM-FZK-TLK on CATIA SERVER at TLK-FZK and intensively tested in Piping and Instrumentation Diagrams. The 3D part for the equipment, instruments and piping components was developed according to the specifications, industrial conventions, terminology and literature available in library, internet and practice. All parts were parametrically built in order to allow the designer to modify the part geometry according to the design. The 3D parts were typed in accordance with IKARUS-Project Instructions by FZK team, inserted in 3D test catalogues and tested in Equipment and Systems workbench. The elements of P and ID, pipes, piping parts, instruments and equipment carry attribute information such as fluid type, pressure rating, insulation or material. The list of attributes is defined in the PRM and consists of the standard industrial attributes implemented by default in CATIA V5 and project specific attributes defined by Project Administration. 2D logical design and 3D Piping models are logically related through the common functions definition in the PRM. The task, TW5-TTFD-TPI-51, was performed collaboratively by MEdC/ICIT and FZK/TLK. (authors)

  19. Design, construction, qualification and reliability of main components, from the safety aspect

    International Nuclear Information System (INIS)

    Crette, J.P.

    1982-01-01

    In FRANCE, the design and construction of reliable components, which condition the safe operation and availability of breeder plants, is based on the experience acquired during the operation of RAPSODIE, PHENIX and the various test facilities. The technical progress achieved on all main components is illustrated by examples taken from the CREYS-MALVILLE plant. In parallel with the development of these components, an extensive program covering research, development and the definition of design, construction and inspection rules, together with scheduling and quality assurance methods, prepares the industrialization of this reactor system, in compliance with the rules and recommendations issued by the pertinent safety authorities

  20. Experimental study of divertor plasma-facing components damage under a combination of pulsed and quasi-stationary heat loads relevant to expected transient events at ITER

    International Nuclear Information System (INIS)

    Klimov, N S; Podkovyrov, V L; Kovalenko, D V; Zhitlukhin, A M; Barsuk, V A; Mazul, I V; Giniyatulin, R N; Kuznetsov, V Ye; Riccardi, B; Loarte, A; Merola, M; Koidan, V S; Linke, J; Landman, I S; Pestchanyi, S E; Bazylev, B N

    2011-01-01

    This paper concerns the experimental study of damage of ITER divertor plasma-facing components (PFCs) under a combination of pulsed plasma heat loads (representative of controlled ITER type I edge-localized modes (ELMs)) and quasi-stationary heat loads (representative of the high heat flux (HHF) thermal fatigue expected during ITER normal operations and slow transient events). The PFC's tungsten armor damage under pulsed plasma exposure was driven by (i) the melt layer motion, which leads to bridges formation between neighboring tiles and (ii) the W brittle failure giving rise to a stable crack pattern on the exposed surface. The crack width reaches a saturation value that does not exceed some tens of micrometers after several hundreds of ELM-like pulses. HHF thermal fatigue tests have shown (i) a peeling-off of the re-solidified material due to its brittle failure and (ii) a significant widening (up to 10 times) of the cracks and the formation of additional cracks.

  1. Japanese site for ITER: Rokkasho

    International Nuclear Information System (INIS)

    Kishimoto, Hiroshi

    2003-01-01

    This paper describes the status of Japanese efforts for hosting ITER in Japan. In May 2002, Japanese Government decided to propose an ITER site, Rokkasho in Aomori Prefecture, a Northern part of the main island, based on the comprehensive/intensive assessments by the Site Selection Committee established by Japanese Government. ITER is designed basically with a potential flexibility beyond the detailed technical objectives to have more clear scope for developing technical key elements in a future power plant. Various flexibilities in the construction, operation and decommissioning of ITER are totally assessed. Consequently the Japanese site has been chosen and it satisfies sufficiently not only the Site Requirements and the Site Design Assumptions but also the further extension and flexibilities. In particular the potential for more flexible construction schedule and operations is technically described as well as the fulfillment of the site requirements and its assumptions as the minimum requirements in this paper. The socio-cultural environment is also described briefly because of a key aspect for the scientists and engineers who will participate in the project

  2. Non-destructive local determination of doping additions and main components in single crystals

    International Nuclear Information System (INIS)

    Ehksperiandova, L.P.; Blank, A.B.; Kukhtina, N.N.; Afanasiadi, L.I.

    1994-01-01

    Procedures for local non-destructive determination of elements in optical and scintillation single crystals are developed. They are applied for determination of the main components (in cadmium tungstate) and doping additions (tellurium in zinc selenide, europium in gadolinium silicate). The metrological characteristics of the developed micro-analysis methods are estimated. Segregation of the main components and doping additions in the objects under consideration are investigated. Tellurium is found to be distributed uniformly on the cross-sections of bulk zinc selenide single crystals. The segregation of europium along gadolinium silicate ingots is almost absent. On the cross-section surface of cadmium tungstate single crystals the microregions are found characterized by the prevailing contents of cadmium or tungsten

  3. Identification and Hierarchy of Main Electronic Health Record Components in Occupational Medicine

    Directory of Open Access Journals (Sweden)

    Dorin TRIFF

    2010-12-01

    Full Text Available Starting from the legal requirements relating to structuring of medical records in occupational medicine and international requirements regarding the certification of electronic health records we have focused on structuring and then evaluating an EHR model in occupational medicine that integrates the main functions and certification criteria required by the European and US certification bodies. The application we designed, called Medmun, structured for use in occupational medicine practices based on the model of medical file provided by the Romanian legislation, integrates both necessary components of occupational medicine practice for administration of characteristic information related to socio-economic unit, work place, health surveillance as well as components of specific EHR functionality. The application has been submitted for free evaluation by specialist physicians of five counties over a period of nine months and subsequently assessed using a questionnaire on the usefulness of specific functional components in the EHR occupational medicine practice. The model was positively evaluated after experimental employment by occupational health practitioners. They consider that absence of legislative support for EHR implementation in medical practice is the main obstacle to the use of such applications in occupational medicine practice.

  4. Multichannel Signals Reconstruction Based on Tunable Q-Factor Wavelet Transform-Morphological Component Analysis and Sparse Bayesian Iteration for Rotating Machines

    Directory of Open Access Journals (Sweden)

    Qing Li

    2018-04-01

    Full Text Available High-speed remote transmission and large-capacity data storage are difficult issues in signals acquisition of rotating machines condition monitoring. To address these concerns, a novel multichannel signals reconstruction approach based on tunable Q-factor wavelet transform-morphological component analysis (TQWT-MCA and sparse Bayesian iteration algorithm combined with step-impulse dictionary is proposed under the frame of compressed sensing (CS. To begin with, to prevent the periodical impulses loss and effectively separate periodical impulses from the external noise and additive interference components, the TQWT-MCA method is introduced to divide the raw vibration signal into low-resonance component (LRC, i.e., periodical impulses and high-resonance component (HRC, thus, the periodical impulses are preserved effectively. Then, according to the amplitude range of generated LRC, the step-impulse dictionary atom is designed to match the physical structure of periodical impulses. Furthermore, the periodical impulses and HRC are reconstructed by the sparse Bayesian iteration combined with step-impulse dictionary, respectively, finally, the final reconstructed raw signals are obtained by adding the LRC and HRC, meanwhile, the fidelity of the final reconstructed signals is tested by the envelop spectrum and error analysis, respectively. In this work, the proposed algorithm is applied to simulated signal and engineering multichannel signals of a gearbox with multiple faults. Experimental results demonstrate that the proposed approach significantly improves the reconstructive accuracy compared with the state-of-the-art methods such as non-convex Lq (q = 0.5 regularization, spatiotemporal sparse Bayesian learning (SSBL and L1-norm, etc. Additionally, the processing time, i.e., speed of storage and transmission has increased dramatically, more importantly, the fault characteristics of the gearbox with multiple faults are detected and saved, i.e., the

  5. Twelfth meeting of the ITER physics expert group on diagnostics

    International Nuclear Information System (INIS)

    Costley, A.E.; Donne, A.J.H.

    2000-01-01

    The main technical objectives of the meeting were to review the present status of ITER and to determine any required changes in the specifications for plasma measurements; to review the progress and develop plans for meeting the goals of the voluntary R and D tasks approved by the ITER Physics Committee within the Parties; to review and plan the work of the five specialists electronic working groups, and to hear reports of ITER relevant diagnostic developments in the Party Laboratories and assess their possible application to ITER

  6. Eighth ITER technical meeting on safety and environment

    International Nuclear Information System (INIS)

    Gordon, C.; Raeder, J.

    2000-01-01

    From November 27 to 30, 2000 the Eighth ITER Technical Meeting on Safety and Environment was held by the ITER Joint Central Team (JCT) at the Garching Joint Work Site, which also hosts the ITER Safety, Environment and Health Group (SEHG). At this meeting, safety experts from the Home Teams (HT) worked together with the SEHG members towards the following main objectives: review of Generic Site Safety Report (GSSR) results and drafts; review of the Plant Design Description (PDD) summary of safety; update on the status of the R and D tasks contributing to GSSR

  7. Divertor development for ITER

    International Nuclear Information System (INIS)

    Janeschitz, G.; Ando, T.; Antipenkov, A.; Barabash, V.; Chiocchio, S.; Federici, G.; Ibbott, C.; Jakeman, R.; Matera, R.; Martin, E.; Parker, R.; Tivey, R.; Pacher, H.D.

    1998-01-01

    The requirements for the ITER divertor design, i.e. power and He ash exhaust, neutral leakage control, lifetime, disruption load resistance and exchange by remote handling, are described in this paper. These requirements and the physics requirements for detached and semi-attached operation result in the vertical target configuration. This is realised by a concept incorporating 60 cassettes carrying the high heat flux components. The armour choice for these components is CFC monoblock in the strike zone near at the lower part of the vertical target, and a W brush elsewhere. Cooling is by swirl tubes or hypervapotrons depending on the component. The status of the heat sink and joining technology R and D is given. Finally, the resulting design of the high heat flux components is presented. (orig.)

  8. A fatigue lifetime assessment of WEST ITER Like Plasma Facing Unit

    International Nuclear Information System (INIS)

    Languille, P.; Missirlian, M.; Guilhem, D.; Ferlay, F.; Batal, T.; Bucalossi, J.; Firdaouss, M.; Larroque, S.; Martinez, A.; Richou, M.

    2016-01-01

    Highlights: • ITER plasma facing component divertor technology is integrated in WEST. • ITER Like attachments in WEST has been optimised. • The ITER Like PFU is compatible with a wide range of plasma scenarios. - Abstract: Based on a monoblock concept (e.g. a tube-in-tile concept), each elementary tungsten plasma facing component (called Plasma-Facing Unit PFU) of the WEST lower divertor follows as closely as possible the same monoblock geometry, materials and bonding technology that is envisaged for ITER. A fatigue simulation of W PFU was used to validate its specific integration into WEST. The complex design, the material heterogeneities and the usage outside operational load design envelope are all possible causes of fatigue failure. This paper shows how the ITER like monoblocks and its U-shaped attachments technology are integrated into the WEST divertor by performing finite element analysis. The WEST lower divertor is designed to withstand 15 MW steady-state of injected power, with peaked heat fluxes up to 20 MW/m 2 . The integration and the design choices of a WEST ITER Like Plasma Facing Unit inside the WEST vacuum chamber is valid for an “expected life time” of repeated inter ELMs thermal steady state (>10 s) cycles and for 300 off-normal vertical displacement events.

  9. A fatigue lifetime assessment of WEST ITER Like Plasma Facing Unit

    Energy Technology Data Exchange (ETDEWEB)

    Languille, P., E-mail: pascal.languille@gmail.com; Missirlian, M.; Guilhem, D.; Ferlay, F.; Batal, T.; Bucalossi, J.; Firdaouss, M.; Larroque, S.; Martinez, A.; Richou, M.

    2016-11-01

    Highlights: • ITER plasma facing component divertor technology is integrated in WEST. • ITER Like attachments in WEST has been optimised. • The ITER Like PFU is compatible with a wide range of plasma scenarios. - Abstract: Based on a monoblock concept (e.g. a tube-in-tile concept), each elementary tungsten plasma facing component (called Plasma-Facing Unit PFU) of the WEST lower divertor follows as closely as possible the same monoblock geometry, materials and bonding technology that is envisaged for ITER. A fatigue simulation of W PFU was used to validate its specific integration into WEST. The complex design, the material heterogeneities and the usage outside operational load design envelope are all possible causes of fatigue failure. This paper shows how the ITER like monoblocks and its U-shaped attachments technology are integrated into the WEST divertor by performing finite element analysis. The WEST lower divertor is designed to withstand 15 MW steady-state of injected power, with peaked heat fluxes up to 20 MW/m{sup 2}. The integration and the design choices of a WEST ITER Like Plasma Facing Unit inside the WEST vacuum chamber is valid for an “expected life time” of repeated inter ELMs thermal steady state (>10 s) cycles and for 300 off-normal vertical displacement events.

  10. ITER design, integration and assembly studies assisted by virtual reality

    Energy Technology Data Exchange (ETDEWEB)

    Keller, D., E-mail: delphine.keller@cea.fr [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); ITER Organization, Route de Vinon-sur-Verdon, F-13115 St-Paul-Lez-Durance (France); Doceul, L.; Ferlay, F.; Jiolat, G. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Cordier, J.J.; Kuehn, I.; Manfreo, B.; Reich, J. [ITER Organization, Route de Vinon-sur-Verdon, F-13115 St-Paul-Lez-Durance (France)

    2013-10-15

    Highlights: ► VR technologies applied to Fusion enable to better and faster understand integration issues. ► Problems are solved and validated on a numerical mock up. ► Integration and accessibility issues can be identified in the earliest design. ► VR technologies are very helpful for assembly and maintenance operation simulations. ► New tools for real time simulations of hands-on operations are currently under development. -- Abstract: In a project like ITER where schedule, resources and cost is continuously optimized, emphasis has to be put on developing long lead items first while keeping other designs very low in definition. Hence, at a particular stage of the project, several components have to coexist in the integrated system while handling different level of maturity. Therefore, all the difficulty consists in managing the interfaces between all these components and to minimize the risk of design changes on the most advanced components. As a future exploitant, ITER is in charge of managing these interfaces and to ensure that maintenance of especially safety important class components (SIC) is feasible. These operation and maintenance constraints have to be taken into account since the earliest design of the components itselves. In this context, CEA IRFM is taking the benefit of using its virtual reality (VR) platform and simulation tools to assist ITER Organization in improving the efficiency of the inconsistencies identification and the machine sub-system design optimization. Currently, two contracts are on-going: the first one concerns the cryostat and in-vessel components; the second one concerns the overall Tokamak (TKM) and diagnostic buildings. This paper describes how VR tools applied to fusion and especially to ITER can help design and Integration with taking into account assembly and maintenance requirements at early stage in the design of complex systems.

  11. ITER design, integration and assembly studies assisted by virtual reality

    International Nuclear Information System (INIS)

    Keller, D.; Doceul, L.; Ferlay, F.; Jiolat, G.; Cordier, J.J.; Kuehn, I.; Manfreo, B.; Reich, J.

    2013-01-01

    Highlights: ► VR technologies applied to Fusion enable to better and faster understand integration issues. ► Problems are solved and validated on a numerical mock up. ► Integration and accessibility issues can be identified in the earliest design. ► VR technologies are very helpful for assembly and maintenance operation simulations. ► New tools for real time simulations of hands-on operations are currently under development. -- Abstract: In a project like ITER where schedule, resources and cost is continuously optimized, emphasis has to be put on developing long lead items first while keeping other designs very low in definition. Hence, at a particular stage of the project, several components have to coexist in the integrated system while handling different level of maturity. Therefore, all the difficulty consists in managing the interfaces between all these components and to minimize the risk of design changes on the most advanced components. As a future exploitant, ITER is in charge of managing these interfaces and to ensure that maintenance of especially safety important class components (SIC) is feasible. These operation and maintenance constraints have to be taken into account since the earliest design of the components itselves. In this context, CEA IRFM is taking the benefit of using its virtual reality (VR) platform and simulation tools to assist ITER Organization in improving the efficiency of the inconsistencies identification and the machine sub-system design optimization. Currently, two contracts are on-going: the first one concerns the cryostat and in-vessel components; the second one concerns the overall Tokamak (TKM) and diagnostic buildings. This paper describes how VR tools applied to fusion and especially to ITER can help design and Integration with taking into account assembly and maintenance requirements at early stage in the design of complex systems

  12. Qualification Test for Korean Mockups of ITER Blanket First Wall

    International Nuclear Information System (INIS)

    Kim, S. K.; Lee, D. W.; Bae, Y. D.; Hong, B. G.; Jung, H. K.; Jung, Y. I.; Park, J. Y.; Jeong, Y. H.; Choi, B. K.; Kim, B. Y.

    2009-01-01

    ITER First Wall (FW) includes the beryllium armor tiles joined to CuCrZr heat sink with stainless steel cooling tubes. This first wall panels are one of the critical components in the ITER machine with the surface heat flux of 0.5 MW/m 2 or above. So qualification program needs to be performed with the goal to qualify the joining technologies required for the ITER First Wall. Based on the results of tests, the acceptance of the developed joining technologies will be established. The results of this qualification test will affect the final selection of the manufacturers for the ITER First Wall

  13. Progress of the ITER Correction Coils in China

    CERN Document Server

    Wei, J; Han, S; Yu, X; Du, S; Li, C; Fang, C; Wang, L; Zheng, W; Liu, L; Wen, J; Li, H; Libeyre, P; Dolgetta, N; Cormany, C; Sgobba, S

    2014-01-01

    The ITER Correction Coils (CC) include three sets of six coils each, distributed symmetrically around the tokamak to correct error fields. Each pair of coils, located on opposite sides of the tokamak, is series connected with polarity to produce asymmetric fields. The manufacturing of these superconducting coils is undergoing qualification of the main fabrication processes: winding into multiple pancakes, welding helium inlet/outlet on the conductor jacket, turn and ground insulation, vacuum pressure impregnation, inserting into an austenitic stainless steel case, enclosure welding, and assembling the terminal service box. It has been proceeding by an intense phase of R\\&D, trials tests, and final adjustment of the tooling. This paper mainly describes the progress in ASIPP for the CC manufacturing process before and on qualification phase and the status of corresponding equipment which are ordered or designed for each process. Some test results for the key component and procedure are also presented.

  14. ITER waste management

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Na, B.C.; Benchikhoune, M.; Uzan, J. Elbez; Gastaldi, O.; Taylor, N.; Rodriguez, L.

    2010-01-01

    ITER will produce solid radioactive waste during its operation (arising from the replacement of components and from process and housekeeping waste) and during decommissioning (de-activation phase and dismantling). The waste will be activated by neutrons of energies up to 14 MeV and potentially contaminated by activated corrosion products, activated dust and tritium. This paper describes the waste origin, the waste classification as a function of the French national agency for radioactive waste management (ANDRA), the optimization process put in place to reduce the waste radiotoxicity and volumes, the estimated waste amount based on the current design and maintenance procedure, and the overall strategy from component removal to final disposal anticipated at this stage of the project.

  15. Evaluating ITER remote handling middleware concepts

    International Nuclear Information System (INIS)

    Koning, J.F.; Heemskerk, C.J.M.; Schoen, P.; Smedinga, D.; Boode, A.H.; Hamilton, D.T.

    2013-01-01

    Highlights: ► Remote Handling Study Centre: middleware system setup and modules built. ► Aligning to ITER RH Control System Layout: prototype of database, VR and simulator. ► OpenSplice DDS, ZeroC ICE messaging and object oriented middlewares reviewed. ► Windows network latency found problematic for semi-realtime control over the network. -- Abstract: Remote maintenance activities in ITER will be performed by a unique set of hardware systems, supported by an extensive software kit. A layer of middleware will manage and control a complex set of interconnections between teams of operators, hardware devices in various operating theatres, and databases managing tool and task logistics. The middleware is driven by constraints on amounts and timing of data like real-time control loops, camera images, and database access. The Remote Handling Study Centre (RHSC), located at FOM institute DIFFER, has a 4-operator work cell in an ITER relevant RH Control Room setup which connects to a virtual hot cell back-end. The centre is developing and testing flexible integration of the Control Room components, resulting in proof-of-concept tests of this middleware layer. SW components studied include generic human-machine interface software, a prototype of a RH operations management system, and a distributed virtual reality system supporting multi-screen, multi-actor, and multiple independent views. Real-time rigid body dynamics and contact interaction simulation software supports simulation of structural deformation, “augmented reality” operations and operator training. The paper presents generic requirements and conceptual design of middleware components and Operations Management System in the context of a RH Control Room work cell. The simulation software is analyzed for real-time performance and it is argued that it is critical for middleware to have complete control over the physical network to be able to guarantee bandwidth and latency to the components

  16. Evaluating ITER remote handling middleware concepts

    Energy Technology Data Exchange (ETDEWEB)

    Koning, J.F., E-mail: j.f.koning@differ.nl [FOM Institute DIFFER, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster and ITER-NL, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Heemskerk, C.J.M.; Schoen, P.; Smedinga, D. [Heemskerk Innovative Technology, Noordwijk (Netherlands); Boode, A.H. [University of Applied Sciences InHolland, Alkmaar (Netherlands); Hamilton, D.T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► Remote Handling Study Centre: middleware system setup and modules built. ► Aligning to ITER RH Control System Layout: prototype of database, VR and simulator. ► OpenSplice DDS, ZeroC ICE messaging and object oriented middlewares reviewed. ► Windows network latency found problematic for semi-realtime control over the network. -- Abstract: Remote maintenance activities in ITER will be performed by a unique set of hardware systems, supported by an extensive software kit. A layer of middleware will manage and control a complex set of interconnections between teams of operators, hardware devices in various operating theatres, and databases managing tool and task logistics. The middleware is driven by constraints on amounts and timing of data like real-time control loops, camera images, and database access. The Remote Handling Study Centre (RHSC), located at FOM institute DIFFER, has a 4-operator work cell in an ITER relevant RH Control Room setup which connects to a virtual hot cell back-end. The centre is developing and testing flexible integration of the Control Room components, resulting in proof-of-concept tests of this middleware layer. SW components studied include generic human-machine interface software, a prototype of a RH operations management system, and a distributed virtual reality system supporting multi-screen, multi-actor, and multiple independent views. Real-time rigid body dynamics and contact interaction simulation software supports simulation of structural deformation, “augmented reality” operations and operator training. The paper presents generic requirements and conceptual design of middleware components and Operations Management System in the context of a RH Control Room work cell. The simulation software is analyzed for real-time performance and it is argued that it is critical for middleware to have complete control over the physical network to be able to guarantee bandwidth and latency to the components.

  17. Study on assembly techniques and procedures for ITER tokamak device

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Shibanuma, Kiyoshi; Sago, Hiromi; Ue, Koichi; Shimizu, Katsusuke; Onozuka, Masanori

    2006-06-01

    The International Thermonuclear Experimental Reactor (ITER) tokamak is mainly composed of a doughnut-shaped vacuum vessel (VV), four types of superconducting coils such as toroidal field coils (TF coils) arranged around the VV, and in-vessel components, such as blanket and divertor. The dimensions and weight of the respective components are around a few ten-meters and several hundred-tons. In addition, the whole tokamak assembly, which are composed of these components, are roughly estimated, 26 m in diameter, 18 m in height and over 16,500 tons in total weight. On the other hand, as for positioning and assembly tolerances of the VV and the TF coil are required to be a high accuracy of ±3 mm in spite of large size and heavy weight. The assembly procedures and techniques of the ITER tokamak are therefore studied, taking account of the tolerance requirements as well as the configuration of the tokamak with large size and heavy weight. Based on the above backgrounds, the assembly procedures and techniques, which are able to assemble the tokamak with high accuracy, are described in the present report. The tokamak assembly operations are categorized into six work break down structures (WBS), i.e., (1) preparation for assembly operations, (2) sub-assembly of the 40deg sector composed of 40deg VV sector, two TF coils and thermal shield between VV and TF coil at the assembly hall, (3) completion of the doughnut-shaped tokamak assembly composed of nine 40deg sectors in the cryostat at the tokamak pit, (4) measurement of positioning and accuracy after the completion of the tokamak assembly, (5) installation of the ex-vessel components, and (6) installation of in-vessel components. In the present report, two assembly operations of (2) and (3) in the above six WBS, which are the most critical in the tokamak assembly, are mainly described. The report describes the following newly developed tokamak assembly procedures and techniques, jigs and tools for assembly and metrology

  18. Design and technical status of the EU contribution to ITER

    International Nuclear Information System (INIS)

    Gasparotto, Maurizio; Federici, Gianfranco; Casci, Federico Riccardo

    2009-01-01

    Europe is involved in the procurement of most of the high-technology items for the ITER device (e.g. parts of the superconducting Toroidal (TF) and Poloidal Field (PF) coils, the vacuum vessel (VV), the in-vessel components, the remote handling, the additional heating systems, the tritium plant and cryoplant and finally parts of the diagnostics). In many cases the technologies required to manufacture these components are well established, in others there is still ongoing design and R and D work to select and optimise the final design solutions and to consolidate the underlying technologies as, for example, in the areas of heating and current drive, plasma diagnostics, shield blanket and first wall, remote handling, etc. A design review has recently been conducted by the ITER Organisation, with the support of the Domestic Agencies (DAs) established by the countries participating to ITER, to address the remaining outstanding technical issues and understand the associated implications for design, machine performance, schedule and cost. This paper provides an update of the design and technical status of EU contributions to ITER.

  19. Identification of receptors of main sex-pheromone components of three Lepidopteran species.

    Science.gov (United States)

    Mitsuno, Hidefumi; Sakurai, Takeshi; Murai, Masatoshi; Yasuda, Tetsuya; Kugimiya, Soichi; Ozawa, Rika; Toyohara, Haruhiko; Takabayashi, Junji; Miyoshi, Hideto; Nishioka, Takaaki

    2008-09-01

    Male moths discriminate conspecific female-emitted sex pheromones. Although the chemical components of sex pheromones have been identified in more than 500 moth species, only three components in Bombyx mori and Heliothis virescens have had their receptors identified. Here we report the identification of receptors for the main sex-pheromone components in three moth species, Plutella xylostella, Mythimna separata and Diaphania indica. We cloned putative sex-pheromone receptor genes PxOR1, MsOR1 and DiOR1 from P. xylostella, M. separata and D. indica, respectively. Each of the three genes was exclusively expressed with an Or83b orthologous gene in male olfactory receptor neurons (ORNs) that are surrounded by supporting cells expressing pheromone-binding-protein (PBP) genes. By two-electrode voltage-clamp recording, we tested the ligand specificity of Xenopus oocytes co-expressing PxOR1, MsOR1 or DiOR1 with an OR83b family protein. Among the seven sex-pheromone components of the three moth species, the oocytes dose-dependently responded only to the main sex-pheromone component of the corresponding moth species. In our study, PBPs were not essential for ligand specificity of the receptors. On the phylogenetic tree of insect olfactory receptors, the six sex-pheromone receptors identified in the present and previous studies are grouped in the same subfamily but have no relation with the taxonomy of moths. It is most likely that sex-pheromone receptors have randomly evolved from ancestral sex-pheromone receptors before the speciation of moths and that their ligand specificity was modified by mutations of local amino acid sequences after speciation.

  20. Long-term fuel retention and release in JET ITER-Like Wall at ITER-relevant baking temperatures

    Science.gov (United States)

    Heinola, K.; Likonen, J.; Ahlgren, T.; Brezinsek, S.; De Temmerman, G.; Jepu, I.; Matthews, G. F.; Pitts, R. A.; Widdowson, A.; Contributors, JET

    2017-08-01

    The fuel outgassing efficiency from plasma-facing components exposed in JET-ILW has been studied at ITER-relevant baking temperatures. Samples retrieved from the W divertor and Be main chamber were annealed at 350 and 240 °C, respectively. Annealing was performed with thermal desoprtion spectrometry (TDS) for 0, 5 and 15 h to study the deuterium removal effectiveness at the nominal baking temperatures. The remained fraction was determined by emptying the samples fully of deuterium by heating W and Be samples up to 1000 and 775 °C,respectively. Results showed the deposits in the divertor having an increasing effect to the remaining retention at temperatures above baking. Highest remaining fractions 54 and 87 % were observed with deposit thicknesses of 10 and 40 μm, respectively. Substantially high fractions were obtained in the main chamber samples from the deposit-free erosion zone of the limiter midplane, in which the dominant fuel retention mechanism is via implantation: 15 h annealing resulted in retained deuterium higher than 90 % . TDS results from the divertor were simulated with TMAP7 calculations. The spectra were modelled with three deuterium activation energies resulting in good agreement with the experiments.

  1. ITER Neutral Beam Injection System

    International Nuclear Information System (INIS)

    Ohara, Yoshihiro; Tanaka, Shigeru; Akiba, Masato

    1991-03-01

    A Japanese design proposal of the ITER Neutral Beam Injection System (NBS) which is consistent with the ITER common design requirements is described. The injection system is required to deliver a neutral deuterium beam of 75MW at 1.3MeV to the reactor plasma and utilized not only for plasma heating but also for current drive and current profile control. The injection system is composed of 9 modules, each of which is designed so as to inject a 1.3MeV, 10MW neutral beam. The most important point in the design is that the injection system is based on the utilization of a cesium-seeded volume negative ion source which can produce an intense negative ion beam with high current density at a low source operating pressure. The design value of the source is based on the experimental values achieved at JAERI. The utilization of the cesium-seeded volume source is essential to the design of an efficient and compact neutral beam injection system which satisfies the ITER common design requirements. The critical components to realize this design are the 1.3MeV, 17A electrostatic accelerator and the high voltage DC acceleration power supply, whose performances must be demonstrated prior to the construction of ITER NBI system. (author)

  2. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    International Nuclear Information System (INIS)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-01-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime

  3. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    Science.gov (United States)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  4. Kazakhstan participation in International Experimental Reactor ITER Construction project. Work status and prospects

    International Nuclear Information System (INIS)

    Tazhibayeva, I.L.; Tukhvatullin, Sh.T.; Shestakov, V.P.; Kuznetsov, B.A.

    2002-01-01

    Kazakhstan takes part in ITER project in partnership with Russian Federation since the year of 1994. At present the technical stage of the project is completed and ITER Council should take a decision on the site for international reactor. Four countries such as Canada, Japan, Spain and France have offered their territories for being used as site for launching ITER construction. ITER partners started preparing new international agreement that will cover activities on construction, operation and decommissioning of ITER. It will also include the list of research and experimental work that is conducted in support of ITER project. Kazakhstan has already made an important contribution into technical stage realization of ITER project due to scientific and technical researches conducted by National Nuclear Center, by Institute of Experimental and Theoretical Physics and by JSC 'Ulba Metallurgical plant' ('UMP'). Research activity carried out for the support of ITER project is performed in accordance with the following main trends: Tritium safety (permeability and retentin of hydrogen isotopes during in-pile irradiation in various structural materials, co-deposed layers and protective coatings); Verification of computer codes (LOCA type) loss of coolant accidents modeling in ITER reactor; Investigation of liquid metal blanket of thermonuclear reactor (tritium production in lithium containing eutectics Li17Pb83 and ceramics Li 2 TiO 3 , study of tritium permeability). At present the working group of ITER project participants started introducing proposals for cost distribution and for placing the orders on reactor construction. Further Kazakhstan participation in ITER project may be in manufacturing high-tech parts and assemblies from commercial grades of beryllium. They will be used for armouring the reactor first wall, for its thermal protection and for protection of superconductor's components for magnetic systems that are at JSC U MP'. Scientific and technical support of

  5. The ITER management advisory committee (MAC) meeting in Cadarache

    International Nuclear Information System (INIS)

    Yoshikawa, M.

    1999-01-01

    The ITER management advisory committee meeting was held on 8 March in Cadarache, France. The main topics were the ITER EDA Status Report in the period between the ITER Meeting in Yokohama (October 1990) and February 1999. In particular, the management advisory committee shares the director's concern about the uncertainties against which the whole project operates at present. They also noted that the definition of an appropriate framework for continued US involvement in on-going projects is a very important issue

  6. Mechanical and thermal resistance of multi-material components for ITER

    International Nuclear Information System (INIS)

    Burlet, H.

    2013-01-01

    The First Wall panels for ITER are complex parts composed of stainless steel, copper and beryllium [1]. These materials are joined using diffusion bonding technique. The stainless steel is a commonly used in nuclear reactors 316LN material and acts as a structural material. The copper alloy is a CuCrZr material which acts as a heat sink. The beryllium consisting in tiles and layer is used as the protective plasma facing material. The fabrication of these panels is performed through 2 main steps. The first step consists in welding all together a bi-metallic support structure made from a thick CuCrZr plate embedded with 316LN tubes and bonded to a thick 316LN backing plate with cooling channels. The bonding is performed in a HIP (Hot Isostatic Pressure) facility. The second step is performed at a lower temperature and aims at simultaneously welding by HIP Be onto CuCrZr and ageing the CuCrZr heat sink to obtain the correct mechanical resistance of this alloy reinforced by precipitates. The various joints 316LN/316LN, 316LN/CuCrZr, and CuCrZr/Be are then characterized [2] from a microstructural point of view and by mechanical tests. It is quite hard to characterize the strength of a diffusion bonded joints. Standard tests may be used for homogeneous joints whereas specific tests have been developed to characterize the heterogeneous bonds. To optimize the bond, we performed mainly impact and tensile bi-material tests (Fig 1). Once the manufacture parameters have been optimized, advanced mechanical tests are performed based on Bimetallic CT specimens, axisymmetric notched specimens, 4P bending specimens. Numerical simulations are required to analyse the mechanical response. In order to characterize the fatigue resistance of the joints, specific mock-ups have been designed by the European Fusion Development Agreement EFDA team (Fig 2). Results of heat flux testing will be reviewed for the various joints. The assembly of heterogeneous materials by Hipping is very complex

  7. Towards the procurement of the ITER divertor

    International Nuclear Information System (INIS)

    Merola, M.; Tivey, R.; Martin, A.; Pick, M.

    2006-01-01

    The procurement of the ITER divertor is planned to start in 2009. On the basis of the present common understanding of the sharing of the ITER components, the Japanese Participating Team (JAPT) will supply the outer vertical target, the Russian Federation (RF) PT the dome liner and will perform the high heat flux testing, the EU PT will supply the inner vertical targets and the cassette bodies, including final assembly of the divertor plasma-facing components (PFCs). The manufacturing of the PFCs of the ITER divertor represents a challenging endeavor due to the high technologies which are involved, and due to the unprecedented series production. To mitigate the associated risks, special arrangements need to be put in place prior to and during procurement to ensure quality and to keep to the time schedule. Before procurement can start, an ITER review of the qualification and production capability of each candidate PT is planned. Well in advance of the assumed start of the procurement, each PT which would like to contribute to the divertor PFC procurement, should first demonstrate its technical qualification to carry out the procurement with the required quality, and in an efficient and timely manner. Appropriate precautions, like subdivision of the procurement into stages, are also to be adopted during the procurement phase to mitigate the consequences of possible unexpected manufacturing problems. In preparation for writing the procurement specification for the vertical targets, the topic of setting acceptance criteria is also being addressed. This activity has the objective of defining workable acceptance criteria for the PFC armour joints. A complete set of analyses is also in progress to assess the latest design modifications against the design requirements. This task includes neutronic, shielding, thermo-mechanical and electromagnetic analyses. More than half of the ITER plasma parameters that must be measured and the related diagnostics are located in the

  8. Design and integration of lower ports for ITER diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Casal, Natalia, E-mail: Natalia.casal@iter.org [ITER Organization, Route de Vinon-sur-Verdon – CS 90 046 – 13067 St Paul Lez Durance Cedex (France); Bertalot, Luciano; Cheng, Hao; Drevon, Jean Marc; Duckworth, Philip; Giacomin, Thibaud; Guirao, Julio; Iglesias, Silvia [ITER Organization, Route de Vinon-sur-Verdon – CS 90 046 – 13067 St Paul Lez Durance Cedex (France); Kochergin, Mikhail [IOFFE Institute, Saint Petersburg (Russian Federation); Martin, Alex [ITER Organization, Route de Vinon-sur-Verdon – CS 90 046 – 13067 St Paul Lez Durance Cedex (France); McCarron, Eddie [Oxford Technologies Ltd., Abingdon (United Kingdom); Mokeev, Alexander [Russian Federation Domestic Agency, Moscow (Russian Federation); Mota, Fernando [CIEMAT, Madrid (Spain); Penot, Christophe; Portales, Mickael [ITER Organization, Route de Vinon-sur-Verdon – CS 90 046 – 13067 St Paul Lez Durance Cedex (France); Kitazawa, Sin-iti [Japanese Domestic Agency, Naka (Japan); Sky, Jack [Oxford Technologies Ltd., Abingdon (United Kingdom); Suarez, Alejandro; Udintsev, Victor; Utin, Yuri [ITER Organization, Route de Vinon-sur-Verdon – CS 90 046 – 13067 St Paul Lez Durance Cedex (France); and others

    2015-10-15

    Highlights: • Lower port structures are in its conceptual design phase. • Electromagnetic and seismic loads, will dominate all other mechanical loads. • Design allows diagnostics support, neutron shielding while and signals transmission. • Installation and maintenance operations are fully remote handling compatible. - Abstract: All around the ITER vacuum vessel, forty-four ports will provide access to the vacuum vessel for remote handling operations, diagnostic systems, heating, and vacuum systems: 18 upper ports, 17 equatorial ports, and 9 lower ports. Among the lower ports, three of them will be used for the remote handling installation of the ITER divertor. Once the divertor is in place, these ports will host various diagnostic systems mounted in the so-called diagnostic racks. The diagnostic racks must allow the support and cooling of the diagnostics, extraction of the required diagnostic signals, and providing access and maintainability while minimizing the leakage of radiation toward the back of the port where the humans are allowed to enter. A fully integrated inner rack, carrying the near plasma diagnostic components, will be an stainless steel structure, 4.2 m long, with a maximum weight of 10 t. This structure brings water for cooling and baking at maximum temperature of 240 °C and provides connection with gas, vacuum and electric services. Additional racks (placed away from plasma and not requiring cooling) may be required for the support of some particular diagnostic components. The diagnostics racks and its associated ex vessel structures, which are in its conceptual design phase, are being designed to survive the lifetime of ITER of 20 years. This paper presents the current state of development including interfaces, diagnostic integration, operation and maintenance, shielding requirements, remote handling, loads cases and discussion of the main challenges coming from the severe environment and engineering requirements.

  9. Divertor cassette movers prototypes for ITER

    International Nuclear Information System (INIS)

    Bogusch, E.; Batz, R.; Bieber, O.; Gottfried, R.; Cerdan, G.

    1998-01-01

    Following competitive tendering, in October 1996 Siemens was contracted by the European Commission to design and supply an assembly of four Divertor Cassette Movers Prototypes including the control and command systems for the movers proper. The assembly consisting of one Cassette Toroidal Mover (CTM), one Radial Mover Tractor (TRC), one Second Cassette Carrier (SCC), and one Radial Cassette Carrier (RCC) represents key components of the Divertor Test Platform at Brasimone, one of the seven large R+D projects for ITER. By detailed design, high-precision manufacturing and testing of these devices, Siemens contributed to the verification of an important task within the European R and D program towards ITER construction. Replacement of the divertor cassettes is a scheduled maintenance operation throughout the life of ITER. The successful fabrication and testing of the Divertor Cassette Movers Prototypes is all important milestone to verify this delicate operation. (authors)

  10. Local control unit for ITER-India gyrotron test facility (IIGTF)

    Energy Technology Data Exchange (ETDEWEB)

    Rathod, Vipal, E-mail: vipal.rathod@iter-india.org; Shah, Ronak; Mandge, Deepak; Parmar, Rajvi; Rao, S.L.

    2016-11-15

    Highlights: • A dedicated full scale ITER prototype Local Control Unit for ITER-India Gyrotron test facility. • National Instruments® make PXIe system for real time control & data acquisition and Siemens® PLC for sequence control function. • Hardwired FPGA based fast protection interlock system. • High speed analog fiber optical transmission link using V/F and F/V technique. • Software framework based on LabVIEW™ platform and ITER CODAC Core System. - Abstract: Electron Cyclotron system on ITER, is one of the important RF ancillary systems based on high power Gyrotron RF sources, that is used for plasma heating and current drive applications. To operate a Gyrotron source, various auxiliary systems and services such as Super Conducting Magnet set, High Voltage Power Supplies, Auxiliary Power Supplies, Waveguide components, Cooling water system and a Local Control Unit (LCU) are required. The LCU plays a very crucial role for the safe and reliable operation of Gyrotron system. A dedicated full scale ITER prototype LCU is being developed for testing and commissioning of an ITER like Test Gyrotron at ITER-India Gyrotron Test facility (IIGTF). The main functions of LCU include Sequence Control, Local Interlock Protection and Real Time Data Acquisition. PLC based slow controller is used for implementing the Sequence Control & Slow Interlock functions. Critical Protection Interlocks are required to have a response time of <10 μs and are implemented using custom built hardware and PXIe based fast controller. Also PXIe system is used for implementing Real Time Data Acquisition function that is required to have slow and fast acquisition with online visualization and off line analysis facility. A Signal Conditioning Unit (SCU) is used to interface and faithfully transmit the field signals to the remote control systems. Necessary controller hardware is procured and several pre-prototype developments have been taken up to establish the critical subsystems such as

  11. Local control unit for ITER-India gyrotron test facility (IIGTF)

    International Nuclear Information System (INIS)

    Rathod, Vipal; Shah, Ronak; Mandge, Deepak; Parmar, Rajvi; Rao, S.L.

    2016-01-01

    Highlights: • A dedicated full scale ITER prototype Local Control Unit for ITER-India Gyrotron test facility. • National Instruments® make PXIe system for real time control & data acquisition and Siemens® PLC for sequence control function. • Hardwired FPGA based fast protection interlock system. • High speed analog fiber optical transmission link using V/F and F/V technique. • Software framework based on LabVIEW™ platform and ITER CODAC Core System. - Abstract: Electron Cyclotron system on ITER, is one of the important RF ancillary systems based on high power Gyrotron RF sources, that is used for plasma heating and current drive applications. To operate a Gyrotron source, various auxiliary systems and services such as Super Conducting Magnet set, High Voltage Power Supplies, Auxiliary Power Supplies, Waveguide components, Cooling water system and a Local Control Unit (LCU) are required. The LCU plays a very crucial role for the safe and reliable operation of Gyrotron system. A dedicated full scale ITER prototype LCU is being developed for testing and commissioning of an ITER like Test Gyrotron at ITER-India Gyrotron Test facility (IIGTF). The main functions of LCU include Sequence Control, Local Interlock Protection and Real Time Data Acquisition. PLC based slow controller is used for implementing the Sequence Control & Slow Interlock functions. Critical Protection Interlocks are required to have a response time of <10 μs and are implemented using custom built hardware and PXIe based fast controller. Also PXIe system is used for implementing Real Time Data Acquisition function that is required to have slow and fast acquisition with online visualization and off line analysis facility. A Signal Conditioning Unit (SCU) is used to interface and faithfully transmit the field signals to the remote control systems. Necessary controller hardware is procured and several pre-prototype developments have been taken up to establish the critical subsystems such as

  12. Manufacturing and testing of a prototypical divertor vertical target for ITER

    Science.gov (United States)

    Merola, M.; Plöchl, L.; Chappuis, Ph; Escourbiac, F.; Grattarola, M.; Smid, I.; Tivey, R.; Vieider, G.

    2000-12-01

    After an extensive R&D activity, a medium-scale divertor vertical target prototype has been manufactured by the EU Home Team. This component contains all the main features of the corresponding ITER divertor design and consists of two units with one cooling channel each, assembled together and having an overall length and width of about 600 and 50 mm, respectively. The upper part of the prototype has a tungsten macro-brush armour, whereas the lower part is covered by CFC monoblocks. A number of joining techniques were required to manufacture this component as well as an appreciable effort in the development of suitable non-destructive testing methods. The component was high heat flux tested in FE200 electron beam facility at Le Creusot, France. It endured 100 cycles at 5 MW/m 2, 1000 cycles at 10 MW/m 2 and more then 1000 cycles at 15-20 MW/m 2. The final critical heat flux test reached a value in excess of 30 MW/m 2.

  13. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part II: Analysis of ITER plasma facing components

    Science.gov (United States)

    Federici, Gianfranco; Raffray, A. René

    1997-04-01

    The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the variuos ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness.

  14. Disruptions, loads, and dynamic response of ITER

    International Nuclear Information System (INIS)

    Nelson, B.; Riemer, B.; Sayer, R.; Strickler, D.; Barabaschi, P.; Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.

    1995-01-01

    Plasma disruptions and the resulting electromagnetic loads are critical to the design of the vacuum vessel and in-vessel components of the International Thermonuclear Experimental Reactor (ITER). This paper describes the status of plasma disruption simulations and related analysis, including the dynamic response of the vacuum vessel and in-vessel components, stresses and deflections in the vacuum vessel, and reaction loads in the support structures

  15. ITER in-vessel system design and performance

    Science.gov (United States)

    Parker, R. R.

    2000-03-01

    The article reviews the design and performance of the in-vessel components of ITER as developed for the Engineering Design Activities (EDA) Final Design Report. The double walled vacuum vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g. the most intense vertical displacement events (VDEs) and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature non-uniformities. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor concept is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m2 are expected on the target. These are accommodated by HHF technology developed during the EDA. Disruptions and VDEs can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowable ranges for all postulated disruption and seismic events.

  16. ITER in-vessel system design and performance

    International Nuclear Information System (INIS)

    Parker, R.R.

    2000-01-01

    The article reviews the design and performance of the in-vessel components of ITER as developed for the Engineering Design Activities (EDA) Final Design Report. The double walled vacuum vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g. the most intense vertical displacement events (VDEs) and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature non-uniformities. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor concept is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m 2 are expected on the target. These are accommodated by HHF technology developed during the EDA. Disruptions and VDEs can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowable ranges for all postulated disruption and seismic events. (author)

  17. Modern technical diagnostic system for the main components of powerful turbine generator

    International Nuclear Information System (INIS)

    Ezovit, G.P.; Uglyarenko, V.P.; Burlaka, S.I.; Goroz, N.I.; Orinin, S.E.; Komaritsa, V.N.; Zav'yalov, D.N.; Mazurenko, O.A.

    2011-01-01

    The modern diagnostic system to monitor the technical state of a powerful turbine generator is considered. This system permits the detection of defects in its main components and cooling system at the early stage of their development, prevention of damage and, as a consequence, emergency shutdown of nuclear power units

  18. Maintenance implications of critical components in ITER CXRS upper port plug design

    NARCIS (Netherlands)

    Koning, J.; Jaspers, R.; Doornink, J.; Ouwehand, B.; Klinkhamer, J.F.F.; Snijders, B.; Sadakov, S.; Heemskerk, C.

    2009-01-01

    Already in the early phase of a design for ITER, the maintenance aspects should be taken into account, since they might have serious implications. This paper presents the arguments in support of the case for the maintainability of the design, notably if this maintenance is to be performed by

  19. Limited-angle three-dimensional reconstructions using Fourier transform iterations and Radon transform iterations

    International Nuclear Information System (INIS)

    Tam, K.C.; Perez-Mendez, V.

    1981-01-01

    The principles of limited-angle reconstruction of space-limited objects using the concepts of allowed cone and missing cone in Fourier space are discussed. The distortion of a point source resulting from setting the Fourier components in the missing cone to zero has been calculated mathematically, and its bearing on the convergence of an iteration scheme involving Fourier transforms has been analyzed in detail. it was found that the convergence rate is fairly insensitive to the position of the point source within the boundary of the object, apart from an edge effect which tends to enhance some parts of the boundary in reconstructing the object. Another iteration scheme involving Radon transforms was introduced and compared to the Fourier transform method in such areas as root mean square error, stability with respect to noise, and computer reconstruction time

  20. Limited-angle 3-D reconstructions using Fourier transform iterations and Radon transform iterations

    International Nuclear Information System (INIS)

    Tam, K.C.; Perez-Mendez, V.

    1979-12-01

    The principles of limited-angle reconstruction of space-limited objects using the concepts of allowed cone and missing cone in Fourier space are discussed. The distortion of a point source resulting from setting the Fourier components in the missing cone to zero was calculated mathematically, and its bearing on the convergence of an iteration scheme involving Fourier transforms was analyzed in detail. It was found that the convergence rate is fairly insensitive to the position of the point source within the boundary of the object, apart from an edge effect that tends to enhance some parts of the boundary in reconstructing the object. Another iteration scheme involving Radon transforms was introduced and compared to the Fourier transform method in such areas as root mean square error, stability with respect to noise, and computer reconstruction time. 8 figures, 2 tables

  1. Eu contributions to the ITER materials properties data assessment

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, A.T. [EFDA CSU, Boltzmannstrasse 2, D-85748 Garching (Germany)]. E-mail: alan.peacock@tech.efda.org; Barabash, V. [IT, ITER Joint Work Site, Boltzmannstrasse 2, D-85748 Garching (Germany)]. E-mail: barabav@itereu.de; Gillemot, F. [ASI Consulting, Budafoki ut 21, H 2040 Budaors (Hungary)]. E-mail: gillemot@sunserv.kfki.hu; Karditsas, P. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom)]. E-mail: Panos.Karditsas@ukaea.org.uk; Lloyd, G. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Rensman, J.-W. [NRG Petten, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands)]. E-mail: rensman@nrg-nl.com; Tavassoli, A.-A.F. [DMN/Dir, CEA/Saclay, CEA, 91191 Gif sur Yvette Cedex (France)]. E-mail: tavassoli@cea.fr; Walters, M. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2005-11-15

    In order to fully organise the materials property data from the European next Fusion programme, a database of materials properties has been established. With the help of the database application and resulting data organisation, European materials experts have supported the recent activities within ITER aimed at updating and re-organising the ITER materials documentation. A European web based database application is described and its main features are detailed. In addition, we report on the details and the status of the work aimed at updating the ITER materials documentation. An outline of the future planned activities in the development of the European database and in the revision of the ITER materials documentation is also given.

  2. Overview of JSC “NIKIET” activity on ITER Procurement Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Leshukov, A.Yu., E-mail: leshu@nikiet.ru [Joint-Stock Company “N.A. Dollezhall Research and Development Institute of Power Engineering”, (JSC “NIKIET”), 107140, Malaya Krasnoselskaya 2/8, Moscow (Russian Federation); Dragunov, Yu. G.; Strebkov, Yu. S.; Kirillov, S.Yu.; Makarov, S.V.; Trofimovich, P.D.; Dubinin, G.V.; Maksimov, V.A.; Sviridenko, M.N.; Razmerov, A.V.; Parshutin, E.V.; Khomyakov, S.E.; Kolganov, V.Yu.; Zhmakin, A.V. [Joint-Stock Company “N.A. Dollezhall Research and Development Institute of Power Engineering”, (JSC “NIKIET”), 107140, Malaya Krasnoselskaya 2/8, Moscow (Russian Federation); Belyakov, V.A.; Mazul, I.V.; Gervash, A.A. [JSC “NIIEFA” (D.V. Efremov Institute), 189631, Doroga na Metallostroy, 3, S. Peterburg (Russian Federation); Safronov, V.M.; Romannikov, A.N. [Institution “Project Center ITER”,123182, Square of Academic Kurchatov 1, Moscow (Russian Federation); Eaton, R. [ITER Organization, Route de Vinon sur Verdon CS 90 046 − 13067 Saint Paul lez Durance (France); and others

    2016-11-01

    The two following ITER blanket-relevant Procurement Arrangements (PA) were signed by Russian Federation and ITER Organization in 2014: 1)1.6.P1ARF.01 “Blanket First Wall” (signed on 14-th of February, 2014); 2)1.6.P3.RF.01 “Blanket Module Connections” (signed on 19-th of December, 2014). The first PA is devoted to the development, manufacturing, testing and procuring to ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels. These FW panels are intended to withstand the heat flux from plasma up to 4.7 MW/m{sup 2}, and there are two institutions in Russian Federation responsible for the manufacturing, testing and delivering of these panels on the ITER site: JSC “NIIEFA” (Efremov Institute) and JSC “NIKIET”. JSC “NIIEFA” (Efremov Institute) will manufacture the plasma-facing components (PFC) of EHF FW Panels and perform the final assembling of the panels while JSC “NIKIET” will manufacture the FW beam structures, load-bearing structures of PFC and the all the elements of panel attachment system. As for the second PA (“Blanket Module Connectors”) the JSC “NIKIET” is the alone official Supplier and will manufacture and procure blanket flexible supports, electrical insulating key pads and shield block/vacuum vessel electrical connectors. This article briefly describes the joint activity of JSC “NIKIET” and Efremov Institute in the framework of 1.6.P1ARF.01 “Blanket First Wall” Procurement Arrangement and the material on the activity on the second PA. The main achievements on both PAs (during the period of 2014–2015) are presented and also critical issues and plans are underlined.

  3. Remote maintenance challenges presented in the ITER engineering design

    International Nuclear Information System (INIS)

    Burgess, T.W.; Herndon, J.N.; Schrock, S.L.; Lousteau, D.C.

    1995-01-01

    Leading fusion energy research institutions are currently engaged in the Engineering Design Activity for the International Thermonuclear Experimental Reactor (ITER). A tokamak reactor design is evolving which emphasizes high system performance in a minimum overall reactor and building size. The resulting high component density dictates careful attention to ITER remote maintenance considerations in the development of the configuration. The complexity and scale of ITER remote maintenance tasks are well beyond the scope of today's experience and technology. This paper discusses the remote maintenance philosophy, describes the basic configuration as it relates to maintenance, and describes the basic procedures and equipment required. Key enabling technology research and development needs are also addressed

  4. The participation of Industry in the ITER engineering design activities

    International Nuclear Information System (INIS)

    Bogusch, E.

    2005-01-01

    Since the beginning of the ITER Engineering Design Activities in 1992 the participation of industry in the European contribution to the ITER project has increased continuously. A major boost resulted from a framework contract between the European Commission acting through EFDA and the European industry grouping EFET EWIV regarding the industry contribution for the ITER engineering design. The members of EFET include Ansaldo (Italy), Belgatom (Belgium), Fortum (Finland), the AREVA companies Framatome ANP GmbH (Germany) and Framatome ANP SAS (France), IBERTEF (Spain) and NNC (United Kingdom). Together with other special European engineering companies and manufacturers EFET contributed significantly to ITER Engineering Design Activities. In 1996 a list of qualified competitive companies was established which could bid for the manufacturing of prototype components in initially 15, later 17 Technologies considered essential for ITER construction preparation. In total, contracts of about 70 Mio Euro have been awarded to industry during the period 1993 to 2004. In addition to engineering design and prototype manufacturing, industry participated in various assessments of the ITER project and ITER siting investigations. Furthermore, industry has been invited by the European Commission to introduce its proposals for the promotion of the ITER project in Europe and abroad and later for the organization and management of ITER construction. (orig.)

  5. Report of panel 1: The appropriate scope and mission of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K. (Los Alamos National Lab., NM (United States)); Weitzner, H.; Abdou, M.A.; Baldwin, D.E.; Berkner, K.H.; Berry, L.A.; Culler, F.L.; Dean, S.O.; DeFreece, D.A.; Gauster, W.B. (and others)

    1992-12-01

    This panel looked at the mission of ITER, and how the US should address the present plans, and considers a number of alternative plans to arrive at the eventual goals of ITER. The panel considered three major approaches which have been discussed on the international scale, and tries to present the strengths, weaknesses, and possible changes to these plans. It suggests that any of these plans can arrive at the eventual aim, but may involve differing risks and time commitments. All plans involve ITER design studies, development work on technologies which must be in place for ITER design to succeed, and testing of materials and components for application in the device.

  6. Report of panel 1: The appropriate scope and mission of ITER

    International Nuclear Information System (INIS)

    Linford, R.K.; Weitzner, H.; Abdou, M.A.; Baldwin, D.E.; Berkner, K.H.; Berry, L.A.; Culler, F.L.; Dean, S.O.; DeFreece, D.A.; Gauster, W.B.

    1992-01-01

    This panel looked at the mission of ITER, and how the US should address the present plans, and considers a number of alternative plans to arrive at the eventual goals of ITER. The panel considered three major approaches which have been discussed on the international scale, and tries to present the strengths, weaknesses, and possible changes to these plans. It suggests that any of these plans can arrive at the eventual aim, but may involve differing risks and time commitments. All plans involve ITER design studies, development work on technologies which must be in place for ITER design to succeed, and testing of materials and components for application in the device

  7. Measurement and control system for ITER remote maintenance equipment

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  8. Measurement and control system for ITER remote maintenance equipment

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro

    1998-01-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  9. Conceptual design Fusion Experimental Reactor (FER/ITER)

    International Nuclear Information System (INIS)

    Uehara, Kazuya; Nagashima, Takashi; Ikeda, Yoshitaka

    1991-11-01

    This report describes a conceptual design of Lower Hybrid Wave (LH) system for FER and ITER. In JAERI, the conceptual design of LH system for FER has been performed in these 3 years in parallel to that of ITER. There must be a common design part with ITER and FER. The physical requirement of LH system is the saving of volt · sec in the current start-up phase, and the current drive at the boundary region. The frequency of 5GHz is mainly chosen for avoidance of the α particle absorption and for the availability of electron tube development. Seventy-two klystrons (FER) and one hundred klystrons (ITER) are necessary to inject the 30 MW (FER) and 45-50 MW (ITER) rf power into plasma using 0.7 - 0.8 MW klystron per one tube. The launching system is the multi-junction type and the rf spectrum must be as sharp as possible with high directivity to improve the current drive efficiency. One port (FER) and two ports (ITER) are used and the injection direction is in horizontal, in which the analysis of the ray-tracing code and the better coupling of LH wave is considered. The transmission line is over-sized waveguide with low rf loss. (author)

  10. Methodology on ageing management review for main components of a PWR NPP

    International Nuclear Information System (INIS)

    Dou Yikang; He Yinbiao; Xu Xuelian; Zhang Ming; Liang Xingyun

    2005-01-01

    According to the requirements of NNSA, for Chinese operational NPPs periodical safety review (PSR) should be carried out every 10 years. Ageing management is one of the important safety factors to be reviewed. Entrusted by Qinshan Nuclear Power Plant (QNPP), Shanghai Nuclear Engineering Research and Design Institute (SNERDI) carried out the ageing management review (AMR), as a part of the first PSR of QNPP, from 2001 to 2003. This paper summarizes the methodology of the AMR process, including screening of critical components and structures, identification of main ageing mechanisms and their indicators and the tabulated review process, etc. 15 components and structures, hereafter referred as equipment, were selected as review objects based on their significance of safety, replaceability and cost-benefit considerations. To these objects, the main ageing mechanisms and relevant ageing indicators were identified according to specific working and environmental condition, design and manufacture information, operation and maintenance history, etc. The review can be divided into two parallel parts, the review for specific equipment and the review for overall management procedures and their implementation. To typical components, such as RPV and SG, fatigue analysis based on operational transient accounting was carried out to observe the actual safety margins. Through the review, the weaknesses in ageing management and potential threats to structural integrity were identified and thus continued improvement can be made in the next period of 10 years. (authors)

  11. A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology

    International Nuclear Information System (INIS)

    Escourbiac, F.; Missirlian, M.; Schlosser, J.; Bobin-Vastra, I.; Kuznetsov, V.; Schedler, B.

    2004-01-01

    The use of flat tile technology to handle heat fluxes in the range of 20 MW/m 2 with components relevant for fusion experiment applications is technically possible with the hypervapotron cooling concept. This paper deals with recent high heat flux performances operated with success on 2 identical mock-ups, based on this concept, that were tested in 2 different electron gun facilities. Each mock-up consisted of a CuCrZr heat sink armored with 25 flat tiles of the 3D carbon fibre composite material SEPcarb NS31 assembled with pure copper by active metal casting (AMC). The AMC tiles were electron beam welded on the CuCrZr bar, fins and slots on the neutral beam JET design were machined into the bar, then the bar was closed with a thick CuCrZr rear plug including hydraulic connections then the bar was electron beam welded onto the sidewalls. The testing results show that full ITER design specifications were achieved with margins, the critical heat flux limit was even higher than 30 MW/m 2 . These results highlight the high potential of this technology for ITER divertor application

  12. A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F.; Missirlian, M.; Schlosser, J. [Association EURATOM-CEA Cadarache, Departement de Recherches sur la Fusion Controlee, 13 - Saint Paul lez Durance (France); Bobin-Vastra, I. [AREVA Centre Technique de Framatome, 71 - Le Creusot (France); Kuznetsov, V. [Efremov Institute, Doroga na Metallostroy, St. Petersburg (Russian Federation); Schedler, B. [Plansee AG, Reutte (Austria)

    2004-07-01

    The use of flat tile technology to handle heat fluxes in the range of 20 MW/m{sup 2} with components relevant for fusion experiment applications is technically possible with the hypervapotron cooling concept. This paper deals with recent high heat flux performances operated with success on 2 identical mock-ups, based on this concept, that were tested in 2 different electron gun facilities. Each mock-up consisted of a CuCrZr heat sink armored with 25 flat tiles of the 3D carbon fibre composite material SEPcarb NS31 assembled with pure copper by active metal casting (AMC). The AMC tiles were electron beam welded on the CuCrZr bar, fins and slots on the neutral beam JET design were machined into the bar, then the bar was closed with a thick CuCrZr rear plug including hydraulic connections then the bar was electron beam welded onto the sidewalls. The testing results show that full ITER design specifications were achieved with margins, the critical heat flux limit was even higher than 30 MW/m{sup 2}. These results highlight the high potential of this technology for ITER divertor application.

  13. The remote handling compatibility analysis of the ITER generic upper port plug structure

    Energy Technology Data Exchange (ETDEWEB)

    Ronden, D.M.S., E-mail: d.m.s.ronden@differ.nl [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Dammann, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Elzendoorn, B. [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Giacomin, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Heemskerk, C. [Heemskerk Innovative Technology, Merelhof 2, 2172 HZ Sassenheim (Netherlands); Loesser, D. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Maquet, P. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Oosterhout, J. van [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Pak, S.; Pitcher, C.S.; Portales, M.; Proust, M.; Udintsev, V.S.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France)

    2014-10-15

    Highlights: • We describe the remote handling compatibility of the ITER generic upper port plug. • Concepts are presented of specific design solutions to improve RH compatibility. • Simulation in VR of the GUPP DSM replacement indicates possible collisions. • Specific tooling concepts are proposed for GUPP handling equipment for the hot cell. - Abstract: The ITER diagnostics generic upper port plug (GUPP) is developed as a standardized design for all diagnostic upper port plugs, in which a variety of payloads can be mounted. Here, the remote handling compatibility analysis (RHCA) of the GUPP design is presented that was performed for the GUPP final design review. The analysis focuses mainly on the insertion and extraction procedure of the diagnostic shield module (DSM), a removable cassette that contains the diagnostic in-vessel components. It is foreseen that the DSM is a replaceable component – the procedure of which is to be performed inside the ITER hot cell facility (HCF), where the GUPP can be oriented in a vertical position. The DSM removal procedure in the HCF consists of removing locking pins, an M30 sized shoulder bolt and two electrical straps through the use of a dexterous manipulator, after which the DSM is lifted out of the GUPP by an overhead crane. For optimum access to its internals, the DSM is mounted in a handling device. The insertion of a new or refurbished DSM follows the reverse procedure. The RHCA shows that the GUPP design requires a moderate amount of changes to become fully compatible with RH maintenance requirements.

  14. The remote handling compatibility analysis of the ITER generic upper port plug structure

    International Nuclear Information System (INIS)

    Ronden, D.M.S.; Dammann, A.; Elzendoorn, B.; Giacomin, T.; Heemskerk, C.; Loesser, D.; Maquet, P.; Oosterhout, J. van; Pak, S.; Pitcher, C.S.; Portales, M.; Proust, M.; Udintsev, V.S.; Walsh, M.J.

    2014-01-01

    Highlights: • We describe the remote handling compatibility of the ITER generic upper port plug. • Concepts are presented of specific design solutions to improve RH compatibility. • Simulation in VR of the GUPP DSM replacement indicates possible collisions. • Specific tooling concepts are proposed for GUPP handling equipment for the hot cell. - Abstract: The ITER diagnostics generic upper port plug (GUPP) is developed as a standardized design for all diagnostic upper port plugs, in which a variety of payloads can be mounted. Here, the remote handling compatibility analysis (RHCA) of the GUPP design is presented that was performed for the GUPP final design review. The analysis focuses mainly on the insertion and extraction procedure of the diagnostic shield module (DSM), a removable cassette that contains the diagnostic in-vessel components. It is foreseen that the DSM is a replaceable component – the procedure of which is to be performed inside the ITER hot cell facility (HCF), where the GUPP can be oriented in a vertical position. The DSM removal procedure in the HCF consists of removing locking pins, an M30 sized shoulder bolt and two electrical straps through the use of a dexterous manipulator, after which the DSM is lifted out of the GUPP by an overhead crane. For optimum access to its internals, the DSM is mounted in a handling device. The insertion of a new or refurbished DSM follows the reverse procedure. The RHCA shows that the GUPP design requires a moderate amount of changes to become fully compatible with RH maintenance requirements

  15. Starting manufacturing phase of ITER upper ports

    Energy Technology Data Exchange (ETDEWEB)

    Utin, Yuri, E-mail: yuri.utin@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Alekseev, Alexander; Sborchia, Carlo; Choi, Changho; Albin, Vincent; Barabash, Vladimir; Davis, James [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Fabritsiev, Sergey [NTC Sintez, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Giraud, Benoit; Guirao, Julio [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Koenig, Werner [MAN Diesel & Turbo SE, Werftstrasse 17, Deggendorf (Germany); Kedrov, Igor; Kuzmin, Evgeny [NTC Sintez, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Levesy, Bruno; Martinez, Jean-Marc [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Prebeck, Markus [MAN Diesel & Turbo SE, Werftstrasse 17, Deggendorf (Germany); Privalova, Elena [NTC Sintez, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Ranzinger, Franz [MAN Diesel & Turbo SE, Werftstrasse 17, Deggendorf (Germany); Savrukhin, Petr [Russian Federation ITER Domestic Agency, Kurchatov sq.1, 123182 Moscow (Russian Federation); Schiller, Thomas [MAN Diesel & Turbo SE, Werftstrasse 17, Deggendorf (Germany); and others

    2015-10-15

    Highlights: • The port plugs are attached to the ports with high-strength fasteners. • Tightening of the fasteners via inductive heating was tested. • A concept for the port/plug sealing with metal-type gaskets has progressed. • Manufacturing design of the Upper Ports is in progress. • A full-scale mock-up of double-wall part of the port stub extension is in manufacturing process – acceptable final tolerances are expected. - Abstract: The ITER Vacuum Vessel (VV) features upper, equatorial and lower ports. The upper and regular equatorial ports are occupied by the port plugs. Although the port design has been overall completed in the past, the design of some remaining interfaces was still in progress: in particular, the Sealing Flange package, which includes the high-vacuum seals and the plug fasteners. As the ITER construction phase has started, the procurement of the VV ports has been launched. The VV upper ports will be procured by the Russian Federation Domestic Agency. The main suppliers were selected and the manufacturing design of the first parts is in full progress now. Since the VV is classified at nuclear level N2, the design and manufacture of its components are to be compliant with the French RCC-MR code and regulations for nuclear pressure equipment in France. These regulations make a strong impact to the port design and manufacturing process.

  16. Starting manufacturing phase of ITER upper ports

    International Nuclear Information System (INIS)

    Utin, Yuri; Alekseev, Alexander; Sborchia, Carlo; Choi, Changho; Albin, Vincent; Barabash, Vladimir; Davis, James; Fabritsiev, Sergey; Giraud, Benoit; Guirao, Julio; Koenig, Werner; Kedrov, Igor; Kuzmin, Evgeny; Levesy, Bruno; Martinez, Jean-Marc; Prebeck, Markus; Privalova, Elena; Ranzinger, Franz; Savrukhin, Petr; Schiller, Thomas

    2015-01-01

    Highlights: • The port plugs are attached to the ports with high-strength fasteners. • Tightening of the fasteners via inductive heating was tested. • A concept for the port/plug sealing with metal-type gaskets has progressed. • Manufacturing design of the Upper Ports is in progress. • A full-scale mock-up of double-wall part of the port stub extension is in manufacturing process – acceptable final tolerances are expected. - Abstract: The ITER Vacuum Vessel (VV) features upper, equatorial and lower ports. The upper and regular equatorial ports are occupied by the port plugs. Although the port design has been overall completed in the past, the design of some remaining interfaces was still in progress: in particular, the Sealing Flange package, which includes the high-vacuum seals and the plug fasteners. As the ITER construction phase has started, the procurement of the VV ports has been launched. The VV upper ports will be procured by the Russian Federation Domestic Agency. The main suppliers were selected and the manufacturing design of the first parts is in full progress now. Since the VV is classified at nuclear level N2, the design and manufacture of its components are to be compliant with the French RCC-MR code and regulations for nuclear pressure equipment in France. These regulations make a strong impact to the port design and manufacturing process.

  17. LSODKR, Stiff Ordinary Differential Equations (ODE) System Solver with Krylov Iteration and Root-finding

    International Nuclear Information System (INIS)

    Hindmarsh, A.D.; Brown, P.N.

    1996-01-01

    1 - Description of program or function: LSODKR is a new initial value ODE solver for stiff and non-stiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, b) within the corrector iteration, LSODKR does automatic switching between functional (fix point) iteration and modified Newton iteration, c) LSODKR includes the ability to find roots of given functions of the solution during the integration. 2 - Method of solution: Integration is by Adams or BDF (Backward Differentiation Formula) methods, at user option. Corrector iteration is by Newton or fix point iteration, determined dynamically. Linear system solution is by a preconditioned Krylov iteration, selected by user from Incomplete Orthogonalization Method, Generalized Minimum Residual Method, and two variants of Preconditioned Conjugate Gradient Method. Preconditioning is to be supplied by the user. 3 - Restrictions on the complexity of the problem: None

  18. Informal meeting on ITER developments

    International Nuclear Information System (INIS)

    Canobbio, E.

    2000-01-01

    The International Fusion Research Council (IFRC), advisory body of the IAEA, organized an informal meeting on the general status and outlook for ITER, held October 9 at Sorrento, Italy, in conjunction with the 18th IAEA Fusion Energy Conference. This article describes the main events at the meeting

  19. Iterating skeletons

    DEFF Research Database (Denmark)

    Dieterle, Mischa; Horstmeyer, Thomas; Berthold, Jost

    2012-01-01

    a particular skeleton ad-hoc for repeated execution turns out to be considerably complicated, and raises general questions about introducing state into a stateless parallel computation. In addition, one would strongly prefer an approach which leaves the original skeleton intact, and only uses it as a building...... block inside a bigger structure. In this work, we present a general framework for skeleton iteration and discuss requirements and variations of iteration control and iteration body. Skeleton iteration is expressed by synchronising a parallel iteration body skeleton with a (likewise parallel) state......Skeleton-based programming is an area of increasing relevance with upcoming highly parallel hardware, since it substantially facilitates parallel programming and separates concerns. When parallel algorithms expressed by skeletons involve iterations – applying the same algorithm repeatedly...

  20. Simultaneous quantitative analysis of main components in linderae reflexae radix with one single marker.

    Science.gov (United States)

    Wang, Li-Li; Zhang, Yun-Bin; Sun, Xiao-Ya; Chen, Sui-Qing

    2016-05-08

    Establish a quantitative analysis of multi-components by the single marker (QAMS) method for quality evaluation and validate its feasibilities by the simultaneous quantitative assay of four main components in Linderae Reflexae Radix. Four main components of pinostrobin, pinosylvin, pinocembrin, and 3,5-dihydroxy-2-(1- p -mentheneyl)- trans -stilbene were selected as analytes to evaluate the quality by RP-HPLC coupled with a UV-detector. The method was evaluated by a comparison of the quantitative results between the external standard method and QAMS with a different HPLC system. The results showed that no significant differences were found in the quantitative results of the four contents of Linderae Reflexae Radix determined by the external standard method and QAMS (RSD <3%). The contents of four analytes (pinosylvin, pinocembrin, pinostrobin, and Reflexanbene I) in Linderae Reflexae Radix were determined by the single marker of pinosylvin. This fingerprint was the spectra determined by Shimadzu LC-20AT and Waters e2695 HPLC that were equipped with three different columns.

  1. Overview of erosion–deposition diagnostic tools for the ITER-Like Wall in the JET tokamak

    International Nuclear Information System (INIS)

    Rubel, M.; Coad, J.P.; Widdowson, A.; Matthews, G.F.; Esser, H.G.; Hirai, T.; Likonen, J.; Linke, J.; Lungu, C.P.; Mayer, M.; Pedrick, L.; Ruset, C.

    2013-01-01

    This paper presents scientific and technical issues related to the development of erosion–deposition diagnostic tools for JET operated with the ITER-Like Wall: beryllium and tungsten marker tiles and several types of wall probes installed in the main chamber and in the divertor. Markers tiles are the standard limiter and divertor components additionally coated first with a thin sandwich of Ni–Be and Mo–W for, beryllium and tungsten markers, respectively. Both types of markers are embedded in regular arrays of limiter and divertor tiles. Coated W–Be probes are also inserted in the Be-covered Inconel cladding tiles on the central column. Other types of erosion–deposition diagnostic tools are: rotating collectors, deposition traps, louver clips, quartz microbalance and mirrors for the First Mirror Test at JET for ITER. The specific role of these tools is discussed in detail

  2. Recommendations for a cryogenic system for ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Slack, D.S.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Soviet Union, and the United States. ITER will be a large machine requiring up to 100 kW of refrigeration at 4.5 K to cool its superconducting magnets. Unlike earlier fusion experiments, the ITER cryogenic system must handle pulse loads constituting a large percentage of the total load. These come from neutron heating during a fusion burn and from ac losses during ramping of current in the PF (poloidal field) coils. This paper presents a conceptual design for a cryogenic system that meets ITER requirements. It describes a system with the following features: Only time-proven components are used. The system obtains a high efficiency without use of cold pumps or other developmental components. High reliability is achieved by paralleling compressors and expanders and by using adequate isolation valving. The problem of load fluctuations is solved by a simple load-leveling device. The cryogenic system can be housed in a separate building located at a considerable distance from the ITER core, if desired. The paper also summarizes physical plant size, cost estimates, and means of handling vented helium during magnet quench. 4 refs., 4 figs., 3 tabs

  3. Nuclear analysis for ITER

    International Nuclear Information System (INIS)

    Santoro, R.T.; Iida, H.; Khripunov, V.; Petrizzi, L.; Sato, S.; Sawan, M.; Shatalov, G.; Schipakin, O.

    2001-01-01

    This paper summarizes the main results of nuclear analysis calculations performed during the International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA). Major efforts were devoted to fulfilling the General Design Requirements to minimize the nuclear heating rate in the superconducting magnets and ensuring that radiation conditions at the cryostat are suitable for hands-on-maintenance after reactor shut-down. (author)

  4. The ITER bolometer diagnostic: Status and plans

    International Nuclear Information System (INIS)

    Meister, H.; Giannone, L.; Horton, L. D.; Raupp, G.; Zeidner, W.; Grunda, G.; Kalvin, S.; Fischer, U.; Serikov, A.; Stickel, S.; Reichle, R.

    2008-01-01

    A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R and D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration.

  5. The ITER bolometer diagnostic: Status and plansa)

    Science.gov (United States)

    Meister, H.; Giannone, L.; Horton, L. D.; Raupp, G.; Zeidner, W.; Grunda, G.; Kalvin, S.; Fischer, U.; Serikov, A.; Stickel, S.; Reichle, R.

    2008-10-01

    A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration.

  6. ITER central solenoid manufacturing R and D

    International Nuclear Information System (INIS)

    Jay Jayakumar, R.; Tsuji, H.; Ohsaki, O.

    2001-01-01

    The International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA) includes the development of high performance superconductors, high current joints between superconducting cables and insulating materials. Also in the EDA, the resulting products of this R and D are incorporated in a Central Solenoid Model Coil which utilizes full size conductors. The manufacturing of the model coil and components has led to the development of the design, materials, tooling and process which are fully applicable to the manufacture of the ITER relevant CS coil. The R and D is essentially complete and final stages of the CS Model Coil manufacturing are underway. (author)

  7. ITER central solenoid manufacturing R and D

    International Nuclear Information System (INIS)

    Jayakumar, R.J.; Tsuji, H.; Ohsaki, O.

    1999-01-01

    The International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA) includes the development of high performance superconductors, high current joints between superconducting cables and insulating materials. Also in the EDA, the resulting products of this R and D are incorporated in a Central Solenoid Model Coil which utilizes full size conductors. The manufacturing of the model coil and components has led to the development of the design, materials, tooling and process which are fully applicable to the manufacture of the ITER relevant CS coil. The R and D is essentially complete and final stages of the CS Model Coil manufacturing are underway. (author)

  8. Development of pellet injection systems for ITER

    International Nuclear Information System (INIS)

    Combs, S.K.; Gouge, M.J.; Baylor, L.R.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) has been developing innovative pellet injection systems for plasma fueling experiments on magnetic fusion confinement devices for about 20 years. Recently, the ORNL development has focused on meeting the complex fueling needs of the International Thermonuclear Experimental Reactor (ITER). In this paper, we describe the ongoing research and development activities that will lead to a ITER prototype pellet injector test stand. The present effort addresses three main areas: (1) an improved pellet feed and delivery system for centrifuge injectors, (2) a long-pulse (up to steady-state) hydrogen extruder system, and (3) tritium extruder technology. The final prototype system must be fully tritium compatible and will be used to demonstrate the operating parameters and the reliability required for the ITER fueling application

  9. International Workshop on Diagnostics for ITER

    CERN Document Server

    Gorini, Giuseppe; Sindoni, Elio

    1996-01-01

    This book of proceedings collects the papers presented at the Workshop on Diagnostics for ITER, held at Villa Monastero, Varenna (Italy), from August 28 to September 1, 1995. The Workshop was organised by the International School of Plasma Physics "Piero Caldirola. " Established in 1971, the ISPP has organised over fifty advanced courses and workshops on topics mainly related to plasma physics. In particular, courses and workshops on plasma diagnostics (previously held in 1975, 1978, 1982, 1986, and 1991) can be considered milestones in the history of this institution. Looking back at the proceedings of the previous meetings in Varenna, one can appreciate the rapid progress in the field of plasma diagnostics over the past 20 years. The 1995 workshop was co-organised by the Istituto di Fisica del Plasma of the National Research Council (CNR). In contrast to previous Varenna meetings on diagnostics, which have covered diagnostics in present-day tokamaks and which have had a substantial tutorial component, the 1...

  10. Manufacturing, assembly and tests of SPIDER Vacuum Vessel to develop and test a prototype of ITER neutral beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Zaccaria, Pierluigi, E-mail: pierluigi.zaccaria@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete S.p.A.), Padova (Italy); Valente, Matteo; Rigato, Wladi; Dal Bello, Samuele; Marcuzzi, Diego; Agostini, Fabio Degli; Rossetto, Federico; Tollin, Marco [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete S.p.A.), Padova (Italy); Masiello, Antonio [Fusion for Energy F4E, Barcelona (Spain); Corniani, Giorgio; Badalocchi, Matteo; Bettero, Riccardo; Rizzetto, Dario [Ettore Zanon S.p.A., Schio (VI) (Italy)

    2015-10-15

    Highlights: • The SPIDER experiment aims to qualify and optimize the ion source for ITER injectors. • The large SPIDER Vacuum Vessel was built and it is under testing at the supplier. • The main working and assembly steps for production are presented in the paper. - Abstract: The SPIDER experiment (Source for the Production of Ions of Deuterium Extracted from an RF plasma) aims to qualify and optimize the full size prototype of the negative ion source foreseen for MITICA (full size ITER injector prototype) and the ITER Heating and Current Drive Injectors. Both SPIDER and MITICA experiments are presently under construction at Consorzio RFX in Padova (I), with the financial support from IO (ITER Organization), Fusion for Energy, Italian research institutions and contributions from Japan and India Domestic Agencies. The vacuum vessel hosting the SPIDER in-vessel components (Beam Source and calorimeters) has been manufactured, assembled and tested during the last two years 2013–2014. The cylindrical vessel, about 6 m long and 4 m in diameter, is composed of two cylindrical modules and two torispherical lids at the ends. All the parts are made by AISI 304 L stainless steel. The possibility of opening/closing the vessel for monitoring, maintenance or modifications of internal components is guaranteed by bolted junctions and suitable movable support structures running on rails fixed to the building floor. A large number of ports, about one hundred, are present on the vessel walls for diagnostic and service purposes. The main working steps for construction and specific technological issues encountered and solved for production are presented in the paper. Assembly sequences and tests on site are furthermore described in detail, highlighting all the criteria and requirements for correct positioning and testing of performances.

  11. Manufacturing, assembly and tests of SPIDER Vacuum Vessel to develop and test a prototype of ITER neutral beam ion source

    International Nuclear Information System (INIS)

    Zaccaria, Pierluigi; Valente, Matteo; Rigato, Wladi; Dal Bello, Samuele; Marcuzzi, Diego; Agostini, Fabio Degli; Rossetto, Federico; Tollin, Marco; Masiello, Antonio; Corniani, Giorgio; Badalocchi, Matteo; Bettero, Riccardo; Rizzetto, Dario

    2015-01-01

    Highlights: • The SPIDER experiment aims to qualify and optimize the ion source for ITER injectors. • The large SPIDER Vacuum Vessel was built and it is under testing at the supplier. • The main working and assembly steps for production are presented in the paper. - Abstract: The SPIDER experiment (Source for the Production of Ions of Deuterium Extracted from an RF plasma) aims to qualify and optimize the full size prototype of the negative ion source foreseen for MITICA (full size ITER injector prototype) and the ITER Heating and Current Drive Injectors. Both SPIDER and MITICA experiments are presently under construction at Consorzio RFX in Padova (I), with the financial support from IO (ITER Organization), Fusion for Energy, Italian research institutions and contributions from Japan and India Domestic Agencies. The vacuum vessel hosting the SPIDER in-vessel components (Beam Source and calorimeters) has been manufactured, assembled and tested during the last two years 2013–2014. The cylindrical vessel, about 6 m long and 4 m in diameter, is composed of two cylindrical modules and two torispherical lids at the ends. All the parts are made by AISI 304 L stainless steel. The possibility of opening/closing the vessel for monitoring, maintenance or modifications of internal components is guaranteed by bolted junctions and suitable movable support structures running on rails fixed to the building floor. A large number of ports, about one hundred, are present on the vessel walls for diagnostic and service purposes. The main working steps for construction and specific technological issues encountered and solved for production are presented in the paper. Assembly sequences and tests on site are furthermore described in detail, highlighting all the criteria and requirements for correct positioning and testing of performances.

  12. Scaling of the H-mode power threshold for ITER

    International Nuclear Information System (INIS)

    1998-01-01

    Analysis of the latest ITER H-mode threshold database is presented. The power necessary for the transition to H-mode is estimated for ITER, with or without the inclusion of radiation losses from the bulk plasma, in terms of the main engineering variables. The main geometrical variables (aspect ratio ε, elongation κ and average triangularity δ) are also included in the analysis. The H-mode transition is also considered from the point of view of the local edge variables, and the electron temperature at 90% of the poloidal flux is expressed in terms of both local and global variables. (author)

  13. Study of iterations in the design process of a product for automotive industry

    Directory of Open Access Journals (Sweden)

    Anghel Daniel-Constantin

    2017-01-01

    Full Text Available This paper present an experiment realized in order to observe the iterations in a design process. The main objective of this work is to study the iterations during the design process using a laboratory experiment, in order to understand how and why iterations occur. The different forms of iterations as they occur in practice are identified. This study will help us in the classification of iterations in order to distinguish useful iterations from undesirable ones. The results of the study might be used to improve the manner of working in the field of engineering design.

  14. Free-boundary simulations of ITER advanced scenarios

    International Nuclear Information System (INIS)

    Besseghir, K.

    2013-06-01

    The successful operation of ITER advanced scenarios is likely to be a major step forward in the development of controlled fusion as a power production source. ITER advanced scenarios raise specific challenges that are not encountered in presently-operated tokamaks. In this thesis, it is argued that ITER advanced operation may benefit from optimal control techniques. Optimal control ensures high performance operation while guaranteeing tokamak integrity. The application of optimal control techniques for ITER operation is assessed and it is concluded that robust optimisation is appropriate for ITER operation of advanced scenarios. Real-time optimisation schemes are discussed and it is concluded that the necessary conditions of optimality tracking approach may potentially be appropriate for ITER operation, thus offering a viable closed-loop optimal control approach. Simulations of ITER advanced operation are necessary in order to assess the present ITER design and uncover the main difficulties that may be encountered during advanced operation. The DINA-CH and CRONOS full tokamak simulator is used to simulate the operation of the ITER hybrid and steady-state scenarios. It is concluded that the present ITER design is appropriate for performing a hybrid scenario pulse lasting more than 1000 sec, with a flat-top plasma current of 12 MA, and a fusion gain of Q ≅ 8. Similarly, a steady-state scenario without internal transport barrier, with a flat-top plasma current of 10 MA, and with a fusion gain of Q ≅ 5 can be realised using the present ITER design. The sensitivity of the advanced scenarios with respect to transport models and physical assumption is assessed using CRONOS. It is concluded that the hybrid scenario and the steady-state scenario are highly sensitive to the L-H transition timing, to the value of the confinement enhancement factor, to the heating and current drive scenario during ramp-up, and, to a lesser extent, to the density peaking and pedestal

  15. Free-boundary simulations of ITER advanced scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Besseghir, K.

    2013-06-15

    The successful operation of ITER advanced scenarios is likely to be a major step forward in the development of controlled fusion as a power production source. ITER advanced scenarios raise specific challenges that are not encountered in presently-operated tokamaks. In this thesis, it is argued that ITER advanced operation may benefit from optimal control techniques. Optimal control ensures high performance operation while guaranteeing tokamak integrity. The application of optimal control techniques for ITER operation is assessed and it is concluded that robust optimisation is appropriate for ITER operation of advanced scenarios. Real-time optimisation schemes are discussed and it is concluded that the necessary conditions of optimality tracking approach may potentially be appropriate for ITER operation, thus offering a viable closed-loop optimal control approach. Simulations of ITER advanced operation are necessary in order to assess the present ITER design and uncover the main difficulties that may be encountered during advanced operation. The DINA-CH and CRONOS full tokamak simulator is used to simulate the operation of the ITER hybrid and steady-state scenarios. It is concluded that the present ITER design is appropriate for performing a hybrid scenario pulse lasting more than 1000 sec, with a flat-top plasma current of 12 MA, and a fusion gain of Q ≅ 8. Similarly, a steady-state scenario without internal transport barrier, with a flat-top plasma current of 10 MA, and with a fusion gain of Q ≅ 5 can be realised using the present ITER design. The sensitivity of the advanced scenarios with respect to transport models and physical assumption is assessed using CRONOS. It is concluded that the hybrid scenario and the steady-state scenario are highly sensitive to the L-H transition timing, to the value of the confinement enhancement factor, to the heating and current drive scenario during ramp-up, and, to a lesser extent, to the density peaking and pedestal

  16. Overview of magnetic control in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Zabeo, L., E-mail: luca.zabeo@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France); Ambrosino, G., E-mail: ambrosin@unina.it [CREATE/Universitá di Napoli Federico II, Dip. Ingegneria Elettrica e delle Tecnologie dell’informazione, Naples (Italy); Cavinato, M., E-mail: mario.cavinato@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla 2, Torres Diagonal Litoral - B3, 08019 Barcelona (Spain); Gribov, Y., E-mail: yuri.gribov@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France); Kavin, A., E-mail: kavina@sintez.niiefa.spb.su [D.V. Efremov Scientific Research Institute, 196641 St. Petersburg (Russian Federation); Lukash, V., E-mail: lukash@nfi.kiae.ru [Kurchatov Institute, Moscow (Russian Federation); Mattei, M., E-mail: massimiliano.mattei@unina2.it [CREATE/Seconda Universitá di Napoli, Dip. Ingegneria Industriale e dell’informazione, Naples (Italy); Pironti, A., E-mail: pironti@unina.it [CREATE/Seconda Universitá di Napoli, Dip. Ingegneria Industriale e dell’informazione, Naples (Italy); Snipes, J.A., E-mail: joseph.snipes@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France); Vayakis, G., E-mail: george.vayakis@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France); Winter, A., E-mail: axel.winter@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France)

    2014-05-15

    ITER is targeting Q = 10 with 500 MW of fusion power. To meet this target, the plasma needs to be controlled and shaped for a period of hundreds of seconds, avoiding contact with internal components, and acting against instabilities that could result in the loss of control of the plasma and in its disruptive termination. Axisymmetric magnetic control is a well-understood area being the basic control for any tokamak device. ITER adds more stringent constraints to the control primarily due to machine protection and engineering limits. The limits on the actuators by means of the maximum current and voltage at the coils and the few hundred ms time response of the vacuum vessel requires optimization of the control strategies and the validation of the capabilities of the machine in controlling the designed scenarios. Scenarios have been optimized with realistic control strategies able to guarantee robust control against plasma behavior and engineering limits due to recent changes in the ITER design. Technological issues such as performance changes associated with the optimization of the final design of the central solenoid, control of fast transitions like H to L mode to avoid plasma-wall contact, and optimization of the plasma ramp-down have been modeled to demonstrate the successful operability of ITER and compatibility with the latest refinements in the magnetic system design. Validation and optimization of the scenarios refining the operational space available for ITER and associated control strategies will be proposed. The present capabilities of magnetic control will be assessed and the remaining critical aspects that still need to be refined will be presented. The paper will also demonstrate the capabilities of the diagnostic system for magnetic control as a basic element for control. In fact, the noisy environment (affecting primarily vertical stability), the non-axisymmetric elements in the machine structure (affecting the accuracy of the identification of the

  17. Preliminary consideration of CFETR ITER-like case diagnostic system.

    Science.gov (United States)

    Li, G S; Yang, Y; Wang, Y M; Ming, T F; Han, X; Liu, S C; Wang, E H; Liu, Y K; Yang, W J; Li, G Q; Hu, Q S; Gao, X

    2016-11-01

    Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.

  18. Preliminary consideration of CFETR ITER-like case diagnostic system

    International Nuclear Information System (INIS)

    Li, G. S.; Liu, Y. K.; Gao, X.; Yang, Y.; Wang, Y. M.; Ming, T. F.; Han, X.; Liu, S. C.; Wang, E. H.; Yang, W. J.; Li, G. Q.; Hu, Q. S.

    2016-01-01

    Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.

  19. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Pt. II. Analysis of ITER plasma facing components

    International Nuclear Information System (INIS)

    Federici, G.; Raffray, A.R.

    1997-01-01

    For pt.I see ibid., p.85-100, 1997. The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the various ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness. (orig.)

  20. Probabilistic Structural Analysis Methods for select space propulsion system components (PSAM). Volume 2: Literature surveys of critical Space Shuttle main engine components

    Science.gov (United States)

    Rajagopal, K. R.

    1992-01-01

    The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.

  1. Results on the ITER Technology R and D

    International Nuclear Information System (INIS)

    1999-01-01

    The ITER Engineering Design Activities (EDA) have passed their originally planned six years by approval of the ITER Final Design Report at a meeting of the ITER Council held in July, 1998. The four Parties (EU, Japan, Russia, and USA) had hoped to make a decision for its construction by end of the EDA. However, the financial environment of these Parties were not optimistic to directly start construction of the device scooped in the Report. The ITER Technology R and D has been conducted by cooperation of these four Parties to provide data base and demonstrate technical feasibility on the ITER design. It contains, not only component technologies on tokamak reactor core, but also peripheral system technologies such as heating and current drive technique, remote maintenance technique, tritium technology, fuel air-in-taking/-exhausting technique, measurement diagnosis element technique, safety, and so on. Above all, seven large R and D projects are identified to demonstrate technical feasibility of manufacturing and system tests. They were planned to have scales capable of extrapolating to the ITER and of carrying out by joint efforts of a plural Parties. These projects were relating to superconducting magnet technology; vacuum vessel technology, blanket technology, divertor technology, and remote maintenance technology, among which three projects were promoted under leading of Japan. This report was prepared so as to enable to understand outline of results obtained under the seven projects on the ITER Technology R and D. (G.K.)

  2. [Analysis of the main components of inner ear antigens inducing autoimmune Meniere's disease in guinea pigs].

    Science.gov (United States)

    Lu, Ling; Tan, Chang-Qiang; Cui, Yu-Gui; Ding, Gui-Peng; Ju, Xiao-Bin; Li, Yu-Jin; Cai, Wen-Jun

    2008-08-01

    To investigate the main components of inner ear antigens inducing autoimmune Meniere's disease (AIMD) in guinea pigs. The guinea pigs were immunized with isologous crude inner ear antigens (ICIEAg). Then, the hearing function was measured with auditory brainstem response (ABR), the vestibular function was measured with electronystagmography (including spontaneous nystagmus and caloric test), and inner ear histopathological changes were observed by inner ear celloidin section with haematoxylin-eosin staining and observed under light microscope. According to these results, the AIMD-model animals from non-AIMD-model ones were distinguished. The special antibodies against ICIEAg in sera were measured with ELISA. The antigen-antibody reactions against different components of ICIEAg were detected by Western blotting with sera of AIMD and non-AIMD guinea pigs respectively. Then, we analysed the contrast between them and found the main components of the ICIEAg that were positive reaction in AIMD guinea pigs and negative reaction in non-AIMD guinea pigs. The result of ELISA demonstrated that the sera of both the AIMD and non-AIMD guniea pigs contained the special antibodies against ICIEAg after immunized with ICIEAg. The difference of the amount of antibody against ICIEAg between AIMD guinea pig group and non-AIMD guinea pig group was not significant. Western blotting assay showed only the sera of AIMD guinea pig contained the antibodies against the specific antigens with the molecular of 68 000, 58 000, 42 000 and 28 000. ICIEAg contain many different components, the AIMD might only happen in the guinea pigs in which the special immunization against the main components that could induce this kind of disorder appeared. The inner ear antigens with molecular of 68 000, 58 000, 42 000 and 28 000 might be the main components inducing AIMD in guinea pigs.

  3. In-vessel tritium retention and removal in ITER

    International Nuclear Information System (INIS)

    Federici, G.; Anderl, R.A.

    1998-01-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned to be the next major step in the world's fusion program from the present generation of tokamaks and is designed to study fusion plasmas with a reactor relevant range of plasma parameters. During normal operation, it is expected that a fraction of the unburned tritium, that is used to routinely fuel the discharge, will be retained together with deuterium on the surfaces and in the bulk of the plasma facing materials (PFMs) surrounding the core and divertor plasma. The understanding of he basic retention mechanisms (physical and chemical) involved and their dependence upon plasma parameters and other relevant operation conditions is necessary for the accurate prediction of the amount of tritium retained at any given time in the ITER torus. Accurate estimates are essential to assess the radiological hazards associated with routine operation and with potential accident scenarios which may lead to mobilization of tritium that is not tenaciously held. Estimates are needed to establish the detritiation requirements for coolant water, to determine the plasma fueling and tritium supply requirements, and to establish the needed frequency and the procedures for tritium recovery and clean-up. The organization of this paper is as follows. Section 2 provides an overview of the design and operating conditions of the main components which define the plasma boundary of ITER. Section 3 reviews the erosion database and the results of recent relevant experiments conducted both in laboratory facilities and in tokamaks. These data provide the experimental basis and serve as an important benchmark for both model development (discussed in Section 4) and calculations (discussed in Section 5) that are required to predict tritium inventory build-up in ITER. Section 6 emphasizes the need to develop and test methods to remove the tritium from the codeposited C-based films and reviews the status and the prospects of the

  4. In-vessel tritium retention and removal in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G. [ITER JWS Garching Co-Center (Germany); Anderl, R.A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Andrew, P. [JET Joint Undertaking, Abingdon (United Kingdom)] [and others

    1998-06-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned to be the next major step in the world`s fusion program from the present generation of tokamaks and is designed to study fusion plasmas with a reactor relevant range of plasma parameters. During normal operation, it is expected that a fraction of the unburned tritium, that is used to routinely fuel the discharge, will be retained together with deuterium on the surfaces and in the bulk of the plasma facing materials (PFMs) surrounding the core and divertor plasma. The understanding of he basic retention mechanisms (physical and chemical) involved and their dependence upon plasma parameters and other relevant operation conditions is necessary for the accurate prediction of the amount of tritium retained at any given time in the ITER torus. Accurate estimates are essential to assess the radiological hazards associated with routine operation and with potential accident scenarios which may lead to mobilization of tritium that is not tenaciously held. Estimates are needed to establish the detritiation requirements for coolant water, to determine the plasma fueling and tritium supply requirements, and to establish the needed frequency and the procedures for tritium recovery and clean-up. The organization of this paper is as follows. Section 2 provides an overview of the design and operating conditions of the main components which define the plasma boundary of ITER. Section 3 reviews the erosion database and the results of recent relevant experiments conducted both in laboratory facilities and in tokamaks. These data provide the experimental basis and serve as an important benchmark for both model development (discussed in Section 4) and calculations (discussed in Section 5) that are required to predict tritium inventory build-up in ITER. Section 6 emphasizes the need to develop and test methods to remove the tritium from the codeposited C-based films and reviews the status and the prospects of the

  5. Status of ITER TBM port plug conceptual design and analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Yoon, E-mail: byoungyoon.kim@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Sabourin, Flavien; Merola, Mario; Giancarli, Luciano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Villari, R. [ENEA Frascati (Italy); Di Maio, P.A. [University of Palermo (Italy); Lucca, F.; Marconi, M. [LTCalcoli, Piazza Prinetti 26/B, 23807 Merate (Italy); Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-10-15

    Highlights: •ITER TBM PP conceptual design with two dummy TBMs was summarized. •TBM PP shielding capability was assessed to allow hands-on operation. •TBM PP steady state hydraulic performance was investigated. •EM and structural analysis was performed to evaluate structural margin. -- Abstract: The test blanket module port plug (TBM PP) consists of a TBM frame and two TBM-sets. However, at any time of the ITER operation, a TBM set can be replaced by a dummy TBM. The frame provides a standardized interface with the vacuum vessel (VV)/port structure and provides thermal isolation from the shield blanket. As one of the plasma-facing components, it shall withstand heat loads while at the same time provide adequate neutron shielding for the VV and magnet coils. The frame design shall provide a stable engineering solution to hold TBM-sets and also provide a mean for rapid remote handling replacement and refurbishment. This paper presents main design features of the conceptual design of TBM PP with two dummy TBMs. Also analysis results are summarized to evaluate shielding, hydraulic, and thermal and structural performances of the TBM PP design.

  6. Status of ITER TBM port plug conceptual design and analyses

    International Nuclear Information System (INIS)

    Kim, Byoung Yoon; Sabourin, Flavien; Merola, Mario; Giancarli, Luciano; Villari, R.; Di Maio, P.A.; Lucca, F.; Marconi, M.; Levesy, B.

    2014-01-01

    Highlights: •ITER TBM PP conceptual design with two dummy TBMs was summarized. •TBM PP shielding capability was assessed to allow hands-on operation. •TBM PP steady state hydraulic performance was investigated. •EM and structural analysis was performed to evaluate structural margin. -- Abstract: The test blanket module port plug (TBM PP) consists of a TBM frame and two TBM-sets. However, at any time of the ITER operation, a TBM set can be replaced by a dummy TBM. The frame provides a standardized interface with the vacuum vessel (VV)/port structure and provides thermal isolation from the shield blanket. As one of the plasma-facing components, it shall withstand heat loads while at the same time provide adequate neutron shielding for the VV and magnet coils. The frame design shall provide a stable engineering solution to hold TBM-sets and also provide a mean for rapid remote handling replacement and refurbishment. This paper presents main design features of the conceptual design of TBM PP with two dummy TBMs. Also analysis results are summarized to evaluate shielding, hydraulic, and thermal and structural performances of the TBM PP design

  7. ITER [International Thermonuclear Experimental Reactor] reactor building design study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Blevins, J.D.; Delisle, M.W.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is at the midpoint of a two-year conceptual design. The ITER reactor building is a reinforced concrete structure that houses the tokamak and associated equipment and systems and forms a barrier between the tokamak and the external environment. It provides radiation shielding and controls the release of radioactive materials to the environment during both routine operations and accidents. The building protects the tokamak from external events, such as earthquakes or aircraft strikes. The reactor building requirements have been developed from the component designs and the preliminary safety analysis. The equipment requirements, tritium confinement, and biological shielding have been studied. The building design in progress requires continuous iteraction with the component and system designs and with the safety analysis. 8 figs

  8. Iterative solution of linear systems in the 20­th century

    NARCIS (Netherlands)

    Saad, Y.; Vorst, H.A. van der

    2000-01-01

    This paper sketches the main research developments in the area of iterative methods for solving linear systems during the 20th century. Although iterative methods for solving linear systems find their origin in the early nineteenth century (work by Gauss), the field has seen an explosion of

  9. Design and development of ITER high-frequency magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: Yunxing.Ma@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Fircroft Engineering, Lingley House, 120 Birchwood Point, Birchwood Boulevard, Warrington, WA3 7QH (United Kingdom); Vayakis, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Begrambekov, L.B. [National Research Nuclear University (MEPhI), 115409, Moscow, Kashirskoe shosse 31 (Russian Federation); Cooper, J.-J. [Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire OX14 3DB (United Kingdom); Duran, I. [IPP Prague, Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic); Hirsch, M.; Laqua, H.P. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Moreau, Ph. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Oosterbeek, J.W. [Eindhoven University of Technology (TU/e), PO Box 513, 5600 MB Eindhoven (Netherlands); Spuig, P. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Stange, T. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-15

    Highlights: • ITER high-frequency magnetic sensor system has been designed. • Prototypes have been successfully manufactured. • Manufactured prototypes have been tested in various labs. • Test results experimentally validated the design. - Abstract: High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in a harsh environment with considerable neutron/nuclear radiation and high thermal load. Essential components of the HF sensor system, including inductive coil, electron cyclotron heating (ECH) shield, electrical cabling and termination load, have been designed to meet ITER measurement requirements. System performance (e.g. frequency response, thermal conduction) has been assessed. A prototyping campaign was initiated to demonstrate the manufacturability of the designed components. Prototypes have been produced according to the specifications. A series of lab tests have been performed to examine assembly issues and validate electrical and thermo-mechanical aspects of the design. In-situ microwave radiation test has been conducted in the MISTRAL test facility at IPP-Greifswald to experimentally examine the microwave shielding efficiency and structural integrity of the ECH shield. Low-power microwave attenuation measurement and scanning electron microscopic inspection were conducted to probe and examine the quality of the metal coating on the ECH shield.

  10. ITER-FEAT - outline design report. Report by the ITER Director. ITER meeting, Tokyo, January 2000

    International Nuclear Information System (INIS)

    2001-01-01

    It is now possible to define the key elements of ITER-FEAT. This report provides the results, to date, of the joint work of the Special Working Group in the form of an Outline Design Report on the ITER-FEAT design which, subject to the views of ITER Council and of the Parties, will be the focus of further detailed design work and analysis in order to provide to the Parties a complete and fully integrated engineering design within the framework of the ITER EDA extension

  11. The European contribution to the ITER Remote Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, C., E-mail: carlo.damiani@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Annino, C.; Balagué, S.; Bates, P.; Ceccanti, F.; Di Mascio, T.; Dubus, G.; Esqué, S.; Gonzalez, C.; Lewczanin, M.; Locke, D.; Mont, L.; Olajos, K.; Ranz, R.; Shuff, R.; Puiu, A.; Van Hille, C.; Van Uffelen, M. [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Choi, C.H.; Friconneau, J.P. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); and others

    2014-10-15

    Highlights: •The article introduces the needs for remote maintenance in ITER. •It also discusses some of the issues related to the cultural transition from tokamaks as plasma physics to nuclear reactors. •It highlights the related cultural change and the implications on plant topology and maintenance. •Then, it presents those remote handling systems that will be procured by Europe. •The article emphasises the need of a major involvement of industries from now on. -- Abstract: For a first-of-a-kind nuclear fusion reactor like ITER, remote maintainability of neutron-activated components is one of the key aspects of plant design and operations, and a fundamental ingredient for the demonstration of long-term viability of fusion as energy source. The European Domestic Agency (EU DA, i.e. Fusion for Energy, F4E) is providing important support to the ITER Organisation (IO) in specifying the functional requirements of the Remote Handling (RH) Procurement Packages (i.e. the subsystems allocated to EU DA belonging to the overall ITER Remote Maintenance Systems IRMS), and in performing design and R and D activities – with the support of national laboratories and industries – in order to define a sound concept for these packages. Furthermore, domestic industries are being involved in the subsequent detailed design, validation, manufacturing and installation activities, in order to actually fulfil our procurement-in-kind obligations. After an introduction to ITER Remote Maintenance, this paper will present status and next stages for the RH systems allocated to EU DA, and will also illustrate complementary aspects related to cross cutting technologies like radiation tolerant components and RH control systems. Finally, the way all these efforts are coordinated will be presented together with the overall implementation scenario and key milestones.

  12. An overview of the ITER project

    International Nuclear Information System (INIS)

    Holtkamp, N.

    2007-01-01

    The ITER Project Team now coming together in Cadarache is currently being shaped from the old, preserving the legacy of technical know-how built up in the ITER Joint Central Team since 1992. It is particularly strong initially in the most urgent areas, related to long lead items - magnets, the main vessel and the buildings - as well as in work related to licensing. But it also incorporates new functional needs - financial, administrative, and procurement - and ties in the needs of future users during operation. Since the bulk of the procurement for ITER will be provided in kind, efforts have been strengthened to define better the share of responsibilities with the Parties' Domestic Agencies. The procurement cost sharing is being transferred into realistic technical splitting of the work, with agreements between the Parties to demonstrate production of the necessary quality, and how to handle any shortcomings. The design has evolved since originally conceived and valued 5 years ago. Design reviews of specific procurements will therefore start in September 2006 to ensure the current manufacturing and design assumptions continue to satisfy requirements. This paper reviews the current status of development of the ITER project, covering organisational and technical issues

  13. Study of wall conditioning in tokamaks with application to ITER

    International Nuclear Information System (INIS)

    Kogut, Dmitri

    2014-01-01

    Thesis is devoted to studies of performance and efficiency of wall conditioning techniques in fusion reactors, such as ITER. Conditioning is necessary to control the state of the surface of plasma facing components to ensure plasma initiation and performance. Conditioning and operation of the JET tokamak with ITER-relevant material mix is extensively studied. A 2D model of glow conditioning discharges is developed and validated; it predicts reasonably uniform discharges in ITER. In the nuclear phase of ITER operation conditioning will be needed to control tritium inventory. It is shown here that isotopic exchange is an efficient mean to eliminate tritium from the walls by replacing it with deuterium. Extrapolations for tritium removal are comparable with expected retention per a nominal plasma pulse in ITER. A 1D model of hydrogen isotopic exchange in beryllium is developed and validated. It shows that fluence and temperature of the surface influence efficiency of the isotopic exchange. (author) [fr

  14. [Simultaneous determination of five main index components and specific chromatograms analysis in Xiaochaihu granules].

    Science.gov (United States)

    Zhuang, Yan-Shuang; Cai, Hao; Liu, Xiao; Cai, Bao-Chang

    2012-01-01

    Reversed phase high performance liquid chromatography with diode array detector was employed for simultaneous determination of five main index components and specific chromatograms analysis in Xiaochaihu granules with a linear gradient elution of acetonitrile-water (containing 0.1% phosphoric acid) as mobile phase. The results showed that five main index components (baicalin, baicalein, wogonoside, wogonin, enoxolone) were separated well under the analytical condition. The linear ranges of five components were 0.518 - 16.576, 0.069 - 2.197, 0.167 - 5.333, 0.009 - 0.297 and 0.006 - 0.270 mg x g(-1), respectively. The correlation coefficients were 0.999 9, and the average recoveries ranged from 95% to 105%. Twelve common peaks were selected as the specific chromatograms of Xiaochaihu granules with baicalin as the reference peak. There were good similarities between the reference and the ten batches of samples. The similarity coefficients were no less than 0.9. The analytical method established is highly sensitive with strong specificity and it can be used efficiently in the quality control of Xiaochaihu granules.

  15. ETR/ITER systems code

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L. (ed.)

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  16. ETR/ITER systems code

    International Nuclear Information System (INIS)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs

  17. ITER diagnostics ex-vessel engineering services

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, A.P., E-mail: arun.prakash@iter.org; Walker, C.I.; Andrew, P.; Barnsley, R.; Beltran, D.; Bertalot, L.; Dammann, A.; Direz, M.F.; Drevon, J.M.; Encheva, A.; Giacomin, T.; Hourtoule, J.; Kuehn, I.; Lanza, R.; Levesy, B.; Maquet, P.; Patel, K.M.; Patisson, L.; Pitcher, C.S.; Portales, M.; and others

    2013-10-15

    Highlights: • This paper describes about the ITER diagnostics ex-vessel engineering services. • It describes various diagnostics systems, its location and its environment. • Diagnostics interfaces with other services such as the buildings, HVAC, electrical services, cooling water, vacuum, liquid and gas distribution. • All the interfaces with these services are identified and defined. • Buildings services for diagnostics, such as penetrations, local shielding, embedment and temperature control are discussed. -- Abstract: Extensive diagnostics systems will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include measurements of temperature, density, impurity concentration, and particle and energy confinement times. ITER diagnostic systems extend from the center of the Tokamak to the various diagnostic areas, where they are controlled and acquired data is processed. This mainly includes the areas such as ports, port cells, gallery, diagnostics enclosures and cubicle areas. The diagnostics port plugs encloses the front end of the diagnostic systems and the diagnostics building houses the diagnostics equipment, instrumentation and control cubicles. There are several systems providing services to diagnostics. These mainly include ITER buildings, electrical power services, cooling water services, Heating Ventilation and Air Conditioning (HVAC), vacuum services, liquid and gas distribution services, cable engineering, de-tritiation systems, control cubicles, etc. Requirements of these service systems have to be defined, even though many of the diagnostics are at an early stage of development. It is a real challenge to define and to design diagnostics systems considering the constraints imposed by these service systems. This paper summarizes the provision of these services to the individual diagnostics and diagnostics areas

  18. ITER diagnostics ex-vessel engineering services

    International Nuclear Information System (INIS)

    Arumugam, A.P.; Walker, C.I.; Andrew, P.; Barnsley, R.; Beltran, D.; Bertalot, L.; Dammann, A.; Direz, M.F.; Drevon, J.M.; Encheva, A.; Giacomin, T.; Hourtoule, J.; Kuehn, I.; Lanza, R.; Levesy, B.; Maquet, P.; Patel, K.M.; Patisson, L.; Pitcher, C.S.; Portales, M.

    2013-01-01

    Highlights: • This paper describes about the ITER diagnostics ex-vessel engineering services. • It describes various diagnostics systems, its location and its environment. • Diagnostics interfaces with other services such as the buildings, HVAC, electrical services, cooling water, vacuum, liquid and gas distribution. • All the interfaces with these services are identified and defined. • Buildings services for diagnostics, such as penetrations, local shielding, embedment and temperature control are discussed. -- Abstract: Extensive diagnostics systems will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include measurements of temperature, density, impurity concentration, and particle and energy confinement times. ITER diagnostic systems extend from the center of the Tokamak to the various diagnostic areas, where they are controlled and acquired data is processed. This mainly includes the areas such as ports, port cells, gallery, diagnostics enclosures and cubicle areas. The diagnostics port plugs encloses the front end of the diagnostic systems and the diagnostics building houses the diagnostics equipment, instrumentation and control cubicles. There are several systems providing services to diagnostics. These mainly include ITER buildings, electrical power services, cooling water services, Heating Ventilation and Air Conditioning (HVAC), vacuum services, liquid and gas distribution services, cable engineering, de-tritiation systems, control cubicles, etc. Requirements of these service systems have to be defined, even though many of the diagnostics are at an early stage of development. It is a real challenge to define and to design diagnostics systems considering the constraints imposed by these service systems. This paper summarizes the provision of these services to the individual diagnostics and diagnostics areas

  19. Progress in the integration of Test Blanket Systems in ITER equatorial port cells and in the interfaces definition

    Energy Technology Data Exchange (ETDEWEB)

    Pascal, R., E-mail: romain.pascal@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Beloglazov, S.; Bonagiri, S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Commin, L. [CEA, IRFM, Cadarache (France); Cortes, P.; Giancarli, L.M.; Gliss, C.; Iseli, M.; Lanza, R.; Levesy, B.; Martins, J.-P. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Neviere, J.-C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Comex-Nucleaire, 13115 Saint Paul Lez Durance (France); Patisson, L.; Plutino, D.; Shu, W. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Swami, H.L. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The design integration of two test blanket systems in ITER port cell is addressed. Black-Right-Pointing-Pointer Definition of interfaces of TBSs with building and other ITER systems is done. Black-Right-Pointing-Pointer Designs of pipe forest, bioshield plug and ancillary equipment unit are described. Black-Right-Pointing-Pointer The maintenance of the two test blanket systems in ITER port cell is considered. Black-Right-Pointing-Pointer The management of the heat and tritium releases in the TBM port cell is described. - Abstract: In the framework of the TBM Program, three ITER vacuum vessel equatorial ports (no. 16, no. 18 and no. 02) have been allocated for the testing of up to six mock-ups of six different DEMO tritium breeding blankets. Each one is called a Test Blanket System (TBS). A TBS consists mainly of the Test Blanket Module (TBM), the in-vessel component facing the plasma, and several ancillary systems, in particular the cooling system and the tritium extraction system. Each port accommodates two TBMs and therefore the two TBSs have to share the corresponding port cell. This paper deals with the design integration aspects of the two TBSs in each port cell performed at ITER Organization (IO) with the corresponding definition of interfaces with other ITER systems. The performed activities have raised several issues that are discussed in the paper and for which design solutions are proposed.

  20. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.N. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)]. E-mail: bazylev@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, Fusion, P.O. Box 3640, 76021 Karlsruhe (Germany); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Loarte, A. [EFDA-CSU, Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Pestchanyi, S.E. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2007-06-15

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated.

  1. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    Science.gov (United States)

    Bazylev, B. N.; Janeschitz, G.; Landman, I. S.; Loarte, A.; Pestchanyi, S. E.

    2007-06-01

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated.

  2. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    International Nuclear Information System (INIS)

    Bazylev, B.N.; Janeschitz, G.; Landman, I.S.; Loarte, A.; Pestchanyi, S.E.

    2007-01-01

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated

  3. 1.5 MW RF Load for ITER

    International Nuclear Information System (INIS)

    Ives, Robert Lawrence; Marsden, David; Collins, George; Karimov, Rasul; Mizuhara, Max; Neilson, Jeffrey

    2016-01-01

    Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were built and successfully tested during the program.

  4. 1.5 MW RF Load for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Karimov, Rasul [Calabazas Creek Research, Inc., San Mateo, CA (United States); Mizuhara, Max [Calabazas Creek Research, Inc., San Mateo, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States)

    2016-09-01

    Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were built and successfully tested during the program.

  5. Irradiation effects on plasma diagnostic components

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Iida, Toshiyuki; Ikeda, Yujiro

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m 2 and 1 MWa/m 2 , respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  6. Irradiation effects on plasma diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, Takeo [ed.] [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Iida, Toshiyuki; Ikeda, Yujiro [and others

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m{sup 2} and 1 MWa/m{sup 2}, respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  7. ITER council proceedings: 2001

    International Nuclear Information System (INIS)

    2001-01-01

    Continuing the ITER EDA, two further ITER Council Meetings were held since the publication of ITER EDA documentation series no, 20, namely the ITER Council Meeting on 27-28 February 2001 in Toronto, and the ITER Council Meeting on 18-19 July in Vienna. That Meeting was the last one during the ITER EDA. This volume contains records of these Meetings, including: Records of decisions; List of attendees; ITER EDA status report; ITER EDA technical activities report; MAC report and advice; Final report of ITER EDA; and Press release

  8. ITER safety

    International Nuclear Information System (INIS)

    Raeder, J.; Piet, S.; Buende, R.

    1991-01-01

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  9. Development of radiation hard components for remote maintenance

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Obara, Kenjiro; Kakudate, Satoshi; Tominaga, Ryuichiro; Akada, Tamio; Morita, Hirosuke.

    1997-01-01

    In International Thermonuclear Experimental Reactor (ITER), in-vessel remote-handling is inevitably required to assemble and maintain activated in-vessel components due to D-T operation. The components of the in-vessel remote-handling system must have sufficient radiation hardness to allow for operation under an intense gamma-ray radiation of over 30 kGy/h for periods up to more than 1,000 hours. To this end, extensive irradiation tests and quality improvements including the optimization of material composition have been conducted through the ITER R and D program in order to develop radiation hard components which satisfy radiation doses from 10 MGy to 100 MGy at the dose rate of 10 kGy/h. This paper outlines the latest status of the radiation hard component development that has been conducted as the Japan Home Team's contribution to ITER. The remote-handling components tested are categorized into either robotics, viewing systems or common components. The irradiation tests include commercial base products for screening both modified and newly developed products to improve their radiation hardness. (author)

  10. Application of beryllium as first wall armour for ITER primary, baffle and limiter modules

    International Nuclear Information System (INIS)

    Cardella, A.; Barabash, V.; Ioki, K.; Yamada, M.; Mazul, I.; Merola, M.; Strebkov, Y.

    2000-01-01

    During the engineering design activities of the ITER project, beryllium has been selected as the armour material for the first wall of the primary, baffle and limiter blanket modules. These components have different requirements according to their function, so the armour design and its joining technology has been developed in order to withstand different operating and loading conditions. Extensive R and D has been performed to develop, select and characterise the beryllium material and the joining techniques. In parallel, beryllium plasma spray coating has been developed, mainly as a possible in situ repair method for locally damaged areas. For the reduced technical objectives / reduced cost (RTO/RC) ITER project, it is proposed to maintain Be as the reference armour material and to optimise the manufacturing technologies in order to minimise costs. The paper presents the rationale of the design choices for the application of beryllium to the blanket first wall and gives an overview of the R and D performed and the results achieved. (orig.)

  11. Articulated inspection arm for ITER, a demonstration in the Tore Supra tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, J.J.; Gargiulo, L.; Grisolia, C.; Samaille, F. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Friconneau, J.P.; Perrot, Y. [CEA Fontenay-aux-Roses, LIST Robotics and Interactive Systems Unit, 92 (France); Palmer, J.D. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr.2, Garching (Germany)

    2003-07-01

    The aim of this program is to demonstrate for ITER the feasibility of an in-vessel remote handling inspection using a long reach, limited payload carrier (1 to 10 kg) for penetration of the ITER chamber through the openings. This device is dedicated to close inspection of the Plasma Facing Components (PFC). An articulated demonstrator called articulated inspection arm (AIA) has been manufactured. A feasibility study of a full AIA operation in Tore Supra was performed, taking into account ITER reference requirements. A scale one demonstration of the AIA under ITER relevant condition is feasible on Tore Supra and would give significant improvement in research results for ITER remote Handling equipment. The test of the AIA demonstrator behaviour is foreseen in 2005 in real Tokamak conditions. The paper presents the full robot concept, the results of the first test campaign, the AIA new design and its integration on Tore Supra. Several potential uses of the AIA for the in vessel components inspection are being studied such as PFC visual inspection, water loop leak testing, laser ablation for wall detritiation and carbon dust and flakes removal are foreseen as utilities to be placed at the AIA head. These various systems are described in the paper.

  12. Articulated inspection arm for ITER, a demonstration in the Tore Supra tokamak

    International Nuclear Information System (INIS)

    Cordier, J.J.; Gargiulo, L.; Grisolia, C.; Samaille, F.; Palmer, J.D.

    2003-01-01

    The aim of this program is to demonstrate for ITER the feasibility of an in-vessel remote handling inspection using a long reach, limited payload carrier (1 to 10 kg) for penetration of the ITER chamber through the openings. This device is dedicated to close inspection of the Plasma Facing Components (PFC). An articulated demonstrator called articulated inspection arm (AIA) has been manufactured. A feasibility study of a full AIA operation in Tore Supra was performed, taking into account ITER reference requirements. A scale one demonstration of the AIA under ITER relevant condition is feasible on Tore Supra and would give significant improvement in research results for ITER remote Handling equipment. The test of the AIA demonstrator behaviour is foreseen in 2005 in real Tokamak conditions. The paper presents the full robot concept, the results of the first test campaign, the AIA new design and its integration on Tore Supra. Several potential uses of the AIA for the in vessel components inspection are being studied such as PFC visual inspection, water loop leak testing, laser ablation for wall detritiation and carbon dust and flakes removal are foreseen as utilities to be placed at the AIA head. These various systems are described in the paper

  13. Manufacturing and testing of a prototypical divertor vertical target for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Merola, M. E-mail: merolam@ipp.mpg.de; Ploechl, L.; Chappuis, Ph.; Escourbiac, F.; Grattarola, M.; Smid, I.; Tivey, R.; Vieider, G

    2000-12-01

    After an extensive R and D activity, a medium-scale divertor vertical target prototype has been manufactured by the EU Home Team. This component contains all the main features of the corresponding ITER divertor design and consists of two units with one cooling channel each, assembled together and having an overall length and width of about 600 and 50 mm, respectively. The upper part of the prototype has a tungsten macro-brush armour, whereas the lower part is covered by CFC monoblocks. A number of joining techniques were required to manufacture this component as well as an appreciable effort in the development of suitable non-destructive testing methods. The component was high heat flux tested in FE200 electron beam facility at Le Creusot, France. It endured 100 cycles at 5 MW/m{sup 2}, 1000 cycles at 10 MW/m{sup 2} and more then 1000 cycles at 15-20 MW/m{sup 2}. The final critical heat flux test reached a value in excess of 30 MW/m{sup 2}.

  14. ITER [International Thermonuclear Experimental Reactor] shield and blanket work package report

    International Nuclear Information System (INIS)

    1988-06-01

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs

  15. Plasma Facing Components Generic Facilities Review Panel (PFC-GFRP): Final report

    International Nuclear Information System (INIS)

    McGrath, R.; Allen, S.; Hill, D.; Brooks, J.; Mattas, R.; Davis, J.; Lipschultz, B.; Ulrickson, M.

    1993-10-01

    The Plasma Facing Components (PFC) Facilities Review Panel was chartered by the US Department of Energy, Office of Fusion Energy, ITER (International Thermonuclear Experimental Reactor) and Technology Division, to outline the program plan and identify the supporting test facilities that lead to reliable, long-lived plasma facing components for ITER. This report summarizes the panel's findings and identifies the necessary and sufficient set of test facilities required for ITER PFC development

  16. Academic Training: The ITER project: technological challenges

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 31 May, 1, 2, 3, June from 11:00 to 12:00 on 31 May and 2, 3, June. From 10:00 to 12:00 on 1 June - Main Auditorium, bldg. 500 The ITER project: technological challenges J. LISTER / CRPP-EPFL, Lausanne, CH and P. BRUZZONE / CRPP-EPFL, Zürich, CH The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the...

  17. Academic Training: The ITER project: technological challenges

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 31 May, 1, 2, 3, June from 11:00 to 12:00 on 31 May and 2, 3, June. From 10:00 to 12:00 on 1 June - Main Auditorium, bldg. 500 The ITER project: technological challenges J. LISTER / CRPP-EPFL, Lausanne and P. BRUZZONE / CRPP-EPFL, Zürich The first lecture reminds us of the ITER challenges, presents hard engineering problems, typically due to mechanical forces and thermal loads and identifies where the physics uncertainties play a significant role in the engineering requirements. The second lecture presents soft engineering problems of measuring the plasma parameters, feedback control of the plasma and handling the physics data flow and slow controls data flow from a large experiment like ITER. The last three lectures focus on superconductors for fusion. The third lecture reviews the design criteria and manufacturing methods for 6 milestone-conductors of large fusion devices (T-7, T-15, Tore Supra, LHD, W-7X, ITER). The evolution of the de...

  18. Design earthquakes for ITER in Europe at Cadarache

    International Nuclear Information System (INIS)

    Girard, Jean-Philippe; Gruenthal, Gottfried; Nicolas, Marc

    2005-01-01

    The European site proposed for ITER is situated in the south of France, 40 km north-east of Aix-en-Provence, in a low to moderate seismic area according to the Global Seismic Hazard Map (GSHAP Group 1999). The tokamak building would be implemented on good bedrock made of limestone with a shear wave velocity of over 1300 m/s. Input requirements and assumptions for ITER consider that an infrequent, severe earthquake (called SL-2), although unlikely to occur during the lifetime of the facility, is assessed to demonstrate adequate protection of the public. This earthquake is assumed to have a return period of 10,000 years. An investment protection level or inspection level (where all structures, systems and components are safe) with a peak ground acceleration (pga) at 0.5 m/s 2 is also considered. As a basis, orders of magnitude of consequences, if no countermeasures were taken, are given. Four aspects are discussed: regulation, implementation of this regulation for the proposed site (site geology, tectonic and seismotectonic), a probabilistic seismic hazard assessment of the site and finally, the fulfilment of the requirements and assumptions, according to IAEA guides. As a conclusion of the studies, the main characteristics of the Cadarache European site are discussed. Preliminary studies have shown that the European site proposal will ensure a low level of project risk with respect to the seismic hazard

  19. Technical basis for the ITER final design report, cost review and safety analysis (FDR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The ITER final design report, cost review and safety analysis (FDR) is the 4th major milestone, representing the progress made in the ITER Engineering Design Activities. With the approval of the Detailed Design Report (DDR), the design work was concentrated on the requirements of operation, with only relatively minor changes to design concepts of major components. The FDR is the culmination of almost 6 years collaborative design and supporting technical work by the ITER Joint Central Team and Home Teams under the terms of the ITER EDA Agreement. Refs, figs, tabs

  20. Technical basis for the ITER final design report, cost review and safety analysis (FDR)

    International Nuclear Information System (INIS)

    1998-01-01

    The ITER final design report, cost review and safety analysis (FDR) is the 4th major milestone, representing the progress made in the ITER Engineering Design Activities. With the approval of the Detailed Design Report (DDR), the design work was concentrated on the requirements of operation, with only relatively minor changes to design concepts of major components. The FDR is the culmination of almost 6 years collaborative design and supporting technical work by the ITER Joint Central Team and Home Teams under the terms of the ITER EDA Agreement

  1. Qualification of Fin-Type Heat Exchangers for the ITER Current Leads

    CERN Document Server

    Ballarino, A; Bordini, B; Devred, A; Ding, K; Niu, E; Sitko, M; Taylor, T; Yang, Y; Zhou, T

    2015-01-01

    The ITER current leads will transfer large currents of up to 68 kA into the biggest superconducting magnets ever built. Following the development of prototypes and targeted trials of specific manufacturing processes through mock-ups, the ASIPP (Chinese Institute of Plasma Physics) is preparing for the series fabrication. A key component of the ITER HTS current leads are the resistive heat exchangers. Special R&D was conducted for these components at CERN and ASIPP in support of their designs. In particular several mock-ups were built and tested in room temperature gas to measure the dynamic pressure drop and compare to 3D CFD models.

  2. Lower hybrid current drive at ITER-relevant high plasma densities

    International Nuclear Information System (INIS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Panaccione, L.; Pericoli-Ridolfini, V.; Tuccillo, A. A.; Tudisco, O.; Calabro, G.

    2009-01-01

    Recent experiments indicated that a further non-inductive current, besides bootstrap, should be necessary for developing advanced scenario for ITER. The lower hybrid current drive (LHCD) should provide such tool, but its effectiveness was still not proved in operations with ITER-relevant density of the plasma column periphery. Progress of the LH deposition modelling is presented, performed considering the wave physics of the edge, and different ITER-relevant edge parameters. Operations with relatively high edge electron temperatures are expected to reduce the LH || spectral broadening and, consequently, enabling the LH power to propagate also in high density plasmas ( || is the wavenumber component aligned to the confinement magnetic field). New results of FTU experiments are presented, performed by following the aforementioned modeling: they indicate that, for the first time, the LHCD conditions are established by operating at ITER-relevant high edge densities.

  3. Progress in physics basis and its impact on ITER

    International Nuclear Information System (INIS)

    Shimada, M.; Campbell, D.; Stambaugh, R.; Ide, S.; Kamada, Y.; Leonard, A.; Polevoi, A.; Mukhovatov, V.; Costley, A.E.; Gribov, Y.; Oikawa, T.; Sugihara, M.; Asakura, N.; Donne, A.J.H.; Doyle, E.J.; Federici, G.; Kukushkin, A.S.; Gormezano, C.; Gruber, O.; Houlberg, W.; Lipschultz, B.; Medvedev, S.

    2005-01-01

    This paper summarises recent progress in the physics basis and its impact on the expected performance of ITER. Significant progress has been made in many outstanding issues and in the development of hybrid and steady state operation scenarios, leading to increased confidence of achieving ITER's goals. Experiments show that tailoring the current profile can improve confinement over the standard H-mode and allow an increase in beta up to the no-wall limit at safety factors ∼ 4. Extrapolation to ITER suggests that at the reduced plasma current of ∼ 12MA, high Q > 10 and long pulse (>1000 s) operation is possible with benign ELMs. Analysis of disruption scenarios has been performed based on guidelines on current quench rates and halo currents, derived from the experimental database. With conservative assumptions, estimated electromagnetic forces on the in-vessel components are below the design target values, confirming the robustness of the ITER design against disruption forces. (author)

  4. Towards operations on Tore Supra of an ITER relevant inspection robot and associated processes

    International Nuclear Information System (INIS)

    Gargiulo, L.; Cordier, J.J.; Friconneau, J.P.; Grisolia, C.; Palmer, J.D.; Perrot, Y.; Samaille, F.

    2007-01-01

    The aim of the project is to demonstrate on Tore Supra the reliability of a multi-purpose in-vessel remote handling inspection system using a long reach, limited payload carrier. The robot prototype is fully representative of the deployment carrier system that could be required on ITER. The demonstration on Tore Supra will help in the understanding of operation issues that could occur in the tokamak vacuum vessel equipped of actively cooled components. The viewing process that is currently under development will allow close inspection of the Tore Supra plasma facing components that are representative of the ITER divertor targets in terms of confined environment and identification of possible tiles failure of CFC carbon tiles. One of the other potential inspection processes that is foreseen to be tested using the AIA carrier in Tore Supra is the laser ablation system of the CFC armour. It could be fully relevant for the ITER wall detritiation issues. Such process can be simulated on Tore Supra through the deuterium inventory under long-time plasma discharges. The in situ leakage localisation of a damaged plasma facing component is also one of the major ITER maintenance challenges that could use remote handling inspection tools

  5. Towards operations on Tore Supra of an ITER relevant inspection robot and associated processes

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, L. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France)], E-mail: laurent.gargiulo@cea.fr; Cordier, J.J. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France); Friconneau, J.P. [CEA-LIST Robotics and Interactive Systems Unit, BP6 F-92265 Fontenay aux Roses Cedex (France); Grisolia, C. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France); Palmer, J.D. [EFDA CSU, Max-Planck-Institut fuer Plasma Physik Boltzmannstr. 2, D-85748 Garching (Germany); Perrot, Y. [CEA-LIST Robotics and Interactive Systems Unit, BP6 F-92265 Fontenay aux Roses Cedex (France); Samaille, F. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France)

    2007-10-15

    The aim of the project is to demonstrate on Tore Supra the reliability of a multi-purpose in-vessel remote handling inspection system using a long reach, limited payload carrier. The robot prototype is fully representative of the deployment carrier system that could be required on ITER. The demonstration on Tore Supra will help in the understanding of operation issues that could occur in the tokamak vacuum vessel equipped of actively cooled components. The viewing process that is currently under development will allow close inspection of the Tore Supra plasma facing components that are representative of the ITER divertor targets in terms of confined environment and identification of possible tiles failure of CFC carbon tiles. One of the other potential inspection processes that is foreseen to be tested using the AIA carrier in Tore Supra is the laser ablation system of the CFC armour. It could be fully relevant for the ITER wall detritiation issues. Such process can be simulated on Tore Supra through the deuterium inventory under long-time plasma discharges. The in situ leakage localisation of a damaged plasma facing component is also one of the major ITER maintenance challenges that could use remote handling inspection tools.

  6. Feasibility study of the cut and weld operations by RH on the cooling pipes of ITER NB components

    Energy Technology Data Exchange (ETDEWEB)

    Pineiro, Oscar; Fernandez, Carlos [TECNATOM Avda. Montes de Oca 28700 S Sebastian de los Reyes, Madrid (Spain); Medrano, Mercedes [EURATOM-CIEMAT Association for Fusion. Avda. Complutense, 22. 28040 Madrid (Spain)], E-mail: mercedes.medrano@ciemat.es; Liniers, Macarena; Botija, Jose; Alonso, Javier; Sarasola, Xabier [EURATOM-CIEMAT Association for Fusion. Avda. Complutense, 22. 28040 Madrid (Spain); Damiani, Carlo [EFDA-Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2009-06-15

    The maintenance operations of ITER NB components inside the vessel - Beam Line Components (BLC's) involve the removal of the faulty component, its transport to the hot cell as well as the reverse operations of transport of the repaired/new component and its reinstallation inside the vessel. Prior to the removal of the BLC's the cooling pipes must be detached from the component following a procedure that applies to the cutting of the pipes and subsequent welding when the component is re-installed. The purpose of this study, conducted in the framework of EFDA, is to demonstrate the feasibility of the cut and weld operations on the water pipes of the BLC's using fully remote handling techniques. Viable technologies for the cut and weld operations have been identified within the study; in particular the following aspects will be presented in the paper: - Different strategies can be pursued in the detachment of the components depending on the number of cut and weld operations to be performed on the pipes. The selected strategy will impact on the procedure to be followed likewise on important aspects as the requirements of the flexible joints assembled on the pipes. - The existing cutting techniques have been examined in the light of the remotely performed pipe cutting at the NB cell. Modifications of commercial tools have been proposed in order to adapt them to the BLC's pipes requirements. The debris produced during the cutting process must be controlled and collected, therefore a cleaning system has been integrated in the adapted cutting tool referred above. - The existing welding techniques have been also examined and compared based on different criteria such as complexity, reliability, alignment tolerances, etc. TIG welding is the preferred technique as it stands out for its superior performance. The commercial tools identified need to be adapted to the NB environment. - The alignment of the pipes is a critical issue concerning the remote welding

  7. Feasibility study of the cut and weld operations by RH on the cooling pipes of ITER NB components

    International Nuclear Information System (INIS)

    Pineiro, Oscar; Fernandez, Carlos; Medrano, Mercedes; Liniers, Macarena; Botija, Jose; Alonso, Javier; Sarasola, Xabier; Damiani, Carlo

    2009-01-01

    The maintenance operations of ITER NB components inside the vessel - Beam Line Components (BLC's) involve the removal of the faulty component, its transport to the hot cell as well as the reverse operations of transport of the repaired/new component and its reinstallation inside the vessel. Prior to the removal of the BLC's the cooling pipes must be detached from the component following a procedure that applies to the cutting of the pipes and subsequent welding when the component is re-installed. The purpose of this study, conducted in the framework of EFDA, is to demonstrate the feasibility of the cut and weld operations on the water pipes of the BLC's using fully remote handling techniques. Viable technologies for the cut and weld operations have been identified within the study; in particular the following aspects will be presented in the paper: - Different strategies can be pursued in the detachment of the components depending on the number of cut and weld operations to be performed on the pipes. The selected strategy will impact on the procedure to be followed likewise on important aspects as the requirements of the flexible joints assembled on the pipes. - The existing cutting techniques have been examined in the light of the remotely performed pipe cutting at the NB cell. Modifications of commercial tools have been proposed in order to adapt them to the BLC's pipes requirements. The debris produced during the cutting process must be controlled and collected, therefore a cleaning system has been integrated in the adapted cutting tool referred above. - The existing welding techniques have been also examined and compared based on different criteria such as complexity, reliability, alignment tolerances, etc. TIG welding is the preferred technique as it stands out for its superior performance. The commercial tools identified need to be adapted to the NB environment. - The alignment of the pipes is a critical issue concerning the remote welding. A proper alignment

  8. Summary of the eleventh meeting of the ITER diagnostic expert group

    International Nuclear Information System (INIS)

    Costley, A.E.; Donne, A.J.H.

    1999-01-01

    The main technical objectives of the meeting were (i) to review and update the measurement capabilities to meet the anticipated needs of the ITER-FEAT; (ii) to review the progress and plans in meeting the goals of the voluntary R and D tasks; and (iii) to hear reports of ITER relevant diagnostic developments

  9. iterClust: a statistical framework for iterative clustering analysis.

    Science.gov (United States)

    Ding, Hongxu; Wang, Wanxin; Califano, Andrea

    2018-03-22

    In a scenario where populations A, B1 and B2 (subpopulations of B) exist, pronounced differences between A and B may mask subtle differences between B1 and B2. Here we present iterClust, an iterative clustering framework, which can separate more pronounced differences (e.g. A and B) in starting iterations, followed by relatively subtle differences (e.g. B1 and B2), providing a comprehensive clustering trajectory. iterClust is implemented as a Bioconductor R package. andrea.califano@columbia.edu, hd2326@columbia.edu. Supplementary information is available at Bioinformatics online.

  10. Japanese perspective of fusion nuclear technology from ITER to DEMO

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Takatsu, Hideyuki

    2007-01-01

    The world fusion community is now launching construction of ITER, the first nuclear-grade fusion machine in the world. In parallel to the ITER program, Broader Approach (BA) activities are to be initiated in this year by EU and Japan, mainly at Rokkasho BA site in Japan, as complementary activities to ITER toward DEMO. The BA activities include IFMIFEVEDA (International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities) and DEMO design activities with generic technology R and Ds, both of which are critical to the rapid development of DEMO and commercial fusion power plants. The Atomic Energy Commission of Japan reviewed on-going third phase fusion program and issued the results of the review, 'On the policy of Nuclear Fusion Research and Development' in November 2005. In this report, it is anticipated that the ITER will be made operational in a decade and the programmatic objective can be met in the succeeding seven or eight years. Under this condition, the report presents a roadmap toward the DEMO and beyond and R and D items on fusion nuclear technology, indispensable for fusion energy utilization, are re-aligned. In the present paper, Japanese view and policy on ITER and beyond is summarized mainly from the viewpoints of nuclear fusion technology, and a minimum set of R and D elements on fusion nuclear technology, essential for fusion energy utilization, is presented. (orig.)

  11. The ITER EC H and CD Upper Launcher: Maintenance concepts

    International Nuclear Information System (INIS)

    Ronden, D.M.S.; Baar, M. de; Chavan, R.; Elzendoorn, B.S.Q.; Grossetti, G.; Heemskerk, C.J.M.; Koning, J.F.; Landis, J.-D.; Spaeh, P.; Strauss, D.

    2013-01-01

    Highlights: ► We explain how an overall maintenance strategy defines individual maintenance tasks. ► Concepts are presented for replacement strategies of the in-vessel optical components. ► Vertical placement of the Upper Launcher in the Hot Cell may simplify maintenance. -- Abstract: Maintenance of the ITER EC H and CD Upper Launcher (UL) shall be performed through the use of Remote Handling (RH) in the ITER Hot Cell Facility (HCF). The UL design will have to be fully compliant with ITER RH maintenance requirements and the set of RH tooling and services available in the HCF. This paper describes the development of an overall maintenance strategy for the UL, starting from a listing of all conceivable maintenance operations, including hands-on tasks. Components for which design concepts are discussed in this paper are the Blanket Shield Module (BSM), the steering mirror (M4), the mid optics (M1, M2) and the waveguide (WG) feed-through plate. Aspects related to RH documentation, overall maintenance strategy and design concepts for optimizing the maintainability of the UL are presented

  12. Pediatric 320-row cardiac computed tomography using electrocardiogram-gated model-based full iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Shirota, Go; Maeda, Eriko; Namiki, Yoko; Bari, Razibul; Abe, Osamu [The University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo (Japan); Ino, Kenji [The University of Tokyo Hospital, Imaging Center, Tokyo (Japan); Torigoe, Rumiko [Toshiba Medical Systems, Tokyo (Japan)

    2017-10-15

    Full iterative reconstruction algorithm is available, but its diagnostic quality in pediatric cardiac CT is unknown. To compare the imaging quality of two algorithms, full and hybrid iterative reconstruction, in pediatric cardiac CT. We included 49 children with congenital cardiac anomalies who underwent cardiac CT. We compared quality of images reconstructed using the two algorithms (full and hybrid iterative reconstruction) based on a 3-point scale for the delineation of the following anatomical structures: atrial septum, ventricular septum, right atrium, right ventricle, left atrium, left ventricle, main pulmonary artery, ascending aorta, aortic arch including the patent ductus arteriosus, descending aorta, right coronary artery and left main trunk. We evaluated beam-hardening artifacts from contrast-enhancement material using a 3-point scale, and we evaluated the overall image quality using a 5-point scale. We also compared image noise, signal-to-noise ratio and contrast-to-noise ratio between the algorithms. The overall image quality was significantly higher with full iterative reconstruction than with hybrid iterative reconstruction (3.67±0.79 vs. 3.31±0.89, P=0.0072). The evaluation scores for most of the gross structures were higher with full iterative reconstruction than with hybrid iterative reconstruction. There was no significant difference between full and hybrid iterative reconstruction for the presence of beam-hardening artifacts. Image noise was significantly lower in full iterative reconstruction, while signal-to-noise ratio and contrast-to-noise ratio were significantly higher in full iterative reconstruction. The diagnostic quality was superior in images with cardiac CT reconstructed with electrocardiogram-gated full iterative reconstruction. (orig.)

  13. Pediatric 320-row cardiac computed tomography using electrocardiogram-gated model-based full iterative reconstruction

    International Nuclear Information System (INIS)

    Shirota, Go; Maeda, Eriko; Namiki, Yoko; Bari, Razibul; Abe, Osamu; Ino, Kenji; Torigoe, Rumiko

    2017-01-01

    Full iterative reconstruction algorithm is available, but its diagnostic quality in pediatric cardiac CT is unknown. To compare the imaging quality of two algorithms, full and hybrid iterative reconstruction, in pediatric cardiac CT. We included 49 children with congenital cardiac anomalies who underwent cardiac CT. We compared quality of images reconstructed using the two algorithms (full and hybrid iterative reconstruction) based on a 3-point scale for the delineation of the following anatomical structures: atrial septum, ventricular septum, right atrium, right ventricle, left atrium, left ventricle, main pulmonary artery, ascending aorta, aortic arch including the patent ductus arteriosus, descending aorta, right coronary artery and left main trunk. We evaluated beam-hardening artifacts from contrast-enhancement material using a 3-point scale, and we evaluated the overall image quality using a 5-point scale. We also compared image noise, signal-to-noise ratio and contrast-to-noise ratio between the algorithms. The overall image quality was significantly higher with full iterative reconstruction than with hybrid iterative reconstruction (3.67±0.79 vs. 3.31±0.89, P=0.0072). The evaluation scores for most of the gross structures were higher with full iterative reconstruction than with hybrid iterative reconstruction. There was no significant difference between full and hybrid iterative reconstruction for the presence of beam-hardening artifacts. Image noise was significantly lower in full iterative reconstruction, while signal-to-noise ratio and contrast-to-noise ratio were significantly higher in full iterative reconstruction. The diagnostic quality was superior in images with cardiac CT reconstructed with electrocardiogram-gated full iterative reconstruction. (orig.)

  14. Design issues and cost implications of RTO/RC-ITER divertor

    International Nuclear Information System (INIS)

    Ibbott, C.; Antipenkov, A.; Chiocchio, S.; Federici, G.; Heidl, H.; Janeschitz, G.; Martin, E.; Tivey, R.

    2000-01-01

    This paper reports on the conceptual divertor design developed for the reduced technical objectives/reduced cost-international thermonuclear experimental reactor (RTO/RC-ITER). The cost drivers are discussed and a number of cost-reducing measures identified. Scaled costs, based on industrial estimates of the 1998 ITER design (Technical Basis for the ITER Final Design Report, Cost Review and Safety Analysis (FDR). ITER EDA Documentation Series No. 16. IAEA, Vienna, 1998), give for the RTO/RC-ITER ∼60% of the FDR costs. Plasma facing components (PFCs) account for 75% of the total divertor costs. Hence, PFC design simplifications are outlined in the paper showing the possibility of achieving a cost reduction of 50%. The design proposals, outlined in the paper, focus on minimising the number of sub-components and simplifying the manufacturing cycle. These changes contribute to improved reliability based on a more robust coolant design layout. The reduced space allocated to the divertor (G. Janeschitz, A. Antipenkov, V. Barabash, S. Chiocchio, G. Federici, C. Ibbott, E. Martin, R. Tivey, Overview of the Divertor Design and its Integration into RTO/RC-ITER, this conference) requires changes to the design that minimise the cassette body thickness, relocate the cassette attachments and revise the remote handling philosophy. Results of supporting electro-magnetic, neutron shielding, thermo-hydraulic and pumping conductance analyses are reported, qualifying the cassette design. A reduction in the coolant inlet temperature to 100-120 deg. C is discussed in terms of thermal-hydraulic performance and fatigue life of the heat sink. Finally, an R and D plan sets out the work needed: (1) to develop the cost saving measures of the new design; and (2) to demonstrate the reliability of the chosen technologies

  15. Development of ITER 3D neutronics model and nuclear analyses

    International Nuclear Information System (INIS)

    Zeng, Q.; Zheng, S.; Lu, L.; Li, Y.; Ding, A.; Hu, H.; Wu, Y.

    2007-01-01

    ITER nuclear analyses rely on the calculations with the three-dimensional (3D) Monte Carlo code e.g. the widely-used MCNP. However, continuous changes in the design of the components require the 3D neutronics model for nuclear analyses should be updated. Nevertheless, the modeling of a complex geometry with MCNP by hand is a very time-consuming task. It is an efficient way to develop CAD-based interface code for automatic conversion from CAD models to MCNP input files. Based on the latest CAD model and the available interface codes, the two approaches of updating 3D nuetronics model have been discussed by ITER IT (International Team): The first is to start with the existing MCNP model 'Brand' and update it through a combination of direct modification of the MCNP input file and generation of models for some components directly from the CAD data; The second is to start from the full CAD model, make the necessary simplifications, and generate the MCNP model by one of the interface codes. MCAM as an advanced CAD-based MCNP interface code developed by FDS Team in China has been successfully applied to update the ITER 3D neutronics model by adopting the above two approaches. The Brand model has been updated to generate portions of the geometry based on the newest CAD model by MCAM. MCAM has also successfully performed conversion to MCNP neutronics model from a full ITER CAD model which is simplified and issued by ITER IT to benchmark the above interface codes. Based on the two updated 3D neutronics models, the related nuclear analyses are performed. This paper presents the status of ITER 3D modeling by using MCAM and its nuclear analyses, as well as a brief introduction of advanced version of MCAM. (authors)

  16. Overview and status of ITER Cryostat manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Anil K., E-mail: anil.bhardwaj@iter-india.org [ITER-India, Institute For Plasma Research, A-29, GIDC Electronics Estate, Sector-25, Gandhinagar 382016 (India); Gupta, Girish; Prajapati, Rajnikant; Joshi, Vaibhav; Patel, Mitul; Bhavsar, Jagrut; More, Vipul; Jindal, Mukesh; Bhattacharya, Avik; Jogi, Gourav; Palaliya, Amit; Jha, Saroj; Pandey, Manish; Shukla, Dileep [ITER-India, Institute For Plasma Research, A-29, GIDC Electronics Estate, Sector-25, Gandhinagar 382016 (India); Iyer, Ganesh; Jadhav, Pandurang; Goyal, Dipesh; Desai, Anish [Larsen & Toubro Limited, Heavy Engineering, Hazira Manufacturing Complex, Gujarat (India); Sekachev, I.; Vitupier, Guillaume [ITER Organization, Route de Vinon sur Verdon – CS 90046, 13067 Saint Paul Lez Durance Cedex (France); and others

    2016-11-01

    Highlights: • Manufacturing status of one of the largest and the heaviest fully welded stainless steel vacuum chambers in the world (ITER Cryostat). • Overview of manufacturing stages and its segmentation. • Overview of manufacturing procedures and assembly and installation. - Abstract: One of ITER-India's commitments to the ITER Organization is procurement of the ITER Cryostat. It is a large vacuum vessel (∼29 m dia. and ∼29 m height), which is made up of 304/304 L dual marked stainless steel and has a total mass over 3500 t. The thickness of the vessel wall varies from 50 mm to 190 mm. It is one of the largest and the heaviest fully welded stainless steel vacuum chambers in the world which provides vacuum thermal insulation for the superconducting magnets operating at 4.5 K and for the thermal shield operating at 80 K. It also mechanically supports the magnet system along with the vacuum vessel (VV). The cryostat is designed and constructed according to ASME Section-VIII Division-2 with additional ITER Vacuum Handbook requirements and it is classified as protection important component (PIC-2). Manufacturing of cryostat segments is ongoing in India; sub-assembly of four major sections of the cryostat from the segments will be done at the ITER site in a temporary workshop building and the final assembly will be done in the pit of the tokamak building, the final location. The cryostat manufacturing contract has been awarded to Larsen and Toubro Limited in August 2012 after completion of design [4] and signing of Procurement Arrangement [1] with ITER Organization. Manufacturing of the cryostat was started in January 2014 after approval of the manufacturing drawings and procedures. The temporary workshop of 44 m × 110 m × 26 m in height has been completed in November 2014 at the ITER site with a 200 t crane installed. This paper gives an overview and the status of the cryostat manufacturing.

  17. Expected energy fluxes onto ITER Plasma Facing Components during disruption thermal quenches from multi-machine data comparisons

    International Nuclear Information System (INIS)

    Loarte, A.; Andrew, P.; Matthews, G.F.; Paley, J.; Riccardo, V.; Counsell, G.; Eich, T.; Fuchs, C.; Gruber, O.; Herrmann, A.; Pautasso, G.; Federici, G.; Finken, K.H.; Maddaluno, G.; Whyte, D.

    2005-01-01

    A comparison of the power flux characteristics during the thermal quench of plasma disruptions among various tokamak experiments has been carried out and conclusions for ITER have been drawn. It is generally observed that the energy of the plasma at the thermal quench is much smaller than that of a full performance plasma. The timescales for power fluxes onto PFCs during the thermal quench, as determined by IR measurements, are found to scale with device size but not to correlate with pre-disruptive plasma characteristics. The profiles of the thermal quench power fluxes are very broad for diverted discharges, typically a factor of 5-10 broader than that measured during 'normal' plasma operation, while for limiter discharges this broadening is absent. The combination of all the above factors is used to derive the expected range of power fluxes on the ITER divertor target during the thermal quench. The new extrapolation derived in this paper indicates that the average disruption in ITER will deposit an energy flux approximately one order of magnitude lower than previously thought. The evaluation of the ITER divertor lifetime with these revised specifications is carried out. (author)

  18. Design of ITER-FEAT RF heating and current drive systems

    International Nuclear Information System (INIS)

    Bosia, G.; Kobayashi, N.; Ioki, K.; Bibet, P.; Koch, R.; Chavan, R.; Tran, M.Q.; Takahashi, K.; Kuzikov, S.; Vdovin, V.

    2001-01-01

    Three radio frequency (RF) heating and current drive (H and CD) systems are being designed for ITER-FEAT: an electron cyclotron (EC), an ion cyclotron (IC) and a lower hybrid (LH) System. The launchers of the RF systems use four ITER equatorial ports and are fully interchangeable. They feature equal power outputs (20 MW/port), similar neutron shielding performance, and identical interfaces with the other machine components. An outline of the design is given in the paper. (author)

  19. Structural analysis for the joint of the ITER ELM coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shanwen, E-mail: zhangshanwen123@163.com [College of Mechanical Engineering Yangzhou University, Yangzhou 225127 (China); Song, Yuntao; Wang, Zhongwei; Ji, Xiang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Zhang, Jianfeng [College of Mechanical Engineering Yangzhou University, Yangzhou 225127 (China)

    2017-01-15

    Highlights: • The FE sub-model method is feasible and rapid for the joint design. • The components meet the static and fatigue criteria. • Nuclear heat is the key factor for the joint design. - Abstract: The joint is an important component of the Edge Localized Modes (ELM) coils in fusion reactor, which is used to connect the ELM coils. Like the ELM coils, the joints work in an environment with high radiation levels, high temperature and high magnetic field. These joints are mainly subject to nuclear heat from the plasma and cyclic electromagnetic (EM) loads induced by the interaction of ELM coil current with magnetic fields. Take the joint of ITER ELM coil for example. In order to assure the structural integrity of joints under these loads, it is necessary to estimate the strength and fatigue of the joints. As a local model, the joint without ELM coil is investigated by the sub-model method. Results show that the finite element sub-model method is feasible and rapid for the joint design. The maximum magnetic flux intensity occurs in the axial direction for the joint local reference, which parallels with the current and corresponds to the toroidal direction of the ITER. The two areas at the top of the Inconel sleeve appear high temperature. For the joint, the conductor, jacket and sleeve can meet the static and fatigue criteria and the joint design is valid and feasible. The thermal load from the nuclear heat is the key factor for the joint design.

  20. Results of an integration study of a diagnostics port plug in ITER

    International Nuclear Information System (INIS)

    Salasca, Sophie; Cantone, Bruno; Grosman, André; Esposito, Basilio; Moro, Fabio; Morocco, Daniele; Villari, Rosaria; Angelone, Maurizio; Rincon, Esther; Hidalgo, Carlos; Nagy, Daniel; Kocsis, Gabor; Varela, Paulo; Porempovics, Gabor; Perrollaz, Guillaume; Patel, Kunal; Krivchenkov, Yuri; Walsh, Michael

    2013-01-01

    Highlights: ► An extensive study on the integration of diagnostics in a port plug of ITER has been performed. ► It has shown that the diagnostic performances could not be reached if their number was not decreased. ► A design of Diagnostic Shield Modules has been validated through mechanical and thermal analyses. ► These analyses have confirmed that the highest loads are concentrated in the vicinity of the plasma. -- Abstract: Diagnostics in ITER are mandatory to characterize the parameters of plasma and study its interactions with plasma-facing components. Diagnostics components in the vicinity of the plasma are supported by metallic structures called port plugs. At the tokamak mid-plane, these components are installed in port plugs through intermediate structures called drawers. Apart from hosting the diagnostics, the port plugs act as shielding against neutrons and gammas, in order to limit the nuclear loads in crucial components (such as diagnostics and superconducting coils) as well as the dose levels in the controlled zones of the tokamak. The radiation shielding function of the port plugs is ensured through an optimized mixture of heavy metallic materials and water, forming shielding blocks surrounding the diagnostics and called Diagnostic Shield Modules (DSMs). These DSMs constitute the rear part of the drawers (the front part being composed of the Diagnostic First Wall). This paper presents the main results of a study performed in Europe on the integration of a particular diagnostics port plug, the Equatorial Port Plug 1 (EPP1). The paper first provides the results of the EPP1 diagnostics integration analysis. In a second step it focuses on the design of the EPP1 DSMs and summarizes the major results of a thorough set of analyses aiming at studying the DSMs behaviour under different loads, suggesting recommendations to improve their current design

  1. ITER implementation and fusion energy research in China

    International Nuclear Information System (INIS)

    Zhao, Jing; Feng, Zhaoliang; Yang, Changchun

    2015-01-01

    ITER Project is jointly implemented by China, EU, India, Japan, Korea, Russian Federation and USA, under the coordination of Center Team of ITER International Fusion Energy Organization (IO-CT). Chinese fusion research related institutes and industrial enterprises are fully involved in the implementation of China contribution to the project under the leadership of ITER China Domestic Agency (CN-DA), together with IO-CT. The progresses of Procurement Packages (PA) allocated to China and the technical issues, especially on key technology development and schedule, QA/QC issues, are highlighted in this report. The specific enterprises carrying out different PAs are identified in order to make the increasing international manufactures and producers to ITER PAs know each other well for the successful implementation of ITER project. The participation of China to the management of IO-CT is also included, mainly from the governmental aspect and staff recruited from China. On the other hand, the domestic fusion researches, including upgrade of EAST, HL-2A Tokamaks in China, TBM program, the next step design activities for fusion energy power plant, namely, CFETR and training in this area, are also introduced for global cooperation for international fusion community. (author)

  2. ITER Organization - 2012 Annual Report, 2012 Financial Statements

    International Nuclear Information System (INIS)

    2013-01-01

    In its first part, this report gives an overview of the main activities and events regarding the ITER organization, the ITER project baseline, the construction of seismic foundations, the licensing decree in France, the procurement arrangements, the manufacturing of the ITER vacuum vessel, the research and development for prototype development, the management of member contributions in France, the creation of new positions as far as staffing is concerned. The second part presents the various highlights for the year and by department: Office of the Director-General, Legal Affairs, International Audit, ITER Council Secretariat, Bureau of International Cooperation, Department for ITER Project (Directorate for Central Integration and Engineering, Directorate for Tokamak, Directorate for CODAC, Heating and Diagnostics, Directorate for Buildings and Site Infrastructure, Directorate for Central Engineering and Plant, Directorate for Plasma Operation), Department for Safety Quality and Security, Department for Administration). The next parts contain tables and charts which present staffing and financial data, presentations of procurement highlights and data for domestic agencies (China, Europe, India, Japan, Korea, Russia, USA) in terms of R and D and manufacturing, of contracts. The last part presents and comments the financial statements for 2012

  3. Selenium enrichment on Cordyceps militaris link and analysis on its main active components.

    Science.gov (United States)

    Dong, Jing Z; Lei, C; Ai, Xun R; Wang, Y

    2012-03-01

    To investigate the effects of selenium on the main active components of Cordyceps militaris fruit bodies, selenium-enriched cultivation of C. militaris and the main active components of the fruit bodies were studied. Superoxide dismutase (SOD) activity and contents of cordycepin, cordycepic acid, and organic selenium of fruit bodies were sodium selenite concentration dependent; contents of adenosine and cordycep polysaccharides were significantly enhanced by adding sodium selenite in the substrates, but not proportional to sodium selenite concentrations. In the cultivation of wheat substrate added with 18.0 ppm sodium selenite, SOD activity and contents of cordycepin, cordycepic acid, adenosine, cordycep polysaccharides, and total amino acids were enhanced by 121/145%, 124/74%, 325/520%, 130/284%, 121/145%, and 157/554%, respectively, compared to NS (non-selenium-cultivated) fruit bodies and wild Cordyceps sinensis; organic selenium contents of fruit bodies reached 6.49 mg/100 g. So selenium-enriched cultivation may be a potential way to produce more valuable medicinal food as a substitute for wild C. sinensis.

  4. Status of Design and Manufacturing of ITER 1st batch Assembly Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jin Ho; Nam, Kyoun Go; Chung, Si Kun; Ha, Min Su [ITER Korea National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Geun Hong [ITER Organization, St Paul lez Durance (France)

    2016-05-15

    The ITER tokamak assembly tools are purpose-built and specially designed to complete the ITER tokamak machine which includes; Vacuum Vessel (VV), VV Thermal Shield (VVTS), Toroidal Field Coil (TFC) and other components contained in the cryostat. KODA has carried out the preliminary and final design of these assembly tools. This paper shows that the current status, first quarter of the 2016, including manufacturing of ITER 1st batch assembly tools and briefly summarized the design process through design work of Sector Sub-assembly Tool (SSAT) that is most important tool representing ITER 1st batch assembly tools. KODA (Korea Domestic Agency) should provide 128 kinds of the purpose-built assembly tools for ITER Tokamak machine, and the ITER 1st batch assembly tools are split into 3 groups. The FDR for Group A was performed in December 2014, and design of SSAT has been verified by FE analysis and engineering calculation using EN cords. The SSAT is now under manufacturing phase to meet the ITER milestone. After factory acceptance test of SSAT on end of 2016, the 1st SSAT will be delivered and arrived in ITER site on second quarter of the 2017.

  5. Status of the ITER EDA

    International Nuclear Information System (INIS)

    Aymar, R.

    1999-01-01

    This article summarises progress made in the ITER Design Activities between October 1998 and February 1999. The three main focusses of the activity were on design work, on R and D work and on the physics basis. The consequences of diminishing financial funds and personnel are discussed and the state of the individual R and D projects is given briefly

  6. Tritium behavior in ITER beryllium

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-10-01

    The beryllium neutron multiplier in the ITER breeding blanket will generate tritium through transmutations. That tritium constitutes a safety hazard. Experiments evaluating tritium storage and release mechanisms have shown that most of the tritium comes out in a burst during thermal ramping. A small fraction of retained tritium is released by thermally activated processes. Analysis of recent experimental data shows that most of the tritium resides in helium bubbles. That tritium is released when the bubbles undergo swelling sufficient to develop porosity that connects with the surface. That appears to occur when swelling reaches about 10--15%. Other tritium appears to be stored chemically at oxide inclusions, probably as Be(OT) 2 . That component is released by thermal activation. There is considerable variation in published values for tritium diffusion through the beryllium and solubility in it. Data from experiments using highly irradiated beryllium from the Idaho National Engineering Laboratory showed diffusivity generally in line with the most commonly accepted values for fully dense material. Lower density material, planned for use in the ITER blanket may have very short diffusion times because of the open structure. The beryllium multiplier of the ITER breeding blanket was analyzed for tritium release characteristics using temperature and helium production figures at the midplane generated in support of the ITER Summer Workshop, 1990 in Garching. Ordinary operation, either in Physics or Technology phases, should not result in the release of tritium trapped in the helium bubbles. Temperature excursions above 600 degree C result in large-scale release of that tritium. 29 refs., 10 figs., 3 tabs

  7. Engineering design of the ITER Collective Thomson Scattering diagnostic. Contract EFDA 06-1478

    International Nuclear Information System (INIS)

    Michelsen, P.K.; Furtula, V.; Korsholm, S.B.; Leipold, F.; Meo, F.; Salewski, M.; Bindslev, H.; Lauritzen, B.; Lucas, M.; Nonboel, E.

    2009-12-01

    This report describes the work done under EFDA contract 06-1478 (EFDA Ref.: TW6-TPDS-DIASUP10). The main part of the work has been focused on: 1) An outline plan for the full development of the CTS diagnostic for ITER, including specifications for future design tasks on the system and R and D tasks on critical components. 2) An engineering design and test in a blanket mock-up of the frontend quasi-optical High Field Side (HFS) antenna system,. 3) Some considerations on the waveguide mounting. 4) Neutronics and thermo-elastic calculations on nuclear and radiative heating of the first mirror required to provide input to the engineering design. 5) An engineering design of the front-end quasi-optical components for the Low Field Side (LFS) system in the port plug. 6) A discussion on possible calibration methods. (author)

  8. Design and rescue scenario of common repair equipment for in-vessel components in ITER hot cell

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Takeda, Nobukazu; Nakahira, Masataka; Shibanuma, Kiyoshi

    2006-06-01

    Transportation of the in-vessel components to be repaired in the ITER hot cell is carried by two kinds of transporters, i.e., overhead cranes and floor vehicles. The access area for repair operations in the hot cell is duplicated by these transporters. Clear sharing of the respective roles of these transporters with the minimum duplication is therefore useful for rationalization. The overhead cranes, which are independently installed in the respective cells in the hot sell, cannot pass through the components to be repaired between cells, i.e., receiving cell and refurbishment cell as an example. If the floor vehicle with simple mechanisms can cover the inaccessible area for the overhead cranes, a global transporter system in the hot cell will be simplified and the reliability will be increased. Based on this strategy, the overhead crane and floor vehicle concepts are newly proposed. The overhead crane has an adapter for change of the end-effectors, which can be easily changed, to grasp many kinds of components to be repaired. The floor vehicle, which is equipped with wheel mechanisms for transportation, is just to pass through the components between cells with only straight (linear) motion on the floor. The simple wheel mechanism can solve the spread of the dust, which is the critical issue of the original air bearing mechanism for traveling in the 2001 FDR design. Rescue scenarios and procedures in the hot cell are also studied in this report. The proposed rescue crane has major two functions for rescue operations of the hot cell facility, i.e., one for the overhead crane and the other for refurbishment equipment such as workstation for divertor repair. The rescue of the faulty overhead crane is carried out using the rescue tool installed on the rescue crane or directly traveled by pushing/pulling by the rescue crane after docking on the faulty overhead crane. For the rescue of the workstation, the rescue crane consists of a telescopic manipulator (maximum length

  9. Preliminary neutronic assessments for the development of the VIS/IR diagnostic systems located in the ITER EPP

    International Nuclear Information System (INIS)

    Palermo, Iole; Mota, Fernando; Rios, Luis; Catalán, Juan Pablo; Alonso, Javier; Ibarra, Angel

    2015-01-01

    Graphical abstract: - Highlights: • Neutronic and activation calculations for the VIS/IR ITER diagnostic. • Studied if silver could be used as a covering material for the Interspace components. • Determined the irradiation time in a gamma facility to test the vacuum window. • Neutron and gamma dose rate maps in the Port Area for proposed substrate and coatings. - Abstract: The paper focuses on the nuclear analyses of the ITER Equatorial Port Visible/Infrared Wide Angle Viewing System (VIS/IR WAVS). This instrument comprises of viewing systems in the 4 Equatorial Ports (EP) 3, 9, 12 and 17. The main mission of this diagnostic is to support the operation of the tokamak by providing visible and infrared viewing and temperature data of the first wall to protect it from damage. Its design is driven by both the tokamak severe environment and the high performances required for machine protection. New nuclear studies have been carried out for the development of the diagnostic and for test purposes under ITER-like irradiation conditions in order to choose the most appropriate materials for the optical components. Thus, three neutronic analyses have been carried out: the first in order to verify if silver could be used as a covering material for the optical components in different location of the Interspace area; the second in order to establish the irradiation time required in a Co-60 gamma facility (at CIEMAT) for testing purposes of the sapphire vacuum window; and the third to give more detailed specifications for the irradiation campaigns under gamma (in the Co-60 facility) and neutrons (at SCK·CEN BR2 reactor), about the time required to achieve the same dose than the one accumulated in ITER at the end-of-life (EOL) in the different components of the Port Area for the materials proposed as substrate and coatings. The neutronic and activation calculations have been performed using the Monte Carlo code MCNP5, the activation code ACAB and the cross section

  10. Preliminary neutronic assessments for the development of the VIS/IR diagnostic systems located in the ITER EPP

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Iole, E-mail: iole.palermo@ciemat.es [CIEMAT, Fusion National Laboratory, Av. Complutense 40, E-28040 Madrid (Spain); Mota, Fernando; Rios, Luis [CIEMAT, Fusion National Laboratory, Av. Complutense 40, E-28040 Madrid (Spain); Catalán, Juan Pablo [UNED, Department of Energy Engineering, c/ Juan del Rosal 12, E-28040 Madrid (Spain); Alonso, Javier; Ibarra, Angel [CIEMAT, Fusion National Laboratory, Av. Complutense 40, E-28040 Madrid (Spain)

    2015-11-15

    Graphical abstract: - Highlights: • Neutronic and activation calculations for the VIS/IR ITER diagnostic. • Studied if silver could be used as a covering material for the Interspace components. • Determined the irradiation time in a gamma facility to test the vacuum window. • Neutron and gamma dose rate maps in the Port Area for proposed substrate and coatings. - Abstract: The paper focuses on the nuclear analyses of the ITER Equatorial Port Visible/Infrared Wide Angle Viewing System (VIS/IR WAVS). This instrument comprises of viewing systems in the 4 Equatorial Ports (EP) 3, 9, 12 and 17. The main mission of this diagnostic is to support the operation of the tokamak by providing visible and infrared viewing and temperature data of the first wall to protect it from damage. Its design is driven by both the tokamak severe environment and the high performances required for machine protection. New nuclear studies have been carried out for the development of the diagnostic and for test purposes under ITER-like irradiation conditions in order to choose the most appropriate materials for the optical components. Thus, three neutronic analyses have been carried out: the first in order to verify if silver could be used as a covering material for the optical components in different location of the Interspace area; the second in order to establish the irradiation time required in a Co-60 gamma facility (at CIEMAT) for testing purposes of the sapphire vacuum window; and the third to give more detailed specifications for the irradiation campaigns under gamma (in the Co-60 facility) and neutrons (at SCK·CEN BR2 reactor), about the time required to achieve the same dose than the one accumulated in ITER at the end-of-life (EOL) in the different components of the Port Area for the materials proposed as substrate and coatings. The neutronic and activation calculations have been performed using the Monte Carlo code MCNP5, the activation code ACAB and the cross section

  11. Service life monitoring of the main components at the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Hahn, J.; Vincour, D.

    2007-01-01

    Knowledge and experience gained from the introduction and periodical implementation of life assessment of the major components of the Temelin nuclear power plant is summarized. The initial Soviet technical design of the plant did not incorporate lifetime monitoring and evaluation, therefore it was completed with demonstrative strength and lifetime calculations from Czech companies. Moreover, a Westinghouse primary circuit diagnosis and monitoring system, including the monitoring of temperature and pressure cycles for low-cycle fatigue evaluation, was installed at the plant. The DIALIFE code for the calculation of mainly the low-cycle fatigue of the key pressure components, was developed and installed subsequently as a superstructure to the monitoring system. (author)

  12. RF modeling of the ITER-relevant lower hybrid antenna

    International Nuclear Information System (INIS)

    Hillairet, J.; Ceccuzzi, S.; Belo, J.; Marfisi, L.; Artaud, J.F.; Bae, Y.S.; Berger-By, G.; Bernard, J.M.; Cara, Ph.; Cardinali, A.; Castaldo, C.; Cesario, R.; Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hoang, G.T.

    2011-01-01

    In the frame of the EFDA task HCD-08-03-01, a 5 GHz Lower Hybrid system which should be able to deliver 20 MW CW on ITER and sustain the expected high heat fluxes has been reviewed. The design and overall dimensions of the key RF elements of the launcher and its subsystem has been updated from the 2001 design in collaboration with ITER organization. Modeling of the LH wave propagation and absorption into the plasma shows that the optimal parallel index must be chosen between 1.9 and 2.0 for the ITER steady-state scenario. The present study has been made with n || = 2.0 but can be adapted for n || = 1.9. Individual components have been studied separately giving confidence on the global RF design of the whole antenna.

  13. Conceptual design of ITER shielding blanket

    International Nuclear Information System (INIS)

    Sato, Satoshi; Takatsu, Hideyuki; Kurasawa, Toshimasa

    1995-03-01

    The present report summarizes the design activities of the ITER first wall and shielding blanket conducted by the JA Home Team during this year (1994) in close contact with the JCT, and reported during the four Technical Meetings held at Garching ITER Co-center. These activities are based on the Task Agreement between the JCT and the JA Home Team. In the present report, a layered configuration composed of separate first walls, modular-type blanket modules and separate back plates has been proposed to realize reliable assembly and maintenance schemes as well as to realize reliable component designs under high surface heat loads, high neutron wall loading and electromagnetic loads during disruptions. Outline of the structural design, consideration on fabricability and maintainability, and the results of thermal, mechanical and electromagnetic analyses are described. (author)

  14. Preliminary RAMI analysis of DFLL TBS for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dagui [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230031 (China); Yuan, Run [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Wang, Jiaqun, E-mail: jiaqun.wang@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Wang, Fang; Wang, Jin [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2016-11-15

    Highlights: • We performed the functional analysis of the DFLL TBS. • We performed a failure mode analysis of the DFLL TBS. • We estimated the reliability and availability of the DFLL TBS. • The ITER RAMI approach was applied to the DFLL TBS for technical risk control in the design phase. - Abstract: ITER is the first fusion machine fully designed to prove the physics and technological basis for next fusion power plants. Among the main technical objectives of ITER is to test and validate design concepts of tritium breeding blankets relevant to the fusion power plants. To achieve this goal, China has proposed the dual functional lithium-lead test blanket module (DFLL TBM) concept design. The DFLL TBM and its associated ancillary system were called DFLL TBS. The DFLL TBS play a key role in next fusion reactor. In order to ensure reliable and available of DFLL TBS, the risk control project of DFLL TBS has been put on the schedule. As the stage of the ITER technical risk control policy, the RAMI (Reliability, Availability, Maintainability, Inspectability) approach was used to control the technical risk of ITER. In this paper, the RAMI approach was performed on the conceptual design of DFLL TBS. A functional breakdown was prepared on DFLL TBS, and the system was divided into 3 main functions and 72 basic functions. Based on the result of functional breakdown of DFLL TBS, the reliability block diagrams were prepared to estimate the reliability and availability of each function under the stipulated operating conditions. The inherent availability of the DFLL TBS expected after implementation of mitigation actions was calculated to be 98.57% over 2 years based on the ITER reliability database. A Failure Modes Effects and Criticality Analysis (FMECA) was performed with criticality charts highlighting the risk level of the different failure modes with regard to their probability of occurrence and their effects on the availability.

  15. Design study of ITER-like divertor target for DEMO

    International Nuclear Information System (INIS)

    Crescenzi, Fabio; Bachmann, C.; Richou, M.; Roccella, S.; Visca, E.; You, J.-H.

    2015-01-01

    Highlights: • ‘DEMO’ is a near-term Power Plant Conceptual Study (PPCS). • The ITER-like design concept represents a promising solution also for DEMO plasma facing units. • The optimization of PFUs aims to enhance the thermo-mechanical behaviour of the component. • The optimized geometry was evaluated by ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). - Abstract: A near-term water-cooled target solution has to be evaluated together with the required technologies and its power exhaust limit under ‘DEMO’ conditions. The ITER-like design concept based on the mono-block technology using W as armour material and the CuCrZr-IG as structural material with an interlayer of pure copper represents a promising solution also for DEMO. This work reports the design study of an “optimized” ITER-like Water Cooled Divertor able to withstand a heat flux of 10 MW m"−"2, as requested for DEMO operating conditions. The optimization of plasma facing unit (PFU) aims to enhance the thermo-mechanical behaviour of the component by varying some geometrical parameters (monoblock size, interlayer thickness and, tube diameter and thickness). The optimization was performed by means of the multi-variable optimization algorithms using the FEM code ANSYS. The coolant hydraulic conditions (inlet pressure, temperature and velocity) were fixed for simplicity. This study is based on elastic analysis and 3 dimensional modelling. The resulting optimized geometry was evaluated on the basis of the ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). The margin to the critical heat flux (CHF) was also estimated. Further design study (taking into account the effect of neutron radiation on the material properties) together with mock-up fabrication and high-heat-flux (HHF) tests are foreseen in next work programmes.

  16. Design study of ITER-like divertor target for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Crescenzi, Fabio, E-mail: fabio.crescenzi@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Bachmann, C. [EFDA, Power Plant Physics and Technology, Boltzmannstraße 2, 85748 Garching (Germany); Richou, M. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Roccella, S.; Visca, E. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); You, J.-H. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • ‘DEMO’ is a near-term Power Plant Conceptual Study (PPCS). • The ITER-like design concept represents a promising solution also for DEMO plasma facing units. • The optimization of PFUs aims to enhance the thermo-mechanical behaviour of the component. • The optimized geometry was evaluated by ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). - Abstract: A near-term water-cooled target solution has to be evaluated together with the required technologies and its power exhaust limit under ‘DEMO’ conditions. The ITER-like design concept based on the mono-block technology using W as armour material and the CuCrZr-IG as structural material with an interlayer of pure copper represents a promising solution also for DEMO. This work reports the design study of an “optimized” ITER-like Water Cooled Divertor able to withstand a heat flux of 10 MW m{sup −2}, as requested for DEMO operating conditions. The optimization of plasma facing unit (PFU) aims to enhance the thermo-mechanical behaviour of the component by varying some geometrical parameters (monoblock size, interlayer thickness and, tube diameter and thickness). The optimization was performed by means of the multi-variable optimization algorithms using the FEM code ANSYS. The coolant hydraulic conditions (inlet pressure, temperature and velocity) were fixed for simplicity. This study is based on elastic analysis and 3 dimensional modelling. The resulting optimized geometry was evaluated on the basis of the ITER SDC-IC criteria and in terms of low cycle fatigue (LCF). The margin to the critical heat flux (CHF) was also estimated. Further design study (taking into account the effect of neutron radiation on the material properties) together with mock-up fabrication and high-heat-flux (HHF) tests are foreseen in next work programmes.

  17. ITER council proceedings: 2000

    International Nuclear Information System (INIS)

    2001-01-01

    No ITER Council Meetings were held during 2000. However, two ITER EDA Meetings were held, one in Tokyo, January 19-20, and one in Moscow, June 29-30. The parties participating in these meetings were those that partake in the extended ITER EDA, namely the EU, the Russian Federation, and Japan. This document contains, a/o, the records of these meetings, the list of attendees, the agenda, the ITER EDA Status Reports issued during these meetings, the TAC (Technical Advisory Committee) reports and recommendations, the MAC Reports and Advice (also for the July 1999 Meeting), the ITER-FEAT Outline Design Report, the TAC Reports and Recommendations both meetings), Site requirements and Site Design Assumptions, the Tentative Sequence of technical Activities 2000-2001, Report of the ITER SWG-P2 on Joint Implementation of ITER, EU/ITER Canada Proposal for New ITER Identification

  18. Status of the ITER construction preparation

    International Nuclear Information System (INIS)

    Holtkamp, N.; Janeschitz, G.

    2007-01-01

    ITER as an organization has been established officially on Nov 21st 2006. Together with the creation of this international body the participating countries and the ITER International Organization have committed to a construction schedule of about 10 years under a fixed budget. ITER for the first time should bring together reactor-grade plasma and current technology, in an attempt to see how a viable energy source can be built. Apart from the scientific challenge, ITER will be the first mega-science project that is to be build under an ''in-kind'' arrangement in which contributions from the collaborating countries are given in terms of ready-to-install subsystems for the facility and only to a small extent in cash. The main engineering challenge is to turn the existing designs into procurement packages that can be executed within the countries on time, while ensuring an integrated design. In addition maintaining some flexibility in the layout to respond to changes in understanding as the device operates is key to every scientific endeavour. The current ITER design was completed in 2001, and a number of changes have been proposed since then. A design review process is underway to address outstanding design issues, to identify any new ones, to integrate solutions, and to ensure that the schedule and objectives can be met. This involves the expertise of the ITER Project Team, along with experts from the participating countries, and will focus initially on long lead items and related basic systems to provide a framework for later procurements. In addition to the above, the paper will address the status of the adaptation to the Cadarache site near Aix-en-Provence, the licensing process of the nuclear facility within France, and will show the construction progress. (orig.)

  19. The ITER tritium systems

    International Nuclear Information System (INIS)

    Glugla, M.; Antipenkov, A.; Beloglazov, S.; Caldwell-Nichols, C.; Cristescu, I.R.; Cristescu, I.; Day, C.; Doerr, L.; Girard, J.-P.; Tada, E.

    2007-01-01

    ITER is the first fusion machine fully designed for operation with equimolar deuterium-tritium mixtures. The tokamak vessel will be fuelled through gas puffing and pellet injection, and the Neutral Beam heating system will introduce deuterium into the machine. Employing deuterium and tritium as fusion fuel will cause alpha heating of the plasma and will eventually provide energy. Due to the small burn-up fraction in the vacuum vessel a closed deuterium-tritium loop is required, along with all the auxiliary systems necessary for the safe handling of tritium. The ITER inner fuel cycle systems are designed to process considerable and unprecedented deuterium-tritium flow rates with high flexibility and reliability. High decontamination factors for effluent and release streams and low tritium inventories in all systems are needed to minimize chronic and accidental emissions. A multiple barrier concept assures the confinement of tritium within its respective processing components; atmosphere and vent detritiation systems are essential elements in this concept. Not only the interfaces between the primary fuel cycle systems - being procured through different Participant Teams - but also those to confinement systems such as Atmosphere Detritiation or those to fuelling and pumping - again procured through different Participant Teams - and interfaces to buildings are calling for definition and for detailed analysis to assure proper design integration. Considering the complexity of the ITER Tritium Plant configuration management and interface control will be a challenging task

  20. Perl Modules for Constructing Iterators

    Science.gov (United States)

    Tilmes, Curt

    2009-01-01

    The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.

  1. Single image super-resolution based on approximated Heaviside functions and iterative refinement

    Science.gov (United States)

    Wang, Xin-Yu; Huang, Ting-Zhu; Deng, Liang-Jian

    2018-01-01

    One method of solving the single-image super-resolution problem is to use Heaviside functions. This has been done previously by making a binary classification of image components as “smooth” and “non-smooth”, describing these with approximated Heaviside functions (AHFs), and iteration including l1 regularization. We now introduce a new method in which the binary classification of image components is extended to different degrees of smoothness and non-smoothness, these components being represented by various classes of AHFs. Taking into account the sparsity of the non-smooth components, their coefficients are l1 regularized. In addition, to pick up more image details, the new method uses an iterative refinement for the residuals between the original low-resolution input and the downsampled resulting image. Experimental results showed that the new method is superior to the original AHF method and to four other published methods. PMID:29329298

  2. GCS component development cycle

    Science.gov (United States)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos; Pi, Marti

    2012-09-01

    The GTC1 is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). First light was at 13/07/2007 and since them it is in the operation phase. The GTC control system (GCS) is a distributed object & component oriented system based on RT-CORBA8 and it is responsible for the management and operation of the telescope, including its instrumentation. GCS has used the Rational Unified process (RUP9) in its development. RUP is an iterative software development process framework. After analysing (use cases) and designing (UML10) any of GCS subsystems, an initial component description of its interface is obtained and from that information a component specification is written. In order to improve the code productivity, GCS has adopted the code generation to transform this component specification into the skeleton of component classes based on a software framework, called Device Component Framework. Using the GCS development tools, based on javadoc and gcc, in only one step, the component is generated, compiled and deployed to be tested for the first time through our GUI inspector. The main advantages of this approach are the following: It reduces the learning curve of new developers and the development error rate, allows a systematic use of design patterns in the development and software reuse, speeds up the deliverables of the software product and massively increase the timescale, design consistency and design quality, and eliminates the future refactoring process required for the code.

  3. Consolidation of HIP bonding technologies for the ITER first wall panels

    International Nuclear Information System (INIS)

    Sherlock, P.; Peacock, A.; Roedig, M.

    2006-01-01

    Over the last decade alternative technologies for the manufacture of the ITER first wall have been progressively developed. Now, as the build of ITER approaches, the manufacturing route is being consolidated around the best solutions found to date. The design of the first wall is based on the concept of blanket modules, each faced by separable first wall panels. For the manufacture of the first wall panels two HIP bonding technologies are proposed by AMEC NNC; the first to bond together the composite copper alloy / stainless steel heat sink base, the second to bond the beryllium tiles to the copper alloy surface of the heat sink base. These technologies have been developed incrementally through the use of experiments, part scale mock-ups and full scale first wall panel prototypes. This paper reviews the development of the HIP bonding technologies identified above and discusses the latest results from components produced by AMEC NNC under the auspices of EFDA. The manufacturing stages, non-destructive examination and heat flux test results from the work are presented for the latest first wall mock-up components. Conclusions are then drawn with regard to the important aspects for the series production of components for ITER. (author)

  4. Progress on the ITER ECRH upper launcher steering mirror identification and control

    International Nuclear Information System (INIS)

    Collazos, Andres; Bertizzolo, Robert; Chavan, Rene; Dolizy, Frederic; Felici, Federico; Henderson, Mark A.; Landis, Jean-Daniel; Sanchez, Francisco

    2009-01-01

    The main objective of the ITER ECRH upper launcher (UL) is to control magnetohydrodynamic activity, in particular neoclassical tearing modes (NTMs), by driving several MW of EC current near the q = 1, 3/2, 2 flux surfaces, where NTMs are expected to occur. The steering of the EC power is done by the steering mechanism assembly (SMA) that comprises a reflecting mirror and a frictionless and backlash free pneumo-mechanical system actuated with pressurised helium gas. The control requirements for this component in terms of steering accuracy and speed are reviewed. With respect to these requirements, the performance of the first SMA prototype is assessed in a mock up of the UL pneumatic configuration. The expected design characteristics of the SMA have been verified and an overall satisfactory performance has been assessed. Furthermore, the main challenges for the future work, such as the pressure and angular position control, have been identified.

  5. ITER Council proceedings: 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Records of the third ITER Council Meeting (IC-3), held on 21-22 April 1993, in Tokyo, Japan, and the fourth ITER Council Meeting (IC-4) held on 29 September - 1 October 1993 in San Diego, USA, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA), such as the text of the draft of Protocol 2 further elaborated in ''ITER EDA Agreement and Protocol 2'' (ITER EDA Documentation Series No. 5), recommendations on future work programmes: a description of technology R and D tasks; the establishment of a trust fund for the ITER EDA activities; arrangements for Visiting Home Team Personnel; the general framework for the involvement of other countries in the ITER EDA; conditions for the involvement of Canada in the Euratom Contribution to the ITER EDA; and other attachments as parts of the Records of Decision of the aforementioned ITER Council Meetings

  6. ITER council proceedings: 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Records of the third ITER Council Meeting (IC-3), held on 21-22 April 1993, in Tokyo, Japan, and the fourth ITER Council Meeting (IC-4) held on 29 September - 1 October 1993 in San Diego, USA, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA), such as the text of the draft of Protocol 2 further elaborated in ``ITER EDA Agreement and Protocol 2`` (ITER EDA Documentation Series No. 5), recommendations on future work programmes: a description of technology R and D tastes; the establishment of a trust fund for the ITER EDA activities; arrangements for Visiting Home Team Personnel; the general framework for the involvement of other countries in the ITER EDA; conditions for the involvement of Canada in the Euratom Contribution to the ITER EDA; and other attachments as parts of the Records of Decision of the aforementioned ITER Council Meetings.

  7. Electromagnetic study on HCCR TBM for ITER major disruption scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Duck Young; Lee, Youngmin; Cho, Seungyon; Ahn, Muyoung [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) has been developed in Korea in order to experiment a breeding blanket module in ITER. This TBM will verify the feasibility of tritium self-sufficiency in reactor and the extraction of high-grade heat suitable for electricity generation. Since various loads such as seismic load, electromagnetic (EM) load and heat load significantly affect the soundness of the TBM, a variety of analyses were carried out for design optimization. The EM load is particularly one of main design drivers because large amount of magnetic energy in the plasma are transferred to in-vessel components including the TBM during plasma disruption. Because the TBM is located in equatorial port, major disruption (MD) among various plasma disruption scenarios causes the largest EM loads on the TBM.

  8. Electromagnetic study on HCCR TBM for ITER major disruption scenarios

    International Nuclear Information System (INIS)

    Ku, Duck Young; Lee, Youngmin; Cho, Seungyon; Ahn, Muyoung

    2014-01-01

    Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) has been developed in Korea in order to experiment a breeding blanket module in ITER. This TBM will verify the feasibility of tritium self-sufficiency in reactor and the extraction of high-grade heat suitable for electricity generation. Since various loads such as seismic load, electromagnetic (EM) load and heat load significantly affect the soundness of the TBM, a variety of analyses were carried out for design optimization. The EM load is particularly one of main design drivers because large amount of magnetic energy in the plasma are transferred to in-vessel components including the TBM during plasma disruption. Because the TBM is located in equatorial port, major disruption (MD) among various plasma disruption scenarios causes the largest EM loads on the TBM

  9. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  10. Progress in licensing ITER in Cadarache

    International Nuclear Information System (INIS)

    Rodriguez-Rodrigo, Lina; Girard, Jean-Philippe; Uzan-Elbez, Joelle; Marbach, Gabriel; Garin, Pascal; Rosanvallon, Sandrine

    2005-01-01

    The licensing procedure for ITER in Europe in the framework of the French regulations is a non-prescriptive approach based on a continuous dialogue between the nuclear installation owner (or its representative) and the safety authority. In this paper, the licensing procedure and main safety issues, which are being studied in this process, are presented

  11. The General Iterative Methods for Asymptotically Nonexpansive Semigroups in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Rabian Wangkeeree

    2012-01-01

    Full Text Available We introduce the general iterative methods for finding a common fixed point of asymptotically nonexpansive semigroups which is a unique solution of some variational inequalities. We prove the strong convergence theorems of such iterative scheme in a reflexive Banach space which admits a weakly continuous duality mapping. The main result extends various results existing in the current literature.

  12. LIDAR TS for ITER core plasma. Part I: layout & hardware

    Science.gov (United States)

    Salzmann, H.; Gowers, C.; Nielsen, P.

    2017-12-01

    The original time-of-flight design of the Thomson scattering diagnostic for the ITER core plasma has been shown up by ITER. This decision was justified by insufficiencies of some of the components. In this paper we show that with available, present day technology a LIDAR TS system is feasible which meets all the ITER specifications. As opposed to the conventional TS system the LIDAR TS also measures the high field side of the plasma. The optical layout of the front end has been changed only little in comparison with the latest one considered by ITER. The main change is that it offers an optical collection without any vignetting over the low field side. The throughput of the system is defined only by the size and the angle of acceptance of the detectors. This, in combination with the fact that the LIDAR system uses only one set of spectral channels for the whole line of sight, means that no absolute calibration using Raman or Rayleigh scattering from a non-hydrogen isotope gas fill of the vessel is needed. Alignment of the system is easy since the collection optics view the footprint of the laser on the inner wall. In the described design we use, simultaneously, two different wavelength pulses from a Nd:YAG laser system. Its fundamental wavelength ensures measurements of 2 keV up to more than 40 keV, whereas the injection of the second harmonic enables measurements of low temperatures. As it is the purpose of this paper to show the technological feasibility of the LIDAR system, the hardware is considered in Part I of the paper. In Part II we demonstrate by numerical simulations that the accuracy of the measurements as required by ITER is maintained throughout the given plasma parameter range. The effect of enhanced background radiation in the wavelength range 400 nm-500 nm is considered. In Part III the recovery of calibration in case of changing spectral transmission of the front end is treated. We also investigate how to improve the spatial resolution at the

  13. ITER-FEAT safety

    International Nuclear Information System (INIS)

    Gordon, C.W.; Bartels, H.-W.; Honda, T.; Raeder, J.; Topilski, L.; Iseli, M.; Moshonas, K.; Taylor, N.; Gulden, W.; Kolbasov, B.; Inabe, T.; Tada, E.

    2001-01-01

    Safety has been an integral part of the design process for ITER since the Conceptual Design Activities of the project. The safety approach adopted in the ITER-FEAT design and the complementary assessments underway, to be documented in the Generic Site Safety Report (GSSR), are expected to help demonstrate the attractiveness of fusion and thereby set a good precedent for future fusion power reactors. The assessments address ITER's radiological hazards taking into account fusion's favourable safety characteristics. The expectation that ITER will need regulatory approval has influenced the entire safety design and assessment approach. This paper summarises the ITER-FEAT safety approach and assessments underway. (author)

  14. Analytical Formulation for Sizing and Estimating the Dimensions and Weight of Wind Turbine Hub and Drivetrain Components

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Parsons, T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, K. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Veers, P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-06-09

    This report summarizes the theory, verification, and validation of a new sizing tool for wind turbine drivetrain components, the Drivetrain Systems Engineering (DriveSE) tool. DriveSE calculates the dimensions and mass properties of the hub, main shaft, main bearing(s), gearbox, bedplate, transformer if up-tower, and yaw system. The level of fi¬ delity for each component varies depending on whether semiempirical parametric or physics-based models are used. The physics-based models have internal iteration schemes based on system constraints and design criteria. Every model is validated against available industry data or finite-element analysis. The verification and validation results show that the models reasonably capture primary drivers for the sizing and design of major drivetrain components.

  15. Recent progress in R&D for long pulse and ultra-high voltage components for the ITER HNB

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Mieko, E-mail: kashiwagi.mieko@jaea.go.jp; Umeda, Naotaka; Kojima, Atsushi; Yoshida, Masafumi; Tobari, Hiroyuki; Dairaku, Masayuki; Yamanaka, Haruhiko; Maejima, Tetsuya; Yamashita, Yasuo; Shibata, Naoki; Watanabe, Kazuhiro; Hanada, Masaya

    2015-10-15

    Highlights: • Long-pulse acceleration of MeV-class ion beams is demonstrated in JAEA. • The pulse length is extended from 0.4 s to 60 s, successfully. • R&D of 1 MV power supply is in progressed as scheduled. • Feasibility of 1 MV insulating transformer is confirmed in the mockup. - Abstract: Toward ITER, the long-pulse acceleration of MeV-class negative ion beams has been successfully demonstrated and R&Ds and the procurement of high-voltage components of 1 MV power supply system have been progressed. In the accelerator development after the production of 1 MeV beams, an extraction grid, where a water cooling is reinforced and the beam is steered by aperture offset to suppress grid heat loads, has been newly developed to extend the pulse duration of the MeV-class beams. As the result, a total grid heat load has been reduced from 20% to 10% of the total beam power. The beam pulse was successfully increased from 0.4 s to 60 s at 0.68 MeV, 100 A/m{sup 2} and 12 s at 0.89 MeV, 156 A/m{sup 2} beams. As for the procurement of the 1 MV power supply system, 1 MV insulating transformer as the critical component has been developed. In the mock-up, a dc 1.2 MV for 1 h with the margin of 20% was stably sustained. Through the R&Ds of the critical components, design of five power supplies procured by JAEA has been finalized, and out of which a testing power supply has been completed in June 2014.

  16. Industrial opportunities on the International Thermonuclear Experimental Reactor (ITER) project

    International Nuclear Information System (INIS)

    Ellis, W.R.

    1996-01-01

    Industry has been a long-term contributor to the magnetic fusion program, playing a variety of important roles over the years. Manufacturing firms, engineering-construction companies, and the electric utility industry should all be regarded as legitimate stakeholders in the fusion energy program. In a program focused primarily on energy production, industry's future roles should follow in a natural way, leading to the commercialization of the technology. In a program focused primarily on science and technology, industry's roles, in the near term, should be, in addition to operating existing research facilities, largely devoted to providing industrial support to the International Thermonuclear Experimental Reactor (ITER) Project. Industrial opportunities on the ITER Project will be guided by the amount of funding available to magnetic fusion generally, since ITER is funded as a component of that program. The ITER Project can conveniently be discussed in terms of its phases, namely, the present Engineering Design Activities (EDA) phase, and the future (as yet not approved) construction phase. 2 refs., 3 tabs

  17. Modelling and computer simulation for the manufacture by powder HIPing of Blanket Shield components for ITER

    International Nuclear Information System (INIS)

    Gillia, O.; Bucci, Ph.; Vidotto, F.; Leibold, J.-M.; Boireau, B.; Boudot, C.; Cottin, A.; Lorenzetto, P.; Jacquinot, F.

    2006-01-01

    In components of blanket modules for ITER, intricate cooling networks are needed in order to evacuate all heat coming from the plasma. Hot Isostatic Pressing (HIPing) technology is a very convenient method to produce near net shape components with complex cooling network through massive stainless steel parts by bonding together tubes inserted in grooves machined in bulk stainless steel. Powder is often included in the process so as to release difficulties arising with gaps closure between tube and solid part or between several solid parts. In the mean time, it releases the machining precision needed on the parts to assemble before HIP. However, inserting powder in the assembly means densification, i.e. volume change of powder during the HIP cycle. This leads to global and local shape changes of HIPed parts. In order to control the deformations, modelling and computer simulation are used. This modelling and computer simulation work has been done in support to the fabrication of a shield prototype for the ITER blanket. Problems such as global bending of the whole part and deformations of tubes in their powder bed are addressed. It is important that the part does not bend too much. It is important as well to have circular tube shape after HIP, firstly in order to avoid their rupture during HIP but also because non destructive ultrasonic examination is needed to check the quality of the densification and bonding between tube and powder or solid parts; the insertions of a probe in the tubes requires a minimal circular tube shape. For simulation purposes, the behaviour of the different materials has to be modelled. Although the modelling of the massive stainless steel behaviour is not neglected, the most critical modelling is about power. For this study, a thorough investigation on the powder behaviour has been performed with some in-situ HIP dilatometry experiments and some interrupted HIP cycles on trial parts. These experiments have allowed the identification of a

  18. Fusion energy research for ITER and beyond

    International Nuclear Information System (INIS)

    Romanelli, Francesco; Laxaaback, Martin

    2011-01-01

    The achievement in the last two decades of controlled fusion in the laboratory environment is opening the way to the realization of fusion as a source of sustainable, safe and environmentally responsible energy. The next step towards this goal is the construction of the International Thermonuclear Experimental Reactor (ITER), which aims to demonstrate net fusion energy production on the reactor scale. This paper reviews the current status of magnetic confinement fusion research in view of the ITER project and provides an overview of the main remaining challenges on the way towards the realization of commercial fusion energy production in the second half of this century. (orig.)

  19. Damage to tungsten macro-brush targets under multiple ELM-like heat loads. Experiments vs. numerical simulations and extrapolation to ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.; Landman, I. [Forschungszentrum Karlsruhe (Germany). IHM; Janeschitz, G. [Forschungszentrum Karlsruhe (DE). Fusion EURATOM] (and others)

    2007-07-01

    Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto PFCs by multiple ELMs (about 104 ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. The expected energy heat loads on the ITER divertor during Type I ELM are in range 0.5-4 MJ/m{sup 2} in timescales of 0.3-0.6 ms. Tungsten macro-brush armour (W-brushes) is foreseen as one of plasma facing components (PFC) for ITER divertor and dome. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of W erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations validated against target erosion of the experiments at the plasma gun facility QSPA-T. Within the collaboration established between EU fusion programme and the Russian Federation, W-brush targets (produced either from pure tungsten or tungsten with 1% of La{sub 2}O{sub 3}) manufactured according to the EU specifications for the ITER divertor targets, have been exposed to multiple ITER ELM-like loads in plasma gun facilities at TRINITI in the range 0.5 - 2.2 MJ/m2 with pulse duration of 0.5 ms. The measured material erosion data have been used to validate the codes MEMOS and PHEMOBRID. Numerical simulations, including 3D-simulations (codes MEMOS and PHEMOBRID), carried out for the conditions of the QSPA-T experiments with heat loads in the range 0.5-2.2 MJ/m{sup 2} and the timescale 0.5 ms demonstrated a rather good agreement with the data obtained at the plasma gun facility QSPA: melting of brush edges at low heat loads, intense melt motion and bridge formation caused by the Rayleigh-Taylor instability at heat loads Q>1.3 MJ/m{sup 2}. The melt splashing generated by the Kelvin-Helmholtz, and Rayleigh

  20. Detailed Design and Fabrication Method of the ITER Vacuum Vessel Ports

    International Nuclear Information System (INIS)

    Hee-Jae Ahn; Kwon, T.H.; Hong, Y.S.

    2006-01-01

    The engineering design of the ITER vacuum vessel (VV) has been progressed by the ITER International Team (IT) with the cooperation of several participant teams (PT). The VV and ports are the components allocated to Korea for the construction of the ITER. Hyundai Heavy Industries has been involved in the structural analysis, detailed design and development of the fabrication method of the upper and lower ports within the framework of the ITER transitional arrangements (ITA). The design of the port structures has been investigated to validate and to improve the conceptual designs of the ITER IT and other PT. The special emphasis was laid on the flange joint between the port extension and the in-port plug to develop the design of the upper port. The modified design with a pure friction type flange with forty-eight pieces of bolts instead of the tangential key is recommended. Furthermore, the alternative flange designs developed by the ITER IT have been analyzed in detail to simplify the lip seal maintenance into the port flange. The structural analyses of the lower RH port have been also performed to verify the capacity for supporting the VV. The maximum stress exceeds the allowable value at the reinforcing block and basement. More elaborate local models have been developed to mitigate the stress concentration and to modify the component design. The fabrication method and the sequence of the detailed fabrication for the ports are developed focusing on the cost reduction as well as the simplification. A typical port structure includes a port stub, a stub extension and a port extension with a connecting duct. The fabrication sequence consists of surface treatment, cutting, forming, cleaning, welding, machining, and non-destructive inspection and test. Tolerance study has been performed to avoid the mismatch of each fabricated component and to obtain the suitable tolerances in the assembly at the shop and site. This study is based on the experience in the fabrication of

  1. On varitional iteration method for fractional calculus

    Directory of Open Access Journals (Sweden)

    Wu Hai-Gen

    2017-01-01

    Full Text Available Modification of the Das’ variational iteration method for fractional differential equations is discussed, and its main shortcoming involved in the solution process is pointed out and overcome by using fractional power series. The suggested computational procedure is simple and reliable for fractional calculus.

  2. Status of the 1 MeV Accelerator Design for ITER NBI

    Science.gov (United States)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.

    2011-09-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  3. Status of the 1 MeV Accelerator Design for ITER NBI

    International Nuclear Information System (INIS)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.

    2011-01-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D - at 1 MeV for 3600 sec. In order to realize the beam source, design and R and D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  4. Application of remote handling compatibility on ITER plant

    International Nuclear Information System (INIS)

    Sanders, S.; Rolfe, A.; Mills, S.F.; Tesini, A.

    2011-01-01

    The ITER plant will require fully remote maintenance during its operational life. For this to be effective, safe and efficient the plant will have to be developed in accordance with remote handling (RH) compatibility requirements. A system for ensuring RH compatibility on plant designed for Tokamaks was successfully developed and applied, inter alia, by the authors when working at the JET project. The experience gained in assuring RH compatibility of plant at JET is now being applied to RH relevant ITER plant. The methodologies required to ensure RH compatibility of plant include the standardization of common plant items, standardization of RH features, availability of common guidance on RH best practice and a protocol for design and interface review and approval. The protocol in use at ITER is covered by the ITER Remote Maintenance Management System (IRMMS) defines the processes and utilization of management controls including Plant Definition Forms (PDF), Task Definition Forms (TDFs) and RH Compatibility Assessment Forms (RHCA) and the ITER RH Code of Practice. This paper will describe specific examples where the authors have applied the methodology proven at JET to ensure remote handling compatibility on ITER plant. Examples studied are: ·ELM coils (to be installed in-vessel behind the Blanket Modules) - handling both in-vessel, in Casks and at the Hot Cell as well as fully remote installation and connection (mechanical and electrical) in-vessel. ·Neutral beam systems (in-vessel and in the NB Cell) - beam sources, cesium oven, beam line components (accessed in the NB Cell) and Duct Liner (remotely replaced from in-vessel). ·Divertor (in-vessel) - cooling pipe work and remotely operated electrical connector. The RH compatibility process can significantly affect plant design. This paper should therefore be of interest to all parties who develop ITER plant designs.

  5. Micro-particles in ITER: A comprehensive review

    International Nuclear Information System (INIS)

    Grisolia, C.; Rosanvallon, S.; Sharpe, Ph.; Winter, J.

    2009-01-01

    In a fusion reactor like ITER, in-vessel materials are subjected to interactions with the plasma. One of the main consequences of these plasma-material interactions is the creation of co-deposited layers. Due to internal stresses, part of these layers can crack leading to micro particle creation. The purpose of the following paper is to review the Tokamak operation processes which lead to erosion and layer creation. Then, the proportion of these layers that is converted into micro-particles will be evaluated in the case of Tore Supra experiments and extrapolated for ITER. It is major importance to measure the ITER mobilizable dusts present in the Vacuum Vessel and compare the measured quantity with the safety limits. When approaching these limits, removal systems must be used in order to control the in-vessel dust inventory. In the second part of the paper, diagnostics and removal system under development will be presented.

  6. Design progress of the VV sectors and ports towards the ITER construction

    International Nuclear Information System (INIS)

    Utin, Yu.; Ioki, K.; Bachmann, C.

    2007-01-01

    The ITER vacuum vessel (VV) is an all-welded torus-shaped double-wall structure with stiffening ribs between the shells. The VV main function is to provide the high-vacuum and primary confinement boundary. The vessel also supports in-vessel components such as the blanket modules and the divertor cassettes. Along with these components, the VV provides radiation shielding - the neutron heat is removed by water circulating between the shells. To satisfy the manufacture and assembly needs, the VV consists of nine sectors. To provide access inside the vessel for auxiliary plasma heating, diagnostics, vacuum pumping and other needs, the VV is equipped with upper, equatorial and lower ports. The upper and regular equatorial ports are occupied with the port plugs. In addition, there are three ports at the equatorial level dedicated for neutral beam (NB) injection. As the ITER construction phase approaches, the VV design has been improved and developed in more detail with the focus on improved manufacture and reduced cost. Based on achievements of manufacturing studies being performed in cooperation with industry, design improvement of the typical VV sector (1) has been nearly finalized. Design improvement of other sectors is in progress - in particular, of the VV sectors 2 and 3 which interface with the NB ports. For all sectors, the concept for the in-wall shielding has been improved and developed in more detail. The design progress of VV sectors 2-3 has been accompanied by progress in the NB port design (including the beam-facing components to handle the heat flux input of the neutral beams). Design of other port structures has also progressed. Thus, supporting and sealing components between the port plugs and the ports have been further developed with the focus on improved structural performance and maintenance. At the lower level, there are full-size ports, and the pipe feedthroughs and local small penetrations. Design of all port structures at this level has

  7. Interactive virtual mock-ups for Remote Handling compatibility assessment of heavy components

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhout, J. van, E-mail: j.vanoosterhout@differ.nl [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Heemskerk, C.J.M.; Koning, J.F. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk 6 (Netherlands); Ronden, D.M.S.; Baar, M. de [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-10-15

    Highlights: •Specific ITER components require RHCA on hardware mock-ups. •Hardware mock-ups are expensive and have a long lead time. •Interactive Virtual Reality mock-ups are readily available and easily adapted. •This paper analysis and proposes improvements to simulator capabilities. -- Abstract: ITER standards Tesini (2009) require hardware mock-ups to validate the Remote Handling (RH) compatibility of RH class 1- and critical class 2-components. Full-scale mock-ups of large ITER components are expensive, have a long lead time and lose their relevance in case of design changes. Interactive Virtual Reality simulations with real time rigid body dynamics and contact interaction allow for RH Compatibility Assessment during the design iterations. This paper explores the use of interactive virtual mock-ups to analyze the RH compatibility of heavy component handling and maintenance. It infers generic maintenance operations from the analysis and proposes improvements to the simulator capabilities.

  8. Interactive virtual mock-ups for Remote Handling compatibility assessment of heavy components

    International Nuclear Information System (INIS)

    Oosterhout, J. van; Heemskerk, C.J.M.; Koning, J.F.; Ronden, D.M.S.; Baar, M. de

    2014-01-01

    Highlights: •Specific ITER components require RHCA on hardware mock-ups. •Hardware mock-ups are expensive and have a long lead time. •Interactive Virtual Reality mock-ups are readily available and easily adapted. •This paper analysis and proposes improvements to simulator capabilities. -- Abstract: ITER standards Tesini (2009) require hardware mock-ups to validate the Remote Handling (RH) compatibility of RH class 1- and critical class 2-components. Full-scale mock-ups of large ITER components are expensive, have a long lead time and lose their relevance in case of design changes. Interactive Virtual Reality simulations with real time rigid body dynamics and contact interaction allow for RH Compatibility Assessment during the design iterations. This paper explores the use of interactive virtual mock-ups to analyze the RH compatibility of heavy component handling and maintenance. It infers generic maintenance operations from the analysis and proposes improvements to the simulator capabilities

  9. Mechanical design features and challenges for the ITER ICRH antenna

    Energy Technology Data Exchange (ETDEWEB)

    Borthwick, A. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)], E-mail: andy.borthwick@yahoo.co.uk; Agarici, G. [Fusion for Energy, Barcelona (Spain); Davis, A. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Dumortier, P.; Durodie, F. [LPP-ERM-KMS, Association EURATOM-Belgian State, Brussels (Belgium); Fanthome, J.; Hamlyn-Harris, C.; Hancock, A.D.; Lockley, D. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Mitteau, R. [Euratom-CEA Association, DSM/IRFM, CEA-Cadarache, 13108 St Paul lez Durance (France); Nightingale, M. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sartori, R. [Fusion for Energy, Barcelona (Spain); Vulliez, K. [Euratom-CEA Association, DSM/IRFM, CEA-Cadarache, 13108 St Paul lez Durance (France)

    2009-06-15

    The ITER Ion Cyclotron Resonant Heating (ICRH) antenna provides plasma heating at a power of 20 MW. Operation in the ITER environment imposes significant thermal power handling capability, structural integrity, shielding and operations requirements. The design will require a step change over any predecessor in terms of power, scale and complexity. This paper reports the main mechanical design features that address the challenges and often conflicting requirements during the conceptual design phase.

  10. Optimized iterative decoding method for TPC coded CPM

    Science.gov (United States)

    Ma, Yanmin; Lai, Penghui; Wang, Shilian; Xie, Shunqin; Zhang, Wei

    2018-05-01

    Turbo Product Code (TPC) coded Continuous Phase Modulation (CPM) system (TPC-CPM) has been widely used in aeronautical telemetry and satellite communication. This paper mainly investigates the improvement and optimization on the TPC-CPM system. We first add the interleaver and deinterleaver to the TPC-CPM system, and then establish an iterative system to iteratively decode. However, the improved system has a poor convergence ability. To overcome this issue, we use the Extrinsic Information Transfer (EXIT) analysis to find the optimal factors for the system. The experiments show our method is efficient to improve the convergence performance.

  11. ITER council proceedings: 1998

    International Nuclear Information System (INIS)

    1999-01-01

    This volume contains documents of the 13th and the 14th ITER council meeting as well as of the 1st extraordinary ITER council meeting. Documents of the ITER meetings held in Vienna and Yokohama during 1998 are also included. The contents include an outline of the ITER objectives, the ITER parameters and design overview as well as operating scenarios and plasma performance. Furthermore, design features, safety and environmental characteristics are given

  12. New methods of testing nonlinear hypothesis using iterative NLLS estimator

    Science.gov (United States)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper discusses the method of testing nonlinear hypothesis using iterative Nonlinear Least Squares (NLLS) estimator. Takeshi Amemiya [1] explained this method. However in the present research paper, a modified Wald test statistic due to Engle, Robert [6] is proposed to test the nonlinear hypothesis using iterative NLLS estimator. An alternative method for testing nonlinear hypothesis using iterative NLLS estimator based on nonlinear hypothesis using iterative NLLS estimator based on nonlinear studentized residuals has been proposed. In this research article an innovative method of testing nonlinear hypothesis using iterative restricted NLLS estimator is derived. Pesaran and Deaton [10] explained the methods of testing nonlinear hypothesis. This paper uses asymptotic properties of nonlinear least squares estimator proposed by Jenrich [8]. The main purpose of this paper is to provide very innovative methods of testing nonlinear hypothesis using iterative NLLS estimator, iterative NLLS estimator based on nonlinear studentized residuals and iterative restricted NLLS estimator. Eakambaram et al. [12] discussed least absolute deviation estimations versus nonlinear regression model with heteroscedastic errors and also they studied the problem of heteroscedasticity with reference to nonlinear regression models with suitable illustration. William Grene [13] examined the interaction effect in nonlinear models disused by Ai and Norton [14] and suggested ways to examine the effects that do not involve statistical testing. Peter [15] provided guidelines for identifying composite hypothesis and addressing the probability of false rejection for multiple hypotheses.

  13. Iter

    Science.gov (United States)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  14. Basic performance tests on vibration of support structure with flexible plates for ITER tokamak device

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Shibanuma, Kiyoshi

    2005-01-01

    The vibration experiments of the support structures with flexible plates for the ITER major components such as toroidal field coil (TF coil) and vacuum vessel (VV) were performed using small-sized flexible plates aiming to obtain its basic mechanical characteristics such as dependence of the stiffness on the loading angle. The experimental results obtained by the hammering and frequency sweep tests were agreed each other, so that the experimental method is found to be reliable. In addition, the experimental results were compared with the analytical ones in order to estimate an adequate analytical model for ITER support structure with flexible plates. As a result, the bolt connection of the flexible plates on the base plate strongly affected on the stiffness of the flexible plates. After studies of modeling the bolts, it is found that the analytical results modeling the bolts with finite stiffness only in the axial direction and infinite stiffness in the other directions agree well with the experimental ones. Using this adequate model, the stiffness of the support structure with flexible plates for the ITER major components can be calculated precisely in order to estimate the dynamic behaviors such as eigen modes and amplitude of deformation of the major components of the ITER tokamak device. (author)

  15. Organization of the ITER Project - Sharing of information and procurements

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1990-01-01

    Cooperation among the four countries to build a single experimental reactor would reduce the cost for each country and provide an international pool of scientific and engineering resources. Countries and Organizations participating in international agreements with the USA in fusion energy development are: Australia, Canada, European Community, IAEA, Soviet Union, Peoples Republic of China, Israel, Spain, Japan. ITER is expected to fully confirm the scientific feasibility and to address the technological feasibility of fusion power. Consequently, the machine must be designed for controlled ignition and extended burn of deuterium-tritium plasma. It must also demonstrate and perform integrated testing of components required to utilize fusion power for practical purposes. The goal of the Large Coil Task (LCT) was successfully accomplished its intended purpose (September 1987) and the world-wide participants in fusion research are reaping benefits from the multinational effort. ITER organization for conceptual design activity can be summarized as follows: Technical site for design effort at is placed in Garching, West Germany; ITER Council is responsible to IAEA for overall direction of activities; ITER Management Committee is responsible for execution of activities and manages work at Garching; ITER Scientific and Technical Advisory Committee consists of eminent scientists and engineers and advises the ITER council. Conceptual project schedule and cost are presented, with the basic principles related to task sharing and handling of intellectual property

  16. The ITER EC H and CD upper launcher: EM disruption analyses

    International Nuclear Information System (INIS)

    Vaccaro, A.; Aiello, G.; Grossetti, G.; Meier, A.; Scherer, T.A.; Schreck, S.; Späh, P.; Strauß, D.; Saibene, G.; Cavinato, M.

    2013-01-01

    In the frame of the new grant started in November 2011 between Fusion for Energy (F4E) and the ECHUL-CA consortium, the development process of the Electron Cyclotron Heating and Current Drive (EC H and CD) upper launcher (UL) in ITER has moved a step toward the final design phase. Based on the 2009 preliminary design review version, the new configuration of the UL now features a thicker single-wall mainframe (up to 90 mm), a recessed first wall panel (100 mm, to reduce the impact of halo currents) and a new arrangement of the internal shield blocks. The main design drivers for the structural components are still the electromagnetic (EM) loads, which need to be reassessed for the new configuration of the UL. In this paper the results of a new EM 20° sector model of ITER, specialized for the UL, are shown. Six different disruption scenarios are considered in this work: upward linear (36 ms) and exponential (36 ms) vertical displacement events (VDE), upward linear (36 ms) and exponential (16 ms) major disruptions (MD), category II upward slow and slow–fast VDEs. Comparing the analyses’ results allowed to define a set of structural loads to be used as a reference for the forthcoming structural calculations

  17. LSODKR, Stiff Ordinary Differential Equations (ODE) System Solver with Krylov Iteration with Root-finding

    International Nuclear Information System (INIS)

    Hindmarsh, A.C.; Petzold, L.R.

    2005-01-01

    1 - Description of program or function: LSODKR is a new initial value ODE solver for stiff and non-stiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, b) within the corrector iteration, LSODKR does automatic switching between functional (fix point) iteration and modified Newton iteration, The nonlinear iteration method-switching differs from the method-switching in LSODA and LSODAR, but provides similar savings by using the cheaper method in the non-stiff regions of the problem. c) LSODKR includes the ability to find roots of given functions of the solution during the integration. d) LSODKR also improves on the Krylov methods in LSODPK by offering the option to save and reuse the approximate Jacobian data underlying the pre-conditioner. The LSODKR source is commented extensively to facilitate modification. Both a single-precision version and a double-precision version are available. 2 - Methods: It is assumed that the ODEs are given explicitly, so that the system can be written in the form dy/dt = f(t,y), where y is the vector of dependent variables, and t is the independent variable. Integration is by Adams or BDF (Backward Differentiation Formula) methods, at user option. Corrector iteration is by Newton or fix point iteration, determined dynamically. Linear system solution is by a preconditioned Krylov iteration, selected by user from Incomplete Orthogonalization Method, Generalized Minimum Residual Method, and two variants of Preconditioned Conjugate Gradient Method. Preconditioning is to be supplied by the user

  18. ICP (ITER Collaborative Platform)

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, C.; Carayon, F.; Patel, V. [ITER, 13 - St. Paul-Lez Durance (France)

    2009-07-01

    The ITER organization has the necessity to manage a massive amount of data and processes. Each team requires different process and databases often interconnected with those of others teams. ICP is the current central ITER repository of structured and unstructured data. All data in ICP is served and managed via a web interface that provides global accessibility with a common user friendly interface. This paper will explain the model used by ICP and how it serves the ITER project by providing a robust and agile platform. ICP is developed in ASP.NET using MSSQL Server for data storage. It currently houses 15 data driven applications, 150 different types of record, 500 k objects and 2.5 M references. During European working hours the system averages 150 concurrent users and 20 requests per second. ICP connects to external database applications to provide a single entry point to ITER data and a safe shared storage place to maintain this data long-term. The Core model provides an easy to extend framework to meet the future needs of the Organization. ICP follows a multi-tier architecture, providing logical separation of process. The standard three-tier architecture is expanded, with the data layer separated into data storage, data structure, and data access components. The business or applications logic layer is broken up into a common business functionality layer, a type specific logic layer, and a detached work-flow layer. Finally the presentation tier comprises a presentation adapter layer and an interface layer. Each layer is built up from small blocks which can be combined to create a wide range of more complex functionality. Each new object type developed gains access to a wealth of existing code functionality, while also free to adapt and extend this. The hardware structure is designed to provide complete redundancy, high availability and to handle high load. This document is composed of an abstract followed by the presentation transparencies. (authors)

  19. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Manly, W.D. [Oak Ridge National Lab., TN (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)] [and others

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  20. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    International Nuclear Information System (INIS)

    Ulrickson, M.A.; Manly, W.D.; Dombrowski, D.E.

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers