WorldWideScience

Sample records for main active compound

  1. Pharmacological activities and medicinal properties of endemic Moroccan medicinal plant Origanum compactum (Benth and their main compounds

    Directory of Open Access Journals (Sweden)

    Abdelhakim Bouyahya

    2017-10-01

    Full Text Available Oregano [Origanum compactum Benth. (O. compactum, Lamiaceae] is an endemic Moroccan medicinal herb. It is used traditionally to fight against several disorders such as diarrhea, urolithiasis, hypertension, diabetes, and inflammation. A large number of components have been identified and isolated from the essential oil of this plant. Carvacrol, thymol, p-cymene and γ-Terpinene are among the more compounds presented in O. compactum essential oil and considered to be the main biologically active components. Numerous experimental studies showed that O. compactum organic extracts, essentials oil and its main compounds possess a broader spectrum of pharmacological and therapeutic activities such as antibacterial, antifungal, antioxidant, and anticancer activity. The present review attempts to give an overview of pharmacological studies of O. compactum and its major compounds.

  2. Anti-plasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound

    Science.gov (United States)

    2012-01-01

    found to be the main cytotoxic compound (SI = 3.3). While this melampolide has already been described in the plant, this paper is the first report on the biological properties of this compound. Conclusions The present study highlighted the very promising anti-plasmodial activity of D. tomentosa and enabled to identify its main active compound, urospermal A-15-O-acetate. The high anti-plasmodial activity of this compound merits further study about its anti-plasmodial mechanism of action. The active extracts of D. tomentosa, as well as urospermal A 15-O-acetate, displayed only a moderate selectivity, and further studies are needed to assess the safety of the use of the plant by the local population. PMID:22909422

  3. Neuroprotection by delta9-tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Stelt, M. van der; Veldhuis, W.B.; Bär, P.R; Veldink, G.A.; Nicolay, K.

    2001-01-01

    Excitotoxicity is a paradigm used to explain the biochemical events in both acute neuronal damage and in slowly progressive, neurodegenerative diseases. Here, we show in a longitudinal magnetic resonance imaging study that delta9-tetrahydrocannabinol (delta9-THC), the main active compound in

  4. Neuroprotection by Δ9-Tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity

    NARCIS (Netherlands)

    Stelt, van der M.; Veldhuis, W.B.; Bär, P.R.; Veldink, G.A.; Vliegenthart, J.F.G.; Nicolaij, K.

    2001-01-01

    Excitotoxicity is a paradigm used to explain the biochemical events in both acute neuronal damage and in slowly progressive, neurodegenerative diseases. Here, we show in a longitudinal magnetic resonance imaging study that ¿9-tetrahydrocannabinol (¿9-THC), the main active compound in marijuana,

  5. In vitro toxicological evaluation of essential oils and their main compounds used in active food packaging: A review.

    Science.gov (United States)

    Llana-Ruiz-Cabello, Maria; Pichardo, Silvia; Maisanaba, Sara; Puerto, Maria; Prieto, Ana I; Gutiérrez-Praena, Daniel; Jos, Angeles; Cameán, Ana M

    2015-07-01

    Essential oils (EOs) and their main constituent compounds have been extensively investigated due to their application in the food industry for improving the shelf life of perishable products. Although they are still not available for use in food packaging in the market in Europe, considerable research in this field has been carried out recently. The safety of these EOs should be guaranteed before being commercialized. The aim of this work was to review the scientific publications, with a primary focus on the last 10 years, with respect to different in vitro toxicological aspects, mainly focussed on mutagenicity/genotoxicity. In general, fewer genotoxic studies have been reported on EOs in comparison to their main components, and most of them did not show mutagenic activity. However, more studies are needed in this field since the guidelines of the European Food Safety Authority have not always been followed accurately. The mutagenic/genotoxic activities of these substances have been related to metabolic activation. Therefore, in vivo tests are required to confirm the absence of genotoxic effects. Considering the great variability of the EOs and their main compounds, a case-by-case evaluation is needed to assure their safe use in food packaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. New Horizons in C-F Activation by Main Group Electrophiles

    Energy Technology Data Exchange (ETDEWEB)

    Ozerov, Oleg V. [Texas A & M Univ., College Station, TX (United States). Dept. of Chemistry

    2016-02-13

    This technical report describes progress on the DOE sponsored project "New Horizons in C-F Activation by Main Group Electrophiles" during the period of 09/15/2010 – 08/31/2015. The main goal of this project was to develop improved catalysts for conversion of carbon-fluorine bonds in potentially harmful compounds. The approach involved combining of a highly reactive positively charged main-group compound with a highly unreactive negatively charged species (anions) as a way to access potent catalysts for carbon-fluorine bond activation. This report details progress made in improving synthetic pathways to a variety of new anions with improved properties and analysis of their potential in catalysis.

  7. Simultaneous determination of ten compounds in two main ...

    African Journals Online (AJOL)

    Simultaneous determination of ten compounds in two main medicinal plant parts of Tibetan herb, Pterocephalus hookeri (CB Clarke) Höeck, by ultra-high performance liquid chromatography-photodiode array.

  8. What is a compound? The main criteria for compoundhood

    Directory of Open Access Journals (Sweden)

    Altakhaineh Abdel Rahman Mitib

    2016-10-01

    Full Text Available This study aims to identify the main cross-linguistic criteria for compoundhood discussed in the relevant literature, with a special focus on English, ranking them from the most reliable to the least. These criteria - orthographic, phonological, syntactic and semantic in nature - have been proposed to make a distinction between compounds and phrases. The analysis reveals that the most reliable cross-linguistic criteria to distinguish between phrases and compounds are adjacency and referentiality. With regard to the former criterion, no intervening elements can be inserted between the head and the non-head of compounds, whilst such insertion is allowed in phrases. With regard to the latter criterion, the non-head of a phrase is always referential, whereas the non-head of a compound is normally non-referential. Other criteria have been found to be partially applicable, e.g. free pluralisation of the non-head, compositionality, stress, possibilities for modification and coordination, ellipsis, orthography and the replacement of the second element by a pro-form. The study also proposes a definition for compounds that may be the most widely applicable. Finally, the study concludes with ranking the main criteria for compoundhood discussed in the study.

  9. Phenolic compounds and antioxidant activity of edible flowers

    Directory of Open Access Journals (Sweden)

    Marta Natalia Skrajda

    2017-08-01

    Full Text Available Introduction: Edible flowers has been used for thousands of years. They increase aesthetic appearance of food, but more often they are mentioned in connection with biologically active substances. The main ingredient of the flowers is water, which accounts for more than 80%. In small amounts, there are also proteins, fat, carbohydrates, fiber and minerals. Bioactive substances such as carotenoids and phenolic compounds determine the functional properties of edible flowers. Aim: The aim of this work was to characterize the phenolic compounds found in edible flowers and compare their antioxidant activity. Results: This review summarizes current knowledge about the usage of edible flowers for human nutrition. The work describes the antioxidant activity and phenolic compounds of some edible flowers. Based on literature data there is a significant difference both in content of phenolic compounds and antioxidant activity between edible flowers. These difference reaches up to 3075-fold in case of antioxidant potential. Among described edible flowers the most distinguishable are roses, peonies, osmanthus fragans and sambuco nero. Conclusions: Edible flowers are the new source of nutraceuticals due to nutritional and antioxidant values.

  10. Fumigant and repellent activities of essential oil extracted from Artemisia dubia and its main compounds against two stored product pests.

    Science.gov (United States)

    Liang, Jun-Yu; Guo, Shan-Shan; Zhang, Wen-Juan; Geng, Zhu-Feng; Deng, Zhi-Wei; Du, Shu-Shan; Zhang, Ji

    2018-05-01

    The major chemical constituents of the essential oil extracted from Artemisia dubia wall. ex Bess. (Family: Asteraceae) were found as terpinolene (19.02%), limonene (17.40%), 2,5-etheno[4.2.2]propella-3,7,9-triene (11.29%), isoelemicin (11.05%) and p-cymene-8-ol (5.93%). Terpinolene and limonene were separated as main components from the essential oil. The essential oil showed fumigant toxicity against Tribolium castaneum and Liposcelis bostrychophila with LC 50 values of 49.54 and 0.74 mg/L, respectively. The essential oil and isolated compounds of A. dubia showed repellency activities against both insects. Terpinolene and limonene showed the fumigant toxicity against T. castaneum. Terpinolene showed obvious fumigant toxicity against L. bostrychophila. The results indicated that the essential oil of A. dubia had potential to be developed into natural insecticides for controlling stored product pests.

  11. Characterization of phenolic compounds and antinociceptive activity of Sempervivum tectorum L. leaf juice.

    Science.gov (United States)

    Alberti, Ágnes; Béni, Szabolcs; Lackó, Erzsébet; Riba, Pál; Al-Khrasani, Mahmoud; Kéry, Ágnes

    2012-11-01

    Sempervivum tectorum L. (houseleek) leaf juice has been known as a traditional herbal remedy. The aim of the present study was the chemical characterization of its phenolic compounds and to develop quantitation methods for its main flavonol glycoside, as well as to evaluate its antinociceptive activity. Lyophilized houseleek leaf juice was studied by HPLC-DAD coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to identify flavonol glycosides, hydroxy-benzoic and hydroxy-cinnamic acids. Ten flavonol glycosides and sixteen phenolic acid compounds were identified or tentatively characterized. Structure of the main flavonol compound was identified by nuclear magnetic resonance spectroscopy. Three characteristic kaempferol glycosides were isolated and determined by LC-ESI-MS/MS with external calibration method, using the isolated compounds as standard. The main flavonol glycoside was also determined by HPLC-DAD. Validated HPLC-DAD and LC-ESI-MS/MS methods were developed to quantify kaempferol-3-O-rhamnosyl-glucoside-7-O-rhamnoside and two other kaempferol glycosides. Antinociceptive activity of houseleek leaf juice was investigated by writhing test of mice. Sempervivum extract significantly reduced pain in the mouse writhing test. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Methylmercury compounds - main areas of contamination on a transsect of the river Elbe

    International Nuclear Information System (INIS)

    Hintelmann, H.; Wilken, R.D.

    1994-01-01

    The river Elbe and some of its tributaries are worldwide one of the most mercury polluted river systems. They are not only polluted by inorganic mercury compouns, but the contents of the highly toxic methylmercury compounds are also elevated. In order to determine the low levels of methylmercury compounds usually observed in sediments, a new HPLC/AFS-coupling was developed. In an oxidation/reduction interface the mercury species eluting from the HPLC collumn are transformed continuously to elemental mercury, which is then detected on-line by a highly sensitive atomic fluorescence spectrophotometer. The detection limit for the analysis of organic mercury species in sediments after extraction with hydrochloric acid/toluene, preconcentration and determination by HPLC/AFS is 0.1 μg/kg d. w. Hence, uncontaminated samples with very low methylmercury compounds contents could also be successfully analyzed. Main areas of total mercury contamination in the Elbe system were in the tributary rivers Saale and Mulde, with contents of up to 112 mg/kg d. w. but important emitters were also found in the Czech Republic (CR). This contamination was followed downstream to the Hamburg area and dropped to a background level of 0.06 mg/kg d. w. in the German Bight. The highest content of methylmercury compounds (119 μg/kg d. w.) was measured again in the river Mulde. The levels of methylmercury compounds were generally high at sites where the microbial activity was stimulated by high contents of organic matter, indicating a biotic methylation of mercury. The organic substrates originated either from municipal (sewage plants) or industrial sources (pulp mill effluents). (orig.) [de

  13. Natural compounds with herbicidal activity

    Directory of Open Access Journals (Sweden)

    Mariano Fracchiolla

    2007-12-01

    Full Text Available Research about phytotoxic activity of natural compounds could lead both to find new herbicidal active ingredients and to plan environmental friendly weed control strategies. Particularly, living organisms could be a source of compounds that are impossible, for their complexity, to synthesize artificially. More over, they could have alternative sites of action respect to the known chemical herbicides and, due to their origin, they should be more environmental safe. Many living organism, such as bacteria, fungi, insects, lichens and plants, are able to produce bioactive compounds. They generally are secondary metabolites or simply waste molecules. In this paper we make a review about these compounds, highlighting potential and constraints.

  14. Natural compounds with herbicidal activity

    Directory of Open Access Journals (Sweden)

    Pasquale Montemurro

    2011-02-01

    Full Text Available Research about phytotoxic activity of natural compounds could lead both to find new herbicidal active ingredients and to plan environmental friendly weed control strategies. Particularly, living organisms could be a source of compounds that are impossible, for their complexity, to synthesize artificially. More over, they could have alternative sites of action respect to the known chemical herbicides and, due to their origin, they should be more environmental safe. Many living organism, such as bacteria, fungi, insects, lichens and plants, are able to produce bioactive compounds. They generally are secondary metabolites or simply waste molecules. In this paper we make a review about these compounds, highlighting potential and constraints.

  15. Characterization of aroma-active compounds in dry flower of Malva sylvestris L. by GC-MS-O analysis and OAV calculations.

    Science.gov (United States)

    Usami, Atsushi; Kashima, Yusei; Marumoto, Shinsuke; Miyazawa, Mitsuo

    2013-01-01

    In this study, the aroma-active compounds in the dried flower of Malva sylvestris L. were extracted by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS), and gas chromatography-olfactometry (GC-O) and aroma extraction dilution analysis (AEDA). A light yellow oil with a sweet odor was obtained with a percentage yield of 0.039% (w/w), and 143 volatile compounds (89.86%) were identified by GC-MS. The main compounds were hexadecanoic acid (10.1%), pentacosane (4.8%) and 6,10,14-trimethyl-2-pentadecanone (4.1%). The essential oil consisted mainly of hydrocarbons (25.40%) followed by, alcohols (18.78%), acids (16.66%), ethers (5.01%) ketones (7.28%), esters(12.43%), aldehydes (2.30%) and others (2.00%). Of these compounds, 20 were determined by GC-O and AEDA, to be odor-active (FD (flavor dilution) factor ≥ 1). β-Damascenone (FD = 9, sweet), phenylacetaldehyde (FD = 8, floral, honey-like) and (E)-β-ocimene (FD = 8, spicy) were the most intense aroma-active compounds in M. sylvestris. In order to determine the relative contribution of each of the compounds to the aroma of M. sylvestris, odor activity values (OAVs) were used. β-Damascenone had the highest odor activity values (OAV) (50,700), followed by (E)-β-ionone (15,444) and decanal (3,510). In particular, β-damascenone had a high FD factors, and therefore, this compound was considered to be the main aroma-active components of the essential oil. On the basis of AEDA, OAVs, and sensory evaluation results, β-damascenone is estimated to be the main aroma-active compound of the essential oil.

  16. Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Saleh Abu-Lafi

    2017-01-01

    Full Text Available The production of olive oil generates massive quantities of by-product called olive mill wastewater (OMWW. The uncontrolled disposal of OMWW poses serious environmental problems. The OMWW effluent is rich in several polyphenolic compounds. Liquid-liquid extraction of OMWW using ethyl acetate solvent was used to enrich phenolic compounds under investigation. Total phenolic and flavonoid content and antioxidant activity of the extract were determined. HPLC coupled to photodiode array (PDA detector was used to analyze the main three phenolic compounds of OMWW, namely, hydroxytyrosol, tyrosol, and oleuropein. The antimicrobial activity of the extract was also investigated. Additionally, the OMWW extract was used as natural preservative and antioxidants for olive oil. Results showed that OMWW is very rich in phenolic compounds and has strong antioxidant activity. HPLC analysis showed that the extract contains mainly hydroxytyrosol and tyrosol but no oleuropein. The OMWW extract showed also positive activities as antibacterial (gram positive and gram negative and antifungal as well as activities against yeast. The addition of OMWW extract to olive oil samples has an effect on the stability of olive oil as reflected by its acid value, peroxide value, K232 and K270, and total phenolic content.

  17. In vitro anti-plasmodial activity of Dicoma anomala subsp. gerrardii (Asteraceae): identification of its main active constituent, structure-activity relationship studies and gene expression profiling.

    Science.gov (United States)

    Becker, John V W; van der Merwe, Marina M; van Brummelen, Anna C; Pillay, Pamisha; Crampton, Bridget G; Mmutlane, Edwin M; Parkinson, Chris; van Heerden, Fanie R; Crouch, Neil R; Smith, Peter J; Mancama, Dalu T; Maharaj, Vinesh J

    2011-10-11

    Anti-malarial drug resistance threatens to undermine efforts to eliminate this deadly disease. The resulting omnipresent requirement for drugs with novel modes of action prompted a national consortium initiative to discover new anti-plasmodial agents from South African medicinal plants. One of the plants selected for investigation was Dicoma anomala subsp. gerrardii, based on its ethnomedicinal profile. Standard phytochemical analysis techniques, including solvent-solvent extraction, thin-layer- and column chromatography, were used to isolate the main active constituent of Dicoma anomala subsp. gerrardii. The crystallized pure compound was identified using nuclear magnetic resonance spectroscopy, mass spectrometry and X-ray crystallography. The compound was tested in vitro on Plasmodium falciparum cultures using the parasite lactate dehydrogenase (pLDH) assay and was found to have anti-malarial activity. To determine the functional groups responsible for the activity, a small collection of synthetic analogues was generated - the aim being to vary features proposed as likely to be related to the anti-malarial activity and to quantify the effect of the modifications in vitro using the pLDH assay. The effects of the pure compound on the P. falciparum transcriptome were subsequently investigated by treating ring-stage parasites (alongside untreated controls), followed by oligonucleotide microarray- and data analysis. The main active constituent was identified as dehydrobrachylaenolide, a eudesmanolide-type sesquiterpene lactone. The compound demonstrated an in vitro IC50 of 1.865 μM against a chloroquine-sensitive strain (D10) of P. falciparum. Synthetic analogues of the compound confirmed an absolute requirement that the α-methylene lactone be present in the eudesmanolide before significant anti-malarial activity was observed. This feature is absent in the artemisinins and suggests a different mode of action. Microarray data analysis identified 572 unique genes that

  18. DETERMINATION OF CHLORINATED ORGANIC COMPOUNDS IN THE MAIN DRAINAGE CHANNEL OF KONYA

    Directory of Open Access Journals (Sweden)

    Mehmet Emin AYDIN

    2000-03-01

    Full Text Available The main drainage channel of Konya collects drainage waters from farmlands of Konya and discharges to the salt lake. Since there is not any city municipal sewarage system in Konya sewage of the city also discharged to the main drainage channel. Along the channel, farmers use the channels water for irrigation purposes. Therefore a through examination of wastewater and determination of chlorinated compounds were necessary. In this research, analyses were carried by gas chromatography (GC on water samples collected hourly, daily and monthly from the channel.

  19. Identification of Active Compounds in the Root of Merung (Coptosapelta tomentosa Valeton K. Heyne)

    Science.gov (United States)

    Fitriyana

    2018-04-01

    The roots of Merung (Coptosapelta tomentosa Valeton K. Heyne) are a group of shrubs usually found on the margins of secondary dryland forest. Empirically, local people have been using the roots of Merung for medical treatment. However, some researches show that the plant extract is used as a poisonous material applied on the tip of the arrow (dart). Based on the online literature study, there are less than 5 articles that provide information about the active compound of this root extract. This study aimed to give additional information more deeply about the content of active compound of Merung root extract in three fractions, n-hexane (nonpolar), ethyl acetate (semi polar) and methanol (polar). The extract was then analysed using Gas Chromatography-Mass Spectrometry (GC-MS). GC-MS analysis of root extract in n-hexane showed there were 56 compounds, with the main compound being decanoic acid, methyl ester (peak 5, 10.13%), 11-Octadecenoic acid, methyl ester (peak 15, 10.43%) and 1H-Pyrazole, 3- (4-chlorophenyl) -4, 5-dihydro-1-phenyl (peak 43, 11.25%). Extracts in ethyl acetate fraction obtained 81 compounds. The largest component is Benzoic acid (peak 19, 22.40%), whereas in methanol there are 38 compounds, of which the main component is 2-Furancarboxaldehyde, 5-(hydroxyl methyl) (peak 29, 30.46%).

  20. Anti-equine arteritis virus activity of ethanolic extract and compounds from Origanum vulgare

    Directory of Open Access Journals (Sweden)

    Daiane Einhardt Blank

    2017-05-01

    Full Text Available The equine arteritis virus (EAV is responsible by an important respiratory and reproductive disease in equine populations and there is no specific antiviral treatment available. The objective of this study was to investigate the activity of an ethanolic crude extract of Origanum vulgare (EEO and of isolated compound caffeic acid, p-coumaric acid, rosmarinic acid, quercetin, luteolin, carnosol, carnosic acid, kaempferol and apigenin against EAV. The assays were performed using non-cytotoxic concentrations. The antiviral activity was monitored initially by cytopathic effect inhibition (CPE assay in RK13 cells in the presence or absence of EEO. Pre-incubated cells with EEO were also examined to show prophylactic effect. Direct viral inactivation by EEO and isolated compounds was evaluated by incubation at 37°C or 20°C. After the incubation period, the infectivity was immediately determined by virus titrations on cell cultures and expressed as 50% tissue culture infective dose (TCID50/100 µL. There was significant virucidal activity of EEO and of the compounds caffeic acid, p-coumaric acid, quercetin, carnosic acid and kaempferol. When EEO was added after infection, EEO inhibited the virus growth in infected cells, as evidenced by significant reduction of the viral titre. The results provide evidence that the EEO exhibit an inhibitory effect anti-EAV. Among the main compounds evaluated, caffeic acid, p-coumaric acid, carnosic acid, kaempferol and mainly quercetin, contributed to the activity of EEO. EEO may represent a good prototype for the development of a new antiviral agent, presenting promising for combating arteriviruses infections.

  1. In vitro anti-plasmodial activity of Dicoma anomala subsp. gerrardii (Asteraceae: identification of its main active constituent, structure-activity relationship studies and gene expression profiling

    Directory of Open Access Journals (Sweden)

    van Heerden Fanie R

    2011-10-01

    Full Text Available Abstract Background Anti-malarial drug resistance threatens to undermine efforts to eliminate this deadly disease. The resulting omnipresent requirement for drugs with novel modes of action prompted a national consortium initiative to discover new anti-plasmodial agents from South African medicinal plants. One of the plants selected for investigation was Dicoma anomala subsp. gerrardii, based on its ethnomedicinal profile. Methods Standard phytochemical analysis techniques, including solvent-solvent extraction, thin-layer- and column chromatography, were used to isolate the main active constituent of Dicoma anomala subsp. gerrardii. The crystallized pure compound was identified using nuclear magnetic resonance spectroscopy, mass spectrometry and X-ray crystallography. The compound was tested in vitro on Plasmodium falciparum cultures using the parasite lactate dehydrogenase (pLDH assay and was found to have anti-malarial activity. To determine the functional groups responsible for the activity, a small collection of synthetic analogues was generated - the aim being to vary features proposed as likely to be related to the anti-malarial activity and to quantify the effect of the modifications in vitro using the pLDH assay. The effects of the pure compound on the P. falciparum transcriptome were subsequently investigated by treating ring-stage parasites (alongside untreated controls, followed by oligonucleotide microarray- and data analysis. Results The main active constituent was identified as dehydrobrachylaenolide, a eudesmanolide-type sesquiterpene lactone. The compound demonstrated an in vitro IC50 of 1.865 μM against a chloroquine-sensitive strain (D10 of P. falciparum. Synthetic analogues of the compound confirmed an absolute requirement that the α-methylene lactone be present in the eudesmanolide before significant anti-malarial activity was observed. This feature is absent in the artemisinins and suggests a different mode of action

  2. Rotenoids from Tephrosia toxicaria with larvicidal activity against Aedes aegypti, the main vector of dengue fever

    International Nuclear Information System (INIS)

    Vasconcelos, Jackson Nunes e; Santiago, Gilvandete Maria Pinheiro; Lima, Jefferson Queiroz; Arriaga, Angela Martha Campos

    2012-01-01

    In the search for new larvicides from plants, we have investigated the potential activity of the rotenoids deguelin (1), 12a-hydroxy-a-toxicarol (2) and tephrosin (3), isolated from the bioactive ethanol extract of roots of Tephrosia toxicaria Pers., against Aedes aegypti, the main vector of dengue. The absolute configuration of these compounds was determined by circular dichroism (CD) spectra. The LC50 values of the compounds evaluated justify the potential of T. toxicaria as a new natural larvicide. (author)

  3. Biochemical studies on certain biologically active nitrogenous compounds

    International Nuclear Information System (INIS)

    Abdel kader, S.M.; El Sayed, M.M.; El Malt, E.A.; Shaker, E.S.; Abdel Aziz, H.G.

    2010-01-01

    Certain biologically active nitrogenous compounds such as alkaloids are widely distributed in many wild and medicinal plants such as peganum harmala L. (Phycophyllaceae). However, less literature cited on the natural compounds was extracted from the aerial parts of this plant; therefore this study was conducted on harmal leaves using several solvents. Data indicated that methanol extract was the inhibitoriest effect against some pathogenic bacteria, particularly Streptococcus pyogenus. Chromatographic separation illustrated that presence of four compounds; the most active one was the third compound (3). Elementary analysis (C, H, N) revealed that the primary chemical structure of the active antibacterial compound (C3) was: C17 H21 N3 O7 S with molecular weight 411. Spectroscopic analysis proved that coninical structure was = 1- thioformyl, 8?- D glucoperanoside- Bis- 2, 3 dihydroisopyridino pyrrol. This new compound is represented as a noval ?- carboline alkaloid compound

  4. Fatty acid composition of intramuscular fat and odour-active compounds of lamb commercialized in northern Spain.

    Science.gov (United States)

    Bravo-Lamas, Leire; Barron, Luis J R; Farmer, Linda; Aldai, Noelia

    2018-05-01

    Muscle fatty acid composition and odour-active compounds released during cooking were characterized in lamb chops (Longissimus thoracis et lumborum, n = 48) collected at retail level in northern Spain. Lamb samples were classified in two groups according to their 10 t/11 t-18:1 ratio: ≤1 (10 t-non-shifted, n = 21) and >1 (10 t-shifted, n = 27). Higher n-3 polyunsaturated fatty acid, vaccenic (11 t-18:1) and rumenic acid (9c,11 t-18:2), and iso-branched chain fatty acid contents were found in non-shifted lamb samples while n-6 polyunsaturated fatty acid, internal methyl-branched chain fatty acid, and 10 t-18:1 contents were greater in shifted samples. Regardless the fatty acid profile differences between lamb sample groups, odour-active compound profile was very similar and mostly affected by the cooking conditions. Overall, the main odour-active compounds of cooked lamb were described as "green", "meaty", "roasted", and "fatty" being methyl pyrazine, methional, dimethyl pyrazine, and dimethyl trisulphide the main odour-active compounds. Aldehydes and alcohols were the most abundant volatiles in all samples, and they were mostly originated from the oxidation of unsaturated fatty acids during cooking. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Maurizio Servili

    2013-12-01

    Full Text Available Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.

  6. Molecules and Models The molecular structures of main group element compounds

    CERN Document Server

    Haaland, Arne

    2008-01-01

    This book provides a systematic description of the molecular structures and bonding in simple compounds of the main group elements with particular emphasis on bond distances, bond energies and coordination geometries. The description includes the structures of hydrogen, halogen and methyl derivatives of the elements in each group, some of these molecules are ionic, some polar covalent. The survey of molecules whose structures conform to well-established trends is followed byrepresentative examples of molecules that do not conform. We also describe electron donor-acceptor and hydrogen bonded co

  7. Metal cluster compounds - chemistry and importance; clusters containing isolated main group element atoms, large metal cluster compounds, cluster fluxionality

    International Nuclear Information System (INIS)

    Walther, B.

    1988-01-01

    This part of the review on metal cluster compounds deals with clusters containing isolated main group element atoms, with high nuclearity clusters and metal cluster fluxionality. It will be obvious that main group element atoms strongly influence the geometry, stability and reactivity of the clusters. High nuclearity clusters are of interest in there own due to the diversity of the structures adopted, but their intermediate position between molecules and the metallic state makes them a fascinating research object too. These both sites of the metal cluster chemistry as well as the frequently observed ligand and core fluxionality are related to the cluster metal and surface analogy. (author)

  8. Antimicrobial activity of some potential active compounds against ...

    African Journals Online (AJOL)

    Antimicrobial activities of six potential active compounds (acetic acid, chitosan, catechin, gallic acid, lysozyme, and nisin) at the concentration of 500 g/ml against the growth of Escherichia coli, Staphylococcus aureus, Listeria innocua, and Saccharomyces cerevisiae were determined. Lysozyme showed the highest ...

  9. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    OpenAIRE

    D?az-de-Cerio, Elixabet; Verardo, Vito; G?mez-Caravaca, Ana Mar?a; Fern?ndez-Guti?rrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds ...

  10. Corrosion inhibition of carbon steel in acidic medium by orange peel extract and its main antioxidant compounds

    International Nuclear Information System (INIS)

    M’hiri, Nouha; Veys-Renaux, Delphine; Rocca, Emmanuel; Ioannou, Irina; Boudhrioua, Nourhéne Mihoubi; Ghoul, Mohamed

    2016-01-01

    Highlights: • Catechol and derived functions are responsible for flavonoids antioxidant activity. • Antioxidant activity of adsorbed molecules explains cathodic inhibition. • Orange peel extract inhibition is enhanced by the precipitation of a covering film. - Abstract: Chemical compounds of orange peel extracts were identified and their antioxidant activities were determined. The inhibiting effect on acidic steel corrosion brought by the extract and selected antioxidant compounds (neohesperidin, naringin, ascorbic acid) was evaluated separately by electrochemical methods. Whatever the extract concentration, a significant inhibition is observed, whereas selected antioxidant compounds show only a slight effect. Both electrochemical impedance spectroscopy results and scanning electron microscopy observations after immersion reveal that the inhibiting efficiency of orange peel extract is not only due to the antioxidant activity of its compounds but also to the precipitation of a surface film.

  11. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Złotek, Urszula; Świeca, Michał; Jakubczyk, Anna

    2014-04-01

    The study presents changes in the phytochemical levels, antiradical activity and quality of lettuce caused by different chemical elicitors: arachidonic acid (AA), jasmonic acid (JA), and abscisic acid (ABA). The application of 1 μM and 100 μM JA induced an increase in the concentration of phenolic compounds, including flavonoids and phenolic acids. Flavonoid levels were also increased after treatment with 100 μM AA and ABA. Some of the elicitor concentrations used also caused an increase in the levels of other phytochemicals, such as chlorophyll a (1 μM and 100 μM AA, 50 μM ABA); chlorophyll b (100 μM AA); carotenoids (100 μM AA, 1 μM JA and 100 μM ABA) and vitamin C (100 μM AA, 100 μM JA). The highest antiradical activity was noted after treatment with 100 μM AA, 100 μM JA. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging ability was positively and significantly correlated with flavonoid, chlorophyll and carotenoid levels. These results may suggest that the antiradical activity of lettuce was determined not only by phenolics, but also by other bioactive compounds. Elicitation did not change the sensory quality of lettuce. Therefore, treatment with elicitors could be a useful tool for improving the health-promoting qualities of lettuce without the loss of sensory quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Activity of Polyphenolic Compounds against Candida glabrata

    Directory of Open Access Journals (Sweden)

    Ricardo Salazar-Aranda

    2015-09-01

    Full Text Available Opportunistic mycoses increase the morbidity and mortality of immuno-compromised patients. Five Candida species have been shown to be responsible for 97% of worldwide cases of invasive candidiasis. Resistance of C. glabrata and C. krusei to azoles has been reported, and new, improved antifungal agents are needed. The current study was designed to evaluatethe activity of various polyphenolic compounds against Candida species. Antifungal activity was evaluated following the M27-A3 protocol of the Clinical and Laboratory Standards Institute, and antioxidant activity was determined using the DPPH assay. Myricetin and baicalein inhibited the growth of all species tested. This effect was strongest against C. glabrata, for which the minimum inhibitory concentration (MIC value was lower than that of fluconazole. The MIC values against C. glabrata for myricitrin, luteolin, quercetin, 3-hydroxyflavone, and fisetin were similar to that of fluconazole. The antioxidant activity of all compounds was confirmed, and polyphenolic compounds with antioxidant activity had the greatest activity against C. glabrata. The structure and position of their hydroxyl groups appear to influence their activity against C. glabrata.

  13. Antioxidant and Antiacetylcholinesterase Activities of Some Commercial Essential Oils and Their Major Compounds

    Directory of Open Access Journals (Sweden)

    Smail Aazza

    2011-09-01

    Full Text Available The commercial essential oils of Citrus aurantium L., Cupressus sempervirens L., Eucalyptus globulus Labill., Foeniculum vulgare Mill. and Thymus vulgaris L., isolated by steam distillation by a company of Morocco were evaluated in terms of in vitro antioxidant activity through several methods. In vitro acetylcholinesterase inhibitory activity was also determined. Citrus limon (L. Burm. f. oil was also studied, but it was obtained by peel expression. The best antioxidant was T. vulgaris oil, independent of the method used, mainly due to the presence of the phenolic monoterpenes thymol and carvacrol, which when studied as single compounds also presented the best activities. Concerning the acetylcholinesterase inhibition activity, E. globulus was the most effective. Nevertheless its main components 1,8-cineole and limonene were not the most active, a feature that corresponded to d-3-carene.

  14. Structure Modification of an Active Azo-Compound as a Route to New Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Simona Concilio

    2017-05-01

    Full Text Available Some novel (phenyl-diazenylphenols 3a–g were designed and synthesized to be evaluated for their antimicrobial activity. A previously synthesized molecule, active against bacteria and fungi, was used as lead for modifications and optimization of the structure, by introduction/removal or displacement of hydroxyl groups on the azobenzene rings. The aim of this work was to evaluate the consequent changes of the antimicrobial activity and to validate the hypothesis that, for these compounds, a plausible mechanism could involve an interaction with protein receptors, rather than an interaction with membrane. All newly synthesized compounds were analyzed by 1H-NMR, DSC thermal analysis and UV-Vis spectroscopy. The in vitro minimal inhibitory concentrations (MIC of each compound was determined against Gram-positive and Gram-negative bacteria and Candida albicans. Compounds 3b and 3g showed the highest activity against S. aureus and C. albicans, with remarkable MIC values of 10 µg/mL and 3 µg/mL, respectively. Structure-activity relationship studies were capable to rationalize the effect of different substitutions on the phenyl ring of the azobenzene on antimicrobial activity.

  15. Synthesis, biological activity and computational studies of novel azo-compounds

    International Nuclear Information System (INIS)

    Ashraf, J.; Murtaza, S.; Mughal, E.U.; Sadiq, A.

    2017-01-01

    In the present protocol, we report the synthesis and characterization of some novel azo-compounds starting from 4-methoxyaniline and 4-aminophenazone, which were diazotized at low temperature. 4-nitrophenol, 2-aminobenzoic acid, benzamide, 4-aminobenzoic acid, resorcinol, o-bromonitrobenzene and 2-nitroaniline were used as active aromatic coupling compounds for the second step. The synthesized compounds were investigated for their potential antibacterial activities by using disc diffusion method against Escherichia coli, Shigellasonnei, Streptococcus pyrogenes, Staphylococcus aureus and Neisseria gonorrhoeae strains. They were also subjected to antioxidant activities by using DPPH method. Results revealed that the compounds of 4-methoxyaniline and 4-aminophenazone showed good antibacterial activity against all strains, where as some azo-compounds have moderate to good antioxidant activities. Furthermore, these compounds were studied by computational analysis. (author)

  16. A Structure-Activity Relationship (SAR Study of Neolignan Compounds with Anti-schistosomiasis Activity

    Directory of Open Access Journals (Sweden)

    Alves Claúdio N.

    2002-01-01

    Full Text Available A set of eighteen neolignan derivative compounds with anti-schistosomiasis activity was studied by using the quantum mechanical semi-empirical method PM3 and other theoretical methods in order to calculate selected molecular properties (variables or descriptors to be correlated to their biological activities. Exploratory data analysis (principal component analysis, PCA, and hierarchical cluster analysis, HCA, discriminant analysis (DA and the Kth nearest neighbor (KNN method were employed for obtaining possible relationships between the calculated descriptors and the biological activities studied and predicting the anti-schistosomiasis activity of new compounds from a test set. The molecular descriptors responsible for the separation between active and inactive compounds were: hydration energy (HE, molecular refractivity (MR and charge on the C19 carbon atom (Q19. These descriptors give information on the kind of interaction that can occur between the compounds and their respective biological receptor. The prediction study was done with a new set of ten derivative compounds by using the PCA, HCA, DA and KNN methods and only five of them were predicted as active against schistosomiasis.

  17. An HPLC-DAD method to quantification of main phenolic compounds from leaves of Cecropia species

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Geison M.; Ortmann, Caroline F.; Schenkel, Eloir P.; Reginatto, Flavio H., E-mail: freginatto@hotmail.co [Universidade Federal de Santa Catarina (UFSC), Florianopolis (Brazil). Centro de Ciencias da Saude. Dept. de Ciencias Farmaceuticas

    2011-07-01

    An efficient and reproducible HPLC-DAD method was developed and validated for the simultaneous quantification of major compounds (chlorogenic acid, isoorientin, orientin and isovitexin) present in the leaves of two Cecropia species, C. glaziovii and C. pachystachya. From the leaves of C. glaziovii and C. pachystachya were isolated the C-glycosylflavones isoorientin and isovitexin and identified on both species chlorogenic acid (3-O-caffeoylquinic acid) and the O-glycosylflavonol isoquercitrin. The C-glycosylflavone orientin was isolated only from C. pachystachya. Chlorogenic acid was the major compound in both species (11.1 mg g{sup -1} of extract of C. glaziovii and 27.2 mg g{sup -1} of extract of C. pachystachya) and for the flavonoids quantified, isovitexin was the main C-glycosylflavonoid for C. glaziovii (4.6 mg g{sup -1} of extract) and isoorientin the main one for C. pachystachya (17.3 mg g{sup -1} of extract). (author)

  18. An HPLC-DAD method to quantification of main phenolic compounds from leaves of Cecropia species

    International Nuclear Information System (INIS)

    Costa, Geison M.; Ortmann, Caroline F.; Schenkel, Eloir P.; Reginatto, Flavio H.

    2011-01-01

    An efficient and reproducible HPLC-DAD method was developed and validated for the simultaneous quantification of major compounds (chlorogenic acid, isoorientin, orientin and isovitexin) present in the leaves of two Cecropia species, C. glaziovii and C. pachystachya. From the leaves of C. glaziovii and C. pachystachya were isolated the C-glycosylflavones isoorientin and isovitexin and identified on both species chlorogenic acid (3-O-caffeoylquinic acid) and the O-glycosylflavonol isoquercitrin. The C-glycosylflavone orientin was isolated only from C. pachystachya. Chlorogenic acid was the major compound in both species (11.1 mg g -1 of extract of C. glaziovii and 27.2 mg g -1 of extract of C. pachystachya) and for the flavonoids quantified, isovitexin was the main C-glycosylflavonoid for C. glaziovii (4.6 mg g -1 of extract) and isoorientin the main one for C. pachystachya (17.3 mg g -1 of extract). (author)

  19. Insecticidal Activity of Cyanohydrin and Monoterpenoid Compounds

    Directory of Open Access Journals (Sweden)

    Joel R. Coats

    2000-04-01

    Full Text Available The insecticidal activities of several cyanohydrins, cyanohydrin esters and monoterpenoid esters (including three monoterpenoid esters of a cyanohydrin were evaluated. Topical toxicity to Musca domestica L. adults was examined, and testing of many compounds at 100 mg/fly resulted in 100% mortality. Topical LD50 values of four compounds for M. domestica were calculated. Testing of many of the reported compounds to brine shrimp (Artemia franciscana Kellog resulted in 100% mortality at 10 ppm, and two compounds caused 100% mortality at 1 ppm. Aquatic LC50 values were calculated for five compounds for larvae of the yellow fever mosquito (Aedes aegypti (L.. Monoterpenoid esters were among the most toxic compounds tested in topical and aquatic bioassays.

  20. Hydrophilic compounds in culture filtrates of Fusarium oxysporum f. sp. cubense GCV [01210] induce protection to banana leave toward a main pathogen phytotoxic component

    Directory of Open Access Journals (Sweden)

    Nayanci Portal González

    2014-07-01

    Full Text Available Panama disease caused by Fusarium oxysporum f. sp. cubense (Foc, is among the most important diseases in Musa spp. Foc is a necrotrophic fungus, their phytotoxins play a role in disease development. Previously culture filtrate (FCC 15 days incubation with differential phytotoxic activity against two Musa cultivars was obtained. From this, the main fraction with nonspecific phytotoxic activity against both cultivars was purified. In this study, the biological activity of the aqueous phase and the main phytotoxic fraction purified from organic extract of Fusarium oxysporum f. sp. cubense VCG [01210] Race 1 FCC was determined on banana leaves of cv. `Gros Michel' (susceptible and `FHIA-01' (resistant. Foc FCC phytotoxic effect was confirmed. The aqueous phase showed no phytotoxic activity on both cultivars, while the simultaneous application of the aqueous phase with the main phytotoxic fraction induced a differential response of tissues in susceptible and resistant cultivars evaluated. The results indicated that the compounds present in the aqueous phase are required to induce the protection of leaf tissue against phytotoxic main component of the pathogen. Key words: culture filtrate, Panama disease, resistant, susceptible

  1. Analyses of the activation of near term fusion reactor compound materials

    International Nuclear Information System (INIS)

    Lengar, I.

    2007-01-01

    One of the important questions that still have to be solved for the next generation fusion reactors is the choice of the material to be used for the first wall. An important criteria is low activation due to neutron bombardment from the plasma. One of the promising materials is the SiC/SiC composite. Its main elemental constituents, namely the C and Si, have very good activation characteristics. The main contribution to activity arises, however, from trace elements, which are needed in the sintering process and remain in the material afterwards. Before the preparation process of the material, the activation characteristics of individual constituents are needed. The activation properties of the whole sample could than be estimated by summing the weighted properties of individual constituents. The activity of a particular trace element is, however, not necessarily dependent only on the percentage of the element in the sample, but also on the presence of other elements in the compound due to the charge particle production and/or (n, 2n) reactions. The extension of this effect is investigated and to what extent individual calculations, performed for a single element, mimic the real situation. Further the activation characteristic for several possible sintering aid elements is theoretically investigated with the use of the FISPACT inventory code. (author)

  2. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    Science.gov (United States)

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phenolic Compounds and Antioxidant Activities of Liriope muscari

    Directory of Open Access Journals (Sweden)

    Shu Shan Du

    2012-02-01

    Full Text Available Five phenolic compounds, namely N-trans-coumaroyltyramine (1, N-trans-feruloyltyramine (2, N-trans-feruloyloctopamine (3, 5,7-dihydroxy-8-methoxyflavone (4 and (3S3,5,4′-trihydroxy-7-methoxy-6-methylhomoisoflavanone (5, were isolated from the fibrous roots of Liriope muscari (Liliaceae. Compounds 2–5 were isolated for the first time from the Liriope genus. Their in vitro antioxidant activities were assessed by the DPPH and ABTS scavenging methods with microplate assays. The structure-activity relationships of compounds 1–3 are discussed.

  4. Nutrients, organic compounds, and mercury in the Meduxnekeag River watershed, Maine, 2003

    Science.gov (United States)

    Schalk, Charles W.; Tornes, Lan

    2005-01-01

    In 2003, the U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, sampled streambed sediments and surface water of the Meduxnekeag River watershed in northeastern Maine under various hydrologic conditions for nutrients, hydrophobic organic compounds, and mercury. Nutrients were sampled to address concerns related to summer algal blooms, and organic compounds and mercury were sampled to address concerns about regional depositional patterns and overall watershed quality. In most surface-water samples, phosphorus was not detected or was detected at concentrations below the minimum reporting limit. Nitrate and organic nitrogen were detected in every surface-water sample for which they were analyzed; the highest concentration of total nitrogen was 0.75 milligrams per liter during low flow. Instantaneous nitrogen loads and yields were calculated at four stations for two sampling events. These data indicate that the part of the watershed that includes Houlton, its wastewater-treatment plant, and four small urban brooks may have contributed high concentrations of nitrate to Meduxnekeag River during the high flows on April 23-24 and high concentrations of both organic and nitrate nitrogen on June 2-3. Mercury was detected in all three bed-sediment samples for which it was analyzed; concentrations were similar to those reported from regional studies. Notable organic compounds detected in bed sediments included p,p'-DDE and p,p'-DDT (pesticides of the DDT family) and several polycyclic aromatic hydrocarbons. Polychlorinated biphenyls (PCBs) and phthalates were not detected in any sample, whereas p-cresol was the only phenolic compound detected. Phosphorus was detected at concentrations below 700 milligrams per kilogram in each bed-sediment sample for which it was analyzed. Data were insufficient to establish whether the lack of large algal blooms in 2003 was related to low concentrations of phosphorus.

  5. HPLC-QTOF-MS method for quantitative determination of active compounds in an anti-cellulite herbal compress

    Directory of Open Access Journals (Sweden)

    Ngamrayu Ngamdokmai

    2017-08-01

    Full Text Available A herbal compress used in Thai massage has been modified for use in cellulite treatment. Its main active ingredients were ginger, black pepper, java long pepper, tea and coffee. The objective of this study was to develop and validate an HPLCQTOF-MS method for determining its active compounds, i.e., caffeine, 6-gingerol, and piperine in raw materials as well as in the formulation together with the flavouring agent, camphor. The four compounds were chromatographically separated. The analytical method was validated through selectivity, intra-, inter day precision, accuracy and matrix effect. The results showed that the herbal compress contained caffeine (2.16 mg/g, camphor (106.15 mg/g, 6-gingerol (0.76 mg/g, and piperine (4.19 mg/g. The chemical stability study revealed that herbal compresses retained >80% of their active compounds after 1 month of storage at ambient conditions. Our method can be used for quality control of the herbal compress and its raw materials.

  6. Comprehensive coordination chemistry. The synthesis, reactions, properties and applications of coordination compounds. V.3. Main group and early transition elements

    International Nuclear Information System (INIS)

    Wilkinson, Geoffrey; Gillard, R.D.; McCleverty, J.A.

    1987-01-01

    Comprehensive coordination chemistry reviews the synthesis reactions and properties of coordination compounds. Their uses in such diverse fields as nuclear fuels, toxicology, medicine and biology are discussed. Volume three concentrates on the main group and early transition element coordination compounds. (UK)

  7. Prediction of Positions of Active Compounds Makes It Possible To Increase Activity in Fragment-Based Drug Development

    Directory of Open Access Journals (Sweden)

    Yoshifumi Fukunishi

    2011-05-01

    Full Text Available We have developed a computational method that predicts the positions of active compounds, making it possible to increase activity as a fragment evolution strategy. We refer to the positions of these compounds as the active position. When an active fragment compound is found, the following lead generation process is performed, primarily to increase activity. In the current method, to predict the location of the active position, hydrogen atoms are replaced by small side chains, generating virtual compounds. These virtual compounds are docked to a target protein, and the docking scores (affinities are examined. The hydrogen atom that gives the virtual compound with good affinity should correspond to the active position and it should be replaced to generate a lead compound. This method was found to work well, with the prediction of the active position being 2 times more efficient than random synthesis. In the current study, 15 examples of lead generation were examined. The probability of finding active positions among all hydrogen atoms was 26%, and the current method accurately predicted 60% of the active positions.

  8. Antioxidant Activity of Phenolic Compounds from Fava Bean Sprouts.

    Science.gov (United States)

    Okumura, Koharu; Hosoya, Takahiro; Kawarazaki, Kai; Izawa, Norihiko; Kumazawa, Shigenori

    2016-06-01

    Fava beans are eaten all over the world and recently, marketing for their sprouts began in Japan. Fava bean sprouts contain more polyphenols and l-3,4-dihydroxyphenylalanine (l-DOPA) than the bean itself. Our antioxidant screening program has shown that fava bean sprouts also possess a higher antioxidant activity than other commercially available sprouts and mature beans. However, the individual constituents of fava bean sprouts are not entirely known. In the present study, we investigated the phenolic compounds of fava bean sprouts and their antioxidant activity. Air-dried fava bean sprouts were treated with 80% methanol and the extract was partitioned in water with chloroform and ethyl acetate. HPLC analysis had shown that the ethyl acetate-soluble parts contained phenolic compounds, separated by preparative HPLC to yield 5 compounds (1-5). Structural analysis using NMR and MS revealed that the compounds isolated were kaempferol glycosides. All isolated compounds had an α-rhamnose at the C-7 position with different sugars attached at the C-3 position. Compounds 1-5 had β-galactose, β-glucose, α-rhamnose, 6-acetyl-β-galactose and 6-acetyl-β-glucose, respectively, at the C-3 position. The amount of l-DOPA in fava bean sprouts was determined by the quantitative (1) H NMR technique. The l-DOPA content was 550.45 mg ± 11.34 /100 g of the raw sprouts. The antioxidant activities of compounds 2-5 and l-DOPA were evaluated using the 2,2-diphenyl-1-picrylhydrazyl scavenging assay. l-DOPA showed high antioxidant activity, but the isolated kaempferol glycosides showed weak activity. Therefore, it can be suggested that l-DOPA contributed to the antioxidant activity of fava bean sprouts. © 2016 Institute of Food Technologists®

  9. Simultaneous Activation of Iron- and Thiol-Based Sensor-Regulator Systems by Redox-Active Compounds.

    Science.gov (United States)

    Lee, Kang-Lok; Yoo, Ji-Sun; Oh, Gyeong-Seok; Singh, Atul K; Roe, Jung-Hye

    2017-01-01

    Bacteria in natural habitats are exposed to myriad redox-active compounds (RACs), which include producers of reactive oxygen species (ROS) and reactive electrophile species (RES) that alkylate or oxidize thiols. RACs can induce oxidative stress in cells and activate response pathways by modulating the activity of sensitive regulators. However, the effect of a certain compound on the cell has been investigated primarily with respect to a specific regulatory pathway. Since a single compound can exert multiple chemical effects in the cell, its effect can be better understood by time-course monitoring of multiple sensitive regulatory pathways that the compound induces. We investigated the effect of representative RACs by monitoring the activity of three sensor-regulators in the model actinobacterium Streptomyces coelicolor ; SoxR that senses reactive compounds directly through oxidation of its [2Fe-2S] cluster, CatR/PerR that senses peroxides through bound iron, and an anti-sigma factor RsrA that senses RES via disulfide formation. The time course and magnitude of induction of their target transcripts were monitored to predict the chemical activities of each compound in S. coelicolor . Phenazine methosulfate (PMS) was found to be an effective RAC that directly activated SoxR and an effective ROS-producer that induced CatR/PerR with little thiol-perturbing activity. p -Benzoquinone was an effective RAC that directly activated SoxR, with slower ROS-producing activity, and an effective RES that induced the RsrA-SigR system. Plumbagin was an effective RAC that activated SoxR, an effective ROS-producer, and a less agile but effective RES. Diamide was an RES that effectively formed disulfides and a weak RAC that activated SoxR. Monobromobimane was a moderately effective RES and a slow producer of ROS. Interestingly, benzoquinone induced the SigR system by forming adducts on cysteine thiols in RsrA, revealing a new pathway to modulate RsrA activity. Overall, this study showed

  10. Emission of the main biogenic volatile organic compounds in France

    International Nuclear Information System (INIS)

    Luchetta, L.; Simon, V.; Torres, L.

    2000-01-01

    An estimation of biogenic emissions of the main non-methanic Volatile Organic Compounds (VOCs) due to the forest cover in France has been realized. 32 species representing 98% of French forest have been considered for the estimation. The latter dealt on a net made of 93 irregular spatial grids (Departments) with an average size of 75 km x 75 km. We assigned emission rates and foliar biomass densities specific to each of the 32 species. The environmental variables (temperature, light intensity) have been collected for the whole of French Departments. A special effort was extended so as to use ''Guenther's'' calculation algorithms, and specific emitting factors to species growing in France or in bordering countries. Along the way of the five years (1994-1998) of the study we have calculated the yearly mean of isoprene, mono-terpenes and Other Volatile Organic Compounds (OVOCs) emissions on the scale of the French Departments. At the national level isoprene emission is reckoned at 457 kt yr -1 and represents nearly 49% of the total emission, whereas mono-terpenes with 350 kt yr -1 and OVOCs with 129 kt yr -1 represent respectively 37% and 14% of the total. The yearly biogenic emission of VOCs in France represents virtually half the anthropic source. However in some regions (Mediterranean area) natural emissions can widely exceed anthropic emissions during certain periods. Let's note the whole of our results remains tinged with a great uncertainty because the estimations carried out are presented with correction factors that can reach values comprised between 4 and 7. (author)

  11. Antioxidative Activities and Active Compounds of Extracts from Catalpa Plant Leaves

    Directory of Open Access Journals (Sweden)

    Hongyu Xu

    2014-01-01

    Full Text Available In order to screen the Catalpa plant with high antioxidant activity and confirm the corresponding active fractions from Catalpa ovata G. Don, C. fargesii Bur., and C. bungei C. A. Mey., total flavonoid contents and antioxidant activities of the extracts/fractions of Catalpa plant leaves were determined. The determined total flavonoid content and antioxidant activity were used as assessment criteria. Those compounds with antioxidant activity were isolated with silica gel column chromatography and ODS column chromatography. Our results showed that the total flavonoid content in C. bungei C. A. Mey. (30.07 mg/g·DW was the highest, followed by those in C. fargesii Bur. (25.55 mg/g·DW and C. ovata G. Don (24.96 mg/g·DW. According to the determination results of total flavonoid content and antioxidant activity in 3 clones of leaves of C. bungei C. A. Mey., the total flavonoid content and antioxidant activity in crude extracts from C. bungei C. A. Mey. 6 (CA6 leaves were the highest. Moreover, the results showed that the total flavonoid content and antioxidant activities of ethyl acetate (EA fraction in ethanol crude extracts in CA6 leaves were the highest, followed by n-butanol, petroleum ether (PE, and water fractions. Two flavonoid compounds with antioxidant activity were firstly isolated based on EA fraction. The two compounds were luteolin (1 and apigenin (2, respectively.

  12. Endocannabinoids, Related Compounds and Their Metabolic Routes

    Directory of Open Access Journals (Sweden)

    Filomena Fezza

    2014-10-01

    Full Text Available Endocannabinoids are lipid mediators able to bind to and activate cannabinoid receptors, the primary molecular targets responsible for the pharmacological effects of the Δ9-tetrahydrocannabinol. These bioactive lipids belong mainly to two classes of compounds: N-acylethanolamines and acylesters, being N-arachidonoylethanolamine (AEA and 2-arachidonoylglycerol (2-AG, respectively, their main representatives. During the last twenty years, an ever growing number of fatty acid derivatives (endocannabinoids and endocannabinoid-like compounds have been discovered and their activities biological is the subject of intense investigations. Here, the most recent advances, from a therapeutic point of view, on endocannabinoids, related compounds, and their metabolic routes will be reviewed.

  13. Bioactivity of essential oil of Artemisia argyi Lévl. et Van. and its main compounds against Lasioderma serricorne.

    Science.gov (United States)

    Zhang, Wen-Juan; You, Chun-Xue; Yang, Kai; Chen, Ran; Wang, Ying; Wu, Yan; Geng, Zhu-Feng; Chen, Hai-Ping; Jiang, Hai-Yan; Su, Yang; Lei, Ning; Ma, Ping; Du, Shu-Shan; Deng, Zhi-Wei

    2014-01-01

    Artemisia argyi Lévl. et Van., a perennial herb with a strong volatile odor, is widely distrbuted in the world. Essential oil obtained from Artemisia argyi was analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 32 components representing 91.74% of the total oil were identified and the main compounds in the oil were found to be eucalyptol (22.03%), β-pinene (14.53%), β-caryophyllene (9.24%) and (-)-camphor (5.45%). With a further isolation, four active constituents were obtained from the essential oil and identified as eucalyptol, β-pinene, β-caryophyllene and camphor. The essential oil and the four isolated compounds exhibited potential bioactivity against Lasioderma serricorne adults. In the progress of assay, it showed that the essential oil, camphor, eucalyptol, β-caryophyllene and β-pinene exhibited strong contact toxicity against L. serricorne adults with LD50 values of 6.42, 11.30, 15.58, 35.52, and 65.55 μg/adult, respectively. During the fumigant toxicity test, the essential oil, eucalyptol and camphor showed stronger fumigant toxicity against L. serricorne adults than β-pinene (LC50 = 29.03 mg/L air) with LC50 values of 8.04, 5.18 and 2.91 mg/L air. Moreover, the essential oil, eucalyptol, β-pinene and camphor also exhibited the strong repellency against L. serricorne adults, while, β-caryophyllene exhibited attracting activity relative to the positive control, DEET. The study revealed that the bioactivity properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components. The results indicate that the essential oil of A. argyi and the isolated compounds have potential to be developed into natural insecticides, fumigants or repellents in controlling insects in stored grains and traditional Chinese medicinal materials.

  14. Aerobic biodegradation of organotin compounds in activated sludge batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stasinakis, Athanasios S. [Department of Environmental Studies, Water and Air Quality Laboratory, University of the Aegean, University Hill, Mytilene 81 100 (Greece)]. E-mail: astas@env.aegean.gr; Thomaidis, Nikolaos S. [Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens 157 71 (Greece); Nikolaou, Anastasia [Department of Environmental Studies, Water and Air Quality Laboratory, University of the Aegean, University Hill, Mytilene 81 100 (Greece); Kantifes, Andreas [Department of Environmental Studies, Water and Air Quality Laboratory, University of the Aegean, University Hill, Mytilene 81 100 (Greece)

    2005-04-01

    The biodegradation behavior of four organotin (OT) compounds, namely tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT) and triphenyltin (TPhT), was studied in lab-scale activated sludge batch reactors. The activated sludge was spiked with the OT compounds at a level of 100 {mu}g l{sup -1} as Sn. Determination of the OT compounds by GC-FPD after ethylation in the dissolved and particulate phase revealed that 24 h after the start of the experiments, almost the total of OT compounds has been removed from the dissolved phase and is associated with the suspended solids. Calculation of mass balance in batch reactors showed that OT compounds biodegradation was performed via a sequential dealkylation process. Removals due to biodegradation were differentiated according to the parent compound. In experiments with non-acclimatized biomass, a percentage of 27.1, 8.3, 73.8 and 51.3 was still present as TBT, DBT, MBT and TPhT, respectively, at the end of the experiment (18th day). Half-lives (t{sub 1/2}) of 10.2 and 5.1 days were calculated for TBT and DBT, respectively, whereas apparent t{sub 1/2} values could not be determined for MBT and TPhT (t{sub 1/2} > 18 days). The capacity of activated sludge to biodegrade OT compounds in the absence of supplemental substrate indicated that these compounds can be metabolized as single sources of carbon and energy in activated sludge systems. Excluding TBT, the presence of low concentrations of supplemental substrate did not affect the biodegradation potential of activated sludge. The acclimatization of biomass on OT compounds enhanced significantly biodegradation, resulting in significant decreases of half-lives of OT compounds. As a result in the presence of acclimatized biomass, half-lives of 1.4, 3.6, 9.8 and 5.0 days were calculated for TBT, DBT, MBT and TPhT, respectively. - The fate of organotins is assessed in activated sludge systems.

  15. Aerobic biodegradation of organotin compounds in activated sludge batch reactors

    International Nuclear Information System (INIS)

    Stasinakis, Athanasios S.; Thomaidis, Nikolaos S.; Nikolaou, Anastasia; Kantifes, Andreas

    2005-01-01

    The biodegradation behavior of four organotin (OT) compounds, namely tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT) and triphenyltin (TPhT), was studied in lab-scale activated sludge batch reactors. The activated sludge was spiked with the OT compounds at a level of 100 μg l -1 as Sn. Determination of the OT compounds by GC-FPD after ethylation in the dissolved and particulate phase revealed that 24 h after the start of the experiments, almost the total of OT compounds has been removed from the dissolved phase and is associated with the suspended solids. Calculation of mass balance in batch reactors showed that OT compounds biodegradation was performed via a sequential dealkylation process. Removals due to biodegradation were differentiated according to the parent compound. In experiments with non-acclimatized biomass, a percentage of 27.1, 8.3, 73.8 and 51.3 was still present as TBT, DBT, MBT and TPhT, respectively, at the end of the experiment (18th day). Half-lives (t 1/2 ) of 10.2 and 5.1 days were calculated for TBT and DBT, respectively, whereas apparent t 1/2 values could not be determined for MBT and TPhT (t 1/2 > 18 days). The capacity of activated sludge to biodegrade OT compounds in the absence of supplemental substrate indicated that these compounds can be metabolized as single sources of carbon and energy in activated sludge systems. Excluding TBT, the presence of low concentrations of supplemental substrate did not affect the biodegradation potential of activated sludge. The acclimatization of biomass on OT compounds enhanced significantly biodegradation, resulting in significant decreases of half-lives of OT compounds. As a result in the presence of acclimatized biomass, half-lives of 1.4, 3.6, 9.8 and 5.0 days were calculated for TBT, DBT, MBT and TPhT, respectively. - The fate of organotins is assessed in activated sludge systems

  16. The mast cell degranulator compound 48/80 directly activates neurons.

    Directory of Open Access Journals (Sweden)

    Michael Schemann

    Full Text Available BACKGROUND: Compound 48/80 is widely used in animal and tissue models as a "selective" mast cell activator. With this study we demonstrate that compound 48/80 also directly activates enteric neurons and visceral afferents. METHODOLOGY/PRINCIPAL FINDINGS: We used in vivo recordings from extrinsic intestinal afferents together with Ca(++ imaging from primary cultures of DRG and nodose neurons. Enteric neuronal activation was examined by Ca(++ and voltage sensitive dye imaging in isolated gut preparations and primary cultures of enteric neurons. Intraluminal application of compound 48/80 evoked marked afferent firing which desensitized on subsequent administration. In egg albumen-sensitized animals, intraluminal antigen evoked a similar pattern of afferent activation which also desensitized on subsequent exposure to antigen. In cross-desensitization experiments prior administration of compound 48/80 failed to influence the mast cell mediated response. Application of 1 and 10 µg/ml compound 48/80 evoked spike discharge and Ca(++ transients in enteric neurons. The same nerve activating effect was observed in primary cultures of DRG and nodose ganglion cells. Enteric neuron cultures were devoid of mast cells confirmed by negative staining for c-kit or toluidine blue. In addition, in cultured enteric neurons the excitatory action of compound 48/80 was preserved in the presence of histamine H(1 and H(2 antagonists. The mast cell stabilizer cromolyn attenuated compound 48/80 and nicotine evoked Ca(++ transients in mast cell-free enteric neuron cultures. CONCLUSIONS/SIGNIFICANCE: The results showed direct excitatory action of compound 48/80 on enteric neurons and visceral afferents. Therefore, functional changes measured in tissue or animal models may involve a mast cell independent effect of compound 48/80 and cromolyn.

  17. Generating nanoparticles containing a new 4-nitrobenzaldehyde thiosemicarbazone compound with antileishmanial activity

    International Nuclear Information System (INIS)

    Aparecida Britta, Elizandra; Conceição da Silva, Cleuza; Forti Rubira, Adley; Vataru Nakamura, Celso; Borsali, Redouane

    2016-01-01

    Thiosemicarbazones are an important class of compounds that have been extensively studied in recent years, mainly because of their broad profile of pharmacological activity. A new 4-nitrobenzaldehyde thiosemicarbazone compound (BZTS) that was derived from S-limonene has been demonstrated to have significant antiprotozoan activity. However, the hydrophobic characteristic of BZTS limits its administration and results in low oral bioavailability. In the present study, we proposed the synthesis of nanoparticle-based block copolymers that can encapsulate BZTS, with morphological evaluation of the nanoparticle suspensions being performed by transmission and cryo-transmission electronic microscopy. The mean particle sizes of the nanoparticle suspensions were determined by static light and dynamic light scattering (SLS/DLS), and the hydrodynamic radius (Rh) was determined using the Stokes-Einstein equation. The zeta potential (ζ) and polydispersity index (PDI) were also determined. The entrapment encapsulation efficiency of the BZTS nanoparticles was measured by ultraviolet spectrophotometry. In vitro activity of BZTS nanoparticle suspensions against intracellular amastigotes of Leishmania amazonensis and cytotoxic activity were also evaluated. The results showed the production of spherical nanoparticles with varied sizes depending on the hydrophobic portion of the amphiphilic diblock copolymers used. Significant concentration-dependent inhibitory activity against intracellular amastigotes was observed, and low cytotoxic activity was demonstrated against macrophages. - Highlights: • The spherical nanoparticles were obtained using distinct diblock copolymers. • BZTS was successfully encapsulated in the nanoparticles. • BZTS nanoparticle suspensions presented activity in Leishmania amazonensis.

  18. Generating nanoparticles containing a new 4-nitrobenzaldehyde thiosemicarbazone compound with antileishmanial activity

    Energy Technology Data Exchange (ETDEWEB)

    Aparecida Britta, Elizandra [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá (Brazil); Conceição da Silva, Cleuza; Forti Rubira, Adley [Departamento de Química, Universidade Estadual de Maringá (Brazil); Vataru Nakamura, Celso, E-mail: cvnakamura@uem.br [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá (Brazil); Borsali, Redouane, E-mail: borsali@cermav.cnrs.fr [Centro de Pesquisas em Macromoléculas Vegetais, CERMAV, Grenoble (France)

    2016-12-01

    Thiosemicarbazones are an important class of compounds that have been extensively studied in recent years, mainly because of their broad profile of pharmacological activity. A new 4-nitrobenzaldehyde thiosemicarbazone compound (BZTS) that was derived from S-limonene has been demonstrated to have significant antiprotozoan activity. However, the hydrophobic characteristic of BZTS limits its administration and results in low oral bioavailability. In the present study, we proposed the synthesis of nanoparticle-based block copolymers that can encapsulate BZTS, with morphological evaluation of the nanoparticle suspensions being performed by transmission and cryo-transmission electronic microscopy. The mean particle sizes of the nanoparticle suspensions were determined by static light and dynamic light scattering (SLS/DLS), and the hydrodynamic radius (Rh) was determined using the Stokes-Einstein equation. The zeta potential (ζ) and polydispersity index (PDI) were also determined. The entrapment encapsulation efficiency of the BZTS nanoparticles was measured by ultraviolet spectrophotometry. In vitro activity of BZTS nanoparticle suspensions against intracellular amastigotes of Leishmania amazonensis and cytotoxic activity were also evaluated. The results showed the production of spherical nanoparticles with varied sizes depending on the hydrophobic portion of the amphiphilic diblock copolymers used. Significant concentration-dependent inhibitory activity against intracellular amastigotes was observed, and low cytotoxic activity was demonstrated against macrophages. - Highlights: • The spherical nanoparticles were obtained using distinct diblock copolymers. • BZTS was successfully encapsulated in the nanoparticles. • BZTS nanoparticle suspensions presented activity in Leishmania amazonensis.

  19. Anti-cancer activity of compounds from Bauhinia strychnifolia stem.

    Science.gov (United States)

    Yuenyongsawad, Supreeya; Bunluepuech, Kingkan; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya

    2013-11-25

    The stem and root of Bauhinia strychnifolia Craib (Fabaceae family) have been traditionally used in Thailand to treat fever, alcoholic toxication, allergy and cancer. An EtOH extract of Bauhinia strychnifolia showed good inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB. As there has been no previous reports on chemical constituents of Bauhinia strychnifolia, this study is aimed to isolate the pure compounds with anti-cancer activity. Five pure compounds were isolated from EtOH extract of Bauhinia strychnifolia stem using silica gel, dianion HP-20 and sephadex LH-20 column chromatography and were tested for their cytotoxic effects against HT-29, HeLa, MCF-7 and KB cell lines using the Sulforhodamine B (SRB) assay. Among five compounds, 3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-l-rhamnopyranoside (2) possessed very potent activity against KB (IC₅₀=0.00054μg/mL), HT-29 (IC₅₀=0.00217 μg/mL), MCF-7 (IC₅₀=0.0585 μg/mL) and HeLa cells (IC₅₀=0.0692 μg/mL). 3,5,7-Trihydroxychromone-3-O-α-l-rhamnopyranoside (3) also showed good activity against HT-29 (IC₅₀=0.02366 μg/mL), KB (IC₅₀=0.0412 μg/mL) and MCF-7 (IC₅₀=0.297 μg/mL), respectively. The activity of 2 (IC₅₀=0.00054 μg/mL) against KB cell was ten times higher than that of the positive control, Camptothecin (anti-cancer drug, IC₅₀=0.0057 μg/mL). All compounds did not show any cytotoxicity with normal cells at the concentration of 1 μg/mL. This is the first report of compounds 2 and 3 on anti-cancer activity and based on the anti-cancer activity of extracts and pure compounds isolated from Bauhinia strychnifolia stem, it might be suggested that this plant could be useful for treatment of cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens

    International Nuclear Information System (INIS)

    Hagvall, Lina; Baron, Jens Malte; Boerje, Anna; Weidolf, Lars; Merk, Hans; Karlberg, Ann-Therese

    2008-01-01

    Contact sensitization is caused by low molecular weight compounds which penetrate the skin and bind to protein. In many cases, these compounds are activated to reactive species, either by autoxidation on exposure to air or by metabolic activation in the skin. Geraniol, a widely used fragrance chemical, is considered to be a weak allergen, although its chemical structure does not indicate it to be a contact sensitizer. We have shown that geraniol autoxidizes and forms allergenic oxidation products. In the literature, it is suggested but not shown that geraniol could be metabolically activated to geranial. Previously, a skin-like CYP cocktail consisting of cutaneous CYP isoenzymes, was developed as a model system to study cutaneous metabolism. In the present study, we used this system to investigate CYP-mediated activation of geraniol. In incubations with the skin-like CYP cocktail, geranial, neral, 2,3-epoxygeraniol, 6,7-epoxygeraniol and 6,7-epoxygeranial were identified. Geranial was the main metabolite formed followed by 6,7-epoxygeraniol. The allergenic activities of the identified metabolites were determined in the murine local lymph node assay (LLNA). Geranial, neral and 6,7-epoxygeraniol were shown to be moderate sensitizers, and 6,7-epoxygeranial a strong sensitizer. Of the isoenzymes studied, CYP2B6, CYP1A1 and CYP3A5 showed high activities. It is likely that CYP1A1 and CYP3A5 are mainly responsible for the metabolic activation of geraniol in the skin, as they are expressed constitutively at significantly higher levels than CYP2B6. Thus, geraniol is activated through both autoxidation and metabolism. The allergens geranial and neral are formed via both oxidation mechanisms, thereby playing a large role in the sensitization to geraniol

  1. Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts.

    Science.gov (United States)

    Peiretti, Pier Giorgio; Meineri, Giorgia; Gai, Francesco; Longato, Erica; Amarowicz, Ryszard

    2017-09-01

    Phenolic compounds were extracted from pumpkin (Cucurbita pepo) seed and amaranth (Amaranthus caudatus) grain into 80% (v/v) methanol. The extracts obtained were characterised by the contents of total phenolic compounds (TPC), trolox equivalent antioxidant capacity (TEAC), ferric-reducing antioxidant power (FRAP) and antiradical activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH · ) radical. The content of individual phenolic compounds was determined by HPLC-DAD method. Pumpkin seeds showed the higher content of TPC than that from amaranth. The TEAC values of both extracts were similar each other. The lower value of FRAP was observed for pumpkin seed. Phenolic compound present in amaranth grain exhibited strongest antiradical properties against DPPH radical. Several peaks were present on the HPLC chromatograms of two extracts. The UV-DAD spectra confirmed the presence of vanillic acid derivatives in the amaranth grain. The three main phenolic compound present in pumpkin seed were characterised by UV-DAD spectra with maximum at 258, 266 and 278 nm.

  2. Effective anti-leishmanial activity of minimalist squaramide-based compounds.

    Science.gov (United States)

    Marín, Clotilde; Ximenis, Marta; Ramirez-Macías, Inmaculada; Rotger, Carmen; Urbanova, Kristina; Olmo, Francisco; Martín-Escolano, Rubén; Rosales, María José; Cañas, Rocio; Gutierrez-Sánchez, Ramón; Costa, Antonio; Sánchez-Moreno, Manuel

    2016-11-01

    In order to evaluate the in vitro leishmanicidal activity of N,N'-Squaramides derivatives, compounds that feature both hydrogen bond donor and acceptor groups and are capable of multiple interactions with complementary sites, against Leishmania infantum, Leishmania braziliensis and Leishmania donovani a series of 18compounds was prepared and assayed on extracellular and intracellular parasite forms. Infectivity and cytotoxicity tests were performed on J774.2 macrophage cells using meglumine antimoniate (Glucantime) as the reference drug. Changes in metabolite excretion by 1 H-NMR and the ultrastructural alterations occurring in the parasites treated using transmission electron microscopy (TEM), was analyzed. Compounds 1, 7, 11, 14 and 17 were the more active and less toxic. Infection rates showed that the order of effectiveness was 17 > 11 > 14 > 7 for both L. infantum and L. braziliensis and in the same way, the compound 1 for L. donovani. All these compounds have altered the typical structure of the promastigotes, glycosomes and mitochondria. These severe modifications by the compounds are the ultimate reasons for the alterations observed in the excretion products. The Squaramide 17 (3-(butylamino)-4-((3-(dimetilamino)propyl)(methyl)amino)cyclobut-3-en-1,2-dione) was clearly the most efficient of all compounds. The data appear to confirm that the severe modifications generated in organelles such as glycosomes or mitochondria by the compounds are the ultimate reasons for the alterations observed in the excretion products of all species. The activity, stability, low cost of starting materials, and straightforward synthesis make amino squaramides appropriate molecules for the development of an affordable anti-leishmanial agent. Copyright © 2016. Published by Elsevier Inc.

  3. Benzimidazoles: A biologically active compounds

    Directory of Open Access Journals (Sweden)

    Salahuddin

    2017-02-01

    Full Text Available Synthesis of commercially available benzimidazole involves condensation of o-phenylenediamine with formic acid. The most prominent benzimidazole compound in nature is N-riosyldimethylbenzimidazole, which serves as a axial ligand for cobalt in vitamin B12. The benzimidazole and its derivatives play a very important role as a therapeutic agent e.g. antiulcer and anthelmintic drugs. Apart from this the benzimidazole derivatives exhibit pharmacological activities such as antimicrobial, antiviral, anticancer, anti-inflammatory, analgesic, etc. The substituted benzimidazoles are summarized in this review to know about the chemistry as well as pharmacological activities.

  4. Rhodotorula taiwanensis MD1149 produces hypoacetylated PEFA compounds with increased surface activity compared to Rhodotorula babjevae MD1169

    Science.gov (United States)

    Rubinfeld, Bonnee; Leif, Roald; Mulcahy, Heather; Dugan, Lawrence; Souza, Brian

    2018-01-01

    Biosurfactants have several desirable characteristics in the industrial sector: detergency, antimicrobial effects, skin hydration, and emulsibility. Several yeast glycolipids are currently being utilized in these capacities: sophorolipids, ustilagic acid, and mannosylerythritol lipids (MELs). An emerging class of glycolipids, termed polyol esters of fatty acids (PEFA), have recently been reported for Rhodotorula babjevae, a basidiomycetous yeast species that secretes hyperacetylated congeners of PEFA (typically with 3–6 acetylation modifications). While screening Rhodotorula species for surfactant production, we identified a new environmental isolate identified as Rhodotorula taiwanensis MD1149 that dropped the surface tension of the liquid medium, indicating that it produced a potent biosurfactant. Acid depolymerization of the purified biosurfactants, followed by gas chromatography-mass spectrometry (GC-MS) analysis revealed that the biosurfactants were composed of PEFA compounds composed mainly of mannitol and arabitol esters of 3-hydroxy fatty acid, 3-methoxy fatty acid, and fatty acids with a single double bond; chain lengths were mainly C16 and C18. Liquid chromatography-mass spectrometry (LC-MS) confirmed the predicted accurate mass of these compounds. Interestingly, PEFA compounds produced by Rhodotorula taiwanensis MD1149 were more surface active due to their hypoacetylation profile (0–4 acetylation modifications) compared to Rhodotorula babjevae MD1169. These disparate surface active properties, based on acetylation, change the hydrophilic-lipophilic balance (HLB) of these compounds, and their potential utility within industrial applications. PMID:29293588

  5. Rhodotorula taiwanensis MD1149 produces hypoacetylated PEFA compounds with increased surface activity compared to Rhodotorula babjevae MD1169.

    Science.gov (United States)

    Lyman, Mathew; Rubinfeld, Bonnee; Leif, Roald; Mulcahy, Heather; Dugan, Lawrence; Souza, Brian

    2018-01-01

    Biosurfactants have several desirable characteristics in the industrial sector: detergency, antimicrobial effects, skin hydration, and emulsibility. Several yeast glycolipids are currently being utilized in these capacities: sophorolipids, ustilagic acid, and mannosylerythritol lipids (MELs). An emerging class of glycolipids, termed polyol esters of fatty acids (PEFA), have recently been reported for Rhodotorula babjevae, a basidiomycetous yeast species that secretes hyperacetylated congeners of PEFA (typically with 3-6 acetylation modifications). While screening Rhodotorula species for surfactant production, we identified a new environmental isolate identified as Rhodotorula taiwanensis MD1149 that dropped the surface tension of the liquid medium, indicating that it produced a potent biosurfactant. Acid depolymerization of the purified biosurfactants, followed by gas chromatography-mass spectrometry (GC-MS) analysis revealed that the biosurfactants were composed of PEFA compounds composed mainly of mannitol and arabitol esters of 3-hydroxy fatty acid, 3-methoxy fatty acid, and fatty acids with a single double bond; chain lengths were mainly C16 and C18. Liquid chromatography-mass spectrometry (LC-MS) confirmed the predicted accurate mass of these compounds. Interestingly, PEFA compounds produced by Rhodotorula taiwanensis MD1149 were more surface active due to their hypoacetylation profile (0-4 acetylation modifications) compared to Rhodotorula babjevae MD1169. These disparate surface active properties, based on acetylation, change the hydrophilic-lipophilic balance (HLB) of these compounds, and their potential utility within industrial applications.

  6. Antileishmanial activities of dihydrochalcones from piper elongatum and synthetic related compounds. Structural requirements for activity.

    Science.gov (United States)

    Hermoso, Alicia; Jiménez, Ignacio A; Mamani, Zulma A; Bazzocchi, Isabel L; Piñero, José E; Ravelo, Angel G; Valladares, Basilio

    2003-09-01

    Two dihydrochalcones (1 and 2) were isolated from Piper elongatum Vahl by activity-guided fractionation against extracellular promastigotes of Leishmania braziliensis in vitro. Their structures were elucidated by spectral analysis, including homonuclear and heteronuclear correlation NMR experiments. Derivatives 3-7 and 20 synthetic related compounds (8-27) were also assayed to establish the structural requirements for antileishmanial activity. Compounds 1-11 that proved to be more active that ketoconazol, used as positive control, were further assayed against promastigotes of Leishmania tropica and Leishmania infantum. Compounds 7 and 11, with a C(6)-C(3)-C(6) system, proved to be the most promising compounds, with IC(50) values of 2.98 and 3.65 microg/mL, respectively, and exhibited no toxic effect on macrophages (around 90% viability). Correlation between the molecular structures and antileishmanial activity is discussed in detail.

  7. Synthesis and anticonvulsant activity of certain chalcone based pyrazoline compounds

    Directory of Open Access Journals (Sweden)

    Sudhakara Rao Gerapati

    2015-09-01

    Full Text Available Convulsions are involuntary, violent, spasmodic and prolonged contractions of skeletal muscles. That means a patient may have epilepsy without convulsions and vice versa. Epilepsy is a common neurological abnormality affecting about 1% of the world population. The primary objectives of these synthesized compounds are to suppress seizures and provide neuroprotection by minimizing the effects from seizure attacks. Here some of the chalcones and chalcone based various pyrazolines were evaluated for anticonvulsant activity. Their structures have been elucidated on the basis of elemental analyses and spectroscopic studies (IR, 1H-NMR & Mass spectroscopy. A preliminary evaluation of the prepared compounds has indicated that some of them exhibit moderate to significant anticonvulsant activity compared to a diazepam standard1-3.  All compounds were tested for their anticonvulsant activity using maximal electroshock induced convulsions (MES in mice at a dose level of 4 mg/kg.b.w. The compounds  Ph1, Ph2 , Py2 ,Py3 and Py4 have shown  to  good anticonvulsant activity when doses are administered as 25mg/ kg.b.w  , reduced the phases of seizures severity and  found to be active and also  increased survival rate. Remaining compounds are less efficacious.

  8. Odour-active compounds in guava (Psidium guajava L. cv. Red Suprema).

    Science.gov (United States)

    Pino, Jorge A; Bent, Leandra

    2013-09-01

    Solid phase microextraction and simultaneous distillation-extraction combined with GC-FID, GC/MS, aroma extract dilution analysis and odour activity values were used to analyse volatile compounds from guava (Psidium guajava L. cv. Red Suprema) and to estimate the most odour-active compounds. The analysis led to the detection of 141 compounds, 121 of which were positively identified. The composition of guava fruit volatiles included 43 esters, 37 terpenes, 18 aldehydes, 16 alcohols, ten acids, six ketones, four furans and seven miscellaneous compounds. Seventeen odorants were considered as odour-active compounds, with (E)-β-ionone, ethyl hexanoate, ethyl butanoate, hexanal, (Z)-3-hexenal, hexyl acetate, (E)-2-hexenal and limonene contributing most to the typical guava aroma of this cultivar. © 2013 Society of Chemical Industry.

  9. Antibacterial Compounds from Red Seaweeds (Rhodophyta)

    OpenAIRE

    Noer Kasanah; Triyanto Triyanto; Drajad Sarwo Seto; Windi Amelia; Alim Isnansetyo

    2015-01-01

    Seaweeds produce great variety of metabolites benefit for human. Red seaweeds (Rhodophyta) are well known as producer of phycocolloids such agar, agarose, carragenan and great variety of secondary metabolites. This review discusses the red algal secondary metabolites with antibacterial activity. The chemical constituents of red algae are steroid, terpenoid, acetogenin and dominated by halogenated compounds mainly brominated compounds. Novel compounds with intriguing skeleton are also reported...

  10. Taste-active compounds in a traditional Italian food: 'lampascioni'.

    Science.gov (United States)

    Borgonovo, Gigliola; Caimi, Sara; Morini, Gabriella; Scaglioni, Leonardo; Bassoli, Angela

    2008-06-01

    Nature is a rich source of taste-active compounds, in particular of plant origin, many of which have unusual tastes. Many of these are found in traditional food, where spontaneous plants are used as ingredients. Some taste-active compounds were identified in the bulbs of Muscari comosum, a spontaneous plant belonging to the family of the Liliaceae, very common in the Mediterranean area, and used in traditional gastronomy (called 'lampascioni' in South Italy). The bulbs were extracted with a series of solvents of different polarity. The different fractions were submitted to a preliminary sensory evaluation, and the most interesting ones, characterized by a strong bitter taste and some chemestetic properties, were submitted to further purification and structural analysis. From the ethereal extract, several 3-benzyl-4-chromanones and one stilbene derivative were isolated. Pure compounds were examined for their taste activity by means of sensory evaluation, and proved to be responsible for the characteristic taste of this food. Some of these compounds have been synthesized de novo to confirm their structure.

  11. Aspartate and glutamate mimetic structures in biologically active compounds.

    Science.gov (United States)

    Stefanic, Peter; Dolenc, Marija Sollner

    2004-04-01

    Glutamate and aspartate are frequently recognized as key structural elements for the biological activity of natural peptides and synthetic compounds. The acidic side-chain functionality of both the amino acids provides the basis for the ionic interaction and subsequent molecular recognition by specific receptor sites that results in the regulation of physiological or pathophysiological processes in the organism. In the development of new biologically active compounds that possess the ability to modulate these processes, compounds offering the same type of interactions are being designed. Thus, using a peptidomimetic design approach, glutamate and aspartate mimetics are incorporated into the structure of final biologically active compounds. This review covers different bioisosteric replacements of carboxylic acid alone, as well as mimetics of the whole amino acid structure. Amino acid analogs presented include those with different distances between anionic moieties, and analogs with additional functional groups that result in conformational restriction or alternative interaction sites. The article also provides an overview of different cyclic structures, including various cycloalkane, bicyclic and heterocyclic analogs, that lead to conformational restriction. Higher di- and tripeptide mimetics in which carboxylic acid functionality is incorporated into larger molecules are also reviewed. In addition to the mimetic structures presented, emphasis in this article is placed on their steric and electronic properties. These mimetics constitute a useful pool of fragments in the design of new biologically active compounds, particularly in the field of RGD mimetics and excitatory amino acid agonists and antagonists.

  12. Inhibition of Mast Cell-Mediated Allergic Responses by Arctii Fructus Extracts and Its Main Compound Arctigenin.

    Science.gov (United States)

    Kee, Ji-Ye; Hong, Seung-Heon

    2017-11-01

    The Arctium lappa seeds (Arctii Fructus) and its major active compound, arctigenin (ARC), are known to have anticancer, antiobesity, antiosteoporosis, and anti-inflammatory activities. However, the effect of Arctii Fructus and ARC on mast cell-mediated allergic inflammation and its associated mechanism have not been elucidated. Therefore, we attempted to investigate the antiallergic activity of Arctii Fructus and ARC on mast cells and experimental mouse models. Arctii Fructus water extract (AFW) or ethanol extract (AFE) and ARC reduced the production of histamine and pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and TNF-α in mast cells. AFW, AFE, and ARC inhibited phosphorylation of MAPKs and NF-κB in activated mast cells. Moreover, IgE-mediated passive cutaneous anaphylaxis and compound 48/80-induced anaphylactic shock were suppressed by AFW, AFE, and ARC administration. These results suggest that Arctii Fructus and ARC are potential therapeutic agents against allergic inflammatory diseases.

  13. Solar-Type Activity in Main-Sequence Stars

    CERN Document Server

    Gershberg, Roald E

    2005-01-01

    Solar-type activity over the whole range of the electromagnetic spectrum is a phenomenon inherent in the majority of low- and moderate-mass main sequence stars. In this monograph observational results are summarized in a systematic and comprehensive fashion. The analysis of the various manifestations of such stellar activity leads to the identification of these phenomena with macroscopic non-linear processes in a magnetized plasma. Comparative study of flare stars and the Sun has become increasingly fruitful and is presently an active field of research involving stellar and solar physicists, experts in plasma physics and high-energy astrophysicists. This book will provide them with both an introduction and overview of observational results from the first optical photometry and spectroscopy, from the satellite telescopes International Ultraviolet Explorer to Hubble Space Telescope, XMM-Newton and Chandra, as well as with the present physical interpretation of solar-type activity in main sequence stars. Gershbe...

  14. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia Pilosa Ledeb.

    Science.gov (United States)

    Liu, Xi; Zhu, Liancai; Tan, Jun; Zhou, Xuemei; Xiao, Ling; Yang, Xian; Wang, Bochu

    2014-01-10

    In Chinese traditional medicine, Agrimonia pilosa Ledeb (APL) exhibits great effect on treatment of type 2 diabetes mellitus (T2DM), however its mechanism is still unknown. Considering that T2DM are correlated with postprandial hyperglycemia and oxidative stress, we investigated the α-glucosidase inhibitory activity and the antioxidant activity of flavonoid compound (FC) and triterpenoid compound (TC) from APL. Entire plants of APL were extracted using 95% ethanol and 50% ethanol successively. The resulting extracts were partitioned and isolated by applying liquid chromatography using silica gel column and Sephadex LH 20 column to give FC and TC. The content of total flavonoids in FC and the content of total triterpenoids in TC were determined by using UV spectrophotometry. HPLC analysis was used to identify and quantify the monomeric compound in FC and TC. The α-glucosidase inhibitory activities were determined using the chromogenic method with p-nitrophenyl-α-D-glucopyranoside as substrate. Antioxidant activities were assessed through three kinds of radical scavenging assays (DPPH radical, ABTS radical and hydroxyl radical) & β-carotene-linoleic acid assay. The results indicate FC is abundant of quercitrin, and hyperoside, and TC is abundant of 1β, 2β, 3β, 19α-tetrahydroxy-12-en-28-oic acid (265.2 mg/g) and corosolic acid (100.9 mg/g). The FC & the TC have strong α-glucosidase inhibitory activities with IC50 of 8.72 μg/mL and 3.67 μg/mL, respectively. We find that FC show competitive inhibition against α-glucosidase, while the TC exhibits noncompetitive inhibition. Furthermore, The FC exhibits significant radical scavenging activity with the EC50 values of 7.73 μg/mL, 3.64 μg/mL and 5.90 μg/mL on DPPH radical, hydroxyl radical and ABTS radical, respectively. The FC also shows moderate anti-lipid peroxidation activity with the IC50 values of 41.77 μg/mL on inhibiting β-carotene bleaching. These results imply that the FC and the TC could be

  15. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies

    Science.gov (United States)

    Ying, Guang-Guo; Kookana, Rai S.; Kolpin, Dana W.

    2009-01-01

    Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.

  16. Identification and Profiling of Active Compounds from Golden Apple Snail’s Egg Pigments

    Directory of Open Access Journals (Sweden)

    Asadatun Abdullah

    2017-08-01

    Full Text Available Golden apple snail (Pomacea canaliculata has been known as rice corps pest due to high adaptability and reproductive power. Utilization of Pomacea canaliculata’s eggs as raw materials in the food and health industry is one of the efforts to eradicate the pest snail. This study was aimed to identify the active compounds contained in the extract pigments of Pomacea canaliculata’s eggs. The methods of this study were extraction of pigments using acetone and methanol, analyzing the active compound (secondary metabolite qualitatively, TLC to determine pigment components and LC-MS/MS to identify active compounds semi quantitatively. The results showed that active compounds in the methanol extract contain 11 carotenoid pigments of xanthophyl group, two carotenoid pigments of carotene group, and 2 active compounds in nonpigmented form, whereas the acetone extract contain 11 pigmentcarotenoids of xanthophyl group and 2 compounds active in non-pigment form.

  17. In vitro biomonitoring in polar extracts of solid phase matrices reveals the presence of unknown compounds with estrogenic activity

    NARCIS (Netherlands)

    Legler, J.; Leonards, P.E.G.; Spenkelink, A.; Murk, A.J.

    2003-01-01

    Determination of estrogenic activity has so far mainly concentrated on the assessment of compounds in surface water and effluent. This study is one of the first to biomonitor (xeno-)estrogens in sediment, suspended particulate matter and aquatic organisms. The relatively polar acetone extracts from

  18. Isolation and Antimicrobial Activity of Flavonoid Compounds from Mahagony Seeds (Swietenia macrophylla, King)

    Science.gov (United States)

    Mursiti, S.; Supartono

    2017-02-01

    Flavonoid is one of the secondary metabolites compounds in mahogany seeds. Mahogany seeds can be used as an antimicrobial. This study aims to determine the antimicrobial activity of flavonoid compounds from mahogany seeds against Escherichia coli (E.coli) and Bacillus cereus (B.cereus). Isolation of flavonoid compounds done step by step. First, the maceration using n-hexane, then with methanol. The methanol extract was dissolved in ethyl acetate and aquadest, then separated. Ethyl acetate extract evaporated Flavonoid compounds were. The testing of antimicrobial activity of flavonoid compounds using the absorption method. The results showed that the antimicrobial activity of flavonoid compounds from mahogany seeds shows the inhibitory activity and provide clear zone against bacteria E.coli with value Inhibitory Regional Diameter 18.50 mm respectively, and 14.50 mm to the bacteria. Based on the results of the study, it can be concluded that flavonoid compounds from mahogany seeds have antimicrobial activity against E.coli and B.cereus.

  19. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro.

    Science.gov (United States)

    Manquián-Cerda, K; Escudey, M; Zúñiga, G; Arancibia-Miranda, N; Molina, M; Cruces, E

    2016-11-01

    Cadmium (Cd(2+)) can affect plant growth due to its mobility and toxicity. We evaluated the effects of Cd(2+) on the production of phenolic compounds and antioxidant response of Vaccinium corymbosum L. Plantlets were exposed to Cd(2+) at 50 and 100µM for 7, 14 and 21 days. Accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the antioxidant enzyme SOD was determined. The profile of phenolic compounds was evaluated using LC-MS. The antioxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the ferric reducing antioxidant power test (FRAP). Cd(2+) increased the content of MDA, with the highest increase at 14 days. The presence of Cd(2+) resulted in changes in phenolic compounds. The main phenolic compound found in blueberry plantlets was chlorogenic acid, whose abundance increased with the addition of Cd(2+) to the medium. The changes in the composition of phenolic compounds showed a positive correlation with the antioxidant activity measured using FRAP. Our results suggest that blueberry plantlets produced phenolic compounds with reducing capacity as a selective mechanism triggered by the highest activity of Cd(2+). Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Flavan-3-ol Compounds from Wine Wastes with in Vitro and in Vivo Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Mirian Salvador

    2010-10-01

    Full Text Available It has been suggested that the dietary intake of antioxidant supplements could be a useful strategy to reduce the incidence of diseases associated with oxidative stress. The aim of present work is to study the possibility to obtain compounds with antioxidant activity from wine wastes using water as solvent. Results have shown that it is possible to obtain flavan-3-ol compounds from wine wastes both from V. vinifera (cv. Cabernet Sauvignon and Merlot and V. labrusca (cv. Bordo and Isabella species. The main phenolic compounds found in the extracts were catechin and epicatechin, followed by procyanidin B3, procyanidin B1, procyanidin B2, gallic acid, epigallocatechin, and procyanidin B4. All flavan-3-ol extracts showed significant in vitro and in vivo activities. It was found that the extracts were able to prevent lipid and protein oxidative damage in the cerebral cortex, cerebellum and hippocampus tissues of rats. Although further studies are necessary, these flavan-3-ol extracts show potential to be used to reduce the incidence of degenerative diseases associated with oxidative stress.

  1. THE ANTIBACTERIAL ACTIVITY OF WATER APPLE LEAVES ACTIVE COMPOUND (Syzygium zeylanicum AGAINST Escherichia coli AND Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    - Hamidah

    2017-07-01

    Full Text Available Escherichia coli is one of the bacteria that cause infections in the human digestive tract such as diarrhea, while Staphylococcus aureus is one of the bacteria that cause infections in the skin injury such as boils and pimples. This study used Syzygium zeylanicum leaves because it has potential as a antibacterial because it contains active compounds. This study aimed was determine the antibacterial activity of the fraction and the active compound in Syzygium zeylanicum leaves against Escherichia coli and Staphylococcus aureus. Research conducted on November 2015 to January 2016. The method used in this research were extraction by maceration, fractionation by liquid fractionation, antibacterial activity test, and determination of minimum inhibitory concentration with the diffusion method and isolation of active compounds by column chromatography method. The bacteria used in this test are Escherichia coli and Staphylococcus aureus. Data are presented in tabular form based on the average value of the inhibition diameter and deviation standard. The results of this research showed the water methanol active fraction against the bacteria that used in this test. The methanol water fraction had obtained one antibacterial compound in bottle 1,3,5 which shows the value of tannin Rf 0,416. The minimum inhibitory concentration of water methanol of water apple leaves is 1000 µg/mL for Escherichia coli and 500 µg/mL for  Staphylococcus aureus. The minimum  inhibitory concentration of the active  compound  to  Escherichia  coli  and  Staphylococcus  aureus  in  500  µg/mL.  The fraction and the active compound of water apple leaves have an antibacterial activity with Escherichia coli and Staphylococcus aureus and the active compound is tannin.

  2. Developmental toxicity of thyroid-active compounds in a zebrafish embryotoxicity test

    NARCIS (Netherlands)

    Jomaa, B.; Hermsen, S.A.B.; Kessels, M.Y.; Berg, van den J.H.J.; Peijenburg, A.C.M.; Aarts, J.M.M.J.G.; Piersma, A.H.; Rietjens, I.

    2014-01-01

    Zebrafish embryos were exposed to concentration ranges of selected thyroid-active model compounds in order to assess the applicability of zebrafish-based developmental scoring systems within an alternative testing strategy to detect the developmental toxicity of thyroid-active compounds. Model

  3. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    Directory of Open Access Journals (Sweden)

    Sona Skrovankova

    2015-10-01

    Full Text Available Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry, and Ericaceae (blueberry, cranberry, belong to the best dietary sources of bioactive compounds (BAC. They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

  4. Main regularities of radiolytic transformations of bifunctional organic compounds

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Shadyro, O.I.

    1985-01-01

    General regularities of the radiolysis of bifunctional organic compounds (α-diols, ethers of α-diols, amino alcohols, hydroxy aldehydes and hydroxy asids) in aqueous solutions from the early stages of the process to formation of finite products are traced. It is pointed out that the most characteristic course of radiation-chemical, transformation of bifunctional compounds in agueous solutions in the fragmentation process with monomolecular decomposition of primary radicals of initial substrances and simultaneous scission of two vicinal in respect to radical centre bonds via five-membered cyclic transient state. The data obtained are of importance for molecular radiobiology

  5. Relationship structure-antioxidant activity of hindered phenolic compounds

    Directory of Open Access Journals (Sweden)

    Weng, X. C.

    2014-12-01

    Full Text Available The relationship between the structure and the antioxidant activity of 21 hindered phenolic compounds was investigated by Rancimat and DPPH· tests. 3-tert-butyl-5-methylbenzene-1,2-diol is the strongest antioxidant in the Rancimat test but not in the DPPH· test because its two hydroxyl groups have very strong steric synergy. 2,6-Ditert-butyl-4-hydroxy-methylphenol exhibits a strong antioxidant activity as 2,6-ditertbutyl- 4-methoxyphenol does in lard. 2,6-Ditert-butyl-4- hydroxy-methylphenol also exhibits stronger activity than 2-tert-butyl-4- methoxyphenol. The methylene of 2,6-ditert-butyl-4-hydroxy-methylphenol can provide a hydrogen atom to active free radicals like a phenolic hydroxyl group does because it is greatly activated by both the aromatic ring and hydroxyl group. Five factors affect the antioxidant activities of the phenolic compounds: how stable the phenolic compound free radicals are after providing hydrogen atoms; how many hy drogen atoms each of the phenolic compounds can provide; how fast the phenolic compounds provide hydrogen atoms; how easily the phenolic compound free radicals can combine with more active free radicals, and whether or not a new antioxidant can form after the phenolic compound provides hydrogen atoms.La relación entre estructura y la actividad antioxidante de 21 compuestos fenólicos con impedimentos estéricos fue investigado mediante ensayos con Rancimat y DPPH·. El 3-terc-butil-5-metilbenceno-1,2-diol es el antioxidante más potente en los ensayos mediante Rancimat pero no mediante ensayos con DPPH·, porque sus dos grupos hidroxilo tienen una fuerte sinergia estérica. El 2,6-Di-terc-butil-4-hidroxi-metil-fenol mostró una actividad antioxidante tan fuerte como el 2,6-di-ter-butil-4-metoxifenol en ensayos con manteca de cerdo. El 2,6-di-terc-butil-4-hidroxi-metilfenol también mostró una actividad más fuerte que el 2-terc-butil-4-metoxifenol. El grupo metileno del 2,6-di-ter-butil-4-hidroxi

  6. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.

    Science.gov (United States)

    Paricharak, Shardul; IJzerman, Adriaan P; Jenkins, Jeremy L; Bender, Andreas; Nigsch, Florian

    2016-09-26

    Despite the usefulness of high-throughput screening (HTS) in drug discovery, for some systems, low assay throughput or high screening cost can prohibit the screening of large numbers of compounds. In such cases, iterative cycles of screening involving active learning (AL) are employed, creating the need for smaller "informer sets" that can be routinely screened to build predictive models for selecting compounds from the screening collection for follow-up screens. Here, we present a data-driven derivation of an informer compound set with improved predictivity of active compounds in HTS, and we validate its benefit over randomly selected training sets on 46 PubChem assays comprising at least 300,000 compounds and covering a wide range of assay biology. The informer compound set showed improvement in BEDROC(α = 100), PRAUC, and ROCAUC values averaged over all assays of 0.024, 0.014, and 0.016, respectively, compared to randomly selected training sets, all with paired t-test p-values agnostic fashion. This approach led to a consistent improvement in hit rates in follow-up screens without compromising scaffold retrieval. The informer set is adjustable in size depending on the number of compounds one intends to screen, as performance gains are realized for sets with more than 3,000 compounds, and this set is therefore applicable to a variety of situations. Finally, our results indicate that random sampling may not adequately cover descriptor space, drawing attention to the importance of the composition of the training set for predicting actives.

  7. Organization structure. Main activities of the Division

    International Nuclear Information System (INIS)

    2008-01-01

    In this chapter the organization structure as well as main activities of the Division for radiation safety, NPP decommissioning and radioactive waste management are presented. This Division of the VUJE, a.s. consists of the following sections and departments: Section for economic and technical services; Section for radiation protection of employees; Department for management of emergency situations and risk assessment; Department for implementation of nuclear power facilities decommissioning and RAW management; Department for personnel and environmental dosimetry; Department for preparation of NPP decommissioning; Department for RAW treatment technologies; Department for chemical regimes and physico-chemical analyses; Department for management of nuclear power facilities decommissioning and RAW management. Main activities of this Division are presented.

  8. Assessment of A Simple Compound-Saving Method To Study Insecticidal Activity of Natural Extracts and Pure Compounds Against Mosquito Larvae.

    Science.gov (United States)

    Falkowski, Michaël; Jahn-Oyac, Arnaud; Ferrero, Emma; Issaly, Jean; Eparvier, Véronique; Girod, Romain; Rodrigues, Alice M S; Stien, Didier; Houël, Emeline; Dusfour, Isabelle

    2016-12-01

    Research on natural insecticides has intensified with the spread of resistance to chemicals among insects, particularly disease vectors. To evaluate compounds, the World Health Organization (WHO) has published standardized procedures. However, those may be excessively compound-consuming when it comes to assessing the activity of natural extracts and pure compounds isolated in limited amount. As part of our work on the discovery of new mosquito larvicides from Amazonian plants, we developed a compound-saving assay in 5-ml glass tubes instead of WHO larval 100-ml cups. Comparing activity of synthetic and natural chemicals validated the glass tube assay. Raw data, lethal doses that kill 50% (LD 50 ) and 90% (LD 90 ) at 24 and 48 h, were highly correlated (0.68 natural extracts and molecules, identifying active compounds using 10 times less material than in the WHO protocol.

  9. Simultaneous determination of ten compounds in two main ...

    African Journals Online (AJOL)

    attempts were made to distinguish different medicinal parts of P. hookeri. Results: Regression equation for 10 compounds showed good linear regression (R2 > 0.9994). The relative standard deviations of precision, stability, repeatability and recovery were under 5 %. Compared with the aerial plant part, the root had ...

  10. Anti-human rhinoviral activity of polybromocatechol compounds isolated from the rhodophyta, Neorhodomela aculeata.

    Science.gov (United States)

    Park, Soon-Hye; Song, Jae-Hyoung; Kim, Taejung; Shin, Woon-Seob; Park, Gab Man; Lee, Seokjoon; Kim, Young-Joo; Choi, Pilju; Kim, Heejin; Kim, Hui-Seong; Kwon, Dur-Han; Choi, Hwa Jung; Ham, Jungyeob

    2012-10-01

    An extract of the red alga, Neorhodomela aculeata, exhibited antiviral activity against human rhinoviruses. Bioassay-guided purification was performed to yield six compounds, which were subsequently identified as lanosol (1) and five polybromocatechols (2-6) by spectroscopic methods, including 1D and 2D NMR and mass spectrometric analyses. Structurally, all of these compounds, except compound 5, contain one or two 2,3-dibromo-4,5-dihydroxyphenyl moieties. In a biological activity assay, compound 1 was found to possess antiviral activity with a 50% inhibitory concentration (IC₅₀) of 2.50 μg/mL against HRV2. Compound 3 showed anti-HRV2 activity, with an IC₅₀ of 7.11 μg/mL, and anti-HRV3 activity, with an IC₅₀ of 4.69 μg/mL, without demonstrable cytotoxicity at a concentration of 20 μg/mL. Collectively, the results suggest that compounds 1 and 3 are candidates for novel therapeutics against two different groups of human rhinovirus.

  11. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L.

    Science.gov (United States)

    Kim, Seokwon; Kubec, Roman; Musah, Rabi A

    2006-03-08

    A total of 18 organosulfur compounds originating from Petiveria alliacea L. roots have been tested for their antibacterial and antifungal activities. These represent compounds occurring in fresh homogenates as well as those present in various macerates, extracts and other preparations made from Petiveria alliacea. Of the compounds assayed, the thiosulfinates, trisulfides and benzylsulfinic acid were observed to be the most active, with the benzyl-containing thiosulfinates exhibiting the broadest spectrum of antimicrobial activity. The effect of plant sample preparation conditions on the antimicrobial activity of the extract is discussed.

  12. Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater.

    Science.gov (United States)

    Sbardella, Luca; Comas, Joaquim; Fenu, Alessio; Rodriguez-Roda, Ignasi; Weemaes, Marjoleine

    2018-04-28

    Through their release of effluents, conventional wastewater treatment plants (WWTPs) represent a major pollution point sources for pharmaceutically active compounds (PhACs) in water bodies. The combination of a biological activated carbon (BAC) filter coupled with an ultrafiltration (UF) unit was evaluated as an advanced treatment for PhACs removal at pilot scale. The BAC-UF pilot plant was monitored for one year. The biological activity of the biofilm that developed on the granular activated carbon (GAC) particles and the contribution of this biofilm to the overall removal of PhACs were evaluated. Two different phases were observed during the long-term monitoring of PhACs removal. During the first 9200 bed volumes (BV; i.e., before GAC saturation), 89, 78, 83 and 79% of beta-blockers, psychiatric drugs, antibiotics and a mix of other therapeutic groups were removed, respectively. The second phase was characterized by deterioration of the overall performances during the period between 9200 and 13,800 BV. To quantify the respective contribution of adsorption and biodegradation, a lab-scale setup was operated for four months and highlighted the essential role played by GAC in biofiltration units. Physical adsorption was indeed the main removal mechanism. Nevertheless, a significant contribution due to biological activity was detected for some PhACs. The biofilm contributed to the removal of 22, 25, 30, 32 and 35% of ciprofloxacin, bezafibrate, ofloxacin, azithromycin and sulfamethoxazole, respectively. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts.

    Science.gov (United States)

    Qian, Hongmei; Liu, Tianyu; Deng, Mingdan; Miao, Huiying; Cai, Congxi; Shen, Wangshu; Wang, Qiaomei

    2016-04-01

    The effects of different light qualities, including white, red and blue lights, on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts were investigated using light-emitting diodes (LEDs) as a light source. Our results showed that blue light treatment significantly decreased the content of gluconapin, the primary compound for bitter flavor in shoots, while increased the glucoraphanin content in roots. Moreover, the maximum content of vitamin C was detected in the white-light grown sprouts and the highest levels of total phenolic and anthocyanins, as well as the strongest antioxidant capacity were observed in blue-light grown sprouts. Taken together, the application of a colorful light source is a good practice for improvement of the consumers' acceptance and the nutritional phtyochemicals of Chinese kale sprouts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...... developments in the synthesis of macrocycles, with an emphasis on chemistry developed to generate libraries of putative biologically active compounds....

  15. Advances in the development of AMPK-activating compounds.

    Science.gov (United States)

    Sriwijitkamol, Apiradee; Musi, Nicolas

    2008-10-01

    AMP-activated protein kinase (AMPK) is an energy sensing enzyme that controls glucose and lipid metabolism. This review summarizes the present data on AMPK as a pharmacologic target for the treatment of metabolic disorders. The mechanisms governing AMPK activity and how this enzyme controls different metabolic pathways are reviewed briefly, and details about the effect that AMPK activators have on glucose metabolism are provided. Evidence obtained using the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) suggests that AMPK promotes glucose transport into skeletal muscles and that this enzyme inhibits hepatic glucose production. AICAR also induces fatty acid oxidation in muscle and inhibits cholesterol synthesis in the liver. The metabolic effects of AICAR on glucose and lipid metabolism indicate that AMPK may be a good pharmacologic target for the treatment of type 2 diabetes and hypercholesterolemia. Novel AMPK-specific compounds are allowing researchers to examine whether this enzyme is a useful pharmacologic target for the treatment of human disease and whether chronic activation of AMPK will be safe.

  16. ANTIBACTERIAL COMPOUNDS ACTIVITY OF MANGROVE LEAF EXTRACT RHIZOPHORA MUCRONATA ON AEROMONAS HYDROPHYLA

    Directory of Open Access Journals (Sweden)

    Panjaitan M.A.P.

    2018-01-01

    Full Text Available Pathogenic bacterial infections such as A.hydrophyla in fish cultivation are common problems. A.hydrophyla belongs to a group of bacteria resistant to more than one type of antibiotic. This study aims to determine the antibacterial activity of R.mucronata mangrove leaf extract and to identify potential antibacterial compounds. The research procedure includes extraction, compound refinement, phytochemical test, antibacterial activity test, and KBM-KHM Test. The results show that the antibacterial ability possessed by R.mucronata leaves crude extract increased after the extract was purified utilizing separating funnel. The lowest concentration of methanol fraction extract capable of inhibiting A.hydrophyla (KHM growth was at 8.25±0.39 ppm, while the lowest concentration of A.hydrophyla was 32.99±1.56 ppm. Bioactive compounds contained in methanol R.mucronata leaves extract are alkaloid compounds, flavonoids, and tannins. Out of the three compounds detected, antibacterial activity is thought to be derived from flavonoid and tannin compounds.

  17. Main components and content of sports volunteer activities

    OpenAIRE

    Петренко, Ірина

    2017-01-01

    Iryna PetrenkоPurpose: identification of the main structural components and content of sports volunteer activities. Material & Methods: used analysis of literature and documents, organizational analysis. Result: basic structural components of sports volunteer activity are defined. The content of sports volunteer activity is disclosed. Conclusion: sports volunteer activity includes the following structural components: subject, object, purpose, motivation, means, actions; subject is a sport...

  18. Anti-Human Rhinoviral Activity of Polybromocatechol Compounds Isolated from the Rhodophyta, Neorhodomela aculeata

    Directory of Open Access Journals (Sweden)

    Hui-Seong Kim

    2012-10-01

    Full Text Available An extract of the red alga, Neorhodomela aculeata, exhibited antiviral activity against human rhinoviruses. Bioassay-guided purification was performed to yield six compounds, which were subsequently identified as lanosol (1 and five polybromocatechols (2–6 by spectroscopic methods, including 1D and 2D NMR and mass spectrometric analyses. Structurally, all of these compounds, except compound 5, contain one or two 2,3-dibromo-4,5-dihydroxyphenyl moieties. In a biological activity assay, compound 1 was found to possess antiviral activity with a 50% inhibitory concentration (IC50 of 2.50 μg/mL against HRV2. Compound 3 showed anti-HRV2 activity, with an IC50 of 7.11 μg/mL, and anti-HRV3 activity, with an IC50 of 4.69 μg/mL, without demonstrable cytotoxicity at a concentration of 20 μg/mL. Collectively, the results suggest that compounds 1 and 3 are candidates for novel therapeutics against two different groups of human rhinovirus.

  19. Investigation on the activation of coal gangue by a new compound method.

    Science.gov (United States)

    Li, Chao; Wan, Jianhua; Sun, Henghu; Li, Longtu

    2010-07-15

    In order to comprehensively utilize coal gangue as the main raw material in cementitious materials, improving its cementitious activity is a question of fundamental importance. In this paper, we present a new compound mechanical-hydro-thermal activation (CMHTA) technology to investigate the activation effect of coal gangue, and the traditional mechanical-thermal activation (TMTA) technology was used as reference. The purpose of this study is to give a detailed comparison between these two methods with regard to the mineral composition, crystal structure and microstructure, by XRD, IR, MAS NMR, XPS and mechanical property analysis. The prepared coal gangue based blended cement, containing 52% of activated coal gangue C (by CMHTA technology), has a better mechanical property than activated coal gangue T (by TMTA technology) and raw coal gangue. The results show that both of the TMTA and CMHTA technologies can improve the cementitious activity of raw gangue greatly. Moreover, compared with TMTA, the mineral phases such as feldspar and muscovite in raw coal gangue were partially decomposed, and the crystallinity of quartz decreased, due to the effect of adding CaO and hydro-thermal process of CMHTA technology. 2010 Elsevier B.V. All rights reserved.

  20. Activity-Guided Isolation of Antioxidant Compounds from Andrographis stenophylla Leaf

    Directory of Open Access Journals (Sweden)

    Neelaveni Thangavel

    2010-01-01

    Full Text Available The antioxidant potency of various extracts of Andrographis stenophylla leaf was evaluated in vitro using ferric thiocyanate method. Reductive ability and free radical scavenging activity of the extracts were also investigated. Amounts of phenolic compounds in each of the extracts were determined using Folin-Ciocalteau reagent and compared to observe the correlation between antioxidant activities and total phenolic content. Methanol extract exhibited maximum antioxidant activity and was found to contain 2% of total phenolic compounds. Methanol extract was subjected to column chromatographic separation over silica gel G using ethyl acetate: formic acid: acetic acid: water. Fractions thus obtained were screened for their antioxidant activity. Among the eleven fractions screened, fraction C was more active than the standard butylated hydroxyanisole. Fraction C on further fractionation with n-butanol: acetic acid: water afforded two flavanoids namely acacetine and isosakuranetine. Fraction A was also shown to possess good antioxidant activity which was developed using TLC and indicated the presence of a terpenoid, Andrographolide. The structures of the isolated compounds were confirmed by UV, IR, MS, 1H and 13C NMR spectral data. This is the first report wherein Andrographolide, Acacetine and Isosakuranetine are isolated from Andrographis stenophylla leaf.

  1. Main components and content of sports volunteer activities

    Directory of Open Access Journals (Sweden)

    Iryna Petrenkо

    2017-12-01

    Full Text Available Purpose: identification of the main structural components and content of sports volunteer activities. Material & Methods: used analysis of literature and documents, organizational analysis. Result: basic structural components of sports volunteer activity are defined. The content of sports volunteer activity is disclosed. Conclusion: sports volunteer activity includes the following structural components: subject, object, purpose, motivation, means, actions; subject is a sports volunteer, the object is a sports competition, the goal is to provide gratuitous assistance for a quality competition, the means are the special knowledge, skills, communication abilities of sports volunteers, actions should be understood as types of volunteer activities and functions that volunteers perform during the preparation and conduct of competitions. Main types of sports volunteer activity are: 1 organizational; 2 judiciary; 3 coaching; 4 legal; 5 medical. Functions that volunteers perform in the competition system are general and special. Content of the functions of sports volunteering depends on the specifics of the sports, the rank of the competition, the specifics of the competition for people with special needs.

  2. Evaluation of phenolic compounds content and in vitro antioxidant activity of red wines produced from Vitis labrusca grapes

    Directory of Open Access Journals (Sweden)

    Daniel Braga de Lima

    2011-09-01

    Full Text Available Wine production in the northern Curitiba, Paraná, Brazil, specifically the communes of Colombo and Almirante Tamandaré, is based mainly on the utilization of Vitis labrusca grapes var. Bordô (Ives. Total sugar content, pH, and total acidity were analyzed in red wine samples from 2007 and 2008 vintages following official methods of analysis. Moreover, total phenolic, flavonoid, and tannin contents were analyzed by colorimetric methodologies and the antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical methodology. Phenolic compounds were identified by high performance liquid chromatography. The total phenolic content of wine samples presented concentrations varying between 1582.35 and 2896.08 mg gallic acid.L-1 since the major part corresponds to flavonoid content. In these compounds' concentration range, a direct relationship between phenolic compounds content and levels of antioxidant activity was not observed. Among the identified phenolic compounds, chlorogenic, caffeic, and syringic acids were found to be the major components. Using three principal components, it was possible to explain 81.36% of total variance of the studied samples. Principal Components Analysis does not differentiate between vintages.

  3. Nerolidol, the main constituent of Piper aduncum essential oil, has anti-Leishmania braziliensis activity.

    Science.gov (United States)

    Ceole, Ligia Fernanda; Cardoso, Maria DAS Graças; Soares, Maurilio José

    2017-08-01

    Leishmania (Viannia) braziliensis is a protozoan that causes mucocutaneous leishmaniasis, which is an infectious disease that affects more than 12 million people worldwide. The available treatment is limited, has side-effects or is inefficient. In a search for alternative compounds of natural origin, we tested the microbicidal activity of Piper aduncum essential oil (PaEO) on this parasite. Our data showed that PaEO had an inhibitory effect on the growth of L. braziliensis promastigotes with an IC50/24 h=77·9 µg mL-1. The main constituent (nerolidol: 25·22%) presented a similar inhibitory effect (IC50/24 h = 74·3 µg mL-1). Ultrastructural observation of nerolidol-treated parasites by scanning and transmission electron microscopies revealed cell shrinkage and morphological alterations in the mitochondrion, nuclear chromatin and flagellar pocket. Flow cytometry analysis showed a reduction in the cell size, loss of mitochondrial membrane potential, phosphatidylserine exposure and DNA degradation, which when associated with the morphological changes indicated that nerolidol induced incidental cell death in the L. braziliensis promastigotes. The results presented here indicate that nerolidol derivatives are promising compounds for further evaluation against Leishmania parasites.

  4. Cryptic antifungal compounds active by synergism with polyene antibiotics.

    Science.gov (United States)

    Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya

    2016-04-01

    The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Four new compounds from Imperata cylindrica.

    Science.gov (United States)

    Liu, Xuan; Zhang, Bin-Feng; Yang, Li; Chou, Gui-Xin; Wang, Zheng-Tao

    2014-04-01

    Four new compounds, impecylone (1), deacetylimpecyloside (2), seguinoside K 4-methylether (3) and impecylenolide (4), were isolated from Imperata cylindrica along with two known compounds, impecyloside (5) and seguinoside K (6). Their structures were elucidated mainly by spectroscopic analyses including 1D- and 2D-NMR techniques, and the absolute configuration of 1 was confirmed by X-ray diffraction analysis. In calcium assay, the result indicated that compounds 1, 2, 4 and 5 cannot obviously inhibit the calcium peak value compared with the negative control, and suggested that the four compounds could not have anti-inflammatory activity.

  6. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics

    International Nuclear Information System (INIS)

    Kandhasamy, Subramani; Ramanathan, Giriprasath; Muthukumar, Thangavelu; Thyagarajan, SitaLakshmi; Umamaheshwari, Narayanan; Santhanakrishnan, V P; Sivagnanam, Uma Tiruchirapalli; Perumal, Paramasivan Thirumalai

    2017-01-01

    The nanomaterial with the novel biologically active compounds has been actively investigated for application in cancer research. Substantial use of nanofibrous scaffold for cancer research with potentially bioactive compounds through electrospinning has not been fully explored. Here, we describe the series of fabrication of nanofibrous scaffold loaded with novel potential biologically active hydroxybenzo[a]phenazine pyrazol-5(4H)-one derivatives were designed, synthesized by a simple one-pot, two step four component condensation based on Michael type addition reaction of lawsone, benzene-1,2-diamine, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one as the substrates. The heterogeneous solid state catalyst (Fe (III) Y-Zeolite) could effectively catalyze the reaction to obtain the product with high yield and short reaction time. The synthesized compounds (5a–5p) were analyzed by NMR, FTIR and HRMS analysis. Compound 5c was confirmed by single crystal XRD studies. All the compounds were biologically evaluated for their potential inhibitory effect on anticancer (MCF-7, Hep-2) and microbial (MRSA, MTCC 201 and FRCA) activities. Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines. Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. In addition, molecular docking (PDB ID: (1T46)) studies were performed to predict the binding affinity of ligand with receptor. Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. The in vitro apoptotic potential of the PHB-PCL-BPP nanofibrous scaffold was assessed against MCF-7, Hep-2 cancerous cells and fibroblast cells at 12, 24 and 48 h respectively. The nanofibrous scaffold with BPP can induce apoptosis and also suppress the

  7. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics

    Energy Technology Data Exchange (ETDEWEB)

    Kandhasamy, Subramani [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India); Ramanathan, Giriprasath [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Muthukumar, Thangavelu [Department of Clinical and Experimental Medicine (IKE), Division of Neuro and Inflammation Sciences (NIV), Linkoping University (Sweden); Thyagarajan, SitaLakshmi [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Umamaheshwari, Narayanan [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India); Santhanakrishnan, V P [Department of Plant Biotechnology, TNAU, Coimbatore, Tamilnadu (India); Sivagnanam, Uma Tiruchirapalli, E-mail: suma67@gmail.com [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Perumal, Paramasivan Thirumalai, E-mail: ptperumal@gmail.com [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India)

    2017-05-01

    The nanomaterial with the novel biologically active compounds has been actively investigated for application in cancer research. Substantial use of nanofibrous scaffold for cancer research with potentially bioactive compounds through electrospinning has not been fully explored. Here, we describe the series of fabrication of nanofibrous scaffold loaded with novel potential biologically active hydroxybenzo[a]phenazine pyrazol-5(4H)-one derivatives were designed, synthesized by a simple one-pot, two step four component condensation based on Michael type addition reaction of lawsone, benzene-1,2-diamine, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one as the substrates. The heterogeneous solid state catalyst (Fe (III) Y-Zeolite) could effectively catalyze the reaction to obtain the product with high yield and short reaction time. The synthesized compounds (5a–5p) were analyzed by NMR, FTIR and HRMS analysis. Compound 5c was confirmed by single crystal XRD studies. All the compounds were biologically evaluated for their potential inhibitory effect on anticancer (MCF-7, Hep-2) and microbial (MRSA, MTCC 201 and FRCA) activities. Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines. Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. In addition, molecular docking (PDB ID: (1T46)) studies were performed to predict the binding affinity of ligand with receptor. Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. The in vitro apoptotic potential of the PHB-PCL-BPP nanofibrous scaffold was assessed against MCF-7, Hep-2 cancerous cells and fibroblast cells at 12, 24 and 48 h respectively. The nanofibrous scaffold with BPP can induce apoptosis and also suppress the

  8. Chloric organic compound

    International Nuclear Information System (INIS)

    Moalem, F.

    2000-01-01

    Since many years ago, hazardous and toxic refuses which are results of human activities has been carelessly without any Biological and Engineering facts and knowledge discharged into our land and water. The effects of discharging those materials in environment are different. Some of refuse materials shows short and other has long-time adverse effects in our environment, Among hazardous organic chemical materials, chlorine, consider, to be the main element. Organic materials with chlorine is called chlorine hydrocarbon as a hazardous compound. This paper discuss the hazardous materials especially chloric organic compound and their misuse effects in environment and human being

  9. Synthesis, Characterization, and Antimicrobial Activities of Coordination Compounds of Aspartic Acid

    Directory of Open Access Journals (Sweden)

    T. O. Aiyelabola

    2016-01-01

    Full Text Available Coordination compounds of aspartic acid were synthesized in basic and acidic media, with metal ligand M : L stoichiometric ratio 1 : 2. The complexes were characterized using infrared, electronic and magnetic susceptibility measurements, and mass spectrometry. Antimicrobial activity of the compounds was determined against three Gram-positive and three Gram-negative bacteria and one fungus. The results obtained indicated that the availability of donor atoms used for coordination was a function of the pH of the solution in which the reaction was carried out. This resulted in varying geometrical structures for the complexes. The compounds exhibited a broad spectrum of activity and in some cases better activity than the standard.

  10. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    Science.gov (United States)

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  11. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    Directory of Open Access Journals (Sweden)

    Elixabet Díaz-de-Cerio

    2016-05-01

    Full Text Available Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high. The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production.

  12. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States.

    Science.gov (United States)

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-05-11

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production.

  13. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    International Nuclear Information System (INIS)

    Guo, Shiguang; Mao, Li; Ji, Feng; Wang, Shouguo; Xie, Yue; Fei, Haodong; Wang, Xiao-dong

    2016-01-01

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  14. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shiguang [Department of Intensive Care Unit, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Mao, Li [Department of Endocrinology, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Ji, Feng, E-mail: huaiaifengjidr@163.com [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Shouguo; Xie, Yue; Fei, Haodong [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Xiao-dong, E-mail: xiaodongwangsz@163.com [The Center of Diagnosis and Treatment for Children' s Bone Diseases, The Children' s Hospital Affiliated to Soochow University, Suzhou (China)

    2016-03-18

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  15. Antibacterial Activity of Phenolic Compounds Against the Phytopathogen Xylella fastidiosa

    OpenAIRE

    Maddox, Christina E.; Laur, Lisa M.; Tian, Li

    2010-01-01

    Xylella fastidiosa is a pathogenic bacterium that causes diseases in many crop species, which leads to considerable economic loss. Phenolic compounds (a group of secondary metabolites) are widely distributed in plants and have shown to possess antimicrobial properties. The anti-Xylella activity of 12 phenolic compounds, representing phenolic acid, coumarin, stilbene and flavonoid, was evaluated using an in vitro agar dilution assay. Overall, these phenolic compounds were effective in inhibiti...

  16. The main constituents of Tulipa systola Stapf. roots and flowers; their antioxidant activities.

    Science.gov (United States)

    Ibrahim, Mohammed Farhad; Hussain, Faiq Hama Saeed; Zanoni, Giuseppe; Vidari, Giovanni

    2017-09-01

    People living on the mountains of the Kurdistan Region, Iraq make a large use of herbs in the local traditional medicine. Among them, Tulipa systola, which grows under and between rocks, is very popular as an anti-inflammatory remedy and pain-relief. The phytochemical study of an ethanolic extract obtained from flowers and roots of Tulip (T systola Stapf.) afforded three compounds, identified as (+)-1-O-E-feruloyl-3-O-E-p-coumaroylglycerol (1), (+)-6-tuliposide A (2), and (-)-kaempferol-3-O-rutinoside (3). The significant radical scavenging and antioxidant activity of the isolated compounds were evaluated on three tests, by determining the DPPH free radical scavenging activity, the total antioxidant activity and the hydrogen peroxide scavenging activity. Tuliposide A shows potent allergenic activity.

  17. Antiplasmodial activity of some phenolic compounds from ...

    African Journals Online (AJOL)

    Background: Plasmodium falciparum, one of the causative agents of malaria, has high adaptability through mutation and is resistant to many types of anti-malarial drugs. This study presents an in vitro assessment of the antiplasmodial activity of some phenolic compounds isolated from plants of the genus Allanblackia.

  18. Determination of blood concentrations of main active compounds in Zi-Cao-Cheng-Qi decoction and their total plasma protein binding rates based on hollow fiber liquid phase microextraction coupled with high performance liquid chromatography.

    Science.gov (United States)

    Li, Miaomiao; Chen, Xuan; Hu, Shuang; Wang, Runqin; Peng, Xiaoli; Bai, Xiaohong

    2018-01-01

    Oil-in-salt hollow fiber liquid phase microextraction coupled with high performance liquid chromatography ultraviolet detection (HPLC-UV) was developed for determination of the blood concentrations of the main active compounds, hesperidin, honokiol, shikonin, magnolol, emodin and β,β'-dimethylacrylshikonin, after oral administration of Zi-Cao-Cheng-Qi decoction (ZCCQD) and their total plasma protein binding rates. In the procedure, a hollow fiber segment was immersed in organic solvent to fill the solvent in the fiber lumen and wall pore, and then the fiber was immersed into sodium chloride solution to cover a thin salt membrane on the fiber wall pore filling organic solvent. Various factors affecting the procedure, such as extraction solvent, sample phase pH, stirring rate, extraction time, NaCl concentration and fiber immersion time in the NaCl solution, were optimized. Under the optimum conditions, good linearities (r 2 ≥0.9905), low limits of detection (0.7-2.5ng/mL) or quantitation (1.2-12ng/mL), satisfactory precision (2.6%-12.8%) and accuracy (81.0%-114.2%) of this method, were observed. The results showed that, after oral administration of a 25g/kg dose, (1) the blood concentrations (at 0.5h) of hesperidin, honokiol, shikonin, magnolol, emodin and β,β'-dimethylacrylshikonin were 0.45, 0.40, 0.48, 0.74, 0.11 and 1.11μg/mL, respectively; (2) the total plasma protein binding rates of the six active compounds were 42.0% (hesperidin), 71.8% (honokiol), 64.6% (shikonin), 77.7% (magnolol), 75.3% (emodin) and 75.7% (β,β'-dimethylacrylshikonin), respectively. The proposed procedure coupled with HPLC shows obvious advantages, such as low solvent consumption, simple operation, high sensitivity and strong purifying and can be used for the determination of both the blood concentrations and total plasma protein binding rates of active compounds in traditional Chinese medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. QUANTITATIVE ELECTRONIC STRUCTURE - ACTIVITY RELATIONSHIP OF ANTIMALARIAL COMPOUND OF ARTEMISININ DERIVATIVES USING PRINCIPAL COMPONENT REGRESSION APPROACH

    Directory of Open Access Journals (Sweden)

    Paul Robert Martin Werfette

    2010-06-01

    Full Text Available Analysis of quantitative structure - activity relationship (QSAR for a series of antimalarial compound artemisinin derivatives has been done using principal component regression. The descriptors for QSAR study were representation of electronic structure i.e. atomic net charges of the artemisinin skeleton calculated by AM1 semi-empirical method. The antimalarial activity of the compound was expressed in log 1/IC50 which is an experimental data. The main purpose of the principal component analysis approach is to transform a large data set of atomic net charges to simplify into a data set which known as latent variables. The best QSAR equation to analyze of log 1/IC50 can be obtained from the regression method as a linear function of several latent variables i.e. x1, x2, x3, x4 and x5. The best QSAR model is expressed in the following equation,  (;;   Keywords: QSAR, antimalarial, artemisinin, principal component regression

  20. Radiosensitization of Escherichia coli and Salmonella typhi in presence of active compounds

    International Nuclear Information System (INIS)

    Lacroix, M.; Chiasson, F.; Borsa, J.; Ouattara, B.

    2004-01-01

    The radiosensitization of Escherichia coli and Salmonella typhi in ground beef was evaluated in the presence of 18 active compounds. Medium fat ground beef (23% fat) was inoculated with E. coli or S. typhi and each active compound was added separately at various concentrations. For E. coli, the most efficient compounds were trans-cinnamaldehyde, thymol and thyme. For S. typhi, the most efficient compounds was trans-cinnamaldehyde, carvacrol and thymol. The addition of tetrasodium pyrophosphate, carvacrol and ascorbic acid had no effect on the irradiation sensitivity of E. coli. For S. typhi, only ascorbic acid had no effect

  1. Radiosensitization of Escherichia coli and Salmonella typhi in presence of active compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, M. E-mail: monique.lacroix@inrs-iaf.uquebec.ca; Chiasson, F.; Borsa, J.; Ouattara, B

    2004-10-01

    The radiosensitization of Escherichia coli and Salmonella typhi in ground beef was evaluated in the presence of 18 active compounds. Medium fat ground beef (23% fat) was inoculated with E. coli or S. typhi and each active compound was added separately at various concentrations. For E. coli, the most efficient compounds were trans-cinnamaldehyde, thymol and thyme. For S. typhi, the most efficient compounds was trans-cinnamaldehyde, carvacrol and thymol. The addition of tetrasodium pyrophosphate, carvacrol and ascorbic acid had no effect on the irradiation sensitivity of E. coli. For S. typhi, only ascorbic acid had no effect.

  2. Oxidative Addition and Reductive Elimination at Main-Group Element Centers.

    Science.gov (United States)

    Chu, Terry; Nikonov, Georgii I

    2018-04-11

    Oxidative addition and reductive elimination are key steps in a wide variety of catalytic reactions mediated by transition-metal complexes. Historically, this reactivity has been considered to be the exclusive domain of d-block elements. However, this paradigm has changed in recent years with the demonstration of transition-metal-like reactivity by main-group compounds. This Review highlights the substantial progress achieved in the past decade for the activation of robust single bonds by main-group compounds and the more recently realized activation of multiple bonds by these elements. We also discuss the significant discovery of reversible activation of single bonds and distinct examples of reductive elimination at main-group element centers. The review consists of three major parts, starting with oxidative addition of single bonds, proceeding to cleavage of multiple bonds, and culminated by the discussion of reversible bond activation and reductive elimination. Within each subsection, the discussion is arranged according to the type of bond being cleaved or formed and considers elements from the left to the right of each period and down each group of the periodic table. The majority of results discussed in this Review come from the past decade; however, earlier reports are also included to ensure completeness.

  3. Antibacterial Compounds from Red Seaweeds (Rhodophyta

    Directory of Open Access Journals (Sweden)

    Noer Kasanah

    2015-07-01

    Full Text Available Seaweeds produce great variety of metabolites benefit for human. Red seaweeds (Rhodophyta are well known as producer of phycocolloids such agar, agarose, carragenan and great variety of secondary metabolites. This review discusses the red algal secondary metabolites with antibacterial activity. The chemical constituents of red algae are steroid, terpenoid, acetogenin and dominated by halogenated compounds mainly brominated compounds. Novel compounds with intriguing skeleton are also reported such as bromophycolides and neurymenolides. In summary, red seaweeds are potential sources for antibacterial agents and can serve as lead in synthesis of new natural medicines.

  4. Acaricidal activities of the essential oil from Rhododendron nivale Hook. f. and its main compund, δ-cadinene against Psoroptes cuniculi.

    Science.gov (United States)

    Guo, Xiao; Shang, Xiaofei; Li, Bing; Zhou, Xu Zheng; Wen, Hao; Zhang, Jiyu

    2017-03-15

    In this paper, the acaricidal activities of Rhododendron nivale Hook. f. and its main compound, δ-cadinene were investigated, and the chemical composition of the essential oil was analyzed. The results showed that among aqueous, 70% ethanols, acetic ether, chloroform, petroleum ether and essential oil extracts from the shoots and leaves, the essential oil showed the best in vitro acaricidal activity against adult P. cuniculi, which occurred in a concentration- and time-dependent manner. The median lethal time (LT 50 ) values of four concentrations (33.33-4.17mg/ml) of the essential oil ranged from 1.476 to 25.900h, respectively. After the treatment of P. cuniculi with the essential oil and ivermectin, infected rabbits were free of scabs or secretions in the ear canal by day 20. Then, the percent yield of essential oil from the leaves and shoots was 2.45% (w/w), which includes 50 compounds. The primary component identified was terpenes, and among of compounds identified from the essential oil of R. nivale the highest relative content was δ-cadinene, which also presented the marked acaricidal activity against Psoroptes cuniculi in vitro. These findings provide evidence for the use of acaricides as a traditional medicine and indicate that the essential oil and δ-cadinene could be used to control mites in livestock. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of vanadium compounds on acid phosphatase activity

    OpenAIRE

    Vescina, Cecilia M.; Sálice, Viviana C.; Cortizo, Ana María; Etcheverry, Susana B.

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activi...

  6. Biologically Active Compounds of Plant Foods: Prospective Impact ...

    African Journals Online (AJOL)

    On the other hand, other biologically active compounds impair health by ... of essential elements through different mechanisms and giving astringent taste, odor, ... The health benefits of selected substances from Ethiopian food crops need to ...

  7. Synthesis of Some Novel Thiadiazole Derivative Compounds and Screening Their Antidepressant-Like Activities

    Directory of Open Access Journals (Sweden)

    Nafiz Öncü Can

    2018-03-01

    Full Text Available Novel thiadiazole derivatives were synthesized through the reaction of acetylated 2-aminothiadiazole and piperazine derivatives. The chemical structures of the compounds were clarified by Infrared Spectroscopy (IR, 1H Nuclear Magnetic Resonance Spectroscopy (1H-NMR, 13C Nuclear Magnetic Resonance Spectroscopy (13C-NMR and Electronspray Ionisation Mass Spectroscopy (ESI-MS spectroscopic methods. Antidepressant-like activities were evaluated by the tail-suspension (TST and modified forced swimming (MFST methods. Besides, possible influence of the test compounds on motor activities of the animals were examined by activity cage tests. In the TST, administration of the compounds 2c, 2d, 2e, 2f, 2g and 2h significantly decreased the immobility time of mice regarding the control values. Further, in the MFST, the same compounds reduced the total number of immobility behaviors while increasing swimming performance. However, no change was observed in the total number of climbing behaviors. These data suggested that compounds 2c, 2d, 2e, 2f, 2g and 2h possess notable antidepressant-like activities. Reference drug fluoxetine (10 mg/kg was also exhibited its antidepressant activity, as expected. No significant difference was seen between the locomotor activity values of the test groups signifying that observed antidepressant-like activities are specific. Theoretical calculation of absorption, distribution, metabolism, excretion (ADME properties for the obtained compounds were performed and obtained data supported the antidepressant-like potential of these novel thiadiazole derivatives.

  8. Fingerprint profiles of flavonoid compounds from different Psidium guajava leaves and their antioxidant activities.

    Science.gov (United States)

    Wang, Lu; Wu, Yanan; Bei, Qi; Shi, Kan; Wu, Zhenqiang

    2017-10-01

    Flavonoids are the main active components in Psidium guajava leaves and have many multi-physiological functions. In this study, the flavonoid compositions were identified in the Psidium guajava leaves samples using a high-performance liquid chromatography with time-of-flight electrospray ionization mass spectrometry method. A high-performance liquid chromatography fingerprint method, combined with chemometrics, was used to perform a quality assessment of the Psidium guajava leaves samples. The eight identified flavonoid compounds including rutin, isoquercitrin, quercetin-3-O-β-d-xylopyranoside, quercetin-3-O-α-l-arabinopyranoside, avicularin, quercitrin, quercetin, and kaempferol were used as the chemical markers. The antioxidant activity of 15 batches of samples was examined using three different methods, and the results revealed the Psidium guajava leaves samples that had higher contents of the flavonoid compounds, glycoside and aglycone, possessed the highest antioxidant capacities. Consequently, a combination of chromatographic fingerprints and chemometric analyses was used for a quality assessment of Psidium guajava leaf tea and its derived products, which can lay the foundation for the development of plant tea resources or other herbs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Role of ozone and granular activated carbon in the removal of mutagenic compounds.

    Science.gov (United States)

    Bourbigot, M M; Hascoet, M C; Levi, Y; Erb, F; Pommery, N

    1986-01-01

    The identification of certain organic compounds in drinking water has led water treatment specialists to be increasingly concerned about the eventual risks of such pollutants to the health of consumers. Our experiments focused on the role of ozone and granular activated carbon in removing mutagenic compounds and precursors that become toxic after chlorination. We found that if a sufficient dose of ozone is applied, its use does not lead to the creation of mutagenic compounds in drinking water and can even eliminate the initial mutagenicity of the water. The formation of new mutagenic compounds seems to be induced by ozonation that is too weak, although these mutagens can be removed by GAC filtration. Ozone used with activated carbon can be one of the best means for eliminating the compounds contributing to the mutagenicity of water. A combined treatment of ozone and activated carbon also decreases the chlorine consumption of the treated water and consequently reduces the formation of chlorinated organic compounds. PMID:3816720

  10. Compound sawtooth study in ohmically heated TFTR plasmas

    International Nuclear Information System (INIS)

    Yamada, H.; McGuire, K.; Colchin, D.

    1985-09-01

    Compound sawtooth activity has been observed in ohmically heated, high current, high density TFTR plasmas. Commonly called ''double sawteeth,'' such sequences consist of a repetitive series of subordinate relaxations followed by a main relaxation with a different inversion radius. The period of such compound sawteeth can be as long as 100 msec. In other cases, however, no compound sawteeth or bursts of them can be observed in discharges with essentially the same parameters

  11. Plant compounds insecticide activity against Coleoptera pests of stored products

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal; br, picanco@ufv; br, guedes@ufv; br, mateusc3@yahoo com; br, agronomiasilva@yahoo com

    2007-07-15

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD{sub 50} from 2.72 to 39.71 mg g{sup -1} a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  12. Plant compounds insecticide activity against Coleoptera pests of stored products

    International Nuclear Information System (INIS)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio; julioufv@yahoo.com.br

    2007-01-01

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD 50 from 2.72 to 39.71 mg g -1 a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  13. Bioactive compounds fractionated from endophyte Streptomyces SUK 08 with promising ex-vivo antimalarial activity

    Directory of Open Access Journals (Sweden)

    Noraziah Mohamad Zin

    2017-12-01

    Full Text Available Objective: To determine ex vivo antimalarial activity and cytotoxicity of endophytic Streptomyces SUK 08 as well as the main core structure fractionated from its crude extract. Methods: The activities of SUK 08 crude extract were evaluated by using the Plasmodium lactate dehydrogenase assay and synchronization test against rodent malaria parasite Plasmodium berghei, instead of human malarial parasite Plasmodium falciparum. The cytotoxicity of the crude extract was determined by MTT assay. The crude extract was analyzed by thin-layer chromatography and gas chromatography–mass spectrophotometry. Results: The ethyl acetate crude extract showed very promising antimalarial activity with IC50 of 1.25 mg/mL. The synchronization tests showed that ethyl acetate extraction could inhibit all stages of the Plasmodium life cycle, but it was most effective at the Plasmodium ring stage. On the basis of a MTT assay on Chang Liver cells, ethyl acetate and ethanol demonstrated IC50 values of >1.0 mg/mL. The IC50 of parasitemia at 5% and 30% for this extract was lower than chloroquine. Thin-layer chromatography, with 1: 9 ratio of ethyl acetate: hexane, was used to isolate several distinct compounds. Based on gas chromatography–mass spectrophotometry analysis, three core structures were identified as cyclohexane, butyl propyl ester, and 2,3-heptanedione. Structurally, these compounds were similar to currently available antimalarial drugs. Conclusions: The results suggest that compounds isolated from Streptomyces SUK 08 are viable antimalarial drug candidates that require further investigations. Keywords: Butyl–propyl–ester, Cyclohexane, 2,3-Heptanedione, Endophyte, Streptomyces, Antimalarial

  14. Antioxidant Activity of Novel Fused Heterocyclic Compounds Derived from Tetrahydropyrimidine Derivative.

    Science.gov (United States)

    Salem, Marwa Sayed; Farhat, Mahmoud; Errayes, Asma Omar; Madkour, Hassan Mohamed Fawzy

    2015-01-01

    6-(Benzo[d][1,3]dioxol-5-yl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile has been utilized for synthesis of the fused heterocyclic compounds namely thiazolopyrimidines, tetrazolopyrimidine, pyrimidoquinazoline, pyrimidothiazolopyrimidine, pyrimidothiazolotriazine and pyrrolothiazolopyrimidine derivatives. The newly synthesized compounds were characterized by IR, (1)H-NMR, (13)C-NMR, and mass spectral data. Antioxidant activities of all synthesized compounds were investigated.

  15. In-tube extraction for the determination of the main volatile compounds in Physalis peruviana L.

    Science.gov (United States)

    Kupska, Magdalena; Jeleń, Henryk H

    2017-01-01

    An analytical procedure based on in-tube extraction followed by gas chromatography with mass spectrometry has been developed for the analysis of 24 of the main volatile components in cape gooseberry (Physalis peruviana L.) samples. According to their chemical structure, the compounds were organized into different groups: one hydrocarbon, one aldehyde, four alcohols, four esters, and 14 monoterpenes. By single-factor experiments, incubation temperature, incubation time, extraction volume, extraction strokes, extraction speed, desorption temperature, and desorption speed were determined as 60°C, 20 min, 1000 μL, 20, 50:50 μL/s, 280°C, 100 μL/s, respectively. Quantitative analysis using authentic standards and external calibration curves was performed. The limit of detection and limit of quantification for the analytical procedure were calculated. Results shown the benzaldehyde, ethyl butanoate, 2-methyl-1-butanol, 1-hexanol, 1-butanol, α-terpineol, and terpinen-4-ol were the most abundant volatile compounds in analyzed fruits (68.6-585 μg/kg). The obtained data may contribute to qualify cape gooseberry to the group of superfruits and, therefore, increase its popularity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Extraction and antioxidant activity of phenolic compounds from ...

    African Journals Online (AJOL)

    35:1, temperature: 70 oC, the experimental total phenolic yield was 30.464 ± 0.025, which agreed with ... The phenolic compounds showed strong antioxidant activities. At extract ..... under steam explosion is a suitable approach for obtaining a ...

  17. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    Science.gov (United States)

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPApH (pHactivated carbon decreased by around 50% and 70% in the presence of DPA and BPA, respectively, indicating that both compounds are adsorbed on the same adsorption sites of the activated carbon. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Characterization of aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.).

    Science.gov (United States)

    Cho, In Hee; Kim, Se Young; Choi, Hyung-Kyoon; Kim, Young-Suk

    2006-08-23

    The characteristic aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.) were investigated by gas chromatography-olfactometry using aroma extract dilution analysis. 1-Octen-3-one (mushroom-like) was the major aroma-active compound in raw pine-mushrooms; this compound had the highest flavor dilution factor, followed by ethyl 2-methylbutyrate (floral and sweet), linalool (citrus-like), methional (boiled potato-like), 3-octanol (mushroom-like and buttery), 1-octen-3-ol (mushroom-like), (E)-2-octen-1-ol (mushroom-like), and 3-octanone (mushroom-like and buttery). By contrast, methional, 2-acetylthiazole (roasted), an unknown compound (chocolate-like), 3-hydroxy-2-butanone (buttery), and phenylacetaldehyde (floral and sweet), which could be formed by diverse thermal reactions during the cooking process, together with C8 compounds, were identified as the major aroma-active compounds in cooked pine-mushrooms.

  19. Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum.

    Science.gov (United States)

    Li, Wei; Lee, Sang Hyun; Jang, Hae Dong; Ma, Jin Yeul; Kim, Young Ho

    2017-01-11

    Hericium erinaceum , commonly called lion's mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate ( 6 ), was isolated from the fruiting bodies of H. erinaceum together with five aromatic compounds 1 - 5 and five sterols 7 - 11 . The chemical structures of these compounds were elucidated using chemical and physical methods and comparison of HRESIMS, ¹D-NMR (¹H, 13 C, and DEPT) and 2D-NMR (COSY, HMQC, HMBC, and NOESY) spectra with previously reported data. The antioxidant and anti-osteoporotic activities of extracts and the isolated compounds 1 - 11 were investigated. All compounds exhibited peroxyl radical-scavenging capacity but only compounds 1 , 3 , and 4 showed potent reducing capacity. Moreover, compounds 1 , 2 , 4 , and 5 showed moderate effects on cellular antioxidant activity and inhibited the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastic differentiation. These results suggested that H. erinaceum could be utilized in the development of natural antioxidant and anti-osteoporotic nutraceuticals and functional foods.

  20. Elicitation effect of Saccharomyces cerevisiae yeast extract on main health-promoting compounds and antioxidant and anti-inflammatory potential of butter lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Złotek, Urszula; Świeca, Michał

    2016-05-01

    This paper presents a study on changes in the main phytochemical levels and antioxidant and anti-inflammatory activity of lettuce caused by different doses and times of application of yeast extracts. Elicitation with yeast extract caused an increase in the total phenolic compounds and chlorophyll content, which varied according to the dose and time of spraying, but it did not have a positive impact on vitamin C, flavonoid and carotenoid content in lettuce. The best effect was achieved by double spraying with 1% yeast extract and by single spraying with 0.1% yeast extract. The increase in phytochemical content was positively correlated with the antioxidant and anti-inflammatory activity of the studied lettuce leaves. Chicoric acid seems to be the major contributor to these antioxidant activities. Yeast extract may be used as a natural, environmentally friendly and safe elicitor for improving the health-promoting qualities of lettuce. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Supercritical Algal Extracts: A Source of Biologically Active Compounds from Nature

    Directory of Open Access Journals (Sweden)

    Izabela Michalak

    2015-01-01

    Full Text Available The paper discusses the potential applicability of the process of supercritical fluid extraction (SFE in the production of algal extracts with the consideration of the process conditions and yields. State of the art in the research on solvent-free isolation of biologically active compounds from the biomass of algae was presented. Various aspects related with the properties of useful compounds found in cells of microalgae and macroalgae were discussed, including their potential applications as the natural components of plant protection products (biostimulants and bioregulators, dietary feed and food supplements, and pharmaceuticals. Analytical methods of determination of the natural compounds derived from algae were discussed. Algal extracts produced by SFE process enable obtaining a solvent-free concentrate of biologically active compounds; however, detailed economic analysis, as well as elaboration of products standardization procedures, is required in order to implement the products in the market.

  2. Anti-Inflammatory Activity of Compounds Isolated from Plants

    Directory of Open Access Journals (Sweden)

    R.M. Perez G.

    2001-01-01

    Full Text Available This review shows over 300 compounds isolated and identified from plants that previously demonstrated anti-inflammatory activity. They have been classified in appropriate chemical groups and data are reported on their pharmacological effects, mechanisms of action, and other properties.

  3. Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon

    Science.gov (United States)

    Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.

    2008-03-01

    The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.

  4. Effects of Increasing Doses of UV-B on Main Phenolic Acids Content, Antioxidant Activity and Estimated Biomass in Lavandin (Lavandula x intermedia).

    Science.gov (United States)

    Usano-Alemany, Jaime; Panjai, Lachinee

    2015-07-01

    Lavandin is a well-known aromatic plant cultivated mainly for its valuable essential oil. Nonetheless, little attention has been paid so far to the quantification of other natural products such as polyphenols. Accordingly, we examined the effect of increasing doses of UV-B radiation on the main phenolic content, antioxidant activity and estimated biomass of one year old lavandin pots compared with pots grown outdoors. Significantly higher total phenolic content and concentration of main polyphenols have been found in outdoor plants. Rosmarinic acid has been described as the major phenolic compound in methanolic extracts (max. 25.9 ± 9.7 mg/g(-1) DW). Furthermore, we found that increasing doses of UV-B promote the plant growth of this species as well as the accumulation of phenolic compounds although with less antioxidant capacity in scavenging DPPH radicals. On the other hand, our results showed a remarkable variability among individual plants regarding the content of major phenolic acids. The application of UV-B doses during plant growth could be a method to promote biomass in this species along with the promotion of higher content of valuable secondary metabolites.

  5. In vitro antimicrobial activity of extracts and isolated compound from Dalbergia stipulacea Roxb. leaves

    Science.gov (United States)

    Kumar, Arvind; Bhat, Tahir Ahmad; Singh, Rattan Deep

    2017-07-01

    The study was designed to examine the in vitro antimicrobial efficacy of extracts and isolated compound of Dalbergia stipulacea. Combined extracts (chloroform and methanol) of plant leaves fractionated with n-butanol loaded with column afforded a flavonoid glycoside compound identified as luteolin 4'-rutinoside. Different extracts and isolated compound exhibited pronounced antibacterial and antifungal varied activities against four bacteria (Clostridium acetobutylinium, Bacillus subtilis, Streptococcus mutans, and Pseudomonas sp.) and one fungus (Candida albicans) susceptibility were determined using disc diffusion method. The minimum inhibitory concentration (MIC) of extracts and isolated compounds was determined by broth dilution method. The maximum activity was shown by chloroform extract against C. albicans with a zone of inhibition of 17 mm and minimum activity was displayed by methanolic extract against Pseudomonas sp. with 5 mm. However, isolated compound has shown maximum activity against Pseudomonas sp. with 15 mm. The MIC values higher in methanol extract against Pseudomonas sp. and isolated compound shows good against Pseudomonas sp. and B. subtilis. Our findings indicate that plant could be used as a good antimicrobial agent in food, pharmaceutical and bio-pesticide industries.

  6. Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods.

    Science.gov (United States)

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2015-01-01

    Preparations from Artocarpus heterophyllus Lam. (Moraceae) heartwoods are used in the traditional folk medicine for the treatment of inflammation, malarial fever, and to prevent bacterial and fungal infections. The objective of this study was to isolate pure antibacterial compounds from A. heterophyllus heartwoods. The dried and powdered A. heterophyllus heartwoods were successively extracted with the following solvents: hexane, ethyl acetate, and methanol. Each of the extracts was screened for their antibacterial activities using a disc diffusion method (10 mg/disc). Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using a broth microdilution method. The extract that showed the strongest antibacterial activities was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract exhibited the strongest antibacterial activities against Streptococcus mutans, S. pyogenes, and Bacillus subtilis with MIC values of 78, 39, and 9.8 µg/mL, respectively. Based on an antibacterial assay-guided isolation, four antibacterial compounds: cycloartocarpin (1), artocarpin (2), artocarpanone (3), and cyanomaclurin (4) were purified. Among these isolated compounds, artocarpin exhibited the strongest antibacterial activity against Gram-positive bacteria, including S. mutans, S. pyogenes, B. subtilis, Staphylococcus aureus, and S. epidermidis with MICs of 4.4, 4.4, 17.8, 8.9, and 8.9 µM, respectively, and MBCs of 8.9, 8.9, 17.8, 8.9, and 8.9 µM, respectively, while artocarpanone showed the strongest activity against Escherichia coli, a Gram-negative bacteria with MIC and MBC values of 12.9 and 25.8 µM, respectively. Only artocarpin showed inhibitory activity against Pseudomonas aeruginosa with an MIC of 286.4 µM.

  7. Plant compounds insecticide activity against Coleoptera pests of stored products

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal]. E-mail: marcio.dionizio@gmail.com; picanco@ufv.br; guedes@ufv.br; mateusc3@yahoo.com.br; agronomiasilva@yahoo.com.br

    2007-07-15

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD{sub 50} from 2.72 to 39.71 mg g{sup -1} a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  8. Porritoxins, metabolites of Alternaria porri, as anti-tumor-promoting active compounds.

    Science.gov (United States)

    Horiuchi, Masayuki; Tokuda, Harukuni; Ohnishi, Keiichiro; Yamashita, Masakazu; Nishino, Hoyoku; Maoka, Takashi

    2006-02-01

    To search for possible cancer chemopreventive agents from natural sources, we performed primary screening of metabolites of Alternaria porri by examining their possible inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. The ethyl acetate extract of A. porri showed the inhibitory effect on EBV-EA activation. Three porritoxins (1-3) were obtained as inhibitory active compounds for EBV-EA from ethyl acetate extract. 6-(3',3'-Dimethylallyloxy)-4-methoxy-5-methylphthalide (2) showed the strongest activity among them. Inhibitory effect of porritoxin (1) and (2) was superior to that of beta-carotene, a well-known anti-tumor promoter. Furthermore, the structure-activity correlation of porritoxins and their related compounds were discussed.

  9. Effect of vanadium compounds on acid phosphatase activity.

    Science.gov (United States)

    Vescina, C M; Sálice, V C; Cortizo, A M; Etcheverry, S B

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.

  10. Natural products as a resource for biologically active compounds

    International Nuclear Information System (INIS)

    Hanke, F.J.

    1986-01-01

    The goal of this study was to investigate various sources of biologically active natural products in an effort to identify the active pesticidal compounds involved. The study is divided into several parts. Chapter 1 contains a discussion of several new compounds from plant and animal sources. Chapter 2 introduces a new NMR technique. In section 2.1 a new technique for better utilizing the lanthanide relaxation agent Gd(fod) 3 is presented which allows the predictable removal of resonances without line broadening. Section 2.2 discusses a variation of this technique for use in an aqueous solvent by applying this technique towards identifying the binding sites of metals of biological interest. Section 2.3 presents an unambiguous 13 C NMR assignment of melibiose. Chapter 3 deals with work relating to the molting hormone of most arthropods, 20-hydroxyecdysone. Section 3.1 discusses the use of two-dimensional NMR (2D NMR) to assign the 1 H NMR spectrum of this biologically important compound. Section 3.2 presents a new application for Droplet countercurrent chromatography (DCCC). Chapter 4 presents a basic improvement to the commercial DCCC instrument that is currently being applied to future commercial instruments. Chapter 5 discusses a curious observation of the effects that two previously known compounds, nagilactone C and (-)-epicatechin, have on lettuce and rice and suggest a possible new role for the ubiquitous flavanol (-)-epicatechin in plants

  11. A survey of synthetic and natural phytotoxic compounds and phytoalexins as potential antimalarial compounds.

    Science.gov (United States)

    Bajsa, Joanna; Singh, Kshipra; Nanayakkara, Dhammika; Duke, Stephen Oscar; Rimando, Agnes Mamaril; Evidente, Antonio; Tekwani, Babu Lal

    2007-09-01

    The apicomplexan parasites pathogens such as Plasmodium spp. possess an apicoplast, a plastid organelle similar to those of plants. The apicoplast has some essential plant-like metabolic pathways and processes, making these parasites susceptible to inhibitors of these functions. The main objective of this paper is to determine if phytotoxins with plastid target sites are more likely to be good antiplasmodial compounds than are those with other modes of action. The antiplasmodial activities of some compounds with established phytotoxic action were determined in vitro on a chloroquine (CQ) sensitive (D6, Sierra Leone) strain of Plasmodium falciparum. In this study, we provide in vitro activities of almost 50 such compounds, as well as a few phytoalexins against P. falciparum. Endothall, anisomycin, and cerulenin had sufficient antiplasmodial action to be considered as new lead antimalarial structures. Some derivatives of fusicoccin possessed markedly improved antiplasmodial action than the parent compound. Our results suggest that phytotoxins with plastid targets may not necessarily be better antiplasmodials than those that act at other molecular sites. The herbicides, phytotoxins and the phytoalexins reported here with significant antiplasmodial activity may be useful probes for identification of new antimalarial drug targets and may also be used as new lead structures for new antiplasmodial drug discovery.

  12. Bioactive compounds and antioxidative activity of colored rice bran

    Directory of Open Access Journals (Sweden)

    Yu-Ping Huang

    2016-07-01

    Full Text Available The profiles of bioactive compounds (including phenolics and flavonoids in free and bound fractions, anthocyanins, proanthocyanidins, vitamin E, and γ-oryzanol of outer and inner rice bran from six colored rice samples collected from local markets were investigated. Proanthocyanidins could only be detected in red rice bran but not in black rice bran. The free fraction of the extracts dominated the total phenolics (72–92% and the total flavonoids (72–96% of colored rice bran. Most of the phenolic acids (83–97% in colored rice bran were present in the bound form. Protocatechualdehyde was identified for the first time in the bound fraction of red rice bran by high performance liquid chromatography-photodiode array/electrospray ionization tandem mass spectrometry. The antioxidative activities of the free fraction of the colored rice bran were attributed to the proanthocyanidins in red colored rice and anthocyanins in black rice, while that of the bound fraction was mainly due to the phenolic acids.

  13. A ranking method for the concurrent learning of compounds with various activity profiles.

    Science.gov (United States)

    Dörr, Alexander; Rosenbaum, Lars; Zell, Andreas

    2015-01-01

    In this study, we present a SVM-based ranking algorithm for the concurrent learning of compounds with different activity profiles and their varying prioritization. To this end, a specific labeling of each compound was elaborated in order to infer virtual screening models against multiple targets. We compared the method with several state-of-the-art SVM classification techniques that are capable of inferring multi-target screening models on three chemical data sets (cytochrome P450s, dehydrogenases, and a trypsin-like protease data set) containing three different biological targets each. The experiments show that ranking-based algorithms show an increased performance for single- and multi-target virtual screening. Moreover, compounds that do not completely fulfill the desired activity profile are still ranked higher than decoys or compounds with an entirely undesired profile, compared to other multi-target SVM methods. SVM-based ranking methods constitute a valuable approach for virtual screening in multi-target drug design. The utilization of such methods is most helpful when dealing with compounds with various activity profiles and the finding of many ligands with an already perfectly matching activity profile is not to be expected.

  14. Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-01-01

    Full Text Available Hericium erinaceum, commonly called lion’s mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate (6, was isolated from the fruiting bodies of H. erinaceum together with five aromatic compounds 1–5 and five sterols 7–11. The chemical structures of these compounds were elucidated using chemical and physical methods and comparison of HRESIMS, 1D-NMR (1H, 13C, and DEPT and 2D-NMR (COSY, HMQC, HMBC, and NOESY spectra with previously reported data. The antioxidant and anti-osteoporotic activities of extracts and the isolated compounds 1–11 were investigated. All compounds exhibited peroxyl radical-scavenging capacity but only compounds 1, 3, and 4 showed potent reducing capacity. Moreover, compounds 1, 2, 4, and 5 showed moderate effects on cellular antioxidant activity and inhibited the receptor activator of nuclear factor κB ligand (RANKL-induced osteoclastic differentiation. These results suggested that H. erinaceum could be utilized in the development of natural antioxidant and anti-osteoporotic nutraceuticals and functional foods.

  15. Anti-trypanosomal activities and structural chemical properties of selected compound classes.

    Science.gov (United States)

    Ponte-Sucre, Alicia; Bruhn, Heike; Schirmeister, Tanja; Cecil, Alexander; Albert, Christian R; Buechold, Christian; Tischer, Maximilian; Schlesinger, Susanne; Goebel, Tim; Fuß, Antje; Mathein, Daniela; Merget, Benjamin; Sotriffer, Christoph A; Stich, August; Krohne, Georg; Engstler, Markus; Bringmann, Gerhard; Holzgrabe, Ulrike

    2015-02-01

    Potent compounds do not necessarily make the best drugs in the market. Consequently, with the aim to describe tools that may be fundamental for refining the screening of candidates for animal and preclinical studies and further development, molecules of different structural classes synthesized within the frame of a broad screening platform were evaluated for their trypanocidal activities, cytotoxicities against murine macrophages J774.1 and selectivity indices, as well as for their ligand efficiencies and structural chemical properties. To advance into their modes of action, we also describe the morphological and ultrastructural changes exerted by selected members of each compound class on the parasite Trypanosoma brucei. Our data suggest that the potential organelles targeted are either the flagellar pocket (compound 77, N-Arylpyridinium salt; 15, amino acid derivative with piperazine moieties), the endoplasmic reticulum membrane systems (37, bisquaternary bisnaphthalimide; 77, N-Arylpyridinium salt; 68, piperidine derivative), or mitochondria and kinetoplasts (88, N-Arylpyridinium salt; 68, piperidine derivative). Amino acid derivatives with fumaric acid and piperazine moieties (4, 15) weakly inhibiting cysteine proteases seem to preferentially target acidic compartments. Our results suggest that ligand efficiency indices may be helpful to learn about the relationship between potency and chemical characteristics of the compounds. Interestingly, the correlations found between the physico-chemical parameters of the selected compounds and those of commercial molecules that target specific organelles indicate that our rationale might be helpful to drive compound design toward high activities and acceptable pharmacokinetic properties for all compound families.

  16. Comparison of the Main Bioactive Compounds and Antioxidant Activities in Garlic and White and Red Onions after Treatment Protocols

    Czech Academy of Sciences Publication Activity Database

    Gorinstein, S.; Leontowich, H.; Leontowicz, M.; Namiesnik, J.; Najman, K.; Drzewiecki, J.; Cvikrová, Milena; Martincová, Olga; Katrich, E.; Trakhtenberg, S.

    2008-01-01

    Roč. 56, č. 12 (2008), s. 4418-4426 ISSN 0021-8561 Institutional research plan: CEZ:AV0Z50380511 Keywords : Garlic * onions * bioactive compounds Subject RIV: EF - Botanics Impact factor: 2.562, year: 2008

  17. Degradative pro-vitamin A active compounds of all- trans -&beta ...

    African Journals Online (AJOL)

    Dark green leafy vegetables (DGLV) are rich source of pro-vitamin A carotenoids, with all-trans-b-carotene as the main compound contributing over 90% of the vitamin A content. The other pro-vitamin A carotenoids present in DGLV are the cis isomers of b-carotene; the 9-cis and the 13-cis, and a-carotene in some ...

  18. Quinolone Amides as Antitrypanosomal Lead Compounds with In Vivo Activity.

    Science.gov (United States)

    Hiltensperger, Georg; Hecht, Nina; Kaiser, Marcel; Rybak, Jens-Christoph; Hoerst, Alexander; Dannenbauer, Nicole; Müller-Buschbaum, Klaus; Bruhn, Heike; Esch, Harald; Lehmann, Leane; Meinel, Lorenz; Holzgrabe, Ulrike

    2016-08-01

    Human African trypanosomiasis (HAT) is a major tropical disease for which few drugs for treatment are available, driving the need for novel active compounds. Recently, morpholino-substituted benzyl amides of the fluoroquinolone-type antibiotics were identified to be compounds highly active against Trypanosoma brucei brucei Since the lead compound GHQ168 was challenged by poor water solubility in previous trials, the aim of this study was to introduce structural variations to GHQ168 as well as to formulate GHQ168 with the ultimate goal to increase its aqueous solubility while maintaining its in vitro antitrypanosomal activity. The pharmacokinetic parameters of spray-dried GHQ168 and the newly synthesized compounds GHQ242 and GHQ243 in mice were characterized by elimination half-lives ranging from 1.5 to 3.5 h after intraperitoneal administration (4 mice/compound), moderate to strong human serum albumin binding for GHQ168 (80%) and GHQ243 (45%), and very high human serum albumin binding (>99%) for GHQ242. For the lead compound, GHQ168, the apparent clearance was 112 ml/h and the apparent volume of distribution was 14 liters/kg of body weight (BW). Mice infected with T. b. rhodesiense (STIB900) were treated in a stringent study scheme (2 daily applications between days 3 and 6 postinfection). Exposure to spray-dried GHQ168 in contrast to the control treatment resulted in mean survival durations of 17 versus 9 days, respectively, a difference that was statistically significant. Results that were statistically insignificantly different were obtained between the control and the GHQ242 and GHQ243 treatments. Therefore, GHQ168 was further profiled in an early-treatment scheme (2 daily applications at days 1 to 4 postinfection), and the results were compared with those obtained with a control treatment. The result was statistically significant mean survival times exceeding 32 days (end of the observation period) versus 7 days for the GHQ168 and control treatments

  19. Protoscolecidal Effect of Berberis vulgaris Root Extract and Its Main Compound, Berberine in Cystic Echinococcosis.

    Directory of Open Access Journals (Sweden)

    Hossein Mahmoudvand

    2014-12-01

    Full Text Available Cystic echinococcosis (CE, a zoonotic parasitic infection caused by the metacestode (larvae stage of dog tapeworm Echinococcus granulosus and recognized as a major economic and public health concern in the world. This study aimed to investigate the in vitro scolicidal effect of methanolic extract of Berberis vulgaris L. roots and its main compound, berberine against protoscoleces of hydatid cysts.For this purpose, protoscoleces were aseptically aspirated from sheep livers having hydatid cysts. Various concentrations of the methanolic extract (0.25-2 mg/ml and berberine (0.062- 0.5 mg/ml were used for 5 to 30 min. Viability of protoscoleces was confirmed by eosin exclusive test.In the present study, all of the various concentrations of the B. vulgaris methanolic extract (0.25, 0.5, 1 and 2 mg/ml and berberine (0.062, 0.125, 0.25 and 0.5 mg/ml revealed significant (P<0.05 scolicidal effects against protoscoleces of E. granulosus in a dose-dependent manner. Both berberine and methanolic extract exhibited 100% inhibition against protoscoleces of E. granulosus at the concentration of 2.0 and 0.5 mg/ml after 10 min incubation, respectively.According to the results, both B. vulgaris methanolic extract and berberine alone demonstrated high scolicidal activities against protoscoleces of hydatid cysts in low concentration and short exposure time on in vitro model. However, in vivo efficacy of B. vulgaris and berberine also requires to be evaluated using an animal model with hydatid infection.

  20. In vitro and in vivo activity of an organic tellurium compound on Leishmania (Leishmania chagasi.

    Directory of Open Access Journals (Sweden)

    Isabella Aparecida Salerno Pimentel

    Full Text Available Tellurium compounds have shown several biological properties and recently the leishmanicidal effect of one organotellurane was demonstrated. These findings led us to test the effect of the organotellurium compound RF07 on Leishmania (Leishmania chagasi, the agent of visceral leishmaniasis in Latin America. In vitro assays were performed in L. (L. chagasi-infected bone marrow derived macrophages treated with different concentrations of RF07. In in vivo experiments Golden hamsters were infected with L. (L. chagasi and injected intraperitoneally with RF07 whereas control animals received either Glucantime or PBS. The effect of RF07 on cathepsin B activity of L. (L. chagasi amastigotes was assayed spectrofluorometrically using fluorogenic substrates. The main findings were: 1 RF07 showed significant leishmanicidal activity against intracellular parasites at submicromolar concentrations (IC50 of 529.7±26.5 nM, and the drug displayed 10-fold less toxicity to macrophages (CC50 of 5,426±272.8 nM; 2 kinetics assays showed an increasing leishmanicidal action of RF07 at longer periods of treatment; 3 one month after intraperitoneal injection of RF07 L. (L. chagasi-infected hamsters showed a reduction of 99.6% of parasite burden when compared to controls that received PBS; 4 RF07 inhibited the cathepsin B activity of L. (L. chagasi amastigotes. The present results demonstrated that the tellurium compound RF07 is able to destroy L. (L. chagasi in vitro and in vivo at concentrations that are non toxic to the host. We believe these findings support further study of the potential of RF07 as a possible alternative for the chemotherapy of visceral leishmaniasis.

  1. Anti-inflammatory activities of compounds from twigs of Morus alba.

    Science.gov (United States)

    Tran, Huynh Nguyen Khanh; Nguyen, Van Thu; Kim, Jeong Ah; Rho, Seong Soo; Woo, Mi Hee; Choi, Jae Sui; Lee, Jeong-Hyung; Min, Byung Sun

    2017-07-01

    Five new compounds, 10-oxomornigrol F (1), (7″R)-(-)-6-(7″-hydroxy-3″,8″-dimethyl-2″,8″-octadien-1″-yl)apigenin (2), ramumorin A (3), ramumorin B (4), and (4S,7S,8R)-trihydroxyoctadeca-5Z-enoic acid (5), together with 31 known compounds (6-36), were isolated from the twigs of Morus alba (Moraceae). The chemical structures of these compounds were established using spectroscopic analyses, 1D and 2D NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and Mosher's methods. The anti-inflammatory activities of the compounds were evaluated by investigating their ability to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) production in macrophage RAW 264.7 cells. Compounds 1, 2, 13, 17, 19, 25-28, and 32 showed inhibitory effects with IC 50 values ranging from 2.2 to 5.3μg/mL. Compounds 1, 2, 17, 25, and 32 reduced LPS-induced inducible nitric oxide synthase (iNOS) expression in a concentration-dependent manner. In addition, pretreating the cells with compound 1, 17, and 32 significantly suppressed LPS-induced expression of cyclooxygenase-2 (COX-2) protein. Copyright © 2017. Published by Elsevier B.V.

  2. Exploring Marine Cyanobacteria for Lead Compounds of Pharmaceutical Importance

    Directory of Open Access Journals (Sweden)

    Bushra Uzair

    2012-01-01

    Full Text Available The Ocean, which is called the “mother of origin of life,” is also the source of structurally unique natural products that are mainly accumulated in living organisms. Cyanobacteria are photosynthetic prokaryotes used as food by humans. They are excellent source of vitamins and proteins vital for life. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS, arthritis, and so forth, while other compounds have been developed as analgesics or to treat inflammation, and so forth. They produce a large variety of bioactive compounds, including substances with anticancer and antiviral activity, UV protectants, specific inhibitors of enzymes, and potent hepatotoxins and neurotoxins. Many cyanobacteria produce compounds with potent biological activities. This paper aims to showcase the structural diversity of marine cyanobacterial secondary metabolites with a comprehensive coverage of alkaloids and other applications of cyanobacteria.

  3. Antibacterial activities of the extracts, fractions and compounds from Dioscorea bulbifera

    Directory of Open Access Journals (Sweden)

    Kuete Victor

    2012-11-01

    Full Text Available Abstract Background Dioscorea bulbifera is an African medicinal plant used to treat microbial infections. In the present study, the methanol extract, fractions (DBB1 and DBB2 and six compounds isolated from the bulbils of D. bulbifera, namely bafoudiosbulbins A (1, B (2, C (3, F (4, G (5 and 2,7-dihydroxy-4-methoxyphenanthrene (6, were tested for their antimicrobial activities against Mycobacteria and Gram-negative bacteria involving multidrug resistant (MDR phenotypes expressing active efflux pumps. Methods The microplate alamar blue assay (MABA and the broth microdilution methods were used to determine the minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC of the above samples. Results The results of the MIC determinations indicated that when tested alone, the crude extract, fractions DBB1 and DBB2 as well as compounds 2 to 5 were able to prevent the growth of all the fifteen studied microorganisms, within the concentration range of 8 to 256 μg/mL. The lowest MIC value for the methanol extract and fractions (16 μg/mL was obtained with DBB1 and DBB2 on E, coli AG100A and DBB2 on Mycobacterium tuberculosis MTCS2. The lowest value for individual compounds (8 μg/mL was recorded with compound 3 on M. smegmatis and M. tuberculosis ATCC and MTCS2 strains respectively. The activity of the samples on many MDR bacteria such as Enterobacter aerogenes EA289, CM64, Klebsiella pneumoniae KP63 and Pseudomonas aeruginosa PA124 was better than that of chloramphenicol. When tested in the presence of the efflux pump inhibitor against MDR Gram-negative bacteria, the activity of most of the samples increased. MBC values not greater than 512 μg/mL were recorded on all studied microorganisms with fraction DBB2 and compounds 2 to 5. Conclusions The overall results of the present investigation provided evidence that the crude extract D. bulbifera as well as some of the compounds and mostly compounds 3 could be considered as potential

  4. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity.

    Science.gov (United States)

    Meng, Fan-Cheng; Wu, Zheng-Feng; Yin, Zhi-Qi; Lin, Li-Gen; Wang, Ruibing; Zhang, Qing-Wen

    2018-01-01

    Coptidis rhizoma (CR) is the dried rhizome of Coptis chinensis Franch., C. deltoidea C. Y. Cheng et Hsiao or C. teeta Wall. (Ranunculaceae) and is commonly used in Traditional Chinese Medicine for the treatment of various diseases including bacillary dysentery, typhoid, tuberculosis, epidemic cerebrospinal meningitis, empyrosis, pertussis, and other illnesses. A literature survey was conducted via SciFinder, ScieneDirect, PubMed, Springer, and Wiley databases. A total of 139 selected references were classified on the basis of their research scopes, including chemical investigation, quality evaluation and pharmacological studies. Many types of secondary metabolites including alkaloids, lignans, phenylpropanoids, flavonoids, phenolic compounds, saccharides, and steroids have been isolated from CR. Among them, protoberberine-type alkaloids, such as berberine, palmatine, coptisine, epiberberine, jatrorrhizine, columamine, are the main components of CR. Quantitative determination of these alkaloids is a very important aspect in the quality evaluation of CR. In recent years, with the advances in isolation and detection technologies, many new instruments and methods have been developed for the quantitative and qualitative analysis of the main alkaloids from CR. The quality control of CR has provided safety for pharmacological applications. These quality evaluation methods are also frequently employed to screen the active components from CR. Various investigations have shown that CR and its main alkaloids exhibited many powerful pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetic, neuroprotective, cardioprotective, hypoglycemic, anti-Alzheimer and hepatoprotective activities. This review summarizes the recent phytochemical investigations, quality evaluation methods, the biological studies focusing on CR as well as its main alkaloids.

  5. Synthesis and Antiplatelet Activity of Antithrombotic Thiourea Compounds: Biological and Structure-Activity Relationship Studies

    Directory of Open Access Journals (Sweden)

    André Luiz Lourenço

    2015-04-01

    Full Text Available The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations.

  6. Volatile and non-volatile compounds and antimicrobial activity of Mansoa difficilis (Cham.) Bureau and K. Schum. (Bignoniaceae)

    International Nuclear Information System (INIS)

    Guilhon, Giselle Maria Skelding Pinheiro; Silva, Elisangela Sarmento da; Santos, Lourivaldo da Silva; Uetanabaro, Ana Paula Trovatti

    2012-01-01

    Essential oil from the leaves of Mansoa difficilis was analyzed by GC/MS. Oct-1-en-3-ol (49.65%) was the major compound, but diallyl di- and trisulfide were also present (0.85 and 0.37%, respectively), justifying the garlic-like odor of the crushed leaves. The hexane and methanol extracts of the leaves and stems afforded as main constituents a mixture of linear hydrocarbons, spinasterol, stigmasterol, ursolic and oleanolic acids, two apigenin derivatives and verbascoside. The hexane and methanol extracts of leaves were tested for antimicrobial activity against ten microorganisms. The hexane extract was active against both Pseudomonas aeruginosa and Staphylococcus aureus. (author)

  7. Volatile and non-volatile compounds and antimicrobial activity of Mansoa difficilis (Cham.) Bureau and K. Schum. (Bignoniaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Guilhon, Giselle Maria Skelding Pinheiro; Silva, Elisangela Sarmento da; Santos, Lourivaldo da Silva [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Fac. de Quimica; Zoghbi, Maria das Gracas Bichara [Museu Paraense Emilio Goeldi, Belem, PA (Brazil). Coordenacao de Botanica; Araujo, Isabella Santos [Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, BA (Brazil); Uetanabaro, Ana Paula Trovatti, E-mail: giselle@ufpa.br [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2012-07-01

    Essential oil from the leaves of Mansoa difficilis was analyzed by GC/MS. Oct-1-en-3-ol (49.65%) was the major compound, but diallyl di- and trisulfide were also present (0.85 and 0.37%, respectively), justifying the garlic-like odor of the crushed leaves. The hexane and methanol extracts of the leaves and stems afforded as main constituents a mixture of linear hydrocarbons, spinasterol, stigmasterol, ursolic and oleanolic acids, two apigenin derivatives and verbascoside. The hexane and methanol extracts of leaves were tested for antimicrobial activity against ten microorganisms. The hexane extract was active against both Pseudomonas aeruginosa and Staphylococcus aureus. (author)

  8. Molecular mechanism of radiosensitization by nitro compounds

    International Nuclear Information System (INIS)

    Kagiya, T.; Wada, T.; Nishimoto, S.I.

    1984-01-01

    In this chapter a molecular mechanism of radiosensitization by electron-affinic nitro compounds is discussed, mainly on the basis of the results of the radiation-induced chemical studies of DNA-related compounds in aqueous solutions. In Section II the general aspects of the radiation chemistry of organic compounds in the absence and presence of oxygen in aqueous solution are shown in order to demonstrate characteristic differences between radiation chemical reactions in hypoxic and oxic cells. The effects of nitro compounds on the radiolysis yields of DNA-related compounds in aqueous solutions are described in Section III. In Section IV the retardation effects of misonidazole on the radiation chemical processes of DNA-related compounds are shown along with the reaction characteristics of misonidazole with hydroxyl radical ( . OH) and hydrated electron (e/sub aq/-bar) produced by the radiolysis of water. The promotion of radiation-induced oxidation of thymine into thymine glycol (TG) by nitro radiosensitizers in deoxygenated solution and the relations between the activity of nitro compound for the thymine glycol formation and the enhancement activity measured in vitro are described in Section V. Finally, the protection against radiation-induced damage of thymine by a sulfhydryl compound of glutathione and the ability of electron-affinic compounds to decompose the intracellular radioprotector are described in Section VI

  9. Comparative characterisation of two nitroreductases from Giardia lamblia as potential activators of nitro compounds

    Directory of Open Access Journals (Sweden)

    Joachim Müller

    2015-08-01

    Full Text Available Giardia lamblia is a protozoan parasite that causes giardiasis, a diarrhoeal disease affecting humans and various animal species. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for treatment of giardiasis. Nitroreductases such as GlNR1 and GlNR2 may play a role in activation or inactivation of these drugs. The aim of this work is to characterise these two enyzmes using functional assays. For respective analyses recombinant analogues from GlNR1 and GlNR2 were produced in Escherichia coli. E. coli expressing GlNR1 and GlNR2 alone or together were grown in the presence of nitro compounds. Furthermore, pull-down assays were performed using HA-tagged GlNR1 and GlNR2 as baits. As expected, E. coli expressing GlNR1 were more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions whereas E. coli expressing GlNR2 were susceptible to neither drug. Interestingly, expression of both nitroreductases gave the same results as expression of GlNR2 alone. In functional assays, both nitroreductases had their strongest activities on the quinone menadione (vitamin K3 and FAD, but reduction of nitro compounds including the nitro drugs metronidazole and nitazoxanide was clearly detected. Full reduction of 7-nitrocoumarin to 7-aminocoumarin was preferentially achieved with GlNR2. Pull-down assays revealed that GlNR1 and GlNR2 interacted in vivo forming a multienzyme complex. These findings suggest that both nitroreductases are multifunctional. Their main biological role may reside in the reduction of vitamin K analogues and FAD. Activation by GlNR1 or inactivation by GlNR2 of nitro drugs may be the consequence of a secondary enzymatic activity either yielding (GlNR1 or eliminating (GlNR2 toxic intermediates after reduction of these compounds.

  10. Active compounds from cyanobacteria and microalgae: properties and potential applications in biomedicine

    Directory of Open Access Journals (Sweden)

    Alexey Llopiz

    2016-05-01

    Full Text Available Cyanobacteria and microalgae are source of many chemicals substances with potential applications on biopharmaceutical industry. Many structures have been characterized in these organism, such as: peptides, proteins, carbohydrates, terpenoids, polyinsatured fatty acids, flavonoids, phenolic compounds, vitamins, porfirins and other organic substances. Chemicals structures of isolated compounds are diverse and it depends of microalgae habitats. Pharmacological activities located in microalgae are bactericides, immunomodulatory, antioxidants, cytoprotective, fungicides and antivirals. These properties may possible the potential treatment of many diseases including autoimmunes disorders, tumoral, and infectious process. In this review are presented and discussed some elements associated to chemical structure and biological activities around of compounds with potential uses as biopharmaceuticals.

  11. Investigation of Phenolic Compounds and Antioxidant Activity of Mentha spicata L. subsp. spicata and M. longifolia (L.) L. subsp. typhoides (Briq.) Harley Decoction and Infusion

    OpenAIRE

    ÖZER, Züleyha

    2018-01-01

    In present study, we report phenolic compounds and antioxidant activity of decoctionand infusion of Mentha spicata L. subsp. spicataand M. longifolia (L.) L. subsp. typhoides (Briq.) Harley. The quantitativeamounts of the phenolic contents were determined by LC-MS/MS.  The main compounds and amounts of M. spicata weredetermined as follow for decoction; caffeic acid, quercetagetin-3,6-dimethyletherand penduletin (4126.6; 2141.5; 1472.7 mg/kg dried herba, respectively), for infusion;fumaric aci...

  12. High resolution UHPLC-MS characterization and isolation of main compounds from the antioxidant medicinal plant Parastrephia lucida (Meyen

    Directory of Open Access Journals (Sweden)

    Carlos Echiburu-Chau

    2017-11-01

    Full Text Available High-resolution mass spectrometry is currently used to determine the mass of biologically active compounds in medicinal plants and food and UHPLC-Orbitrap is a relatively new technology that allows fast fingerprinting and metabolomics analysis. Forty-two metabolites including several phenolic acids, flavonoids, coumarines, tremetones and ent-clerodane diterpenes were accurately identified for the first time in the resin of the medicinal plant Parastrephia lucida (Asteraceae a Chilean native species, commonly called umatola, collected in the pre-cordillera and altiplano regions of northern Chile, by means of UHPLC-PDA-HR-MS. This could be possible by the state of the art technology employed, which allowed well resolved total ion current peaks and the proposal of some biosynthetic relationships between the compounds detected. Some mayor compounds were also isolated using HSCCC. The ethanolic extract showed high total polyphenols content and significant antioxidant capacity. Furthermore, several biological assays were performed that determined the high antioxidant capacity found for the mayor compound isolated from the plant, 11- p-coumaroyloxyltremetone.

  13. Phytochemical Compounds and Antioxidant Capacity of Tucum-Do-Cerrado (Bactris setosa Mart), Brazil's Native Fruit.

    Science.gov (United States)

    Rosa, Fernanda R; Arruda, Andréa F; Siqueira, Egle M A; Arruda, Sandra F

    2016-02-23

    This study identified major phenolic compounds of the tucum-do-cerrado (Bactris setosa) peel, as well as antioxidant activity and total phytochemical compound concentration of different extracts of the peel and pulp of this fruit. Phenolic compounds of the different extracts of tucum-do-cerrado peel were identified and quantified using a high-performance liquid chromatography system coupled to a diode array detector (DAD). Total phytochemical compound content was determined by spectrophotometric assays and the antioxidant activity by ferric reducing antioxidant power and β-carotene/linoleic assays. Total phenolic, flavanols, total anthocyanins and yellow flavonoids concentration of tucum-do-cerrado were 122-, 14-, 264- and 61-fold higher in the peel than in the pulp, respectively. The aqueous, methanolic and ethanolic extracts of the tucum-do-cerrado peel exhibited higher antioxidant activity compared to its pulp. Flavanols, anthocyanins, flavones, phenolic acids and stilbenes were the main phenolic classes identified in the tucum-do-cerrado peel extracts. Results suggest that the antioxidant capacity and the phytochemical compound content of the tucum-do-cerrado are mainly associated with the peel. Although flavonoids are the main compounds identified in tucum-do-cerrado peel, other phenolics identified in minor amounts, such as phenolic acids and stilbenes, may be responsible for the high antioxidant capacity of the fruit.

  14. Evolution of the composition of a selected bitter Camembert cheese during ripening: release and migration of taste-active compounds.

    Science.gov (United States)

    Engel, E; Tournier, C; Salles, C; Le Quéré, J L

    2001-06-01

    The aim of this study was to add to the understanding of changes in taste that occur during the ripening of a bitter Camembert cheese by the evolution of its composition. Physicochemical analyses were performed on rind, under-rind, and center portions of a Camembert cheese selected for its intense bitterness. At each of the six steps of ripening studied organic acids, sugars, total nitrogen, soluble nitrogen, phosphotungstic acid soluble nitrogen, non-protein nitrogen, Na, K, Ca, Mg, Pi, Cl, and biogenic amines were quantified in each portion. Changes in cheese composition seemed to mainly result from the development of Penicillium camemberti on the cheese outer layer. Migration phenomena and the release of potentially taste-active compounds allowed for the evolution of saltiness, sourness, and bitterness throughout ripening to be better understood. Apart from taste-active compounds, the impact of the cheese matrix on its taste development is discussed.

  15. New Benzimidazole-1,2,4-Triazole Hybrid Compounds: Synthesis, Anticandidal Activity and Cytotoxicity Evaluation

    Directory of Open Access Journals (Sweden)

    Hülya Karaca Gençer

    2017-03-01

    Full Text Available Owing to the growing need for antifungal agents, we synthesized a new series 2-((5-(4-(5-substituted-1H-benzimidazol-2-ylphenyl-4-substituted-4H-1,2,4-triazol-3-ylthio-1-(substitutedphenylethan-1-one derivatives, which were tested against Candida species. The synthesized compounds were characterized and elucidated by FT-IR, 1H-NMR, 13C-NMR and HR-MS spectroscopies. The synthesized compounds were screened in vitro anticandidal activity against Candida species by broth microdiluation methods. In vitro cytotoxic effects of the final compounds were determined by MTT assay. Microbiological studies revealed that compounds 5m, 5o, 5r, 5t, 5y, 5ab, and 5ad possess a good antifungal profile. Compounds 5w was the most active derivative and showed comparable antifungal activity to those of reference drugs ketoconazole and fluconazole. Cytotoxicity evaluation of compounds 5m, 5o, 5r, 5w, 5y, 5ab and 5ad showed that compounds 5w and 5ad were the least cytotoxic agents. Effects of these two compounds against ergosterol biosynthesis were observed by LC-MS-MS method, which is based on quantification of ergosterol level in C. albicans. Compounds 5w and 5d inhibited ergosterol biosynthesis concentration dependently. A fluorescence microscopy study was performed to visualize effect of compound 5w against C. albicans at cellular level. It was determined that compound 5w has a membrane damaging effect, which may be related with inhibition of biosynthesis of ergosterol.

  16. Antifeedant compounds from three species of Apiaceae active against the field slug, Deroceras reticulatum (Muller).

    Science.gov (United States)

    Birkett, Michael A; Dodds, Catherine J; Henderson, Ian F; Leake, Lucy D; Pickett, John A; Selby, Martin J; Watson, Peter

    2004-03-01

    Extracts of volatiles from foliage of three plants in the Apiaceae, Conium maculatum L. (hemlock), Coriandrum sativum L. (coriander), and Petroselinum crispum Mill. (Nym.) (parsley), previously shown to exhibit antifeedant activity in assays with the field slug, Deroceras reticulatum (Muller) (Limacidae: Pulmonata), were studied further to identify the active components. Coupled gas chromatography-mass spectrometry (GC-MS) and neurophysiological assays using tentacle nerve preparations resulted in the identification of 11 active compounds from the three extracts. Wheat flour feeding bioassays were used to determine which of these compounds had the highest antifeedant activity. One of the most active compounds was the alkaloid gamma-coniceine, from C. maculatum. The role of potentially toxic alkaloids as semiochemicals and the potential for using such compounds as crop protection agents to prevent slug feeding damage is discussed.

  17. Production and characterization of surface-active compounds from Gordonia amicalis

    Directory of Open Access Journals (Sweden)

    Ani Beatriz Jackisch-Matsuura

    2014-02-01

    Full Text Available Two methods were used to make crude preparations of surface-active compounds (SACs produced by Gordonia amicalis grown on the medium containing 1% diesel oil. Using a 2:1 (v/v solution of chloroform:methanol for extraction, Type I SACs were isolated and shown to produce oil in water (O/W emulsions. Type II SACs were isolated by precipitation with ammonium sulfate and produced predominantly water in oil emulsions (W/O. The crude Type I and II preparations were able to produce a significant reduction in the surface tension of water; however, the crude Type II preparation had 10-25 fold higher emulsification activity than the Type I preparation. Both SAC preparations were analyzed by the TLC and each produced two distinct bands with Rf 0.44 and 0.62 and Rf 0.52 and 0.62, respectively. The partially purified SACs were characterized by the ESI(+-MS, FT-IR and NMR. In each one of these fractions, a mixture of 10 oligomers was found consisting of a series of compounds, with masses from 502 to 899, differing in molecular mass by a repeating unit of 44 Daltons. The mass spectra of these compounds did not appear to match other known biosurfactants and could represent a novel class of these compounds.

  18. Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: Potential sources of bioactive compounds for the food industry.

    Science.gov (United States)

    Llorent-Martínez, E J; Ortega-Barrales, P; Zengin, G; Mocan, A; Simirgiotis, M J; Ceylan, R; Uysal, S; Aktumsek, A

    2017-09-01

    The genus Lathyrus has great importance in terms of food and agricultural areas. In this study, the in vitro antioxidant activity (phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC and metal chelating) and enzyme inhibitory activity evaluation (acetylcholinesterase, butyrylcholinesterase, α-amylase and α-glucosidase) of L. cicera and L. digitatus were investigated, as well as their phytochemical profiles. The screening of the main phytochemical compounds in aerial parts of L. cicera and L. digitatus was carried out by high-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MS n ), observing that flavonoids represent the highest percentage of identified compounds, with abundance of tri- and tetra-glycosilated flavonoids, including acylated ones, especially in L. cicera. Generally, L. digitatus exhibited stronger antioxidant and enzyme inhibitory activities in correlation with its higher level of phenolics. The high number of phenolic compounds and the results of the antioxidant and enzyme assays suggest that these plants may be further used as sources of bioactive compounds, and for the preparation of new nutraceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Determination of Acetylcholinesrase and Butrylcholinestrase Activities in Whole Blood and Plasma from Different Communities of Khosestan Province (Iran-Iraq War Area) Exposed to Organophosphate Compounds

    International Nuclear Information System (INIS)

    Heybatullah, K.; Jahangiri, A.; Mohebbi, G. H.

    2007-01-01

    It is well known that Organophosphate Compounds are widely used as pesticides. Therefore while handling, applying or using these compounds care and safe use should be considered. The main mechanism of toxicity action of Organophosphate Compounds is the inhibition of Actylcholinestrase and Butrylcholinesrase enzymes. It is well known that the activity measurement of Acetylcholinestrase in whole blood and Butrylcholinestrase in plasma samples are potential biomarker of exposure to Organophosphates compounds.In this study AchE and BchE activities were determined in whole blood and plasma samples of farmers from two different area of Khosestan province of Iran Gotvand and Dashte Azadegan (Iran-Iraq war zone).Determination of enzymes activities were based on the Ellman colorimetric method which was modified byWorek et al. The results obtained in this study showed that Gotvand area showed lower than normal value and Dashte Azadegan (war area) were significantly lower than the mean of activities in reference group (P less than 0.05). Also results of this study showed Acetylcholinestrase and Butrylcholinestrase inhibition can provide a good biomarker of exposure to OP pesticides in field studies in human population with consideration of other different parameters and factors which will be discussed. (author)

  20. Adsorption of Volatile Organic Compounds from Aqueous Solution by Granular Activated Carbon in Batch System

    International Nuclear Information System (INIS)

    Zeinali, F.; Ghoreyshi, A. A.; Najafpour, G.

    2011-01-01

    Chlorinated hydrocarbons and aromatics are the major volatile organic compounds that contaminate the ground water and industrial waste waters. The best way to overcome this problem is to recover the dissolved compounds in water. In order to evaluate the potential ability of granular activated carbon for recovery of volatile organic compounds from water, the equilibrium adsorption was investigated. This study deals with the adsorption of dichloromethane as a typical chlorinated volatile organic compound and toluene as the representative of aromatic volatile organic compounds on a commercial granular activated carbon. The adsorption isotherms of these two volatile organic compounds on granular activated carbon were measured at three different temperatures, toluene at 293, 303 and 313 K and dichloromethane at 298, 303 and 313 K within their solubility concentration range in water. The maximum adsorption capacity of dichloromethane and toluene adsorption by granular activated carbon was 4 and 0.2 mol/Kg-1, respectively. The experimental data obtained were correlated with different adsorption isotherm models. The Langmuir model was well adapted to the description of dichloromethane adsorption on granular activated carbon at all three temperatures, while the adsorption of toluene on granular activated carbon was found to be well described by the Langmuir-BET hybrid model at all three temperatures. The heat of adsorption was also calculated based on the thermodynamic equation of Clausius Clapeyron, which indicates the adsorption process is endothermic for both compounds.

  1. Identification of Aroma-active Compounds in Essential Oil from Uncaria Hook by Gas Chromatography- Mass Spectrometry and Gas Chromatography-Olfactometry.

    Science.gov (United States)

    Iwasa, Megumi; Nakaya, Satoshi; Maki, Yusuke; Marumoto, Shinsuke; Usami, Atsushi; Miyazawa, Mitsuo

    2015-01-01

    The chemical composition of essential oil extracted from Uncaria Hook ("Chotoko" in Japanese), the branch with curved hook of the herbal medicine Uncaria rhynchophylla has been investigated by GC and GC-MS analyses. Eighty-four compounds, representing 90.8% of the total content was identified in oil obtained from Uncaria Hook. The main components i were (E)-cinnamaldehyde (13.4%), α-copaene (8.0%), methyl eugenol (6.8%), δ-cadinene (5.3%), and curcumene (3.6%). The important key aroma-active compounds in the oil were detected by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA), using the flavor dilution (FD) factor to express the odor potency of each compounds. Furthermore, the odor activity value (OAV) has been used as a measure of the relative contribution of each compound to the aroma of the Uncaria Hook oil. The GC-O and AEDA results showed that α-copaene (FD = 4, OAV = 4376), (E)-linalool oxide (FD = 64, OAV = 9.1), and methyl eugenol (FD = 64, OAV = 29) contributed to the woody and spicy odor of Uncaria Hook oil, whereas furfural (FD = 8, OAV = 4808) contributed to its sweet odor. These results warrant further investigations of the application of essential oil from Uncaria Hook in the phytochemical and medicinal fields.

  2. Chemical Composition and Cytotoxicity Evaluation of Essential Oil from Leaves of Casearia Sylvestris, Its Main Compound α-Zingiberene and Derivatives

    Directory of Open Access Journals (Sweden)

    Patricia Sartorelli

    2013-08-01

    Full Text Available Casearia sylvestris (Salicaceae, popularly known as “guaçatonga”, is a plant widely used in folk medicine to treat various diseases, including cancer. The present work deals with the chemical composition as well as the cytotoxic evaluation of its essential oil, its main constituent and derivatives. Thus, the crude essential oil from leaves of C. sylvestris was obtained using a Clevenger type apparatus and analyzed by GC/MS. This analysis afforded the identification of 23 substances, 13 of which corresponded to 98.73% of the total oil composition, with sesquiterpene a-zingiberene accounting for 50% of the oil. The essential oil was evaluated for cytotoxic activity against several tumor cell lines, giving IC50 values ranging from 12 to 153 mg/mL. Pure a-zingiberene, isolated from essential oil, was also evaluated against the tumor cell lines showing activity for HeLa, U-87, Siha and HL60 cell lines, but with IC50 values higher than those determined for the crude essential oil. Aiming to evaluate the effect of the double bonds of a-zingiberene on the cytotoxic activity, partially hydrogenated a-zingiberene (PHZ and fully hydrogenated a-zingiberene (THZ derivatives were obtained. For the partially hydrogenated derivative only cytotoxic activity to the B16F10-Nex2 cell line (IC50 65mg/mL was detected, while totally hydrogenated derivative showed cytotoxic activity for almost all cell lines, with B16F10-Nex2 and MCF-7 as exceptions and with IC50 values ranging from 34 to 65 mg/mL. These results indicate that cytotoxic activity is related with the state of oxidation of compound.

  3. Chemical composition and cytotoxicity evaluation of essential oil from leaves of Casearia sylvestris, its main compound α-zingiberene and derivatives.

    Science.gov (United States)

    Bou, Diego Dinis; Lago, João Henrique G; Figueiredo, Carlos R; Matsuo, Alisson L; Guadagnin, Rafael C; Soares, Marisi G; Sartorelli, Patricia

    2013-08-08

    Casearia sylvestris (Salicaceae), popularly known as "guaçatonga", is a plant widely used in folk medicine to treat various diseases, including cancer. The present work deals with the chemical composition as well as the cytotoxic evaluation of its essential oil, its main constituent and derivatives. Thus, the crude essential oil from leaves of C. sylvestris was obtained using a Clevenger type apparatus and analyzed by GC/MS. This analysis afforded the identification of 23 substances, 13 of which corresponded to 98.73% of the total oil composition, with sesquiterpene a-zingiberene accounting for 50% of the oil. The essential oil was evaluated for cytotoxic activity against several tumor cell lines, giving IC50 values ranging from 12 to 153 mg/mL. Pure a-zingiberene, isolated from essential oil, was also evaluated against the tumor cell lines showing activity for HeLa, U-87, Siha and HL60 cell lines, but with IC50 values higher than those determined for the crude essential oil. Aiming to evaluate the effect of the double bonds of a-zingiberene on the cytotoxic activity, partially hydrogenated a-zingiberene (PHZ) and fully hydrogenated a-zingiberene (THZ) derivatives were obtained. For the partially hydrogenated derivative only cytotoxic activity to the B16F10-Nex2 cell line (IC50 65 mg/mL) was detected, while totally hydrogenated derivative showed cytotoxic activity for almost all cell lines, with B16F10-Nex2 and MCF-7 as exceptions and with IC50 values ranging from 34 to 65 mg/mL. These results indicate that cytotoxic activity is related with the state of oxidation of compound.

  4. Characterization of key aroma-active compounds in lychee (Litchi chinensis Sonn.

    Directory of Open Access Journals (Sweden)

    Shi Feng

    2018-04-01

    Full Text Available Volatile compounds in ‘Sweetheart’ lychee were examined using gas chromatography-olfactometry/mass spectrometry (GC-O/MS. Solvent assisted flavor evaporation (SAFE technique was used to identify the aroma-active compounds in lychee. Further characterization of the most important odorants in ‘Sweetheart’ lychee was achieved using aroma extract dilution analysis (AEDA. Thirty-one key aroma-active odorants were identified in the flavor dilution (FD factor range of 2–1024. Methional (cooked potato and geraniol (sweet, floral exhibited the highest FD factors of 1024 and 512, respectively, these were followed by furaneol (sweet, caramel, nerol (floral, sweet, dimethyl trisulfide (DMTS (preserved vegetable, sulfury, linalool (floral, (E,Z-2,6 nonadienal (cucumber and nerolidol (metalic, sesame oil. Furthermore, the flavor profile of ‘Sweetheart’ lychee was described by sensory analysis. Floral, tropical fruit, peach/apricot and honey were scored with relatively high scores for each aroma attribute. The sweetness rating was the highest score among all the attributes. Keywords: AEDA, Aroma-active compounds, GC-MS/O, SAFE, Sensory analysis

  5. Synthesis and Antiplasmodial Activity of 2-(4-Methoxyphenyl-4-Phenyl-1,10-Phenanthroline Derivative Compounds

    Directory of Open Access Journals (Sweden)

    Nazudin

    2012-08-01

    Full Text Available A unique of synthetic methods was employed to prepare 2-(4-methoxyphenyl-4-phenyl-1,10-phenanthroline (5 derivatives from 4-methoxy-benzaldehyde (1, acetophenone (2, and 8-aminoquinoline (4 with aldol condensation and cyclization reactions. The derivatives were tested through antiplasmodial test. The synthesis of derivatives compound 5 was conducted in three steps. The 3-(4-methoxyphenyl-1-phenylpropenone 3 was synthesized through aldol condensation of 1 and 2 which has a yield of 96.42%. The compound 5 was synthesized through cyclization of compound 4 and 3 with 84.55% yield. The derivative of compound 5 was synthesized from compound 5 using DMS and DES reagents which refluxed for 21 and 22 h, to produce (1-N-methyl-9-(4-methoxyphenyl-7-phenyl-1,10-phenanthrolinium sulfate (6 and (1-N-ethyl-9-(4-methoxyphenyl-7-phenyl-1,10-phenanthrolinium sulfate (7 with 91.42 and 86.36% yields, respectively. Results of in vitro testing of antiplasmodial activity of compound 5 derivatives (i.e., compound 6 and 7 against chloroquine-resistant P. falciparum FCR3 strain showed that compound 7 had higher antimalarial activity than compounds 5 and 6. Whereas, results of in vitro testing against chloroquine-sensitive P. falciparum D10 strain showed that compound 6 has higher antimalarial activity than compounds 5 and 7.

  6. Efficient discovery of responses of proteins to compounds using active learning

    Science.gov (United States)

    2014-01-01

    Background Drug discovery and development has been aided by high throughput screening methods that detect compound effects on a single target. However, when using focused initial screening, undesirable secondary effects are often detected late in the development process after significant investment has been made. An alternative approach would be to screen against undesired effects early in the process, but the number of possible secondary targets makes this prohibitively expensive. Results This paper describes methods for making this global approach practical by constructing predictive models for many target responses to many compounds and using them to guide experimentation. We demonstrate for the first time that by jointly modeling targets and compounds using descriptive features and using active machine learning methods, accurate models can be built by doing only a small fraction of possible experiments. The methods were evaluated by computational experiments using a dataset of 177 assays and 20,000 compounds constructed from the PubChem database. Conclusions An average of nearly 60% of all hits in the dataset were found after exploring only 3% of the experimental space which suggests that active learning can be used to enable more complete characterization of compound effects than otherwise affordable. The methods described are also likely to find widespread application outside drug discovery, such as for characterizing the effects of a large number of compounds or inhibitory RNAs on a large number of cell or tissue phenotypes. PMID:24884564

  7. Antimicrobial and acetylcholinesterase inhibitory activities of Buddleja salviifolia (L.) Lam. leaf extracts and isolated compounds.

    Science.gov (United States)

    Pendota, S C; Aderogba, M A; Ndhlala, A R; Van Staden, J

    2013-07-09

    Buddleja salviifolia leaves are used for the treatment of eye infections and neurodegenerative conditions by various tribes in South Africa. This study was designed to isolate the phenolic constituents from the leaf extracts of Buddleja salviifolia and evaluate their antimicrobial and acetylcholinesterase (AChE) activities. Three phenolic compounds were isolated from the ethyl acetate fraction of a 20% aqueous methanol leaf extract of Buddleja salviifolia using Sephadex LH-20 and silica gel columns. Structure elucidation of the isolated compounds was carried out using spectroscopic techniques: mass spectrometry (ESI-TOF-MS) and NMR (1D and 2D). The extracts and isolated compounds were evaluated for antimicrobial and acetylcholinesterase activities using the microdilution technique. The bacteria used for the antimicrobial assays were Gram-positive Bacillus subtilis and Staphylococcus aureus and Gram-negative Escherichia coli and Klebsiella pneumoniae. The isolated compounds were characterized as: 4'-hydroxyphenyl ethyl vanillate (1) a new natural product, acteoside (2) and quercetin (3). The crude extract, fractions and the isolated compounds from the leaves of the plant exhibited a broad spectrum of antibacterial activity. The EtOAc fraction exhibited good activity against Bacillus subtilis and Staphylococcus aureus with MIC values ranging from 780.0 to 390.0 µg/mL. Isolated compound 2 exhibited good activity against Staphylococcus aureus with an MIC value of 62.5 µg/mL. The hexane and DCM fractions of leaves showed the best activity against Candida albicans with MIC and MFC values of 390.0 µg/mL. In the AChE inhibitory test, among the tested extracts, the hexane fraction was the most potent with an IC50 value of 107.4 µg/mL, whereas for the isolated compounds, it was compound (3) (quercetin) with an IC50 value of 66.8 µg/mL. Activities demonstrated by the extracts and isolated compounds support the ethnopharmacological use of Buddleja salviifolia against eye

  8. Synthesis and anti-lung cancer activity of a novel arsenomolybdate compound

    Science.gov (United States)

    Zhu, Tian-Tian; Wang, Juan; Chen, Song-Hu

    2017-12-01

    The new compound based on Wells-Dawson-type arsenomolybdate: [{Cu10(pz)11Cl4}{As2IIIAs2VMo6VMo12VIO62}]·H2O (1) has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis, X-ray powder diffraction (XRPD), XPS spectroscopy and thermogravimetric analysis (TG). Compound 1 is consisted of two As caps Wells-dawson-type arsenomolybdate and {Cu10(py)11} complexes by chloride bridge. In addition, the antitumor effects of the title compound 1 were studied on three human lung cancer cells (A549, SK-LU-1 and SW1573). The results showed that compared with the positive reference drug carboplatin, compound 1 displayed efficient antitumor activity.

  9. Comparison of Active Vitamin D Compounds and a Calcimimetic in Mineral Homeostasis

    OpenAIRE

    Nguyen-Yamamoto, Loan; Bolivar, Isabel; Strugnell, Stephen A.; Goltzman, David

    2010-01-01

    The differential effects between cinacalcet and active vitamin D compounds on parathyroid function, mineral metabolism, and skeletal function are incompletely understood. Here, we studied cinacalcet and active vitamin D compounds in mice expressing the null mutation for Cyp27b1, which encodes 25-hydroxyvitamin D-1α-hydroxylase, thereby lacking endogenous 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Vehicle-treated mice given high dietary calcium had hypocalcemia, hypophosphatemia, and marked secon...

  10. Molecular docking for thrombolytic activity of some isolated compounds from Clausena lansium.

    Directory of Open Access Journals (Sweden)

    Arkajyoti Paul

    2017-03-01

    Full Text Available Clausena lansium (Family- Rutaceae is commonly known as wampee, is found in fallow lands throughout Bangladesh. Our aim of the study to performed molecular docking studies to identify potential binding affinities of the phytocompounds from Clausena lansium, namely Clausemarin B, Clausenaline C, Clausenaline E, Murrayanine, vanillic acid and Xanthotoxol for searching of lead molecule for thrombolytic activity. A wide range of docking score found during molecular docking by Schrodinger. Clausemarin B , Clausenaline C , Clausenaline E, Murrayanine , vanillic acid and Xanthotoxol showed the docking score -6.926, -4.041, -4.889 , -4.356, -3.007 and -5.816 respectively. Among all the compounds Clausemarin B showed the best docking score. So, Clausemarin B is the best compounds for thrombolytic activity, as it possessed the best value in Molecular docking. Further in vivo investigation need to identify the thrombolytic activity of isolated compounds from Clausena lansium.

  11. Pine Bark and Green Tea Concentrated Extracts: Antioxidant Activity and Comprehensive Characterization of Bioactive Compounds by HPLC–ESI-QTOF-MS

    Science.gov (United States)

    Cádiz-Gurrea, María de la Luz; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio

    2014-01-01

    The consumption of polyphenols has frequently been associated with low incidence of degenerative diseases. Most of these natural antioxidants come from fruits, vegetables, spices, grains and herbs. For this reason, there has been increasing interest in identifying plant extract compounds. Polymeric tannins and monomeric flavonoids, such as catechin and epicatechin, in pine bark and green tea extracts could be responsible for the higher antioxidant activities of these extracts. The aim of the present study was to characterize the phenolic compounds in pine bark and green tea concentrated extracts using high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC–ESI-QTOF-MS). A total of 37 and 35 compounds from pine bark and green tea extracts, respectively, were identified as belonging to various structural classes, mainly flavan-3-ol and its derivatives (including procyanidins). The antioxidant capacity of both extracts was evaluated by three complementary antioxidant activity methods: Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC). Higher antioxidant activity values by each method were obtained. In addition, total polyphenol and flavan-3-ol contents, which were determined by Folin–Ciocalteu and vanillin assays, respectively, exhibited higher amounts of gallic acid and (+)-catechin equivalents. PMID:25383680

  12. Hop pellets as an interesting source of antioxidant active compounds

    Directory of Open Access Journals (Sweden)

    Andrea Holubková

    2013-02-01

    Full Text Available Hop is a plant used by humankind for thousands of years. This plant is one of the main and indispensable raw materials for the beer production. It is used for various dishes preparation in the cuisine. Hop is also used to inhibit bacterial contamination. The hop extracts are used for its sedative, antiseptic and antioxidant properties in medicine, as a part of many phytopharmaceuticals. The present paper have focused on the extraction of polyphenolic compounds from 4 samples of hop pellets varieties of Aurora, Saaz, Lublin and Saphir, on the analyzing of bioactive substances (polyphenolics and flavonoids in prepared extracts and on the determination of antioxidant activity.  The highest content of polyphenolic substances was determined in the sample Lublin (153.06 mg gallic acid (GAE/g and Saaz (151.87 mg GAE/g. The amount of flavonoids in the samples  was descending order Saaz > Saphir > Aurora > Lublin. Hops, as plant, is known by high content of antioxidant active substances. Antioxidant activity was determined using three independent spectrofotometric methods, radical scavenging assays using 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical and ferric reducing antioxidant power (FRAP. The sample Aurora showed the highest ability to scavenge of ABTS radical cation. Antioxidant activity continued to decline in a row Saphir> Lublin> Saaz. The same trend was also observed by using the FRAP assay. The most effective DPPH radical scavengering activity had the sample Saaz a Saphir (p>0.05.doi:10.5219/270 Normal 0 21 false false false SK X-NONE X-NONE

  13. Synthesis and Activity of Grape Wood Phytotoxins and Related Compounds

    OpenAIRE

    S. Perrin-Cherioux; E. Abou-Mansour; R. Tabacchi

    2004-01-01

    The synthesis of analogues and derivatives of two o-hydroxyphenylacetylenes, eutypine and sterehirsutinal, the main phytotoxins isolated from the culture medium of Eutypa lata and Stereum hirsutum, is reported. Two means of synthesis are described, based on cyclisation, oxidation, oxidative decarboxylation or reduction reactions, and producing o-hydroxyphenylacetylene or benzofuran derivatives. Some of these synthetic compounds were tested on grapevine callus in order to compare t...

  14. Stability profile of flavour-active ester compounds in ale and lager ...

    African Journals Online (AJOL)

    User

    2013-01-30

    Jan 30, 2013 ... Currently, one of the main quality problems of beer is the change of its chemical composition during storage, which alters its sensory properties. In this study, ale and lager beers were produced and aged for three months at two storage temperatures. Concentration of volatile ester compounds (VECs) in the.

  15. Phenolic Compounds from the Leaves of Stewartia pseudocamellia Maxim. and their Whitening Activities.

    Science.gov (United States)

    Roh, Hyun Jung; Noh, Hye-Ji; Na, Chun Su; Kim, Chung Sub; Kim, Ki Hyun; Hong, Cheol Yi; Lee, Kang Ro

    2015-05-01

    The half-dried leaves of Stewartia. pseudocamellia were extracted with hot water (SPE) and partitioned with n-hexane (SPEH), dichloromethane (SPED), and ethyl acetate (SPEE) successively. SPE and SPEE showed significant inhibitory effects against melanogenesis and tyrosinase activities. By bioassay-guided isolation, ten phenolic compounds were isolated by column chromatography from SPEE. The whitening effect of the isolated compounds from SPEE were tested for the inhibitory activities against melanogenesis using B16 melanoma cells, in vitro inhibition of tyrosinase, and L-3,4-dihydorxy-indole-2-carboxylic acid (L-DOPA) auto-oxidation assay. A cytotoxic activity assay was done to examine the cellular toxicity in Raw 264.7 macrophage cells. Of the compounds isolated, gallic acid and quercetin revealed significant inhibitory activities against melanogenesis compared to arbutin. In particular, quercetin exhibited similar inhibitory activities against tyrosinase and L-DOPA oxidation without cytotoxicity. These results suggested that SPE could be used as a potential source of natural skin-whitening material in cosmetics as well as in food products.

  16. Active Compound of Zingiber Cassumunar Roxb. Down-Regulates ...

    African Journals Online (AJOL)

    MMPs activities in the culture media were analyzed by zymographic techniques. Dexamethasone was used as the positive control. It was found that compound D at the concentration of 10 - 100 µM significantly decreased the mRNA expressions of MMP-1, -2, -3, and -13 which was induced by IL-1ß (P<0.05) concomitantly ...

  17. Electrochemical screening of biomembrane-active compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Mohamadi, Shahrzad, E-mail: cmsm@leeds.ac.uk; Tate, Daniel J.; Vakurov, Alexander; Nelson, Andrew

    2014-02-01

    Graphical abstract: - Highlights: • Analytical technology application with improvement allowing for on-line high-throughput water toxin screening is presented. • Compound classes of related structure and shape interact with DOPC coated Pt/Hg with a class specific response. • Predecessor membrane system proved as fragile, complex and for environmental application incompatible. - Abstract: Interactions of biomembrane-active compounds with phospholipid monolayers on microfabricated Pt/Hg electrodes in an on-line high throughput flow system are demonstrated by recording capacitance current peak changes as rapid cyclic voltammograms (RCV). Detection limits of the compounds’ effects on the layer have been estimated from the data. Compounds studied include steroids, polycyclic aromatic hydrocarbons, tricyclic antidepressants and tricyclic phenothiazines. The results show that the extent and type of interaction depends on the—(a) presence and number of aromatic rings and substituents, (b) presence and composition of side chains and, (c) molecular shape. Interaction is only indirectly related to compound hydrophobicity. For a selection of tricyclic antidepressants and tricyclic phenothiazines the detection limit in water is related to their therapeutic normal threshold. The sensing assay has been tested in the presence of humic acid as a potential interferent and in a tap water matrix. The system can be applied to the screening of putative hazardous substances and pharmaceuticals allowing for early detection thereof in the water supply. The measurements are made in real time which means that potentially toxic compounds are detected rapidly within <10 min per assay. This technology will contribute greatly to environment safety and health.

  18. Electrochemical screening of biomembrane-active compounds in water

    International Nuclear Information System (INIS)

    Mohamadi, Shahrzad; Tate, Daniel J.; Vakurov, Alexander; Nelson, Andrew

    2014-01-01

    Graphical abstract: - Highlights: • Analytical technology application with improvement allowing for on-line high-throughput water toxin screening is presented. • Compound classes of related structure and shape interact with DOPC coated Pt/Hg with a class specific response. • Predecessor membrane system proved as fragile, complex and for environmental application incompatible. - Abstract: Interactions of biomembrane-active compounds with phospholipid monolayers on microfabricated Pt/Hg electrodes in an on-line high throughput flow system are demonstrated by recording capacitance current peak changes as rapid cyclic voltammograms (RCV). Detection limits of the compounds’ effects on the layer have been estimated from the data. Compounds studied include steroids, polycyclic aromatic hydrocarbons, tricyclic antidepressants and tricyclic phenothiazines. The results show that the extent and type of interaction depends on the—(a) presence and number of aromatic rings and substituents, (b) presence and composition of side chains and, (c) molecular shape. Interaction is only indirectly related to compound hydrophobicity. For a selection of tricyclic antidepressants and tricyclic phenothiazines the detection limit in water is related to their therapeutic normal threshold. The sensing assay has been tested in the presence of humic acid as a potential interferent and in a tap water matrix. The system can be applied to the screening of putative hazardous substances and pharmaceuticals allowing for early detection thereof in the water supply. The measurements are made in real time which means that potentially toxic compounds are detected rapidly within <10 min per assay. This technology will contribute greatly to environment safety and health

  19. Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment.

    Science.gov (United States)

    Andrews, Katherine T; Fisher, Gillian M; Sumanadasa, Subathdrage D M; Skinner-Adams, Tina; Moeker, Janina; Lopez, Marie; Poulsen, Sally-Ann

    2013-11-15

    Despite the urgent need for effective antimalarial drugs with novel modes of action no new chemical class of antimalarial drug has been approved for use since 1996. To address this, we have used a rational approach to investigate compounds comprising the primary benzene sulfonamide fragment as a potential new antimalarial chemotype. We report the in vitro activity against Plasmodium falciparum drug sensitive (3D7) and resistant (Dd2) parasites for a panel of fourteen primary benzene sulfonamide compounds. Our findings provide a platform to support the further evaluation of primary benzene sulfonamides as a new antimalarial chemotype, including the identification of the target of these compounds in the parasite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Phytochemical Compounds and Antioxidant Capacity of Tucum-Do-Cerrado (Bactris setosa Mart), Brazil’s Native Fruit

    Science.gov (United States)

    Rosa, Fernanda R.; Arruda, Andréa F.; Siqueira, Egle M. A.; Arruda, Sandra F.

    2016-01-01

    This study identified major phenolic compounds of the tucum-do-cerrado (Bactris setosa) peel, as well as antioxidant activity and total phytochemical compound concentration of different extracts of the peel and pulp of this fruit. Phenolic compounds of the different extracts of tucum-do-cerrado peel were identified and quantified using a high-performance liquid chromatography system coupled to a diode array detector (DAD). Total phytochemical compound content was determined by spectrophotometric assays and the antioxidant activity by ferric reducing antioxidant power and β-carotene/linoleic assays. Total phenolic, flavanols, total anthocyanins and yellow flavonoids concentration of tucum-do-cerrado were 122-, 14-, 264- and 61-fold higher in the peel than in the pulp, respectively. The aqueous, methanolic and ethanolic extracts of the tucum-do-cerrado peel exhibited higher antioxidant activity compared to its pulp. Flavanols, anthocyanins, flavones, phenolic acids and stilbenes were the main phenolic classes identified in the tucum-do-cerrado peel extracts. Results suggest that the antioxidant capacity and the phytochemical compound content of the tucum-do-cerrado are mainly associated with the peel. Although flavonoids are the main compounds identified in tucum-do-cerrado peel, other phenolics identified in minor amounts, such as phenolic acids and stilbenes, may be responsible for the high antioxidant capacity of the fruit. PMID:26907338

  1. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper

    Directory of Open Access Journals (Sweden)

    Celia Chávez-Mendoza

    2015-06-01

    Full Text Available Grafting favors the presence of bioactive compounds in the bell pepper, but many species and varieties have not yet been analyzed in this sense, including commonly grafted varieties. The aim of the present study is to characterize the content in β-carotenes, vitamin C, lycopene, total phenols, and the antioxidant activity of bell pepper (Capsicum annum L. using the cultivar/rootstock combinations: Jeanette/Terrano (yellow, Sweet/Robusto (green, Fascinato/Robusto (red, Orangela/Terrano (orange, and Fascinato/Terrano (red. The plants were grown in a net-shading system and harvested on three sampling dates of the same crop cycle. The results show statistical differences (p ≤ 0.05 between cultivar/rootstock combinations and sampling dates for the content in bioactive compounds and antioxidant activity. Fascinato/Robusto presented the highest concentration of lycopene and total phenols as well as the greatest antioxidant activity of all cultivar/rootstock combinations evaluated. In addition, it was found that the best sampling time for the peppers to have the highest concentrations of bioactive compounds and antioxidant activity was September.

  2. THE 'MAIN SEQUENCE' OF EXPLOSIVE SOLAR ACTIVE REGIONS: DISCOVERY AND INTERPRETATION

    Energy Technology Data Exchange (ETDEWEB)

    Falconer, David A; Moore, Ronald L; Adams, Mitzi [Space Science Office, VP62, Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gary, G. Allen [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)], E-mail: David.falconer@msfc.nasa.gov

    2009-08-01

    We examine the location and distribution of the production of coronal mass ejections (CMEs) and major flares by sunspot active regions in the phase space of two whole-active-region magnetic quantities measured from 1897 SOHO/MDI magnetograms. These magnetograms track the evolution of 44 active regions across the central disk of radius 0.5 R {sub Sun}. The two quantities are {sup L}WL{sub SG}, a gauge of the total free energy in an active region's magnetic field, and {sup L}{phi}, a measure of the active region's total magnetic flux. From these data and each active region's history of production of CMEs, X flares, and M flares, we find (1) that CME/flare-productive active regions are concentrated in a straight-line 'main sequence' in (log {sup L}WL{sub SG}, log {sup L}{phi}) space, (2) that main-sequence active regions have nearly their maximum attainable free magnetic energy, and (3) evidence that this arrangement plausibly results from equilibrium between input of free energy to an explosive active region's magnetic field in the chromosphere and corona by contortion of the field via convection in and below the photosphere and loss of free energy via CMEs, flares, and coronal heating, an equilibrium between energy gain and loss that is analogous to that of the main sequence of hydrogen-burning stars in (mass, luminosity) space.

  3. THE 'MAIN SEQUENCE' OF EXPLOSIVE SOLAR ACTIVE REGIONS: DISCOVERY AND INTERPRETATION

    International Nuclear Information System (INIS)

    Falconer, David A.; Moore, Ronald L.; Adams, Mitzi; Gary, G. Allen

    2009-01-01

    We examine the location and distribution of the production of coronal mass ejections (CMEs) and major flares by sunspot active regions in the phase space of two whole-active-region magnetic quantities measured from 1897 SOHO/MDI magnetograms. These magnetograms track the evolution of 44 active regions across the central disk of radius 0.5 R Sun . The two quantities are L WL SG , a gauge of the total free energy in an active region's magnetic field, and L Φ, a measure of the active region's total magnetic flux. From these data and each active region's history of production of CMEs, X flares, and M flares, we find (1) that CME/flare-productive active regions are concentrated in a straight-line 'main sequence' in (log L WL SG , log L Φ) space, (2) that main-sequence active regions have nearly their maximum attainable free magnetic energy, and (3) evidence that this arrangement plausibly results from equilibrium between input of free energy to an explosive active region's magnetic field in the chromosphere and corona by contortion of the field via convection in and below the photosphere and loss of free energy via CMEs, flares, and coronal heating, an equilibrium between energy gain and loss that is analogous to that of the main sequence of hydrogen-burning stars in (mass, luminosity) space.

  4. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database.

    Science.gov (United States)

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P S; Agarwal, Subhash M

    2013-01-01

    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC(50)/ED(50)/EC(50)/GI(50)), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients' Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI(50) data.

  5. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database

    Science.gov (United States)

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P. S.; Agarwal, Subhash M.

    2013-01-01

    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC50/ED50/EC50/GI50), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients’ Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI50 data. PMID:23203877

  6. Influence of organic nitro-compounds and of surface active compounds on the inverse voltametric determination of cadmium, lead and copper

    Energy Technology Data Exchange (ETDEWEB)

    Wahdat, F; Neeb, R

    1983-12-01

    The influence of surface active agents and of organic nitro-compounds alone and in combination on the potentiometric stripping analysis and anodic-stripping differential-pulse-polarography of Cd, Pb and Cu is investigated. In some cases PSA offers advantages for the determination of these elements in the presence of organic nitro-compounds in comparison with differential pulse-polarography.

  7. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  8. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine's Tool Box.

    Science.gov (United States)

    Martins, Pedro; Jesus, João; Santos, Sofia; Raposo, Luis R; Roma-Rodrigues, Catarina; Baptista, Pedro Viana; Fernandes, Alexandra R

    2015-09-16

    The majority of heterocycle compounds and typically common heterocycle fragments present in most pharmaceuticals currently marketed, alongside with their intrinsic versatility and unique physicochemical properties, have poised them as true cornerstones of medicinal chemistry. Apart from the already marketed drugs, there are many other being investigated for their promising activity against several malignancies. In particular, anticancer research has been capitalizing on the intrinsic versatility and dynamic core scaffold of these compounds. Nevertheless, as for any other promising anticancer drugs, heterocyclic compounds do not come without shortcomings. In this review, we provide for a concise overview of heterocyclic active compounds and families and their main applications in medicine. We shall focus on those suitable for cancer therapy while simultaneously addressing main biochemical modes of action, biological targets, structure-activity relationships as well as intrinsic limitation issues in the use of these compounds. Finally, considering the advent of nanotechnology for effective selective targeting of drugs, we shall discuss fundamental aspects and considerations on nanovectorization of such compounds that may improve pharmacokinetic/pharmacodynamic properties of heterocycles.

  9. Determination of taste-active compounds of a bitter Camembert cheese by omission tests.

    Science.gov (United States)

    Engel, E; Septier, C; Leconte, N; Salles, C; Le Quere, J L

    2001-11-01

    The taste-active compounds of a Camembert cheese selected for its intense bitterness defect were investigated. The water-soluble fraction (WSE) was extracted with pure water and fractionated by successive tangential ultrafiltrations and nanofiltration. The physicochemical assessment of these fractions led to the construction of a model WSE which was compared by sensory evaluation to the crude water-soluble extract, using a panel of 16 trained tasters. As no significant difference was perceived, this model WSE was then used directly or mixed with other cheese components for omission tests. Among the main taste characteristics of the WSE (salty, sour, umami and bitter), bitterness was found to be due to small peptides whose mass distribution was obtained by RPHPLC-MS (400-3000 Da) and whose taste properties are discussed.

  10. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Butnariu Monica

    2012-04-01

    Full Text Available Abstract Background This study aimed to quantify the active biological compounds in C. officinalis flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhydrazyl (DPPH as well as the total antioxidant potential, using the ferric reducing power (FRAP assay. Results Spectrophotometric assays in the ultraviolet-visible (UV-VIS region enabled identification and characterization of the full range of phenolic and flavonoids acids, and high-performance liquid chromatography (HPLC was used to identify and quantify phenolic compounds (depending on the method of extraction. Methanol ensured more efficient extraction of flavonoids than the other solvents tested. Antioxidant activity in methanolic extracts was correlated with the polyphenol content. Conclusions The UV-VIS spectra of assimilator pigments (e.g. chlorophylls, polyphenols and flavonoids extracted from the C. officinalis flowers consisted in quantitative evaluation of compounds which absorb to wavelengths broader than 360 nm.

  11. Pulse seed germination improves antioxidative activity of phenolic compounds in stripped soybean oil-in-water emulsions.

    Science.gov (United States)

    Xu, Minwei; Jin, Zhao; Peckrul, Allen; Chen, Bingcan

    2018-06-01

    The purpose of this study was to investigate antioxidative activity of phenolic compounds extracted from germinated pulse seed including chickpeas, lentils and yellow peas. Phenolic compounds were extracted at different germination time and total phenolic content was examined by Folin Ciocalteu's reaction. Antioxidative activity of extracts was characterized by in vitro assay including 2, 2-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH), oxygen radical absorbance capacity (ORAC), iron-binding assay, and in stripped soybean oil-in-water emulsions. The results suggested that germination time is critical for phenolic compounds production. The form variation of phenolic compounds influenced the antioxidative activity of phenolic compounds both in vitro assay and in emulsion systems. Soluble bound phenolic compounds showed higher antioxidative ability in emulsion system with the order of chickpea > yellow pea > lentil. On the basis of these results, soluble bound phenolic compounds may be considered as a promising natural antioxidant to prevent lipid oxidation in foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Phytochemical Analysis, Identification and Quantification of Antibacterial Active Compounds in Betel Leaves, Piper betle Methanolic Extract.

    Science.gov (United States)

    Syahidah, A; Saad, C R; Hassan, M D; Rukayadi, Y; Norazian, M H; Kamarudin, M S

    2017-01-01

    The problems of bacterial diseases in aquaculture are primarily controlled by antibiotics. Medicinal plants and herbs which are seemed to be candidates of replacements for conventional antibiotics have therefore gained increasing interest. Current study was performed to investigate the presence of phytochemical constituents, antibacterial activities and composition of antibacterial active compounds in methanolic extract of local herb, Piper betle . Qualitative phytochemical analysis was firstly carried out to determine the possible active compounds in P. betle leaves methanolic extract. The antibacterial activities of major compounds from this extract against nine fish pathogenic bacteria were then assessed using TLC-bioautography agar overlay assay and their quantity were determined simultaneously by HPLC method. The use of methanol has proved to be successful in extracting numerous bioactive compounds including antibacterial compounds. The TLC-bioautography assay revealed the inhibitory action of two compounds which were identified as hydroxychavicol and eugenol. The $-caryophyllene however was totally inactive against all the tested bacterial species. In this study, the concentration of hydroxychavicol in extract was found to be 374.72±2.79 mg g-1, while eugenol was 49.67±0.16 mg g-1. Based on these findings, it could be concluded that hydroxychavicol and eugenol were the responsible compounds for the promising antibacterial activity of P. betle leaves methanolic extract. This inhibitory action has significantly correlated with the amount of the compounds in extract. Due to its potential, the extract of P. betle leaves or it compounds can be alternative source of potent natural antibacterial agents for aquaculture disease management.

  13. Mutagenic activities of a chlorination by-product of butamifos, its structural isomer, and their related compounds.

    Science.gov (United States)

    Kamoshita, Masahiro; Kosaka, Koji; Endo, Osamu; Asami, Mari; Aizawa, Takako

    2010-01-01

    The mutagenic activities of 5-methyl-2-nitrophenol (5M2NP), a chlorination by-product of butamifos, its structural isomer 2-methyl-5-nitrophenol (2M5NP), and related compounds were evaluated by the Ames assay. The mutagenic activities of 5M2NP and 2M5NP were negative or not particularly high. However, those of their chlorinated derivatives were increased in Salmonella typhimurium strain TA100 and the overproducer strains YG1026, and YG1029 in the absence and/or presence of a rat liver metabolic activation system (S9 mix), particularly for YG1029. The mutagenic activities of 6-chloro-2-methyl-5-nitrophenol (6C2M5NP) in YG1029 in the absence and presence of S9 mix were 70000 and 110000 revertants mg(-1), respectively. When nitro functions of 6C2M5NP and 4-chloro-5-methyl-2-nitrophenol (4C5M2NP) were reduced to amino functions, their mutagenic activities were markedly decreased. The mutagenic activities of 5M2NP and 4C5M2NP were lower than those of 2M5NP and 6C2M5NP, respectively. Thus, it was shown that substituent position is a key factor for the mutagenic activities of methylnitrophenols (MNPs) and related compounds. The mutagenic activities of the extracts of 2M5NP in chlorination increased early during the reaction time and then decreased. The main chlorination by-product contributing to the mutagenic activities of the extracts of 2M5NP in chlorination was 6C2M5NP. The results of chlorination of 2M5NP suggested that MNPs were present as their dichlorinated derivatives or further chlorination by-products in drinking water. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Texas Native Plants Yield Compounds with Cytotoxic Activities against Prostate Cancer Cells.

    Science.gov (United States)

    Shaffer, Corena V; Cai, Shengxin; Peng, Jiangnan; Robles, Andrew J; Hartley, Rachel M; Powell, Douglas R; Du, Lin; Cichewicz, Robert H; Mooberry, Susan L

    2016-03-25

    There remains a critical need for more effective therapies for the treatment of late-stage and metastatic prostate cancers. Three Texas native plants yielded three new and three known compounds with antiproliferative and cytotoxic activities against prostate cancer cells with IC50 values in the range of 1.7-35.0 μM. A new sesquiterpene named espadalide (1), isolated from Gochnatia hypoleuca, had low micromolar potency and was highly effective in clonogenic assays. Two known bioactive germacranolides (2 and 3) were additionally isolated from G. hypoleuca. Dalea frutescens yielded two new isoprenylated chalcones, named sanjuanolide (4) and sanjoseolide (5), and the known sesquiterpenediol verbesindiol (6) was isolated from Verbesina virginica. Mechanistic studies showed that 1-4 caused G2/M accumulation and the formation of abnormal mitotic spindles. Tubulin polymerization assays revealed that 4 increased the initial rate of tubulin polymerization, but did not change total tubulin polymer levels, and 1-3 had no effects on tubulin polymerization. Despite its cytotoxic activity, compound 6 did not initiate changes in cell cycle distribution and has a mechanism of action different from the other compounds. This study demonstrates that new compounds with significant biological activities germane to unmet oncological needs can be isolated from Texas native plants.

  15. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    Science.gov (United States)

    Muchtaridi; Diantini, Adjeng; Subarnas, Anas

    2011-01-01

    Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L.) leaves, lemongrass (Cymbopogon citrates L.) herbs, ki lemo (Litsea cubeba L.) bark, and laja gowah (Alpinia malaccencis Roxb.) rhizomes on locomotor activity in mice and identify the active component(s) that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%), 0.1 (55.72%), 0.5 (60.75%), and 0.1 mL/cage (47.09%), respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  16. Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae).

    Science.gov (United States)

    Dzoyem, Jean P; Melong, Raduis; Tsamo, Armelle T; Tchinda, Alembert T; Kapche, Deccaux G W F; Ngadjui, Bonaventure T; McGaw, Lyndy J; Eloff, Jacobus N

    2017-03-06

    Entada abyssinica is a plant traditionally used against gastrointestinal bacterial infections. Eight compounds including three flavonoids, three terpenoids, a monoglyceride and a phenolic compound isolated from E. abyssinica were investigated for their cytotoxicity, antibacterial and antioxidant activity. Compounds 7 and 2 had remarkable activity against Salmonella typhimurium with the lowest respective minimum inhibitory concentration (MIC) values of 1.56 and 3.12 µg/mL. The antioxidant assay gave IC 50 values varied from 0.48 to 2.87 μg/mL in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, from 2.53 to 17.04 μg/mL in the 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assay and from 1.43 to 103.98 µg/mL in the FRAP assay. Compounds had relatively low cytotoxicity (LC 50 values ranging from 22.42 to 80.55 µg/mL) towards Vero cells. Ursolic acid had the most potent cytotoxicity against THP-1 and RAW 264.7 cells with LC 50 values of 9.62 and 4.56 μg/mL respectively, and selectivity index values of 7.32 and 15.44 respectively. Our findings suggest that among the terpenoid and flavonoid compounds studied, entadanin (compound 7) possess tremendous antibacterial activity against S. typhimurium and could be developed for the treatment of bacterial diseases.

  17. Identification of antitumor activities of artesunate and steroid compounds in a model of type T lymphoblastic leukemia resistant to chemotherapy

    International Nuclear Information System (INIS)

    Calvo Alpizar, Lilliana

    2014-01-01

    The cancer has constituted a public health problem. It has been the second leading cause of death in Costa Rica and it is anticipated that cases and deaths will increase in the coming years. One of the main problems of cancer has been the development of resistance to chemotherapy, so many research are focused on the search for new drugs and synergistic activities. The National Cancer Institute through the Developmental Therapeutics Program has made screening lot of natural compounds and synthetic on 60 cell lines derived from human tumors. This screening is presented with practical limitations and without evaluation of synergism with chemotherapeutic drugs at clinically relevant concentrations. Antitumour activities of artesunate and steroidal compounds are identified on a model of type T lymphoblastic leukemia, through optimization of various procedures, in order to build a more practical test platform for screening and confirm anticancer activity by new compounds. Compounds were screened by assaying of sulforhodamine B. An assay was optimized with fluorochromes calcein and ethidium homodimer-1. A cell cycle assay was used to confirm antiproliferative and cytotoxic activity, respectively. Finally, the mechanisms of death were characterized in a basic way by a trial with annexin V/iodide of prospidium, using inhibitors of autophagy, apoptosis and necroptosis to assess vias which have been the most important in cell death. The observation has been that only the artesunate has presented important activity on the cell line, being autotumoral and cytotoxic type. Also, a synergistic effect has presented with doxorrubicina chemotherapy and has caused cycle arrest at the G1/S phase. The ethidium/calcein homodimer-1 assay and V/iodide annexin of prospidium have showed that compound and the drug used has caused necrotic and apoptotic populations that have increased of dependent dose manner. The results have suggested that both agents activate several cell death pathways

  18. Inhibitory effect of Sphagnum palustre extract and its bioactive compounds on aromatase activity

    Directory of Open Access Journals (Sweden)

    Hee Jeong Eom

    2016-09-01

    Full Text Available Sphagnum palustre (a moss has been traditionally used in Korea for the cure of several diseases such as cardiac pain and stroke. In this research, the inhibitory effect of S. palustre on aromatase (cytochrome P450 19, CYP19 activity was studied. [1β-3H] androstenedione was used as a substrate and incubated with S. palustre extract and recombinant human CYP19 in the presence of NADPH. S. palustre extract inhibited aromatase in a concentration-dependent manner (IC50 value: 36.4 ± 8.1 µg/mL. To elucidate the major compounds responsible for the aromatase inhibitory effects of S. palustre extract, nine compounds were isolated from the extract and tested for their inhibition of aromatase activity. Compounds 1, 6, and 7 displayed aromatase inhibition, while the inhibition by the other compounds was negligible.

  19. Four new compounds isolated from Psoralea corylifolia and their diacylglycerol acyltransferase (DGAT) inhibitory activity.

    Science.gov (United States)

    Lin, Xin; Li, Ban-Ban; Zhang, Le; Li, Hao-Ze; Meng, Xiao; Jiang, Yi-Yu; Lee, Hyun-Sun; Cui, Long

    2018-05-14

    A new bakuchiol compound Δ 11 -12-hydroxy-12-dimethyl bakuchiol (1), a new flavanone compound 2(S)-6-methoxy-7- hydroxymethylene-4'-hydroxyl-flavanone (8), and two new isoflavanone compounds 4',7-dihydroxy-3'-(6"β-hydroxy-3″,7″-dimethyl-,2″,7″-dibutenyl)-geranylisoflavone (9) and 4',7-dihydroxy-3'-(7″-hydroxy-7″-methyl-2″,5″-dibutenyl)-geranylisoflavone (10) together with eight known compounds (2-7, 11, 12) were isolated from the P. corylifolia. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated for in vitro inhibitory activity against DGAT1/2. Among them, compounds 3, 9 and 10 were found to exhibit selective inhibitory activity on DGAT1 with IC 50 values ranging from 93.7 ± 1.3 to 96.2 ± 1.1 μM. Compound 1 showed inhibition activity on DGAT1 with IC 50 values 73.4 ± 1.3 μM and inhibition of DGAT2 with IC 50 value 121.1 ± 1.3 μM. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Recent N-Atom Containing Compounds from Indo-Pacific Invertebrates

    Directory of Open Access Journals (Sweden)

    Ashgan Bishara

    2010-11-01

    Full Text Available A large variety of unique N-atom containing compounds (alkaloids without terrestrial counterparts, have been isolated from marine invertebrates, mainly sponges and ascidians. Many of these compounds display interesting biological activities. In this report we present studies on nitrogenous compounds, isolated by our group during the last few years, from Indo-Pacific sponges, one ascidian and one gorgonian. The major part of the review deals with metabolites from the Madagascar sponge Fascaplysinopsis sp., namely, four groups of secondary metabolites, the salarins, tulearins, taumycins and tausalarins.

  1. Pomegranate Fruit as a Rich Source of Biologically Active Compounds

    Science.gov (United States)

    Sreekumar, Sreeja; Sithul, Hima; Muraleedharan, Parvathy; Azeez, Juberiya Mohammed; Sreeharshan, Sreeja

    2014-01-01

    Pomegranate is a widely used plant having medicinal properties. In this review, we have mainly focused on the already published data from our laboratory pertaining to the effect of methanol extract of pericarp of pomegranate (PME) and have compared it with other relevant literatures on Punica. Earlier, we had shown its antiproliferative effect using human breast (MCF-7, MDA MB-231), and endometrial (HEC-1A), cervical (SiHa, HeLa), and ovarian (SKOV3) cancer cell lines, and normal breast fibroblasts (MCF-10A) at concentration of 20–320 μg/mL. The expressions of selected estrogen responsive genes (PR, pS2, and C-Myc) were downregulated by PME. Unlike estradiol, PME did not increase the uterine weight and proliferation in bilaterally ovariectomized Swiss-Albino mice models and its cardioprotective effects were comparable to that of 17β-estradiol. We had further assessed the protective role of PME on skeletal system, using MC3T3-E1 cells. The results indicated that PME (80 μg/mL) significantly increased ALP (Alkaline Phosphatase) activity, supporting its suggested role in modulating osteoblastic cell differentiation. The antiosteoporotic potential of PME was also evaluated in ovariectomized (OVX) rodent model. The results from our studies and from various other studies support the fact that pomegranate fruit is indeed a source of biologically active compounds. PMID:24818149

  2. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.

    Science.gov (United States)

    Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond

    2004-12-01

    A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.

  3. Synthesis and Activity of Grape Wood Phytotoxins and Related Compounds

    Directory of Open Access Journals (Sweden)

    S. Perrin-Cherioux

    2004-04-01

    Full Text Available The synthesis of analogues and derivatives of two o-hydroxyphenylacetylenes, eutypine and sterehirsutinal, the main phytotoxins isolated from the culture medium of Eutypa lata and Stereum hirsutum, is reported. Two means of synthesis are described, based on cyclisation, oxidation, oxidative decarboxylation or reduction reactions, and producing o-hydroxyphenylacetylene or benzofuran derivatives. Some of these synthetic compounds were tested on grapevine callus in order to compare their toxicity with the natural analogues.

  4. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Sztiller-Sikorska

    Full Text Available BACKGROUND: Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. METHODS: We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. FINDINGS: Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF and proto-oncogene c-MYC. CONCLUSION: Selected anti-clonogenic compounds might be further investigated as potential adjuvants

  5. Phytochemical Compounds and Antioxidant Capacity of Tucum-Do-Cerrado (Bactris setosa Mart, Brazil’s Native Fruit

    Directory of Open Access Journals (Sweden)

    Fernanda R. Rosa

    2016-02-01

    Full Text Available This study identified major phenolic compounds of the tucum-do-cerrado (Bactris setosa peel, as well as antioxidant activity and total phytochemical compound concentration of different extracts of the peel and pulp of this fruit. Phenolic compounds of the different extracts of tucum-do-cerrado peel were identified and quantified using a high-performance liquid chromatography system coupled to a diode array detector (DAD. Total phytochemical compound content was determined by spectrophotometric assays and the antioxidant activity by ferric reducing antioxidant power and β-carotene/linoleic assays. Total phenolic, flavanols, total anthocyanins and yellow flavonoids concentration of tucum-do-cerrado were 122-, 14-, 264- and 61-fold higher in the peel than in the pulp, respectively. The aqueous, methanolic and ethanolic extracts of the tucum-do-cerrado peel exhibited higher antioxidant activity compared to its pulp. Flavanols, anthocyanins, flavones, phenolic acids and stilbenes were the main phenolic classes identified in the tucum-do-cerrado peel extracts. Results suggest that the antioxidant capacity and the phytochemical compound content of the tucum-do-cerrado are mainly associated with the peel. Although flavonoids are the main compounds identified in tucum-do-cerrado peel, other phenolics identified in minor amounts, such as phenolic acids and stilbenes, may be responsible for the high antioxidant capacity of the fruit.

  6. Cytotoxic and Antimigratory Activities of Phenolic Compounds from Dendrobium brymerianum

    Directory of Open Access Journals (Sweden)

    Pornprom Klongkumnuankarn

    2015-01-01

    Full Text Available Chromatographic separation of a methanol extract prepared from the whole plant of Dendrobium brymerianum led to the isolation of eight phenolic compounds. Among the isolated compounds (1–8, moscatilin (1, gigantol (3, lusianthridin (4, and dendroflorin (6 showed appreciable cytotoxicity against human lung cancer cell lines with IC50 values of 196.7, 23.4, 65.0, and 125.8 μg/mL, respectively, and exhibited antimigratory property at nontoxic concentrations. This study is the first report on the biological activities of this plant.

  7. An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds.

    Science.gov (United States)

    Fusi, Jonathan; Bianchi, Sara; Daniele, Simona; Pellegrini, Silvia; Martini, Claudia; Galetta, Fabio; Giovannini, Luca; Franzoni, Ferdinando

    2018-05-01

    Oxidative stress arises from an imbalance between the production of free radicals and antioxidant defences. Several studies have suggested that dietary antioxidants (such as polyphenols and berberine) may counteract oxidative stress through the involvement of the Sirtuin 1/Adenosine Monophosphate-Activated Protein Kinase (SIRT1/AMPK) pathway. The aim of this study was to evaluate the direct and specific antioxidant activity of some natural compounds, as well as their ability to modulate the expression of SIRT1 and the activation of AMPK. Quercetin, tyrosol, ferulic acid, catechin, berberine and curcumin were evaluated for their specific and direct antioxidant activity with TOSC assay. Their ability to modulate SIRT1 and AMPK was assessed by immunoblotting assay, while their cytotoxicity by CellTiter-Blue Cell Viability Assay. No statistically significant decrease (p > 0.05) in the number of viable cells was found upon challenging with the natural compounds. Quercetin exhibited the highest antioxidant activity against peroxyl radical and peroxinitrate derivates, while curcumin showed the best anti-hydroxyl activity with respect to the other compounds and, most importantly, respect to the reference antioxidants. Finally, all the tested compounds significantly increased the SIRT1 expression and the activation of AMPK. Our results clearly disclose the specific antioxidant activity of these natural compounds and their ability to increase SIRT1 expression and AMPK activation. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Optimization of Extraction Process for Antidiabetic and Antioxidant Activities of Kursi Wufarikun Ziyabit Using Response Surface Methodology and Quantitative Analysis of Main Components.

    Science.gov (United States)

    Edirs, Salamet; Turak, Ablajan; Numonov, Sodik; Xin, Xuelei; Aisa, Haji Akber

    2017-01-01

    By using extraction yield, total polyphenolic content, antidiabetic activities (PTP-1B and α -glycosidase), and antioxidant activity (ABTS and DPPH) as indicated markers, the extraction conditions of the prescription Kursi Wufarikun Ziyabit (KWZ) were optimized by response surface methodology (RSM). Independent variables were ethanol concentration, extraction temperature, solid-to-solvent ratio, and extraction time. The result of RSM analysis showed that the four variables investigated have a significant effect ( p analysis of effective part of KWZ was characterized via UPLC method, 12 main components were identified by standard compounds, and all of them have shown good regression within the test ranges and the total content of them was 11.18%.

  9. Synthesis and biological activity of sulfur compounds showing structural analogy with combretastatin A-4

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Edson dos A. dos; Prado, Paulo C.; Carvalho, Wanderley R. de; Lima, Ricardo V. de; Beatriz, Adilson; Lima, Denis P. de, E-mail: denis.lima@ufms.br [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Departamento de Quimica; Hamel, Ernest [Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD (United States); Dyba, Marzena A. [Basic Science Program , SAIC-Frederick, Inc., Structural Biophysics Laboratory National Cancer Institute, Frederick, MD (United States); Albuquerque, Sergio [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas

    2013-09-01

    We extended our previous exploration of sulfur bridges as bioisosteric replacements for atoms forming the bridge between the aromatic rings of combretastatin A-4. Employing coupling reactions between 5-iodo-1,2,3-trimethoxybenzene and substituted thiols, followed by oxidation to sulfones with m-CPBA, different locations for attaching the sulfur atom to ring A through the synthesis of nine compounds were examined. Antitubulin activity was performed with electrophoretically homogenous bovine brain tubulin, and activity occurred with the 1,2,3-trimethoxy-4-[(4-methoxyphenyl)thio]benzene (12), while the other compounds were inactive. The compounds were also tested for leishmanicidal activity using promastigote forms of Leishmania braziliensis (MHOM/BR175/M2904),and the greatest activity was observed with 1,2,3-trimethoxy-4-(phenylthio)benzene (10) and 1,2,3-trimethoxy-4-[(4-methoxyphenyl) sulfinyl]benzene (15). (author)

  10. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box

    Directory of Open Access Journals (Sweden)

    Pedro Martins

    2015-09-01

    Full Text Available The majority of heterocycle compounds and typically common heterocycle fragments present in most pharmaceuticals currently marketed, alongside with their intrinsic versatility and unique physicochemical properties, have poised them as true cornerstones of medicinal chemistry. Apart from the already marketed drugs, there are many other being investigated for their promising activity against several malignancies. In particular, anticancer research has been capitalizing on the intrinsic versatility and dynamic core scaffold of these compounds. Nevertheless, as for any other promising anticancer drugs, heterocyclic compounds do not come without shortcomings. In this review, we provide for a concise overview of heterocyclic active compounds and families and their main applications in medicine. We shall focus on those suitable for cancer therapy while simultaneously addressing main biochemical modes of action, biological targets, structure-activity relationships as well as intrinsic limitation issues in the use of these compounds. Finally, considering the advent of nanotechnology for effective selective targeting of drugs, we shall discuss fundamental aspects and considerations on nanovectorization of such compounds that may improve pharmacokinetic/pharmacodynamic properties of heterocycles.

  11. Quantitative Structure Activity Relationship of Cinnamaldehyde Compounds against Wood-Decaying Fungi

    Directory of Open Access Journals (Sweden)

    Dongmei Yang

    2016-11-01

    Full Text Available Cinnamaldehyde, of the genius Cinnamomum, is a major constituent of the bark of the cinnamon tree and possesses broad-spectrum antimicrobial activity. In this study, we used best multiple linear regression (BMLR to develop quantitative structure activity relationship (QSAR models for cinnamaldehyde derivatives against wood-decaying fungi Trametes versicolor and Gloeophyllun trabeum. Based on the two optimal QSAR models, we then designed and synthesized two novel cinnamaldehyde compounds. The QSAR models exhibited good correlation coefficients: R2Tv = 0.910 for Trametes versicolor and R2Gt = 0.926 for Gloeophyllun trabeum. Small errors between the experimental and calculated values of two designed compounds indicated that these two QSAR models have strong predictability and stability.

  12. Activation energies for iodine-exchange systems containing organic iodine compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, N. (Takyo Univ. of Education (Japan). Faculty of Science) Takahashi, Yasuko

    1976-01-01

    In studies on the nonequilibrium isotopic exchange method for determining iodine in organic iodine compounds, activation energies have been measured to find systems having appropriate rate of exchange reactions. Activation energies are discussed by considering the effect of the structure of organic iodine compounds, the concentrations of reactants and solvent, etc. In homogeneous systems, activation energy is found to become larger in the order of CH/sub 3/Iactivation energy is less in 100% acetone than in 90% acetone solution. In heterogeneous systems, e.g. org. I(aq.)--I/sub 2/(CCL/sub 4/ or C/sub 2/H/sub 4/Cl/sub 2/), activation energy increases in the order of 3,5-diiodotyrosine<3-iodotyrosine<5-iodouracil. The catalytic effect of I/sub 2/ is large, and the iodine ratio between I/sub 2/ and organic iodine is a predominant factor in determining the rate of the exchange reaction.

  13. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    Directory of Open Access Journals (Sweden)

    Anas Subarnas

    2011-04-01

    Full Text Available Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L. leaves, lemongrass (Cymbopogon citrates L. herbs, ki lemo (Litsea cubeba L. bark, and laja gowah (Alpinia malaccencis Roxb. rhizomes on locomotor activity in mice and identify the active component(s that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%, 0.1 (55.72%, 0.5 (60.75%, and 0.1 mL/cage (47.09%, respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  14. Isolation and Identification of Active Compounds from Papaya Plants and Activities as Antimicrobial

    Science.gov (United States)

    Prasetya, A. T.; Mursiti, S.; Maryan, S.; Jati, N. K.

    2018-04-01

    Extraction and isolation of papaya seeds and leaves (Carica papaya L) has been performed using n-hexane and ethanol solvents. Further isolation of the extract obtained using ethyl acetate and diethyl ether solvents. The result of the phytochemical test of papaya extract obtained by mixture of an active compound of flavonoids, alkaloids, tannins, steroids, and saponins. Ethyl acetate isolates containing only flavonoids and diethyl ether isolates contain only alkaloids. Extracts and isolates from papaya plants had gram-positive antibacterial activity greater than the gram-negative bacteria, but both did not have antifungal activity. Papaya extracts have greater antibacterial activity than flavonoid isolates and alkaloid isolates. Strong antibacterial inhibitory sequences are extracts of papaya plants, flavonoid isolates, and alkaloid isolates.

  15. Molecular Descriptors Family on Structure Activity Relationships 2. Insecticidal Activity of Neonicotinoid Compounds

    Directory of Open Access Journals (Sweden)

    Sorana BOLBOACĂ

    2005-01-01

    Full Text Available The neonicotinoids are the newest major class of insecticides modeled after the basic nicotine molecule having improved insecticide activity and generally low toxicity. The insecticidal activities of neonicotinoids were previous studied using 3D and standard partial least squares regression models. The paper describes the ability of the MDF SAR methodology in prediction of insecticidal activities of neonicotinoid compounds. The best MDF SAR bi-varied model was validated on training and test sets and its ability on prediction of insecticidal activity was compared with previous reported models. Even if the MDF SAR methodology is complex and time consuming the results worth the effort because they are statistical significant better then previous reported results.

  16. Simultaneous determination of five active compounds in chimonanthus nitens by double-development HPTLC and scanning densitometry

    Directory of Open Access Journals (Sweden)

    Zhou Bin

    2012-05-01

    Full Text Available Abstract Background Chimonanthus nitens (family Calycanthaceae, Shanlamei in Chinese, is an unique species in China. The extract of dried leaves of Chimonanthus nitens has anti-inflammatory, antipyretic and antitussive effects. Terpenes, coumarins, and flavonoids are usually regarded as the main active components. Therefore, simultaneous determination of these compounds is very important to control the quality of Chimonanthus nitens. Results A double-development TLC method was developed for simultaneous analysis of five compounds in Chimonanthus nitens. The chromatography was performed on silica gel 60 plate with chloroform-methanol (9∶1, v/v and petroleum ether-ethyl acetate (10∶1, v/v as mobile phase for twice development. Their characteristic TLC profiles were observed under UV light at 365 nm and the bands were then revealed by reaction with 1% vanillin-H2SO4 solution. Quantification of three monoterpenes was achieved by densitometry at 545 nm (β-caryophyllene or 606 nm (cineole and linalool. Two coumarins (scopoletin and scoparone were determined by densitometry at 340 nm with filter wavelength of 370 nm. The investigated compounds had good linearity (R2 >0.99 within test ranges. Conclusions The developed double-development TLC method is helpful to control the quality of Chimonanthus nitens, which is simple and accurate.

  17. Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs.

    Science.gov (United States)

    Cantos, Emma; Espín, Juan Carlos; López-Bote, Clemente; de la Hoz, Lorenzo; Ordóñez, Juan A; Tomás-Barberán, Francisco A

    2003-10-08

    The aim of the present work was to identify and quantify the phenolic compounds and fatty acids in acorns from Quercus ilex, Quercus rotundifolia, and Quercus suber. The concentration of oleic acid was >63% of total fatty acids in all cases, followed by palmitic and linoleic acids at similar concentrations (12-20%). The concentrations of alpha-tocopherol in Q. rotundifolia, Q. ilex, and Q. suber were 19, 31, and 38 mg/kg of dry matter (DM), respectively, whereas the concentrations of gamma-tocopherol were 113, 66, and 74 mg/kg of DM, respectively. Thirty-two different phenolic compounds were distinguished. All of them were gallic acid derivatives, in the form of either galloyl esters of glucose, combinations of galloyl and hexahydroxydiphenoyl esters of glucose, tergallic O- or C-glucosides, or ellagic acid derivatives. Several tergallic acid C-glucosides were also present in the extracts obtained from Q. suber. Acorns from Q. ilex and Q. rotundifolia showed similar polyphenol patterns mainly with gallic acid-like spectra. Chromatograms of Q. suber showed mainly polyphenols with ellagic acid-like spectra. Valoneic acid dilactone was especially abundant in Q. suber skin. The contribution of skin to the total phenolics of the acorn was relatively small in Q. rotundifolia and Q. ilex but relatively high in Q. suber. Skin extracts from Q. suber, Q. rotundifolia, and Q. ilex showed 1.3, 1.4, and 1.0 antioxidant efficiencies, respectively (compared to that of butylhydroxyanisole). Endosperm extracts showed lower capacity to prevent lipid peroxidation than skin extracts.

  18. Bioactive compounds in different acerola fruit cultivares

    Directory of Open Access Journals (Sweden)

    Flávia Aparecida de Carvalho Mariano-Nasser

    2017-08-01

    Full Text Available The increased consumption of acerola in Brazil was triggered because it is considered as a functional food mainly for its high ascorbic acid content, but the fruit also has high nutritional value, high levels of phenolic compounds, total antioxidant activity, anthocyanins and carotenoids in its composition. The objective was to evaluate the chemical, physical-chemical and antioxidant activity of eight varieties of acerola tree. The acerolas used in the research were the harvest 2015, 8 varieties: BRS 235 - Apodi, Mirandópolis, Waldy - CATI 30, BRS 238 - Frutacor, Okinawa, BRS 236 - Cereja, Olivier and BRS 237 - Roxinha, from the Active Bank Germplasm APTA Regional Alta Paulista in Adamantina - SP. Avaluated the following attributes: pH, titratable acidity, soluble solids, reducing sugar, instrumental color, ascorbic acid, total phenolics, flavonoids and antioxidant activity. The design was completely randomized, 8 varieties and 3 replications of 20 fruits each. Acerola fruit of the analyzed varieties prove to be good sources of phenolic compounds and antioxidant activity, ensuring its excellent nutritional quality relative to combat free radicals. The variety BRS 236 - Cereja presents higher ascorbic acid content, antioxidant activity and phenolic compounds, and the lowest value for flavonoid, which was higher than the other cultivars, especially Olivier and Waldy CATI-30.

  19. Simple Method of Preparation and Characterization of New Antifungal Active Biginelli Type Heterocyclic Compounds

    Science.gov (United States)

    Velan, A. Senthilkumara; Joseph, J.; Raman, N.

    2008-01-01

    A simple, efficient and cost effective method is described for the synthesis of Biginelli type heterocyclic compounds of dihydropyrimidinones analogous. They were prepared from a reaction mixture consisting of substituted benzaldehydes, thiourea and ethylacetoacetate using ammonium dihydrogenphosphate as catalyst. The procedure for the preparation of the compounds is environmentally benign and safe which is advantageous in terms of experimentation, catalyst reusability, yields of the products, shorter reaction times and preclusion of toxic solvents. The four new synthesised compounds were tested for their antifungal activity. They have good antifungal activity comparing to the standard (Fluconazole). PMID:23997611

  20. Syzygium cumini is more effective in preventing the increase of erythrocytic ADA activity than phenolic compounds under hyperglycemic conditions in vitro.

    Science.gov (United States)

    De Bona, Karine S; Bonfanti, Gabriela; Bitencourt, Paula E R; Cargnelutti, Lariane O; da Silva, Priscila S; da Silva, Thainan P; Zanette, Régis A; Pigatto, Aline S; Moretto, Maria B

    2014-06-01

    Syzygium cumini (S. cumini) is a plant known for its antidiabetic properties. The aim of this study was to evaluate the effect of Sc aqueous leaf extract (ASc) on adenosine deaminase (ADA) activity in erythrocytes (RBCs) exposed to high glucose concentrations (30 mM) in vitro. We also investigated the effects of the main phenolic compounds found in ASc (gallic acid, rutin, and chlorogenic acid) and the effects of insulin, caffeine, and dipyridamole, which are substances involved in the adenosine metabolism, on ADA activity in vitro. Blood samples were obtained from healthy volunteers and a suspension of RBCs was used for the determination of ADA activity. The results showed that: (1) the effect of ASc on ADA activity was more significant than the combination of phenolic compounds; (2) insulin, caffeine, or dipyridamole prevented high glucose increase of ADA activity at doses as low as 50 μU/mL, 25 μM, and 1 μM, respectively; (3) the inhibitory effect caused by ASc on erythrocyte ADA activity remained practically the same after the combination of the extract with insulin or caffeine; (4) when RBCs were exposed to ASc plus dipyridamole, this chemical attenuated the effect of ASc on ADA activity, suggesting an antagonism or a competition with ASc by the same site of action. Therefore, ASc was more effective in preventing the increase in ADA activity than phenolic compounds, suggesting that ASc may collaborate to improve endothelial dysfunction, antioxidant, anti-inflammatory, and antithrombotic properties of adenosine by affecting its metabolism. The results of this study help to provide evidence of the empirically supported benefits of the use of S. cumini in diabetes.

  1. Bayesian screening for active compounds in high-dimensional chemical spaces combining property descriptors and molecular fingerprints.

    Science.gov (United States)

    Vogt, Martin; Bajorath, Jürgen

    2008-01-01

    Bayesian classifiers are increasingly being used to distinguish active from inactive compounds and search large databases for novel active molecules. We introduce an approach to directly combine the contributions of property descriptors and molecular fingerprints in the search for active compounds that is based on a Bayesian framework. Conventionally, property descriptors and fingerprints are used as alternative features for virtual screening methods. Following the approach introduced here, probability distributions of descriptor values and fingerprint bit settings are calculated for active and database molecules and the divergence between the resulting combined distributions is determined as a measure of biological activity. In test calculations on a large number of compound activity classes, this methodology was found to consistently perform better than similarity searching using fingerprints and multiple reference compounds or Bayesian screening calculations using probability distributions calculated only from property descriptors. These findings demonstrate that there is considerable synergy between different types of property descriptors and fingerprints in recognizing diverse structure-activity relationships, at least in the context of Bayesian modeling.

  2. Phenolic compounds from Glycyrrhiza pallidiflora Maxim. and their cytotoxic activity.

    Science.gov (United States)

    Shults, Elvira E; Shakirov, Makhmut M; Pokrovsky, Mikhail A; Petrova, Tatijana N; Pokrovsky, Andrey G; Gorovoy, Petr G

    2017-02-01

    Twenty-one phenolic compounds (1-21) including dihydrocinnamic acid, isoflavonoids, flavonoids, coumestans, pterocarpans, chalcones, isoflavan and isoflaven, were isolated from the roots of Glycyrrhiza pallidiflora Maxim. Phloretinic acid (1), chrysin (6), 9-methoxycoumestan (8), isoglycyrol (9), 6″-O-acetylanonin (19) and 6″-O-acetylwistin (21) were isolated from G. pallidiflora for the first time. Isoflavonoid acetylglycosides 19, 21 might be artefacts that could be produced during the EtOAc fractionation process of whole extract. Compounds 2-4, 10, 11, 19 and 21 were evaluated for their cytotoxic activity with respect to model cancer cell lines (CEM-13, MT-4, U-937) using the conventional MTT assays. Isoflavonoid calycosin (4) showed the best potency against human T-cell leukaemia cells MT-4 (CTD 50 , 2.9 μM). Pterocarpans medicarpin (10) and homopterocarpin (11) exhibit anticancer activity in micromolar range with selectivity on the human monocyte cells U-937. The isoflavan (3R)-vestitol (16) was highly selective on the lymphoblastoid leukaemia cells CEM-13 and was more active than the drug doxorubicin.

  3. Evaluation of Essential Oil and its Three Main Active Ingredients of Chinese Chenopodium Ambrosioides (Family: Chenopodiaceae Against Blattella Germanica

    Directory of Open Access Journals (Sweden)

    Wei Xiang Zhu

    2012-12-01

    Full Text Available Background: The efficacy of essential oil of Chenopodium ambrosioides flowering aerial parts and its three mainactive ingredients was evaluated against Blattella germanica male adults.Methods: Composition of essential oil was determined by GC-MS. Topical application bioassay was used to evaluatecontact toxicity of essential oil and three main components. Fumigant toxicity of essential oil and its main components was measured using a sealed space method.Results: Twenty-two components were identified in the essential oil and the main components were (Z-ascaridole(29.7%, isoascaridole (13.0%, ρ-cymene (12.7% and piperitone (5.0%. The essential oil and (Z-ascaridole,isoascaridole and -cymene possessed fumigant toxicity against male German cockroaches with LC50 values of 4.13,0.55, 2.07 and 6.92 mg/L air, respectively. Topical application bioassay showed that all the three compounds weretoxic to male German cockroaches and (Z-ascaridole was the strongest with a LD50 value of 22.02 g/adult while the crude oil with a LD50 value of 67.46 g/adult.Conclusion: The essential oil from Chinese C. ambrosioides and its three main active ingredients may be explored as natural potential insecticides in the control of cockroaches.

  4. Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds.

    Science.gov (United States)

    Lee, Hongshin; Kim, Hyoung-Il; Weon, Seunghyun; Choi, Wonyong; Hwang, Yu Sik; Seo, Jiwon; Lee, Changha; Kim, Jae-Hong

    2016-09-20

    This study introduces graphited nanodiamond (G-ND) as an environmentally friendly, easy-to-regenerate, and cost-effective alternative catalyst to activate persulfate (i.e., peroxymonosulfate (PMS) and peroxydisulfate (PDS)) and oxidize organic compounds in water. The G-ND was found to be superior for persulfate activation to other benchmark carbon materials such as graphite, graphene, fullerene, and carbon nanotubes. The G-ND/persulfate showed selective reactivity toward phenolic compounds and some pharmaceuticals, and the degradation kinetics were not inhibited by the presence of oxidant scavengers and natural organic matter. These results indicate that radical intermediates such as sulfate radical anion and hydroxyl radical are not majorly responsible for this persulfate-driven oxidation of organic compounds. The findings from linear sweep voltammetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, and electron paramagnetic resonance spectroscopy analyses suggest that the both persulfate and phenol effectively bind to G-ND surface and are likely to form charge transfer complex, in which G-ND plays a critical role in mediating facile electron transfer from phenol to persulfate.

  5. Effects of extraction methods of phenolic compounds from Xanthium strumarium L. and their antioxidant activity

    Directory of Open Access Journals (Sweden)

    R. Scherer

    2014-03-01

    Full Text Available The effect of extraction methods and solvents on overall yield, total phenolic content, antioxidant activity, and the composition of the phenolic compounds in Xanthium strumarium extracts were studied. The antioxidant activity was determined by using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH, and the composition of the phenolic compounds was determined by HPLC-DAD and LC/MS. All results were affected by the extraction method, especially by the solvent used, and the best results were obtained with the methanol extract. The methanolic and ethanolic extracts exhibited strong antioxidant activity, and the chlorogenic and ferulic acids were the most abundant phenolic compounds in the extracts.

  6. Anti-inflammatory activity of different agave plants and the compound cantalasaponin-1.

    Science.gov (United States)

    Monterrosas-Brisson, Nayeli; Ocampo, Martha L Arenas; Jiménez-Ferrer, Enrique; Jiménez-Aparicio, Antonio R; Zamilpa, Alejandro; Gonzalez-Cortazar, Manases; Tortoriello, Jaime; Herrera-Ruiz, Maribel

    2013-07-10

    Species of the agave genus, such as Agave tequilana, Agave angustifolia and Agave americana are used in Mexican traditional medicine to treat inflammation-associated conditions. These plants' leaves contain saponin compounds which show anti-inflammatory properties in different models. The goal of this investigation was to evaluate the anti-inflammatory capacity of these plants, identify which is the most active, and isolate the active compound by a bio-directed fractionation using the ear edema induced in mice with 12-O-tetradecanoylphorbol-13-acetate (TPA) technique. A dose of 6 mg/ear of acetone extract from the three agave species induced anti-inflammatory effects, however, the one from A. americana proved to be the most active. Different fractions of this species showed biological activity. Finally the F5 fraction at 2.0 mg/ear induced an inhibition of 85.6%. We identified one compound in this fraction as (25R)-5α-spirostan-3β,6α,23α-triol-3,6-di-O-β-D-glucopyranoside (cantalasaponin-1) through 1H- and 13C-NMR spectral analysis and two dimensional experiments like DEPT NMR, COSY, HSQC and HMBC. This steroidal glycoside showed a dose dependent effect of up to 90% of ear edema inhibition at the highest dose of 1.5 mg/ear.

  7. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    Directory of Open Access Journals (Sweden)

    Ji Hun Paek

    2013-01-01

    Full Text Available The ethyl acetate (EtOAc soluble fraction of methanol extracts of Perilla frutescens (P. frutescens inhibits aldose reductase (AR, the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR. The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2 (IC50 = 3.16 μM, rosmarinic acid (4 (IC50 = 2.77 μM, luteolin (5 (IC50 = 6.34 μM, and methyl rosmarinic acid (6 (IC50 = 4.03 μM.

  8. Sulfur-containing heterocyclic compounds with potential antidiabetic activity

    Directory of Open Access Journals (Sweden)

    E. A. Savateeva

    2014-12-01

    Full Text Available The essential link in the pathogenesis of diabetes mellitus and its complications is a non-enzymatic glycosylation of proteins. However, modern endocrinology lacks of clinically effective pharmaceuticals for its correction. The screening of 23 derivatives of 1,3,4-thiadiazine the ability to inhibit the reaction of non-enzymatic glycosylation of proteins in vitro was held, and 11 the most active compounds of them were selected, also the relationship «structure – activity» was investigated. An essential part of the pathogenesis of diabetes mellitus and its complications is non-enzymatic glycosylation of proteins. However, modern endocrinology lacks clinically effective medicines for its correction.

  9. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  10. Review of Brazilian activities related to the thorium fuel cycle and production of thorium compounds at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Freitas, Antonio A.; Mindrisz, Ana C.

    2013-01-01

    The Brazilian's interest in the nuclear utilization of thorium has started in the 50's as a consequence of the abundant occurrence of monazite sands. Since the sixties, IPEN-CNEN/SP has performed some developments related to the thorium fuel cycle. The production and purification of thorium compounds was carried out at IPEN for about 18 years and the main product was the thorium nitrate with high purity, having been produced over 170 metric tons of this material in the period, obtained through solvent extraction. The thorium nitrate was supplied to the domestic industry and used for gas portable lamps (Welsbach mantle). Although the thorium compounds produced have not been employed in the nuclear area, several studies were conducted. Therefore, those activities and the accumulated experience are of strategic importance, on one hand due to huge Brazilian thorium reserves, on the other hand by the resurgence of the interest of thorium for the Generation IV Advanced Reactors. This paper presents a review of the Brazilian research and development activities related to thorium technology. (author)

  11. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    Science.gov (United States)

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  12. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-01-01

    Full Text Available Sirtuin type 1 (SIRT1 belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs, as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP. The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1.

  13. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    International Nuclear Information System (INIS)

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou; Lin, Gang; Lv, Guoqiang

    2015-01-01

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition of AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity

  14. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou; Lin, Gang; Lv, Guoqiang, E-mail: lvguoqiangwuxivip@163.com

    2015-08-07

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition of AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity.

  15. Total phenolic and phytosterol compounds and the radical scavenging activity of germinated Australian sweet lupin flour.

    Science.gov (United States)

    Rumiyati; Jayasena, Vijay; James, Anthony P

    2013-12-01

    In addition to their favourable nutritional profile, legumes also contain a range of bioactive compounds such as phenolic compounds and phytosterols which may protect against chronic diseases including cancer and cardiovascular disease. Germination of some legume seeds has been previously reported to increase the concentration of the bioactive compounds. In this study, the effect of germination of Australian Sweet Lupin (ASL) seeds for 9 days on the concentration of some bioactive compounds and the radical scavenging activity in the resulting flour was determined. The concentration of total phenolic compounds in methanolic extracts of germinated ASL flour was determined using Folin Ciocalteu reagent and phytosterols in oil extracts were analyzed by gas-liquid chromatography. The methanolic and oil extracts were also used to determine radical scavenging activity toward 2,2-diphenyl-1-picrylhydrazyl. In the methanolic extracts of germinated ASL flour, phenolic contents and the antioxidant activity were significantly increased following germination (700 and 1400 %, respectively). Analysis of the oil extracts of germinated ASL flour revealed that the concentration of phytosterols and the antioxidant activity were also increased significantly compared to ungerminated ASL flour (300 and 800 %, respectively). The relative proportion of phytosterols in germinated ASL flour was: β-sitosterol (60 %), stigmasterol (30 %) and campesterol (10 %). Germination increases the concentration of bioactive compounds and the radical scavenging activity in the germinated ASL flour.

  16. A QSAR, Pharmacokinetic and Toxicological Study of New Artemisinin Compounds with Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Josinete B. Vieira

    2014-07-01

    Full Text Available The Density Functional Theory (DFT method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with different degrees of cytotoxicity against the human hepatocellular carcinoma HepG2 line. Principal component analysis (PCA and hierarchical cluster analysis (HCA were employed to select the most important descriptors related to anticancer activity. The significant molecular descriptors related to the compounds with anticancer activity were the ALOGPS_log, Mor29m, IC5 and GAP energy. The Pearson correlation between activity and most important descriptors were used for the regression partial least squares (PLS and principal component regression (PCR models built. The regression PLS and PCR were very close, with variation between PLS and PCR of R2 = ±0.0106, R2ajust = ±0.0125, s = ±0.0234, F(4,11 = ±12.7802, Q2 = ±0.0088, SEV = ±0.0132, PRESS = ±0.4808 and SPRESS = ±0.0057. These models were used to predict the anticancer activity of eight new artemisinin compounds (test set with unknown activity, and for these new compounds were predicted pharmacokinetic properties: human intestinal absorption (HIA, cellular permeability (PCaCO2, cell permeability Maden Darby Canine Kidney (PMDCK, skin permeability (PSkin, plasma protein binding (PPB and penetration of the blood-brain barrier (CBrain/Blood, and toxicological: mutagenicity and carcinogenicity. The test set showed for two new artemisinin compounds satisfactory results for anticancer activity and pharmacokinetic and toxicological properties. Consequently, further studies need be done to evaluate the different proposals as well as their actions, toxicity, and potential use for treatment of cancers.

  17. Extremely Randomized Machine Learning Methods for Compound Activity Prediction

    Directory of Open Access Journals (Sweden)

    Wojciech M. Czarnecki

    2015-11-01

    Full Text Available Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data also in cheminformatics and related fields, the aim of research has shifted not only towards the development of algorithms of high predictive power but also towards the simplification of previously existing methods to obtain results more quickly. In the study, we tested two approaches belonging to the group of so-called ‘extremely randomized methods’—Extreme Entropy Machine and Extremely Randomized Trees—for their ability to properly identify compounds that have activity towards particular protein targets. These methods were compared with their ‘non-extreme’ competitors, i.e., Support Vector Machine and Random Forest. The extreme approaches were not only found out to improve the efficiency of the classification of bioactive compounds, but they were also proved to be less computationally complex, requiring fewer steps to perform an optimization procedure.

  18. Standardization of Tragopogon graminifolius DC. Extract Based on Phenolic Compounds and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Farzaei

    2014-01-01

    Full Text Available Tragopogon graminifolius DC. (TG, Compositae family, is traditionally used for the treatment of various diseases like gastrointestinal and hepatic disorders. The aim of the present study is to standardize extracts from TG used for preparation of different dosage forms in traditional Iranian medicine (TIM based on phenolic compounds. For this purpose, total phenolic content and some phenolic compounds were determined in ethanolic extracts from aerial part and root of TG by HPLC method. Furthermore, antioxidant activity was evaluated using DPPH-HPLC methods. Caffeic acid, gallic acid, ρ-coumaric acid, ferulic acid, and catechin were detected in root and aerial part of TG. ρ-Coumaric acid (6.357 ± 0.014 mg·g−1 was dominant phenolic compound in aerial part followed by ferulic acid (1.24 ± 0.018 mg·g−1. Also, ρ-coumaric acid (2.685 ± 0.031 mg·g−1 was highly abundant in root, followed by catechin (2.067 ± 0.021 mg·g−1. Antioxidant activity of root extract (460.45 ± 0.78 µg Vit.E.E·mL−1 was better than that of aerial part. Generally, phenolic compounds are one of the major constituents of TG and could be used as markers for standardization of dosage forms prepared from this plant. Also, TG demonstrated significant antioxidant activity using DPPH-HPLC method. Phenolic compounds of TG may be responsible for its marked antioxidant properties.

  19. Two new phenolic compounds and antitumor activities of asparinin A from Asparagus officinalis.

    Science.gov (United States)

    Li, Xue-Mei; Cai, Jin-Long; Wang, Le; Wang, Wen-Xiang; Ai, Hong-Lian; Mao, Zi-Chao

    2017-02-01

    Two new phenolic acid compounds, asparoffin C (1) and asparoffin D (2), together with four known compounds, asparenyol (3), gobicusin B (4), 1-methoxy-2-hydroxy-4-[5-(4-hydroxyphenoxy)-3-penten-1-ynyl] phenol (5), and asparinin A (6), have been isolated from the stems of Asparagus officinalis. The structures were established by extensive spectroscopic methods (MS and 1D and 2D NMR). Compound 6 has obvious antitumor activities both in vitro and in vivo.

  20. Anticancer activity of botanical compounds in ancient fermented beverages (review).

    Science.gov (United States)

    McGovern, P E; Christofidou-Solomidou, M; Wang, W; Dukes, F; Davidson, T; El-Deiry, W S

    2010-07-01

    Humans around the globe probably discovered natural remedies against disease and cancer by trial and error over the millennia. Biomolecular archaeological analyses of ancient organics, especially plants dissolved or decocted as fermented beverages, have begun to reveal the preliterate histories of traditional pharmacopeias, which often date back thousands of years earlier than ancient textual, ethnohistorical, and ethnological evidence. In this new approach to drug discovery, two case studies from ancient Egypt and China illustrate how ancient medicines can be reconstructed from chemical and archaeological data and their active compounds delimited for testing their anticancer and other medicinal effects. Specifically, isoscopoletin from Artemisia argyi, artemisinin from Artemisia annua, and the latter's more easily assimilated semi-synthetic derivative, artesunate, showed the greatest activity in vitro against lung and colon cancers. In vivo tests of these compounds previously unscreened against lung and pancreatic cancers are planned for the future.

  1. Study of the relationship between chemical structure and antimicrobial activity in a series of hydrazine-based coordination compounds.

    Science.gov (United States)

    Dobrova, B N; Dimoglo, A S; Chumakov, Y M

    2000-08-01

    The dependence of antimicrobial activity on the structure of compounds is studied in a series of compounds based on hydrazine coordinated with ions of Cu(II), Ni(II) and Pd(II). The study has been carried out by means of the original electron-topological method developed earlier. A molecular fragment has been found that is only characteristic of biologically active compounds. Its spatial and electron parameters have been used for the quantitative assessment of the activity in view. The results obtained can be used for the antimicrobial activity prediction in a series of compounds with similar structures.

  2. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Eun, J.B.; Wierenga, P.A.; Gruppen, H.

    2009-01-01

    Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by different oxidised phenolic compounds including caffeic acid, ferulic acid and tannic acid at different concentrations were investigated. Oxidised phenolic compounds were covalently attached to gelatin as

  3. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds

    Directory of Open Access Journals (Sweden)

    Ana O. de Souza

    2007-01-01

    Full Text Available Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.

  4. Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives.

    Science.gov (United States)

    Deng, Junlin; Xu, Zhou; Xiang, Chunrong; Liu, Jing; Zhou, Lijun; Li, Tian; Yang, Zeshen; Ding, Chunbang

    2017-07-01

    Ultrasonic-assisted extraction (UAE) and maceration extraction (ME) were optimized using response surface methodology (RSM) for total phenolic compounds (TPC) from fresh olives. The main phenolic compounds and antioxidant activity of TPC were also investigated. The optimized result for UAE was 22mL/g of liquid-solid ratio, 47°C of extraction temperature and 30min of extraction time, 7.01mg/g of yielding, and for ME was 24mL/g of liquid-solid ratio, 50°C of extraction temperature and 4.7h of extraction time, 5.18mg/g of yielding. The HPLC analysis revealed that the extracts by UAE and ME possessed 14 main phenolic compounds, and UAE exhibited more amounts of all phenols than ME. The most abundant phenolic compounds in olive extracts were hydroxytyrosol, oleuropein and rutin. Both extracts showed excellent antioxidant activity in a dose-dependent manner. Taken together, UAE could effectively increase the yield of phenolic compounds from olives. In addition these phenolic compounds could be used as a potential source of natural antioxidants. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Activated Carbon Adsorption Characteristics of Multi-component Volatile Organic compounds in a Fixed Bed Adsorption Bed

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Hoon; Rhee, Young Woo [Chungnam National University, Daejeon (Korea, Republic of); Lee, Sihyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2016-04-15

    This study aims to examine absorption characteristics of toluene, isopropyl alcohol (IPA), ethyl acetate (EA), and ternary-compounds, all of which are widely used in industrial processes, by means of four types of commercial activated carbon substances. It turned out that among the three types of volatile organic compounds, the breakthrough point of activated carbon and that of IPA, whose affinity was the lowest, were the lowest, and then that of EA and that of toluene in the order. With the breakthrough point of IPA, which was the shortest, as the standard, changes in the breakthrough points of unary-compounds, binary-compounds, and ternary-compounds were examined. As a result, it turned out that the larger the number of elements, the lower the breakthrough point. This resulted from competitive adsorption, that is, substitution of substances with a low level of affinity with those with a high level of affinity. Hence, the adsorption of toluene-IPA-EA and ternary-compounds require a design of the activated carbon bed based on the breakthrough of IPA, and in the design of activated carbon beds in actual industries as well, a substance whose level of affinity is the lowest needs to be the standard.

  6. Screening of pharmacologically active small molecule compounds identifies antifungal agents against Candida biofilms

    Directory of Open Access Journals (Sweden)

    Takao eWatamoto

    2015-12-01

    Full Text Available Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using C. albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM using an antifungal susceptibility test (AST. To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and 9 compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration.Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal

  7. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    Directory of Open Access Journals (Sweden)

    Shu-ichi Nakano

    2014-01-01

    Full Text Available Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol, small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds.

  8. Synthesis, pharmacological activity evaluation and molecular modeling of new polynuclear heterocyclic compounds containing benzimidazole derivatives.

    Science.gov (United States)

    Bassyouni, Fatma A; Saleh, Tamer S; ElHefnawi, Mahmoud M; Abd El-Moez, Sherein I; El-Senousy, Waled M; Abdel-Rehim, Mohamed E

    2012-12-01

    Novel heterocyclic compounds containing benzimidazole derivatives were synthesized from 2-(1H-benzimidazol-2-yl) acetonitrile (1) and arylhydrazononitrile derivative 2 was obtained via coupling of 1 with 4-methyl phenyldiazonium salt, which was then reacted with hydroxylamine hydrochloride to give amidooxime derivative 3. This product was cyclized into the corresponding oxadiazole derivative 4 upon reflux in acetic anhydride. Compound 4 was refluxed in DMF in the presence of triethylamine to give the corresponding 5-(1H-benzimidazol-2-yl)-2-p-tolyl-2H-1,2,3-triazol-4-amine 6. Treatment of compound 6 with ethyl chloroformate afforded 2,6-dihydro-2-(4-methylphenyl)-1,2,3-triazolo[4",5"-4',5']pyrimido[1,6-a]benzimidazole-5(4H)-one (8). 1,2-bis(2-cyanomethyl-1H-benzimidazol-1-yl)ethane-1,2-dione (10) was synthesized via the condensation reaction of 2-(1H-benzimidazol-2-yl) acetonitrile (1) and diethyloxalate. The reactivity of compound 10 towards some diamine reagents was studied. The in vitro antimicrobial activity of the synthesized compounds was investigated against several pathogenic bacterial strains such as Escherichia coli O157, Salmonella typhimurium, E. coli O119, S. paratyphi, Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes and Bacillus cereus. The results of MIC revealed that compounds 12a-c showed the most effective antimicrobial activity against tested strains. On the other hand, compounds 12a, b exhibited high activity against rotavirus Wa strain while compounds 12b, c exhibited high activity against adenovirus type 7. In silico target prediction, docking and validation of the compounds 12a-c were performed. The dialkylglycine decarboxylase bacterial enzyme was predicted as a potential bacterial target receptor using pharmacophore-based correspondence with previous leads; giving the highest normalized scores and a high correlation docking score with mean inhibition concentrations. A novel binding mechanism was predicted after docking

  9. Quinoline-Based Hybrid Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Xhamla Nqoro

    2017-12-01

    Full Text Available The application of quinoline-based compounds for the treatment of malaria infections is hampered by drug resistance. Drug resistance has led to the combination of quinolines with other classes of antimalarials resulting in enhanced therapeutic outcomes. However, the combination of antimalarials is limited by drug-drug interactions. In order to overcome the aforementioned factors, several researchers have reported hybrid compounds prepared by reacting quinoline-based compounds with other compounds via selected functionalities. This review will focus on the currently reported quinoline-based hybrid compounds and their preclinical studies.

  10. Compounds from Cynomorium songaricum with Estrogenic and Androgenic Activities Suppress the Oestrogen/Androgen-Induced BPH Process.

    Science.gov (United States)

    Wang, Xueni; Tao, Rui; Yang, Jing; Miao, Lin; Wang, Yu; Munyangaju, Jose Edouard; Wichai, Nuttapong; Wang, Hong; Zhu, Yan; Liu, Erwei; Chang, Yanxu; Gao, Xiumei

    2017-01-01

    To investigate the phytoestrogenic and phytoandrogenic activities of compounds isolated from CS and uncover the role of CS in prevention of oestrogen/androgen-induced BPH. Cells were treated with CS compounds, and immunofluorescence assay was performed to detect the nuclear translocation of ER α or AR in MCF-7 or LNCaP cells; luciferase reporter assay was performed to detect ERs or AR transcriptional activity in HeLa or AD293 cells; MTT assay was performed to detect the cell proliferation of MCF-7 or LNCaP cells. Oestrogen/androgen-induced BPH model was established in rat and the anti-BPH, anti-estrogenic, and anti-androgenic activities of CS in vivo were further investigated. The nuclear translocation of ER α was stimulated by nine CS compounds, three of which also stimulated AR translocation. The transcriptional activities of ER α and ER β were induced by five compounds, within which only ECG induced AR transcriptional activity as well. Besides, ECG stimulated the proliferation of both MCF-7 cells and LNCaP cells. CS extract suppressed oestrogen/androgen-induced BPH progress in vivo by downregulation of E2 and T level in serum and alteration of the expressions of ER α , ER β , and AR in the prostate. Our data demonstrates that compounds from CS exhibit phytoestrogenic and phytoandrogenic activities, which may contribute to inhibiting the oestrogen/androgen-induced BPH development.

  11. Inhibitory mechanism of chroman compound on LPS-induced nitric oxide production and nuclear factor-κB activation

    International Nuclear Information System (INIS)

    Kim, Byung Hak; Reddy, Alavala Matta; Lee, Kum-Ho; Chung, Eun Yong; Cho, Sung Min; Lee, Heesoon; Min, Kyung Rak; Kim, Youngsoo

    2004-01-01

    6-Hydroxy-7-methoxychroman-2-carboxylic acid phenylamide (KL-1156) is a novel chemically synthetic compound. In the present study, the chroman KL-1156 compound was found to inhibit lipopolysaccharide (LPS)-induced nitric oxide production in macrophages RAW 264.7. KL-1156 compound attenuated LPS-induced synthesis of both mRNA and protein of inducible nitric oxide synthase (iNOS), in parallel, and inhibited LPS-induced iNOS promoter activity, indicating that the chroman compound down-regulated iNOS expression at transcription level. As a mechanism of the anti-inflammatory action shown by KL-1156 compound, suppression of nuclear factor (NF)-κB has been documented. KL-1156 compound exhibited a dose-dependent inhibitory effect on LPS-induced NF-κB transcriptional activity in macrophages RAW 264.7. Furthermore, the compound inhibited LPS-induced nuclear translocation of NF-κB p65 and DNA binding activity of NF-κB complex, in parallel, but did not affect IκBα degradation. Taken together, this study demonstrated that chroman KL-1156 compound interfered with nuclear translocation step of NF-κB p65, which was attributable to its anti-inflammatory action

  12. Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  13. p53-independent structure-activity relationships of 3-ring mesogenic compounds' activity as cytotoxic effects against human non-small cell lung cancer lines.

    Science.gov (United States)

    Fukushi, Saori; Yoshino, Hironori; Yoshizawa, Atsushi; Kashiwakura, Ikuo

    2016-07-25

    We recently demonstrated the cytotoxicity of liquid crystal precursors (hereafter referred to as "mesogenic compounds") in the human non-small cell lung cancer (NSCLC) cell line A549 which carry wild-type p53. p53 mutations are observed in 50 % of NSCLC and contribute to their resistance to chemotherapy. To develop more effective and cancer-specific agents, in this study, we investigated the structure-activity relationships of mesogenic compounds with cytotoxic effects against multiple NSCLC cells. The pharmacological effects of mesogenic compounds were examined in human NSCLC cells (A549, LU99, EBC-1, and H1299) and normal WI-38 human fibroblast. Analyses of the cell cycle, cell-death induction, and capsases expression were performed. The 3-ring compounds possessing terminal alkyl and hydroxyl groups (compounds C1-C5) showed cytotoxicity in NSCLC cells regardless of the p53 status. The compounds C1 and C3, which possess a pyrimidine at the center of the core, induced G2/M arrest, while the compounds without a pyrimidine (C2, C4, and C5) caused G1 arrest; all compounds produced caspase-mediated cell death. These events occurred in a p53-independent manner. Furthermore, it was suggested that compounds induced cell death through p53-independent DNA damage-signaling pathway. Compounds C2, C4, and C5 did not show strong cytotoxicity in WI-38 cells, whereas C1 and C3 did. However, the cytotoxicity of compound C1 against WI-38 cells was improved by modulating the terminal alkyl chain lengths of the compound. We showed the p53-indepdent structure-activity relationships of mesogenic compounds related to the cytotoxic effects. These structure-activity relationships will be helpful in the development of more effective and cancer-specific agents.

  14. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study

    Science.gov (United States)

    Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad

    2018-06-01

    Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.

  15. Anti-Inflammatory Activity of Different Agave Plants and the Compound Cantalasaponin-1

    Directory of Open Access Journals (Sweden)

    Jaime Tortoriello

    2013-07-01

    Full Text Available Species of the agave genus, such as Agave tequilana, Agave angustifolia and Agave americana are used in Mexican traditional medicine to treat inflammation-associated conditions. These plants’ leaves contain saponin compounds which show anti-inflammatory properties in different models. The goal of this investigation was to evaluate the anti-inflammatory capacity of these plants, identify which is the most active, and isolate the active compound by a bio-directed fractionation using the ear edema induced in mice with 12-O-tetradecanoylphorbol-13-acetate (TPA technique. A dose of 6 mg/ear of acetone extract from the three agave species induced anti-inflammatory effects, however, the one from A. americana proved to be the most active. Different fractions of this species showed biological activity. Finally the F5 fraction at 2.0 mg/ear induced an inhibition of 85.6%. We identified one compound in this fraction as (25R-5α-spirostan-3β,6α,23α-triol-3,6-di-O-β-D-glucopyranoside (cantalasaponin-1 through 1H- and 13C-NMR spectral analysis and two dimensional experiments like DEPT NMR, COSY, HSQC and HMBC. This steroidal glycoside showed a dose dependent effect of up to 90% of ear edema inhibition at the highest dose of 1.5 mg/ear.

  16. 2-(Substituted phenyl-3,4-dihydroisoquinolin-2-iums as Novel Antifungal Lead Compounds: Biological Evaluation and Structure-Activity Relationships

    Directory of Open Access Journals (Sweden)

    Xin-Juan Yang

    2013-08-01

    Full Text Available The title compounds are a class of structurally simple analogues of quaternary benzo[c]phenanthridine alkaloids (QBAs. In order to develop novel QBA-like antifungal drugs, in this study, 24 of the title compounds with various substituents on the N-phenyl ring were evaluated for bioactivity against seven phytopathogenic fungi using the mycelial growth rate method and their SAR discussed. Almost all the compounds showed definite activities in vitro against each of the test fungi at 50 μg/mL and a broad antifungal spectrum. In most cases, the mono-halogenated compounds 2–12 exhibited excellent activities superior to the QBAs sanguinarine and chelerythrine. Compound 8 possessed the strongest activities on each of the fungi with EC50 values of 8.88–19.88 µg/mL and a significant concentration-dependent relationship. The SAR is as follows: the N-phenyl group is a high sensitive structural moiety for the activity and the characteristics and position of substituents intensively influence the activity. Generally, electron-withdrawing substituents remarkably enhance the activity while electron-donating substituents cause a decrease of the activity. In most cases, ortha- and para-halogenated isomers were more active than the corresponding m-halogenated isomers. Thus, the title compounds emerged as promising lead compounds for the development of novel biomimetic antifungal agrochemicals. Compounds 8 and 2 should have great potential as new broad spectrum antifungal agents for plant protection.

  17. Identification of a New Antibacterial Sulfur Compound from Raphanus sativus Seeds

    Directory of Open Access Journals (Sweden)

    Jeries Jadoun

    2016-01-01

    Full Text Available Raphanus sativus L. (radish, a member of Brassicaceae, is widely used in traditional medicine in various cultures for treatment of several diseases and disorders associated with microbial infections. The antibacterial activity of the different plant parts has been mainly attributed to several isothiocyanate (ITC compounds. However, the low correlation between the ITC content and antibacterial activity suggests the involvement of other unknown compounds. The objective of this study was to investigate the antibacterial potential of red radish seeds and identify the active compounds. A crude ethanol seed extract was prepared and its antibacterial activity was tested against five medically important bacteria. The ethanol extract significantly inhibited the growth of all tested strains. However, the inhibitory effect was more pronounced against Streptococcus pyogenes and Escherichia coli. Bioassay-guided fractionation of the ethanol extract followed by HPLC, 1H-NMR, 13C-NMR, 15N-NMR, and HMBC analysis revealed that the active fraction consisted of a single new compound identified as [5-methylsulfinyl-1-(4-methylsulfinyl-but-3-enyl-pent-4-enylidene]-sulfamic acid, which consisted of two identical sulfur side chains similar to those found in ITCs. The minimal inhibitory concentration values of the isolated compound were in the range of 0.5–1 mg/mL. These results further highlight the role of radish as a rich source of antibacterial compounds.

  18. Phenolic Compounds from Halimodendron halodendron (Pall. Voss and Their Antimicrobial and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Jihua Wang

    2012-09-01

    Full Text Available Halimodendron halodendron has been used as forage in northwestern China for a long time. Its young leaves and flowers are edible and favored by indigenous people. In this study, eleven phenolic compounds were bioassay-guided and isolated from the aerial parts of H. halodendron for the first time. They were identified by means of physicochemical and spectrometric analysis as quercetin (1, 3,5,7,8,4'-pentahydroxy-3'-methoxy flavone (2, 3-O-methylquercetin (3, 3,3'-di-O-methylquercetin (4, 3,3'-di-O-methylquercetin-7-O-β-D-glucopyranoside (5, isorhamentin-3-O-β-D-rutinoside (6, 8-O-methylretusin (7, 8-O-methylretusin-7-O-β-D-glucopyranoside (8, salicylic acid (9, p-hydroxybenzoic acid (ferulic acid (10, and 4-hydroxy-3-methoxy cinnamic acid (11. They were sorted as flavonols (1–6, soflavones (7 and 8, and phenolic acids (9–11. Among the compounds, flanools 1–4 revealed a strong antibacterial activity with minimum inhibitory concentration (MIC values of 50–150 μg/mL, and median inhibitory concentration (IC50 values of 26.8–125.1 μg/mL. The two isoflavones (7 and 8 showed moderate inhibitory activity on the test bacteria. Three phenolic acids (9, 10 and 11 showed strong antibacterial activity with IC50 values of 28.1–149.7 μg/mL. Antifungal activities of the compounds were similar to their antibacterial activities. All these phenolic compounds showed significant antimicrobial activity with a broad spectrum as well as antioxidant activity based on 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and β-carotene-linoleic acid bleaching assays. In general, the flavonol aglycones with relatively low polarity exhibited stronger activities than the glycosides. The results suggest the potential of this plant as a source of functional food ingredients and provide support data for its utilization as forage as well.

  19. High-Throughput Gene Expression Profiles to Define Drug Similarity and Predict Compound Activity.

    Science.gov (United States)

    De Wolf, Hans; Cougnaud, Laure; Van Hoorde, Kirsten; De Bondt, An; Wegner, Joerg K; Ceulemans, Hugo; Göhlmann, Hinrich

    2018-04-01

    By adding biological information, beyond the chemical properties and desired effect of a compound, uncharted compound areas and connections can be explored. In this study, we add transcriptional information for 31K compounds of Janssen's primary screening deck, using the HT L1000 platform and assess (a) the transcriptional connection score for generating compound similarities, (b) machine learning algorithms for generating target activity predictions, and (c) the scaffold hopping potential of the resulting hits. We demonstrate that the transcriptional connection score is best computed from the significant genes only and should be interpreted within its confidence interval for which we provide the stats. These guidelines help to reduce noise, increase reproducibility, and enable the separation of specific and promiscuous compounds. The added value of machine learning is demonstrated for the NR3C1 and HSP90 targets. Support Vector Machine models yielded balanced accuracy values ≥80% when the expression values from DDIT4 & SERPINE1 and TMEM97 & SPR were used to predict the NR3C1 and HSP90 activity, respectively. Combining both models resulted in 22 new and confirmed HSP90-independent NR3C1 inhibitors, providing two scaffolds (i.e., pyrimidine and pyrazolo-pyrimidine), which could potentially be of interest in the treatment of depression (i.e., inhibiting the glucocorticoid receptor (i.e., NR3C1), while leaving its chaperone, HSP90, unaffected). As such, the initial hit rate increased by a factor 300, as less, but more specific chemistry could be screened, based on the upfront computed activity predictions.

  20. Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North western Himalaya.

    Science.gov (United States)

    Shameem, Nowsheen; Kamili, Azra N; Ahmad, Mushtaq; Masoodi, F A; Parray, Javid A

    2017-04-01

    The antimicrobial properties of morel compounds from wild edible mushrooms (Morchella esculenta and Verpa bohemica) from Kashmir valley was investigated against different clinical pathogens. The butanol crude fraction of most popular or true morel M. esculenta showed highest 19 mm IZD against E.coli while as same fraction of Verpa bohemica exhibited 15 mm IZD against same strain. The ethyl acetate and butanol crude fractions of both morels also exhibited good antifungal activity with highest IZD shown against A. fumigates. The three morel compounds showed quite impressive anti bacterial and fungal activities. The Cpd 3 showed highest inhibitory activity almost equivalent to the synthetic antibiotics used as control. The MIC/MBC values revealed the efficiency of isolated compounds against the pathogenic strains. In the current study significant inhibitory activity of morel compounds have been obtained paying the way for their local use from ancient times. Copyright © 2017. Published by Elsevier Ltd.

  1. Anti-BACE1 and Antimicrobial Activities of Steroidal Compounds Isolated from Marine Urechis unicinctus

    Directory of Open Access Journals (Sweden)

    Yong-Zhe Zhu

    2018-03-01

    Full Text Available The human β-site amyloid cleaving enzyme (BACE1 has been considered as an effective drug target for treatment of Alzheimer’s disease (AD. In this study, Urechis unicinctus (U. unicinctus, which is a Far East specialty food known as innkeeper worm, ethanol extract was studied by bioassay-directed fractionation and isolation to examine its potential β-site amyloid cleaving enzyme inhibitory and antimicrobial activity. The following compounds were characterized: hecogenin, cholest-4-en-3-one, cholesta-4,6-dien-3-ol, and hurgadacin. These compounds were identified by their mass spectrometry, 1H, and 13C NMR spectral data, comparing those data with NIST/EPA/NIH Mass spectral database (NIST11 and published values. Hecogenin and cholest-4-en-3-one showed significant inhibitory activity against BACE1 with EC50 values of 116.3 and 390.6 µM, respectively. Cholesta-4,6-dien-3-ol and hurgadacin showed broad spectrum antimicrobial activity, particularly strongly against Escherichia coli (E. coli, Salmonella enterica (S. enterica, Pasteurella multocida (P. multocida, and Physalospora piricola (P. piricola, with minimal inhibitory concentration (MIC ranging from 0.46 to 0.94 mg/mL. This is the first report regarding those four known compounds that were isolated from U. unicinctus and their anti-BACE1 and antimicrobial activity, highlighting the fact that known natural compounds may be a critical source of new medicine leads. These findings provide scientific evidence for potential application of those bioactive compounds for the development of AD drugs and antimicrobial agents.

  2. Anti-BACE1 and Antimicrobial Activities of Steroidal Compounds Isolated from Marine Urechis unicinctus.

    Science.gov (United States)

    Zhu, Yong-Zhe; Liu, Jing-Wen; Wang, Xue; Jeong, In-Hong; Ahn, Young-Joon; Zhang, Chuan-Jie

    2018-03-14

    The human β-site amyloid cleaving enzyme (BACE1) has been considered as an effective drug target for treatment of Alzheimer's disease (AD). In this study, Urechis unicinctus (U. unicinctus) , which is a Far East specialty food known as innkeeper worm, ethanol extract was studied by bioassay-directed fractionation and isolation to examine its potential β-site amyloid cleaving enzyme inhibitory and antimicrobial activity. The following compounds were characterized: hecogenin, cholest-4- en -3-one, cholesta-4,6- dien -3-ol, and hurgadacin. These compounds were identified by their mass spectrometry, ¹H, and 13 C NMR spectral data, comparing those data with NIST/EPA/NIH Mass spectral database (NIST11) and published values. Hecogenin and cholest-4- en -3-one showed significant inhibitory activity against BACE1 with EC 50 values of 116.3 and 390.6 µM, respectively. Cholesta-4,6- dien -3-ol and hurgadacin showed broad spectrum antimicrobial activity, particularly strongly against Escherichia coli (E. coli) , Salmonella enterica (S. enterica) , Pasteurella multocida (P. multocida) , and Physalospora piricola (P. piricola) , with minimal inhibitory concentration (MIC) ranging from 0.46 to 0.94 mg/mL. This is the first report regarding those four known compounds that were isolated from U. unicinctus and their anti-BACE1 and antimicrobial activity, highlighting the fact that known natural compounds may be a critical source of new medicine leads. These findings provide scientific evidence for potential application of those bioactive compounds for the development of AD drugs and antimicrobial agents.

  3. Sapwood of Carob Tree (Ceratonia siliqua L. as a Potential Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Luísa Custódio

    2013-05-01

    Full Text Available Methanol (ME and hot water extracts (WE of carob tree sapwood (Ceratonia siliqua L. exhibited high antioxidant activity and were rich in phenolic compounds, with the main compounds identified by HPLC/DAD as gentisic acid and (--epicatechin. The ME displayed a high in vitro antitumor activity against human tumoural cell lines and reduced intracellular ROS production by HeLa cells after treatment with H 2O 2. (--Epicatechin was shown to contribute to the cytotoxic activity of the ME. This is the first report on the biological activity of carob tree sapwood.

  4. Contact-based ligand-clustering approach for the identification of active compounds in virtual screening

    Directory of Open Access Journals (Sweden)

    Mantsyzov AB

    2012-09-01

    Full Text Available Alexey B Mantsyzov,1 Guillaume Bouvier,2 Nathalie Evrard-Todeschi,1 Gildas Bertho11Université Paris Descartes, Sorbonne, Paris, France; 2Institut Pasteur, Paris, FranceAbstract: Evaluation of docking results is one of the most important problems for virtual screening and in silico drug design. Modern approaches for the identification of active compounds in a large data set of docked molecules use energy scoring functions. One of the general and most significant limitations of these methods relates to inaccurate binding energy estimation, which results in false scoring of docked compounds. Automatic analysis of poses using self-organizing maps (AuPosSOM represents an alternative approach for the evaluation of docking results based on the clustering of compounds by the similarity of their contacts with the receptor. A scoring function was developed for the identification of the active compounds in the AuPosSOM clustered dataset. In addition, the AuPosSOM efficiency for the clustering of compounds and the identification of key contacts considered as important for its activity, were also improved. Benchmark tests for several targets revealed that together with the developed scoring function, AuPosSOM represents a good alternative to the energy-based scoring functions for the evaluation of docking results.Keywords: scoring, docking, virtual screening, CAR, AuPosSOM

  5. IDENTIFICATION AND ANTIOXIDANT ACTIVITY TEST OF SOME COMPOUNDS FROM METHANOL EXTRACT PEEL OF BANANA (Musa paradisiaca Linn.

    Directory of Open Access Journals (Sweden)

    Sri Atun

    2010-06-01

    Full Text Available The objective of these research was measured activity as antioxidant some compounds in methanol extracts of peel of banana (Musa paradisiaca Linn., isolated some compounds which had activities as antioxidant, and determined this structure. Method of this study was extracted powdered peel of banana with methanol at room temperature. Extract was concentrated in vaccuo and then successively was partitioned with n-hexane, chloroform, etyl acetate, and buthanol. Antioxidant test from each fractions was measured by hydroxyl radical scavenger test with Fenton reaction method. The result of this study showed activity each fractions as  hydroxyl radical scavenger activity of chloroform, etyl acetate, and buthanol fraction were IC50 693.15; 2347.40; and 1071.14 mg/mL respectively. The isolation of secondary metabolite compounds from chloroform fraction obtained two isolate compounds. Identification by spectroscopy IR,  MS, 1H and 13C NMR one and two dimension showed that the compounds are 5,6,7,4'-tetrahidroxy-3,4-flavan-diol and a new compound cyclohexenon derivative (2-cyclohexene-1-on-2,4,4-trimethyl-3-O-2'-hydroxypropyl ether.   Keywords: antioxidant, peel of banana, Musa paradisiaca, hydroxyl radical scavenger

  6. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Science.gov (United States)

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  7. Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L.

    Science.gov (United States)

    Lee, Jong Won; Lee, Jeong Hyun; Yu, In Ho; Gorinstein, Shela; Bae, Jong Hyang; Ku, Yang Gyu

    2014-06-01

    The aim of this investigation was to find a proper harvesting period and establishing fern number, which effects the spear yield, bioactive compounds and antioxidant activities of Asparagus officinalis L. Spears were harvested at 2, 4, and 6 weeks after sprouting. Control for comparison was used without harvest. Spears and total yield increased with prolonged spear harvest period. In harvest of 6 weeks long optimum spear yield was the highest and fern numbers were 5 ~ 8. Bioactive compounds (polyphenols, flavonoids, flavanols, tannins and ascorbic acid) and the levels of antioxidant activities by ferric-reducing/antioxidant power (FRAP) and cupric reducing antioxidant capacity (CUPRAC) assays in asparagus ethanol extracts significantly differed in the investigated samples and were the highest at 6 weeks harvest period (P asparagus were studied by the interaction of polyphenol ethanol extracts with HSA, using 3D- FL. In conclusion, antioxidant status (bioactive compounds, binding and antioxidant activities) improved with the harvesting period and the first segment from spear tip. Appropriate harvesting is effective for higher asparagus yield and its bioactivity.

  8. Acquisition of compound words in Chinese-English bilingual children: Decomposition and cross-language activation

    NARCIS (Netherlands)

    Cheng, C.; Wang, M.; Perfetti, C.A.

    2011-01-01

    This study investigated compound processing and cross-language activation in a group of Chinese–English bilingual children, and they were divided into four groups based on the language proficiency levels in their two languages. A lexical decision task was designed using compound words in both

  9. New Approach for Fractioning Metal Compounds Studies in Soils

    Science.gov (United States)

    Minkina, Tatiana; Motuzova, Galina; Mandzhieva, Saglara; Bauer, Tatiana; Burachevskaya, Marina; Sushkova, Svetlana; Nevidomskaya, Dina; Kalinitchenko, Valeriy

    2016-04-01

    A combined approach for fractioning metal compounds in soils on the basis of sequential (Tessier, 1979) and parallel extractions (1 N NH4Ac, pH 8; 1% EDTA in NH4Ac; and 1N HCl) is proposed. Metal compounds in sequential and parallel extracts are grouped according to the strength of their bonds with soil components. A given group includes metal compounds with similar strengths of bonds and, hence, with similar migration capacities. The groups of firmly and loosely bound metal compounds can be distinguished. This approach has been used to assess the group composition of Zn, Cu, and Pb compounds in an ordinary chernozem and its changes upon the soil contamination with metals. Contamination of an ordinary chernozem from Rostov oblast with heavy metals caused a disturbance of the natural ratios between the metal compounds. In the natural soil, firmly bound metals predominate (88-95%of the total content), which is mainly caused by the fixation of metals in lattices of silicate minerals (56-83%of the total content). The mobility of the metals in the natural soil is low (5-12%) and is mainly related to metal compounds loosely bound with the soil carbonates. Upon the soil contamination with metals (application rates of 100-300 mg/kg), the content of all the metal compounds increases, but the ratio between them shifts towards a higher portion of the potentially mobile metal compounds (up to 30-40% of the bulk contents of the metals). Organic substances and non-silicate Fe, Al, and Mn minerals become the main carriers of the firmly and loosely bound metals. The strengths of their bonds with Cu, Pb, and Zn differ. Lead in the studied chernozems is mainly fixed in a loosely bound form with organic matter, whereas copper and zinc are fixed both by the organic matter and by the non-silicate Fe, Al, and Mn compounds. Firm fixation of the applied Cu and Pb is mainly ensured by the soil organic matter and non-silicate minerals, whereas firm fixation of Zn is mainly due to non

  10. Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks

    Science.gov (United States)

    Kunimoto, Ryo; Bajorath, Jürgen

    2017-09-01

    Patents from medicinal chemistry represent a rich source of novel compounds and activity data that appear only infrequently in the scientific literature. Moreover, patent information provides a primary focal point for drug discovery. Accordingly, text mining and image extraction approaches have become hot topics in patent analysis and repositories of patent data are being established. In this work, we have generated network representations using alternative similarity measures to systematically compare molecules from patents with other bioactive compounds, visualize similarity relationships, explore the chemical neighbourhood of patent molecules, and identify closely related compounds with different activities. The design of network representations that combine patent molecules and other bioactive compounds and view patent information in the context of current bioactive chemical space aids in the analysis of patents and further extends the use of molecular networks to explore structure-activity relationships.

  11. Design, synthesis, antiviral activity and mode of action of phenanthrene-containing N-heterocyclic compounds inspired by the phenanthroindolizidine alkaloid antofine.

    Science.gov (United States)

    Yu, Xiuling; Wei, Peng; Wang, Ziwen; Liu, Yuxiu; Wang, Lizhong; Wang, Qingmin

    2016-02-01

    The phenanthroindolizidine alkaloid antofine and its analogues have excellent antiviral activity against tobacco mosaic virus (TMV). To simplify the structure and the synthesis of the phenanthroindolizidine alkaloid, a series of phenanthrene-containing N-heterocyclic compounds (compounds 1 to 33) were designed and synthesised, based on the intermolecular interaction of antofine and TMV RNA, and systematically evaluated for their anti-TMV activity. Most of these compounds exhibited good to reasonable anti-TMV activity. The optimum compounds 5, 12 and 21 displayed higher activity than the lead compound antofine and commercial ribavirin. Compound 12 was chosen for field trials of antiviral efficacy against TMV, and was found to exhibit better activity than control plant virus inhibitors. Compounds 5 and 12 were chosen for mode of action studies. The changes in fluorescence intensity of compounds 5 and 12 on separated TMV RNA showed that these small molecules can also bind to TMV RNA, but the mode is very different from that of antofine. The compounds combining phenanthrene and an N-heterocyclic ring could maintain the anti-TMV activity of phenanthroindolizidines, but their modes of action are different from that of antofine. The present study lays a good foundation for us to find more efficient anti-plant virus reagents. © 2015 Society of Chemical Industry.

  12. A community computational challenge to predict the activity of pairs of compounds.

    Science.gov (United States)

    Bansal, Mukesh; Yang, Jichen; Karan, Charles; Menden, Michael P; Costello, James C; Tang, Hao; Xiao, Guanghua; Li, Yajuan; Allen, Jeffrey; Zhong, Rui; Chen, Beibei; Kim, Minsoo; Wang, Tao; Heiser, Laura M; Realubit, Ronald; Mattioli, Michela; Alvarez, Mariano J; Shen, Yao; Gallahan, Daniel; Singer, Dinah; Saez-Rodriguez, Julio; Xie, Yang; Stolovitzky, Gustavo; Califano, Andrea

    2014-12-01

    Recent therapeutic successes have renewed interest in drug combinations, but experimental screening approaches are costly and often identify only small numbers of synergistic combinations. The DREAM consortium launched an open challenge to foster the development of in silico methods to computationally rank 91 compound pairs, from the most synergistic to the most antagonistic, based on gene-expression profiles of human B cells treated with individual compounds at multiple time points and concentrations. Using scoring metrics based on experimental dose-response curves, we assessed 32 methods (31 community-generated approaches and SynGen), four of which performed significantly better than random guessing. We highlight similarities between the methods. Although the accuracy of predictions was not optimal, we find that computational prediction of compound-pair activity is possible, and that community challenges can be useful to advance the field of in silico compound-synergy prediction.

  13. Antiproliferative activity and interactions with cell-cycle related proteins of the organotin compound triethyltin(IV)lupinylsulfide hydrochloride.

    Science.gov (United States)

    Barbieri, F; Sparatore, F; Cagnoli, M; Bruzzo, C; Novelli, F; Alama, A

    2001-03-14

    Organotin compounds, particularly tri-organotin, have demonstrated cytotoxic properties against a number of tumor cell lines. On this basis, triethyltin(IV)lupinylsulfide hydrochloride (IST-FS 29), a quinolizidine derivative, was synthesized and developed as a potential antitumor agent. This tin-derived compound exhibited potent antiproliferative effects on three different human cancer cell lines: teratocarcinoma of the ovary (PA-1), colon carcinoma (HCT-8) and glioblastoma (A-172). Cytotoxic activity was assessed by MTT and cell count assays during time course experiments with cell recovery after compound withdrawal. Significant cell growth inhibition (up to 95% in HCT-8 after 72 h of exposure), which also persisted after drug-free medium change, was reported in all the cell lines by both assays. In addition, the cytocidal effects exerted by IST-FS 29 appeared more consistent with necrosis or delayed cell death, rather than apoptosis, as shown by morphologic observations under light microscope, DNA fragmentation analysis and flow cytometry. In the attempt to elucidate whether this compound might affect genes playing a role in G1/S phase transition, the expressions of p53, p21(WAF1), cyclin D1 and Rb, mainly involved in response to DNA-damaging stress, were analyzed by Western blot. Heterogeneous patterns of expression during exposure to IST-FS 29 were evidenced in the different cell lines suggesting that these cell-cycle-related genes are not likely the primary targets of this compound. Thus, the present data seem more indicative of a direct effect of IST-FS-29 on macromolecular synthesis and cellular homeostasis, as previously hypothesized for other organotin complexes.

  14. [Chemical characterization and quantification of fructooligosaccharides, phenolic compounds and antiradical activity of Andean roots and tubers grown in Northwest of Argentina].

    Science.gov (United States)

    Jiménez, María Eugenia; Sammán, Norma

    2014-06-01

    There is great interest in consuming foods that can provide the nutrients for a good nutrition and other health beneficial compounds. The aim of this work was to determine the chemical composition of native foods of the Andean region and to quantify some functional com-ponents. Proximal composition, vitamin C, total phenolic compounds, antiradical activity (DPPH) in peel and pulp, dietary fiber soluble and insoluble, fructooligosaccharides (FOS), total and resistant starch (in tubers and raw roots, boiled and boiled and stored) of 6 varieties of Oca (Oxalis tuberosa), 4 clones of manioc (Manihot esculenta Crantz) and yacon (Smallanthus sonchifolius were determined. The results showed greater amount of bioactive compounds and antiradical activity in the skin of these products. The highest content was found in the oca peel. In all cases, the content of insoluble fiber was greater than the soluble. The manioc had higher total starch than Andean roots and tubers. The boiling process decreased the resistant starch content of ocas and maniocs, but when these are stored for 48 h at 5 ° C, the resistant starch content increased. The FOS content of the ocas was similar for all varieties (7%). The main component of yacon carbohydrates were FOS (8.89%). The maniocs did not contain FOS. It can be concluded that the roots and tubers studied, in addition to provide nutrients, contain functional compounds that confer additional helpful value for preventing no communicable diseases.

  15. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    Directory of Open Access Journals (Sweden)

    Akram Astani

    2011-01-01

    Full Text Available Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1 in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV.

  16. On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2005-01-01

    Full Text Available The European PartEmis project (Measurement and prediction of emissions of aerosols and gaseous precursors from gas turbine engines was focussed on the characterisation and quantification of exhaust emissions from a gas turbine engine. The combustion aerosol characterisation included on-line measurements of mass and number concentration, size distribution, mixing state, thermal stability of internally mixed particles, hygroscopicity, cloud condensation nuclei (CCN activation potential, and off-line analysis of chemical composition. Based on this extensive data set, the role of sulphuric acid coating and of the organic fraction of the combustion particles for the CCN activation was investigated. Modelling of CCN activation was conducted using microphysical and chemical properties obtained from the measurements as input data. Coating the combustion particles with water-soluble sulphuric acid, increases the potential CCN activation, or lowers the activation diameter, respectively. The adaptation of a Köhler model to the experimental data yielded coatings from 0.1 to 3 vol-% of water-soluble matter, which corresponds to an increase in the fraction of CCN-activated combustion particles from ≤10−4 to ≌10−2 at a water vapour saturation ratio Sw=1.006. Additional particle coating by coagulation of combustion particles and aqueous sulphuric acid particles formed by nucleation further reduces the CCN activation diameter. In contrast, particles containing a large fraction of non-volatile organic compounds grow significantly less at high relative humidity than particles with a lower content of non-volatile OC. The resulting reduction in the potential CCN activation with an increasing fraction of non-volatile OC becomes visible as a trend in the experimental data. While a coating of water-soluble sulphuric acid increases the potential CCN activation, or lowers the activation diameter, respectively, the non-volatile organic compounds, mainly found at

  17. Antitumor activity of extract and isolated compounds from Drechslera rostrata and Eurotium tonophilum

    Directory of Open Access Journals (Sweden)

    Fatmah A.S. Alasmary

    2018-02-01

    Full Text Available Total extracts of Drechslera rostrata and Eurotium tonophilum in addition of two isolated compounds from their cultures [di-2-ethylhexyl phthalate (H1 and 1,8-Dihydroxy-3-methoxy-6-methyl-anthraquinone (H2] were tested for their antitumor activity using four human carcinoma cell lines. Antitumor activity was assessed by performing MTT assay to check the % cell viability. The % viability of HCT-116 (colon carcinoma, HeLa (cervical carcinoma, HEp-2 (larynx carcinoma and HepG-2 (hepatocellular carcinoma cells decreased after treatment with Drechslera rostrata and Eurotium tonophilum extracts, these effects were ranged from 059.0 ±  0.1 to 217.0  ±  0.3 µg/ml on all types of cancer cells. The best activity was recorded for Eurotium tonpholium extract (054.5 ± 0.3, 059.0 ± 0.5 and 059.0 ± 0.1 for HEp-2, Hela, and HepG-2 respectively. The isolated compounds (H1&H2 were found to be responsible about the activities because they recorded the lowest IC50 on tested cell lines with range of 9.5–20.3 μg/ml. Vinblastine sulphate was used as a reference standard and showed in vitro anticancer activity. This study demonstrated that all extracts and isolated compounds have antitumor activity against HCT-116, HeLa, HEp-2 and HepG-2 cells.

  18. A SAR and QSAR study of new artemisinin compounds with antimalarial activity.

    Science.gov (United States)

    Santos, Cleydson Breno R; Vieira, Josinete B; Lobato, Cleison C; Hage-Melim, Lorane I S; Souto, Raimundo N P; Lima, Clarissa S; Costa, Elizabeth V M; Brasil, Davi S B; Macêdo, Williams Jorge C; Carvalho, José Carlos T

    2013-12-30

    The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs) and molecular docking were used to investigate the interaction between ligands and the receptor (heme). Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE), the charge on the O11 oxygen atom (QO11), the torsion angle O1-O2-Fe-N2 (D2) and the maximum rate of R/Sanderson Electronegativity (RTe+). These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  19. The importance of extremophile cyanobacteria in the production of biologically active compounds

    Directory of Open Access Journals (Sweden)

    Drobac-Čik Aleksandra V.

    2007-01-01

    Full Text Available Due to their ability to endure extreme conditions, terrestrial cyanobacteria belong to a group of organisms known as "extremophiles". Research so far has shown that these organisms posses a great capacity for producing biologically active compounds (BAC. The antibacterial and antifungal activities of methanol extracts of 21 cyanobacterial strains belonging to Anabaena and Nostoc genera, previously isolated from different soil types and water resources in Serbia, were evaluated. In general, larger number of cyanobacterial strains showed antifungal activity. In contrast to Nostoc, Anabaena strains showed greater diversity of antibacterial activity (mean value of percentages of sensitive targeted bacterial strains 3% and 25.9% respectively. Larger number of targeted fungi was sensitive to cultural liquid extract (CL, while crude cell extract (CE affected more bacterial strains. According to this investigation, the higher biological activity of terrestrial strains as representatives of extremophiles may present them as significant BAC producers. This kind of investigation creates very general view of cyanobacterial possibility to produce biologically active compounds but it points out the necessity of exploring terrestrial cyanobacterial extremophiles as potentially excellent sources of these substances and reveals the most prospective strains for further investigations.

  20. Facile determination of the specific activity of carbonyl compounds reduced by tritiated borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Avigad, G [Rutgers--the State Univ., Piscataway, NJ (USA)

    1979-12-01

    Three procedures are described for microliter samples of glucose 6-phosphate or lactose as model compounds. After the reduction with (/sup 3/H)-NaBH/sub 4/ and suitable treatment, specific activity is calculated from the ratios /sup 3/H activity/total phosphorus, /sup 3/H//sup 14/C activity, or /sup 3/H activity/galactoside concentration.

  1. Antileishmanial Activity of the Hydroalcoholic Extract of Miconia langsdorffii, Isolated Compounds, and Semi-Synthetic Derivatives

    Directory of Open Access Journals (Sweden)

    Wilson R. Cunha

    2011-02-01

    Full Text Available The in vitro activity of the crude hydroalcoholic extract of the aerial parts of Miconia langsdorffii Cogn. was evaluated against the promastigote forms of L. amazonensis, the causative agent of cutaneous leishmaniasis in humans. The bioassay-guided fractionation of this extract led to identification of the triterpenes ursolic acid and oleanolic acid as the major compounds in the fraction that displayed the highest activity. Several ursolic acid semi-synthetic derivatives were prepared, to find out whether more active compounds could be obtained. Among these ursolic acid-derived substances, the C-28 methyl ester derivative exhibited the best antileishmanial activity.

  2. Identification of the functional binding pocket for compounds targeting small-conductance Ca2+-activated potassium channels

    Science.gov (United States)

    Zhang, Miao; Pascal, John M.; Schumann, Marcel; Armen, Roger S.; Zhang, Ji-fang

    2012-01-01

    Small- and intermediate-conductance Ca2+-activated potassium channels, activated by Ca2+-bound calmodulin, play an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potentials for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-EBIO class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class. PMID:22929778

  3. Exploration of the anti-enterovirus activity of a series of pleconaril/pirodavir-like compounds.

    Science.gov (United States)

    Bernard, Angela; Lacroix, Céline; Cabiddu, Maria G; Neyts, Johan; Leyssen, Pieter; Pompei, Raffaello

    2015-04-01

    The Enterovirus genus of the Picornaviridae is represented by several viral pathogens that are associated with human disease, namely Poliovirus 1, Enterovirus 71 and Rhinoviruses. Enterovirus 71 has been associated with encephalitis, while Rhinoviruses are a major cause of asthma exacerbations and chronic obstructive pulmonary disease. Based on the structure of both pleconaril and pirodavir, we previously synthesized some original compounds as potential inhibitors of Rhinovirus replication. These compounds were explored for in vitro antiviral potential on other human pathogenic Enteroviruses, namely Enterovirus 71 on rhabdo-myosarcoma cells, Coxsackievirus B3 on Vero cells, Poliovirus 1 and Echovirus 11 on BGM cells. Activity was confirmed for compound against Rhinovirus 14. Furthermore, few compounds showed a cell-protective effect on Enterovirus 71, presented a marked improvement as compared to the reference drug pleconaril for inhibitory activity on both Enterovirus 71 and Poliovirus 1. The most striking observation was the clear cell protective effect for the set of analogues in a virus-cell-based assay for Echovirus 11 with an effective concentration (EC50) as low as 0.3 µM (Selectivity index or SI = 483), and selectivity indexes greater than 857 (EC50 = 0.6 µM) and 1524 (EC50 = 0.33 µM). Some of the evaluated compounds showed potent and selective antiviral activity against several enterovirus species, such as Enterovirus 71 (EV-A), Echovirus 11 (EV-B), and Poliovirus 1 (EV-C). This could be used as a starting point for the development of other pleconaril/pirodavir-like enterovirus inhibitors with broad-spectrum activity and improved effects as compared to the reference drugs. © The Author(s) 2015.

  4. Combined electrochemical degradation and activated carbon adsorption treatments for wastewater containing mixed phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, D.; Palanivelu, K.; Balasubramanian, N. [Anna University, Madras (India). Center for Environmental Studies

    2005-01-01

    Electrochemical degradation of mixed phenolic compounds present in coal conversion wastewater was investigated in the presence of chloride as supporting electrolyte. Initially, the degradation experiments were conducted separately with 300 mg/L of individual phenolic compound in the presence of 2500 mg/L chloride using Ti/TiO{sub 2}-RuO{sub 2}-IrO{sub 2} anode at 5.4 A/dm{sup 2} current density. Comparison of the experimental results of the chemical oxygen demand (COD) removal versus charge indicated that the order of decreasing COD removal for various phenolic compounds as catechol {gt} resorcinol {gt} m-cresol {gt} o-cresol {gt} phenol {gt} p-cresol. Degradation of the mixture of phenolic compounds and high-pressure liquid chromatography (HPLC) determinations at various stages of electrolysis showed that phenolic compounds were initially converted into benzoquinone and then to lower molecular weight aliphatic compounds. The COD and the total organic carbon (TOC) removal were 83 and 58.9% after passing 32 Ah/L with energy consumption of 191.6 kWh/kg of COD removal. Experiments were also conducted to remove adsorbable organic halogens (AOX) content in the treated solution using granular activated carbon. The optimum conditions for the removal of AOX was at pH 3.0, 5 mL/min flow rate and 31.2 cm bed height. Based on the investigation, a general scheme of treatment of mixed phenolic compounds by combined electrochemical and activated carbon adsorption treatment is proposed.

  5. [The content of phenolic compounds and antioxidant activity ready to eat desserts for infants].

    Science.gov (United States)

    Filipiak-Florkiewicz, Agnieszka; Dereń, Katarzyna

    2011-01-01

    The aim of this study was to determine the content of phenolic compounds and antioxidant activity in ready-to-eat desserts for babies. The experimental material consisted of six kinds of fruit desserts taken from the market in 2008, in which the content of dry matter phenolic compounds and antioxidant activity levels on the basis of free radical quenching ability ABTS were determined. The largest share of dry matter was found in apricot mousse with apples and bananas (16.9%). The largest amounts of phenolic compounds were found in the cream with apple and wild rose (186.3 mg/100 g) and apple with forest fruits (170.7 mg/100 g). The highest antioxidant activity among the desserts was determined in cream with apple and wild rose (14.2 micromol Trolox/g) and apple mousse with peaches (12.8 micromol Trolox/g). The antioxidant capacity of the remaining examined purée was slightly lower and ranged from 11.4-11.7 micromol Trolox/g.

  6. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis).

    Science.gov (United States)

    de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon

    2011-01-12

    The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.

  7. Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Ampelopsis grossedentata Stems: Process Optimization and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Da Sun

    2011-10-01

    Full Text Available Supercritical carbon dioxide (SC-CO2 extraction of bioactive compounds including flavonoids and phenolics from Ampelopsis grossedentata stems was carried out. Extraction parameters such as pressure, temperature, dynamic time and modifier, were optimized using an orthogonal array design of L9 (34, and antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay and ferrous ion chelating (FIC assay. The best conditions obtained for SC-CO2 extraction of flavonoids was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:3, v/v, and that for phenolics extraction was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:1, v/v. Meantime, flavonoids and phenolics were found to be mainly responsible for the DPPH scavenging activity of the extracts, but not for the chelating activity on ferrous ion according to Pearson correlation analysis. Furthermore, several unreported flavonoids such as apigenin, vitexin, luteolin, etc., have been detected in the extracts from A. grossedentata stems.

  8. BIOLOGICALLY ACTIVE COMPOUNDS OF ARTEMISIA ANNUA. SESQUITERPENE LACTONES

    Directory of Open Access Journals (Sweden)

    D. A. Konovalov

    2016-01-01

    Full Text Available Artemisia annua is an herblike annual plant which has been used in Chinese folk medicine for more than 2,000 years. In 1970-s sesquiterpene lactones of artemisinin was isolated from the aboveground part of this plant. Today it is the most efficient known natural and synthetic compound for malaria treatment.The purpose of the study was the review of the information from the open sources about the study for sesquiterpene lactones of Artemisia annua referring to its pharmacological activity.Methods. The study was carried out using informational and search engines (PubMed, ScholarGoogle, library databases (eLibrary, Cyberleninca, and the results of our own researches.Results. It was established that apart from the essential oil and phenolic compounds, aboveground part of Artemisia annua, it contains a significant amount of sesquiterpene lactones. Qualitative content and quantitative composition of sesquiterpene lactones varies depending on the ecological and geographic factors, plants growing phase, cultivation technology, drying methods etc. Well-known pharmacological studies of the extracts from Artemisia annua herb with sesquiterpene lactones, as well as individual compounds of this group characterize this type of raw materials as a perspective source for more profound research.Conclusion. Our analysis of the open materials on the sesquiterpene lactones of Artemisia annua, including phytochemical and pharmacological ones, allows characterization of the Artemisia annua herb as a perspective source for new drugs working out.

  9. Antibacterial and Cytotoxic Activity of Extracts and Isolated Compounds from Myrciariaferruginea (Myrtaceae

    Directory of Open Access Journals (Sweden)

    Cinthia Costa de Lima

    2017-01-01

    Full Text Available This study evaluated for the first time the antibacterial activity, cell viability and migration ability on 3T3 murine fibroblast cells of extracts and isolated compounds [lupeol (1, hexamethylcoruleoellagic acid (2 and a mixture of 1 and betulinaldehyde (3] of Myrciaria ferruginea. In antibacterial assays extracts were susceptible only against S. aureus (MIC 500 μg/mL and S. epidermidis (MIC ranging from 7.8 to 500 μg/mL and compounds 1-3have shown no significant activity. In trials for c ell viability, with exception of MeOH-H 2O fraction from leaves (viable cells > 90%, both the crude extract and other fractions showed inhibition of cell growth (viable cells ≤ 80% at 15.625 and 31.25 μg/mL; while the samples from stems, with the exception of CHCl 3 fraction that showed strong cytotoxic effect at the lowest concentration tested (15.625 μg/mL, the other fractions were not cytotoxic. Compounds (1-3 inhibited cell viability in dose dependent manner (15.625 to 500 μg/mL. Mixture containing 1 and 3 showed inhibitions only in concentrations greater than 62.5 μg/mL while compound 2 decreased from the lowest concentration tested. In scratch wound assay, these compoundsnot increased the population of fibroblasts at concentrations less than 62.5 μg/mL.

  10. Antimicrobial activities of some Thai traditional medical longevity formulations from plants and antibacterial compounds from Ficus foveolata.

    Science.gov (United States)

    Meerungrueang, W; Panichayupakaranant, P

    2014-09-01

    Medicinal plants involved in traditional Thai longevity formulations are potential sources of antimicrobial compounds. To evaluate the antimicrobial activities of some extracts from medicinal plants used in traditional Thai longevity formulations against some oral pathogens, including Streptococcus pyogenes, Streptococcus mitis, Streptococcus mutans, and Candida albicans. An extract that possessed the strongest antimicrobial activity was fractionated to isolate and identify the active compounds. Methanol and ethyl acetate extracts of 25 medicinal plants used as Thai longevity formulations were evaluated for their antimicrobial activity using disc diffusion (5 mg/disc) and broth microdilution (1.2-2500 µg/mL) methods. The ethyl acetate extract of Ficus foveolata Wall. (Moraceae) stems that exhibited the strongest antibacterial activity was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract of F. foveolata showed the strongest antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 19.5-39.0 and 39.0-156.2 µg/mL, respectively. On the basis of an antibacterial assay-guided isolation, seven antibacterial compounds, including 2,6-dimethoxy-1,4-benzoquinone (1), syringaldehyde (2), sinapaldehyde (3), coniferaldehyde (4), 3β-hydroxystigmast-5-en-7-one (5), umbelliferone (6), and scopoletin (7), were purified. Among these isolated compounds, 2,6-dimethoxy-1,4-benzoquinone (1) exhibited the strongest antibacterial activities against S. pyogenes, S. mitis, and S. mutans with MIC values of 7.8, 7.8, and 15.6 µg/mL, and MBC values of 7.8, 7.8, and 31.2 µg/mL, respectively. In addition, this is the first report of these antibacterial compounds in the stems of F. foveolata.

  11. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria.

    Science.gov (United States)

    Le Lay, Céline; Coton, Emmanuel; Le Blay, Gwenaëlle; Chobert, Jean-Marc; Haertlé, Thomas; Choiset, Yvan; Van Long, Nicolas Nguyen; Meslet-Cladière, Laurence; Mounier, Jérôme

    2016-12-19

    Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. New Gold(I) Organometallic Compounds with Biological Activity in Cancer Cells

    NARCIS (Netherlands)

    Bertrand, Benoit; de Almeida, Andreia; van der Burgt, Evelien P. M.; Picquet, Michel; Citta, Anna; Folda, Alessandra; Rigobello, Maria Pia; Le Gendre, Pierre; Bodio, Ewen; Casini, Angela

    N-Heterocyclic carbene gold(I) complexes bearing a fluorescent coumarin ligand were synthesized and characterized by various techniques. The compounds were examined for their antiproliferative effects in normal and tumor cells in vitro; they demonstrated moderate activity and a certain degree of

  13. Influence of activated carbon preloading by EfOM fractions from treated wastewater on adsorption of pharmaceutically active compounds.

    Science.gov (United States)

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2016-05-01

    In this study, the preloading effects of different fractions of wastewater effluent organic matter (EfOM) on the adsorption of trace-level pharmaceutically active compounds (PhACs) onto granular activated carbon (GAC) were investigated. A nanofiltration (NF) membrane was employed to separate the EfOM by size, and two GACs with distinct pore structures were chosen for comparison. The results showed that preloading with EfOM substantially decreased PhAC uptake of the GACs; however, comparable PhAC adsorption capacities were achieved on GACs preloaded by feed EfOM and the NF-permeating EfOM. This indicates that: (1) the NF-rejected, larger EfOM molecules with an expectation to block the PhAC adsorption pores exerted little impact on the adsorbability of PhACs; (2) the smaller EfOM molecules present in the NF permeate contributed mainly to the decrease in PhAC uptake, mostly due to site competition. Of the two examined GACs, the wide pore-size-distributed GAC was found to be more susceptible to EfOM preloading than the microporous GAC. Furthermore, among the fourteen investigated PhACs, the negatively charged hydrophilic PhACs were generally subjected to a greater EfOM preloading impact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: A novel nanomaterial with antibacterial activity.

    Science.gov (United States)

    Kuntzler, Suelen Goettems; Almeida, Ana Claudia Araujo de; Costa, Jorge Alberto Vieira; Morais, Michele Greque de

    2018-07-01

    Polymer nanofibers produced by electrospinning are promising for use in food packaging because of their nanometric diameter, which provides a barrier to external conditions above the possible incorporation of the active compounds. The microalga Spirulina sp. LEB 18 synthesizes bioproducts, such as polyhydroxybutyrate (PHB), which is biodegradable and has similar mechanical and thermal properties to polymers of petrochemical origin. Moreover, phenolic compounds of microalgae have antibacterial, antifungal, and antioxidant activities, which is a differential for the development of packaging. The objective of the study was to develop a nanomaterial with antibacterial action from bioproducts of microalgal origin. PHB nanofibers containing phenolic compounds presented average diameter of 810±85nm exhibited hydrophobicity, which gave protection to the food relative to the moisture outside the package. These nanofibers showed inhibition of the growth of Staphylococcus aureus ATCC 25923 with a zone of 7.5±0.4mm. Thermal and mechanical properties have confirmed the potential applicability of this material as food packaging. This new nanomaterial combines a packaging function to protect products and to be biodegradable with the antibacterial activity that prevents the proliferation of microorganisms and ensures the quality and preservation of food. Published by Elsevier B.V.

  15. Cerebroside D, a glycoceramide compound, improves experimental colitis in mice with multiple targets against activated T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xue-Feng; Wu, Xing-Xin; Guo, Wen-Jie; Luo, Qiong [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Gu, Yan-Hong [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Shen, Yan; Tan, Ren-Xiang [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Sun, Yang, E-mail: yangsun@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China)

    2012-09-15

    In the present paper, we aimed to examine the novel effects of cerebroside D, a glycoceramide compound, on murine experimental colitis. Cerebroside D significantly reduced the weight loss, mortality rate and alleviated the macroscopic and microscopic appearances of colitis induced by dexran sulfate sodium. This compound also decreased the levels of TNF-α, IFN-γ and IL-1β in intestinal tissue of mice with experimental colitis in a concentration-dependent manner, accompanied with markedly increased serum level of IL-10. Cerebroside D inhibited proliferation and induced apoptosis of T cells activated by concanavalin A or anti-CD3 plus anti-CD28 antibodies. The compound did not show an effect on naive lymphocytes but prevented cells from entering S phase and G2/M phase during T cells activation. Moreover, the treatment of cerebroside D led to apoptosis of activated T cells with the cleavage of caspase 3, 9, 12 and PARP. These results showed multiple effects of cerebroside D against activated T cells for a novel approach to treatment of colonic inflammation. Highlights: ► Cerebroside D, a glycoceramide compound, alleviated DSS induced colitis. ► The mechanism of the compound involved multiple effects against activated T cells. ► It regulated cytokine profiles in mice with experimental colitis. ► It prevented T cells from entering S and G2/M phases during activation. ► It led to apoptosis of activated T cells with the cleavage of caspases and PARP.

  16. Cerebroside D, a glycoceramide compound, improves experimental colitis in mice with multiple targets against activated T lymphocytes

    International Nuclear Information System (INIS)

    Wu, Xue-Feng; Wu, Xing-Xin; Guo, Wen-Jie; Luo, Qiong; Gu, Yan-Hong; Shen, Yan; Tan, Ren-Xiang; Sun, Yang; Xu, Qiang

    2012-01-01

    In the present paper, we aimed to examine the novel effects of cerebroside D, a glycoceramide compound, on murine experimental colitis. Cerebroside D significantly reduced the weight loss, mortality rate and alleviated the macroscopic and microscopic appearances of colitis induced by dexran sulfate sodium. This compound also decreased the levels of TNF-α, IFN-γ and IL-1β in intestinal tissue of mice with experimental colitis in a concentration-dependent manner, accompanied with markedly increased serum level of IL-10. Cerebroside D inhibited proliferation and induced apoptosis of T cells activated by concanavalin A or anti-CD3 plus anti-CD28 antibodies. The compound did not show an effect on naive lymphocytes but prevented cells from entering S phase and G2/M phase during T cells activation. Moreover, the treatment of cerebroside D led to apoptosis of activated T cells with the cleavage of caspase 3, 9, 12 and PARP. These results showed multiple effects of cerebroside D against activated T cells for a novel approach to treatment of colonic inflammation. Highlights: ► Cerebroside D, a glycoceramide compound, alleviated DSS induced colitis. ► The mechanism of the compound involved multiple effects against activated T cells. ► It regulated cytokine profiles in mice with experimental colitis. ► It prevented T cells from entering S and G2/M phases during activation. ► It led to apoptosis of activated T cells with the cleavage of caspases and PARP.

  17. A screening method for cardiovascular active compounds in marine algae.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Kustrin, E; Angove, M J; Morton, D W

    2018-05-18

    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria.

    Science.gov (United States)

    Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P

    2009-07-01

    To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.

  19. A herbicide structure-activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana.

    Science.gov (United States)

    Corral, Maxime G; Leroux, Julie; Tresch, Stefan; Newton, Trevor; Stubbs, Keith A; Mylne, Joshua S

    2018-07-01

    To fight herbicide-resistant weeds, new herbicides are needed; particularly ones with new modes of action. Building on the revelation that many antimalarial drugs are herbicidal, here we focus on the Medicines for Malaria Venture antimalarial lead compound MMV007978 that has herbicidal activity against the model plant Arabidopsis thaliana. Twenty-two variations of the lead compound thiophenyl motif revealed that change was tolerated provided ring size and charge were retained. MMV007978 was active against select monocot and dicot weeds, and physiological profiling indicated that its mode of action is related to germination and cell division. Of interest is the fact that the compound has a profile that is currently not found among known herbicides. We demonstrate that the antimalarial compound MMV007978 is also herbicidal and that exploiting lead compounds that are often understudied could lead to the identification of interesting herbicidal scaffolds. Further structural investigation of MMV007978 could provide improved herbicidal chemistries with a potential new mode of action. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. The main results of the USSR neutron data activities in 1986-1987

    International Nuclear Information System (INIS)

    Manokhin, V.N.

    1988-01-01

    The report gives a review of the main results of neutron data activities in USSR and the activity of Nuclear Data Center in 1986-1987, namely concerning the experimental neutron data, the evaluated neutron data and the theoretical work

  1. Bioassay Guided Isolation of Active Compounds from Alchemilla barbatiflora Juz.

    Directory of Open Access Journals (Sweden)

    Gülin Renda

    2018-01-01

    Full Text Available The aerial parts of Alchemilla L. species (Rosaceae are used internally as diuretic, laxative, tonic and externally for wound healing in Turkish folk medicine. Antioxidant effects of the extracts, fractions and isolated compounds from the aerial parts of A. barbatiflora Juz. were investigated with following methods: 1,1-diphenyl-2-picryl-hydrazyl (DPPH, and superoxide radical scavenging (SOD, phosphomolibdenum-reducing antioxidant power (PRAP, ferric-reducing antioxidant power (FRAP assays. In addition, tyrosinase, α-glucosidase and acetylcholinesterase inhibition activities of samples were analyzed. The methanol extract from the aerial parts of plant was consecutively fractionated into four subextracts; n-hexane, chloroform, and remaining water extracts. Further studies were carried out on the most active water subextract and the fractions obtained from water subextract with column chromatography. Phytochemical studies on active fractions of the water subextract led to the isolation of seven metabolites including catechin (1 and a catechin dimer; procyanidin B3 (2, a flavonol glucuronide; quercetin-3-O- β-D-glucuronic acid (miquelianin (3 with flavonoid glycosides; quercetin-3-O- β-D-galactoside (hyperoside (4, quercetin-3-O- β-D-arabinoside (guaiaverin (5, kaempferol-3-O-β-D-xylopyranoside (6 and kaempferol-3-O -(6″-coumaroyl-β-D-glycoside (tiliroside (7. Their structures were elucidated by spectral techniques (1D and 2D NMR. The experimental data verified that procyanidin B3 displayed remarkable enzyme inhibitory activity among the whole isolated compounds.

  2. Superior bactericidal activity of N-bromine compounds compared to their N-chlorine analogues can be reversed under protein load.

    Science.gov (United States)

    Gottardi, W; Klotz, S; Nagl, M

    2014-06-01

    To investigate and compare the bactericidal activity (BA) of active bromine and chlorine compounds in the absence and presence of protein load. Quantitative killing tests against Escherichia coli and Staphylococcus aureus were performed both in the absence and in the presence of peptone with pairs of isosteric active chlorine and bromine compounds: hypochlorous and hypobromous acid (HOCl and HOBr), dichloro- and dibromoisocyanuric acid, chlorantine and bromantine (1,3-dibromo- and 1,3 dichloro-5,5-dimethylhydantoine), chloramine T and bromamine T (N-chloro- and N-bromo-4-methylbenzenesulphonamide sodium), and N-chloro- and N-bromotaurine sodium. To classify the bactericidal activities on a quantitative basis, an empirical coefficient named specific bactericidal activity (SBA), founded on the parameters of killing curves, was defined: SBA= mean log reductions/(mean exposure times x concentration) [mmol 1(-1) min (-1)]. In the absence of peptone, tests with washed micro-organisms revealed a throughout higher BA of bromine compounds with only slight differences between single substances. This was in contrast to chlorine compounds, whose killing times differed by a factor of more than four decimal powers. As a consequence, also the isosteric pairs showed according differences. In the presence of peptone, however, bromine compounds showed an increased loss of BA, which partly caused a reversal of efficacy within isosteric pairs. In medical practice, weakly oxidizing active chlorine compounds like chloramines have the highest potential as topical anti-infectives in the presence of proteinaceous material (mucous membranes, open wounds). Active bromine compounds, on the other hand, have their chance at insensitive body regions with low organic matter, for example skin surfaces. The expected protein load is one of the most important parameters for selection of a suited active halogen compound. © 2014 The Society for Applied Microbiology.

  3. Influence of Technological Processes on Biologically Active Compounds of Produced Grapes Juices

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Balík, J.; Strohalm, J.; Novotná, P.; Vrchotová, Naděžda; Lefnerová, D.; Landfeld, A.; Híc, P.; Tománková, E.; Veverka, J.; Houška, M.

    2016-01-01

    Roč. 9, č. 3 (2016), s. 421-429 ISSN 1935-5130 R&D Projects: GA MŠk(CZ) LO1415; GA MZe QJ1210258; GA MZe QI91B094 Institutional support: RVO:67179843 Keywords : Grapevine juices * Thermomaceration * Biologically active compounds * Antioxidative capacity * Total polyphenols * Antimutagenic activity Subject RIV: GM - Food Processing Impact factor: 2.576, year: 2016

  4. Activity-Guided Isolation of Antioxidant Compounds from Rhizophora apiculata

    Directory of Open Access Journals (Sweden)

    Hongbin Xiao

    2012-09-01

    Full Text Available Rhizophora apiculata (R. apiculata contains an abundance of biologically active compounds due its special salt-tolerant living surroundings. In this study, the total phenolic content and antioxidant activities of various extract and fractions of stem of R. apiculata were investigated. Results indicated that butanol fraction possesses the highest total phenolic content (181.84 mg/g GAE/g dry extract with strongest antioxidant abilities. Following in vitro antioxidant activity-guided phytochemical separation procedures, lyoniresinol-3α-O-β-arabinopyranoside (1, lyoniresinol-3α-O-β-rhamnoside (2, and afzelechin-3-O-L-rhamno-pyranoside (3 were separated from the butanol fraction. These compounds showed more noticeable antioxidant activity than a BHT standard in the DPPH, ABTS and hydroxyl radical scavenging assays. HPLC analysis results showed that among different plant parts, the highest content of 13 was located in the bark (0.068%, 0.066% and 0.011%, respectively. The results imply that the R. apiculata might be a potential source of natural antioxidants and 13 are antioxidant ingredients in R. apiculata.

  5. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  6. Synthesis, crystal structure and biological activity of a novel 1,2,3-thidiazole compound

    International Nuclear Information System (INIS)

    Ke, W.

    2013-01-01

    A new 1,2,3-thiadiazole compound was synthesized and characterized by 1H NMR, MS and HRMS. The crystal structure of the title compound (C/sub 12/H/sub 11/ClN/sub 2/O/sub 4/S/sub 2/, Mr = 346.80) has been determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group P-1 with a = 8.4425(17) A, b = 8.9801(18) A, c = 9.859(2) A, alpha = 84.36(3) degree, beta = 86.71(3)degree, lambda = 83.25(3) degree, V = 737.9(3)A3, Z 2, F(000) = 356, Dc = 1.561 g/cm/sup 3/, mu = 0.557 mm-1, the final R1 0.0380 and wR2 = 0.0982 for 2160 observed reflections with I > 2sigma(I). A total of 12585 reflections were collected, of which 2601 were independent (Rint 0.0364). The herbicidal activity of title compound was determined, the results showed the title compound displayed excellent herbicidal activity against Brassica campestris. (author)

  7. Antileishmanial, antimalarial and antimicrobial activities of the extract and isolated compounds from Austroplenckia populnea (Celastraceae).

    Science.gov (United States)

    Andrade, Sérgio F; da Silva Filho, Ademar A; de O Resende, Dimas; Silva, Márcio L A; Cunha, Wilson R; Nanayakkara, N P Dhammika; Bastos, Jairo Kenupp

    2008-01-01

    Austroplenckia populnea (Celastraceae), known as "marmelinho do campo", is used in Brazilian folk medicine as antimicrobial, anti-inflammatory, and antitumoural agent. The aim of the present work was to evaluate the antimicrobial, antileishmanial and antimalarial activities of the crude hydroalcoholic extract of A. populnea (CHE) and some of its isolated compounds. The phytochemical study of the CHE was carried out affording the isolation of methyl populnoate (1), populnoic acid (2), and stigmast-5-en-3-O-beta-(D-glucopyranoside) (3). This is the first time that the presence of compound 3 in A. populnea is reported. The results showed that the CHE presents antifungal and antibacterial activities, especially against Candida glabrata and Candida albicans, for which the CHE showed IC50 values of 0.7 microg mL(-1) and 5.5 microg mL(-1), respectively, while amphotericin B showed an IC50 value of 0.1 microg mL(-1) against both microorganisms. Compounds 1-3 were inactive against all tested microorganisms. In the antileishmanial activity test against Leishmania donovani, the CHE showed an IC50 value of 52 microg mL(-1), while compounds 2 and 3 displayed an IC50 value of 18 microg mL(-1) In the antimalarial assay against Plasmodium falciparum (D6 and W2 clones), it was observed that all evaluated samples were inactive. In order to compare the effect on the parasites with the toxicity to mammalian cells, the cytotoxicity activity of the isolated compounds was evaluated against Vero cells, showing that all evaluated samples exhibited no cytotoxicity at the maximum dose tested.

  8. A SAR and QSAR Study of New Artemisinin Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Cleydson Breno R. Santos

    2013-12-01

    Full Text Available The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs and molecular docking were used to investigate the interaction between ligands and the receptor (heme. Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE, the charge on the O11 oxygen atom (QO11, the torsion angle O1-O2-Fe-N2 (D2 and the maximum rate of R/Sanderson Electronegativity (RTe+. These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  9. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    Science.gov (United States)

    Mikaili, Peyman; Maadirad, Surush; Moloudizargari, Milad; Aghajanshakeri, Shahin; Sarahroodi, Shadi

    2013-01-01

    Objective(s): Garlic (Allium sativum L. family Liliaceae) is well known in Iran and its leaves, flowers, and cloves have been used in traditional medicine for a long time. Research in recent decades has shown widespread pharmacological effects of A. sativum and its organosulfur compounds especially Allicin. Studies carried out on the chemical composition of the plant show that the most important constituents of this plant are organosulfur compounds such as allicin, diallyl disulphide, S-allylcysteine, and diallyl trisulfide. Allicin represents one of the most studied among these naturally occurring compounds. In addition to A. sativum, these compounds are also present in A. hirtifolium (shallot) and have been used to treat various diseases. This article reviews the pharmacological effects and traditional uses of A. sativum, A. hirtifolium, and their active constituents to show whether or not they can be further used as potential natural sources for the development of novel drugs. Materials and Methods: For this purpose, the authors went through a vast number of sources and articles and all needed data was gathered. The findings were reviewed and classified on the basis of relevance to the topic and a summary of all effects were reported as tables. Conclusion: Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents. PMID:24379960

  10. Punica granatum peel extracts: HPLC fractionation and LC MS analysis to quest compounds having activity against multidrug resistant bacteria.

    Science.gov (United States)

    Khan, Ilyas; Rahman, Hazir; Abd El-Salam, Nasser M; Tawab, Abdul; Hussain, Anwar; Khan, Taj Ali; Khan, Usman Ali; Qasim, Muhammad; Adnan, Muhammad; Azizullah, Azizullah; Murad, Waheed; Jalal, Abdullah; Muhammad, Noor; Ullah, Riaz

    2017-05-03

    Medicinal plants are rich source of traditional herbal medicine around the globe. Most of the plant's therapeutic properties are due to the presence of secondary bioactive compounds. The present study analyzed the High Pressure Liquid Chromatography (HPLC) fractions of Puncia granatum (peel) extracts (aqueous, chloroform, ethanol and hexane) against multidrug resistant bacterial pathogens (Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus). All the fractions having antibacterial activity was processed for bioactive compounds identification using LC MS/MS analysis. Among total HPLC fractions (n = 30), 4 HPLC fractions of P. granatum (peel) showed potential activity against MDR pathogens. Fraction 1 (F1) and fraction 4 (F4) collected from aqueous extract showed maximum activity against P. aeruginosa. Fraction 2 (F2) of hexane showed antibacterial activity against three pathogens, while ethanol F4 exhibited antibacterial activity against A. baumannii. The active fractions were processed for LC MS/MS analysis to identify bioactive compounds. Valoneic acid dilactone (aqueous F1 and F4), Hexoside (ethanol F4) and Coumaric acid (hexane F2) were identified as bioactive compounds in HPLC fractions. Puncia granatum peel extracts HPLC fractions exhibited potential inhibitory activity against MDR bacterial human pathogens. Several bioactive compounds were identified from the HPLC fractions. Further characterization of these compounds may be helpful to conclude it as therapeutic lead molecules against MDR pathogens.

  11. Characterization of key aroma-active compounds in lychee (Litchi chinensis Sonn.).

    Science.gov (United States)

    Feng, Shi; Huang, Mingyang; Crane, Jonathan Henry; Wang, Yu

    2018-04-01

    Volatile compounds in 'Sweetheart' lychee were examined using gas chromatography-olfactometry/mass spectrometry (GC-O/MS). Solvent assisted flavor evaporation (SAFE) technique was used to identify the aroma-active compounds in lychee. Further characterization of the most important odorants in 'Sweetheart' lychee was achieved using aroma extract dilution analysis (AEDA). Thirty-one key aroma-active odorants were identified in the flavor dilution (FD) factor range of 2-1024. Methional (cooked potato) and geraniol (sweet, floral) exhibited the highest FD factors of 1024 and 512, respectively, these were followed by furaneol (sweet, caramel), nerol (floral, sweet), dimethyl trisulfide (DMTS) (preserved vegetable, sulfury), linalool (floral), (E,Z)-2,6 nonadienal (cucumber) and nerolidol (metalic, sesame oil). Furthermore, the flavor profile of 'Sweetheart' lychee was described by sensory analysis. Floral, tropical fruit, peach/apricot and honey were scored with relatively high scores for each aroma attribute. The sweetness rating was the highest score among all the attributes. Copyright © 2017. Published by Elsevier B.V.

  12. Evaluation of Antibacterial Activity and Total Phenol Compounds of Punica granatum Hydro-Alcoholic Extract

    Directory of Open Access Journals (Sweden)

    Elahe Ahmadi

    2016-12-01

    Full Text Available Background & Objectives: Punica granatum is a non-productive form of a plant and is used for the treatment of diseases in traditional medicine. In this study, we evaluate the antibacterial activity and the total phenol compounds of Punica granatum. Materials & Methods: Disk and well diffusion methods and MIC were used to evaluate the antibacterial activity of hydro-alcoholic extract on S. aureus and E. coli compared to standard commercial antibiotic disks. Measurement of phenol compounds were performed by Seevers and Daly colorimetric methods (Folin-ciocalteu indicator. Results: 35 and 29 mm inhibition zones in S. aureus and 22 and 17 mm inhibition zones in E. coli were shown by disk and well diffusion method, respectively. Also, 7.8 mg/ml concentration of extract showed the MIC points for two bacteria. Phenol compound of extract was 233.15±5.1 mg/g of extraction. Conclusion: Antibacterial effect of Punica granatum compared to antibiotics indicates the strong activity against examined bacteria. Extensive antibacterial study of Punica granatum is suggested.

  13. Main flavonoids, DPPH activity, and metal content allow determination of the geographical origin of propolis from the Province of San Juan (Argentina).

    Science.gov (United States)

    Lima, Beatriz; Tapia, Alejandro; Luna, Lorena; Fabani, María P; Schmeda-Hirschmann, Guillermo; Podio, Natalia S; Wunderlin, Daniel A; Feresin, Gabriela E

    2009-04-08

    The chemical characterization as well as the assessment of geographical origin of propolis from several areas of the Provincia de San Juan (Argentina) is reported. Chemical characterization of propolis was performed by measuring total phenolic (TP), total flavonoids (FL), free radical scavenging capacity (DPPH bleaching), and metal content in samples of six different districts. Methanolic propolis extracts (MEP) showed TP ranging from 25.7 to 39.3 g of gallic acid equivalents per 100 g of MEP, whereas flavonoids ranged from 6.6 to 13.3 g of quercetin equivalents per 100 g of MEP. Six main flavonoids were isolated and identified from the propolis samples, comprising the flavanones 7-hydroxy-8-methoxyflavanone (1), pinocembrin (2), and pinobanksin (3), the flavones chrysin (4) and tectochrysin (5), and the flavonol galangin (6). Compounds 1-6 were quantified by HPLC-PDA. Free radical scavenging activity, measured as percent DPPH bleaching, ranged from 46.6 to 89.5 at 10 mug/mL. Moreover, propolis samples presented high contents of Ca, K, Fe, Na, and Mg, but low amounts of Mn and Zn. Linear discriminant analysis affords eight descriptors, galangin, pinocembrin, pinobanksin, chrysin, tectochrysin, DPPH, K, and Na, allowing a clear distinction with 100% accuracy among different origins within the Provincia de San Juan. A direct relationship of DPPH free radical scavenging activity with TP or with compounds 1-6 was not found, showing the need of further evaluation on the origin of free radical activity in propolis samples.

  14. Volatile compounds of Lamiaceae exhibit a synergistic antibacterial activity with streptomycin

    Directory of Open Access Journals (Sweden)

    Sthéfane G. Araújo

    2014-12-01

    Full Text Available Bacterial infections cause thousands of deaths in the world every year. In most cases, infections are more serious because the patient is already weakened, and often, the bacteria are already resistant to the antibiotics used. Counterparting this negative scenario, the interest in medicinal plants as an alternative to the synthetic antimicrobial drugs is blossoming worldwide. In the present work, we identified the volatile compounds of ethanol extracts of Melissa officinalis, Mentha sp., Ocimum basilicum, Plectranthus barbatus, and Rosmarinus officinalis by gas chromatography/mass spectrometry (GC/MS. Also was evaluated antimicrobial activity of ethanol extracts against 6 bacteria of clinical interest, and was tested the interaction of these extracts with a commercial antibiotic streptomycin. Phytol was a compound identified in all extracts by GC/MS, being majoritary component in Plectranthus barbatus and Rosmarinus officinalis. The Gram-positive bacteria were more sensitive to ethanol extracts, and Plectranthus barbatus and Rosmarinus officinalis were the most active extracts. Ethanol extracts exhibited a synergetic effect with streptomycin. These results encourage additional studies, in order to evaluate the possibilities of using ethanol extracts of Lamiaceae family as natural source for antibacterial activity.

  15. Phenolic compounds and antioxidant activity in red fruits produced in organic farming

    Directory of Open Access Journals (Sweden)

    Susana M. A. Soutinho

    2014-01-01

    Full Text Available In this work were studied three red fruits (raspberry, gooseberry and blueberry produced in organic mode, to evaluate the variations in the content of phenolic compounds and antioxidant capacity along maturation. The phenols were extracted from the fruits with two solvents (methanol and acetone and were quantified by the Folin-Ciocalteu method. The antioxidant activity was determined with two methods (HPPH and ABTS. Furthermore, HPLC was used to identify and quantify some phenolic compounds present in the fruits analyzed. The results showed that the total phenolic compounds in all fruits decreased along maturation, either in the methanol or acetone extracts (23 % and 20 % reduction, on average, for methanol and acetone extracts, respectively, although in methanol extracts the levels of phenolic compounds were always higher (0.54 and 0.21 mg GAE/g. The blueberry showed higher level of total phenolics in methanol extract (average 0.67 mg GAE/g, while in the acetone extract it was gooseberry (average 0.31 mg GAE/g. At the end of maturation, all fruits studied had similar values of antioxidant capacity as determined by DPPH method (0.52 mmol Trolox/g. For the ABTS method, blueberries showed higher values of antioxidant activity (6.01 mmol Trolox/g against 3.01 and 2.66 mmol Trolox/g, for raspberry and gooseberry, respectively. Furthermore, the HPLC analysis allowed to identify monomeric anthocyanins and phenolic acids in the three fruits studied.

  16. A network-based multi-target computational estimation scheme for anticoagulant activities of compounds.

    Directory of Open Access Journals (Sweden)

    Qian Li

    Full Text Available BACKGROUND: Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. METHODOLOGY: We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671 between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. CONCLUSIONS: This article proposes a network-based multi-target computational estimation

  17. A network-based multi-target computational estimation scheme for anticoagulant activities of compounds.

    Science.gov (United States)

    Li, Qian; Li, Xudong; Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-03-22

    Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by

  18. Sexual Differences in Chemical Composition and Aroma-active Compounds of Essential Oil from Flower Buds of Eurya japonica.

    Science.gov (United States)

    Miyazawa, Mitsuo; Usami, Atsushi; Tanaka, Takio; Tsuji, Kaoru; Takehara, Manami; Hori, Yuki

    2016-01-01

    This study was conducted to determine the composition of essential oil from buds of male and female Eurya japonica flowers and to determine the aroma-active compounds of this plant by gas chromatography-mass spectrometry (GC-MS), sensory evaluation, and odor activity values (OAV). The oils contained eighty-five compounds. We identified for the first time forty-four compounds in E. japonica. Through sensory evaluation, nineteen aroma-active compounds were identified by gas chromatography-olfactometry (GC-O). Because the chemical composition can affect the interaction between plants and herbivorous insects, our results suggest that essential oils from male and female flower buds of E. japonica differently affect herbivores. Sexual differences in essential oils deserve further investigations in this plant-insect system.

  19. DNA-damaging activity of a cinnamate derivative and further compounds from Cinnamomum australe (Lauraceae)

    International Nuclear Information System (INIS)

    Carbonezi, Carlos Alberto; Lopes, Marcia Nasser; Silva, Dulce Helena Siqueira; Araujo, Angela Regina; Bolzani, Vanderlan da Silva; Young, Maria Claudia Marx; Silva, Marcelo Rogerio da

    2004-01-01

    The bioactive compound trans-3'-methylsulphonylallyl trans-cinnamate (1) along with the inactive iryelliptin (2) and (7R,8S,1'S)-Δ 8' -3',5'-dimethoxy-1',4'-dihydro-4'-oxo-7.0.2',8.1'-neolignan (3) were isolated from the leaves of Cinnamomum australe. The structures of these compounds were assigned by analysis of 1D and 2D NMR data and comparison with data registered in the literature for these compounds. The DNA-damaging activity of 1 is being described for the first time. (author)

  20. Cationic compounds with activity against multidrug-resistant bacteria: interest of a new compound compared with two older antiseptics, hexamidine and chlorhexidine.

    Science.gov (United States)

    Grare, M; Dibama, H Massimba; Lafosse, S; Ribon, A; Mourer, M; Regnouf-de-Vains, J-B; Finance, C; Duval, R E

    2010-05-01

    Use of antiseptics and disinfectants is essential in infection control practices in hospital and other healthcare settings. In this study, the in vitro activity of a new promising compound, para-guanidinoethylcalix[4]arene (Cx1), has been evaluated in comparison with hexamidine (HX) and chlorhexidine (CHX), two older cationic antiseptics. The MICs for 69 clinical isolates comprising methicillin-resistant Staphylococcus aureus, methicillin-sensitive S. aureus, coagulase-negative staphylococci (CoNS) (with or without mecA), vancomycin-resistant enterococci, Enterobacteriaceae producing various beta-lactamases and non-fermenting bacilli (Pseudomonas aeruginosa, Acinetobacter baumanii, Stenotrophomonas maltophilia) were determined. Cx1 showed similar activity against S. aureus, CoNS and Enterococcus spp., irrespective of the presence of mecA or van genes, or associated resistance genes, with very good activity against CoNS (MIC compound against all strains, with broad-spectrum and conserved activity against multidrug-resistant strains. HX showed a lower activity, essentially against Gram-positive strains. Consequently, the differences observed with respect to Cx1 suggest that they are certainly not the consequence of antibiotic resistance phenotypes, but rather the result of membrane composition modifications (e.g. of lipopolysaccharide), or of the presence of (activated) efflux-pumps. These results raise the possibility that Cx1 may be a potent new antibacterial agent of somewhat lower activity but significantly lower toxicity than CHX.

  1. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity

    Directory of Open Access Journals (Sweden)

    Yeh Jiann-Yih

    2010-02-01

    Full Text Available Abstract Background Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1 virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals. Methods We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle. Results The 50% effective inhibitory concentration (IC50 of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1 was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption, its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest

  2. The content of sensory active compounds and flavour of several types of yogurts

    Directory of Open Access Journals (Sweden)

    Eva Vítová

    2010-01-01

    Full Text Available The aim of this work was to identify and quantify several sensory active compounds in various types of yogurts using gas chromatography and simultaneously to judge their influence on flavour of yogurts using sensory analysis. In total 4 types of white and 10 types of flavoured yogurts (creamy and low-fat with various flavourings, produced in Dairy Valašské Meziříčí, Ltd., were analysed. The highest content of sensory active compounds (P < 0.05 was found in strawberry yogurts, with high amount of ethyl butyrate. Excepting ethanol no significant differences (P < 0.05 were found between low-fat and creamy varieties. The total content of sensory active compounds in white yogurts was significantly (P < 0.05 lower than in flavoured fruit types. The highest content was in low-fat and lowest in white bio yoghurts. Flavour of yogurts was evaluated sensorially using scale and ranking test. All creamy yogurt varieties were evaluated as significantly (P < 0.05 more tasty than low-fat ones. Similarly in case of white yogurts creamy yogurts were evaluated as the most tasty and low-fat ones as the worst. Bio yogurts were evaluated equally tasty as classic yogurts with the same fat content.

  3. Anti-Alzheimer's disease activity of compounds from the root bark of Morus alba L.

    Science.gov (United States)

    Kuk, Eun Bi; Jo, A Ra; Oh, Seo In; Sohn, Hee Sook; Seong, Su Hui; Roy, Anupom; Choi, Jae Sue; Jung, Hyun Ah

    2017-03-01

    The inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) plays important roles in prevention and treatment of Alzheimer's disease (AD). Among the individual parts of Morus alba L. including root bark, branches, leaves, and fruits, the root bark showed the most potent enzyme inhibitory activities. Therefore, the aim of this study was to evaluate the anti-AD activity of the M. alba root bark and its isolate compounds, including mulberrofuran G (1), albanol B (2), and kuwanon G (3) via inhibition of AChE, BChE, and BACE1. Compounds 1 and 2 showed strong AChE- and BChE-inhibitory activities; 1-3 showed significant BACE1 inhibitory activity. Based on the kinetic study with AChE and BChE, 2 and 3 showed noncompetitive-type inhibition; 1 showed mixed-type inhibition. Moreover, 1-3 showed mixed-type inhibition against BACE1. The molecular docking simulations of 1-3 demonstrated negative binding energies, indicating a high affinity to AChE and BACE1. The hydroxyl group of 1-3 formed hydrogen bond with the amino acid residues located at AChE and BACE1. Consequently, these results indicate that the root bark of M. alba and its active compounds might be promising candidates for preventive and therapeutic agents for AD.

  4. Klipperaas study site. Scope of activities and main results

    International Nuclear Information System (INIS)

    Ahlbom, K.; Andersson, J.E.; Andersson, Peter; Ittner, T.; Tiren, S.; Ljunggren, C.

    1992-09-01

    During the period from 1977 - 1986 SKB (Swedish Nuclear Fuel and Waste Management Co.) performed surface and borehole investigations of 14 study sites for the purpose of assessing their suitability for a repository of spent nuclear fuel. The next phase in the SKB site selection rpogramme will be to perform detailed characterisation, including characterization from shafts and/or tunnels, of two or three sites. The detailed investigations will continue over several years to provide all the data needed for a licensing application to build a repository. Such an application is foreseen to be given to the authorities around the year 2003. It is presently not clear if any of the study sites will be selected as a site for detailed characterization. Other sites with geological and/or socio-economical characteristics judged more favorable may very well be the ones selected. However, as a part of the background documentation needed for the site selection studies to come, summary reports will be prepared for most study sites. These reports will include scope of activities, main results, uncertainties and need of complementary investigations. This report concern the Klipperaas study site. The main topics are the scope of activities, geologic model, geohydrological model, groundwater chemistry, assessment of solute transport, and rock mechanics

  5. Immunomodulatory potencies of isolated compounds from Crataegus azarolus through their antioxidant activities.

    Science.gov (United States)

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Sassi, Aicha; Abed, Besma; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The search of natural immunomodulatory agents has become an area of great interest in order to reduce damage to the human body. In this study, the immunomodulatory potential of Crataegus azarolus and its isolated hyperoside on mouse lymphocytes and macrophages in vitro was assessed. The effect of C. azarolus natural compounds on splenocytes proliferation, natural killer (NK) and cytotoxic T lymphocytes (CTL) activities, and on macrophage-mediated cytotoxicity were assessed by MTT test. Phagocytic activity and inhibition of nitric oxide (NO) release by macrophages were also evaluated. The antioxidant capacity of these products was evaluated by determining their cellular antioxidant activity (CAA) in splenocytes and macrophages. Depending on the concentrations, both ethyl acetate (EA) extract and hyperoside (Hyp) from C. azarolus affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide release. Whereas, the above-mentioned products significantly promote LPS and lectin-stimulated splenocyte proliferation, implying a potential activation of lymphocytes B and T enhancing humoral and cellular immune responses. Moreover, EA extract and Hyp could enhance the activity of NK and T lymphocytes cells, as well as the macrophages-mediated cytotoxicity against B16F10 cells. The anti-inflammatory activity was concomitant with the cellular antioxidant effect of the tested compounds against macrophages and splenocytes. Collectively, C. azarolus and its isolated hyperoside exhibited an immunomodulatory effect through their antioxidant activity. These findings suggest that C. azarolus should be explored as a novel potential immunomodulatory agent for the treatment of inflammatory diseases.

  6. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    Directory of Open Access Journals (Sweden)

    Gideon C. Okpokwasili

    2010-04-01

    Full Text Available The toxicity of phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol on Pseudomonas, Bacillus and Escherichia species isolated from petroleum refinery wastewater was assessed via inhibition of dehydrogenase enzyme activity. At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds inhibited dehydrogenase activities. Generally, phenol is less toxic than substituted phenols. Estimations of the degree of inhibition/stimulation of dehydrogenase activities showed significant dose-dependent responses that are describable by logistic functions. The toxicity thresholds varied significantly (P < 0.05 among the bacterial strains and phenolic compounds. The median inhibitory concentrations (IC50s ranged from 4.118 ± 0.097 mg.L-1 for 4-nitrophenol against Pseudomonas sp. DAF1 to 1407.997 ± 7.091 mg.L-1 for phenol against Bacillus sp. DISK1. This study suggested that the organisms have moderate sensitivity to phenols and have the potential to be used as indicators for assessment of chemical toxicity. They could also be used as catalysts for degradation of phenols in effluents.

  7. SUBLIMATION-DRIVEN ACTIVITY IN MAIN-BELT COMET 313P/GIBBS

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Henry H. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Hainaut, Olivier [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching bei München (Germany); Novaković, Bojan [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade (Serbia); Bolin, Bryce [Observatoire de la Côte d’Azur, Boulevard de l’Observatoire, B.P. 4229, F-06304 Nice Cedex 4 (France); Denneau, Larry; Haghighipour, Nader; Kleyna, Jan; Meech, Karen J.; Schunova, Eva; Wainscoat, Richard J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Fitzsimmons, Alan [Astrophysics Research Centre, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Kokotanekova, Rosita; Snodgrass, Colin [Planetary and Space Sciences, Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Lacerda, Pedro [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Micheli, Marco [ESA SSA NEO Coordination Centre, Frascati, RM (Italy); Moskovitz, Nick; Wasserman, Lawrence [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Waszczak, Adam, E-mail: hhsieh@asiaa.sinica.edu.tw [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-02-10

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of H{sub R} = 17.1 ± 0.3, corresponding to an effective nucleus radius of r{sub e} ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of T{sub l} = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.

  8. Synthesis, reactions and biological activity of some new bis-heterocyclic ring compounds containing sulphur atom

    Science.gov (United States)

    2013-01-01

    Background The derivatives of thieno[2,3-b]thiophene belong to a significant category of heterocyclic compounds, which have shown a wide spectrum of medical and industrial application. Results A new building block with two electrophilic center of thieno[2,3-b]thiophene derivatives 2 has been reported by one-pot reaction of diketone derivative 1 with Br2/AcOH in excellent yield. A variety of heteroaromatics having bis(1H-imidazo[1,2a] benzimidazole), bis(1H-imidazo[1,2-b][1,2,4]triazole)-3-methyl-4-phenylthieno[2,3-b]thiophene derivatives, dioxazolo-, dithiazolo-, and 1H-imidazolo-3-methyl-4-phenylthieno[2,3-b]thiophene derivatives as well pyrrolo, thiazolo -3-methyl-4-phenylthieno[2,3-b]thiophene derivatives have been designed, synthesized, characterized, and evaluated for their biological activity. Compounds 3–9 showed good bioassay result. These new derivatives were evaluated for anti-cancer activity against PC-3 cell lines, in vitro antioxidant potential and β-glucuronidase and α-glucosidase inhibitory activities. Compound 3 (IC50 = 56.26 ± 3.18 μM) showed a potent DPPH radical scavenging antioxidant activity and found to be more active than standard N-acetylcystein (IC50 = 105.9 ± 1.1 μM). Compounds 8a (IC50 = 13.2 ± 0.34 μM) and 8b (IC50 = 14.1 ± 0.28 μM) found as potent inhibitor of α-glucusidase several fold more active than the standard acarbose (IC50 = 841 ± 1.73 μM). Most promising results were obtained in β-glucuronidase enzyme inhibition assay. Compounds 5 (IC50 = 0.13 ± 0.019 μM), 6 (IC50 = 19.9 ± 0.285 μM), 8a (IC50 = 1.2 ± 0.0785 μM) and 9 (IC50 = 0.003 ± 0.09 μM) showed a potent inhibition of β-glucuronidase. Compound 9 was found to be several hundred fold more active than standard D-Saccharic acid 1,4-lactone (IC50 = 45.75 ± 2.16 μM). Conclusions Synthesis, characterization, and in vitro biological activity of a series of

  9. Comparative potential of black tea leaves waste to granular activated carbon in adsorption of endocrine disrupting compounds from aqueous solution

    Directory of Open Access Journals (Sweden)

    A.O. Ifelebuegu

    2015-07-01

    Full Text Available The adsorption properties and mechanics of selected endocrine disrupting compounds; 17 β-estradiol, 17 α – ethinylestradiol and bisphenol A on locally available black tea leaves waste and granular activated carbon were investigated. The results obtained indicated that the kinetics of adsorption were pH, adsorbent dose, contact time and temperature dependent with equilibrium being reached at 20 to 40 minutes for tea leaves waste and 40 to 60 minutes for granular activated compound. Maximum adsorption capacities of 3.46, 2.44 and 18.35 mg/g were achieved for tea leaves waste compared to granular activated compound capacities of 4.01, 2.97 and 16.26 mg/g for 17 β- estradiol, 17 α-ethinylestradiol and bisphenol A respectively. Tea leaves waste adsorption followed pseudo-first order kinetics while granular activated compound fitted better to the pseudo-second order kinetic model. The experimental isotherm data for both tea leaves waste and granular activated compound showed a good fit to the Langmuir, Freundlich and Temkin isotherm models with the Langmuir model showing the best fit. The thermodynamic and kinetic data for the adsorption indicated that the adsorption process for tea leaves waste was predominantly by physical adsorption while the granular activated compound adsorption was more chemical in nature. The results have demonstrated the potential of waste tea leaves for the adsorptive removal of endocrine disrupting compounds from water.

  10. Dioxin-like activity of environmental compounds in human blood and environmental samples

    DEFF Research Database (Denmark)

    Long, Manhai; Bonefeld-Jørgensen, Eva Cecilie

    2012-01-01

    and humans. We found that some pesticides, plasticizers and phytoestrogens can activate the AhR, and the combined effect of compounds with no or weak AhR potency cannot be ignored. The significant DL-activity in the wastewater effluent indicates the treatment is not sufficient to prevent contamination...... of surface waters with dioxins. Our results from human studies suggest that the serum DL-activity reflect the complex mixture of persistent organic pollutants (POPs). Greenlandic Inuit had lower serum DL-activity level compared to Europeans, probably due to long distance from the dioxin sources and UV...

  11. Chemical composition and antioxidant activity of phenolic compounds and essential oils from Calamintha nepeta L.

    Science.gov (United States)

    Khodja, Nabyla Khaled; Boulekbache, Lila; Chegdani, Fatima; Dahmani, Karima; Bennis, Faiza; Madani, Khodir

    2018-05-24

    Background Essential oils, infusion and decoction extracts of Calamintha nepeta L. were evaluated for their bioactive substances (polyphenols and essential oils) and antioxidant activities. Methods The amounts of phenolic compounds were determined by colorimetric assays and identified by high performance and liquid chromatography coupled with ultraviolet detector (HPLC-UV) method. The chemical composition of essential oils was determined by gas-chromatography coupled with mass spectrometry (GC/MS) method. For the evaluation of the antioxidant activity of essential oils and extracts, two different assays (reducing power and DPPH radical scavenging activity) were used. Results Infusion extract presented the highest phenolic content, followed by the decoction one, while the lowest amount was observed in essential oils. The amount of flavonoids of the decocted extract was higher than that of the infused one. The phenolic profile of C. nepeta infusion and decoction extracts revealed the presence of 28 and 13 peaks, respectively. Four phenolics compounds were identified in infusion (gallic acid (GA), rosmarinic acid (RA), caffeine (C) and caffeic acid (CA)) and two were identified in decoction (GA and RA). The chemical composition of essential oils revealed the presence of 29 compounds, accounting for the 99.7% of the total oils. Major compounds of essential oil (EO) were trans-menthone (50.06%) and pulegone (33.46%). Infusion and decoction extracts revealed an interesting antioxidant activity which correlates positively with their total phenolic contents. Conclusions These results showed that Calamintha nepeta could be considered as a valuable source of phenolics and essential oils with potent antioxidant activity.

  12. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    OpenAIRE

    Gideon C. Okpokwasili; Christian Okechukwu Nweke

    2010-01-01

    The toxicity of phenol, 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol on Pseudomonas, Bacillus and Escherichia species isolated from petroleum refinery wastewater was assessed via inhibition of dehydrogenase enzyme activity. At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds inhibi...

  13. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    Directory of Open Access Journals (Sweden)

    Mariana Belén Joray

    2015-01-01

    Full Text Available The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1, isoliquiritigenin (2, pinocembrin (3, 7-hydroxyflavanone (4, and 7,4′-dihydroxy-3′-methoxyflavanone (5. Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL and chronic myeloid leukemia (CML cell lines including their multidrug resistant (MDR phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM and a lower effect against CML cells (IC50 = 27.5–30.0 μM. Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

  14. Anoxic degradation of nitrogenous heterocyclic compounds by activated sludge and their active sites.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-05-01

    The potential for degradation of five nitrogenous heterocyclic compounds (NHCs), i.e., imidazole, pyridine, indole, quinoline, and carbazole, was investigated under anoxic conditions with acclimated activated sludge. Results showed that NHCs with initial concentration of 50 mg/L could be completely degraded within 60 hr. The degradation of five NHCs was dependent upon the chemical structures with the following sequence: imidazole>pyridine>indole>quinoline>carbazole in terms of their degradation rates. Quantitative structure-biodegradability relationship studies of the five NHCs showed that the anoxic degradation rates were correlated well with highest occupied molecular orbital. Additionally, the active sites of NHCs identified by calculation were confirmed by analysis of intermediates using gas chromatography and mass spectrometry. Copyright © 2015. Published by Elsevier B.V.

  15. Separation and Identification of Four New Compounds with Antibacterial Activity from Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    Xia Lei

    2015-09-01

    Full Text Available The Portulaca oleracea L. (P. oleracea has been used to treat bacillary dysentery for thousands of years in China. Pharmacology studies on P. oleracea have also showed its significant antibacterial effects on the enteropathogenic bacteria, which might reveal the treatment of P. oleracea in cases of bacillary dysentery to some extent. To date, however, the therapeutic basis of P. oleracea treating on bacillary dysentery remains unknown. We determined the antibacterial effective fraction of P. oleracea in a previous study. The current study, which is based on our previous study, was first designed to isolate, identify and screen antibacterial active constituents from P. oleracea. As a result, four new compounds (1–4, portulacerebroside B (1, portulacerebroside C (2, portulacerebroside D (3 and portulaceramide A (4 along with five known compounds (5–9 were isolated, and structures were established by their physico-chemical constants and spectroscopic analysis. The antibacterial activities against common enteropathogenic bacteria were evaluated for all compounds and the new compounds 1–4 showed significant antibacterial effect on enteropathogenic bacteria in vitro, which might contribute to revealing the treatment of P. oleracea in cases of bacillary dysentery.

  16. Separation and Identification of Four New Compounds with Antibacterial Activity from Portulaca oleracea L.

    Science.gov (United States)

    Lei, Xia; Li, Jianmin; Liu, Bin; Zhang, Ning; Liu, Haiyang

    2015-09-10

    The Portulaca oleracea L. (P. oleracea) has been used to treat bacillary dysentery for thousands of years in China. Pharmacology studies on P. oleracea have also showed its significant antibacterial effects on the enteropathogenic bacteria, which might reveal the treatment of P. oleracea in cases of bacillary dysentery to some extent. To date, however, the therapeutic basis of P. oleracea treating on bacillary dysentery remains unknown. We determined the antibacterial effective fraction of P. oleracea in a previous study. The current study, which is based on our previous study, was first designed to isolate, identify and screen antibacterial active constituents from P. oleracea. As a result, four new compounds (1-4), portulacerebroside B (1), portulacerebroside C (2), portulacerebroside D (3) and portulaceramide A (4) along with five known compounds (5-9) were isolated, and structures were established by their physico-chemical constants and spectroscopic analysis. The antibacterial activities against common enteropathogenic bacteria were evaluated for all compounds and the new compounds 1-4 showed significant antibacterial effect on enteropathogenic bacteria in vitro, which might contribute to revealing the treatment of P. oleracea in cases of bacillary dysentery.

  17. Synthesis, Antiproliferative, and Multidrug Resistance Reversal Activities of Heterocyclic α,β-Unsaturated Carbonyl Compounds.

    Science.gov (United States)

    Sun, Ju-Feng; Hou, Gui-Ge; Zhao, Feng; Cong, Wei; Li, Hong-Juan; Liu, Wen-Shuai; Wang, Chunhua

    2016-10-01

    A series of heterocyclic α,β-unsaturated carbonyl compounds (1a-1d, 2a-2d, 3a-3d, 4a-3d, and 5a-5d) with 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore were synthesized for the development of anticancer and multidrug resistance reverting agents. The antiproliferative activities were tested against nine human cancer cell lines. Approximately 73% of the IC50 values were below 5 μm, while 35% of these figures were submicromolar, and compounds 3a-3d with 4-trifluoro methyl in the arylidene benzene rings were the most potent, since their IC50 values are between 0.06 and 3.09 μm against all cancer cell lines employed. Meanwhile, their multidrug resistance reversal properties and cellular uptake were further examined. The data displayed that all of these compounds could reverse multidrug resistance, particularly, compounds 3a and 4a demonstrated both potent multidrug resistance reverting properties and strong antiproliferative activities, which can be taken as leading molecules for further research of dual effect agents in tumor chemotherapy. © 2016 John Wiley & Sons A/S.

  18. Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Madamanchi Geethangili

    2011-01-01

    Full Text Available Antrodia camphorata is a unique mushroom of Taiwan, which has been used as a traditional medicine for protection of diverse health-related conditions. In an effort to translate this Eastern medicine into Western-accepted therapy, a great deal of work has been carried out on A. camphorata. This review discusses the biological activities of the crude extracts and the main bioactive compounds of A. camphorata. The list of bioactivities of crude extracts is huge, ranging from anti-cancer to vasorelaxation and others. Over 78 compounds consisting of terpenoids, benzenoids, lignans, benzoquinone derivatives, succinic and maleic derivatives, in addition to polysaccharides have been identified. Many of these compounds were evaluated for biological activity. Many activities of crude extracts and pure compounds of A. camphorata against some major diseases of our time, and thus, a current review is of great importance. It is concluded that A. camphorata can be considered as an efficient alternative phytotherapeutic agent or a synergizer in the treatment of cancer and other immune-related diseases. However, clinical trails of human on A. camphorata extracts are limited and those of pure compounds are absent. The next step is to produce some medicines from A. camphorata, however, the production may be hampered by problems related to mass production.

  19. Identification of Major Phenolic Compounds from Nephelium lappaceum L. and Their Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Nuansri Rakariyatham

    2010-03-01

    Full Text Available Nephelium lappaceum is a tropical fruit whose peel possesses antioxidant properties. Experiments on the isolation and identification of the active constituents were conducted, and on their antioxidant activity using a lipid peroxidation inhibition assay. The methanolic extract of N. lappaceum peels exhibited strong antioxidant properties. Sephadex LH-20 chromatography was utilized in the isolation of each constituent and the antioxidant properties of each was studied. The isolated compounds were identified as ellagic acid (EA (1, corilagin (2 and geraniin (3. These compounds accounted for 69.3% of methanolic extract, with geraniin (56.8% as the major component, and exhibited much greater antioxidant activities than BHT in both lipid peroxidation (77-186 fold and DPPH• (42-87 fold assays. The results suggest that the isolated ellagitannins, as the principal components of rambutan peels, could be further utilized as both a medicine and in the food industry.

  20. Identification of major phenolic compounds from Nephelium lappaceum L. and their antioxidant activities.

    Science.gov (United States)

    Thitilertdecha, Nont; Teerawutgulrag, Aphiwat; Kilburn, Jeremy D; Rakariyatham, Nuansri

    2010-03-09

    Nephelium lappaceum is a tropical fruit whose peel possesses antioxidant properties. Experiments on the isolation and identification of the active constituents were conducted, and on their antioxidant activity using a lipid peroxidation inhibition assay. The methanolic extract of N. lappaceum peels exhibited strong antioxidant properties. Sephadex LH-20 chromatography was utilized in the isolation of each constituent and the antioxidant properties of each was studied. The isolated compounds were identified as ellagic acid (EA) (1), corilagin (2) and geraniin (3). These compounds accounted for 69.3% of methanolic extract, with geraniin (56.8%) as the major component, and exhibited much greater antioxidant activities than BHT in both lipid peroxidation (77-186 fold) and DPPH* (42-87 fold) assays. The results suggest that the isolated ellagitannins, as the principal components of rambutan peels, could be further utilized as both a medicine and in the food industry.

  1. Identificationof Major Phenolic Compounds of Chinese Water Chestnut and their Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Yueming Jiang

    2007-04-01

    Full Text Available Chinese water chestnut (CWC is one of the most popular foods among Asian people due to its special taste and medical function. Experiments were conducted to test the antioxidant activity and then determine the major phenolic compound components present in CWC. CWC phenolic extract strongly inhibited linoleic acid oxidation and exhibited a dose-dependent free-radical scavenging activity against α,α-diphenyl-β-picrylhydrazyl (DPPH radicals, superoxide anions and hydroxyl radicals, which was superior to ascorbic acid and butylated hydroxytoluene (BHT, two commercial used antioxidants. Furthermore, the CWC extract was found to have a relatively higher reducing power, compared with BHT. The major phenolic compounds present in CWC tissues were extracted, purified and identified by high-performance liquid chromatograph (HPLC as (–-gallocatechin gallate, (–-epicatechin gallate and (+-catechin gallate. This study suggests that CWC tissues exhibit great potential for antioxidant activity and may be useful for their nutritional and medicinal functions.

  2. RESEARCH REGARDING THE POTENTIAL ACTIVITY OF SOME HETEROCYCLIC COMPOUNDS ON PLANTS GROWTH AND DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    OANA-IRINA PATRICIU

    2017-06-01

    Full Text Available It is well known that growth and morphogenesis of plant tissue cultures can be improved by small amounts of some organic compounds. Heterocyclic compounds such as chromanones and thiazoles derivatives, valuable because of their potential biological activities, have also been reported as pesticides, herbicides and plant-growth regulators. In the present study, different concentrations of chromanones and thiazoles derivatives were employed to evaluate their effects on plantlets growth of Ocimum basilicum L. and Echinacea purpurea L. The studied compounds were proved to be growth inhibitors at high concentrations. A growth stimulation effect was registered at low concentration.

  3. Antioxidant activities of isolated compounds from stems of Mimosa invisa Mart. ex Colla

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Rosane M. [Departamento de Quimica e Exatas, Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil); Alves, Clayton Q.; David, Jorge M.; Rezende, Larissa C. de; Lima, Luciano S., E-mail: jmdavid@ufba.br [Instituto de Quimica, Universidade Federal da Bahia, Salvador, BA (Brazil); David, Juceni P. [Faculdade de Farmacia, Universidade Federal da Bahia, Salvador, BA (Brazil); Queiroz, Luciano P. de [Departamento de Ciencias Biologicas, Universidade Estadual de Feira de Santana, BA (Brazil)

    2012-07-01

    This work describes the phytochemical study of stems of Mimosa invisa (Mimosaceae) and the evaluation of the antioxidant potential of isolated compounds. Chromatographic techniques were employed to isolate salicifoliol, pinoresinol, quercetin, quercetin-3-Orhamnopyranosyl, quercetin-3-O-arabinofuranosyl lupeol, -amyrin, sitosterol, p-hydroxy coumaric acid, 4-hydroxy-3-methoxy benzaldehyde (vanillin), 4-hydroxy-3,5-dimethoxy benzaldehyde, 4-hydroxy-3-methoxy benzoic acid and 4',6,7- trimethoxy flavonol. The latter had been previously described but the spectrometric data shown indicated the structure required review. The antioxidant activity of the compounds was evaluated by the DPPH test and capability of NBT reduction by superoxide radicals. Quercetin glycosides showed lower antioxidant potential than quercetin and, salicifoliol was found to be more active than pinoresinol. (author)

  4. Microwave assistant synthesis, crystal structure and biological activity of a 1,2,4-triazole compound

    International Nuclear Information System (INIS)

    Ke, W.; Sun, N.B.

    2013-01-01

    The title compound (C/sub 17/H/sub 14/F/sub 2/N/sub 4/SO) were synthesized and recrystallized from CH/sub 3/CN. The compound was characterized by 1h-nmr, ftir, ms, hrms and x-ray diffraction. the compound crystallized in the monoclinic space group c2/c with a = 27.532(6), b 8.9596(18), c 14.609(3) alpha = 90, beta = 112.59(3), lambda =90 degree, gamma = 3327.1(12) alpha 3, z = 8 and r = 0.0327 for 2596 observed reflections with 1 > 2 (i). x-ray analysis reveals that not only intermolecular N-H-N interactions, but also C-H Pie stacking interactions exist in the adjacent molecules. The biological activities results showed that it exhibited significant herbicidal activity towards brassica napus. (author)

  5. Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea sandy beach

    Science.gov (United States)

    Podgórska, B.; Mudryk, Z. J.

    2003-03-01

    The potential capability to decompose macromolecular compounds, and the level of extracellular enzyme activities were determined in heterotrophic bacteria isolated from a sandy beach in Sopot on the Southern Baltic Sea coast. Individual isolates were capable of hydrolysing a wide spectrum of organic macromolecular compounds. Lipids, gelatine, and DNA were hydrolyzed most efficiently. Only a very small percentage of strains were able to decompose cellulose, and no pectinolytic bacteria were found. Except for starch-hydrolysis, no significant differences in the intensity of organic compound decomposition were recorded between horizontal and vertical profiles of the studied beach. Of all the studied extracellular enzymes, alkaline phosphatase, esterase lipase, and leucine acrylaminidase were most active; in contrast, the activity α-fucosidase, α-galactosidase and β-glucouronidase was the weakest. The level of extracellular enzyme activity was similar in both sand layers.

  6. Chemical composition and major odor-active compounds of essential oil from PINELLIA TUBER (dried rhizome of Pinellia ternata) as crude drug.

    Science.gov (United States)

    Iwasa, Megumi; Iwasaki, Toshiki; Ono, Toshirou; Miyazawa, Mitsuo

    2014-01-01

    The chemical composition of the essential oil from PINELLIA TUBER (Japanese name: Hange), the dried rhizome of Pinellia ternata, was investigated by capillary gas chromatography (GC) and GC-mass spectrometry (MS) analyses. The oil obtained from Pinellia tuber was revealed the presence of 114 compounds, representing 90.6% of the total oil identified. This colorless oil had a spicy and woody odor. The main components of the oil were β-cubebene (8.8%), atractylon (7.8%), methyl eugenol (6.2%), and δ-cadinene (5.3%). Fifteen major odor-active compounds were identified in the essential oil from PINELLIA TUBER by the GC-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). Among these, safrole (spicy) and β-vatirenene (woody) showed the highest flavor dilution (FD) factor (128), followed by paeonol (FD = 64; woody, spicy), α-humulene (FD = 64; woody), and β-phenylnaphthalene (FD = 64; spicy).

  7. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    Science.gov (United States)

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo( L -Pro- L -Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review.

    Science.gov (United States)

    Castro-Rosas, Javier; Ferreira-Grosso, Carlos Raimundo; Gómez-Aldapa, Carlos Alberto; Rangel-Vargas, Esmeralda; Rodríguez-Marín, María Luisa; Guzmán-Ortiz, Fabiola Araceli; Falfan-Cortes, Reyna Nallely

    2017-12-01

    Food safety and microbiological quality are major priorities in the food industry. In recent years, there has been an increasing interest in the use of natural antimicrobials in food products. An ongoing challenge with natural antimicrobials is their degradation during food storage and/or processing, which reduces their antimicrobial activity. This creates the necessity for treatments that maintain their stability and/or activity when applied to food. Microencapsulation of natural antimicrobial compounds is a promising alternative once this technique consists of producing microparticles, which protect the encapsulated active substances. In other words, the material to be protected is embedded inside another material or system known as wall material. There are few reports in the literature about microencapsulation of antimicrobial compounds. These published articles report evidence of increased antimicrobial stability and activity when the antimicrobials are microencapsulated when compared to unprotected ones during storage. This review focuses mainly on natural sources of antimicrobial compounds and the methodological approach for encapsulating these natural compounds. Current data on the microencapsulation of antimicrobial compounds and their incorporation into food suggests that 1) encapsulation increases compound stability during storage and 2) encapsulation of antimicrobial compounds reduces their interaction with food components, preventing their inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Genome-scale metabolic modeling to provide insight into the production of storage compounds during feast-famine cycles of activated sludge.

    Science.gov (United States)

    Tajparast, Mohammad; Frigon, Dominic

    2013-01-01

    Studying storage metabolism during feast-famine cycles of activated sludge treatment systems provides profound insight in terms of both operational issues (e.g., foaming and bulking) and process optimization for the production of value added by-products (e.g., bioplastics). We examined the storage metabolism (including poly-β-hydroxybutyrate [PHB], glycogen, and triacylglycerols [TAGs]) during feast-famine cycles using two genome-scale metabolic models: Rhodococcus jostii RHA1 (iMT1174) and Escherichia coli K-12 (iAF1260) for growth on glucose, acetate, and succinate. The goal was to develop the proper objective function (OF) for the prediction of the main storage compound produced in activated sludge for given feast-famine cycle conditions. For the flux balance analysis, combinations of three OFs were tested. For all of them, the main OF was to maximize growth rates. Two additional sub-OFs were used: (1) minimization of biochemical fluxes, and (2) minimization of metabolic adjustments (MoMA) between the feast and famine periods. All (sub-)OFs predicted identical substrate-storage associations for the feast-famine growth of the above-mentioned metabolic models on a given substrate when glucose and acetate were set as sole carbon sources (i.e., glucose-glycogen and acetate-PHB), in agreement with experimental observations. However, in the case of succinate as substrate, the predictions depended on the network structure of the metabolic models such that the E. coli model predicted glycogen accumulation and the R. jostii model predicted PHB accumulation. While the accumulation of both PHB and glycogen was observed experimentally, PHB showed higher dynamics during an activated sludge feast-famine growth cycle with succinate as substrate. These results suggest that new modeling insights between metabolic predictions and population ecology will be necessary to properly predict metabolisms likely to emerge within the niches of activated sludge communities. Nonetheless

  10. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity

    Science.gov (United States)

    Djioleu, Angele Mezindjou

    The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus

  11. Activation of Multiple Antibiotic Resistance in Uropathogenic Escherichia coli Strains by Aryloxoalcanoic Acid Compounds

    Science.gov (United States)

    Balagué, Claudia; Véscovi, Eleonora García

    2001-01-01

    Clofibric and ethacrynic acids are prototypical pharmacological agents administered in the treatment of hypertrigliceridemia and as a diuretic agent, respectively. They share with 2,4-dichlorophenoxyacetic acid (the widely used herbicide known as 2,4-D) a chlorinated phenoxy structural moiety. These aryloxoalcanoic agents (AOAs) are mainly excreted by the renal route as unaltered or conjugated active compounds. The relatedness of these agents at the structural level and their potential effect on therapeutically treated or occupationally exposed individuals who are simultaneously undergoing a bacterial urinary tract infection led us to analyze their action on uropathogenic, clinically isolated Escherichia coli strains. We found that exposure to these compounds increases the bacterial resistance to an ample variety of antibiotics in clinical isolates of both uropathogenic and nonpathogenic E. coli strains. We demonstrate that the AOAs induce an alteration of the bacterial outer membrane permeability properties by the repression of the major porin OmpF in a micF-dependent process. Furthermore, we establish that the antibiotic resistance phenotype is primarily due to the induction of the MarRAB regulatory system by the AOAs, while other regulatory pathways that also converge into micF modulation (OmpR/EnvZ, SoxRS, and Lrp) remained unaltered. The fact that AOAs give rise to uropathogenic strains with a diminished susceptibility to antimicrobials highlights the impact of frequently underestimated or ignored collateral effects of chemical agents. PMID:11353631

  12. Structural Characterization and Evaluation of the Antioxidant Activity of Phenolic Compounds from Astragalus taipaishanensis and Their Structure-Activity Relationship

    Science.gov (United States)

    Pu, Wenjun; Wang, Dongmei; Zhou, Dan

    2015-09-01

    Eight phenolic compounds were isolated using bio-guided isolation and purified from the roots of Astragalus taipaishanensis Y. C. Ho et S. B. Ho (A. taipaishanensis) for the first time. Their structures were elucidated by ESI-MS, HR-ESI-MS, 1D-NMR and 2D-NMR as 7,2‧-dihydroxy-3‧,4‧-dimethoxy isoflavan (1), formononetin (2), isoliquiritigenin (3), quercetin (4), kaempferol (5), ononin (6), p-hydroxybenzoic acid (7) and vanillic acid (8). Six flavonoids (compounds 1-6) exhibited stronger antioxidant activities (determined by DPPH, ABTS, FRAP and lipid peroxidation inhibition assays) than those of BHA and TBHQ and also demonstrated noticeable protective effects (particularly quercetin and kaempferol) on Escherichia coli under oxidative stress. Additionally, the chemical constituents compared with those of Astragalus membranaceus and the structure-activity relationship of the isolated compounds were both analyzed. The results clearly demonstrated that A. taipaishanensis has the potential to be selected as an alternative medicinal and food plant that can be utilized in health food products, functional tea and pharmaceutical products.

  13. Qualitative comparison of active compounds between red and green Mariposa Christia Vespertillonis leaves extracts

    Science.gov (United States)

    Osman, M. S.; Ghani, Z. A.; Ismail, N. F.; Razak, N. A. A.; Jaapar, J.; Ariff, M. A. M.

    2017-09-01

    At present time, Mariposa Christia Vespertillonis (MCV) leave has become popular for its anti-cancer and thus is used widely among the traditional medicine in Malaysia. There are several types of MCV plants and the one that is currently well-known for traditional medicine in Malaysia is the green MCV (GMCV). Red MCV (RMCV) is another type of MCV plant which can also be found easily in Malaysia. In this study, the active compounds for GMCV and RMCV will be compared and analyzed by using Liquid Chromatography - Mass Spectrometry (LC-MS). The active compounds will be extracted from the MCV leaves by using Supercritical Fluid Extraction (SFE). The findings of this study indicates the global yield of the MCV oils is 31 mg/g while the compound identification indicates the presence of anti-cancer, anti-inflammatory and beneficial phytochemicals. This work is an explorative study to reveal the potential of MCV to be extracted using SFE method as potential therapeutic plants for the traditional medicine in Malaysia.

  14. Plant compounds insecticide activity against Coleoptera pests of stored products

    OpenAIRE

    MOREIRA, M.D.; PICANÇO, M.C.; BARBOSA, L.C. de A.; GUEDES, R.N.C.; CAMPOS, M.R. de; SILVA, G.A.; MARTINS, J.C.

    2008-01-01

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed...

  15. Synthesis of novel 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds and their evaluation for tuberculostatic activity.

    Science.gov (United States)

    Gobis, Katarzyna; Foks, Henryk; Bojanowski, Krzysztof; Augustynowicz-Kopeć, Ewa; Napiórkowska, Agnieszka

    2012-01-01

    A series of novel 3-cyclohexylpropanoic acid derivatives and 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds (1-8) have been synthesized and evaluated for tuberculostatic activity. Compounds 1a, 1c, 1e and 1f bearing benzimidazole or benzimidazole-like systems showed the most potent tuberculostatic activity against Mycobacterium tuberculosis strains with MIC values ranging from 1.5 to 12.5μg/mL. More importantly 1a (6-chloro-2-(2-cyclohexylethyl)-4-nitro-1H-benzo[d]imidazole) and 1f (2-(2-cyclohexylethyl)-1H-imidazo[4,5-b]phenazine) appeared selective for M. tuberculosis as compared with eukaryotic cells (human fibroblasts), and other antimicrobial strains. These compounds may thus represent a novel, selective class of antitubercular agents. Additionally compound 1a stimulated type I collagen output by fibroblasts, in vitro. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol.

    Science.gov (United States)

    Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M

    2016-10-01

    The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Simple ortho- and para-hydroquinones as compounds neuroprotective against oxidative stress in a manner associated with specific transcriptional activation

    International Nuclear Information System (INIS)

    Satoh, Takumi; Saitoh, Sachie; Hosaka, Manami; Kosaka, Kunio

    2009-01-01

    Electrophilic compounds protect neurons through the activation of the Keap1/Nrf2 pathway and the induction of phase-2 enzymes [T. Satoh, S.A. Lipton, Redox regulation of neuronal survival by electrophilic compounds, Trends Neurosci. 30 (2007) 38-45; T. Satoh, S. Okamoto, J. Cui, Y. Watanabe, K. Furuta, M. Suzuki, K. Tohyama, S.A. Lipton, Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers. Proc. Natl. Acad. Sci. USA 103 (2006) 768-773]. Hydroquinone-type electrophilic compounds such as tert-butyl hydroquinone (TBHQ) and carnosic acid (CA) have attracted special attention, because the oxidative conversion of 'hydroquinone' to 'quinone' is essential for the transcriptional activation of the above-mentioned enzymes [T. Satoh, K. Kosaka, K. Itoh, A. Kobayashi, M. Yamamoto, Y. Shimojo, C. Kitajima, J. Cui, J. Kamins, S. Okamoto, T. Shirasawa, S.A. Lipton, Carnosic acid, a catechol-type electrophilic compound, protect neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of specific cysteine, J. Neurochem. 104 (2008) 1161-1131; A.D. Kraft, D.A. Johnson, J.A. Johnson, Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult, J. Neurosci. 24 (2004) 1101-1112]. In the present study, we examined the relationship between electrophilicity and the protective effects afforded by electrophilic compounds. Electrophilicity was assessed in terms of the ability of a compound to bind to a cysteine on bovine serum albumin, by which we found that neuroprotective hydroquinones [TBHQ (para-) and CA (ortho-)] had distinctive patterns of cysteine binding compared with other electrophilic compounds. Further, we found that isomers of simple ortho- and para-hydroquinones such as 2-methylhydroquinone (para-) and 4-methyl-catechol (ortho-) [not in abstract] had

  18. Organolead compounds shown to be genetically active

    Energy Technology Data Exchange (ETDEWEB)

    Ahlberg, J; Ramel, C; Wachtmeister, C A

    1972-01-01

    The purpose of the present investigation was to determine whether alkyllead compounds would cause a genetic effect similar to that caused by alkyl mercury compounds. Experiments were conducted on Allium cepa (onion) in order to determine the effect of lead compounds on the spindle fiber mechanism. Results indicate that disturbances of the spindle fiber mechanism occur even at very low concentrations. The lowest concentration at which such effects are observed seems to be between 10/sup -6/ and 10/sup -7/ M for the organic compounds. Although no effect can be observed on the spindle fibers at lower dosages, the mitotic index is changed even at a dose of 10/sup -7/ M with dimethyllead. A preliminary experiment was made on Drosophila with triethyllead in order to investigate whether the effects which were observed on mitoses in Allium would also be observed in a meiotic cell system in an animal.

  19. Bioactivity of essential oil from Artemisia stolonifera (Maxim.) Komar. and its main compounds against two stored-product insects.

    Science.gov (United States)

    Zhang, Wen-Juan; Yang, Kai; You, Chun-Xue; Wang, Ying; Wang, Cheng-Fang; Wu, Yan; Geng, Zhu-Feng; Su, Yang; Du, Shu-Shan; Deng, Zhi-Wei

    2015-01-01

    Artemisia stolonifera, a perennial herb, is widely distrbuted in China. The aim of this study was to analyze the essential oil from the aerial parts of Artemisia stolonifera, as well as to evaluate the bioactivity of the oil and its main constituents. The essential oil was analyzed by gas chromatography-flame ionization detector and gas chromatography-mass spectrometry that allowed characterizing 22 compounds. The main components were eucalyptol (32.93%), β-pinene (8.18%), camphor (6.12%) and terpinen-4-ol (6.11%), and obtained from the essential oil after a further isolation. During the contact toxicity tests, the essential oil (LD50 = 8.60 μg/adult) exhibited stronger toxicity against Tribolium castaneum adults than those isolated constituents, however, camphor and terpinen-4-ol showed 1 and 2 times toxicity against Lasioderma serricorne adults than the essential oil (LD50 = 12.68 μg/adult) with LD50 values of 11.30 and 5.42 μg/adult, respectively. In the fumigant toxicity tests, especially on Tribolium castaneum, the essential oil (LC50 = 1.86 mg/L air) showed almost the same level toxicity as positive control, methyl bromide (LC50 = 1.75 mg/L air). Moreover, the essential oil and its four isolated constituents also exhibited strong repellency against two stored-product insects.

  20. Biogas pre-upgrading by adsorption of trace compounds onto granular activated carbons and an activated carbon fiber-cloth.

    Science.gov (United States)

    Boulinguiez, B; Le Cloirec, P

    2009-01-01

    The study assesses the adsorption onto activated carbon materials of selected volatile organic compounds -VOCs- (dichloromethane, 2-propanol, toluene, siloxane D4) in a biogas matrix composed of methane and carbon dioxide (55:45 v/v). Three different adsorbents are tested, two of them are granular activated carbon (GAC), and the last is an activated carbon fiber-cloth (ACFC). The adsorption isotherm data are fitted by different models by nonlinear regression. The Langmuir-Freundlich model appears to be the adequate one to describe the adsorption phenomena independently of the VOC considered or the adsorbent. The adsorbents present attractive adsorption capacity of the undesirable compounds in biogas atmosphere though the maximum adsorption capacities for a VOC are quite different from each other. The adsorption kinetics are characterized through three coefficients: the initial adsorption coefficient, the external film mass transfer coefficient and the internal diffusion coefficient of Weber. The ACFC demonstrates advanced kinetic yields compared to the granular activated carbon materials whatever VOC is considered. Therefore, pre-upgrading of biogas produced from wastewater sludge or co-digestion system by adsorption onto activated carbon appears worth investigating. Especially with ACFC material that presents correct adsorption capacities toward VOCs and concrete regeneration process opportunity to realize such process.

  1. Characterisation of commercial aromatised vinegars: phenolic compounds, volatile composition and antioxidant activity.

    Science.gov (United States)

    Cejudo-Bastante, María J; Durán-Guerrero, Enrique; Natera-Marín, Ramón; Castro-Mejías, Remedios; García-Barroso, Carmelo

    2013-04-01

    Nineteen commercially available aromatised vinegars, which were representative of this type of product, were tested to ascertain their phenolic and volatile composition and antioxidant activity. The aromatised vinegars came from different raw materials such as fruits, spices, herbs and vegetables. The antioxidant activity was determined by means of photochemiluminescence, phenolic profile by using ultra performance liquid chromatography with ultraviolet detection, and the volatile composition was determined by using stir bar sorptive extraction-gas chromatography-mass spectrometry. Nine polyphenolic compounds and 141 volatile compounds were identified. Vinegar aromatised with black truffle and rosemary obtained the highest values of antioxidant activity, followed by those aromatised with lemon, tarragon, aromatic herbs and vegetables. Antioxidant activity was highly correlated with the presence of trans-p-coutaric acid, trans-caftaric acid, 5-hydroxy-methylfurfural and furfural. Moreover, (Z)-3-hexen-1-ol was exclusive to the vinegar aromatised with tarragon, while p-menth-1,8-ol, dimethyl styrene, 4-methyl acetophenone and nootkatone were only found in vinegar aromatised with lemon. On the basis of the results from the cluster analysis of cases, it can be concluded that the grouping responds more to the trademark of each vinegar than to the raw material. © 2012 Society of Chemical Industry.

  2. Characterization of Active Compounds of Different Garlic (Allium sativum L. Cultivars

    Directory of Open Access Journals (Sweden)

    Szychowski Konrad A.

    2018-03-01

    Full Text Available Garlic (Allium sativum L. has a reputation as a therapeutic agent for many different diseases such as microbial infections, hypertension, hypercholesterolaemia, diabetes, atherosclerosis and cancer. Health benefits of garlic depend on its content of biologically-active compounds, which differs between cultivars and geographical regions. The aim of this study was to evaluate and compare the biological activity of aqueous extracts from nine garlic varieties from different countries (Poland, Spain, China, Portugal, Burma, Thailand and Uzbekistan. Antioxidant properties were evaluated through free radical scavenging (DPPH•, ABTS•+ and ion chelation (Fe2+, Cu2+ activities. The cytotoxicity of garlic extracts was evaluated in vitro using Neutral Red Uptake assay in normal human skin fibroblasts. The obtained results revealed that garlic extracts contained the highest amount of syringic and p-hydroxybenzoic acids derivatives. The lowest IC50 values for DPPH•, ABTS•+ scavenging and Cu2+ chelating ability were determined in Chinese garlic extracts (4.63, 0.43 and 14.90 μg/mL, respectively. Extracts from Spanish cultivar Morado and Chinese garlic were highly cytotoxic to human skin fibroblasts as they reduced cellular proliferation by 70–90%. We showed diverse contents of proteins and phenolic components in garlic bulbs from different varieties. The obtained results could help to choose the cultivars of garlic which contain significant amounts of active compounds, have important antioxidant properties and display low antiproliferative effect and/or low cytotoxicity against normal human skin fibroblast BJ.

  3. Elicitor Mixtures Significantly Increase Bioactive Compounds, Antioxidant Activity, and Quality Parameters in Sweet Bell Pepper

    Directory of Open Access Journals (Sweden)

    Lina Garcia-Mier

    2015-01-01

    Full Text Available Sweet bell peppers are greatly appreciated for their taste, color, pungency, and aroma. Additionally, they are good sources of bioactive compounds with antioxidant activity, which can be improved by the use of elicitors. Elicitors act as metabolite-inducing factors (MIF by mimic stress conditions. Since plants rarely experience a single stress condition one by one but are more likely to be exposed to simultaneous stresses, it is important to evaluate the effect of elicitors on plant secondary metabolism as mixtures. Jasmonic acid (JA, hydrogen peroxide (HP, and chitosan (CH were applied to fruits and plants of bell pepper as mixtures. Bioactive compounds, antioxidant activity, and quality parameters were evaluated. The assessed elicitor cocktail leads to an increase in the variables evaluated (P ≤ 0.05 when applied to mature fruits after harvest, whereas the lowest values were observed in the treatment applied to immature fruits. Therefore, the application of the elicitor cocktail to harvested mature fruits is recommended in order to improve bioactive compounds and the antioxidant activity of sweet bell peppers.

  4. Preparation of free, soluble conjugate, and insoluble-bound phenolic compounds from peels of rambutan (Nephelium lappaceum) and evaluation of antioxidant activities in vitro.

    Science.gov (United States)

    Sun, Liping; Zhang, Huilin; Zhuang, Yongliang

    2012-02-01

    The soluble phenolic compounds of rambutan peels (RP) were extracted by microwave-assisted extraction (MAE) and the operating parameters were optimized. The optimal conditions obtained were ethanol concentration of 80.85%, extraction time of 58.39 s, and the ratio of liquid to solid of 24.51:1. The soluble phenolic content by MAE was 213.76 mg GAE/g DW. The free, soluble conjugate, and insoluble-boaund phenolic compounds were prepared by alkaline hydrolysis, and the contents of 3 fractions were 185.12, 27.98 and 9.37 mg GAE/g DW, respectively. The contents of syringic acid and p-coumaric acid were high in the free fraction, showing 16.86 and 19.44 mg/g DW, and the soluble conjugate and insoluble-bound phenolics were mainly composed of gallic acid and caffeic acid. Furthermore, the antioxidant activities of 3 fractions were evaluated in 5 model systems. Results indicated that the free fraction had high antioxidant activities, compared with the soluble conjugate and insoluble-bound fractions. © 2012 Institute of Food Technologists®

  5. Identification of the functional binding pocket for compounds targeting small-conductance Ca²⁺-activated potassium channels.

    Science.gov (United States)

    Zhang, Miao; Pascal, John M; Schumann, Marcel; Armen, Roger S; Zhang, Ji-Fang

    2012-01-01

    Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class.

  6. Circadian variation and in vitro cytotoxic activity evaluation of volatile compounds from leaves of Piper regnellii (Miq) C. DC. var. regnellii (C. DC.) Yunck (Piperaceae).

    Science.gov (United States)

    Anderson, Roseli R; Girola, Natalia; Figueiredo, Carlos R; Londero, Vinicius S; Lago, João Henrique G

    2018-04-01

    Aiming detection of circadian variation in the chemical composition of volatiles from Piper regnellii, the leaves were collected during four different periods (8, 12, 16 and 20 h) in the same day. After extraction by hydrodistillation and GC/MS analysis, no significant variation was observed for the main compounds: germacrene D (45.6 ± 1.5-51.4 ± 3.1%), α-chamigrene (8.9 ± 1.3-11.3 ± 2.7%) and β-caryophyllene (8.2 ± 0.9-9.5 ± 0.3%). Evaluation of in vitro cytotoxicity against several cancer and non-tumourigenic cells indicated promising activity, especially to HeLa (human cervical carcinoma) with IC 50 ranging from 11 ± 3 to 17 ± 3 μg/mL. The obtained volatile oils were pooled and subjected to fractionation to afford pure β-caryophyllene, α-chamigrene and germacrene D, being this last compound the more active against HeLa cells with IC 50 of 7 ± 1 μg/mL (34 ± 5 μM). Therefore, the predominance of germacrene D in all analysed oils could justify, at least in part, the activity observed for the volatile compounds from P. regnellii leaves.

  7. Danshen-Chuanxiong-Honghua Ameliorates Cerebral Impairment and Improves Spatial Cognitive Deficits after Transient Focal Ischemia and Identification of Active Compounds

    Directory of Open Access Journals (Sweden)

    Xianhua Zhang

    2017-07-01

    Full Text Available Previously, we only apply a traditional Chinese medicine (TCM Danshen-Chuanxiong-Honghua (DCH for cardioprotection via anti-inflammation in rats of acute myocardial infarction by occluding coronary artery. Presently, we select not only DCH but also its main absorbed compound ferulic acid (FA for cerebra protection via similar action of mechanism above in animals of the transient middle cerebral artery occlusion (tMCAO. We investigated whether oral administration of DCH and FA could ameliorate MCAO-induced brain lesions in animals. By using liquid chromatography-tandem mass spectrometry (LC-MS/MS, we analyzed four compounds, including tanshinol, salvianolic acid B, hydroxysafflor yellow A and especially FA as the putative active components of DCH extract in the plasma, cerebrospinal fluid and injured hippocampus of rats with MCAO. In our study, it was assumed that FA played a similar neuroprotective role to DCH. We found that oral pretreatment with DCH (10 or 20 g/kg and FA (100 mg/kg improved neurological function and alleviated the infarct volume as well as brain edema in a dose-dependent manner. These changes were accompanied by improved ischemia-induced apoptosis and decreased the inflammatory response. Additionally, chronic treatment with DCH reversed MCAO-induced spatial cognitive deficits in a manner associated with enhanced neurogenesis and increased the expression of brain-derived neurotrophic factor in lesions of the hippocampus. These findings suggest that DCH has the ability to recover cognitive impairment and offer neuroprotection against cerebral ischemic injury via inhibiting microenvironmental inflammation and triggering of neurogenesis in the hippocampus. FA could be one of the potential active compounds.

  8. Relation of chromospheric activity to convection, rotation, and pre-main-sequence evolution

    International Nuclear Information System (INIS)

    Gilliland, R.L.

    1986-01-01

    Pre-main-sequence, or T Tauri, stars are characterized by much larger fluxes of nonradiative origin than their main-sequence counterparts. As a class, the T Tauri stars have only moderate rotation rates, making an explanation of their chromospheric properties based on rapid rotation problematic. The recent success of correlating nonradiative fluxes to the Rossby number, Ro = P/sub rot//tau/sub conv/, a central parameter of simple dynamo theories of magnetic field generation, has led to the suggestion that the same relation might be of use in explaining the pre-main-sequence (PMS) stars if tau/sub conv/ is very large. We show that tau/sub conv/ does depend strongly on evolutionary effects above the main sequence (MS), but that this dependence alone cannot account for the high observed nonradiative fluxes. The acoustic flux is also strongly dependent on PMS evolutionary state, and when coupled to the parameterization of magnetic activity based on Ro, these two mechanisms seem capable of explaining the high observed level of chromospheric activity in T Tauri stars. The moment of inertia decreases by two to three order of magnitude during PMS evolution. Since young MS stars do not rotate two to three orders of magnitude faster than PMS stars, rapid loss or redistribution of angular momentum must occur

  9. Synthesis of morpholine derivatives and Bunte's salt as compounds of potential radioprotective activity

    Energy Technology Data Exchange (ETDEWEB)

    Strzelczyk, M.; Kucharski, A. (Wojskowa Akademia Medyczna, Lodz (Poland))

    1980-01-01

    The purpose of the present study was to obtain several compounds possessing radioprotective activity. The syntheses yielded seven undescribed compounds i.e.: benzyl ester of the N-morpholinecarbathionothioglicol acid, ester bis S-(morpholine-4-thiocarbonyl)-2-thioethyl, morpholine salt of the N-morpholinecarbothionothiolic acid, sodium and potassium salt of S-morpholine-4-carbonyl, methylthiosulfate, sodium and potassium salt of beta-hydroxyethyl thiosulfate. Moreover, with the aid of other methods following compounds were synthetized: beta-S-(morpholine-4-thiocarbonyl) ethyl thiopropioniane, amide of the S-(morpholine-4-thiocarbonyl)-thioglicol acid, acid S-(morpholine-4-thiocarbonyl)-thioglicol acid, sodium salt of the S-(morpholine-4-thiocarbonyl)-thioglicol acid. The structure of these compounds was confirmed using elementary and spectral analysis.

  10. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells

    Directory of Open Access Journals (Sweden)

    Wu Jian

    2012-08-01

    Full Text Available Abstract Background Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Results Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide and late apoptotic cells (Annexin V+/PI+ increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Conclusions Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells.

  11. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells.

    Science.gov (United States)

    Wu, Jian; Yi, Wenshi; Jin, Linhong; Hu, Deyu; Song, Baoan

    2012-08-31

    Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide) and late apoptotic cells (Annexin V+/PI+) increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells.

  12. Assessment of rosehips based on the content of their biologically active compounds

    Czech Academy of Sciences Publication Activity Database

    Bhave, A.; Schulzová, V.; Chmelařová, H.; Mrnka, Libor; Hajslová, J.

    2017-01-01

    Roč. 25, č. 2 (2017), s. 681-690 ISSN 1021-9498 R&D Projects: GA TA ČR TE01020080 Institutional support: RVO:67985939 Keywords : rosehips * bioactive compounds * antioxidative activity Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.048, year: 2016

  13. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    Energy Technology Data Exchange (ETDEWEB)

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    goal was met in terms of reducing the number of costly experiments and helping to focus the experimental effort on the potentially optimal targets. We have used computational chemistry approaches to predict the thermodynamic properties of a wide range of compounds containing boron, nitrogen, hydrogen, and other elements as appropriate including carbon. These calculations were done in most cases with high level molecular orbital theory methods that have small error bars on the order of ± 1 to 2 kcal/mol. The results were used to benchmark more approximate methods such as density functional theory for larger systems and for database development. We predicted reliable thermodynamics for thousands of compounds for release and regeneration schemes to aid/guide materials design and process design and simulation. These are the first reliable computed values for these compounds and for many represent the only available values. Overall, the computational results have provided us with new insights into the chemistry of main group and organic-base chemical hydrogen systems from the release of hydrogen to the regeneration of spent fuel. A number of experimental accomplishments were also made in this project. The experimental work on hydrogen storage materials centered on activated polarized σ- or π-bonded frameworks that hold the potential for ready dihydrogen activation, uptake, and eventually release. To this end, a large number of non-traditional valence systems including carbenes, cyanocarbons, and C-B and and B-N systems were synthesized and examined. During the course of these studies an important lead arose from the novel valency of a class of stable organic singlet bi-radical systems. A synthetic strategy to an “endless” hydrogen storage polymer has been developed based on our cyanocarbon chemistry. A key issue with the synthetic efforts was being able to link the kinetics of release with the size of the substituents as it was difficult to develop a low molecular

  14. Main Group Element Chemistry in Service of Hydrogen Storage and Activation. Final report

    International Nuclear Information System (INIS)

    Dixon, David A.; Arduengo, Anthony J. III

    2010-01-01

    . This goal was met in terms of reducing the number of costly experiments and helping to focus the experimental effort on the potentially optimal targets. We have used computational chemistry approaches to predict the thermodynamic properties of a wide range of compounds containing boron, nitrogen, hydrogen, and other elements as appropriate including carbon. These calculations were done in most cases with high level molecular orbital theory methods that have small error bars on the order of ± 1 to 2 kcal/mol. The results were used to benchmark more approximate methods such as density functional theory for larger systems and for database development. We predicted reliable thermodynamics for thousands of compounds for release and regeneration schemes to aid/guide materials design and process design and simulation. These are the first reliable computed values for these compounds and for many represent the only available values. Overall, the computational results have provided us with new insights into the chemistry of main group and organic-base chemical hydrogen systems from the release of hydrogen to the regeneration of spent fuel. A number of experimental accomplishments were also made in this project. The experimental work on hydrogen storage materials centered on activated polarized σ- or π-bonded frameworks that hold the potential for ready dihydrogen activation, uptake, and eventually release. To this end, a large number of non-traditional valence systems including carbenes, cyanocarbons, and C-B and and B-N systems were synthesized and examined. During the course of these studies an important lead arose from the novel valency of a class of stable organic singlet bi-radical systems. A synthetic strategy to an 'endless' hydrogen storage polymer has been developed based on our cyanocarbon chemistry. A key issue with the synthetic efforts was being able to link the kinetics of release with the size of the substituents as it was difficult to develop a low molecular

  15. Characterization of odor-active compounds in cooked meat of farmed obscure puffer (Takifugu obscurus using gas chromatography–mass spectrometry–olfactometry

    Directory of Open Access Journals (Sweden)

    Ning-Ping Tao

    2014-12-01

    Full Text Available The volatile and odor-active compounds in cooked meat of farmed obscure puffer (Takifugu obscurus were analyzed by gas chromatography–mass spectrometry–olfactometry (GC–MS–O. The volatile compounds were extracted by the simultaneous distillation–extraction (SDE method, then separated and identified by GC–MS. Odor-active compounds in the SDE extract were characterized by GC–MS–O. A total of 68 volatile compounds were found, including 23 aldehydes, 10 alcohols, nine ketones, 17 N- or S-containing compounds and aromatics, three acids, three alkanes, and three esters. Of these, 31 odor-active compounds were detected and identified. Trimethylamine (fishy, octanal (grassy, leafy, green, (E-2-octenal (roast, fatty, 1-octen-3-ol (fishy, fatty, mushroom, grassy, 2-ethyl-1-hexanethiol (cooked fish, (E,E-2,4-octadienal (cooked meat, sweet, 2-acetylthiazole (meaty, roast, nutty, sulfur, 2-acetylpyrrole (nutty, walnut, bread were identified as the key odorants in the cooked meat of farmed obscure puffer based on posterior intensity and time-intensity methods.

  16. Xenobiotic organic compounds in wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Baun, Anders; Henze, Mogens

    2002-01-01

    hundred of XOCs, among them mainly originating from hygiene products: chlorophenols, detergents and phthalates. Several compounds not deriving from hygiene products were also identified e.g. flame-retardants and drugs. A environmental hazard identification showed that a large number of compounds with high...

  17. Kinetic and Isotherm Modelling of the Adsorption of Phenolic Compounds from Olive Mill Wastewater onto Activated Carbon

    Directory of Open Access Journals (Sweden)

    Alessandro A. Casazza

    2015-01-01

    Full Text Available The adsorption of phenolic compounds from olive oil wastewater by commercial activated carbon was studied as a function of adsorbent quantity and temperature. The sorption kinetics and the equilibrium isotherms were evaluated. Under optimum conditions (8 g of activated carbon per 100 mL, the maximum sorption capacity of activated carbon expressed as mg of caff eic acid equivalent per g of activated carbon was 35.8 at 10 °C, 35.4 at 25 °C and 36.1 at 40 °C. The pseudo-second-order model was considered as the most suitable for kinetic results, and Langmuir isotherm was chosen to bett er describe the sorption system. The results confi rmed the effi ciency of activated carbon to remove almost all phenolic compound fractions from olive mill effl uent. The preliminary results obtained will be used in future studies. The carbohydrate fraction of this upgraded residue could be employed to produce bioethanol, and adsorbed phenolic compounds can be recovered and used in different industries.

  18. Irreversible adsorption of phenolic compounds by activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  19. Irreversible adsorption of phenolic compounds by activated carbons

    International Nuclear Information System (INIS)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs

  20. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  1. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple.

    Directory of Open Access Journals (Sweden)

    Egle Machado de Almeida Siqueira

    Full Text Available The bioactive compounds content and the antioxidant activity (AA of twelve fruits native to the Cerrado were compared with the Red Delicious apple by means of the antiradical efficiency (using the 2,2-diphenyl-1-picrylhydrazil assay/DPPH, ferric reducing antioxidant power (FRAP and the β-carotene/linoleic system. The antiradical efficiency (AE and the kinetic parameters (Efficient concentration/EC50 and time needed to reach the steady state to EC50 concentration/TEC50 of the DPPH curve were also evaluated for comparison with the Trolox equivalent (TE values. A strong, significant and positive correlation was observed between the TE and AE values, whereas a weak and negative correlation was observed between TE and EC50, suggesting that the values of AE and TE are more useful for the determination of antiradical activity in fruits than the widely used EC50. The total phenolic content found in the fruits corresponded positively to their antioxidant activity. The high content of bioactive compounds (flavanols, anthocyanins or vitamin C relative to the apple values found in araticum, cagaita, cajuzinho, jurubeba, lobeira, magaba and tucum corresponded to the high antioxidant activity of these fruits. Flavanols and anthocyanins may be the main bioactive components in these Cerrado fruits. The daily consumption of at least seven of the twelve Cerrado fruits studied, particularly, araticum, cagaita, lobeira and tucum, may confer protection against oxidative stress, and thus, they may prevent chronic diseases and premature aging. The findings of this study should stimulate demand, consumption and cultivation of Cerrado fruits and result in sustainable development of the region where this biome dominates.

  2. A new parameter to simultaneously assess antioxidant activity for multiple phenolic compounds present in food products.

    Science.gov (United States)

    Yang, Hong; Xue, Xuejia; Li, Huan; Tay-Chan, Su Chin; Ong, Seng Poon; Tian, Edmund Feng

    2017-08-15

    In this work, we established a new methodology to simultaneously assess the relative reaction rates of multiple antioxidant compounds in one experimental set-up. This new methodology hypothesizes that the competition among antioxidant compounds towards limiting amount of free radical (in this article, DPPH) would reflect their relative reaction rates. In contrast with the conventional detection of DPPH decrease at 515nm on a spectrophotometer, depletion of antioxidant compounds treated by a series of DPPH concentrations was monitored instead using liquid chromatography coupled with quadrupole time-of-flight (LC-QTOF). A new parameter, namely relative antioxidant activity (RAA), has been proposed to rank these antioxidants according to their reaction rate constants. We have investigated the applicability of RAA using pre-mixed standard phenolic compounds, and also extended this application to two food products, i.e. red wine and green tea. It has been found that RAA correlates well with the reported k values. This new parameter, RAA, provides a new perspective in evaluating antioxidant compounds present in food and herbal matrices. It not only realistically reflects the antioxidant activity of compounds when co-existing with competitive constituents; and it could also quicken up the discovery process in the search for potent yet rare antioxidants from many herbs of food/medicinal origins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Methylene-Cycloalkylacetate (MCA) Scaffold-Based Compounds as Novel Neurotropic Agents.

    Science.gov (United States)

    Lankri, David; Haham, Dikla; Lahiani, Adi; Lazarovici, Philip; Tsvelikhovsky, Dmitry

    2018-04-18

    One of the main symptoms in degenerative diseases is death of neuronal cell followed by the loss of neuronal pathways. In neuronal cultures, neurite outgrowths are cell sprouts capable of transforming into either axons or dendrites, to further form functional neuronal synaptic connections. Such connections have an important role in brain cognition, neuronal plasticity, neuronal survival, and regeneration. Therefore, drugs that stimulate neurite outgrowth may be found beneficial in ameliorating neural degeneration. Here, we establish the existence of a unique family of methylene-cycloalkylacetate-based molecules (MCAs) that interface with neuronal cell properties and operate as acceptable pharmacophores for a novel neurotropic (neurite outgrowth inducing) lead compounds. Using an established PC12 cell bioassay, we investigated the neurotropic effect of methylene-cycloalkylacetate compounds by comparison to NGF, a known neurotropic factor. Micrographs of the cells were collected by using a light microscope camera, and digitized photographs were analyzed for compound-induced neurotropic activity using an NIH image protocol. The results indicate that the alkene element, integrated within the cycloalkylacetate core, is indispensable for neurotropic activity. The discovered lead compounds need further mechanistic investigation and may be improved toward development of a neurotropic drug.

  4. Nitrite and nitroso compounds can serve as specific catalase inhibitors.

    Science.gov (United States)

    Titov, Vladimir Yu; Osipov, Anatoly N

    2017-03-01

    We present evidence that nitrite and nitrosothiols, nitrosoamines and non-heme dinitrosyl iron complexes can reversibly inhibit catalase with equal effectiveness. Catalase activity was evaluated by the permanganatometric and calorimetric assays. This inhibition is not the result of chemical transformations of these compounds to a single inhibitor, as well as it is not the result of NO release from these substances (as NO traps have no effect on the extent of inhibition). It was found that chloride and bromide in concentration above 80 mM and thiocyanate in concentration above 20 μM enhance catalase inhibition by nitrite and the nitroso compounds more than 100 times. The inhibition degree in this case is comparable with that induced by azide. We propose that the direct catalase inhibitor is a positively charged NO-group. This group acquires a positive charge in the active center of enzyme by interaction of nitrite or nitroso compounds with some enzyme groups. Halides and thiocyanate protect the NO + group from hydration and thus increase its inhibition effect. It is probable that a comparatively low chloride concentration in many cells is the main factor to protect catalase from inhibition by nitrite and nitroso compounds.

  5. Synthesis and antiproliferative activity of novel polynuclear heterocyclic compounds derived from 2,3-diaminophenazine.

    Science.gov (United States)

    Mahran, Asma M; Ragab, Sherif Sh; Hashem, Ahmed I; Ali, Mamdouh M; Nada, Afaf A

    2015-01-27

    2,3-Diaminophenazine 1 was used as a precursor for the preparation of some novel phenazine derivatives such as imidazo[4,5-b]phenazine-2-thione 2, its methylthio 3, ethyl 1-aryl-3H-[1,2,4]triazolo[2,3-a]imidazo[4,5-b]phenazines 8a-c, ethyl (2Z)-[3-aminophenazin-2-yl)amino](phenylhydrazono)ethanoate 9, pyrazino[2,3-b]phenazine derivatives 10, 12, 15-17, [1,4]diazepino[2,3-b]phenazine derivatives 13, 14, 2,3-dibenzoylaminophenazine 18, 1H-Imidazo[4,5-b]phenazine derivatives 20, 23a-c, 24, 25 and 4-[(E)-(3-amino phenazin-2-yl)diazenyl] derivatives 27-29. All compounds were tested as inhibitors of the proliferation of human lung carcinoma and colorectal cancer cell lines through inhibition of Tyrosine Kinases. Most of compounds exert good activity against the two cancer cell lines. Five compounds (1, 2, 3, 25 and 28) were found to possess the same activity as the standard drug Cisplatin. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Phytochemical compounds and antioxidant activities of the almond kernel (prunus dulcis mill.) from turkey

    International Nuclear Information System (INIS)

    Keser, S.; Demir, E.; Yilmaz, O.

    2014-01-01

    Almond belong to Rosaceae family and it is a rich source of nutrients because of phytochemicals including phenolic compounds, phytosterols, flavonoids, phenolic acids, vitamins and fatty acids. In this study, we determined antioxidant activities and phenolic, flavonoid, phytosterol, lipid soluble vitamin and fatty acid contents of almond kernel extract. Antioxidant activities of almond extract was investigated by DPPH, ABTS •+ , OH radical scavenging, metal chelating activity and determination of lipid peroxidation levels (TBARS). Almond extract scavenged 89.50% of the ABTS radical, 66.77% of the hydroxyl radical, and 87.30% of the DPPH radical. This extract was shown 72.05% of the metal chelating activity. Kaempferol (223.54 μg/g), naringenin (5.01 micro g/g), vanillic acid (110.89 micro g/g), caffeic acid (65.72 micro g/g) and ferulic acid (16.49 micro g/g) were determined in the almond extract. The major fatty acids were oleic acid (76.23%) and linoleic acid (15.43%) in almond extract. d-tocopherol (3.05 mg/kg), a-tocopherol (104.40 mg/kg), and vitamin K (38.25 mg/kg) were determined in the almond extract. These results indicate that almond extract is a good natural source of fatty acids, lipid soluble vitamins, phytosterols, flavonoid, phenolic compounds. In addition, these findings are important for the nutrition sciences, because fatty acids, lipid soluble vitamins, phytosterols, flavonoid, phenolic compounds and antiradical properties, in particular, seem to have considerable effect on health. (author)

  7. A comparative study of aroma-active compounds between dark and milk chocolate: relationship to sensory perception.

    Science.gov (United States)

    Liu, Jianbin; Liu, Mengya; He, Congcong; Song, Huanlu; Guo, Jia; Wang, Ye; Yang, Haiying; Su, Xiaoxia

    2015-04-01

    The most important aroma-active compounds of two types of chocolate and cocoa liquor used for their production were analysed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and aroma extract dilution analysis (AEDA). Furthermore, the relationship between odorants and sensory perception of chocolate was measured by quantitative analysis, sensory evaluation and correlation analysis. In addition, some chemicals were added to the original dark or milk chocolate to validate their roles in the aroma property of chocolate. A total of 32 major aroma-active compounds were identified in the chocolate with the flavour dilution factors of 27-729 by AEDA, including seven aldehydes, six pyrazines, three pyrroles, four carboxylic acids, four lactones, two alcohols, two ketones, one ester, one pyrone, one furan and one sulfur-containing compound. Further quantitative analysis showed that dark chocolate had higher contents of pyrazine, pyrrole, carboxylic acids, alcohols and Strecker aldehydes, whereas the concentration of lactones, esters, long chain aldehydes and ketones were higher in the milk type. Differences in volatile composition and descriptive flavour attributes between the dark and milk chocolate were observed. The relationship between aroma-active compounds and sensory perception in the chocolate was verified. © 2014 Society of Chemical Industry.

  8. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying

    2010-02-01

    Biofouling causes huge economic loss and a recent global ban on organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. Five structurally similar compounds were isolated from the crude extract of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared to probe structure-activity relationships of compounds. The functional moiety responsible for antifouling activity lies in the 2-furanone ring and that the lipophilicity of compounds substantially affects their antifouling activities. Based on these findings, a compound with a straight alkyl side-chain was synthesized and proved itself as a very effective non-toxic, anti-larval settlement agent against three major fouling organisms. The strong antifouling activity, relatively low toxicity, and simple structures of these compounds make them promising candidates for new antifouling additives. © 2009 Elsevier Ltd. All rights reserved.

  9. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis.

    Science.gov (United States)

    Johann, Susana; Sá, Nívea P; Lima, Luciana A R S; Cisalpino, Patricia S; Cota, Betania B; Alves, Tânia M A; Siqueira, Ezequias P; Zani, Carlos L

    2010-10-12

    The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. The compounds isolated from S. terebinthifolius were identified as schinol (1), a new biphenyl compound, namely, 4'-ethyl-4-methyl-2,2',6,6'-tetrahydroxy[1,1'-biphenyl]-4,4'-dicarboxylate (2), quercetin (3), and kaempferol (4). Compounds 1 and 2 were active against different strains of P. brasiliensis, showing a minimal inhibitory concentration value against the isolate Pb B339 of 15.6 μg/ml. The isolate Pb 1578 was more sensitive to compound 1 with a MIC value of 7.5 μg/ml. Schinol presented synergistic effect only when combined with itraconazole. The compounds isolated from S. terebinthifolius were not able to inhibit cell wall synthesis or assembly using the sorbitol assay. This work reveals for the first time the occurrence of compound 2 and discloses activity of compounds 1 and 2 against several clinical isolates of P. brasiliensis. These results justify further studies to clarify the mechanisms of action of these compounds.

  10. Acaricidal activity of Derris floribunda essential oil and its main constituent

    Institute of Scientific and Technical Information of China (English)

    Ana Claudia Fernandes Amaral; Aline de S.Ramos; Márcia Reis Pena; José Luiz Pinto Ferreira; Jean Michel S.Menezes; Geraldo J.N.Vasconcelos; Neliton Marques da Silva

    2017-01-01

    Objective:To evaluate the acaricidal activity of the essential oil obtained from roots of Derrisfloribunda (D.floribunda) (Miq.) Benth,and its main constituent nerolidol against the Mexican mite Tetranychus mexicanus (T.mexicanus) (McGregor).Methods:The essential oil from the roots of D.floribunda collected in the Amazon region (Brazil) was obtained by hydrodistillation.Its chemical composition was determined by GC-MS analysis.The acaricidal activities of this essential oil and nerolidol,were evaluated by recording the number of dead females (mortality) and eggs (fertility).Results:The essential oil showed sesquiterpenes as major volatile components.Nerolidol,the main component,represented 68.5% of the total composition of the essential oil.D.floribunda essential oil and nerolidol showed acaricidal activity,with LC50 of 9.61 μg/mL air and 9.2 μg/mL air,respectively,over a 72 h period.In addition,both the essential oil and nerolidol significantly reduced the fecundity of T.mexicanus.Contusions:Due to the economic importance of T.mexicanus and the lack of new pesticides,our data are very promising in the search for efficient and safer acaricidal products.Furthermore,this is the first report about the chemical composition and bioactivity of the essential oil of the Amazon plant species D.floribunda.

  11. Efficacy of HOCl scavenging by sulfur-containing compounds: antioxidant activity of glutathione disulfide?

    NARCIS (Netherlands)

    den Hartog, G.J.M.; Haenen, G.R.M.M.; Vegt, E.; van der Vijgh, W.J.F.; Bast, A.

    2002-01-01

    Efficacy of HOCl scavenging by sulfur-containing compounds: antioxidant activity of glutathione disulfide? den Hartog GJ, Haenen GR, Vegt E, van der Vijgh WJ, Bast A. Department of Pharmacology and Toxicology, Maastricht University, The Netherlands. Hypochlorous acid (HOCl) is a bactericidal

  12. Antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds from stem bark of Albizia adianthifolia (Mimosoideae).

    Science.gov (United States)

    Tamokou, Jean de Dieu; Simo Mpetga, Deke James; Keilah Lunga, Paul; Tene, Mathieu; Tane, Pierre; Kuiate, Jules Roger

    2012-07-18

    Albizia adianthifolia is used traditionally in Cameroon to treat several ailments, including infectious and associated diseases. This work was therefore designed to investigate the antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds isolated from the stem bark of this plant. The plant extract was prepared by maceration in ethyl acetate. Its fractionation was done by column chromatography and the structures of isolated compounds were elucidated using spectroscopic data in conjunction with literature data. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and trolox equivalent antioxidant capacity (TEAC) assays were used to detect the antioxidant activity. Broth micro-dilution method was used for antimicrobial test. Total phenol content was determined spectrophotometrically in the extracts by using Folin-Ciocalteu method. The fractionation of the extract afforded two known compounds: lupeol (1) and aurantiamide acetate (2) together with two mixtures of fatty acids: oleic acid and n-hexadecanoic acid (B₁); n-hexadecanoic acid, octadecanoic acid and docosanoic acid (B₂). Aurantiamide acetate was the most active compound. The total phenol concentration expressed as gallic acid equivalents (GAE) was found to vary from 1.50 to 13.49 μg/ml in the extracts. The antioxidant activities were well correlated with the total phenol content (R² = 0.946 for the TEAC method and R² = 0.980 for the DPPH free-radical scavenging assay). Our results clearly reveal that the ethyl acetate extract from the stem bark of A. adianthifolia possesses antioxidant and antimicrobial principles. The antioxidant activity of this extract as well as that of compound 2 are being reported herein for the first time. These results provide promising baseline information for the potential use of this plant as well as compound 2 in the treatment of oxidative damage and infections associated with the studied microorganisms.

  13. Cytotoxic Compounds from Aerial Organs of Xanthium strumarium.

    Science.gov (United States)

    Ferrer, Janet Piloto; Zampini, Iris Catiana; Cuello, Ana Soledad; Francisco, Marbelis; Romero, Aylema; Valdivia, Dayana; Gonzalez, Maria; Carlos Salas; Lamar, Angel Sanchez; Isla, Maria Inés

    2016-03-01

    Xanthium strumarium L., the main species of the genus Xanthium, is ubiquitously distributed. The aim of this study was to determine the cytotoxic effect of aerial organs of X strumarium, grown in Cuba, against cancer cell lines and the isolation of compounds potentially responsible for this activity. Initially, an ethanol partitioning procedure yielded the XSE extract that was subsequently fractionated with chloroform resulting in a XSCF fraction. Both, XSE and XSCF fractions exhibited cytotoxic effects on MDA MB-23 1, MCF7, A549 and CT26 cell lines by using the MTT assay. Above all, the XSCF fraction was more active than XSE. For this reason, XSCF was subsequently fractionated by silica gel chromatography and the active fractions submitted to semi-preparative HPLC for isolation of bioactive compounds. Six sub-fractions (SF1 to SF6) were recovered. Sub-fractions 3 and 6 were the most active on each assayed cell line, while sub-fractions 4 and 5 were only active against A549 and CT26 cell lines. In each case, sub-fraction 6 showed the strongest inhibitory effect. The HPLC-DAD fingerprint of sub-fraction 6 showed a single peak that was identified by GC-MS as (-) spathulenol, a sesquiterpene with reported antitumor activity.

  14. Medical Applications and Toxicities of Gallium Compounds

    Directory of Open Access Journals (Sweden)

    Christopher R. Chitambar

    2010-05-01

    Full Text Available Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use.

  15. Isolation and Characterization of Antibacterial Compounds from Sea Urchin

    Directory of Open Access Journals (Sweden)

    Febrina Olivia Akerina,

    2015-06-01

    Full Text Available method, toxicity potential using brine shrimp lethality test (BSLT method, bioactive compound using phytochemical method, and proximate composition by AOAC. This research was devided into two phases, the preliminary research was to determine the best body part of sea urchin showing antibacterial activity. Sea urchins were collected from Pramuka Island and extracted by meseration method. For the preliminary research, gonad extract showed the high antibacterial activity against E. coli and S. aureus at 1.83 ± 0.74 mm and 1.5 mm, respectively. The main research includes the determination of proximate composition, toxicity, bioactive compound, and antibacterial activity from the best body part of sea urchin. The proximate composition from gonad of sea urchin showed that water content 64.97 ± 0.08%; ash 2.72 ± 0.13%; lipid 19.73 ± 0.04%; protein 12.26 ± 0.3%, and 0.33 ± 0.17%, respectively. The detected bioactive compounds from the three different solvents of gonads extracts were steroid, triterpenoid and saponin. The result of lethal toxicity (LC50 from the three gonads extract was 471.861 ppm (n-hexane, 563.226 ppm (ethyl acetate and 577.531 ppm (methanolic, respectively. Gonads ethyl acetate extracts showed the highest antibacterial activity than n-hexane and methanolic extract, its inhibition zone was 2.71 mm against S. aureus and 4.13 against E. coli.

  16. Phenolic compounds from the flowers of Nepalese medicinal plant Aconogonon molle and their DPPH free radical-scavenging activities.

    Science.gov (United States)

    Joshi, Khem Raj; Devkota, Hari Prasad; Watanabe, Takashi; Yahara, Shoji

    2014-01-01

    Eleven phenolic compounds, quercetin (1), quercetin 3-O-β-d-galactopyranoside (2), quercetin 3-O-(6″-O-galloyl)-β-d-galactopyranoside (3), quercetin 3-O-(6″-O-caffeoyl)-β-d-galactopyranoside (4), quercetin 3-O-β-d-glucopyranoside (5), rutin (6) quercetin 3-O-α-l-arabinopyranoside (7), quercetin 3-O-α-l-arabinofuranoside (8), protocatechulic acid (9), gallic acid (10) and chlorogenic acid (11), were isolated from the flowers of Aconogonon molle, a Nepalese medicinal plant. Structures of these compounds were elucidated on the basis of spectroscopic methods. All these compounds were isolated for the first time from flowers, and five compounds (4, 5, 8, 9 and 11) were isolated for the first time from A. molle. All of these isolated compounds were evaluated for their in vitro antioxidant activity by using the 1,1-diphenyl-2-picrylhydrazyl radical-scavenging method. Quercetin (1), quercetin glycosides (2-8) and gallic acid (10) exhibited potent antioxidant activity.

  17. [Elimination of volatile compounds of leaf tobacco from air emissions using biofiltration].

    Science.gov (United States)

    Zagustina, N A; Misharina, T A; Vepritskiĭ, A A; Zhukov, V G; Ruzhitskiĭ, A O; Terenina, M B; Krikunova, N I; Kulikova, A K; Popov, V O

    2012-01-01

    The composition of the volatile organic compounds (VOCs) of various leaf tobacco brands and their blends has been studied. The differences in the content of nicotine, solanone, tetramethyl hexadecenol, megastigmatrienones, and other compounds, determining the specific tobacco smell, have been revealed. A microbial consortium, which is able to deodorize simulated tobacco emissions and decompose nicotine, has been formed by long-term adaptation to the VOCs of tobacco leaves in a laboratory reactor, functioning as a trickle-bed biofilter. Such a biofilter eliminates 90% of the basic toxic compound (nicotine) and odor-active compounds; the filtration efficiency does not change for tobacco brands with different VOC concentrations or in the presence of foreign substances. The main strains, isolated from the formed consortium and participating in the nicotine decomposition process, belong to the genera Pseudomonas, Bacillus, and Rhodococcus. An examination of the biofilter trickling fluid has shown full decomposition of nicotine and odor-active VOCs. The compounds, revealed in the trickling fluid, did not have any odor and were nontoxic. The obtained results make it possible to conduct scaling of the biofiltration process to eliminate odor from air emissions in the tobacco industry.

  18. Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy

    Directory of Open Access Journals (Sweden)

    Marco Malavolta

    2018-01-01

    Full Text Available The reactivation of senescence in cancer and the subsequent clearance of senescent cells are suggested as therapeutic intervention in the eradication of cancer. Several natural compounds that activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2 pathway, which is involved in complex cytoprotective responses, have been paradoxically shown to induce cell death or senescence in cancer. Promoting the cytoprotective Nrf2 pathway may be desirable for chemoprevention, but it might be detrimental in later stages and advanced cancers. However, senolytic activity shown by some Nrf2-activating compounds could be used to target senescent cancer cells (particularly in aged immune-depressed organisms that escape immunosurveillance. We herein describe in vitro and in vivo effects of fifteen Nrf2-interacting natural compounds (tocotrienols, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, silybin, phenethyl isothiocyanate, sulforaphane, triptolide, allicin, berberine, piperlongumine, fisetin, and phloretin on cellular senescence and discuss their use in adjuvant cancer therapy. In light of available literature, it can be concluded that the meaning and the potential of adjuvant therapy with natural compounds in humans remain unclear, also taking into account the existence of few clinical trials mostly characterized by uncertain results. Further studies are needed to investigate the therapeutic potential of those compounds that display senolytic activity.

  19. Marine Invertebrate Xenobiotic-Activated Nuclear Receptors: Their Application as Sensor Elements in High-Throughput Bioassays for Marine Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Ingrid Richter

    2014-11-01

    Full Text Available Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds.

  20. Synthesis and Antimicrobial Activity of New Schiff Base Compounds Containing 2-Hydroxy-4-pentadecylbenzaldehyde Moiety

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2014-01-01

    Full Text Available Various novel Schiff base compounds have been synthesized by reaction of 2-hydroxy-4-pentadecylbenzaldehyde with substituted benzothiophene-2-carboxylic acid hydrazide and different substituted aromatic or heterocyclic amines in the presence of acetic acid in ethanol. The structures of all these compounds were confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR, and mass spectral data and have been screened for antibacterial and antifungal activity.

  1. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    Science.gov (United States)

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. TRIGGERING SUBLIMATION-DRIVEN ACTIVITY OF MAIN BELT COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, N. [Institute for Astronomy, University of Hawaii-Manoa, Honolulu, HI 96825 (United States); Maindl, T. I.; Dvorak, R. [Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Schäfer, C. [Institut für Astronomie und Astrophysik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen (Germany); Speith, R., E-mail: nader@ifa.hawaii.edu [Physikalisches Institut, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen (Germany)

    2016-10-10

    It has been suggested that the comet-like activity of main belt comets (MBCs) is due to the sublimation of sub-surface water–ice that has been exposed as a result of their surfaces being impacted by meter-sized bodies. We have examined the viability of this scenario by simulating impacts between meter-sized and kilometer-sized objects using a smooth particle hydrodynamics approach. Simulations have been carried out for different values of the impact velocity and impact angle, as well as different target material and water-mass fractions. Results indicate that for the range of impact velocities corresponding to those in the asteroid belt, the depth of an impact crater is slightly larger than 10 m, suggesting that if the activation of MBCs is due to the sublimation of sub-surface water–ice, this ice has to exist no deeper than a few meters from the surface. Results also show that ice exposure occurs in the bottom and on the interior surface of impact craters, as well as on the surface of the target where some of the ejected icy inclusions are re-accreted. While our results demonstrate that the impact scenario is indeed a viable mechanism to expose ice and trigger the activity of MBCs, they also indicate that the activity of the current MBCs is likely due to ice sublimation from multiple impact sites and/or the water contents of these objects (and other asteroids in the outer asteroid belt) is larger than the 5% that is traditionally considered in models of terrestrial planet formation, providing more ice for sublimation. We present the details of our simulations and discuss their results and implications.

  3. Study On DPPH Free Radical - Scavenging Activity Of Antioxidant Compounds In Plants Composing BIN-5 Biological Active Preparation

    Directory of Open Access Journals (Sweden)

    Purevjav Urjintseren

    2015-08-01

    Full Text Available Recently there has been common trend among people to refuse from food and medications produced via synthetic method but try to consume natural products as much as possible instead. In this regard wild berries and medicinal plants are considered to be highly essential for human health as these kinds of plants serve as rich sources of biological active substances-phenol compounds. As a result of conducting research on source and spread of herbs which are commonly used as anti-diabetic medication we have developed a technological method to extract preparations from medicinal herbs such as Peony Paeonia lactiflora Pall Dandelion Taraxacum officinalis Wigg. Huckleberry Vaccinium myrtillus L Blueberry Vaccinium uliginosum L Cranberry Vaccinium vitisidaea L and Stinging nettles Urtica dioica accordingly studied chemical composition and antioxidant activity and conducted pharmacological study. With the use of Folin Denis amp Folin Ciocalteu reagent methodit was determined that the content of polyphenol compounds was 4.14-5.17 and 27.5 101.5mgml. The study was also aimed to investigate DPPH free radical-scavenging activity in connection with term temperature and concentration to identify the most rational technological procedure. As a result of study it was identified that free radical-scavenging activity of herbs selected for the study was generally estimated at 564.25-1750.00 mcgml whereas antioxidant activity of solvents with 2-10 mgml concentration was 417.20-1750.00 mcg ml respectively. This shows that such activity is dependent on concentration. However in temperature of 30 1000amp1057 degrees their activity has slowly been decreased by 1750 mcgml 476.7mcgml depending on temperature. Regarding the stinging nettles the activity was grown directly dependent from temperature. DPHH free radical-scavenging activity was gradually increased in 1-10 minutes but was relatively stable and active in 11-16 minutes.

  4. Characterization of the Key Aroma Compounds in Proso Millet Wine Using Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jingke Liu

    2018-02-01

    Full Text Available The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA, 100 μm polydimethylsiloxane (PDMS, 75 μm Carboxen (CAR/PDMS, and 50/30 μm divinylbenzene (DVB/CAR/PDMS fibers, and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV. Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1, and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50, having a high OAV. Principal component analysis (PCA showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME fibers.

  5. Synthesis, characterization and anti-proliferative activity of heterocyclic hypervalent organoantimony compounds.

    Science.gov (United States)

    Chen, Yi; Yu, Kun; Tan, Nian-Yuan; Qiu, Ren-Hua; Liu, Wei; Luo, Ning-Lin; Tong, Le; Au, Chak-Tong; Luo, Zi-Qiang; Yin, Shuang-Feng

    2014-05-22

    Three heterocyclic hypervalent organoantimony chlorides RN(CH2C6H4)2SbCl (2a R = t-Bu, 2b R = Cy, 2c R = Ph) and their chalcogenide derivatives [RN(CH2C6H4)2Sb]2O (3a R = t-Bu, 3b R = Cy, 3c R = Ph) were synthesized and characterized by techniques such as (1)H NMR, (13)C NMR, X-ray diffraction, and elemental analysis. It is found that the anti-proliferative activity detected over these compounds can be attributed to the coordination bond between the antimony and nitrogen atoms of these compounds. Moreover, a preliminary study on mechanistic action suggests that the inhibition effect is ascribable to cell cycle arrest and cell apoptosis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds

    Science.gov (United States)

    Sadasivam, K.; Kumaresan, R.

    2011-03-01

    The potent antioxidant activity of flavonoids relevant to their ability to scavenge reactive oxygen species is the most important function of flavonoids. Density functional theory calculations were explored to investigate the antioxidant activity of flavonoid compounds such as apigenin and scutellarein. The biological characteristics are dependent on electronic parameters, describing the charge distribution on the rings of the flavonoid molecules. The computation of structural and various molecular descriptors such as polarizability, dipole moment, energy gap, homolytic O-H bond dissociation enthalpies (BDEs), ionization potential (IP), electron affinity, hardness, softness, electronegativity, electrophilic index and density plot of molecular orbital for neutral as well as radical species were carried out and studied. The B3LYP/6-311G(d,p) basis set was adopted for all the computations. This computation reveals that scutellarein exhibits higher degree of antioxidant activity than apigenin. Their dipole moment and polarizability analysis show that both the compounds are polar in nature and have the capacity to polarize other atoms.

  7. Antimicrobial and Antiradical Activity of Extracts Obtained from Leaves of Five Species of the Genus Bergenia: Identification of Antimicrobial Compounds.

    Science.gov (United States)

    Żbikowska, Beata; Franiczek, Roman; Sowa, Alina; Połukord, Grażyna; Krzyżanowska, Barbara; Sroka, Zbigniew

    2017-09-01

    An important focus of modern medicine is the search for new substances and strategies to combat infectious diseases, which present an increasing threat due to the growth of bacterial resistance to antibiotics. Another problem concerns free radicals, which in excess can cause several serious diseases. An alternative to chemical synthesis of antimicrobial and antiradical compounds is to find active substances in plant raw materials. We prepared extracts from leaves of five species of the genus Bergenia: B. purpurascens, B. cordifolia, B. ligulata, B. crassifolia, and B. ciliata. Antimicrobial and antiradical features of extracts and raw materials were assessed, and the quantities of phenolic compounds were determined. We also evaluated, using high-performance liquid chromatography, the amounts of arbutin and hydroquinone, compounds related to antimicrobial activity of these raw materials. The strongest antiradical properties were shown by leaves of B. crassifolia and B. cordifolia, the lowest by leaves of B. ciliata. The antiradical activity of extracts showed a strong positive correlation with the amount of phenols. All raw materials have significant antimicrobial properties. Among them, the ethyl acetate extracts were the most active. Antimicrobial activity very weakly correlated with the amount of arbutin, but correlated very strongly with the contents of both hydroquinone and phenolic compounds. Additional experiments using artificially prepared mixtures of phenolic compounds and hydroquinone allowed us to conclude that the most active antimicrobial substance is hydroquinone.

  8. Antiviral lead compounds from marine sponges

    KAUST Repository

    Sagar, Sunil

    2010-10-11

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. 2010 by the authors; licensee MDPI.

  9. Novel long-chain compounds with both immunomodulatory and MenA inhibitory activities against Staphylococcus aureus and its biofilm.

    Science.gov (United States)

    Choi, Seoung-Ryoung; Frandsen, Joel; Narayanasamy, Prabagaran

    2017-01-10

    Menaquinone (MK) biosynthesis pathway is a potential target for evaluating antimicrobials in gram-positive bacteria. Here, 1,4-dihydroxy-2-naphthoate prenyltransferase (MenA) was targeted to reduce methicillin-resistant Staphylococcus aureus (MRSA) growth. MenA inhibiting, long chain-based compounds were designed, synthesized and evaluated against MRSA and menaquinone utilizing bacteria in aerobic conditions. The results showed that these bacteria were susceptible to most of the compounds. Menaquinone (MK-4) supplementation rescued MRSA growth, suggesting these compounds inhibit MK biosynthesis. 3a and 7c exhibited promising inhibitory activities with MICs ranging 1-8 μg/mL against MRSA strains. The compounds did not facilitate small colony variant formation. These compounds also inhibited the biofilm growth by MRSA at high concentration. Compounds 3a, 6b and 7c displayed a promising extracellular bactericidal activity against MRSA at concentrations equal to and four-fold less than their respective MICs. We also observed cytokines released from THP-1 macrophages treated with compounds 3a, 6b and 7c and found decreases in TNF-α and IL-6 release and increase in IL-1β. These data provide evidence that MenA inhibitors act as TNF-α and IL-6 inhibitors, raising the potential for development and application of these compounds as potential immunomodulatory agents.

  10. Odor-Active Compounds in the Special Flavor Hops Huell Melon and Polaris.

    Science.gov (United States)

    Neiens, Silva D; Steinhaus, Martin

    2018-02-14

    The volatiles isolated from samples of the special flavor hop varieties, Huell Melon and Polaris, and from the aroma hop variety, Hallertau Tradition, by solvent extraction and solvent-assisted flavor evaporation (SAFE) were subjected to a comparative aroma extract dilution analysis (cAEDA), which resulted in 46 odor-active compounds in the flavor dilution (FD) factor range of 16 to 2048. On the basis of high FD factors, myrcene, (3R)-linalool, and 2- and 3-methylbutanoic acid were confirmed as important variety-independent hop odorants. (1R,4S)-Calamenene was identified for the first time as an odor-active compound in hops. Clear differences in the FD factors and their subsequent objectification by stable isotope dilution quantitation suggested that high concentrations of the esters ethyl 2-methylbutanoate, ethyl 2-methylpropanoate, and propyl 2-methylbutanoate cause the characteristic fruity, cantaloupe-like odor note in Huell Melon hops, whereas the fruity and minty odor notes in Polaris are associated with high amounts of 3-methylbutyl acetate and 1,8-cineole.

  11. Purification and characterization of two new cell-bound bioactive compounds produced by wild Lactococcus lactis strain.

    Science.gov (United States)

    Saraiva, Margarete Alice Fontes; Brede, Dag Anders; Nes, Ingolf Figved; Baracat-Pereira, Maria Cristina; de Queiroz, Marisa Vieira; de Moraes, Célia Alencar

    2017-07-03

    Novel compounds and innovative methods are required considering that antibiotic resistance has reached a crisis point. In the study, two cell-bound antimicrobial compounds produced by Lactococcus lactis ID1.5 were isolated and partially characterized. Following purification by cationic exchange and a solid-phase C18 column, antimicrobial activity was recovered after three runs of RPC using 60% (v/v) and 100% (v/v) of 2-propanol for elution, suggesting that more than one antimicrobial compound were produced by L. lactis ID1.5, which were in this study called compounds AI and AII. The mass spectrum of AI and AII showed major intensity ions at m/z 1070.05 and 955.9 Da, respectively. The compound AI showed a spectrum of antimicrobial activity mainly against L. lactis species, while the organisms most sensitive to compound AII were Bacillus subtilis, Listeria innocua, Streptococcus pneumoniae and Pseudomonas aeruginosa. The antimicrobial activity of both compounds was suppressed by treatment with Tween 80. Nevertheless, both compounds showed high stability to heat and proteases treatments. The isolated compounds, AI and AII, showed distinct properties from other antimicrobial substances already reported as produced by L. lactis, and have a significant inhibitory effect against two clinically important respiratory pathogens. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Impact of Saccharomyces cerevisiae Strains on Health-Promoting Compounds in Wine

    Directory of Open Access Journals (Sweden)

    Simona Guerrini

    2018-04-01

    Full Text Available Moderate wine consumption is associated with human health benefits (reduction of cardiovascular risk and neurodegenerative diseases, decrease of onset of certain cancers attributed to a series of bioactive compounds, mainly polyphenols, with antioxidant power capable of counteracting the negative action of free radicals. Polyphenols are naturally present in the grapes, but an additional amount originates during winemaking. The aim of this work was to assess the ability of four commercial and two indigenous Saccharomyces cerevisiae strains to produce bioactive compounds (tyrosol, hydroxytyrosol, tryptophol, melatonin and glutathione during alcoholic fermentation. In order to exclude the fraction of antioxidant compounds naturally occurring in grapes, the strains were inoculated in a synthetic must. At the end of fermentation the bioactive compounds were analysed by High-Performance Liquid Chromatography, while antioxidant activity was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH assay. Moreover, freeze-dried samples, originating from the experimental wines, were used to perform ex-vivo assays on cultured cells (RAW 264.7 murine macrophages with the aim to evaluate their antioxidant and anti-inflammatory activities. The results indicated that the production of the considered bioactive compounds is a strain-specific property; therefore, the different yeast strains utilized during fermentation have different capabilities to modify the antioxidant and anti-inflammatory properties of the wine.

  13. Antimony Complexes for Electrocatalysis: Activity of a Main-Group Element in Proton Reduction.

    Science.gov (United States)

    Jiang, Jianbing; Materna, Kelly L; Hedström, Svante; Yang, Ke R; Crabtree, Robert H; Batista, Victor S; Brudvig, Gary W

    2017-07-24

    Main-group complexes are shown to be viable electrocatalysts for the H 2 -evolution reaction (HER) from acid. A series of antimony porphyrins with varying axial ligands were synthesized for electrocatalysis applications. The proton-reduction catalytic properties of TPSb(OH) 2 (TP=5,10,15,20-tetra(p-tolyl)porphyrin) with two axial hydroxy ligands were studied in detail, demonstrating catalytic H 2 production. Experiments, in conjunction with quantum chemistry calculations, show that the catalytic cycle is driven via the redox activity of both the porphyrin ligand and the Sb center. This study brings insight into main group catalysis and the role of redox-active ligands during catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Phosphorus compounds, proteins, nuclease and acid phosphatase activities in isolated spinach chloroplasts

    Directory of Open Access Journals (Sweden)

    E. Mikulska

    2015-01-01

    Full Text Available This paper deals with attempts to elaborate a simple method of spinach chloroplast isolation ensuring a high proportion of intact chloroplasts. We obtained 3 preparations of isolated chloroplasts. Several preliminary analyses of the obtained chloroplast fraction were also performed. Phosphorus compounds, total protein and the enzyme activities of RNase, DNase and GPase were determined. We found: 0,36-0,59% of RNA, 0,19-0,24% of DNA, 2,1-2,9% of phospholipids and 26-28% of protein. RNase activity was very high.

  15. Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States.

    Science.gov (United States)

    Halvorsen, Bente L; Carlsen, Monica H; Phillips, Katherine M; Bøhn, Siv K; Holte, Kari; Jacobs, David R; Blomhoff, Rune

    2006-07-01

    Supplements containing ascorbic acid, alpha-tocopherol, or beta-carotene do not protect against oxidative stress-related diseases in most randomized intervention trials. We suggest that other redox-active phytochemicals may be more effective and that a combination of different redox-active compounds (ie, antioxidants or reductants) may be needed for proper protection against oxidative damage. We aimed to generate a ranked food table with values for total content of redox-active compounds to test this alternative antioxidant hypothesis. An assay that measures the total concentration of redox-active compounds above a certain cutoff reduction potential was used to analyze 1113 food samples obtained from the US Department of Agriculture National Food and Nutrient Analysis Program. Large variations in the content of antioxidants were observed in different foods and food categories. The food groups spices and herbs, nuts and seeds, berries, and fruit and vegetables all contained foods with very high antioxidant contents. Most food categories also contained products almost devoid of antioxidants. Of the 50 food products highest in antioxidant concentrations, 13 were spices, 8 were in the fruit and vegetables category, 5 were berries, 5 were chocolate-based, 5 were breakfast cereals, and 4 were nuts or seeds. On the basis of typical serving sizes, blackberries, walnuts, strawberries, artichokes, cranberries, brewed coffee, raspberries, pecans, blueberries, ground cloves, grape juice, and unsweetened baking chocolate were at the top of the ranked list. This ranked antioxidant food table provides a useful tool for investigations into the possible health benefit of dietary antioxidants.

  16. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 2. Model prediction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.; Peldszus, S.; Huck, P.M. [University of Waterloo, Waterloo, ON (Canada). NSERC Chair in Water Treatment

    2009-03-01

    The adsorption of two representative pharmaceutically active compounds (PhACs) naproxen and carbamazepine and one endocrine disrupting compound (EDC) nonylphenol was studied in pilot-scale granular activated carbon (GAC) adsorbers using post-sedimentation (PS) water from a full-scale drinking water treatment plant. The GAC adsorbents were coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. Acidic naproxen broke through fastest while nonylphenol was removed best, which was consistent with the degree to which fouling affected compound removals. Model predictions and experimental data were generally in good agreement for all three compounds, which demonstrated the effectiveness and robustness of the pore and surface diffusion model (PSDM) used in combination with the time-variable parameter approach for predicting removals at environmentally relevant concentrations (i.e., ng/L range). Sensitivity analyses suggested that accurate determination of film diffusion coefficients was critical for predicting breakthrough for naproxen and carbamazepine, in particular when high removals are targeted. Model simulations demonstrated that GAC carbon usage rates (CURs) for naproxen were substantially influenced by the empty bed contact time (EBCT) at the investigated conditions. Model-based comparisons between GAC CURs and minimum CURs for powdered activated carbon (PAC) applications suggested that PAC would be most appropriate for achieving 90% removal of naproxen, whereas GAC would be more suitable for nonylphenol. 25 refs., 4 figs., 1 tab.

  17. Discovery of a novel compound with anti-venezuelan equine encephalitis virus activity that targets the nonstructural protein 2.

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Chung

    2014-06-01

    Full Text Available Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV, a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM, for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.

  18. Isolation, characterization and HPLC quantification of compounds from Aquilegia fragrans Benth: Their in vitro antibacterial activities against bovine mastitis pathogens.

    Science.gov (United States)

    Mushtaq, Saleem; Aga, Mushtaq A; Qazi, Parvaiz H; Ali, Md Niamat; Shah, Aabid Manzoor; Lone, Sajad Ahmad; Shah, Aiyatullah; Hussain, Aehtesham; Rasool, Faheem; Dar, Hafizullah; Shah, Zeeshan Hamid; Lone, Shabir H

    2016-02-03

    The underground parts of Aquilegia fragrans are traditionally used for the treatment of wounds and various inflammatory diseases like bovine mastitis. However, there are no reports on the phytochemical characterization and antibacterial studies of A. fragrans. To isolate compounds from the methanol extract of the underground parts of A. fragrans and determine their antibacterial activity against the pathogens of bovine mastitis. The study was undertaken in order to scientifically validate the traditional use of A. fragrans. Five compounds were isolated from the methanol extract of the underground parts of A. fragrans using silica gel column chromatography. Structural elucidation of the isolated compounds was done using spectral data analysis and comparison with literature. High performance liquid chromatography (HPLC) was used for the qualitative and quantitative determination of isolated compounds in the crude methanol extract. The methanol extract and isolated compounds were evaluated for antibacterial activities against mastitis pathogens using broth micro-dilution technique. The five isolated compounds were identified as (1) 2, 4-dihydroxyphenylacetic acid methyl ester (2) β-sitosterol (3) Aquilegiolide (4) Glochidionolactone-A and (5) Magnoflorine. A quick and sensitive HPLC method was developed for the first time for qualitative and quantitative determination of four isolated marker compounds from A. fragrans. The crude methanol extract and compound 5 exhibited weak antibacterial activities that varied between the bacterial species (MIC=500-3000 µg/ml). The above results show that the crude methanol extract and isolated compounds from A. fragrans exhibit weak antibacterial activities. Further phytochemical and pharmacological studies are required for proper scientific validation of the folk use of this plant species in the treatment of various inflammatory diseases like bovine mastitis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum

    Science.gov (United States)

    Zhang, Fusheng; Chen, Qin; Chen, Cheng; Yu, Xiaorui; Liu, Qingya; Bao, Jinku

    2018-01-01

    Curcuma longa possesses powerful antifungal activity, as demonstrated in many studies. In this study, the antifungal spectrum of Curcuma longa alcohol extract was determined, and the resulting EC50 values (mg/mL) of its extract on eleven fungi, including Fusarium graminearum, Fusarium chlamydosporum, Alternaria alternate, Fusarium tricinctum, Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium culmorum, Rhizopus oryzae, Cladosporium cladosporioides, Fusarium oxysporum and Colletotrichum higginsianum, were 0.1088, 0.1742, 0.1888, 0.2547, 0.3135, 0.3825, 0.4229, 1.2086, 4.5176, 3.8833 and 5.0183, respectively. Among them, F. graminearum was selected to determine the inhibitory effects of the compounds (including curdione, isocurcumenol, curcumenol, curzerene, β-elemene, curcumin, germacrone and curcumol) derived from Curcuma longa. In addition, the antifungal activities of curdione, curcumenol, curzerene, curcumol and isocurcumenol and the synergies of the complexes of curdione and seven other chemicals were investigated. Differential proteomics of F. graminearum was also compared, and at least 2021 reproducible protein spots were identified. Among these spots, 46 were classified as differentially expressed proteins, and these proteins are involved in energy metabolism, tRNA synthesis and glucose metabolism. Furthermore, several fungal physiological differences were also analysed. The antifungal effect included fungal cell membrane disruption and inhibition of ergosterol synthesis, respiration, succinate dehydrogenase (SDH) and NADH oxidase. PMID:29543859

  20. Antiviral Activities and Putative Identification of Compounds in Microbial Extracts from the Hawaiian Coastal Waters

    Directory of Open Access Journals (Sweden)

    Yuanan Lu

    2012-02-01

    Full Text Available Marine environments are a rich source of significant bioactive compounds. The Hawaiian archipelago, located in the middle of the Pacific Ocean, hosts diverse microorganisms, including many endemic species. Thirty-eight microbial extracts from Hawaiian coastal waters were evaluated for their antiviral activity against four mammalian viruses including herpes simplex virus type one (HSV-1, vesicular stomatitis virus (VSV, vaccinia virus and poliovirus type one (poliovirus-1 using in vitro cell culture assay. Nine of the 38 microbial crude extracts showed antiviral potencies and three of these nine microbial extracts exhibited significant activity against the enveloped viruses. A secosteroid, 5α(H,17α(H,(20R-beta-acetoxyergost-8(14-ene was putatively identified and confirmed to be the active compound in these marine microbial extracts. These results warrant future in-depth tests on the isolation of these active elements in order to explore and validate their antiviral potential as important therapeutic remedies.

  1. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage.

    Science.gov (United States)

    Murador, Daniella Carisa; Mercadante, Adriana Zerlotti; de Rosso, Veridiana Vera

    2016-04-01

    The aim of this study is to investigate the effects of different home cooking techniques (boiling, steaming, and stir-frying) in kale and red cabbage, on the levels of bioactive compounds (carotenoids, anthocyanins and phenolic compounds) determined by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detectors (HPLC-DAD-MS(n)), and on the antioxidant activity evaluated by ABTS, ORAC and cellular antioxidant activity (CAA) assays. The steaming technique resulted in a significant increase in phenolic content in kale (86.1%; pkale, steaming resulted in significant increases in antioxidant activity levels in all of the evaluation methods. In the red cabbage, boiling resulted in a significant increase in antioxidant activity using the ABTS assay but resulted in a significant decrease using the ORAC assay. According to the CAA assay, the stir-fried sample displayed the highest levels of antioxidant activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Selenium enrichment on Cordyceps militaris link and analysis on its main active components.

    Science.gov (United States)

    Dong, Jing Z; Lei, C; Ai, Xun R; Wang, Y

    2012-03-01

    To investigate the effects of selenium on the main active components of Cordyceps militaris fruit bodies, selenium-enriched cultivation of C. militaris and the main active components of the fruit bodies were studied. Superoxide dismutase (SOD) activity and contents of cordycepin, cordycepic acid, and organic selenium of fruit bodies were sodium selenite concentration dependent; contents of adenosine and cordycep polysaccharides were significantly enhanced by adding sodium selenite in the substrates, but not proportional to sodium selenite concentrations. In the cultivation of wheat substrate added with 18.0 ppm sodium selenite, SOD activity and contents of cordycepin, cordycepic acid, adenosine, cordycep polysaccharides, and total amino acids were enhanced by 121/145%, 124/74%, 325/520%, 130/284%, 121/145%, and 157/554%, respectively, compared to NS (non-selenium-cultivated) fruit bodies and wild Cordyceps sinensis; organic selenium contents of fruit bodies reached 6.49 mg/100 g. So selenium-enriched cultivation may be a potential way to produce more valuable medicinal food as a substitute for wild C. sinensis.

  3. Triphenylmethane derivatives have high in vitro and in vivo activity against the main causative agents of cutaneous leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Renata Celi Carvalho de Souza Pietra

    Full Text Available The current standard of care for cutaneous leishmaniasis (CL is organic antimonial compounds, but the administration of these compounds is complicated by a low therapeutic - toxic index, as well as parenteral administration. Thus, there is an urgent need for the development of new and inexpensive therapies for the treatment of CL. In this study, we evaluate the activity of the triphenylmethane (TPM class of compounds against three species of Leishmania which are pathogenic in humans. The TPM have a history of safe use in humans, dating back to the use of the original member of this class, gentian violet (GV, from the early 20(th century. Initially, the in vitro efficacy against Leishmania (Viannia braziliensis, L. (Leishmania amazonensis and L. (L. major of 9 newly synthesized TPM, in addition to GV, was tested. Inhibitory concentrations (IC IC(50 of 0.025 to 0.84 µM had been found in promastigotes in vitro assays. The four most effective compounds were then tested in amastigote intracellular assays, resulting in IC(50 of 0.10 to 1.59 µM. A high degree of selectivity of antiparasitic activity over toxicity to mammalian cells was observed. Afterwards, GV and TPM 6 were tested in a topical formulation in mice infected with L. (L. amazonensis leading to elimination of parasite burdens at the site of lesion/infection. These results demonstrated that TPM present significant anti-leishmanial activities and provide a rationale for human clinical trials of GV and other TPM. TPM are inexpensive and safe, thus using them for treatment of CL may have a major impact on public health.

  4. Mutagenic activities of metal compounds in bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, H

    1975-01-01

    Environmental contaminations by certain metal compounds are bringing about serious problems to human health, including genetic hazards. It has been reported that some compounds of iron, manganese and mercury induce point mutations in microorganisms. Also it has been observed that those of aluminum, antimony, arsenic, cadmium, lead and tellurium cause chromosome aberrations in plants, insects and cultured human cells. The mechanism of mutation induction by these metals remains, however, still obscure. For screening of chemical mutagens, Kada et al, recently developed a simple and efficient method named rec-assay by observing differential growth sensitivities to drugs in wild and recombination-deficient strains of Bacillus subtilis. When a chemical is more inhibitory for Rec/sup -/ than for Rec/sup +/ cells, it is reasonable to suspect mutagenicity based on its DNA-damaging capacity. In the present report, 56 metal compounds were tested by the rec-assay. Compounds showing positive results in the assay such as potassium dichromate (K/sub 2/Cr/sub 2/O/sub 7/), ammonium molybdate ((NH/sub 4/)/sub 6/Mo/sub 7/O/sub 24/) and sodium arsenite (NaAsO/sub 2/) were then examined as to their capacities to induce reversions in E. coli Trp/sup -/ strains possessing different DNA repair pathways. 11 references, 3 tables.

  5. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening.

    Directory of Open Access Journals (Sweden)

    Esther Bettiol

    Full Text Available The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain expressing beta-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC(50: 54, 190 and 23 nM, respectively. Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti-T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC(50 values of 2 nM (PCH6 and CX2. These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.

  6. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening.

    Science.gov (United States)

    Bettiol, Esther; Samanovic, Marie; Murkin, Andrew S; Raper, Jayne; Buckner, Frederick; Rodriguez, Ana

    2009-01-01

    The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing beta-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC(50): 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti-T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC(50) values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.

  7. Antimycoplasmal Activities of Compounds from Solanum aculeastrum and Piliostigma thonningii against Strains from the Mycoplasma mycoides Cluster

    Directory of Open Access Journals (Sweden)

    Francisca Kama-Kama

    2017-12-01

    Full Text Available Infections caused by Mycoplasma species belonging to the ‘mycoides cluster’ negatively affect the agricultural sector through losses in livestock productivity. These Mycoplasma strains are resistant to many conventional antibiotics due to the total lack of cell wall. Therefore, there is an urgent need to develop new antimicrobial agents from alternative sources such as medicinal plants to curb the resistance threat. Recent studies on extracts from Solanum aculeastrum and Piliostigma thonningii revealed interesting antimycoplasmal activities hence the motivation to investigate the antimycoplasmal activities of constituent compounds. The CH2Cl2/MeOH extracts from the berries of S. aculeastrum yielded a new β-sitosterol derivative (1 along with six known ones including; lupeol (2, two long-chain fatty alcohols namely undecyl alcohol (3 and lauryl alcohol (4; two long-chain fatty acids namely; myristic acid (5 and nervonic acid (6 as well as a glycosidic steroidal alkaloid; (25R-3β-O-α-L-rhamnopyranosyl-(1→2-O-[α-L-rhamnopyranosyl-(1→4]-β-D-glucopyranosyloxy-22α-N-spirosol-5-ene (7 from the MeOH extracts. A new furan diglycoside, (2,5-D-diglucopyranosyloxy-furan (8 was also characterized from the CH2Cl2/MeOH extract of stem bark of P. thonningii. The structures of the compounds were determined on the basis of spectroscopic evidence and comparison with literature data. Compounds 1, 3, 4, 7, and 8 isolated in sufficient yields were tested against the growth of two Mycoplasma mycoides subsp. mycoides (Mmm, two M. mycoides. capri (Mmc, and one M. capricolum capricolum (Mcc using broth dilution methods, while the minimum inhibitory concentration (MIC was determined by serial dilution. The inhibition of Mycoplasma in vitro growth was determined by the use of both flow cytometry (FCM and color change units (CCU methods. Compounds 4 and 7 showed moderate activity against the growth of Mmm and Mmc but were inactive against the growth of Mcc

  8. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea.

    Science.gov (United States)

    Passos, Giselle F; Fernandes, Elizabeth S; da Cunha, Fernanda M; Ferreira, Juliano; Pianowski, Luiz F; Campos, Maria M; Calixto, João B

    2007-03-21

    The anti-inflammatory and anti-allergic effects of the essential oil of Cordia verbenacea (Boraginaceae) and some of its active compounds were evaluated. Systemic treatment with the essential oil of Cordia verbenacea (300-600mg/kg, p.o.) reduced carrageenan-induced rat paw oedema, myeloperoxidase activity and the mouse oedema elicited by carrageenan, bradykinin, substance P, histamine and platelet-activating factor. It also prevented carrageenan-evoked exudation and the neutrophil influx to the rat pleura and the neutrophil migration into carrageenan-stimulated mouse air pouches. Moreover, Cordia verbenacea oil inhibited the oedema caused by Apis mellifera venom or ovalbumin in sensitized rats and ovalbumin-evoked allergic pleurisy. The essential oil significantly decreased TNFalpha, without affecting IL-1beta production, in carrageenan-injected rat paws. Neither the PGE(2) formation after intrapleural injection of carrageenan nor the COX-1 or COX-2 activities in vitro were affected by the essential oil. Of high interest, the paw edema induced by carrageenan in mice was markedly inhibited by both sesquiterpenic compounds obtained from the essential oil: alpha-humulene and trans-caryophyllene (50mg/kg, p.o.). Collectively, the present results showed marked anti-inflammatory effects for the essential oil of Cordia verbenacea and some active compounds, probably by interfering with TNFalpha production. Cordia verbenacea essential oil or its constituents might represent new therapeutic options for the treatment of inflammatory diseases.

  9. Ordinary and Activated Bone Grafts: Applied Classification and the Main Features

    Directory of Open Access Journals (Sweden)

    R. V. Deev

    2015-01-01

    Full Text Available Bone grafts are medical devices that are in high demand in clinical practice for substitution of bone defects and recovery of atrophic bone regions. Based on the analysis of the modern groups of bone grafts, the particularities of their composition, the mechanisms of their biological effects, and their therapeutic indications, applicable classification was proposed that separates the bone substitutes into “ordinary” and “activated.” The main differential criterion is the presence of biologically active components in the material that are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructions encoding growth factors. The pronounced osteoinductive and (or osteogenic properties of activated osteoplastic materials allow drawing upon their efficacy in the substitution of large bone defects.

  10. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities.

    Science.gov (United States)

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  11. A Multiplexed Assay That Monitors Effects of Multiple Compound Treatment Times Reveals Candidate Immune-Enhancing Compounds.

    Science.gov (United States)

    Zhao, Ziyan; Henowitz, Liza; Zweifach, Adam

    2018-05-01

    We previously developed a flow cytometry assay that monitored lytic granule exocytosis in cytotoxic T lymphocytes stimulated by contacting beads coated with activating anti-CD3 antibodies. That assay was multiplexed in that responses of cells that did or did not receive the activating stimulus were distinguished via changes in light scatter accompanying binding of cells to beads, allowing us to discriminate compounds that activate responses on their own from compounds that enhance responses in cells that received the activating stimulus, all within a single sample. Here we add a second dimension of multiplexing by developing means to assess in a single sample the effects of treating cells with test compounds for different times. Bar-coding cells before adding them to test wells lets us determine compound treatment time while also monitoring activation status and response amplitude at the point of interrogation. This multiplexed assay is suitable for screening 96-well plates. We used it to screen compounds from the National Cancer Institute, identifying several compounds that enhance anti-LAMP1 responses. Multiple-treatment-time (MTT) screening enabled by bar-coding and read via high-throughput flow cytometry may be a generally useful method for facilitating the discovery of compounds of interest.

  12. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits

    Directory of Open Access Journals (Sweden)

    Muhammad Redzuan Hairuddin

    2011-07-01

    Full Text Available The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L., mango (Mangifera indica L., papaya (Carica papaya L., muskmelon (Cucumis melo L., and watermelon Citruluss lanatus (Thunb. were investigated. Significant (p < 0.05 differences, for the amounts of total phenolic compounds (TPC, were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05 change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05 higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05 but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.

  13. Reactions of carbonyl compounds with α,β-unsaturated nitriles as a convenient pathway to carbo- and heterocycles

    International Nuclear Information System (INIS)

    Sharanin, Yu A; Goncharenko, M P; Litvinov, Victor P

    1998-01-01

    Published data on the methods for synthesis of carbo- and heterocyclic compounds based on reactions of α,β-unsaturated nitriles with carbonyl compounds and activated phenols are surveyed. It is demonstrated that all these reactions occur via nucleophilic addition of the carbanion generated from a carbonyl compound to the double bond of an unsaturated nitrile (the Michael reaction). The main routes of transformation of the adducts into carbo- and heterocyclic compounds are considered. The methods for regioselective preparation of fused 4H-pyrans or 1,4-dihydropyridines by varying conditions of cyclisation of Michael adducts are discussed. The bibliography includes 249 references.

  14. Anti-oedematous activities of the main triterpendiol esters of marigold (Calendula officinalis L.).

    Science.gov (United States)

    Zitterl-Eglseer, K; Sosa, S; Jurenitsch, J; Schubert-Zsilavecz, M; Della Loggia, R; Tubaro, A; Bertoldi, M; Franz, C

    1997-07-01

    Separation and isolation of the genuine faradiol esters (1, 2) from flower heads of Marigold (Calendula (officinalis L., Asteraceae) could be achieved by means of repeated column chromatography (CC) and HPLC for the first time. Structure elucidation of faradiol-3-myristic acid ester 1, faradiol-3-palmitic acid ester 2 and psi-taraxasterol 3 has been also performed, without any previous degradation by means of MS, 1H-NMR, 13C-NMR and 2D-NMR experiments. The anti-oedematous activities of these three compounds were tested by means of inhibition of Croton oil-induced oedema of the mouse ear. Both faradiol esters showed nearly the same dose dependent anti-oedematous activity and no significant synergism appeared with their mixture. The free monol, psi-taraxasterol, had a slightly lower effect. Furthermore, faradiol was more active than its esters and than psi-taraxasterol and showed the same effect as an equimolar dose of indomethacin.

  15. AMPK modulatory activity of olive–tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach

    Science.gov (United States)

    Jiménez-Sánchez, Cecilia; Olivares-Vicente, Mariló; Rodríguez-Pérez, Celia; Herranz-López, María; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Encinar, José Antonio; Micol, Vicente

    2017-01-01

    Scope Olive-tree polyphenols have demonstrated potential for the management of obesity-related pathologies. We aimed to explore the capacity of Olive-tree leaves extract to modulate triglyceride accumulation and AMP-activated protein kinase activity (AMPK) on a hypertrophic adipocyte model. Methods Intracellular triglycerides and AMPK activity were measured on the hypertrophic 3T3-L1 adipocyte model by AdipoRed and immunofluorescence microscopy, respectively. Reverse phase high performance liquid chromatography coupled to time-of-flight mass detection with electrospray ionization (RP-HPLC-ESI-TOF/MS) was used for the fractionation of the extract and the identification of the compounds. In-silico molecular docking of the AMPK alpha-2, beta and gamma subunits with the identified compounds was performed. Results Olive-tree leaves extract decreased the intracellular lipid accumulation through AMPK-dependent mechanisms in hypertrophic adipocytes. Secoiridoids, cinnamic acids, phenylethanoids and phenylpropanoids, flavonoids and lignans were the candidates predicted to account for this effect. Molecular docking revealed that some compounds may be AMPK-gamma modulators. The modulatory effects of compounds over the alpha and beta AMPK subunits appear to be less probable. Conclusions Olive-tree leaves polyphenols modulate AMPK activity, which may become a therapeutic aid in the management of obesity-associated disturbances. The natural occurrence of these compounds may have important nutritional implications for the design of functional ingredients. PMID:28278224

  16. Chemistry of tin compounds and environment

    International Nuclear Information System (INIS)

    Ali, S.; Mazhar, M.; Mahmood, S.; Bhatti, M.H.; Chaudhary, M.A.

    1997-01-01

    Of the large volume of tin compounds reported in the literature, possible only 100 are commercially important. Tin compounds are a wide variety of purposes such as catalysts, stabilizers for many materials including polymer, biocidal agents, bactericides, insecticides, fungicides, wood preservatives, acaricides and anti fouling agents in paints, anticancer and antitumour agents, ceramic opacifiers, as textile additives, in metal finishing operations, as food additives and in electro conductive coating. All these applications make the environment much exposed to tin contamination. The application of organotin compounds as biocides account for about 30% of total tin consumption suggesting that the main environmental effects are likely to originate from this sector. Diorgano tins and mono-organo tins are used mainly in plastic industry which is the next big source for environmental pollution. In this presentation all environmental aspects of the use of tin compounds and the recommended preventive measures are discussed. (author)

  17. Properties of tritium and its compounds

    International Nuclear Information System (INIS)

    Belovodskij, L.F.; Gaevoj, V.K.; Grishmanovskij, V.I.

    1985-01-01

    Ways of tritium preparation and different aspects of its application are considered. Physicochemical properties of this isotope and some compounds of it - tritium oxides, lithium, titanium, zirconium, uranium tritides, tritium organic compounds - are discussed. In particular, diffusion of tritium and its oxide through different materials, tritium oxidation processes, decomposition of tritium-containing compounds under the action of self-radiation are considered. Main radiobiological tritium properties are described

  18. Analysis of the main active ingredients and bioactivities of essential oil from Osmanthus fragrans Var. thunbergii using a complex network approach.

    Science.gov (United States)

    Wang, Le; Tan, Nana; Hu, Jiayao; Wang, Huan; Duan, Dongzhu; Ma, Lin; Xiao, Jian; Wang, Xiaoling

    2017-12-28

    Osmanthus fragrans has been used as folk medicine for thousands of years. The extracts of Osmanthus fragrans flowers were reported to have various bioactivities including free radical scavenging, anti-inflammation, neuroprotection and antitumor effects. However, there is still lack of knowledge about its essential oil. In this work, we analyzed the chemical composition of the essential oil from Osmanthus fragrans var. thunbergii by GC-MS. A complex network approach was applied to investigate the interrelationships between the ingredients, target proteins, and related pathways for the essential oil. Statistical characteristics of the networks were further studied to explore the main active ingredients and potential bioactivities of O. fragrans var. thunbergii essential oil. A total of 44 ingredients were selected from the chemical composition of O. fragrans var. thunbergii essential oil, and that 191 potential target proteins together with 70 pathways were collected for these compounds. An ingredient-target-pathway network was constructed based on these data and showed scale-free property as well as power-law degree distribution. Eugenol and geraniol were screened as main active ingredients with much higher degree values. Potential neuroprotective and anti-tumor effect of the essential oil were also found. A core subnetwork was extracted from the ingredient-target-pathway network, and indicated that eugenol and geraniol contributed most to the neuroprotection of this essential oil. Furthermore, a pathway-based protein association network was built and exhibited small-world property. MAPK1 and MAPK3 were considered as key proteins with highest scores of centrality indices, which might play an important role in the anti-tumor effect of the essential oil. This work predicted the main active ingredients and bioactivities of O. fragrans var. thunbergii essential oil, which would benefit the development and utilization of Osmanthus fragrans flowers. The application of

  19. Separation, Identification, and Bioactivities of the Main Gallotannins of Red Sword Bean (Canavalia gladiata) Coats

    Science.gov (United States)

    Gan, Ren-You; Kong, Kin-Weng; Li, Hua-Bin; Wu, Kao; Ge, Ying-Ying; Chan, Chak-Lun; Shi, Xian-Ming; Corke, Harold

    2018-02-01

    The red sword bean (Canavalia gladiata) is an underutilized edible bean cultivated in China. It was previously found to have the highest content of antioxidant polyphenols among 42 edible beans, mainly gallic acid and gallotannins in its red bean coat, an apparently unique characteristic among edible beans. In this study, the main phenolic compounds in red sword bean coats were further separated by Sephadex LH-20 column chromatography, and identified by LC-MS/MS. Furthermore, the FRAP and ABTS antioxidant activities and antibacterial activity (diameter of inhibition zone, DIZ) of main gallotannin-rich fractions were tested. Our results showed that gallotannins of red sword bean coats were mainly comprised of nonogalloyl to hexagalloyl hexosides. Interestingly, tetragalloyl, pentagalloyl, and hexagalloyl hexosides were identified as the main candidates responsible for the red color of the coats. On the other hand, gallotannin-rich fractions exhibited diverse antioxidant and antibacterial activities, and tetragalloyl hexoside overall had the highest free radical scavenging and antibacterial activities. The degree of galloylation did not completely explain the structure-function relationship of gallotannins isolated from red sword bean coats, as there should exist other factors affecting their bioactivities. In conclusion, red sword bean coats are excellent natural sources of gallotannins, and their gallotannin-rich extracts can be utilized as natural antioxidant and antibacterial agents with potential health benefits as well as application in food industry.

  20. Production of N-13 labeled compounds with high specific activity

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazutoshi; Sasaki, Motoji; Yoshida, Yuichiro; Haradahira, Terushi; Inoue, Osamu [National Inst. of Radiological Sciences, Chiba (Japan)

    1997-03-01

    Nitrogen-13 was produced by irradiating ultra pure water saturated with a pure gas (N2, O2, He, H2) with 18 MeV protons. Ion species generated by irradiation were analyzed with radio ion chromatography systems. An automated equipment was developed to synthesize anhydrous (13N)NH3 as a synthetic precursor and (13N)p-nitrophenyl carbamate ((13N)NPC) as a model compound, using the (13N)NH3. The radiochemical yield and specific activity of (13N)NPC was high enough to carry out the receptor study with PET. (author)

  1. Curcumin, a Compound from Natural Sources, a True Scientific Challenge - A Review.

    Science.gov (United States)

    Stanić, Zorka

    2017-03-01

    Curcumin, a plant-derived polyphenolic compound, naturally present in turmeric (Curcuma longa), has been the subject of intensive investigations on account of its various activities. The implementation of safe, beneficial and highly functional compounds from natural sources in human nutrition/prevention/therapy requires some modifications in order to achieve their multi-functionality, improve their bioavailability and delivery strategies, with the main aim to enhance their effectiveness. The low aqueous solubility of curcumin, its rapid metabolism and elimination from the body, and consequently, poor bioavailability, constitute major obstacles to its application. The main objectives of this review are related to reported strategies to overcome these limitations and, thereby, improve the solubility, stability and bioavailability of curcumin. The effectiveness of curcumin could be greatly improved by using nanoparticle-based carriers. The significance of the quality of a substance delivery system is reflected in the fact that carrying curcumin as a food additive/nutrition also means carrying the active biological product/drug. This review summarizes the state of the art, and highlights some examples and the most significant advances in the field of curcumin research.

  2. INFLUENCE OF POLYPHENOLIC COMPOUNDS ON OCIMUM BASILICUM L. DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Adina Talmaciu

    2015-07-01

    Full Text Available The activities and role of phenolic compounds in the plant kingdom are well known. They are especially recognized for their function as plant growth regulators, but also for the important role in the biosynthesis process. Based on that, the aim of this work is to establish the influence of polyphenolic compounds, on the main physiological processes involved in basil cultivation under controlled conditions. Studies were carried out on sweet basil seeds (Ocimumbasilicum L. treated with different spruce bark polyphenolic extracts (aqueous extract and ultrasound assisted aqueous extract on several concentrations. The germination energy and germination capacity, plants vegetative organelles development and photoassimilatory pigments content were investigated. The results show that the Picea abies extracts, rich in phenolic compounds, have an influence on the global development of plantlets. An increased value for the growth parameters and pigments concentration was observed, compare with a control sample. Also it was shown that the effect of phenolic compounds on plants development significantly depends on their concentration.

  3. Manganese-Loaded Activated Carbon for the Removal of Organosulfur Compounds from High-Sulfur Diesel Fuels

    OpenAIRE

    Al-Ghouti, M.A.; Al-Degs, Y.S.

    2014-01-01

    The adsorptive capacity of activated carbon (AC) is significantly enhanced toward weakly interacting organosulfur compounds (OSC) from sulfur-rich diesel fuel. Sulfur compounds are selectively removed from diesel after surface modification by manganese dioxide (MnO2). A selective surface for OSC removal was created by loading MnO2 on the surface; π-complexation between the partially filled d-orbitals of Mn4+ and the S atom is the controlling mechanism for OSC removal. Principal component anal...

  4. Rhodium-catalyzed C-H bond activation for the synthesis of quinonoid compounds: Significant Anti-Trypanosoma cruzi activities and electrochemical studies of functionalized quinones.

    Science.gov (United States)

    Jardim, Guilherme A M; Silva, Thaissa L; Goulart, Marilia O F; de Simone, Carlos A; Barbosa, Juliana M C; Salomão, Kelly; de Castro, Solange L; Bower, John F; da Silva Júnior, Eufrânio N

    2017-08-18

    Thirty four halogen and selenium-containing quinones, synthesized by rhodium-catalyzed C-H bond activation and palladium-catalyzed cross-coupling reactions, were evaluated against bloodstream trypomastigotes of T. cruzi. We have identified fifteen compounds with IC 50 /24 h values of less than 2 μM. Electrochemical studies on A-ring functionalized naphthoquinones were also performed aiming to correlate redox properties with trypanocidal activity. For instance, (E)-5-styryl-1,4-naphthoquinone 59 and 5,8-diiodo-1,4-naphthoquinone 3, which are around fifty fold more active than the standard drug benznidazole, are potential derivatives for further investigation. These compounds represent powerful new agents useful in Chagas disease therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.