WorldWideScience

Sample records for magnetoinduction sensors

  1. Magneto-inductive Sensors for Metallic Ropes in Lift Application

    Directory of Open Access Journals (Sweden)

    Aldo CANOVA

    2010-12-01

    Full Text Available In this paper an innovative system for the contemporary, selective and reliable control of integrity of multiple rope plants is presented. The system is based on magneto-inductive technology and is composed by a magnetic detector connected to an acquisition system. The core of the detector is constituted by an array of Hall sensors properly placed inside the instrument. After a brief introduction to the Non Destructive Techniques applied to the control of metallic ropes, the first part paper deals with the design and behavior of the detector and the acquisition system. In the second part of the paper a performance analysis for different rope size and experimental results on an elevator plants is presented and discussed.

  2. New Magneto-Inductive DC Magnetometer for Space Missions

    Science.gov (United States)

    Moldwin, M.; Bronner, B.; Regoli, L.; Thoma, J.; Shen, A.; Jenkins, G.; Cutler, J.

    2017-12-01

    A new magneto-inductive DC magnetometer is being developed at the University of Michigan that provides fluxgate quality measurements in a low mass, volume, power and cost package. The magnetometer enables constellation-class missions not only due to its low-resource requirements, but also its potential for commercial integrated circuit fabrication. The magneto-inductive operating principle is based on a simple resistance-inductor (RL) circuit and involves measurement of the time it takes to charge and discharge the inductor between an upper and lower threshold by means of a Schmitt trigger oscillator. This time is proportional to the inductance that in turn is proportional to the field strength. We have modeled the operating principle in the circuit simulator SPICE and have built a proto-type using modified commercial sensors. The performance specifications include a dynamic range over the full-Earth's field, sampling rates up to 80 Hz, sensor and electronics mass of about 30 g, circuit board and sensor housing volume of magnetometer.

  3. Investigation of a low-cost magneto-inductive magnetometer for space science applications

    Science.gov (United States)

    Regoli, Leonardo H.; Moldwin, Mark B.; Pellioni, Matthew; Bronner, Bret; Hite, Kelsey; Sheinker, Arie; Ponder, Brandon M.

    2018-03-01

    A new sensor for measuring low-amplitude magnetic fields that is ideal for small spacecraft is presented. The novel measurement principle enables the fabrication of a low-cost sensor with low power consumption and with measuring capabilities that are comparable to recent developments for CubeSat applications. The current magnetometer, a software-modified version of a commercial sensor, is capable of detecting fields with amplitudes as low as 8.7 nT at 40 Hz and 2.7 nT at 1 Hz, with a noise floor of 4 pT/Hz at 1 Hz. The sensor has a linear response to less than 3 % over a range of ±100 000 nT. All of these features make the magneto-inductive principle a promising technology for the development of magnetic sensors for both space-borne and ground-based applications to study geomagnetic activity.

  4. Investigation of a low-cost magneto-inductive magnetometer for space science applications

    Directory of Open Access Journals (Sweden)

    L. H. Regoli

    2018-03-01

    Full Text Available A new sensor for measuring low-amplitude magnetic fields that is ideal for small spacecraft is presented. The novel measurement principle enables the fabrication of a low-cost sensor with low power consumption and with measuring capabilities that are comparable to recent developments for CubeSat applications. The current magnetometer, a software-modified version of a commercial sensor, is capable of detecting fields with amplitudes as low as 8.7 nT at 40 Hz and 2.7 nT at 1 Hz, with a noise floor of 4 pT∕Hz at 1 Hz. The sensor has a linear response to less than 3 % over a range of ±100 000 nT. All of these features make the magneto-inductive principle a promising technology for the development of magnetic sensors for both space-borne and ground-based applications to study geomagnetic activity.

  5. Axial Magneto-Inductive Effect in Soft Magnetic Microfibers, Test Methodology, and Experiments

    Science.gov (United States)

    2016-03-24

    Nickle nT Nano- Tesla Si Silicon V Volts w Exchange Energy W Watts Zm Coil Impedance, measured  Circumferential Field Direction T Micro... Tesla  Ratio of Coil Length to Diameter  Ohm ° Degrees 1 (2 blank) 1. INTRODUCTION Magneto-induction (MI) effects in soft...axial magnetic field is utilized to excite the fiber. Previous investigators have demonstrated this effect with small coils applied directly to the

  6. Two- and three-dimensional magnetoinductive particle codes with guiding center electron motion

    International Nuclear Information System (INIS)

    Geary, J.L.; Tajima, T.; Leboeuf, J.N.; Zaidman, E.G.; Han, J.H.

    1986-07-01

    A magnetoinductive (Darwin) particle simulation model developed for examining low frequency plasma behavior with large time steps is presented. Electron motion perpendicular to the magnetic field is treated as massless keeping only the guiding center motion. Electron motion parallel to the magnetic field retains full inertial effects as does the ion motion. This model has been implemented in two and three dimensions. Computational tests of the equilibrium properties of the code are compared with linear theory and the fluctuation dissipation theorem. This code has been applied to the problems of Alfven wave resonance heating and twist-kink modes

  7. Technical analysis of magneto-inductive crane cables in nuclear power plants. Application crane Cofrentes Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gavilan Moreno, C. J.

    2010-01-01

    In 2009, the Cofrentes Nuclear Power Plant made a study about crane inspection techniques available on the market and other industries. The result was the location of the magneto-inductive technique inspection. Its use provides an objective assessment of the resistant section and; through these data; it could be made calculations as the maximum voltage allowed. Therefore, the technique is proven and available to all nuclear power plants.

  8. Image acceleration in parallel magnetic resonance imaging by means of metamaterial magnetoinductive lenses

    Directory of Open Access Journals (Sweden)

    Manuel J. Freire

    2012-06-01

    Full Text Available Parallel Magnetic Resonance imaging (pMRI is an image acceleration technique which takes advantage of localized sensitivities of multiple receivers. In this letter, we show that metamaterial lenses based on capacitively-loaded rings can provide higher localization of coil sensitivities compared to conventional loop designs. Several lens designs are systematically analyzed in order to find the structure providing higher signal-to-noise-ratio. The magnetoinductive (MI lens has been found to be the optimum structure and an experiment is developed to show it. The ability of the MI lens for pMRI is investigated by means of the parameter known in the MRI community as g-Factor.

  9. AN INVESTIGATION ON SOFT MAGNETIC AND NON-MAGNETIC MATERIALS UNDER LOW FREQUENCY FOR BIOMEDICAL SENSOR APPLICATION

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2012-02-01

    Full Text Available In consequence of the recent development of magnetic sensors in biomedical sector, the investigation of magneticmaterials has been a contributing factor in application stage. This paper proposes a novel technique to investigate materials by obtaining unique distinctive impedance peaks with unique impedance values. A magneto-inductive sensoris used to measure the induction of magnetic and non-magnetic impedance peaks related to the change in permeability, thus characterizing the materials under low frequency.

  10. Elimination of electromagnetic radiation in plasma simulation: the Darwin or magnetoinductive approximation

    International Nuclear Information System (INIS)

    Hewett, D.W.

    1985-01-01

    For many astrophysical and most magnetic fusion applications, the purely electromagnetic modes generated by real as well as simulation ''plasma'' fluctuations are a source of high frequency radiation that is often irrelevant to the physics of interest. Unfortunately, a numerical CFL stability limit prevents either making c infinite or deltat large while using the usual explicit Maxwell's equations for the fields. A modification of Maxwell's equations, which provides implicitly the field components, circumvents this problem. The solution is to neglect retardation effects so that the electromagnetic propagation speed is effectively infinite. The purely electromagnetic modes in this limit evolve ''instantly'' to a time-asymptotic configuration about the macroscopic plasma configuration at each new time level. The Darwin or magnetoinductive approximation effectively provides infinite propagation speeds for purely electromagnetic modes by converting Maxwell's equations from hyperbolic to elliptic in character. In practice, this is accomplished by neglecting the solenoidal part of the displacement current. The elimination of the CFL time step constraint more than offsets the substantially more complicated field solution that is required. The details of a numerical implementation of this model will be presented. Numerical examples will be given and extentions of the Darwin field solution to other plasma models also will be considered. 9 refs., 3 figs

  11. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    International Nuclear Information System (INIS)

    Benitez, D; Gaydecki, P; Quek, S; Torres, V

    2007-01-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research

  12. Development of a solid-state multi-sensor array camera for real time imaging of magnetic fields

    Science.gov (United States)

    Benitez, D.; Gaydecki, P.; Quek, S.; Torres, V.

    2007-07-01

    The development of a real-time magnetic field imaging camera based on solid-state sensors is described. The final laboratory comprises a 2D array of 33 x 33 solid state, tri-axial magneto-inductive sensors, and is located within a large current-carrying coil. This may be excited to produce either a steady or time-varying magnetic field. Outputs from several rows of sensors are routed to a sub-master controller and all sub-masters route to a master-controller responsible for data coordination and signal pre-processing. The data are finally streamed to a host computer via a USB interface and the image generated and displayed at a rate of several frames per second. Accurate image generation is predicated on a knowledge of the sensor response, magnetic field perturbations and the nature of the target respecting permeability and conductivity. To this end, the development of the instrumentation has been complemented by extensive numerical modelling of field distribution patterns using boundary element methods. Although it was originally intended for deployment in the nondestructive evaluation (NDE) of reinforced concrete, it was soon realised during the course of the work that the magnetic field imaging system had many potential applications, for example, in medicine, security screening, quality assurance (such as the food industry), other areas of nondestructive evaluation (NDE), designs associated with magnetic fields, teaching and research.

  13. Magneto-Inductive Underground Communications in a District Heating System

    DEFF Research Database (Denmark)

    Meybodi, Soroush Afkhami; Nielsen, Jens Frederik Dalsgaard; Bendtsen, Jan Dimon

    2011-01-01

    Feasibility of underground data communications is investigated by employing magnetic induction as the key technology at physical layer. Realizing an underground wireless sensor network for a district heating plant motivates this research problem. The main contribution of the paper is to find the ...

  14. Smart Rocks for Bridge Scour Monitoring: Design and Localization Using Electromagnetic Techniques and Embedded Orientation Sensors

    Science.gov (United States)

    Radchenko, Andro

    River bridge scour is an erosion process in which flowing water removes sediment materials (such as sand, rocks) from a bridge foundation, river beds and banks. As a result, the level of the river bed near a bridge pier is lowering such that the bridge foundation stability can be compromised, and the bridge can collapse. The scour is a dynamic process, which can accelerate rapidly during a flood event. Thus, regular monitoring of the scour progress is necessary to be performed at most river bridges. Present techniques are usually expensive, require large man/hour efforts, and often lack the real-time monitoring capabilities. In this dissertation a new method--'Smart Rocks Network for bridge scour monitoring' is introduced. The method is based on distributed wireless sensors embedded in ground underwater nearby the bridge pillars. The sensor nodes are unconstrained in movement, are equipped with years-lasting batteries and intelligent custom designed electronics, which minimizes power consumption during operation and communication. The electronic part consists of a microcontroller, communication interfaces, orientation and environment sensors (such as are accelerometer, magnetometer, temperature and pressure sensors), supporting power supplies and circuitries. Embedded in the soil nearby a bridge pillar the Smart Rocks can move/drift together with the sediments, and act as the free agent probes transmitting the unique signature signals to the base-station monitors. Individual movement of a Smart Rock can be remotely detected processing the orientation sensors reading. This can give an indication of the on-going scour progress, and set a flag for the on-site inspection. The map of the deployed Smart Rocks Network can be obtained utilizing the custom developed in-network communication protocol with signals intensity (RSSI) analysis. Particle Swarm Optimization (PSO) is applied for map reconstruction. Analysis of the map can provide detailed insight into the scour

  15. Beam monitoring in the transport channel

    International Nuclear Information System (INIS)

    Kalinin, A.S.; Levichev, E.B.; Samorukov, M.M.; Yupinov, Yu.L.

    1983-01-01

    Monitoring system for a single beam of charged particles, measuring peak current, centre of gravity displacement from equilibrium trajectory and cross section quadrupolar moment is described. Magnetoinduction sensors are used in the system. Beam parameter determination is made using a computer. The measurement accuracy is expected to be not worse than +-1mm in the current range (0.01-1)A at the beam duration more than 50 ns. The system is designed for the operation under conditions of background radiation and electromagnetic noise. The system described is developed for beam monitoring in electron-optical channel, connecting the ''Fakel'' LEA injector and small storage ring ''Plamja 1'', which is a part of storage ring complex-sources of synchrotron radiation

  16. Mesh-free magnetoinductive plasma model

    Czech Academy of Sciences Publication Activity Database

    Mašek, Martin; Gibbon, P.

    2010-01-01

    Roč. 38, č. 9 (2010), s. 2377-2382 ISSN 0093-3813 Institutional research plan: CEZ:AV0Z10100523 Keywords : Darwin approximation * hierarchical tree code Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.070, year: 2010

  17. Taste sensor; Mikaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K. [Kyushu University, Fukuoka (Japan)

    1998-03-05

    This paper introduces a taste sensor having a lipid/polymer membrane to work as a receptor of taste substances. The paper describes the following matters: this sensor uses a hollow polyvinyl chloride rod filled with KCl aqueous solution, and placed with silver and silver chloride wires, whose cross section is affixed with a lipid/polymer membrane as a lipid membrane electrode to identify taste from seven or eight kinds of response patterns of electric potential output from the lipid/polymer membrane; measurements of different substances presenting acidic taste, salty taste, bitter taste, sweet taste and flavor by using this sensor identified clearly each taste (similar response is shown to a similar taste even if the substances are different); different responses are indicated on different brands of beers; from the result of measuring a great variety of mineral waters, a possibility was suggested that this taste sensor could be used for water quality monitoring sensors; and application of this taste sensor may be expected as a maturation control sensor for Japanese sake (wine) and miso (bean paste) manufacturing. 2 figs., 1 tab.

  18. Sensors, Volume 4, Thermal Sensors

    Science.gov (United States)

    Scholz, Jorg; Ricolfi, Teresio

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.

  19. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    Energy Technology Data Exchange (ETDEWEB)

    Elnaggar, Sameh Y. [School of Engineering and Information Technology, University of New South Wales, Canberra (Australia); Tervo, Richard J. [Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3 Canada (Canada); Mattar, Saba M., E-mail: mattar@unb.ca [Chemistry Department, University of New Brunswick, Fredericton, NB, E3B 5A3 Canada (Canada)

    2015-11-21

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ{sub E} and/or magnetic κ{sub M} components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures.

  20. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators

    International Nuclear Information System (INIS)

    Elnaggar, Sameh Y.; Tervo, Richard J.; Mattar, Saba M.

    2015-01-01

    The theory and operation of various devices and systems, such as wireless power transfer via magnetic resonant coupling, magneto-inductive wave devices, magnetic resonance spectroscopy probes, and metamaterials can rely on coupled tuned resonators. The coupling strength is usually expressed in terms of the coupling coefficient κ, which can have electrical κ E and/or magnetic κ M components. In the current article, general expressions of κ are derived. The relation between the complex Poynting equation in its microscopic form and κ is made and discussed in detail. It is shown that κ can be expressed in terms of the interaction energy between the resonators' modes. It thus provides a general form that combines the magnetic and electric components of κ. The expressions make it possible to estimate the frequencies and fields of the coupled modes for arbitrarily oriented and spaced resonators. Thus, enabling the calculation of system specific parameters such as the transfer efficiency of wireless power transfer systems, resonator efficiency for electron spin resonance probes, and dispersion relations of magneto-inductive and stereo-metamaterials structures

  1. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  2. Semantically-Enabled Sensor Plug & Play for the Sensor Web

    Science.gov (United States)

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research. PMID:22164033

  3. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  4. Time-domain fiber loop ringdown sensor and sensor network

    Science.gov (United States)

    Kaya, Malik

    Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and

  5. Surfactant Sensors in Biotechnology; Part 1 – Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Milan Sak-Bosnar

    2004-01-01

    Full Text Available An overview on electrochemical surfactant sensors is given with special attention to papers published since 1993. The importance of surfactants in modern biotechnology is stressed out. Electrochemical sensors are usually divided according to the measured physical quantity to potentiometric, amperometric, conductometric and impedimetric surfactant sensors. The last ones are very few. Potentiometric surfactant sensors are the most numerous due to their simplicity and versatility. They can be used either as end-point titration sensors or as direct EMF measurement sensors, in batch or flow-through mode. Some amperometric surfactant sensors are true biosensors that use microorganisms or living cells.

  6. Applying Sensor Web Technology to Marine Sensor Data

    Science.gov (United States)

    Jirka, Simon; del Rio, Joaquin; Mihai Toma, Daniel; Nüst, Daniel; Stasch, Christoph; Delory, Eric

    2015-04-01

    In this contribution we present two activities illustrating how Sensor Web technology helps to enable a flexible and interoperable sharing of marine observation data based on standards. An important foundation is the Sensor Web Architecture developed by the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management). This architecture relies on the Open Geospatial Consortium's (OGC) Sensor Web Enablement (SWE) framework. It is an exemplary solution for facilitating the interoperable exchange of marine observation data within and between (research) organisations. The architecture addresses a series of functional and non-functional requirements which are fulfilled through different types of OGC SWE components. The diverse functionalities offered by the NeXOS Sensor Web architecture are shown in the following overview: - Pull-based observation data download: This is achieved through the OGC Sensor Observation Service (SOS) 2.0 interface standard. - Push-based delivery of observation data to allow users the subscription to new measurements that are relevant for them: For this purpose there are currently several specification activities under evaluation (e.g. OGC Sensor Event Service, OGC Publish/Subscribe Standards Working Group). - (Web-based) visualisation of marine observation data: Implemented through SOS client applications. - Configuration and controlling of sensor devices: This is ensured through the OGC Sensor Planning Service 2.0 interface. - Bridging between sensors/data loggers and Sensor Web components: For this purpose several components such as the "Smart Electronic Interface for Sensor Interoperability" (SEISI) concept are developed; this is complemented by a more lightweight SOS extension (e.g. based on the W3C Efficient XML Interchange (EXI) format). To further advance this architecture, there is on-going work to develop dedicated profiles of selected OGC

  7. Nanowire sensor, sensor array, and method for making the same

    Science.gov (United States)

    Yun, Minhee (Inventor); Myung, Nosang (Inventor); Vasquez, Richard (Inventor); Homer, Margie (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  8. Wireless sensor communications and internet connectivity for sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, M. [Crossbow Technology, Inc., San Jose, CA (United States)

    2001-07-01

    A wireless sensor network architecture is an integrated hardware/software solution that has the potential to change the way sensors are used in a virtually unlimited range of industries and applications. By leveraging Bluetooth wireless technology for low-cost, short-range radio links, wireless sensor networks such as CrossNet{sup TM} enable users to create wireless sensor networks. These wireless networks can link dozens or hundreds of sensors of disparate types and brands with data acquisition/analysis systems, such as handheld devices, internet-enabled laptop or desktop PCs. The overwhelming majority of sensor applications are hard-wired at present, and since wiring is often the most time-consuming, tedious, trouble-prone and expensive aspect of sensor applications, users in many fields will find compelling reasons to adopt the wireless sensor network solution. (orig.)

  9. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Czech Academy of Sciences Publication Activity Database

    Pospíšilová, M.; Kuncová, Gabriela; Trögl, J.

    2015-01-01

    Roč. 15, č. 10 (2015), s. 25208-25259 ISSN 1424-8220 Institutional support: RVO:67985858 Keywords : fiber-optic sensor * chemical sensors * enzymatic sensor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.033, year: 2015

  10. Reputation-based secure sensor localization in wireless sensor networks.

    Science.gov (United States)

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments.

  11. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.

    Science.gov (United States)

    Yurtman, Aras; Barshan, Billur

    2017-08-09

    Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage.

  12. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  13. Smart Optoelectronic Sensors and Intelligent Sensor Systems

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2012-03-01

    Full Text Available Light-to-frequency converters are widely used in various optoelectronic sensor systems. However, a further frequency-to-digital conversion is a bottleneck in such systems due to a broad frequency range of light-to-frequency converters’ outputs. This paper describes an effective OEM design approach, which can be used for smart and intelligent sensor systems design. The design is based on novel, multifunctional integrated circuit of Universal Sensors & Transducers Interface especially designed for such sensor applications. Experimental results have confirmed an efficiency of this approach and high metrological performances.

  14. Intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.

    1978-07-01

    Intrusion detection sensors are an integral part of most physical security systems. Under the sponsorship of the U.S. Department of Energy, Office of Safeguards and Security, Sandia Laboratories has conducted a survey of available intrusion detection sensors and has tested a number of different sensors. An overview of these sensors is provided. This overview includes (1) the operating principles of each type of sensor, (2) unique sensor characteristics, (3) desired sensor improvements which must be considered in planning an intrusion detection system, and (4) the site characteristics which affect the performance of both exterior and interior sensors. Techniques which have been developed to evaluate various intrusion detection sensors are also discussed

  15. Wireless sensor platform

    Science.gov (United States)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  16. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  17. Information-based self-organization of sensor nodes of a sensor network

    Science.gov (United States)

    Ko, Teresa H [Castro Valley, CA; Berry, Nina M [Tracy, CA

    2011-09-20

    A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.

  18. Sistem Pengendali Peralatan Elektronik dalam Rumah secara Otomatis Menggunakan Sensor PIR, Sensor LM35, dan Sensor LDR

    Directory of Open Access Journals (Sweden)

    Eka Desyantoro

    2015-08-01

    Full Text Available Listrik merupakan hal yang sangat penting di kehidupan kita. Setiap pekerjaan kita pasti dibantu dengan adanya listrik. Mulai dari penerangan hingga pengaturan suhu ruangan pun semuanya dibantu oleh listrik. Ketergantungan manusia terhadap listrik ini menimbulkan kebiasaan buruk. Banyak orang yang terkadang membiarkan suatu peralatan elektronik hidup pada saat tidak dibutuhkan. Terjadi suatu permasalahan untuk menciptakan suatu desain sistem embedded untuk mengendalikan peralatan elektronik dalam rumah secara otomatis. Makalah ini membahas tentang perancangan sistem pengendali peralatan elektronik dalam rumah secara otomatis. Sistem terdiri dari sensor PIR yang berfungsi untuk mendeteksi objek bergerak (manusia, sensor LM35 yang berfungsi untuk mendeteksi suhu, dan sensor LDR berfungsi sebagai sensor cahaya. Mikrokontroller ATMega16 sebagai pengendali jalannya sistem dari pembacaan sensor, menampilkan data sensor pada LCD dan mengatur kontak relay untuk menghidup dan mematikan listrik. Sistem pengendali peralatan elektronik dalam rumah secara otomatis menunjukan sensor LDR dapat membedakan gelap dan terang, sensor suhu LM35 dapat mendeteksi suhu dalam ruangan dengan toleransi kesalahan pembacaan kurang lebih 2o Celcius, dan sensor PIR dapat mendeteksi pergerakan manusia sejauh 5 meter.

  19. MASM: a market architecture for sensor management in distributed sensor networks

    Science.gov (United States)

    Viswanath, Avasarala; Mullen, Tracy; Hall, David; Garga, Amulya

    2005-03-01

    Rapid developments in sensor technology and its applications have energized research efforts towards devising a firm theoretical foundation for sensor management. Ubiquitous sensing, wide bandwidth communications and distributed processing provide both opportunities and challenges for sensor and process control and optimization. Traditional optimization techniques do not have the ability to simultaneously consider the wildly non-commensurate measures involved in sensor management in a single optimization routine. Market-oriented programming provides a valuable and principled paradigm to designing systems to solve this dynamic and distributed resource allocation problem. We have modeled the sensor management scenario as a competitive market, wherein the sensor manager holds a combinatorial auction to sell the various items produced by the sensors and the communication channels. However, standard auction mechanisms have been found not to be directly applicable to the sensor management domain. For this purpose, we have developed a specialized market architecture MASM (Market architecture for Sensor Management). In MASM, the mission manager is responsible for deciding task allocations to the consumers and their corresponding budgets and the sensor manager is responsible for resource allocation to the various consumers. In addition to having a modified combinatorial winner determination algorithm, MASM has specialized sensor network modules that address commensurability issues between consumers and producers in the sensor network domain. A preliminary multi-sensor, multi-target simulation environment has been implemented to test the performance of the proposed system. MASM outperformed the information theoretic sensor manager in meeting the mission objectives in the simulation experiments.

  20. Integrated cryogenic sensors

    International Nuclear Information System (INIS)

    Juanarena, D.B.; Rao, M.G.

    1991-01-01

    Integrated cryogenic pressure-temperature, level-temperature, and flow-temperature sensors have several advantages over the conventional single parameter sensors. Such integrated sensors were not available until recently. Pressure Systems, Inc. (PSI) of Hampton, Virginia, has introduced precalibrated precision cryogenic pressure sensors at the Los Angeles Cryogenic Engineering Conference in 1989. Recently, PSI has successfully completed the development of integrated pressure-temperature and level-temperature sensors for use in the temperature range 1.5-375K. In this paper, performance characteristics of these integrated sensors are presented. Further, the effects of irradiation and magnetic fields on these integrated sensors are also reviewed

  1. A Novel Optical Sensor Platform Designed for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Yang, Shuo; Zhou, Bochao; Sun, Tong; Grattan, Kenneth T V

    2013-01-01

    This paper presents a novel design of an optical sensor platform, enabling effective integration of a number of optical fibre ('wired') sensors with wireless sensor networks (WSNs). In this work, a fibre Bragg grating-based temperature sensor with low power consumption is specially designed as a sensing module and integrated successfully into a WSN, making full use of the advantages arising from both the advanced optical sensor designs and the powerful network functionalities resident in WSNs. The platform is expected to make an important impact on many applications, where either the conventional optical sensor designs or WSNs alone cannot meet the requirements.

  2. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  3. Micro Coriolis mass flow sensor with integrated resistive pressure sensors

    NARCIS (Netherlands)

    Groenesteijn, Jarno; Alveringh, Dennis; Schut, Thomas; Wiegerink, Remco J.; Sparreboom, Wouter; Lötters, Joost Conrad

    2017-01-01

    We report on novel resistive pressure sensors, integrated on-chip at the inlet- and outlet-channels of a micro Coriolis mass flow sensor. The pressure sensors can be used to measure the pressure drop over the Coriolis sensor which can be used to compensate pressure-dependent behaviour that might

  4. Resistive pressure sensors integrated with a Coriolis mass flow sensor

    NARCIS (Netherlands)

    Alveringh, Dennis; Schut, Thomas; Wiegerink, Remco J.; Sparreboom, Wouter; Lötters, Joost Conrad

    2017-01-01

    We report on a novel resistive pressure sensor that is completely integrated with a Coriolis mass flow sensor on one chip, without the need for extra fabrication steps or different materials. Two pressure sensors are placed in-line with the Coriolis sensor without requiring any changes to the fluid

  5. Consistent sensor, relay, and link selection in wireless sensor networks

    NARCIS (Netherlands)

    Arroyo Valles, M.D.R.; Simonetto, A.; Leus, G.J.T.

    2017-01-01

    In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes active because they consume a non-negligible amount of battery. In this paper we consider the problem of jointly selecting sensors, relays and links in a wireless sensor network where the active sensors need

  6. Sensor Fusion-based Event Detection in Wireless Sensor Networks

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Recently, Wireless Sensor Networks (WSN) community has witnessed an application focus shift. Although, monitoring was the initial application of wireless sensor networks, in-network data processing and (near) real-time actuation capability have made wireless sensor networks suitable candidate for

  7. SENSOR.awi.de: Management of heterogeneous platforms and sensors

    OpenAIRE

    Koppe, Roland; Gerchow, Peter; Macario, Ana; Haas, Antonie; Schäfer-Neth, Christian; Rehmcke, Steven; Walter, Andreas; Düde, Tobias; Weidinger, Philipp; Schäfer, Angela; Pfeiffenberger, Hans

    2018-01-01

    SENSOR.awi.de is a component of our data flow framework designed to enable a semi-automated flow of sensor observations to archives (acronym O2A). The dramatic increase in the number and type of platforms and respective sensors operated by Alfred Wegener Institute along with complex project-driven requirements in terms of satellite communication, sensor monitoring, quality control and validation, processing pipelines, visualization, and archival under FAIR principles, led us to build a g...

  8. A modular optical sensor

    Science.gov (United States)

    Conklin, John Albert

    This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also

  9. Practical Use Technique of Sensor

    International Nuclear Information System (INIS)

    Hwang, Gyu Seop

    1985-11-01

    This book tells of practical use technology of sensor, introducing the recent trend of sensor for electronic industry, IC temperature sensor, radiation temperature sensor of surface acoustic wave, optical fiber temperature sensor, a polyelectrolyte film humidity sensor, semiconductor pressure sensor for industrial instrumentation, silicon integration pressure sensor, thick film humidity sensor and its application, photo sensor reflection type, and color sensor. It also deals with sensor for FA, sensor for a robot and sensor for the chemical industry.

  10. Practical Use Technique of Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gyu Seop

    1985-11-15

    This book tells of practical use technology of sensor, introducing the recent trend of sensor for electronic industry, IC temperature sensor, radiation temperature sensor of surface acoustic wave, optical fiber temperature sensor, a polyelectrolyte film humidity sensor, semiconductor pressure sensor for industrial instrumentation, silicon integration pressure sensor, thick film humidity sensor and its application, photo sensor reflection type, and color sensor. It also deals with sensor for FA, sensor for a robot and sensor for the chemical industry.

  11. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  12. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built

  13. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  14. Gas Sensor

    KAUST Repository

    Luebke, Ryan; Eddaoudi, Mohamed; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Salama, Khaled N.

    2015-01-01

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  15. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Science.gov (United States)

    2010-07-01

    ... sensors, and dewpoint sensors. 1065.215 Section 1065.215 Protection of Environment ENVIRONMENTAL... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature sensors, and dewpoint sensors. (a) Application. Use instruments as specified in this section to measure...

  16. Compliant Tactile Sensors

    Science.gov (United States)

    Torres-Jara, Eduardo R.

    2011-01-01

    Tactile sensors are currently being designed to sense interactions with human hands or pen-like interfaces. They are generally embedded in screens, keyboards, mousepads, and pushbuttons. However, they are not well fitted to sense interactions with all kinds of objects. A novel sensor was originally designed to investigate robotics manipulation where not only the contact with an object needs to be detected, but also where the object needs to be held and manipulated. This tactile sensor has been designed with features that allow it to sense a large variety of objects in human environments. The sensor is capable of detecting forces coming from any direction. As a result, this sensor delivers a force vector with three components. In contrast to most of the tactile sensors that are flat, this one sticks out from the surface so that it is likely to come in contact with objects. The sensor conforms to the object with which it interacts. This augments the contact's surface, consequently reducing the stress applied to the object. This feature makes the sensor ideal for grabbing objects and other applications that require compliance with objects. The operational range of the sensor allows it to operate well with objects found in peoples' daily life. The fabrication of this sensor is simple and inexpensive because of its compact mechanical configuration and reduced electronics. These features are convenient for mass production of individual sensors as well as dense arrays. The biologically inspired tactile sensor is sensitive to both normal and lateral forces, providing better feedback to the host robot about the object to be grabbed. It has a high sensitivity, enabling its use in manipulation fingers, which typically have low mechanical impedance in order to be very compliant. The construction of the sensor is simple, using inexpensive technologies like silicon rubber molding and standard stock electronics.

  17. Invisible magnetic sensors

    Science.gov (United States)

    Mach-Batlle, Rosa; Navau, Carles; Sanchez, Alvaro

    2018-04-01

    Sensing magnetic fields is essential in many applications in biomedicine, transportation, or smart cities. The distortion magnetic sensors create in response to the field they are detecting may hinder their use, for example, in applications requiring dense packaging of sensors or accurately shaped field distributions. For sensing electromagnetic waves, cloaking shells that reduce the scattering of sensors have been introduced. However, the problem of making a magnetic sensor undetectable remains unsolved. Here, we present a general strategy on how to make a sensor magnetically invisible while keeping its ability to sense. The sensor is rendered undetectable by surrounding it with a spherical shell having a tailored magnetic permeability. Our method can be applied to arbitrary shaped magnetic sensors in arbitrary magnetic fields. The invisibility can be made exact when the sensor is spherical and the probed field is uniform. A metasurface composed of superconducting pieces is presented as a practical realization of the ideal invisibility shell.

  18. MEMS optical sensor

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising...... at least one multimode light source, one or more optical sensors comprising a multimode sensor optical waveguide accommodating a distributed Bragg reflector, at least one transmitting optical waveguide for guiding light from said at least one light source to said one or more multimode sensor optical...... waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light....

  19. Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes.

    Science.gov (United States)

    Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H

    2015-12-21

    Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and

  20. Networked Sensor Arrays

    International Nuclear Information System (INIS)

    Tighe, R. J.

    2002-01-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  1. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  2. Distributed Sensor Fusion for Scalar Field Mapping Using Mobile Sensor Networks.

    Science.gov (United States)

    La, Hung Manh; Sheng, Weihua

    2013-04-01

    In this paper, autonomous mobile sensor networks are deployed to measure a scalar field and build its map. We develop a novel method for multiple mobile sensor nodes to build this map using noisy sensor measurements. Our method consists of two parts. First, we develop a distributed sensor fusion algorithm by integrating two different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an estimate of the value of the scalar field at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a confidence of the estimate at each time step. The final estimate of the value of the scalar field is iteratively updated during the movement of the mobile sensors via weighted average. Second, we develop the distributed flocking-control algorithm to drive the mobile sensors to form a network and track the virtual leader moving along the field when only a small subset of the mobile sensors know the information of the leader. Experimental results are provided to demonstrate our proposed algorithms.

  3. Chemical sensors

    International Nuclear Information System (INIS)

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section

  4. Nanophotonic Image Sensors.

    Science.gov (United States)

    Chen, Qin; Hu, Xin; Wen, Long; Yu, Yan; Cumming, David R S

    2016-09-01

    The increasing miniaturization and resolution of image sensors bring challenges to conventional optical elements such as spectral filters and polarizers, the properties of which are determined mainly by the materials used, including dye polymers. Recent developments in spectral filtering and optical manipulating techniques based on nanophotonics have opened up the possibility of an alternative method to control light spectrally and spatially. By integrating these technologies into image sensors, it will become possible to achieve high compactness, improved process compatibility, robust stability and tunable functionality. In this Review, recent representative achievements on nanophotonic image sensors are presented and analyzed including image sensors with nanophotonic color filters and polarizers, metamaterial-based THz image sensors, filter-free nanowire image sensors and nanostructured-based multispectral image sensors. This novel combination of cutting edge photonics research and well-developed commercial products may not only lead to an important application of nanophotonics but also offer great potential for next generation image sensors beyond Moore's Law expectations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sensor Alerting Capability

    Science.gov (United States)

    Henriksson, Jakob; Bermudez, Luis; Satapathy, Goutam

    2013-04-01

    There is a large amount of sensor data generated today by various sensors, from in-situ buoys to mobile underwater gliders. Providing sensor data to the users through standardized services, language and data model is the promise of OGC's Sensor Web Enablement (SWE) initiative. As the amount of data grows it is becoming difficult for data providers, planners and managers to ensure reliability of data and services and to monitor critical data changes. Intelligent Automation Inc. (IAI) is developing a net-centric alerting capability to address these issues. The capability is built on Sensor Observation Services (SOSs), which is used to collect and monitor sensor data. The alerts can be configured at the service level and at the sensor data level. For example it can alert for irregular data delivery events or a geo-temporal statistic of sensor data crossing a preset threshold. The capability provides multiple delivery mechanisms and protocols, including traditional techniques such as email and RSS. With this capability decision makers can monitor their assets and data streams, correct failures or be alerted about a coming phenomena.

  6. Sensor web

    Science.gov (United States)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  7. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  8. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Science.gov (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407

  9. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.

    Science.gov (United States)

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-09-30

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  10. Proximity and Force Characteristics of CMC Touch Sensor with Square/Dome-shaped Sensor Elements

    International Nuclear Information System (INIS)

    Kawamura, T; Inaguma, N; Kakizaki, Y; Yamada, H; Tani, K

    2013-01-01

    A tactile sensor called Carbon Micro Coil (CMC) touch sensor was developed by CMC Technology Development Co., Ltd. The sensor's elements used in the experiments of this paper are made of silicon rubber containing CMCs several micrometers in diameter. One of the elements is molded into a square 30 mm on a side and 3 mm thick; the other is a dome 16 mm in diameter and 2 mm height. CMCs in the sensor element contribute to the electrical conductivity and the sensor element is considered to constitute an LCR circuit. When an object approaches to the sensor element or the sensor element is deformed mechanically, the impedance changes, and the CMC sensor detects the impedance changes by measuring the modulation of amplitude and phase of an input excitation signal to the sensor element. The CMC sensor also creates voltage signals of the R- and LC-components separately according to the amplitude and phase modulation. In this paper, the characteristics of the CMC sensor with respect to its proximity and force senses are investigated. First, the output of the CMC sensor with the square-shaped sensor element is measured when an object approaches to the sensor element. Next, the output of the CMC sensor with the dome-shaped sensor element is measured when fine deformations of 1 to 5 μm are applied to the sensor element under variable compression force. The results suggest that the CMC sensor can measure the force variance applied to the sensor element as well as the distance between the sensor element and an object.

  11. Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare

    Science.gov (United States)

    Haque, Shah Ahsanul; Rahman, Mustafizur; Aziz, Syed Mahfuzul

    2015-01-01

    Wireless Sensor Networks (WSN) are vulnerable to various sensor faults and faulty measurements. This vulnerability hinders efficient and timely response in various WSN applications, such as healthcare. For example, faulty measurements can create false alarms which may require unnecessary intervention from healthcare personnel. Therefore, an approach to differentiate between real medical conditions and false alarms will improve remote patient monitoring systems and quality of healthcare service afforded by WSN. In this paper, a novel approach is proposed to detect sensor anomaly by analyzing collected physiological data from medical sensors. The objective of this method is to effectively distinguish false alarms from true alarms. It predicts a sensor value from historic values and compares it with the actual sensed value for a particular instance. The difference is compared against a threshold value, which is dynamically adjusted, to ascertain whether the sensor value is anomalous. The proposed approach has been applied to real healthcare datasets and compared with existing approaches. Experimental results demonstrate the effectiveness of the proposed system, providing high Detection Rate (DR) and low False Positive Rate (FPR). PMID:25884786

  12. Hydrostatic force sensor

    International Nuclear Information System (INIS)

    Evans, M.S.; Stoughton, R.S.; Kazerooni, H.

    1994-08-01

    This paper presents a theoretical and experimental investigation of a new kind of force sensor which detects forces by measuring an induced pressure change in a material of large Poisson's ratio. In this investigation we develop mathematical expressions for the sensor's sensitivity and bandwidth, and show that its sensitivity can be much larger and its bandwidth is usually smaller than those of existing strain-gage-type sensors. This force sensor is well-suited for measuring large but slowly varying forces. It can be installed in a space smaller than that required by existing sensors

  13. Semantic interoperability in sensor applications - making sense of sensor data

    NARCIS (Netherlands)

    Brandt, Paul; Basten, Twan; Stuijk, Sander; Bui, Vinh; de Clercq, Paul; Ferreira Pires, Luis; van Sinderen, Marten J.

    Much effort has been spent on the optimization of sensor networks, mainly concerning their performance and power efficiency. Furthermore, open communication protocols for the exchange of sensor data have been developed and widely adopted, making sensor data widely available for software

  14. Clementine sensor suite

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    LLNL designed and built the suite of six miniaturized light-weight space-qualified sensors utilized in the Clementine mission. A major goal of the Clementine program was to demonstrate technologies originally developed for Ballistic Missile Defense Organization Programs. These sensors were modified to gather data from the moon. This overview presents each of these sensors and some preliminary on-orbit performance estimates. The basic subsystems of these sensors include optical baffles to reject off-axis stray light, light-weight ruggedized optical systems, filter wheel assemblies, radiation tolerant focal plane arrays, radiation hardened control and readout electronics and low mass and power mechanical cryogenic coolers for the infrared sensors. Descriptions of each sensor type are given along with design specifications, photographs and on-orbit data collected.

  15. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    Directory of Open Access Journals (Sweden)

    Marie Pospíšilová

    2015-09-01

    Full Text Available This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS and biosensors (FOBS. Fiber optic sensor (FOS systems use the ability of optical fibers (OF to guide the light in the spectral range from ultraviolet (UV (180 nm up to middle infrared (IR (10 μm and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  16. Three-Dimensional Sensor Common Operating Picture (3-D Sensor COP)

    Science.gov (United States)

    2017-01-01

    DEMs that have been computed from the point clouds . Additionally, Fusion3D can also display 3-D data created using photogrammetry software...Picture (3-D Sensor COP). To test the 3-D Sensor COP, we took advantage of a sensor network that had been deployed for the Enterprise Challenge 2016 at...took advantage of a sensor network that had been deployed for the Enterprise Challenge 2016 (EC16) at Fort Huachuca in Sierra Vista, Arizona. The

  17. Coupled wave sensor technology

    International Nuclear Information System (INIS)

    Maki, M.C.

    1988-01-01

    Buried line guided radar sensors have been used successfully for a number of years to provide perimeter security for high value resources. This paper introduces a new complementary sensor advancement at Computing Devices termed 'coupled wave device technology' (CWD). It provides many of the inherent advantages of leakey cable sensors, such as terrain-following and the ability to discriminate between humans and small animals. It also is able to provide a high or wide detection zone, and allows the sensor to be mounted aerially and adjacent to a wall or fence. Several alternative sensors have been developed which include a single-line sensor, a dual-line hybrid sensor that combines the elements of ported coax and CWD technology, and a rapid-deployment portable sensor for temporary or mobile applications. A description of the technology, the sensors, and their characteristics is provided

  18. Application Of FA Sensor 2

    International Nuclear Information System (INIS)

    Park, Seon Ho

    1993-03-01

    This book introduces FA sensor from basic to making system, which includes light sensor like photo diode and photo transistor, photo electricity sensor, CCD type image sensor, MOS type image sensor, color sensor, cds cell, and optical fiber scope. It also deals with direct election position sensor such as proximity switch, differential motion, linear scale of photo electricity type, and magnet scale, rotary sensor with summary of rotary encoder, rotary encoder types and applications, flow sensor, and sensing technology.

  19. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel.

    Science.gov (United States)

    Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun

    2014-11-01

    A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments.

  20. Dynamic Sensor Network Reprogramming using SensorScheme

    NARCIS (Netherlands)

    Evers, L.; Havinga, Paul J.M.; Kuper, Jan

    2007-01-01

    Building wireless sensor network applications is a challenging task, and it has become apparent that it is crucial for many sensor networks to be able to load or update the application after deployment. Since communication is a scarce resource and costly in terms of energy, it is important to

  1. An Observation Capability Metadata Model for EO Sensor Discovery in Sensor Web Enablement Environments

    Directory of Open Access Journals (Sweden)

    Chuli Hu

    2014-10-01

    Full Text Available Accurate and fine-grained discovery by diverse Earth observation (EO sensors ensures a comprehensive response to collaborative observation-required emergency tasks. This discovery remains a challenge in an EO sensor web environment. In this study, we propose an EO sensor observation capability metadata model that reuses and extends the existing sensor observation-related metadata standards to enable the accurate and fine-grained discovery of EO sensors. The proposed model is composed of five sub-modules, namely, ObservationBreadth, ObservationDepth, ObservationFrequency, ObservationQuality and ObservationData. The model is applied to different types of EO sensors and is formalized by the Open Geospatial Consortium Sensor Model Language 1.0. The GeosensorQuery prototype retrieves the qualified EO sensors based on the provided geo-event. An actual application to flood emergency observation in the Yangtze River Basin in China is conducted, and the results indicate that sensor inquiry can accurately achieve fine-grained discovery of qualified EO sensors and obtain enriched observation capability information. In summary, the proposed model enables an efficient encoding system that ensures minimum unification to represent the observation capabilities of EO sensors. The model functions as a foundation for the efficient discovery of EO sensors. In addition, the definition and development of this proposed EO sensor observation capability metadata model is a helpful step in extending the Sensor Model Language (SensorML 2.0 Profile for the description of the observation capabilities of EO sensors.

  2. Sensors an introductory course

    CERN Document Server

    Kalantar-zadeh, Kourosh

    2013-01-01

    Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed. This book: Provides a comprehensive representation of the most common sensors and can be used as a reference in relevant fields Presents learning materials in a concise and easy to understand manner Includes examples of how sensors are incorporated in real life measurements Contains detailed figures and schematics to assist in understanding the sensor performance Sensors: An Introductory Course is ideal for university stu...

  3. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  4. Joint sensor placement and power rating selection in energy harvesting wireless sensor networks

    KAUST Repository

    Bushnaq, Osama M.

    2017-11-02

    In this paper, the focus is on optimal sensor placement and power rating selection for parameter estimation in wireless sensor networks (WSNs). We take into account the amount of energy harvested by the sensing nodes, communication link quality, and the observation accuracy at the sensor level. In particular, the aim is to reconstruct the estimation parameter with minimum error at a fusion center under a system budget constraint. To achieve this goal, a subset of sensing locations is selected from a large pool of candidate sensing locations. Furthermore, the type of sensor to be placed at those locations is selected from a given set of sensor types (e.g., sensors with different power ratings). We further investigate whether it is better to install a large number of cheap sensors, a few expensive sensors or a combination of different sensor types at the optimal locations.

  5. 2-Sensor Problem

    Directory of Open Access Journals (Sweden)

    Michael Segal

    2004-11-01

    Full Text Available Abstract: Ad-hoc networks of sensor nodes are in general semi-permanently deployed. However, the topology of such networks continuously changes over time, due to the power of some sensors wearing out to new sensors being inserted into the network, or even due to designers moving sensors around during a network re-design phase (for example, in response to a change in the requirements of the network. In this paper, we address the problem of covering a given path by a limited number of sensors — in our case to two, and show its relation to the well-studied matrix multiplication problem.

  6. Sensors for Entertainment.

    Science.gov (United States)

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-07-15

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  7. Sensors for Entertainment

    OpenAIRE

    Fabrizio Lamberti; Andrea Sanna; Jon Rokne

    2016-01-01

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on ?Sensors for Entertainment?, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  8. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  9. A self-optimizing scheme for energy balanced routing in Wireless Sensor Networks using SensorAnt.

    Science.gov (United States)

    Shamsan Saleh, Ahmed M; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A; Ismail, Alyani

    2012-01-01

    Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.

  10. Issues and opportunities: beam simulations for heavy ion fusion

    International Nuclear Information System (INIS)

    Friedman, A

    1999-01-01

    UCRL- JC- 134975 PREPRINT code offering 3- D, axisymmetric, and ''transverse slice'' (steady flow) geometries, with a hierarchy of models for the ''lattice'' of focusing, bending, and accelerating elements. Interactive and script- driven code steering is afforded through an interpreter interface. The code runs with good parallel scaling on the T3E. Detailed simulations of machine segments and of complete small experiments, as well as simplified full- system runs, have been carried out, partially benchmarking the code. A magnetoinductive model, with module impedance and multi- beam effects, is under study. experiments, including an injector scalable to multi- beam arrays, a high- current beam transport and acceleration experiment, and a scaled final- focusing experiment. These ''phase I'' projects are laying the groundwork for the next major step in HIF development, the Integrated Research Experiment (IRE). Simulations aimed directly at the IRE must enable us to: design a facility with maximum power on target at minimal cost; set requirements for hardware tolerances, beam steering, etc.; and evaluate proposed chamber propagation modes. Finally, simulations must enable us to study all issues which arise in the context of a fusion driver, and must facilitate the assessment of driver options. In all of this, maximum advantage must be taken of emerging terascale computer architectures, requiring an aggressive code development effort. An organizing principle should be pursuit of the goal of integrated and detailed source- to- target simulation. methods for analysis of the beam dynamics in the various machine concepts, using moment- based methods for purposes of design, waveform synthesis, steering algorithm synthesis, etc. Three classes of discrete- particle models should be coupled: (1) electrostatic/ magnetoinductive PIC simulations should track the beams from the source through the final- focusing optics, passing details of the time- dependent distribution function to

  11. An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments.

    Science.gov (United States)

    Lemos, Marcus Vinícius de S; Filho, Raimir Holanda; Rabêlo, Ricardo de Andrade L; de Carvalho, Carlos Giovanni N; Mendes, Douglas Lopes de S; Costa, Valney da Gama

    2018-02-26

    Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user's queries or applications. Recent works perform provisioning by clustering sensor nodes based on the correlation measurements and then selecting as few nodes as possible to preserve WSN energy. However, such works consider only homogeneous nodes (same set of sensors). Therefore, those works are not entirely appropriate for sensor clouds, which in most cases comprises heterogeneous sensor nodes. In this paper, we propose ACxSIMv2, an approach to enhance the provisioning task by considering heterogeneous environments. Two main algorithms form ACxSIMv2. The first one, ACASIMv1, creates multi-dimensional clusters of sensor nodes, taking into account the measurements correlations instead of the physical distance between nodes like most works on literature. Then, the second algorithm, ACOSIMv2, based on an Ant Colony Optimization system, selects an optimal set of sensors nodes from to respond user's queries while attending all parameters and preserving the overall energy consumption. Results from initial experiments show that the approach reduces significantly the sensor cloud energy consumption compared to traditional works, providing a solution to be considered in sensor cloud scenarios.

  12. Sensors for Entertainment

    Directory of Open Access Journals (Sweden)

    Fabrizio Lamberti

    2016-07-01

    Full Text Available Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on “Sensors for Entertainment”, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  13. Novel Framework for Data Collection in Wireless Sensor Networks Using Flying Sensors

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2014-01-01

    This paper proposes a novel framework for data collection from a sensor network using flying sensor nodes. Efficient data communication within the network is a necessity as sensor nodes are usually energy constrained. The proposed framework utilizes the various entities forming the network...... for a different utility compared to their usual role in sensor networks. Use of flying sensor nodes is usually considered for conventional purpose of sensing and monitoring. Flying sensing nodes are usually utilized collectively in the form of an aerial sensor network, they are not expected to function as a data...... collection entity, as proposed in this framework. Similarly, cluster heads (CHs) are usually expected to transfer the aggregated data to an adjoining CH or to the base station (BS) directly. In the proposed framework the CH transfers data directly to the flying sensor node, averting the need for energy...

  14. Resource aware sensor nodes in wireless sensor networks

    International Nuclear Information System (INIS)

    Merrett, G V; Al-Hashimi, B M; White, N M; Harris, N R

    2005-01-01

    Wireless sensor networks are continuing to receive considerable research interest due, in part, to the range of possible applications. One of the greatest challenges facing researchers is in overcoming the limited network lifetime inherent in the small locally powered sensor nodes. In this paper, we propose IDEALS, a system to manage a wireless sensor network using a combination of information management, energy harvesting and energy monitoring, which we label resource awareness. Through this, IDEALS is able to extend the network lifetime for important messages, by controlling the degradation of the network to maximise information throughput

  15. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  16. Wireless sensors and sensor networks for homeland security applications.

    Science.gov (United States)

    Potyrailo, Radislav A; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M; Kelley-Loughnane, Nancy; Naik, Rajesh R

    2012-11-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.

  17. Micro-digital sun sensor: an imaging sensor for space applications

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.; Büttgen, B.; Hakkesteegt, H.C.; Jasen, H.; Leijtens, J.A.P.

    2010-01-01

    Micro-Digital Sun Sensor is an attitude sensor which senses relative position of micro-satellites to the sun in space. It is composed of a solar cell power supply, a RF communication block and an imaging chip which is called APS+. The APS+ integrates a CMOS Active Pixel Sensor (APS) of 512×512

  18. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS2 2015. 14th international conference on infrared sensors and systems. Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS 2 (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS 2 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical modulators; F.3

  19. Active self-testing noise measurement sensors for large-scale environmental sensor networks.

    Science.gov (United States)

    Domínguez, Federico; Cuong, Nguyen The; Reinoso, Felipe; Touhafi, Abdellah; Steenhaut, Kris

    2013-12-13

    Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone's frequency response over time. This paper presents our noise sensor's hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50) effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10.

  20. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong

    2015-03-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors\\'s magnetic field and frequency responses and their dependence on the sensors\\'s deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor\\'s large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications.

  1. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  2. Multi-Sensor Architectures

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki; Khan, M. Z.

    2012-01-01

    The use of multiple sensors typically requires the fusion of data from different type of sensors. The combined use of such a data has the potential to give an efficient, high quality and reliable estimation. Input data from different sensors allows the introduction of target attributes (target ty...

  3. Kalman Filter for Estimation of Sensor Acceleration Using Six - axis Inertial Sensor

    International Nuclear Information System (INIS)

    Lee, Jung Keun

    2015-01-01

    Although an accelerometer is a sensor that measures acceleration, it cannot be used by itself to measure the acceleration when the orientation of the sensor changes. This paper introduces a Kalman filter for the estimation of a sensor acceleration based on a six-axis inertial sensor (i.e., a three-axis accelerometer and three-axis gyroscope). The novelty of the proposed Kalman filter lies in the fact that its state vector includes not only the tilt angle variable but also the sensor acceleration. Thus, the filter can explicitly estimate the latter with a high accuracy. The accuracy of acceleration estimates were validated experimentally under three different dynamic conditions, using an optical motion capture system. It could be concluded that the performance of the proposed Kalman filter was comparable to that of the state-of-the-art estimation algorithm employed by the Xsens MTw. The proposed algorithm may be more suitable than inertial/magnetic sensor-based algorithms for various applications adopting six-axis inertial sensors

  4. Weight-Aware Sensor Deployment in Wireless Sensor Networks for Smart Cities

    Directory of Open Access Journals (Sweden)

    Mingshan Xie

    2018-01-01

    Full Text Available During the construction of wireless sensor networks (WSNs for smart cities, a preliminary survey of the relative criticalness within the monitored area can be performed. It is a challenge for deterministic sensor deployment to balance the tradeoff of sensing reliability and cost. In this paper, based on the sensing accuracy of the sensor, we establish a reliability model of the sensing area which is divided into sensing grids, and different weights are allocated to those grids. We employ a practical evaluation criterion using seesaw mapping for determining the weights of sensing grids. We further formulate and solve an optimization problem for maximizing the trust degree of the WSNs. With our proposed method, the efficient deployment of sensors can be realized. Simulation results show that our proposed deployment strategy can achieve higher trust degree with reduced sensor deployment cost and lower number of sensors at a certain miss probability threshold.

  5. Characteristic evaluation of acoustic emission sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun Kyu; Joo, Y. S.; Lee, N. H

    2000-12-01

    This report introduces the various kinds of Acoustic Emission(AE) sensors as well as the basic principle of AE sensors in order to select AE sensor suitably. The described sensors include : high sensitivity sensor, broadband sensor, underwater sensor, miniature sensor, directional sensor, integral pre-amplifier sensor. Sensor has two critical aspects of reliability and repeatability. For the high reliability, sensor has to be calibrated in accordance with ASTM standard E 1106 which explains to measure the characteristics of AE sensor accurately. For investigating the degradation of AE sensor under the severe environment for example the high radiation condition, It is important to perform the repeatability test which is described in detail in according to the ASTM standard E 976. Two kinds of AE sensor applications are also summarized.

  6. Energy-Aware Sensor Networks via Sensor Selection and Power Allocation

    KAUST Repository

    Niyazi, Lama B.

    2018-02-12

    Finite energy reserves and the irreplaceable nature of nodes in battery-driven wireless sensor networks (WSNs) motivate energy-aware network operation. This paper considers energy-efficiency in a WSN by investigating the problem of minimizing the power consumption consisting of both radiated and circuit power of sensor nodes, so as to determine an optimal set of active sensors and corresponding transmit powers. To solve such a mixed discrete and continuous problem, the paper proposes various sensor selection and power allocation algorithms of low complexity. Simulation results show an appreciable improvement in their performance over a system in which no selection strategy is applied, with a slight gap from derived lower bounds. The results further yield insights into the relationship between the number of activated sensors and its effect on total power in different regimes of operation, based on which recommendations are made for which strategies to use in the different regimes.

  7. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  8. Temperature Sensors Integrated into a CMOS Image Sensor

    NARCIS (Netherlands)

    Abarca Prouza, A.N.; Xie, S.; Markenhof, Jules; Theuwissen, A.J.P.

    2017-01-01

    In this work, a novel approach is presented for measuring relative temperature variations inside the pixel array of a CMOS image sensor itself. This approach can give important information when compensation for dark (current) fixed pattern noise (FPN) is needed. The test image sensor consists of

  9. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  10. HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Limb, Scott J. [Palo Alto Research Center, Palo Alto, CA (United States)

    2016-05-31

    This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.

  11. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS{sup 2} 2015. 14th international conference on infrared sensors and systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS{sup 2} (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS{sup 2} 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical

  12. Pressure Measurement Sensor

    Science.gov (United States)

    1997-01-01

    FFPI Industries Inc. is the manufacturer of fiber-optic sensors that furnish accurate pressure measurements in internal combustion chambers. Such an assessment can help reduce pollution emitted by these engines. A chief component in the sensor owes its seven year- long development to Lewis Research Center funding to embed optical fibers and sensors in metal parts. NASA support to Texas A&M University played a critical role in developing this fiber optic technology and led to the formation of FFPI Industries and the production of fiber sensor products. The simple, rugged design of the sensor offers the potential for mass production at low cost. Widespread application of the new technology is forseen, from natural gas transmission, oil refining and electrical power generation to rail transport and the petrochemical paper product industry.

  13. Generating three-parameter sensor

    Directory of Open Access Journals (Sweden)

    Filinyuk M. A.

    2014-08-01

    Full Text Available Generating sensors provide the possibility of getting remote information and its easy conversion into digital form. Typically, these are one-parameter sensors formed by combination of a primary transmitter (PT and a sine wave generator. Two-parameter sensors are not widely used as their implementation causes a problem with ambiguity output when measuring the PT. Nevertheless, the problem of creating miniature, thrifty multi-parameter RF sensors for different branches of science and industry remains relevant. Considering ways of designing RF sensors, we study the possibility of constructing a three-parameter microwave radio frequency range sensor, which is based on a two-stage three-parameter generalized immitance convertor (GIC. Resistive, inductive and capacitive PT are used as sensing elements. A mathematical model of the sensor, which describes the relation of the sensor parameters to the parameters of GIC and PT was developed. The basic parameters of the sensor, its transfer function and sensitivity were studied. It is shown that the maximum value of the power generated signal will be observed at a frequency of 175 MHz, and the frequency ranges depending on the parameters of the PT will be different. Research results and adequacy of the mathematical model were verified by the experiment. Error of the calculated dependences of the lasing frequency on PT parameters change, compared with the experimental data does not exceed 2 %. The relative sensitivity of the sensor based on two-stage GIC showed that for the resistive channel it is about 1.88, for the capacitive channel –1,54 and for the inductive channel –11,5. Thus, it becomes possible to increase the sensor sensitivity compared with the sensitivity of the PT almost 1,2—2 times, and by using the two stage GIC a multifunctional sensor is provided.

  14. Advanced Magnetoimpedance Sensors

    KAUST Repository

    Li, Bodong

    2015-02-01

    This thesis is concerned with the advanced topics of thin film magnetoimpedance (MI) sensors. The author proposes and develops novel MI sensors that target on the challenges arising from emerging applications such as flexible electronics, passive wireless sensing, etc. In the study of flexible MI sensor, the investigated sensors of NiFe/Cu/NiFe tri-layersare fabricated on three flexible substrates having different surface roughness: Kapton, standard and premiumphotopaper. Sensitivity versus substrate roughness analysis is carried out for the selection of optimal substrate material. The high magnetic sensing performance is achieved by using Kapton substrate. Stress simulation, incorporated with the theory of magnetostriction effect, reveals the material composition of Ni/Fe being as a key factor of the stress dependent MI effect for the flexible MI sensors. In the development of MI-SAW device for passive wireless magnetic field sensing, NiFe/Cu/NiFe tri-layersand interdigital transducers(IDT) are designed and fabricated on a single piece of LiNbO3substrate, providing a high degree of integration and the advantage of standard microfabrication. The double-electrodeIDT has been utilized and proven to have an optimal sensing performance in comparison to the bi-directional IDT design. The optimized high frequency performance of the thin film MI sensor results in a MI-SAW passive wireless magnetic sensor with high magnetic sensitivity comparing to the MI microwire approach. Benefiting from the high degree of integration of the MI thin film element, in the following study, two additional sensing elements are integrated to the SAW device to have a multifunctional passive wireless sensor with extended temperature and humidity sensing capabilities. Analytical models havebeen developed to eliminate the crossovers of different sensing signals through additional reference IDTs, resulting in a multifunctional passive wireless sensor with the capability of detecting all three

  15. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  16. Piezoceramic Sensors

    CERN Document Server

    Sharapov, Valeriy

    2011-01-01

    This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. This book presents the fundamentals, technical des

  17. Towards Sensor Database Systems

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Gehrke, Johannes; Seshadri, Praveen

    2001-01-01

    . These systems lack flexibility because data is extracted in a predefined way; also, they do not scale to a large number of devices because large volumes of raw data are transferred regardless of the queries that are submitted. In our new concept of sensor database system, queries dictate which data is extracted...... from the sensors. In this paper, we define the concept of sensor databases mixing stored data represented as relations and sensor data represented as time series. Each long-running query formulated over a sensor database defines a persistent view, which is maintained during a given time interval. We...... also describe the design and implementation of the COUGAR sensor database system....

  18. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  19. Novel PET sensors

    International Nuclear Information System (INIS)

    Cooper, C.R.

    2001-03-01

    This thesis describes the design, synthesis and evaluation of novel molecular sensors that utilize the phenomena of Photoinduced Electron Transfer (PET). PET design can be incorporated into molecules to allow them to selectively bind certain guest molecules. PET works by the modulation of electron potentials within a molecule. Binding events between a host and guest can, if designed suitably, change these potentials enough to cause a transfer of electronic charge within the molecular sensor. This event can be accurately and sensitively monitored by the use of ultra violet or fluorescence spectroscopy. A sensor molecule can be constructed by matching the guest to a suitable receptor site and incorporating this into a molecule containing a fluorophore with the correct electron potential characteristics. By using existing synthetic routes as well as exploiting new pathways these sensor molecules C n be constructed to contain a fluorophore separated from a guest receptor(s) by suitable spacers units. When put together these facets go to creating molecules that by design are sensitive and selective for certain guest molecules or functional groups. This methodology allows the synthetic chemist to rationally design and synthesise PET sensors, tailored to the needs of the guest. In this thesis the synthesis and evaluation of a novel PET sensors for D-glucosamine, disaccharides and fluoride is presented. It is believed that the novel sensors using the PET phenomenon presented in this thesis are a worthwhile extension of previous works undertaken by other groups around the world and shows new pathways to increasingly complex and sophisticated sensor molecular design. (author)

  20. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  1. Human Subcutaneous Tissue Response to Glucose Sensors: Macrophages Accumulation Impact on Sensor Accuracy.

    Science.gov (United States)

    Rigla, Mercedes; Pons, Belén; Rebasa, Pere; Luna, Alexis; Pozo, Francisco Javier; Caixàs, Assumpta; Villaplana, Maria; Subías, David; Bella, Maria Rosa; Combalia, Neus

    2018-04-01

    Subcutaneous (s.c.) glucose sensors have become a key component in type 1 diabetes management. However, their usability is limited by the impact of foreign body response (FBR) on their duration, reliability, and accuracy. Our study gives the first description of human acute and subacute s.c. response to glucose sensors, showing the changes observed in the sensor surface, the inflammatory cells involved in the FBR and their relationship with sensor performance. Twelve obese patients (seven type 2 diabetes) underwent two abdominal biopsies comprising the surrounding area where they had worn two glucose sensors: the first one inserted 7 days before and the second one 24 h before biopsy procedure. Samples were processed and studied to describe tissue changes by two independent pathologists (blind regarding sensor duration). Macrophages quantification was studied by immunohistochemistry methods in the area surrounding the sensor (CD68, CD163). Sensor surface changes were studied by scanning electron microscopy. Seven-day continuous glucose monitoring records were considered inaccurate when mean absolute relative difference was higher than 10%. Pathologists were able to correctly classify all the biopsies regarding sensor duration. Acute response (24 h) was characterized by the presence of neutrophils while macrophages were the main cell involved in subacute inflammation. The number of macrophages around the insertion hole was higher for less accurate sensors compared with those performing more accurately (32.6 ± 14 vs. 10.6 ± 1 cells/0.01 mm 2 ; P sensor-tissue interface is related with decrease in accuracy of the glucose measure.

  2. Geographically distributed environmental sensor system

    Science.gov (United States)

    French, Patrick; Veatch, Brad; O'Connor, Mike

    2006-10-03

    The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

  3. Smart and Intelligent Sensors

    Science.gov (United States)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make

  4. Microelectronic temperature sensor; silicon temperature sensor

    International Nuclear Information System (INIS)

    Beitner, M.; Kanert, W.; Reichert, H.

    1982-01-01

    The goal of this work was to develop a silicon temperature sensor with a sensitivity and a reliability as high and a tolerance as small as possible, for use in measurement and control. By employing the principle of spreading-resistance, using silicon doped by neutron transmutation, and trimming of the single wafer tolerances of resistance less than +- 5% can be obtained; overstress tests yielded a long-term stability better than 0.2%. Some applications show the advantageous use of this sensor. (orig.) [de

  5. Prototipe Sistem Telemetri Berbasis Sensor Suhu dan Sensor Asap untuk Pemantau Kebakaran Lahan

    Directory of Open Access Journals (Sweden)

    Boni Pahlanop Lapanporo

    2011-12-01

    Full Text Available Telah dilakukan perancangan suatu sistem telemetri berbasis  sensor suhu dan sensor asap (smoke detector untuk pemantau kebakaran lahan. Jenis sensor suhu yang digunakan adalah sensor LM35 dan Sensor asap yang digunakan tipe FG200. Untuk perangkat pengubah data analog keluaran sensor suhu dan sensor asap menjadi sinyal digital digunakan mikrokontroler ATMega8535. Pengiriman data menggunakan modul RF TXM02 pada bagian pemancar (transmitter dan modul FR RXM01 pada bagian penerima (receiver yang mampu melakukan transmisi data pada jarak 200 m di udara terbuka. Tampilan data keluaran hasil pembacaan sensor pada bagian pengirim dan bagian penerima selain dapat ditampilkan pada komputer dengan menggunakan GUI (Graphic User Interface dengan pemograman Borland Delphi 7.0, juga ditampilkan menggunakan LCD 16 x 2 character. Indikator terjadinya kebakaran (munculnya asap dan suhu lebih dari 37 °C tampak pada menyalanya alarm (buzzer yang terhubung dengan mikrokontroler. Hasil pengujian menunjukkan bahwa sistem dapat bekerja dengan baik di dalam melakukan pengiriman data informasi suhu dan keberadaan asap di titik pengamatan.

  6. Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Saez-Rodriguez, D.

    2016-01-01

    A high-performance fuel gauging sensor is described that uses five diaphragm-based pressure sensors, which are monitored using a linear array of polymer optical fiber Bragg gratings. The sensors were initially characterized using water, revealing a sensitivity of 98 pm/cm for four of the sensors...... of sensors manufactured with a polyurethane-based diaphragm showed no measurable deterioration over a three month period immersed in fuel. These sensors exhibited a sensitivity of 39 pm/cm, which is less than the silicone rubber devices due to the stiffer nature of the polyurethane material used....

  7. Fuzzy-Based Sensor Fusion for Cognitive Radio-Based Vehicular Ad Hoc and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Jalil Piran

    2015-01-01

    Full Text Available In wireless sensor networks, sensor fusion is employed to integrate the acquired data from diverse sensors to provide a unified interpretation. The best and most salient advantage of sensor fusion is to obtain high-level information in both statistical and definitive aspects, which cannot be attained by a single sensor. In this paper, we propose a novel sensor fusion technique based on fuzzy theory for our earlier proposed Cognitive Radio-based Vehicular Ad Hoc and Sensor Networks (CR-VASNET. In the proposed technique, we considered four input sensor readings (antecedents and one output (consequent. The employed mobile nodes in CR-VASNET are supposed to be equipped with diverse sensors, which cater to our antecedent variables, for example, The Jerk, Collision Intensity, and Temperature and Inclination Degree. Crash_Severity is considered as the consequent variable. The processing and fusion of the diverse sensory signals are carried out by fuzzy logic scenario. Accuracy and reliability of the proposed protocol, demonstrated by the simulation results, introduce it as an applicable system to be employed to reduce the causalities rate of the vehicles’ crashes.

  8. Flexible magnetoimpedance sensor

    International Nuclear Information System (INIS)

    Li, Bodong; Kavaldzhiev, Mincho N.; Kosel, Jürgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency responses and their dependence on the sensors's deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor's large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications. - Highlights: • A flexible magnetoimpedance (MI) sensor is developed. • Studies are carried out using a flexible microstrip transmission line. • An MI ratio of up to 90% is obtained. • The effect of magnetostriction is studied

  9. A micro-fabricated force sensor using an all thin film piezoelectric active sensor.

    Science.gov (United States)

    Lee, Junwoo; Choi, Wook; Yoo, Yong Kyoung; Hwang, Kyo Seon; Lee, Sang-Myung; Kang, Sungchul; Kim, Jinseok; Lee, Jeong Hoon

    2014-11-25

    The ability to measure pressure and force is essential in biomedical applications such as minimally invasive surgery (MIS) and palpation for detecting cancer cysts. Here, we report a force sensor for measuring a shear and normal force by combining an arrayed piezoelectric sensors layer with a precut glass top plate connected by four stress concentrating legs. We designed and fabricated a thin film piezoelectric force sensor and proposed an enhanced sensing tool to be used for analyzing gentle touches without the external voltage source used in FET sensors. Both the linear sensor response from 3 kPa to 30 kPa and the exact signal responses from the moving direction illustrate the strong feasibility of the described thin film miniaturized piezoelectric force sensor.

  10. A Micro-Fabricated Force Sensor Using an All Thin Film Piezoelectric Active Sensor

    Directory of Open Access Journals (Sweden)

    Junwoo Lee

    2014-11-01

    Full Text Available The ability to measure pressure and force is essential in biomedical applications such as minimally invasive surgery (MIS and palpation for detecting cancer cysts. Here, we report a force sensor for measuring a shear and normal force by combining an arrayed piezoelectric sensors layer with a precut glass top plate connected by four stress concentrating legs. We designed and fabricated a thin film piezoelectric force sensor and proposed an enhanced sensing tool to be used for analyzing gentle touches without the external voltage source used in FET sensors. Both the linear sensor response from 3 kPa to 30 kPa and the exact signal responses from the moving direction illustrate the strong feasibility of the described thin film miniaturized piezoelectric force sensor.

  11. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  12. Sensors Applications, Volume 4, Sensors for Automotive Applications

    Science.gov (United States)

    Marek, Jiri; Trah, Hans-Peter; Suzuki, Yasutoshi; Yokomori, Iwao

    2003-07-01

    An international team of experts from the leading companies in this field gives a detailed picture of existing as well as future applications. They discuss in detail current technologies, design and construction concepts, market considerations and commercial developments. Topics covered include vehicle safety, fuel consumption, air conditioning, emergency control, traffic control systems, and electronic guidance using radar and video. Meeting the growing need for comprehensive information on the capabilities, potentials and limitations of modern sensor systems, Sensors Applications is a book series covering the use of sophisticated technologies and materials for the creation of advanced sensors and their implementation in the key areas process monitoring, building control, health care, automobiles, aerospace, environmental technology and household appliances.

  13. Low-noise Magnetic Sensors

    KAUST Repository

    Kosel, Jü rgen; Sun, Jian

    2014-01-01

    Magnetic sensors are disclosed, as well as methods for fabricating and using the same. In some embodiments, an EMR effect sensor includes a semiconductor layer. In some embodiments, the EMR effect sensor may include a conductive layer substantially coupled to the semiconductor layer. In some embodiments, the EMR effect sensor may include a voltage lead coupled to the conductive layer. In some embodiments, the voltage lead may be configured to provide a voltage for measurement by a voltage measurement circuit. In some embodiments, the EMR effect sensor may include a second voltage lead coupled to the semiconductor layer. In some embodiments, the second voltage lead may be configured to provide a voltage for measurement by a voltage measurement circuit. Embodiments of a Hall effect sensor having the same or similar structure are also disclosed.

  14. Low-noise Magnetic Sensors

    KAUST Repository

    Kosel, Jurgen

    2014-03-27

    Magnetic sensors are disclosed, as well as methods for fabricating and using the same. In some embodiments, an EMR effect sensor includes a semiconductor layer. In some embodiments, the EMR effect sensor may include a conductive layer substantially coupled to the semiconductor layer. In some embodiments, the EMR effect sensor may include a voltage lead coupled to the conductive layer. In some embodiments, the voltage lead may be configured to provide a voltage for measurement by a voltage measurement circuit. In some embodiments, the EMR effect sensor may include a second voltage lead coupled to the semiconductor layer. In some embodiments, the second voltage lead may be configured to provide a voltage for measurement by a voltage measurement circuit. Embodiments of a Hall effect sensor having the same or similar structure are also disclosed.

  15. Woven electrochemical fabric-based test sensors (WEFTS): a new class of multiplexed electrochemical sensors.

    Science.gov (United States)

    Choudhary, Tripurari; Rajamanickam, G P; Dendukuri, Dhananjaya

    2015-05-07

    We present textile weaving as a new technique for the manufacture of miniature electrochemical sensors with significant advantages over current fabrication techniques. Biocompatible silk yarn is used as the material for fabrication instead of plastics and ceramics used in commercial sensors. Silk yarns are coated with conducting inks and reagents before being handloom-woven as electrodes into patches of fabric to create arrays of sensors, which are then laminated, cut and packaged into individual sensors. Unlike the conventionally used screen-printing, which results in wastage of reagents, yarn coating uses only as much reagent and ink as required. Hydrophilic and hydrophobic yarns are used for patterning so that sample flow is restricted to a small area of the sensor. This simple fluidic control is achieved with readily available materials. We have fabricated and validated individual sensors for glucose and hemoglobin and a multiplexed sensor, which can detect both analytes. Chronoamperometry and differential pulse voltammetry (DPV) were used to detect glucose and hemoglobin, respectively. Industrial quantities of these sensors can be fabricated at distributed locations in the developing world using existing skills and manufacturing facilities. We believe such sensors could find applications in the emerging area of wearable sensors for chemical testing.

  16. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  17. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  18. Sensors 4.0 – smart sensors and measurement technology enable Industry 4.0

    Directory of Open Access Journals (Sweden)

    A. Schütze

    2018-05-01

    Full Text Available Industrie 4.0 or the Industrial Internet of Things (IIoT are two terms for the current (revolution seen in industrial automation and control. Everything is getting smarter and data generated at all levels of the production process are used to improve product quality, flexibility, and productivity. This would not be possible without smart sensors, which generate the data and allow further functionality from self-monitoring and self-configuration to condition monitoring of complex processes. In analogy to Industry 4.0, the development of sensors has undergone distinctive stages culminating in today's smart sensors or Sensor 4.0. This paper briefly reviews the development of sensor technology over the last 2 centuries, highlights some of the potential that can be achieved with smart sensors and data evaluation, and discusses success requirements for future developments. In addition to magnetic sensor technologies which allow self-test and self-calibration and can contribute to many applications due to their wide spectrum of measured quantities, the paper discusses condition monitoring as a primary paradigm for introducing smart sensors and data analysis in manufacturing processes based on two projects performed in our group.

  19. Smart Sensors for Launch Vehicles

    Science.gov (United States)

    Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.

    2017-12-01

    Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.

  20. Sensor data security level estimation scheme for wireless sensor networks.

    Science.gov (United States)

    Ramos, Alex; Filho, Raimir Holanda

    2015-01-19

    Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates.

  1. Sensor Fusion of Position- and Micro-Sensors (MEMS) integrated in a Wireless Sensor Network for movement detection in landslide areas

    Science.gov (United States)

    Arnhardt, Christian; Fernández-Steeger, Tomas; Azzam, Rafig

    2010-05-01

    Monitoring systems in landslide areas are important elements of effective Early Warning structures. Data acquisition and retrieval allows the detection of movement processes and thus is essential to generate warnings in time. Apart from the precise measurement, the reliability of data is fundamental, because outliers can trigger false alarms and leads to the loss of acceptance of such systems. For the monitoring of mass movements and their risk it is important to know, if there is movement, how fast it is and how trustworthy is the information. The joint project "Sensorbased landslide early warning system" (SLEWS) deals with these questions, and tries to improve data quality and to reduce false alarm rates, due to the combination of sensor date (sensor fusion). The project concentrates on the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides by using various low-cost sensors, integrated in a wireless sensor network (WSN). The network consists of numerous connection points (nodes) that transfer data directly or over other nodes (Multi-Hop) in real-time to a data collection point (gateway). From there all the data packages are transmitted to a spatial data infrastructure (SDI) for further processing, analyzing and visualizing with respect to end-user specifications. The ad-hoc characteristic of the network allows the autonomous crosslinking of the nodes according to existing connections and communication strength. Due to the independent finding of new or more stable connections (self healing) a breakdown of the whole system is avoided. The bidirectional data stream enables the receiving of data from the network but also allows the transfer of commands and pointed requests into the WSN. For the detection of surface deformations in landslide areas small low-cost Micro-Electro-Mechanical-Systems (MEMS) and positionsensors from the automobile industries, different industrial applications and from other measurement

  2. Optimization of magnetoresistive sensor current for on-chip magnetic bead detection using the sensor self-field

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Østerberg, Frederik Westergaard

    2015-01-01

    We investigate the self-heating of magnetoresistive sensors used for measurements on magnetic beads in magnetic biosensors. The signal from magnetic beads magnetized by the field due to the sensor bias current is proportional to the bias current squared. Therefore, we aim to maximize the bias...... current while limiting the sensor self-heating. We systematically characterize and model the Joule heating of magnetoresistive sensors with different sensor geometries and stack compositions. The sensor heating is determined using the increase of the sensor resistance as function of the bias current......, thus the heat conductance is proportional to the sensor area and inversely proportional to the oxide thickness. This simple heat conductance determines the relationship between bias current and sensor temperature, and we show that View the MathML source25μm wide sensor on a View the MathML source1μm...

  3. Micro-Mechanical Temperature Sensors

    DEFF Research Database (Denmark)

    Larsen, Tom

    Temperature is the most frequently measured physical quantity in the world. The field of thermometry is therefore constantly evolving towards better temperature sensors and better temperature measurements. The aim of this Ph.D. project was to improve an existing type of micro-mechanical temperature...... sensor or to develop a new one. Two types of micro-mechanical temperature sensors have been studied: Bilayer cantilevers and string-like beam resonators. Both sensor types utilize thermally generated stress. Bilayer cantilevers are frequently used as temperature sensors at the micro-scale, and the goal....... The reduced sensitivity was due to initial bending of the cantilevers and poor adhesion between the two cantilever materials. No further attempts were made to improve the sensitivity of bilayer cantilevers. The concept of using string-like resonators as temperature sensors has, for the first time, been...

  4. The Ringcore Fluxgate Sensor

    DEFF Research Database (Denmark)

    Brauer, Peter

    1997-01-01

    A model describing the fundamental working principle of the "ringcore fluxgate sensor" is derived. The model is solely based on geometrical and measurable magnetic properties of the sensor and from this a number of fluxgate phenomenon can be described and estimated. The sensitivity of ringcore...... fluxgate sensors is measured for a large variety of geometries and is for all measurements found to fall between two limits obtained by the fluxgate model. The model is used to explain the zero field odd harmonic output of the fluxgate sensor, called the "feedthrough". By assuming a non ideal sensor...... with spatially distributed magnetization, the model predicts feedthrough signals which exactly reflects the measured signals. The non-linearities in a feedback compensated ringcore fluxgate sensors, called the "transverse field effect", can also be explained by the model. Measurements on stress annealed...

  5. Cryogenic microsize Hall sensors

    International Nuclear Information System (INIS)

    Kvitkovic, J.; Polak, M.

    1993-01-01

    Hall sensors have a variety of applications in magnetic field measurements. The active area of the Hall sensor does not play an important role in measuring of homogeneous magnetic field. Actually Hall sensors are widely used to measure profiles of magnetic fields produced by magnetization currents in samples of HTC superconductors, as well as of LTC ones. Similar techniques are used to measure magnetization of both HTC and LTC superconductors. In these cases Hall sensor operates in highly inhomogeneous magnetic fields. Because of that, Hall sensors with very small active area are required. We developed and tested Hall sensors with active area 100 μm x 100 μm - type M and 50 μm x 50 μm - type V. Here we report on the most imporant parameters of these units, as well as on their properties as differential magnetometer. (orig.)

  6. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... for various biosensing applications, however a thorough study of the sensor configurations has not been presented, but is the main subject of this thesis. Optical sensors are generally well suited for bio-sensing asthey show high sensitivity and give an immediate response for minute changes in the refractive...... index of a sample, due to the high sensitivity of optical bio-sensors detection of non-labeled biological objects can be performed. The majority of opticalsensors presented in the literature and commercially available optical sensors are based on evanescent wave sensing, however most of these sensors...

  7. Multifuctional integrated sensors (MFISES).

    Energy Technology Data Exchange (ETDEWEB)

    Homeijer, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roozeboom, Clifton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  8. Contact stress sensor

    Science.gov (United States)

    Kotovsky, Jack [Oakland, CA

    2012-02-07

    A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  9. Target Coverage in Wireless Sensor Networks with Probabilistic Sensors

    Science.gov (United States)

    Shan, Anxing; Xu, Xianghua; Cheng, Zongmao

    2016-01-01

    Sensing coverage is a fundamental problem in wireless sensor networks (WSNs), which has attracted considerable attention. Conventional research on this topic focuses on the 0/1 coverage model, which is only a coarse approximation to the practical sensing model. In this paper, we study the target coverage problem, where the objective is to find the least number of sensor nodes in randomly-deployed WSNs based on the probabilistic sensing model. We analyze the joint detection probability of target with multiple sensors. Based on the theoretical analysis of the detection probability, we formulate the minimum ϵ-detection coverage problem. We prove that the minimum ϵ-detection coverage problem is NP-hard and present an approximation algorithm called the Probabilistic Sensor Coverage Algorithm (PSCA) with provable approximation ratios. To evaluate our design, we analyze the performance of PSCA theoretically and also perform extensive simulations to demonstrate the effectiveness of our proposed algorithm. PMID:27618902

  10. Advanced Wireless Sensor Nodes - MSFC

    Science.gov (United States)

    Varnavas, Kosta; Richeson, Jeff

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  11. Roadmap on optical sensors

    Science.gov (United States)

    Ferreira, Mário F. S.; Castro-Camus, Enrique; Ottaway, David J.; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M.; Pellegrino, Paul M.; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  12. Roadmap on optical sensors.

    Science.gov (United States)

    Ferreira, Mário F S; Castro-Camus, Enrique; Ottaway, David J; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M; Pellegrino, Paul M; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  13. Carbon nanotube-based ethanol sensors

    International Nuclear Information System (INIS)

    Brahim, Sean; Colbern, Steve; Gump, Robert; Moser, Alex; Grigorian, Leonid

    2009-01-01

    Sensors containing metal-carbon nanotube (CNT) hybrid materials as the active sensing layer were demonstrated for ethanol vapor detection at room temperature. The metal-CNT hybrid materials were synthesized by infiltrating single wall carbon nanotubes (SWNTs) with the transition metals Ti, Mn, Fe, Co, Ni, Pd or Pt. Each sensor was prepared by drop-casting dilute dispersions of a metal-CNT hybrid onto quartz substrate electrodes and the impedimetric responses to varying ethanol concentration were recorded. Upon exposure to ethanol vapor, the ac impedance (Z') of the sensors was found to decrease to different extents. The sensor containing pristine CNT material was virtually non-responsive at low ethanol concentrations (<50 ppm). In contrast, all metal-CNT hybrid sensors showed extremely high sensitivity to trace ethanol levels with 100-fold or more gains in sensitivity relative to the starting SWNT sensor. All hybrid sensors, with the exception of Ni filled CNT, exhibited significantly larger sensor responses to ethanol vapor up to 250 ppm compared to the starting SWNT sensor.

  14. Open architecture of smart sensor suites

    Science.gov (United States)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  15. Flexible Sensors for Pressure Therapy: Effect of Substrate Curvature and Stiffness on Sensor Performance.

    Science.gov (United States)

    Khodasevych, Iryna; Parmar, Suresh; Troynikov, Olga

    2017-10-20

    Flexible pressure sensors are increasingly being used in medical and non-medical applications, and particularly in innovative health monitoring. Their efficacy in medical applications such as compression therapy depends on the accuracy and repeatability of their output, which in turn depend on factors such as sensor type, shape, pressure range, and conformability of the sensor to the body surface. Numerous researchers have examined the effects of sensor type and shape, but little information is available on the effect of human body parameters such as support surfaces' curvature and the stiffness of soft tissues on pressure sensing performance. We investigated the effects of body parameters on the performance of pressure sensors using a custom-made human-leg-like test setup. Pressure sensing parameters such as accuracy, drift and repeatability were determined in both static (eight hours continuous pressure) and dynamic (10 cycles of pressure application of 30 s duration) testing conditions. The testing was performed with a focus on compression therapy application for venous leg ulcer treatments, and was conducted in a low-pressure range of 20-70 mmHg. Commercially available sensors manufactured by Peratech and Sensitronics were used under various loading conditions to determine the influence of stiffness and curvature. Flat rigid, flat soft silicone and three cylindrical silicone surfaces of radii of curvature of 3.5 cm, 5.5 cm and 6.5 cm were used as substrates under the sensors. The Peratech sensor averaged 94% accuracy for both static and dynamic measurements on all substrates; the Sensitronics sensor averaged 88% accuracy. The Peratech sensor displayed moderate variations and the Sensitronics sensor large variations in output pressure readings depending on the underlying test surface, both of which were reduced markedly by individual pressure calibration for surface type. Sensor choice and need for calibration to surface type are important considerations for

  16. Gait Analysis Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Hutian Feng

    2012-02-01

    Full Text Available Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  17. Electric current sensors: a review

    International Nuclear Information System (INIS)

    Ripka, Pavel

    2010-01-01

    The review makes a brief overview of traditional methods of measurement of electric current and shows in more detail relatively new types of current sensors. These include Hall sensors with field concentrators, AMR current sensors, magneto-optical and superconducting current sensors. The influence of the magnetic core properties on the error of the current transformer shows why nanocrystalline materials are so advantageous for this application. Built-in CMOS current sensors are important tools for monitoring the health of integrated circuits. Of special industrial value are current clamps which can be installed without breaking the measured conductor. Parameters of current sensors are also discussed, including geometrical selectivity. This parameter specific for current sensors means the ability to suppress the influence of currents external to the sensor (including the position of the return conductor) and also suppress the influence on the position of the measured conductor with respect to the current. (topical review)

  18. Gait Analysis Using Wearable Sensors

    Science.gov (United States)

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763

  19. Porous Silicon Sensors- Elusive and Erudite

    OpenAIRE

    H. Saha, Prof.

    2017-01-01

    Porous Silicon Sensors have been fabricated and tested successfully over the last few years as humidity sensors, vapour sensors, gas sensors, piezoresistive pressure sensors and bio- sensors. In each case it has displayed remarkably sensitivity, relatively low temperature operation and ease of fabrication. Brief description of fabrication and properties of all these types of different sensors is reported in this paper. The barriers of porous silicon like contact, non- uniformity, instability ...

  20. Photon-counting image sensors

    CERN Document Server

    Teranishi, Nobukazu; Theuwissen, Albert; Stoppa, David; Charbon, Edoardo

    2017-01-01

    The field of photon-counting image sensors is advancing rapidly with the development of various solid-state image sensor technologies including single photon avalanche detectors (SPADs) and deep-sub-electron read noise CMOS image sensor pixels. This foundational platform technology will enable opportunities for new imaging modalities and instrumentation for science and industry, as well as new consumer applications. Papers discussing various photon-counting image sensor technologies and selected new applications are presented in this all-invited Special Issue.

  1. Bioinspired Sensor Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2011-10-01

    Full Text Available This editorial summarizes and classifies the contributions presented by different authors to the special issue of the journal Sensors dedicated to Bioinspired Sensor Systems. From the coupling of sensor arrays or networks, plus computer processing abilities, new applications to mimic or to complement human senses are arising in the context of ambient intelligence. Principles used, and illustrative study cases have been presented permitting readers to grasp the current status of the field.

  2. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain.

    Science.gov (United States)

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-20

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  3. Air Sensor Toolbox

    Science.gov (United States)

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  4. Autonomous sensor manager agents (ASMA)

    Science.gov (United States)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  5. Introduction to optical fiber sensors

    International Nuclear Information System (INIS)

    Moukdad, S.

    1991-01-01

    Optical fiber sensors have many advantages over other types of sensors, for example: Low weight, immunity from EMI, electrical isolation, chemical passivity, and high sensitivity. In this seminar, a brief explanation of the optical fiber sensors, their use, and their advantages will be given. After, a description of the main optical fiber sensor components will be presented. Principles of some kinds of optical fiber sensors will be presented, and the principle of the fiber-optic rotation sensor and its realization will be discussed in some details, as well as its main applications. (author). 5 refs, 8 figs, 2 tabs

  6. Thermal flow micro sensors

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow

  7. Extending lifetime of wireless sensor networks using multi-sensor ...

    Indian Academy of Sciences (India)

    SOUMITRA DAS

    In this paper a multi-sensor data fusion approach for wireless sensor network based on bayesian methods and ant colony ... niques for efficiently routing the data from source to the BS ... Literature review ... efficient scheduling and lot more to increase the lifetime of ... Nature-inspired algorithms such as ACO algorithms have.

  8. Open Standards for Sensor Information Processing

    Energy Technology Data Exchange (ETDEWEB)

    Pouchard, Line Catherine [ORNL; Poole, Stephen W [ORNL; Lothian, Josh [ORNL

    2009-07-01

    This document explores sensor standards, sensor data models, and computer sensor software in order to determine the specifications and data representation best suited for analyzing and monitoring computer system health using embedded sensor data. We review IEEE 1451, OGC Sensor Model Language and Transducer Model Language (TML), lm-sensors and Intelligent Platform Management Inititative (IPMI).

  9. Sensor Data Security Level Estimation Scheme for Wireless Sensor Networks

    Science.gov (United States)

    Ramos, Alex; Filho, Raimir Holanda

    2015-01-01

    Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE), a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates. PMID:25608215

  10. Sensor Data Security Level Estimation Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Alex Ramos

    2015-01-01

    Full Text Available Due to their increasing dissemination, wireless sensor networks (WSNs have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL that these mechanisms provide to sensor data is needed, so that users can be aware of the actual security state of this data and can make better decisions on its use. However, existing security estimation schemes proposed for WSNs fully ignore detection mechanisms and analyze solely the security provided by prevention mechanisms. In this context, this work presents the sensor data security estimator (SDSE, a new comprehensive security estimation scheme for WSNs. SDSE is designed for estimating the sensor data security level based on security metrics that analyze both attack prevention and detection mechanisms. In order to validate our proposed scheme, we have carried out extensive simulations that show the high accuracy of SDSE estimates.

  11. Sensor Substrate Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Novel substrates, such as aerogels and porous, low density ceramics may increase the sensitivities of chemical reaction-based sensors for toxic vapors. These sensors...

  12. Chemiresistive Graphene Sensors for Ammonia Detection.

    Science.gov (United States)

    Mackin, Charles; Schroeder, Vera; Zurutuza, Amaia; Su, Cong; Kong, Jing; Swager, Timothy M; Palacios, Tomás

    2018-05-09

    The primary objective of this work is to demonstrate a novel sensor system as a convenient vehicle for scaled-up repeatability and the kinetic analysis of a pixelated testbed. This work presents a sensor system capable of measuring hundreds of functionalized graphene sensors in a rapid and convenient fashion. The sensor system makes use of a novel array architecture requiring only one sensor per pixel and no selector transistor. The sensor system is employed specifically for the evaluation of Co(tpfpp)ClO 4 functionalization of graphene sensors for the detection of ammonia as an extension of previous work. Co(tpfpp)ClO 4 treated graphene sensors were found to provide 4-fold increased ammonia sensitivity over pristine graphene sensors. Sensors were also found to exhibit excellent selectivity over interfering compounds such as water and common organic solvents. The ability to monitor a large sensor array with 160 pixels provides insights into performance variations and reproducibility-critical factors in the development of practical sensor systems. All sensors exhibit the same linearly related responses with variations in response exhibiting Gaussian distributions, a key finding for variation modeling and quality engineering purposes. The mean correlation coefficient between sensor responses was found to be 0.999 indicating highly consistent sensor responses and excellent reproducibility of Co(tpfpp)ClO 4 functionalization. A detailed kinetic model is developed to describe sensor response profiles. The model consists of two adsorption mechanisms-one reversible and one irreversible-and is shown capable of fitting experimental data with a mean percent error of 0.01%.

  13. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  14. Sensitivity Study for Sensor Optical and Electric Crosstalk Based on Spectral Measurements: An Application to Developmental Sensors Using Heritage Sensors Such As MODIS

    Science.gov (United States)

    Butler, James J.; Oudrari, Hassan; Xiong, Sanxiong; Che, Nianzeng; Xiong, Xiaoxiong

    2007-01-01

    The process of developing new sensors for space flight frequently builds upon the designs and experience of existing heritage space flight sensors. Frequently in the development and testing of new sensors, problems are encountered that pose the risk of serious impact on successful retrieval of geophysical products. This paper describes an approach to assess the importance of optical and electronic cross-talk on retrieval of geophysical products using new MODIS-like sensors through the use of MODIS data sets. These approaches may be extended to any sensor characteristic and any sensor where that characteristic may impact the Level 1 products so long as validated geophysical products are being developed from the heritage sensor. In this study, a set of electronic and/or optical cross-talk coefficients are postulated. These coefficients are sender-receiver influence coefficients and represent a sensor signal contamination on any detector on a focal plane when another band's detectors on that focal plane are stimulated with a monochromatic light. The approach involves using the postulated cross-talk coefficients on an actual set of MODIS data granules. The original MODIS data granules and the cross-talk impacted granules are used with validated geophysical algorithms to create the derived products. Comparison of the products produced with the original and cross-talk impacted granules indicates potential problems, if any, with the characteristics of the developmental sensor that are being studied.

  15. Micromachined pressure/flow-sensor

    NARCIS (Netherlands)

    Oosterbroek, R.E.; Lammerink, Theodorus S.J.; Berenschot, Johan W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt; van den Berg, Albert

    1999-01-01

    The micromechanical equivalent of a differential pressure flow-sensor, well known in macro mechanics, is discussed. Two separate pressure sensors are used for the device, enabling to measure both, pressure as well as volume flow-rate. An integrated sensor with capacitive read-out as well as a

  16. Perimeter intrusion sensors

    International Nuclear Information System (INIS)

    Eaton, M.J.

    1977-01-01

    To obtain an effective perimeter intrusion detection system requires careful sensor selection, procurement, and installation. The selection process involves a thorough understanding of the unique site features and how these features affect the performance of each type of sensor. It is necessary to develop procurement specifications to establish acceptable sensor performance limits. Careful explanation and inspection of critical installation dimensions is required during on-site construction. The implementation of these activities at a particular site is discussed

  17. Polymer Optical Fiber Sensor and the Prediction of Sensor Response Utilizing Artificial Neural Networks

    Science.gov (United States)

    Haroglu, Derya

    The global market researches showed that there is a growing trend in the field of polymer optical fiber (POF) and POF sensors. Telecommunications, medicine, defense, aerospace, and automotive are the application areas of fiber optic sensors, where the automotive industry is the most promising application area for innovations in the field of POF sensors. The POF sensors in automobiles are particularly for detection of seat occupancy, and intelligent pedestrian protection systems. This dissertation investigates graded index perfluorinated polymer optical fiber as an intensity modulated intrinsic sensor for application in automotive seat occupancy sensing. Since a fiber optic sensor has a high bandwidth, is small in size, is lightweight, and is immune to electromagnetic interference (EMI) it offers higher performance than that of its electrical based counterparts such as strain gauge, elastomeric bladder, and resistive sensor systems. This makes the fiber optic sensor a potential suitable material for seat occupancy sensing. A textile-based fiber optic sensor was designed to be located in the area beneath the typical seated human's thighs. The pressure interval under which the proposed POF sensor design could perform well was found to be between 0.18 and 0.21 N/cm2, where perfluorinated (PF) graded index (GI) POF (62.5/750 mum) was used as the POF material. In addition, the effect of the automotive seat covering including face material (fabric) and foam backing to the sensor's performance was analyzed. The face fabric structure and the thickness of foam backing were not found to be significant factors to change the sensor results. A research study, survey, was conducted of which purpose was to better understand market demands in terms of sensor performance characteristics for automotive seat weight sensors, as a part of the Quality Function Deployment (QFD) House of Quality analysis. The companies joined the survey agreed on the first 5 most important sensor

  18. Working Group Report: Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  19. Water quality sensor

    International Nuclear Information System (INIS)

    Ishizuka, Keiko; Takahashi, Masanori; Watanabe, Atsushi; Ibe, Hidefumi.

    1994-01-01

    The sensor of the present invention can directly measure oxygen/hydrogen peroxide concentrations in reactor water under radiation irradiation condition, and it has a long life time. Namely, an oxygen sensor comprises electrodes attached on both sides of high temperature/radiation resistant ion conductive material in which ions are sufficiently diffused within a temperature range of from a room temperature to 300degC. It has a performance for measuring electromotive force caused by the difference of a partial pressure between a reference gas and a gas to be measured contained in the high temperature/radiation resistant material. A hydrogen peroxide sensor has the oxygen sensor described above, to which a filter for causing decomposition of hydrogen peroxide is attached. The sensor of the present invention can directly measure oxygen/hydrogen peroxide concentrations in a reactor water of a BWR type reactor under high temperature/radiation irradiation condition. Accordingly, accurate water quality environment in the reactor water can be recognized. As a result, determination of incore corrosion environment is established thereby enabling to attain reactor integrity, safety and long life. (I.S.)

  20. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain

    Directory of Open Access Journals (Sweden)

    Gerhard Müller

    2016-01-01

    Full Text Available The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  1. Focus on image sensors

    NARCIS (Netherlands)

    Jos Gunsing; Daniël Telgen; Johan van Althuis; Jaap van de Loosdrecht; Mark Stappers; Peter Klijn

    2013-01-01

    Robots need sensors to operate properly. Using a single image sensor, various aspects of a robot operating in its environment can be measured or monitored. Over the past few years, image sensors have improved a lot: frame rate and resolution have increased, while prices have fallen. As a result,

  2. Classifying Sensors Depending on their IDs to Reduce Power Consumption in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ayman Mohammd Brisha

    2010-05-01

    Full Text Available Wireless sensor networks produce a large amount of data that needs to be processed, delivered, and assessed according to the application objectives. Cluster-based is an effective architecture for data-gathering in wireless sensor networks. Clustering provides an effective way for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques, selecting cluster heads with more residual energy and rotating cluster heads periodically, in order to distribute the energy consumption among nodes in each cluster and extend the network lifetime. Clustering sensors are divided into groups, so that sensors will communicate information only to cluster heads and then the cluster heads will communicate the aggregated information to the processing center, and this may save energy. In this paper we show Two Relay Sensor Algorithm (TRSA, which divide wireless Sensor Network (WSN into unequaled clusters, showing that it can effectively save power for maximizing the life time of the network. Simulation results show that the proposed unequal clustering mechanism (TRSA balances the energy consumption among all sensor nodes and achieves an obvious improvement on the network lifetime.

  3. A comparison of oxygen saturation measurements obtained from a 'blue sensor' with a standard sensor.

    Science.gov (United States)

    Mawson, Isabel E; Dawson, Jennifer A; Donath, Susan M; Davis, Peter G

    2011-10-01

    The study aims to investigate pulse oximetry measurements from a 'blue' pulse oximeter sensor against measurements from a 'standard' pulse oximeter sensor in newly born infants. Immediately after birth, both sensors were attached to the infant, one to each foot. SpO₂ measurements were recorded simultaneously from each sensor for 10 min. Agreement between pairs of SpO₂ measurements were calculated using Bland-Altman analysis. Thirty-one infants were studied. There was good correlation between simultaneous SpO₂ measurements from both sensors (r² = 0.75). However, the mean difference between 'blue' and 'standard' sensors was -1.6%, with wide 95% limits of agreement +18.4 to -21.6%. The range of mean difference between sensors from each infant ranged from -20 to +20. The mean difference between the blue and standard sensor SpO₂ measurements is not clinically important. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  4. Sensor Development for Active Flow Control

    Science.gov (United States)

    Kahng, Seun K.; Gorton, Susan A.; Mau, Johnney C.; Soto, Hector L.; Hernandez, Corey D.

    2001-01-01

    Presented are the developmental efforts for MEMS sensors for a closed-loop active flow control in a low-speed wind tunnel evaluation. The MEMS sensors are designed in-house and fabricated out of house, and the shear sensors are a thermal type that are collocated with temperature and pressure sensors on a flexible polyimide sheet, which conforms to surfaces of a simple curvature. A total of 6 sensors are located within a 1.5 by 3 mm area as a cluster with each sensor being 300 pm square. The thickness of this sensor cluster is 75 pm. Outputs from the shear sensors have been compared with respect to those of the Preston tube for evaluation of the sensors on a flat plate. Pressure sensors are the absolute type and have recorded pressure measurements within 0.05 percent of the tunnel ESP pressure sensor readings. The sensors and signal conditioning electronics have been tested on both a flat plate and a ramp in Langley s 15-Inch Low-Turbulence Tunnel. The system configuration and control PC is configured with LabView, where calibration constants are stored for desired compensation and correction. The preliminary test results are presented within.

  5. Minimum Energy Decentralized Estimation in a Wireless Sensor Network with Correlated Sensor Noises

    Directory of Open Access Journals (Sweden)

    Krasnopeev Alexey

    2005-01-01

    Full Text Available Consider the problem of estimating an unknown parameter by a sensor network with a fusion center (FC. Sensor observations are corrupted by additive noises with an arbitrary spatial correlation. Due to bandwidth and energy limitation, each sensor is only able to transmit a finite number of bits to the FC, while the latter must combine the received bits to estimate the unknown parameter. We require the decentralized estimator to have a mean-squared error ( that is within a constant factor to that of the best linear unbiased estimator (BLUE. We minimize the total sensor transmitted energy by selecting sensor quantization levels using the knowledge of noise covariance matrix while meeting the target requirement. Computer simulations show that our designs can achieve energy savings up to when compared to the uniform quantization strategy whereby each sensor generates the same number of bits, irrespective of the quality of its observation and the condition of its channel to the FC.

  6. Minimum Energy Decentralized Estimation in a Wireless Sensor Network with Correlated Sensor Noises

    Directory of Open Access Journals (Sweden)

    Krasnopeev Alexey

    2005-01-01

    Full Text Available Consider the problem of estimating an unknown parameter by a sensor network with a fusion center (FC. Sensor observations are corrupted by additive noises with an arbitrary spatial correlation. Due to bandwidth and energy limitation, each sensor is only able to transmit a finite number of bits to the FC, while the latter must combine the received bits to estimate the unknown parameter. We require the decentralized estimator to have a mean-squared error (MSE that is within a constant factor to that of the best linear unbiased estimator (BLUE. We minimize the total sensor transmitted energy by selecting sensor quantization levels using the knowledge of noise covariance matrix while meeting the target MSE requirement. Computer simulations show that our designs can achieve energy savings up to 70 % when compared to the uniform quantization strategy whereby each sensor generates the same number of bits, irrespective of the quality of its observation and the condition of its channel to the FC.

  7. Communications for unattended sensor networks

    Science.gov (United States)

    Nemeroff, Jay L.; Angelini, Paul; Orpilla, Mont; Garcia, Luis; DiPierro, Stefano

    2004-07-01

    The future model of the US Army's Future Combat Systems (FCS) and the Future Force reflects a combat force that utilizes lighter armor protection than the current standard. Survival on the future battlefield will be increased by the use of advanced situational awareness provided by unattended tactical and urban sensors that detect, identify, and track enemy targets and threats. Successful implementation of these critical sensor fields requires the development of advanced sensors, sensor and data-fusion processors, and a specialized communications network. To ensure warfighter and asset survivability, the communications must be capable of near real-time dissemination of the sensor data using robust, secure, stealthy, and jam resistant links so that the proper and decisive action can be taken. Communications will be provided to a wide-array of mission-specific sensors that are capable of processing data from acoustic, magnetic, seismic, and/or Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. Other, more powerful, sensor node configurations will be capable of fusing sensor data and intelligently collect and process data images from infrared or visual imaging cameras. The radio waveform and networking protocols being developed under the Soldier Level Integrated Communications Environment (SLICE) Soldier Radio Waveform (SRW) and the Networked Sensors for the Future Force Advanced Technology Demonstration are part of an effort to develop a common waveform family which will operate across multiple tactical domains including dismounted soldiers, ground sensor, munitions, missiles and robotics. These waveform technologies will ultimately be transitioned to the JTRS library, specifically the Cluster 5 requirement.

  8. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  9. Miniaturized thermal flow sensor with planar-integrated sensor structures on semicircular surface channels

    NARCIS (Netherlands)

    Dijkstra, Marcel; de Boer, Meint J.; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Elwenspoek, Michael Curt

    2008-01-01

    A calorimetric miniaturized flow sensor was realized with a linear sensor response measured for water flow up to flow rates in the order of 300 nl min-1. A versatile technological concept is used to realize a sensor with a thermally isolated freely suspended silicon-rich silicon-nitride microchannel

  10. Large area CMOS image sensors

    International Nuclear Information System (INIS)

    Turchetta, R; Guerrini, N; Sedgwick, I

    2011-01-01

    CMOS image sensors, also known as CMOS Active Pixel Sensors (APS) or Monolithic Active Pixel Sensors (MAPS), are today the dominant imaging devices. They are omnipresent in our daily life, as image sensors in cellular phones, web cams, digital cameras, ... In these applications, the pixels can be very small, in the micron range, and the sensors themselves tend to be limited in size. However, many scientific applications, like particle or X-ray detection, require large format, often with large pixels, as well as other specific performance, like low noise, radiation hardness or very fast readout. The sensors are also required to be sensitive to a broad spectrum of radiation: photons from the silicon cut-off in the IR down to UV and X- and gamma-rays through the visible spectrum as well as charged particles. This requirement calls for modifications to the substrate to be introduced to provide optimized sensitivity. This paper will review existing CMOS image sensors, whose size can be as large as a single CMOS wafer, and analyse the technical requirements and specific challenges of large format CMOS image sensors.

  11. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory

    Science.gov (United States)

    Brewster, L.; Johnston, A.; Howard, R.; Mitchell, J.; Cryan, S.

    2007-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-loop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of"pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  12. Wearable sensors for health monitoring

    Science.gov (United States)

    Suciu, George; Butca, Cristina; Ochian, Adelina; Halunga, Simona

    2015-02-01

    In this paper we describe several wearable sensors, designed for monitoring the health condition of the patients, based on an experimental model. Wearable sensors enable long-term continuous physiological monitoring, which is important for the treatment and management of many chronic illnesses, neurological disorders, and mental health issues. The system is based on a wearable sensors network, which is connected to a computer or smartphone. The wearable sensor network integrates several wearable sensors that can measure different parameters such as body temperature, heart rate and carbon monoxide quantity from the air. After the portable sensors measuring parameter values, they are transmitted by microprocessor through the Bluetooth to the application developed on computer or smartphone, to be interpreted.

  13. Advanced interfacing techniques for sensors measurement circuits and systems for intelligent sensors

    CERN Document Server

    Roy, Joyanta; Kumar, V; Mukhopadhyay, Subhas

    2017-01-01

    This book presents ways of interfacing sensors to the digital world, and discusses the marriage between sensor systems and the IoT: the opportunities and challenges. As sensor output is often affected by noise and interference, the book presents effective schemes for recovering the data from a signal that is buried in noise. It also explores interesting applications in the area of health care, un-obstructive monitoring and the electronic nose and tongue. It is a valuable resource for engineers and scientists in the area of sensors and interfacing wanting to update their knowledge of the latest developments in the field and learn more about sensing applications and challenges.

  14. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications.

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori

    2017-08-28

    Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.

  15. Optimization of Emissions Sensor Networks Incorporating Tradeoffs Between Different Sensor Technologies

    Science.gov (United States)

    Nicholson, B.; Klise, K. A.; Laird, C. D.; Ravikumar, A. P.; Brandt, A. R.

    2017-12-01

    In order to comply with current and future methane emissions regulations, natural gas producers must develop emissions monitoring strategies for their facilities. In addition, regulators must develop air monitoring strategies over wide areas incorporating multiple facilities. However, in both of these cases, only a limited number of sensors can be deployed. With a wide variety of sensors to choose from in terms of cost, precision, accuracy, spatial coverage, location, orientation, and sampling frequency, it is difficult to design robust monitoring strategies for different scenarios while systematically considering the tradeoffs between different sensor technologies. In addition, the geography, weather, and other site specific conditions can have a large impact on the performance of a sensor network. In this work, we demonstrate methods for calculating optimal sensor networks. Our approach can incorporate tradeoffs between vastly different sensor technologies, optimize over typical wind conditions for a particular area, and consider different objectives such as time to detection or geographic coverage. We do this by pre-computing site specific scenarios and using them as input to a mixed-integer, stochastic programming problem that solves for a sensor network that maximizes the effectiveness of the detection program. Our methods and approach have been incorporated within an open source Python package called Chama with the goal of providing facility operators and regulators with tools for designing more effective and efficient monitoring systems. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

  16. Radiation sensor

    International Nuclear Information System (INIS)

    Brown, W.L.; Geronime, R.L.

    1977-01-01

    Radiation sensor and thermocouple, respectively, which can be used for reactor in-core instrumentation. The radiation sensor consists of an inconel conductor wire and rhodium emitter wire, the thermocouple of two intertwined alumel or chromel wires. Both are arranged in the center of a metal tube relative to which they are separated by an insulator made of SiO 2 fibers. This insulator is first introduced as a loose fabric between the radiation sensor and the thermocouple, respectively, and the metal tube and then compacted to a density of 35-73% of pure SiO 2 by drawing the tube. There is no need for soldering or welding. The insulation resistivity at room temperature ist between 10 14 and 10 15 ohms. (ORU) [de

  17. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  18. Bluetooth-based wireless sensor networks

    Science.gov (United States)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  19. Development of magnetic jxB sensor

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Ishitsuka, Etsuo

    2001-12-01

    The improved mechanical sensor, i.e. magnetic jxB sensor (a mechanical sensor and a part of the steady state hybrid-type magnetic sensor) has been designed. The basic structure of the sensor is similar to the previously developed sensor (old sensor) in EDA phase. In this design, the neutron resistant materials are selected for the load cell (strain gauge and sensor beam) and sensing coil/frame. In order to reduce temperature drift of the sensor signal, four strain gauges with the same electrical property and geometrical size are bonded on the sensor beam by using Al 2 O 3 plasma spraying process, i.e., a couple of strain gauges is bonded on one side of the beam and another couple of gauges is bonded on the other side. These four strain gauges form an electrical bridge circuit. The zero-level drift of the output of the load cell used in the magnetic jxB sensor was reduced to about 1/20 compared with the old sensor. The temperature dependence of the output of the load cell is small. The linearity of the output of the load cell against weight was obtained. A non-linearity was observed in the sensitivity of the magnetic jxB sensor. The deviation of sensitivity from the fitting line was less than 7% in the high magnetic field region. The neutron irradiation effect on sensitivity of the sensor was investigated. The sensitivity of the sensor was gradually decreased by ∼30% at neutron fluence of (1.8-2.8)x10 23 n/m 2 in the high magnetic field. During irradiation, the non-linearity was observed in the sensitivity. (author)

  20. SERS sensors for DVD platform

    DEFF Research Database (Denmark)

    Brøgger, Anna Line

    This Ph.D. thesis explores the engineering of a portable sensor system for detection of rare and small molecules. The Ph.D. project is part of the research project 'Multi-Sensor DVD platform' (MUSE), aiming to integrate different sensors on a rotating disc. The sensors are chosen to complement each...... other, creating more reliable and stable results for the end user. The rotating disc comprises microfluidic channels, which can be utilized for handling and manipulating liquid samples such as blood or water. The focus of this Ph.D. thesis, is on the integration of one specific sensor on a rotating disc....... The sensor is based upon surface enhanced Raman spectroscopy (SERS), which detects molecular vibrations. The aim of this thesis is to cover the different aspects of the sensor system. SERS substrates, consisting of nanopillars with gold or silver caps on top, have been fabricated by standard micro and nano...

  1. Electric field sensor studies

    International Nuclear Information System (INIS)

    Griffith, R.D.; Parks, S.

    1977-01-01

    Above-ground intrusion sensors are reviewed briefly. Buried wire sensors are next considered; feasibility studies were conducted. A triangular system of an overhead transmitter wire exciting two buried sensor wires was developed and tested. It failed sometimes to detect a man making a broad jump. A differential receiver was developed to solve this problem

  2. Surface Embedded Metal Oxide Sensors (SEMOS)

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk; Talat Ali, Syed; Pleth Nielsen, Lars

    SEMOS is a joint project between Aalborg University, Danish Technological Institute and Danish Technical University in which micro temperature sensors and metal oxide-based gas sensors are developed and tested in a simulated fuel cell environment as well as in actual working fuel cells. Initially......, sensors for measuring the temperatures in an operating HT-PEM (High Temperature-Proton Exchange Membrane) fuel cell are developed for detecting in-plane temperature variations. 5 different tracks for embedded thermal sensors are investigated. The fuel cell MEA (Membrane Electrode Assembly) is quite...... complex and sensors are not easily implemented in the construction. Hence sensor interface and sensor position must therefore be chosen carefully in order to make the sensors as non-intrusive as possible. Metal Oxide Sensors (MOX) for measuring H2, O2 and CO concentration in a fuel cell environment...

  3. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong; Kavaldzhiev, Mincho; Kosel, Jü rgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency

  4. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    Science.gov (United States)

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  5. Micro-fabricated all optical pressure sensors

    DEFF Research Database (Denmark)

    Havreland, Andreas Spandet; Petersen, Søren Dahl; Østergaard, Christian

    2017-01-01

    Optical pressure sensors can operate in certain harsh application areas where the electrical pressure sensors cannot. However, the sensitivity is often not as good for the optical sensors. This work presents an all optical pressure sensor, which is fabricated by micro fabrication techniques, where...... the sensitivity can be tuned in the fabrication process. The developed sensor design, simplifies the fabrication process leading to a lower fabrication cost, which can make the all optical pressure sensors more competitive towards their electrical counterpart. The sensor has shown promising results and a linear...... pressure response has been measured with a sensitivity of 0.6nm/bar....

  6. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew [Austin, TX

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  7. Magnetic Nanocomposite Cilia Tactile Sensor

    KAUST Repository

    Alfadhel, Ahmed

    2015-10-21

    A multifunctional biomimetic nanocomposite tactile sensor is developed that can detect shear and vertical forces, feel texture, and measure flow with extremely low power consumption. The sensor\\'s high performance is maintained within a wide operating range that can be easily adjusted. The concept works on rigid and flexible substrates and the sensors can be used in air or water without any modifications.

  8. Optically Defined Modal Sensors Incorporating Spiropyran-Doped Liquid Crystals with Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Hui-Lung Kuo

    2011-01-01

    Full Text Available We integrated a piezoelectric sensing layer lamina containing liquid crystals (LC and spiropyran (SP in a LC/SP mixture to create an optically reconfigurable modal sensor for a cantilever beam. The impedance of this LC/SP lamina was decreased by UV irradiation which constituted the underlying mechanism to modulate the voltage externally applied to the piezoelectric actuating layer. Illuminating a specific pattern onto the LC/SP lamina provided us with a way to spatially modulate the piezoelectric vibration signal. We showed that if an UV illuminated pattern matches the strain distribution of a specific mode, a piezoelectric modal sensor can be created. Since UV illumination can be changed in situ in real-time, our results confirm for the first time since the inception of smart sensors, that an optically tailored modal sensor can be created. Some potential applications of this type of sensor include energy harvesting devices, bio-chips, vibration sensing and actuating devices.

  9. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs. The procedure for sensor configuration is based on simultaneous perturbation stochastic approximation (SPSA). SPSA avoids the need for detailed modeling of the sensor response by simply......Considers the problem of sensor configuration for complex systems. Our approach involves definition of an appropriate optimality criterion or performance measure, and description of an efficient and practical algorithm for achieving the optimality objective. The criterion for optimal sensor...... relying on observed responses as obtained by limited experimentation with test sensor configurations. We illustrate the approach with the optimal placement of acoustic sensors for signal detection in structures. This includes both a computer simulation study for an aluminum plate, and real...

  10. Sensors in Education

    OpenAIRE

    Van Rosmalen, Peter; Schneider, Jan; Börner, Dirk

    2014-01-01

    Sensors rapidly become available both for personal as well as scientific use. A wide range of applications exists for personal use e.g. safety in and around the house, sport, fitness and health. In this workshop we will explore how sensors are (can be) used in education. We start with an introduction on sensors and their use, discuss the FP7 project METALOGUE (www.metalogue.eu), a Multi-perspective Multi-modal Dialogue system, and close with a hands-on and a discussion of the design of the Pr...

  11. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  12. Microfabricated Formaldehyde Gas Sensors

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2009-11-01

    Full Text Available Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation.

  13. Supporting Learning with Wireless Sensor Data

    Directory of Open Access Journals (Sweden)

    Arttu Perttula

    2013-03-01

    Full Text Available In this article, learning is studied in in situ applications that involve sensors. The main questions are how to conceptualize experiential learning involving sensors and what kinds of learning applications using sensors already exist or could be designed. It is claimed that experiential learning, context information and sensor data supports twenty first century learning. The concepts of context, technology-mediated experiences, shared felt experiences and experiential learning theory will be used to describe a framework for sensor-based mobile learning environments. Several scenarios and case examples using sensors and sensor data will be presented, and they will be analyzed using the framework. Finally, the article contributes to the discussion concerning the role of technology-mediated learning experiences and collective sensor data in developing twenty first century learning by characterizing what kinds of skills and competences are supported in learning situations that involve sensors.

  14. Energy scavenging sensors for ultra-low power sensor networks

    Science.gov (United States)

    O'Brien, Dominic C.; Liu, Jing Jing; Faulkner, Grahame E.; Vachiramon, Pithawat; Collins, Steve; Elston, Steven J.

    2010-08-01

    The 'internet of things' will require very low power wireless communications, preferably using sensors that scavenge power from their environment. Free space optics allows communications over long ranges, with simple transceivers at each end, offering the possibility of low energy consumption. In addition there can be sufficient energy in the communications beam to power simple terminals. In this paper we report experimental results from an architecture that achieves this. A base station that tracks sensors in its coverage area and communicates with them using low divergence optical beams is presented. Sensor nodes use modulated retro-reflectors to communicate with the base station, and the nodes are powered by the illuminating beam. The paper presents design and implementation details, as well as future directions for this work.

  15. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab

    Science.gov (United States)

    Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  16. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  17. Sensors, Volume 1, Fundamentals and General Aspects

    Science.gov (United States)

    Grandke, Thomas; Ko, Wen H.

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume deals with the fundamentals and common principles of sensors and covers the wide areas of principles, technologies, signal processing, and applications. Contents include: Sensor Fundamentals, e.g. Sensor Parameters, Modeling, Design and Packaging; Basic Sensor Technologies, e.g. Thin and Thick Films, Integrated Magnetic Sensors, Optical Fibres and Intergrated Optics, Ceramics and Oxides; Sensor Interfaces, e.g. Signal Processing, Multisensor Signal Processing, Smart Sensors, Interface Systems; Sensor Applications, e.g. Automotive: On-board Sensors, Traffic Surveillance and Control, Home Appliances, Environmental Monitoring, etc. This volume is an indispensable reference work and text book for both specialits and newcomers, researchers and developers.

  18. A Radiosonde Using a Humidity Sensor Array with a Platinum Resistance Heater and Multi-Sensor Data Fusion

    Science.gov (United States)

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-01-01

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes. PMID:23857263

  19. Fixture For Mounting A Pressure Sensor

    Science.gov (United States)

    Cagle, Christopher M.

    1995-01-01

    Fixture for mounting pressure sensor in aerodynamic model simplifies task of removal and replacement of sensor in event sensor becomes damaged. Makes it unnecessary to dismantle model. Also minimizes any change in aerodynamic characteristics of model in event of replacement. Removable pressure sensor installed in fixture in wall of model. Wires from sensor pass through channel under surface.

  20. Scheduling policies of intelligent sensors and sensor/actuators in flexible structures

    Science.gov (United States)

    Demetriou, Michael A.; Potami, Raffaele

    2006-03-01

    In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.

  1. PostGIS-Based Heterogeneous Sensor Database Framework for the Sensor Observation Service

    Directory of Open Access Journals (Sweden)

    Ikechukwu Maduako

    2012-10-01

    Full Text Available Environmental monitoring and management systems in most cases deal with models and spatial analytics that involve the integration of in-situ and remote sensor observations. In-situ sensor observations and those gathered by remote sensors are usually provided by different databases and services in real-time dynamic services such as the Geo-Web Services. Thus, data have to be pulled from different databases and transferred over the network before they are fused and processed on the service middleware. This process is very massive and unnecessary communication and work load on the service. Massive work load in large raster downloads from flat-file raster data sources each time a request is made and huge integration and geo-processing work load on the service middleware which could actually be better leveraged at the database level. In this paper, we propose and present a heterogeneous sensor database framework or model for integration, geo-processing and spatial analysis of remote and in-situ sensor observations at the database level.  And how this can be integrated in the Sensor Observation Service, SOS to reduce communication and massive workload on the Geospatial Web Services and as well make query request from the user end a lot more flexible.

  2. Multiparametric methane sensor for environmental monitoring

    Science.gov (United States)

    Borecki, M.; Duk, M.; Kociubiński, A.; Korwin-Pawlowski, M. L.

    2016-12-01

    Today, methane sensors find applications mostly in safety alarm installations, gas parameters detection and air pollution classification. Such sensors and sensors elements exists for industry and home use. Under development area of methane sensors application is dedicated to ground gases monitoring. Proper monitoring of soil gases requires reliable and maintenance-free semi-constant and longtime examination at relatively low cost of equipment. The sensors for soil monitoring have to work on soil probe. Therefore, sensor is exposed to environment conditions, as a wide range of temperatures and a full scale of humidity changes, as well as rain, snow and wind, that are not specified for classical methane sensors. Development of such sensor is presented in this paper. The presented sensor construction consists of five commercial non dispersive infra-red (NDIR) methane sensing units, a set of temperature and humidity sensing units, a gas chamber equipped with a micro-fan, automated gas valves and also a microcontroller that controls the measuring procedure. The electronics part of sensor was installed into customized 3D printed housing equipped with self-developed gas valves. The main development of proposed sensor is on the side of experimental evaluation of construction reliability and results of data processing included safety procedures and function for hardware error correction. Redundant methane sensor units are used providing measurement error correction as well as improved measurement accuracy. The humidity and temperature sensors are used for internal compensation of methane measurements as well as for cutting-off the sensor from the environment when the conditions exceed allowable parameters. Results obtained during environment sensing prove that the gas concentration readings are not sensitive to gas chamber vertical or horizontal position. It is important as vertical sensor installation on soil probe is simpler that horizontal one. Data acquired during six

  3. ANALYTICAL MODELING OF INNOVATIVE SENSOR PLACEMENT STRATEGY FOR CORONA-BASED WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    HASSAN H. EKAL

    2017-09-01

    Full Text Available Wireless Sensor Networks (WSNs applications are increasing rapidly, thanks to their broad potential in ecological monitoring, biomedical health monitoring, data gathering and many others. Imbalance energy of sensors causes significant reduction in the lifetime of the network. In many-to-one communication (corona WSNs, sensor nodes located nearby the data collector (sink forward data sensed data received from other nodes, hence, having heavier workloads. These nodes consume more energy than the others, leading to quicker energy depletion.Consequently, this results in energy hole problem, where the network becomes separate islands, which affect the lifetime of the network negatively. When this situation occurs, the sensed data will not be forwarded to the intended sink; accordingly, the network will not be able to completely fulfil its required tasks. In this paper, an effective sensors placement strategy is proposed to avoid or alleviate energy hole problem in such type of WSNs. The proposed strategy aims to improve, scale, and balance the energy consumption among sensor nodes and to maximize the network lifetime, by sustaining the network coverage and connectivity. To achieve this aim, the number of sensors should be optimized to create sub-balanced coronas in the sense of energy consumption, while satisfying the network coverage and connectivity requirements. The theoretical design and modelling of the proposed sensors placement strategy promise a considerable improvement in the lifetime of corona-based networks. The Experimental evaluation results have shown that the proposed sensors placement strategy is capable to increase the network lifetime considerably compared to conventional uniform strategy.

  4. Fibre Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors

    CERN Document Server

    Benussi, Luigi

    2015-01-01

    Fibre Bragg Grating (FBG) sensors have been so far mainly used in high energy physics as high precision positioning and re-positioning sensor and as low cost, easy to mount and low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS upgrade consists of 144 GEM chambers of about 0.5 $m^{2}$ active area each and based on the triple GEMs technology, to be installed in the very forward region of the CMS endcap. The large active are of each GE1/1 chamber consists of a single GEM foil (the GE1/1 chambers represent the largest GEM foils assembled and operated so far) to be mechanically stretched in order to secure its flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. A network of FBG sensors have been used to determine the optimal m...

  5. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    . The procedure for sensor configuration is based on the simultaneous perturbation stochastic approximation (SPSA) algorithm. SPSA avoids the need for detailed modeling of the sensor response by simply relying on the observed responses obtained by limited experimentation with test sensor configurations. We......The paper considers the problem of sensor configuration for complex systems with the aim of maximizing the useful information about certain quantities of interest. Our approach involves: 1) definition of an appropriate optimality criterion or performance measure; and 2) description of an efficient...... and practical algorithm for achieving the optimality objective. The criterion for optimal sensor configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs, so as to minimize the redundant information being provided by the multiple sensors...

  6. Sensor Fish: an autonomous sensor package for characterizing complex flow fields and fish passage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Martinez, Jayson J.; Lu, Jun

    2016-10-04

    Fish passing through dams or other hydraulic structures may be injured or killed despite advances in turbine design, project operations, and other fish bypass systems. The Sensor Fish (SF) device is an autonomous sensor package that characterizes the physical conditions and stressors to which fish are exposed during passage through hydro facilities. It was designed to move passively as a neutrally buoyant object through severe hydraulic environments, while collecting high-resolution sensor data. Since its first generation1, the SF device has been successfully deployed in many fish passage studies and has evolved to be a major tool for characterizing fish passage conditions during fish passage in the Columbia River Basin. To better accelerate hydropower development, the U.S. Department of Energy Water Power Program provided funding to develop a new generation (Gen 2 SF) to incorporate more capabilities and accommodate a wider range of users over a broader range of turbine designs and operating environments. The Gen 2 SF (Figure 1) is approximately the size and density of a yearling salmon smolt and is nearly neutrally buoyant. It contains three-dimensional (3D) rotation sensors, 3D linear acceleration sensors, a pressure sensor, a temperature sensor, a 3D orientation sensor, a radiofrequency (RF) transmitter, and a recovery module2. A low-power microcontroller collects data from the sensors and stores up to 5 min of data on internal flash memory at a sampling frequency of 2048 Hz. The recovery module makes the SF positively buoyant after a pre-programmed period of time, causing it to float to the surface for recovery.

  7. OGC® Sensor Web Enablement Standards

    Directory of Open Access Journals (Sweden)

    George Percivall

    2006-09-01

    Full Text Available This article provides a high-level overview of and architecture for the Open Geospatial Consortium (OGC standards activities that focus on sensors, sensor networks, and a concept called the “Sensor Web”. This OGC work area is known as Sensor Web Enablement (SWE. This article has been condensed from "OGC® Sensor Web Enablement: Overview And High Level Architecture," an OGC White Paper by Mike Botts, PhD, George Percivall, Carl Reed, PhD, and John Davidson which can be downloaded from http://www.opengeospatial.org/pt/15540. Readers interested in greater technical and architecture detail can download and read the OGC SWE Architecture Discussion Paper titled “The OGC Sensor Web Enablement Architecture” (OGC document 06-021r1, http://www.opengeospatial.org/pt/14140.

  8. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  9. Development of air fuel ratio sensor; A/F sensor no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sakawa, T; Hori, M [Denso Corp., Aichi (Japan); Nakamura, Y [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    The Air Fuel Ratio Sensor (A/F sensor), which is applied to a 1997 model year Low Emission Vehicle (LEV) was developed. This sensor enables the detection of the exhaust gas air fuel ratio, both lean and rich of stoichiometric. It has an effective air fuel ratio range from 12 to 18 as required for LEV regulation. It has the fast light off, - within 20 seconds - to minimize exhaust hydrocarbon content. Further, it has fast response time, less than 200 msec, to improve the air fuel ratio controllability. 3 refs., 7 figs.

  10. A-Posteriori Detection of Sensor Infrastructure Errors in Correlated Sensor Data and Business Workflows

    NARCIS (Netherlands)

    Wombacher, Andreas; Rinderle-Ma, Stefanie; Toumani, Farouk; Wolf, Karsten

    Some physical objects are influenced by business workflows and are observed by sensors. Since both sensor infrastructures and business workflows must deal with imprecise information, the correlation of sensor data and business workflow data related to physical objects might be used a-posteriori to

  11. Sensors on speaking terms: Schedule-based medium access control protocols for wireless sensor networks

    NARCIS (Netherlands)

    van Hoesel, L.F.W.

    2007-01-01

    Wireless sensor networks make the previously unobservable, observable. The basic idea behind these networks is straightforward: all wires are cut in traditional sensing systems and the sensors are equipped with batteries and radio's to virtually restore the cut wires. The resulting sensors can be

  12. Sensor technology foresight

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Jørgensen, Birte Holst; Rasmussen, Birgitte

    2001-01-01

    heavily impacted by new sensor technology. It also appears that new sensor technology will affect food processing and the environment sector. Some impact is made on sectors such as agriculture, chemical engineering, domestic and otherappliances, security and defence, transport, and energy. Less impact...

  13. Multifunctional optical sensor

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a multifunctional optical sensor, having at least 2 areas which independently react to different input parameters, the sensor comprising a substrate and a polymeric layer comprising polymerized liquid crystal monomers having an ordered morphology, wherein the color, the

  14. Reconfigurable intelligent sensors for health monitoring: a case study of pulse oximeter sensor.

    Science.gov (United States)

    Jovanov, E; Milenkovic, A; Basham, S; Clark, D; Kelley, D

    2004-01-01

    Design of low-cost, miniature, lightweight, ultra low-power, intelligent sensors capable of customization and seamless integration into a body area network for health monitoring applications presents one of the most challenging tasks for system designers. To answer this challenge we propose a reconfigurable intelligent sensor platform featuring a low-power microcontroller, a low-power programmable logic device, a communication interface, and a signal conditioning circuit. The proposed solution promises a cost-effective, flexible platform that allows easy customization, run-time reconfiguration, and energy-efficient computation and communication. The development of a common platform for multiple physical sensors and a repository of both software procedures and soft intellectual property cores for hardware acceleration will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of a reconfigurable pulse oximeter sensor.

  15. An Introduction to LANL Mixed Potential Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brosha, Eric Lanich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kreller, Cortney [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-26

    These are slides for a webinar given on the topics of an introduction to LANL mixed potential sensors. Topics include the history of LANL electrochemical sensor work, an introduction to mixed potential sensors, LANL uniqueness, and an application of LANL mixed potential sensors. The summary is as follows: Improved understanding of the mixed-potential sensor mechanism (factors controlling the sensor response identified), sensor design optimized to maximize sensor sensitivity and durability (porous electrolyte/dense electrodes), electrodes selected for various specific applications (CO, HC, H2), sensor operating parameters optimized for improved gas selectivity (NOx, NH3).

  16. Carbon dioxide sensor

    Science.gov (United States)

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  17. Distributed sensor networks

    CERN Document Server

    Rubin, Donald B; Carlin, John B; Iyengar, S Sitharama; Brooks, Richard R; University, Clemson

    2014-01-01

    An Overview, S.S. Iyengar, Ankit Tandon, and R.R. BrooksMicrosensor Applications, David ShepherdA Taxonomy of Distributed Sensor Networks, Shivakumar Sastry and S.S. IyengarContrast with Traditional Systems, R.R. BrooksDigital Signal Processing Background, Yu Hen HuImage-Processing Background Lynne Grewe and Ben ShahshahaniObject Detection and Classification, Akbar M. SayeedParameter Estimation David FriedlanderTarget Tracking with Self-Organizing Distributed Sensors R.R. Brooks, C. Griffin, D.S. Friedlander, and J.D. KochCollaborative Signal and Information Processing: AnInformation-Directed Approach Feng Zhao, Jie Liu, Juan Liu, Leonidas Guibas, and James ReichEnvironmental Effects, David C. SwansonDetecting and Counteracting Atmospheric Effects Lynne L. GreweSignal Processing and Propagation for Aeroacoustic Sensor Networks, Richard J. Kozick, Brian M. Sadler, and D. Keith WilsonDistributed Multi-Target Detection in Sensor Networks Xiaoling Wang, Hairong Qi, and Steve BeckFoundations of Data Fusion f...

  18. An electrokinetic pressure sensor

    International Nuclear Information System (INIS)

    Kim, Dong-Kwon; Kim, Sung Jin; Kim, Duckjong

    2008-01-01

    A new concept for a micro pressure sensor is demonstrated. The pressure difference between the inlet and the outlet of glass nanochannels is obtained by measuring the electrokinetically generated electric potential. To demonstrate the proposed concept, experimental investigations are performed for 100 nm wide nanochannels with sodium chloride solutions having various concentrations. The proposed pressure sensor is able to measure the pressure difference within a 10% deviation from linearity. The sensitivity of the electrokinetic pressure sensor with 10 −5 M sodium chloride solution is 18.5 µV Pa −1 , which is one order of magnitude higher than that of typical diaphragm-based pressure sensors. A numerical model is presented for investigating the effects of the concentration and the channel width on the sensitivity of the electrokinetic pressure sensor. Numerical results show that the sensitivity increases as the concentration decreases and the channel width increases

  19. Security For Wireless Sensor Network

    OpenAIRE

    Saurabh Singh,; Dr. Harsh Kumar Verma

    2011-01-01

    Wireless sensor network is highly vulnerable to attacks because it consists of various resourceconstrained devices with their low battery power, less memory, and associated low energy. Sensor nodescommunicate among themselves via wireless links. However, there are still a lot of unresolved issues in wireless sensor networks of which security is one of the hottest research issues. Sensor networks aredeployed in hostile environments. Environmental conditions along with resource-constraints give...

  20. Networked sensors for the combat forces

    Science.gov (United States)

    Klager, Gene

    2004-11-01

    Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details

  1. Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology

    Science.gov (United States)

    de Podesta, Michael; Bell, Stephanie; Underwood, Robin

    2018-04-01

    In both meteorological and metrological applications, it is well known that air temperature sensors are susceptible to radiative errors. However, it is not widely known that the radiative error measured by an air temperature sensor in flowing air depends upon the sensor diameter, with smaller sensors reporting values closer to true air temperature. This is not a transient effect related to sensor heat capacity, but a fluid-dynamical effect arising from heat and mass flow in cylindrical geometries. This result has been known historically and is in meteorology text books. However, its significance does not appear to be widely appreciated and, as a consequence, air temperature can be—and probably is being—widely mis-estimated. In this paper, we first review prior descriptions of the ‘sensor size’ effect from the metrological and meteorological literature. We develop a heat transfer model to describe the process for cylindrical sensors, and evaluate the predicted temperature error for a range of sensor sizes and air speeds. We compare these predictions with published predictions and measurements. We report measurements demonstrating this effect in two laboratories at NPL in which the air flow and temperature are exceptionally closely controlled. The results are consistent with the heat-transfer model, and show that the air temperature error is proportional to the square root of the sensor diameter and that, even under good laboratory conditions, it can exceed 0.1 °C for a 6 mm diameter sensor. We then consider the implications of this result. In metrological applications, errors of the order of 0.1 °C are significant, representing limiting uncertainties in dimensional and mass measurements. In meteorological applications, radiative errors can easily be much larger. But in both cases, an understanding of the diameter dependence allows assessment and correction of the radiative error using a multi-sensor technique.

  2. Analyzing Responses of Chemical Sensor Arrays

    Science.gov (United States)

    Zhou, Hanying

    2007-01-01

    NASA is developing a third-generation electronic nose (ENose) capable of continuous monitoring of the International Space Station s cabin atmosphere for specific, harmful airborne contaminants. Previous generations of the ENose have been described in prior NASA Tech Briefs issues. Sensor selection is critical in both (prefabrication) sensor material selection and (post-fabrication) data analysis of the ENose, which detects several analytes that are difficult to detect, or that are at very low concentration ranges. Existing sensor selection approaches usually include limited statistical measures, where selectivity is more important but reliability and sensitivity are not of concern. When reliability and sensitivity can be major limiting factors in detecting target compounds reliably, the existing approach is not able to provide meaningful selection that will actually improve data analysis results. The approach and software reported here consider more statistical measures (factors) than existing approaches for a similar purpose. The result is a more balanced and robust sensor selection from a less than ideal sensor array. The software offers quick, flexible, optimal sensor selection and weighting for a variety of purposes without a time-consuming, iterative search by performing sensor calibrations to a known linear or nonlinear model, evaluating the individual sensor s statistics, scoring the individual sensor s overall performance, finding the best sensor array size to maximize class separation, finding optimal weights for the remaining sensor array, estimating limits of detection for the target compounds, evaluating fingerprint distance between group pairs, and finding the best event-detecting sensors.

  3. Design of electrical capacitance tomography sensors

    International Nuclear Information System (INIS)

    Yang, Wuqiang

    2010-01-01

    Electrical capacitance tomography (ECT) has been developed since the late 1980s for visualization and measurement of a permittivity distribution in a cross section using a multi-electrode capacitance sensor. While the hardware and image reconstruction algorithms for ECT have been published extensively and the topics have been reviewed, few papers have been published to discuss ECT sensors and the design issues, which are crucial for a specific application. This paper will briefly discuss the principles of ECT sensors, but mostly will address key issues for ECT sensor design, with reference to some existing ECT sensors as a good understanding of the key issues would help optimization of the design of ECT sensors. The key issues to be discussed include the number and length of electrodes, the use of external and internal electrodes, implications of wall thickness, earthed screens (including the outer screen, axial end screens and radial screens), driven guard electrodes, dealing with high temperature and high pressure, twin planes for velocity measurement by cross correlation and limitations in sensor diameter. While conventional ECT sensors are circular with the electrodes in a single plane or in twin planes, some non-conventional ECT sensors, such as square, conical and 3D sensors, will also be discussed. As a practical guidance, the procedure to fabricate an ECT sensor will be given. In the end are summary and discussion on future challenges, including re-engineering of ECT sensors. (topical review)

  4. A-Posteriori Detection of Sensor Infrastructure Errors in Correlated Sensor Data and Business Workflows

    NARCIS (Netherlands)

    Wombacher, Andreas

    2011-01-01

    Sensor data can be interpreted as a view on physical objects effected by business processes. Since both sensor infrastructures and business workflows must deal with imprecise information, the correlation of sensor data and business workflow data might be used a-posteriori to determine the source of

  5. Research on the conductivity of a haptic sensor, especially with the sensor under extended condition

    Science.gov (United States)

    Zheng, Yaoyang; Shimada, Kunio

    2008-11-01

    The present paper describes the application of magnetic compound fluid (MCF) rubber as a haptic sensor for use as a material for robot sensors, artificial skin, and so on. MCF rubber is one of several new composite materials utilizing the MCF magnetic responsive fluid developed by Shimada. By applying MCF to silicon oil rubber, we can make MCF rubber highly sensitive to temperature and electric conduction. By mixing Cu and Ni particles in the silicon oil rubber and then applying a strong magnetic field, we can produce magnetic clusters at high density. The clusters form a network, as confirmed by optical observation. The MCF rubber with small deformations can act as an effective sensor. We report herein several experiments in which changes in the MCF rubber's resistance were observed when the rubber was compressed and a deformation was generated. We then made a trial haptic sensor using the MCF conductive rubber and performed many experiments to observe changes in the electrical resistance of the sensor. The experimental results showed that the proposed sensor made with MCF conductive rubber is useful for sensing small amounts of pressure or small deformations. Sometimes, however, the sensor rubber will be extended when we apply this sensor to the finger of the robot or an elbow. In these cases, it is necessary to understand the changes in sensor's conductivity. We therefore carried out some experiments to demonstrate how, under tensile conditions, the sensor's conductivity changes to a small value easier than the sensor in free condition. The results show that the sensors became more sensitive to the same pressure under extended conditions. In the present paper, we first describe the new type of functional fluid MCF rubber and a new composite material based on this MCF fluid. We then explain the production method for MCF conductive rubber and its conductive algorithm. Finally, we report our results regarding the MCF sensitivity when the MCF rubber was pulled

  6. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    Science.gov (United States)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  7. Micro elements for interrogating magnetoelastic sensors

    KAUST Repository

    Liang, Cai

    2011-11-01

    This paper reports a new approach for interrogating a magnetoelastic sensor\\'s resonant frequency. Previously, the frequency of a magnetoelastic sensor was measured by using a large-scale solenoid coil of at least some millimeters both in diameter and length. Planar structures of straight-line and rectangular spiral coil are designed, fabricated and tested to interrogate the resonant frequency of a magnetoelastic sensor. A sensor of 4 mm length is measured to have a resonant frequency of 551 kHz in air. The ability to interrogate a magnetoelastic sensor with such microscale elements is a step towards the miniaturization of a magnetoelastic sensor system and integration of such a system in a microfluidics device. © 2011 IEEE.

  8. Sensor Data Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Stepán, Petr

    2006-01-01

    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings.  Sonar readings are interpreted using probability density functions...

  9. Reactor sensor surveillance using noise analysis

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.

    1986-01-01

    Reactor noise signals, as measured by neutron detectors and process sensors, contain information about the dynamics of the process and sensor characteristics. The extent of sensor characteristics that can be determined from such measurements depends on the sensor type, the property of the process noise exciting the sensor and its location. This paper addresses degradation monitoring of temperature and pressure sensors, analysis methods and results of application to operating pressurized water reactors. In addition, the use of noise analysis for monitoring of pressure sensing lines in nuclear power plants is discussed

  10. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications †

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori

    2017-01-01

    Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954

  11. Electrocatalytic cermet sensor

    Science.gov (United States)

    Shoemaker, Erika L.; Vogt, Michael C.

    1998-01-01

    A sensor for O.sub.2 and CO.sub.2 gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer.

  12. Urodynamic pressure sensor

    Science.gov (United States)

    Moore, Thomas

    1991-01-01

    A transducer system was developed for measuring the closing pressure profile along the female urethra, which provides up to five sensors within the functional length of the urethra. This new development is an improvement over an earlier measurement method that has a smaller sensor area and was unable to respond to transient events. Three sensors were constructed; one of them was subjected to approximately eight hours of use in a clinical setting during which 576 data points were obtained. The complete instrument system, including the signal conditioning electronics, data acquisition unit, and the computer with its display and printer is described and illustrated.

  13. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  14. A New Multi-Sensor Track Fusion Architecture for Multi-Sensor Information Integration

    National Research Council Canada - National Science Library

    Jean, Buddy H; Younker, John; Hung, Chih-Cheng

    2004-01-01

    .... This new technology will integrate multi-sensor information and extract integrated multi-sensor information to detect, track and identify multiple targets at any time, in any place under all weather conditions...

  15. Multiple time-scale methods in particle simulations of plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1985-01-01

    This paper surveys recent advances in the application of multiple time-scale methods to particle simulation of collective phenomena in plasmas. These methods dramatically improve the efficiency of simulating low-frequency kinetic behavior by allowing the use of a large timestep, while retaining accuracy. The numerical schemes surveyed provide selective damping of unwanted high-frequency waves and preserve numerical stability in a variety of physics models: electrostatic, magneto-inductive, Darwin and fully electromagnetic. The paper reviews hybrid simulation models, the implicitmoment-equation method, the direct implicit method, orbit averaging, and subcycling

  16. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-01-01

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  17. Wearable bio and chemical sensors

    OpenAIRE

    Coyle, Shirley; Curto, Vincenzo F.; Benito-Lopez, Fernando; Florea, Larisa; Diamond, Dermot

    2014-01-01

    Chemical and biochemical sensors have experienced tremendous growth in the past decade due to advances in material chemistry combined with the emergence of digital communication technologies and wireless sensor networks (WSNs) [1]. The emergence of wearable chemical and biochemical sensors is a relatively new concept that poses unique challenges to the field of wearable sensing. This is because chemical sensors have a more complex mode of operation, compared to physical transducers, in that t...

  18. Sensor Fusion and Smart Sensor in Sports and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    José Jair Alves Mendes Jr.

    2016-09-01

    Full Text Available The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports, it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others.

  19. Approach to sensor node calibration for efficient localisation in wireless sensor networks in realistic scenarios

    CSIR Research Space (South Africa)

    Mwila, MK

    2014-06-01

    Full Text Available Localisation or position determination is one of the most important applications for the wireless sensor networks. Numerous current techniques for localisation of sensor nodes use the Received Signal Strength Indicator (RSSI) from sensor nodes...

  20. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  1. Transient multivariable sensor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  2. A woven 2D touchpad sensor and a 1D slide sensor using soft capacitor fibers

    International Nuclear Information System (INIS)

    Gorgutsa, Stephan; Gu, Jian Feng; Skorobogatiy, Maksim

    2012-01-01

    Recently reported soft conductive-polymer-based capacitor fibers are used to build a fully woven 2D touchpad sensor and a 1D slide sensor. An individual capacitor fiber features a swiss-roll like structure having two dielectric and two conductive polymer films rolled together in a classic multilayer capacitor configuration. The soft fibers of sub-1 mm outer diameter are fabricated using a fiber drawing procedure from a macroscopic polymeric preform. An individual capacitor fiber is then demonstrated to act as a distributed sensor that allows the touch position to be determined by measuring the fiber’s AC response. In other words, a single fiber acts as a 1D slide sensor. Furthermore, we develop an electrical ladder network model to predict the distributed sensor properties of an individual fiber and show that this model describes the experimental measurements very well. Finally, a two-dimensional touchpad sensor is presented. The sensor is built by weaving a one-dimensional array of capacitor fibers in parallel to each other. The performance of the touchpad sensor is then characterized. (paper)

  3. Silent Localization of Underwater Sensors Using Magnetometers

    Directory of Open Access Journals (Sweden)

    Jonas Callmer

    2010-01-01

    Full Text Available Sensor localization is a central problem for sensor networks. If the sensor positions are uncertain, the target tracking ability of the sensor network is reduced. Sensor localization in underwater environments is traditionally addressed using acoustic range measurements involving known anchor or surface nodes. We explore the usage of triaxial magnetometers and a friendly vessel with known magnetic dipole to silently localize the sensors. The ferromagnetic field created by the dipole is measured by the magnetometers and is used to localize the sensors. The trajectory of the vessel and the sensor positions are estimated simultaneously using an Extended Kalman Filter (EKF. Simulations show that the sensors can be accurately positioned using magnetometers.

  4. A self-repairing polymer waveguide sensor

    International Nuclear Information System (INIS)

    Song, Young J; Peters, Kara J

    2011-01-01

    This paper presents experimental demonstrations of a self-repairing strain sensor waveguide created by self-writing in a photopolymerizable resin system. The sensor is fabricated between two multi-mode optical fibers via lightwaves in the ultraviolet (UV) wavelength range and operates as a sensor through interrogation of the power transmitted through the waveguide in the infrared (IR) wavelength range. After failure of the sensor occurs due to loading, the waveguide re-bridges the gap between the two optical fibers through the UV resin. The response of the original sensor and the self-repaired sensor to strain are measured and show similar behaviors

  5. Sensor fusion for intelligent alarm analysis

    International Nuclear Information System (INIS)

    Nelson, C.L.; Fitzgerald, D.S.

    1996-01-01

    The purpose of an intelligent alarm analysis system is to provide complete and manageable information to a central alarm station operator by applying alarm processing and fusion techniques to sensor information. This paper discusses the sensor fusion approach taken to perform intelligent alarm analysis for the Advanced Exterior Sensor (AES). The AES is an intrusion detection and assessment system designed for wide-area coverage, quick deployment, low false/nuisance alarm operation, and immediate visual assessment. It combines three sensor technologies (visible, infrared, and millimeter wave radar) collocated on a compact and portable remote sensor module. The remote sensor module rotates at a rate of 1 revolution per second to detect and track motion and provide assessment in a continuous 360 degree field-of-regard. Sensor fusion techniques are used to correlate and integrate the track data from these three sensors into a single track for operator observation. Additional inputs to the fusion process include environmental data, knowledge of sensor performance under certain weather conditions, sensor priority, and recent operator feedback. A confidence value is assigned to the track as a result of the fusion process. This helps to reduce nuisance alarms and to increase operator confidence in the system while reducing the workload of the operator

  6. Smart Home Wireless Sensor Nodes

    DEFF Research Database (Denmark)

    Lynggaard, Per

    . This paper introduces an approach that considerably lowers the wireless sensor node power consumption and the amount of transmitted sensor events. It uses smart objects that include artificial intelligence to efficiently process the sensor event on location and thereby saves the costly wireless...

  7. Cantilever-like micromechanical sensors

    DEFF Research Database (Denmark)

    Boisen, Anja; Dohn, Søren; Keller, Stephan Sylvest

    2011-01-01

    The field of cantilever-based sensing emerged in the mid-1990s and is today a well-known technology for label-free sensing which holds promise as a technique for cheap, portable, sensitive and highly parallel analysis systems. The research in sensor realization as well as sensor applications has...... increased significantly over the past 10 years. In this review we will present the basic modes of operation in cantilever-like micromechanical sensors and discuss optical and electrical means for signal transduction. The fundamental processes for realizing miniaturized cantilevers are described with focus...... on silicon-and polymer-based technologies. Examples of recent sensor applications are given covering such diverse fields as drug discovery, food diagnostics, material characterizations and explosives detection....

  8. Stretch Sensor Device

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for determining stretch values and movement of body parts, e.g. a foot, by analysing stretch data from a stretch sensor. By analysing data from the stretch sensor it is possible to determine stretch samples which are associated with particular motion phases...

  9. Magnetic sensor device

    NARCIS (Netherlands)

    2009-01-01

    The present invention provides a sensor device and a method for detg. the presence and/or amt. of target moieties in a sample fluid, the target moieties being labeled with magnetic or magnetizable objects. The sensor device comprises a magnetic field generating means adapted for applying a retention

  10. Wireless interrogation of passive antenna sensors

    International Nuclear Information System (INIS)

    Deshmukh, S; Huang, H

    2010-01-01

    Recently, we discovered that the resonant frequency of a microstrip patch antenna is sensitive to mechanical strains or crack presence in the ground plane. Based on this principle, antenna sensors have been demonstrated to measure strain and detect crack in metallic structures. This paper presents a wireless method to remotely interrogate a dual-frequency antenna sensor. An interrogation horn antenna was used to irradiate the antenna sensor with a linear chirp microwave signal. By implementing a light-activated switch at the sensor node and performing signal processing of the backscattered signals, the resonant frequencies of the antenna sensor along both polarizations can be measured remotely. Since the antenna sensor does not need a local power source and can be interrogated wirelessly, electric wiring can be eliminated. The sensor implementation, the signal processing and the experimental setup that validate the remote interrogation of the antenna sensor are presented. A power budget model has also been established to estimate the maximum interrogation range

  11. Third-generation imaging sensor system concepts

    Science.gov (United States)

    Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.

    1999-07-01

    Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.

  12. Proximity Operations and Docking Sensor Development

    Science.gov (United States)

    Howard, Richard T.; Bryan, Thomas C.; Brewster, Linda L.; Lee, James E.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been under development for the last three years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in spot mode out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. 12 Parts obsolescence issues prevent the construction of more AVGS units, and the next generation sensor was updated to allow it to support the CEV and COTS programs. The flight proven AR&D sensor has been redesigned to update parts and add additional capabilities for CEV and COTS with the development of the Next Generation AVGS at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities include greater sensor range, auto ranging capability, and real-time video output. This paper presents some sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements

  13. Chemical sensors for nuclear industry

    International Nuclear Information System (INIS)

    Gnanasekaran, K.I.

    2012-01-01

    Development of chemical sensors for detection of gases at trace levels for applications in nuclear industry will be highlighted. The sensors have to be highly sensitive, reliable and rugged with long term stability to operate in harsh industrial environment. Semiconductor and solid electrolyte based electrochemical sensors satisfy the requirements. Physico-chemical aspects underlying the development of H 2 sensors in sodium and in cover gas circuit of the Fast breeder reactors for its smooth functioning, NH 3 and H 2 S sensors for use in Heavy water production industries and NO x sensors for spent fuel reprocessing plants will be presented. Development of oxygen sensors to monitor the oxygen level in the reactor containments and sodium sensors for detection of sodium leakages will also be discussed. The talk will focus the general aspects of identification of the sensing material for the respective analyte species, development of suitable chemical route for preparing them as fine powders, the need for configuring them in thick film or thin film geometries and their performance. Pulsed laser deposition method, an elegant technique to prepare the high quality thin films of multicomponent oxides is demonstrated for preparation of nanostructured thin films of complex oxides and its use in tailoring the morphology of the complex sensing material in the desired form by optimizing the in-situ growth conditions. (author)

  14. Common bus multinode sensor system

    International Nuclear Information System (INIS)

    Kelly, T.F.; Naviasky, E.H.; Evans, W.P.; Jefferies, D.W.; Smith, J.R.

    1988-01-01

    This patent describes a nuclear power plant including a common bus multinode sensor system for sensors in the nuclear power plant, each sensor producing a sensor signal. The system consists of: a power supply providing power; a communication cable coupled to the power supply; plural remote sensor units coupled between the cable and one or more sensors, and comprising: a direct current power supply, connected to the cable and converting the power on the cable into direct current; an analog-to-digital converter connected to the direct current power supply; an oscillator reference; a filter; and an integrated circuit sensor interface connected to the direct current power supply, the analog-to-digital converter, the oscillator crystal and the filter, the interface comprising: a counter receiving a frequency designation word from external to the interface; a phase-frequency comparator connected to the counter; an oscillator connected to the oscillator reference; a timing counter connected to the oscillator, the phase/frequency comparator and the analog-to-digital converter; an analog multiplexer connectable to the sensors and the analog-to-digital converter, and connected to the timing counter; a shift register operatively connected to the timing counter and the analog-to-digital converter; an encoder connected to the shift register and connectable to the filter; and a voltage controlled oscillator connected to the filter and the cable

  15. Performance of UWB Array-Based Radar Sensor in a Multi-Sensor Vehicle-Based Suit for Landmine Detection

    NARCIS (Netherlands)

    Yarovoy, A.; Savelyev, T.; Zhuge, X.; Aubry, P.; Ligthart, L.; Schavemaker, J.G.M.; Tettelaar, P.; Breejen, E. de

    2008-01-01

    In this paper, integration of an UWB array-based timedomain radar sensor in a vehicle-mounted multi-sensor system for landmine detection is described. Dedicated real-time signal processing algorithms are developed to compute the radar sensor confidence map which is used for sensor fusion.

  16. RADIOACTIVE MATERIALS SENSORS

    International Nuclear Information System (INIS)

    Mayo, Robert M.; Stephens, Daniel L.

    2009-01-01

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  17. Smart wheelchair: integration of multiple sensors

    Science.gov (United States)

    Gassara, H. E.; Almuhamed, S.; Moukadem, A.; Schacher, L.; Dieterlen, A.; Adolphe, D.

    2017-10-01

    The aim of the present work is to develop a smart wheelchair by integrating multiple sensors for measuring user’s physiological signals and subsequently transmitting and monitoring the treated signals to the user, a designated person or institution. Among other sensors, force, accelerometer, and temperature sensors are successfully integrated within both the backrest and the seat cushions of the wheelchair; while a pulse sensor is integrated within the armrest. The pulse sensor is connected to an amplification circuit board that is, in turn, placed within the armrest. The force and temperature sensors are integrated into a textile cover of the cushions by means of embroidery and sewing techniques. The signal from accelerometer is transmitted through Wi-Fi connection. The electrical connections needed for power supplying of sensors are made by embroidered conductive threads.

  18. Applications of pressure-sensitive dielectric elastomer sensors

    Science.gov (United States)

    Böse, Holger; Ocak, Deniz; Ehrlich, Johannes

    2016-04-01

    Dielectric elastomer sensors for the measurement of compression loads with high sensitivity are described. The basic design of the sensors exhibits two profiled surfaces between which an elastomer film is confined. All components of the sensor were prepared with silicone whose stiffness can be varied in a wide range. Depending on details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression and electrode layers on the elastomer profiles and in the elastomer film approach each other. Different designs of the pressure sensor give rise to very different sensor characteristics in terms of the dependence of electric capacitance on compression force. Due to their inherent flexibility, the pressure sensors can be used on compliant substrates such as seats or beds or on the human body. This gives rise to numerous possible applications. The contribution describes also some examples of possible sensor applications. A glove was equipped with various sensors positioned at the finger tips. When grabbing an object with the glove, the sensors can detect the gripping forces of the individual fingers with high sensitivity. In a demonstrator of the glove equipped with seven sensors, the capacitances representing the gripping forces are recorded on a display. In another application example, a lower limb prosthesis was equipped with a pressure sensor to detect the load on the remaining part of the leg and the load is displayed in terms of the measured capacitance. The benefit of such sensors is to detect an eventual overload in order to prevent possible pressure sores. A third example introduces a seat load sensor system based on four extended pressure sensor mats. The sensor system detects the load distribution of a person on the seat. The examples emphasize the high performance of the new pressure sensor technology.

  19. Fiber-optic seismic sensor

    International Nuclear Information System (INIS)

    Finch, G. W.; Udd, E.

    1985-01-01

    A vibration sensor is constructed by providing two preferably matched coils of fiber-optic material. When the sensor experiences vibration, a differential pressure is exerted on the two fiber coils. The differential pressure results in a variation in the relative optical path lengths between the two fibers so that light beams transmitted through the two fibers are differently delayed, the phase difference therebetween being a detectable indication of the vibration applied to the sensor

  20. Thermal microphotonic sensor and sensor array

    Science.gov (United States)

    Watts, Michael R [Albuquerque, NM; Shaw, Michael J [Tijeras, NM; Nielson, Gregory N [Albuquerque, NM; Lentine, Anthony L [Albuquerque, NM

    2010-02-23

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  1. Sensor assembly method using silicon interposer with trenches for three-dimensional binocular range sensors

    Science.gov (United States)

    Nakajima, Kazuhiro; Yamamoto, Yuji; Arima, Yutaka

    2018-04-01

    To easily assemble a three-dimensional binocular range sensor, we devised an alignment method for two image sensors using a silicon interposer with trenches. The trenches were formed using deep reactive ion etching (RIE) equipment. We produced a three-dimensional (3D) range sensor using the method and experimentally confirmed that sufficient alignment accuracy was realized. It was confirmed that the alignment accuracy of the two image sensors when using the proposed method is more than twice that of the alignment assembly method on a conventional board. In addition, as a result of evaluating the deterioration of the detection performance caused by the alignment accuracy, it was confirmed that the vertical deviation between the corresponding pixels in the two image sensors is substantially proportional to the decrease in detection performance. Therefore, we confirmed that the proposed method can realize more than twice the detection performance of the conventional method. Through these evaluations, the effectiveness of the 3D binocular range sensor aligned by the silicon interposer with the trenches was confirmed.

  2. Sensors in Education

    NARCIS (Netherlands)

    Van Rosmalen, Peter; Schneider, Jan; Börner, Dirk

    2014-01-01

    Sensors rapidly become available both for personal as well as scientific use. A wide range of applications exists for personal use e.g. safety in and around the house, sport, fitness and health. In this workshop we will explore how sensors are (can be) used in education. We start with an

  3. Biodegradable Piezoelectric Force Sensor.

    Science.gov (United States)

    Curry, Eli J; Ke, Kai; Chorsi, Meysam T; Wrobel, Kinga S; Miller, Albert N; Patel, Avi; Kim, Insoo; Feng, Jianlin; Yue, Lixia; Wu, Qian; Kuo, Chia-Ling; Lo, Kevin W-H; Laurencin, Cato T; Ilies, Horea; Purohit, Prashant K; Nguyen, Thanh D

    2018-01-30

    Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.

  4. Miniaturized multi-sensor for aquatic studies

    International Nuclear Information System (INIS)

    Birkelund, Karen; Hyldgård, Anders; Mortensen, Dennis; Thomsen, Erik V

    2011-01-01

    We have developed and fabricated a multi-sensor chip for fisheries' research and demonstrated the functionality under controlled conditions. The outer dimensions of the sensor chip are 3.0 × 7.4 × 0.8 mm 3 and both sides of the chip are utilized for sensors. Hereby a more compact chip is achieved that allows for direct exposure to the seawater and thereby more accurate measurements. The chip contains a piezo-resistive pressure sensor, a pn-junction photodiode sensitive to visible light, a four-terminal platinum resistor for temperature measurement and four conductivity electrodes for the determination of the salinity of saltwater. Pressure, light intensity, temperature and salinity are all essential parameters when mapping the migration route of fish. The pressure sensor has a sensitivity of S = 1.44 × 10 −7 Pa −1 and is optimized to 20 bar pressure; the light sensor has a quantum efficiency between 52% and 74% in the range of visible light. The temperature sensor responds linearly with temperature and has a temperature coefficient of resistance of 2.9 × 10 −3 K −1 . The conductivity sensor can measure the salinity with an accuracy of ±0.1 psu. This is all together the smallest and best functioning fully integrated MEMS-based multi-sensor made to date for this specific application. However, each single-sensor performance can be optimized by introducing a considerably more complicated process sequence. In this paper, a new simpler process for integrating the four sensors on one single chip is presented in details for the first time. Further, an optimized performance of the individual sensors is presented

  5. Microstrip Patch Sensor for Salinity Determination.

    Science.gov (United States)

    Lee, Kibae; Hassan, Arshad; Lee, Chong Hyun; Bae, Jinho

    2017-12-18

    In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS), and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under -20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of -35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF) tunable sensors for salinity determination.

  6. Wireless smart shipboard sensor network

    OpenAIRE

    Nozik, Andrew B.

    2005-01-01

    This thesis studies the feasibility of developing a smart shipboard sensor network. The objective of the thesis is to prove that sensors can be made smart by keeping calibration constants and other relevant data such as network information stored on the sensor and a server computer. Study will focus on the design and implementation of an Ipsil IP(micro)8930 microcontroller, which is then connected, by the standard TCP/IP implementation, to a network where the sensor information can be see...

  7. Optischer Sensor

    OpenAIRE

    Brandenburg, A.; Hutter, F.; Edelhaeuser, R.

    1992-01-01

    WO 2010040565 A1 UPAB: 20100506 NOVELTY - The integrated optical sensor comprises a first waveguide (4), a second waveguide (5) optically coupled to the first waveguide via a directional coupler, a substrate, which carries the first and the second waveguides, a single waveguide coupled with a light source, and an output waveguide coupled with a light-sensitive element. The sensor has a functional surface in the region of the directional coupler for depositing or deposition of the substance to...

  8. Fabrication of taste sensor for education

    Science.gov (United States)

    Wu, Xiao; Tahara, Yusuke; Toko, Kiyoshi; Kuriyaki, Hisao

    2017-03-01

    In order to solve the unconcern to usefulness of learning science among high school students in Japan, we developed a simple fabricated taste sensor with sensitivity and selectivity to each taste quality, which can be applied in science class. A commercialized Teflon membrane was used as the polymer membrane holding lipids. In addition, a non-adhesive method is considered to combine the membrane and the sensor electrode using a plastic cap which is easily accessible. The taste sensor for education fabricated in this way showed a good selectivity and sensitivity. By adjusting the composition of trioctylmethylammonium chloride (TOMA) and phosphoric acid di(2-ethylhexyl) ester (PAEE) included in lipid solution, we improved the selectivity of this simple taste sensor to saltiness and sourness. To verify this taste sensor as a useful science teaching material for science class, we applied this taste sensor into a science class for university students. By comparing the results between the sensory test and the sensor response, humans taste showed the same tendency just as the sensor response, which proved the sensor as a useful teaching material for science class.

  9. Assessment of fiber optic pressure sensors

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Black, C.L.; Farmer, J.P.

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements

  10. Flush Mounting Of Thin-Film Sensors

    Science.gov (United States)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.

  11. Water Sensors

    Science.gov (United States)

    1992-01-01

    Mike Morris, former Associate Director of STAC, formed pHish Doctor, Inc. to develop and sell a pH monitor for home aquariums. The monitor, or pHish Doctor, consists of a sensor strip and color chart that continually measures pH levels in an aquarium. This is important because when the level gets too high, ammonia excreted by fish is highly toxic; at low pH, bacteria that normally break down waste products stop functioning. Sales have run into the tens of thousands of dollars. A NASA Tech Brief Technical Support Package later led to a salt water version of the system and a DoE Small Business Innovation Research (SBIR) grant for development of a sensor for sea buoys. The company, now known as Ocean Optics, Inc., is currently studying the effects of carbon dioxide buildup as well as exploring other commercial applications for the fiber optic sensor.

  12. Miniature sensor suitable for electronic nose applications

    DEFF Research Database (Denmark)

    Pinnaduwage, L. A.; Gehl, A. C.; Allman, S. L.

    2007-01-01

    A major research effort has been devoted over the years for the development of chemical sensors for the detection of chemical and explosive vapors. However, the deployment of such chemical sensors will require the use of multiple sensors probably tens of sensors in a sensor package to achieve sel...... microcantilevers. The sensor can detect parts-per-trillion concentrations of DMMP within 10 s exposure times. The small size of the sensor makes it ideally suited for electronic nose applications. © 2007 American Institute of Physics....

  13. -Net Approach to Sensor -Coverage

    Directory of Open Access Journals (Sweden)

    Fusco Giordano

    2010-01-01

    Full Text Available Wireless sensors rely on battery power, and in many applications it is difficult or prohibitive to replace them. Hence, in order to prolongate the system's lifetime, some sensors can be kept inactive while others perform all the tasks. In this paper, we study the -coverage problem of activating the minimum number of sensors to ensure that every point in the area is covered by at least sensors. This ensures higher fault tolerance, robustness, and improves many operations, among which position detection and intrusion detection. The -coverage problem is trivially NP-complete, and hence we can only provide approximation algorithms. In this paper, we present an algorithm based on an extension of the classical -net technique. This method gives an -approximation, where is the number of sensors in an optimal solution. We do not make any particular assumption on the shape of the areas covered by each sensor, besides that they must be closed, connected, and without holes.

  14. Downhole Applications of Magnetic Sensors.

    Science.gov (United States)

    Gooneratne, Chinthaka P; Li, Bodong; Moellendick, Timothy E

    2017-10-19

    In this paper we present a review of the application of two types of magnetic sensors-fluxgate magnetometers and nuclear magnetic resonance (NMR) sensors-in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed.

  15. Airborne Sensor Thermal Management Solution

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-03

    The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft. The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft.

  16. Sensor Compendium - A Snowmass Whitepaper-

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M. [Syracuse Univ., NY (United States); Battaglia, M. [Univ. of California, Santa Cruz, CA (United States); Bolla, G. [Purdue Univ., West Lafayette, IN (United States); Bortoletto, D. [Purdue Univ., West Lafayette, IN (United States); Caberera, B. [Stanford Univ., CA (United States); Carlstrom, J E [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Chang, C. L. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Cooper, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Da Via, C. [Univ. of Manchester (United Kingdom); Demarteau, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Fast, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Frisch, H. [Univ. of Chicago, IL (United States), et al.

    2013-10-01

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  17. Infrared sensors and sensor fusion; Proceedings of the Meeting, Orlando, FL, May 19-21, 1987

    International Nuclear Information System (INIS)

    Buser, R.G.; Warren, F.B.

    1987-01-01

    The present conference discusses topics in the fields of IR sensor multifunctional design; image modeling, simulation, and detection; IR sensor configurations and components; thermal sensor arrays; silicide-based IR sensors; and IR focal plane array utilization. Attention is given to the fusion of lidar and FLIR for target segmentation and enhancement, the synergetic integration of thermal and visual images for computer vision, the 'Falcon Eye' FLIR system, multifunctional electrooptics and multiaperture sensors for precision-guided munitions, and AI approaches to data integration. Also discussed are the comparative performance of Ir silicide and Pt silicide photodiodes, high fill-factor silicide monolithic arrays, and the characterization of noise in staring IR focal plane arrays

  18. Modular sensor network node

    Science.gov (United States)

    Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  19. An Environmental Monitoring System for Managing Spatiotemporal Sensor Data over Sensor Networks

    Directory of Open Access Journals (Sweden)

    Keun Ho Ryu

    2012-03-01

    Full Text Available In a wireless sensor network, sensors collect data about natural phenomena and transmit them to a server in real-time. Many studies have been conducted focusing on the processing of continuous queries in an approximate form. However, this approach is difficult to apply to environmental applications which require the correct data to be stored. In this paper, we propose a weather monitoring system for handling and storing the sensor data stream in real-time in order to support continuous spatial and/or temporal queries. In our system, we exploit two time-based insertion methods to store the sensor data stream and reduce the number of managed tuples, without losing any of the raw data which are useful for queries, by using the sensors’ temporal attributes. In addition, we offer a method for reducing the cost of the join operations used in processing spatiotemporal queries by filtering out a list of irrelevant sensors from query range before making a join operation. In the results of the performance evaluation, the number of tuples obtained from the data stream is reduced by about 30% in comparison to a naïve approach, thereby decreasing the query execution time.

  20. Micro Coriolis Gas Density Sensor

    NARCIS (Netherlands)

    Sparreboom, Wouter; Ratering, Gijs; Kruijswijk, Wim; van der Wouden, E.J.; Groenesteijn, Jarno; Lötters, Joost Conrad

    2017-01-01

    In this paper we report on gas density measurements using a micro Coriolis sensor. The technology to fabricate the sensor is based on surface channel technology. The measurement tube is freely suspended and has a wall thickness of only 1 micron. This renders the sensor extremely sensitive to changes

  1. Organic Electroluminescent Sensor for Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Tomohide Niimi

    2012-10-01

    Full Text Available We have proposed a novel concept of a pressure sensor called electroluminescent pressure sensor (ELPS based on oxygen quenching of electroluminescence. The sensor was fabricated as an organic light-emitting device (OLED with phosphorescent dyes whose phosphorescence can be quenched by oxygenmolecules, and with a polymer electrode which permeates oxygen molecules. The sensor was a single-layer OLED with Platinum (II octaethylporphine (PtOEP doped into poly(vinylcarbazole (PVK as an oxygen sensitive emissive layer and poly(3,4-ethylenedioxythiophene mixed with poly(styrenesulfonate (PEDOT:PSS as an oxygen permeating polymer anode. The pressure sensitivity of the fabricated ELPS sample was equivalent to that of the sensor excited by an illumination light source. Moreover, the pressure sensitivity of the sensor is equivalent to that of conventional pressure-sensitive paint (PSP, which is an optical pressure sensor based on photoluminescence.

  2. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    Science.gov (United States)

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. JSC Wireless Sensor Network Update

    Science.gov (United States)

    Wagner, Robert

    2010-01-01

    Sensor nodes composed of three basic components... radio module: COTS radio module implementing standardized WSN protocol; treated as WSN modem by main board main board: contains application processor (TI MSP430 microcontroller), memory, power supply; responsible for sensor data acquisition, pre-processing, and task scheduling; re-used in every application with growing library of embedded C code sensor card: contains application-specific sensors, data conditioning hardware, and any advanced hardware not built into main board (DSPs, faster A/D, etc.); requires (re-) development for each application.

  4. Magnetic actuators and sensors

    CERN Document Server

    Brauer, John R

    2014-01-01

    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  5. Efficient sensor selection for active information fusion.

    Science.gov (United States)

    Zhang, Yongmian; Ji, Qiang

    2010-06-01

    In our previous paper, we formalized an active information fusion framework based on dynamic Bayesian networks to provide active information fusion. This paper focuses on a central issue of active information fusion, i.e., the efficient identification of a subset of sensors that are most decision relevant and cost effective. Determining the most informative and cost-effective sensors requires an evaluation of all the possible subsets of sensors, which is computationally intractable, particularly when information-theoretic criterion such as mutual information is used. To overcome this challenge, we propose a new quantitative measure for sensor synergy based on which a sensor synergy graph is constructed. Using the sensor synergy graph, we first introduce an alternative measure to multisensor mutual information for characterizing the sensor information gain. We then propose an approximated nonmyopic sensor selection method that can efficiently and near-optimally select a subset of sensors for active fusion. The simulation study demonstrates both the performance and the efficiency of the proposed sensor selection method.

  6. Workflow-Oriented Cyberinfrastructure for Sensor Data Analytics

    Science.gov (United States)

    Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.

    2015-12-01

    Sensor streams comprise an increasingly large part of Earth Science data. Analytics based on sensor data require an easy way to perform operations such as acquisition, conversion to physical units, metadata linking, sensor fusion, analysis and visualization on distributed sensor streams. Furthermore, embedding real-time sensor data into scientific workflows is of growing interest. We have implemented a scalable networked architecture that can be used to dynamically access packets of data in a stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based on the integrated Rule Oriented Data System (irods.org), which accesses sensor data from the Antelope Real Time Data System (brtt.com), and provides virtualized access to collections of data streams. We integrate real-time data streaming from different sources, collected for different purposes, on different time and spatial scales, and sensed by different methods. iRODS, noted for its policy-oriented data management, brings to sensor processing features and facilities such as single sign-on, third party access control lists ( ACLs), location transparency, logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data provenance. The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. The system is developed as part of the NSF-funded Datanet Federation Consortium (datafed.org). APIs for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic sensors, environmental sensors, LIDAR and video streams are available through this interface. A system for archiving sensor data and metadata in Net

  7. Distributed sensor coordination for advanced energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial and Manufacturing Engineering

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  8. Sensor array signal processing

    CERN Document Server

    Naidu, Prabhakar S

    2009-01-01

    Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...

  9. Microstrip Patch Sensor for Salinity Determination

    Directory of Open Access Journals (Sweden)

    Kibae Lee

    2017-12-01

    Full Text Available In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS, and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under −20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of −35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF tunable sensors for salinity determination.

  10. Flexible heartbeat sensor for wearable device.

    Science.gov (United States)

    Kwak, Yeon Hwa; Kim, Wonhyo; Park, Kwang Bum; Kim, Kunnyun; Seo, Sungkyu

    2017-08-15

    We demonstrate a flexible strain-gauge sensor and its use in a wearable application for heart rate detection. This polymer-based strain-gauge sensor was fabricated using a double-sided fabrication method with polymer and metal, i.e., polyimide and nickel-chrome. The fabrication process for this strain-gauge sensor is compatible with the conventional flexible printed circuit board (FPCB) processes facilitating its commercialization. The fabricated sensor showed a linear relation for an applied normal force of more than 930 kPa, with a minimum detectable force of 6.25Pa. This sensor can also linearly detect a bending radius from 5mm to 100mm. It is a thin, flexible, compact, and inexpensive (for mass production) heart rate detection sensor that is highly sensitive compared to the established optical photoplethysmography (PPG) sensors. It can detect not only the timing of heart pulsation, but also the amplitude or shape of the pulse signal. The proposed strain-gauge sensor can be applicable to various applications for smart devices requiring heartbeat detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Wireless sensor

    Science.gov (United States)

    Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.; Sepaniak, Michael J.

    2016-02-09

    Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  12. Sensor system for web inspection

    Science.gov (United States)

    Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.

    2002-01-01

    A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.

  13. Intelligent gas-mixture flow sensor

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Fred; Houkes, Z.; van Kuijk, J.C.C.; van Kuijk, Joost

    A simple way to realize a gas-mixture flow sensor is presented. The sensor is capable of measuring two parameters from a gas flow. Both the flow rate and the helium content of a helium-nitrogen gas mixture are measured. The sensor exploits two measurement principles in combination with (local)

  14. Optical fiber sensors: Systems and applications. Volume 2

    Science.gov (United States)

    Culshaw, Brian; Dakin, John

    State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.

  15. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    Science.gov (United States)

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  16. Optical seismic sensor systems and methods

    Science.gov (United States)

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  17. Wireless sensor networks architectures and protocols

    CERN Document Server

    Callaway, Jr, Edgar H

    2003-01-01

    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  18. Sensor Applications and Data Validation

    Science.gov (United States)

    Wiley, John

    2008-01-01

    The mechanical configuration of automobiles have changed marginally while improvements in sensors and control have dramatically improved engine efficiency, reliability and useful life. The aviation industry has also taken advantage of sensors and control systems to reduce operational costs. Sensors and high fidelity control systems fly planes at levels of performance beyond human capability. Sophisticated environmental controls allow a greater level of comfort and efficiency in our homes. Sensors have given the medical field a better understanding of the human body and the environment in which we live.

  19. High Resolution Flexible Tactile Sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Bilberg, Arne

    2011-01-01

    both spatial distribution of pressure and dynamic events such as contact, release of contact and slip. Data acquisition and object recognition applications are described and it is proposed that such a sensor could be used in robotic grippers to improve object recognition, manipulation of objects......This paper describes the development of a tactile sensor for robotics inspired by the human sense of touch. It consists of two parts: a static tactile array sensor based on piezoresistive rubber and a dynamic sensor based on piezoelectric PVDF film. The combination of these two layers addresses...

  20. Network compensation for missing sensors

    Science.gov (United States)

    Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.

    1991-01-01

    A network learning translation invariance algorithm to compute interpolation functions is presented. This algorithm with one fixed receptive field can construct a linear transformation compensating for gain changes, sensor position jitter, and sensor loss when there are enough remaining sensors to adequately sample the input images. However, when the images are undersampled and complete compensation is not possible, the algorithm need to be modified. For moderate sensor losses, the algorithm works if the transformation weight adjustment is restricted to the weights to output units affected by the loss.

  1. Engineering workstation: Sensor modeling

    Science.gov (United States)

    Pavel, M; Sweet, B.

    1993-01-01

    The purpose of the engineering workstation is to provide an environment for rapid prototyping and evaluation of fusion and image processing algorithms. Ideally, the algorithms are designed to optimize the extraction of information that is useful to a pilot for all phases of flight operations. Successful design of effective fusion algorithms depends on the ability to characterize both the information available from the sensors and the information useful to a pilot. The workstation is comprised of subsystems for simulation of sensor-generated images, image processing, image enhancement, and fusion algorithms. As such, the workstation can be used to implement and evaluate both short-term solutions and long-term solutions. The short-term solutions are being developed to enhance a pilot's situational awareness by providing information in addition to his direct vision. The long term solutions are aimed at the development of complete synthetic vision systems. One of the important functions of the engineering workstation is to simulate the images that would be generated by the sensors. The simulation system is designed to use the graphics modeling and rendering capabilities of various workstations manufactured by Silicon Graphics Inc. The workstation simulates various aspects of the sensor-generated images arising from phenomenology of the sensors. In addition, the workstation can be used to simulate a variety of impairments due to mechanical limitations of the sensor placement and due to the motion of the airplane. Although the simulation is currently not performed in real-time, sequences of individual frames can be processed, stored, and recorded in a video format. In that way, it is possible to examine the appearance of different dynamic sensor-generated and fused images.

  2. Vertically stacked nanocellulose tactile sensor.

    Science.gov (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Lee, Kwang-Jae; Kang, Jae-Wook; Jeon, Sanghun

    2017-11-16

    Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect. For the pressure sensor, which utilizes the piezoresistance principle under pressure, the conducting electrode was inkjet printed on the TEMPO-oxidized-nanocellulose patterned with micro-sized pyramids, and the counter electrode was placed on the nanocellulose film. The pressure sensor has a high sensitivity over a wide range (500 Pa-3 kPa) and a high durability of 10 4 loading/unloading cycles. The temperature sensor combines various materials such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), silver nanoparticles (AgNPs) and carbon nanotubes (CNTs) to form a thermocouple on the upper nanocellulose layer. The thermoelectric-based temperature sensors generate a thermoelectric voltage output of 1.7 mV for a temperature difference of 125 K. Our 5 × 5 tactile sensor arrays show a fast response, negligible interference, and durable sensing performance.

  3. A Novel Permanent Magnetic Angular Acceleration Sensor

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2015-07-01

    Full Text Available Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2. Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

  4. Professional Android Sensor Programming

    CERN Document Server

    Milette, Greg

    2012-01-01

    Learn to build human-interactive Android apps, starting with device sensors This book shows Android developers how to exploit the rich set of device sensors—locational, physical (temperature, pressure, light, acceleration, etc.), cameras, microphones, and speech recognition—in order to build fully human-interactive Android applications. Whether providing hands-free directions or checking your blood pressure, Professional Android Sensor Programming shows how to turn possibility into reality. The authors provide techniques that bridge the gap between accessing sensors and putting the

  5. Multi-Parameter Aerosol Scattering Sensor

    Science.gov (United States)

    Greenberg, Paul S.; Fischer, David G.

    2011-01-01

    This work relates to the development of sensors that measure specific aerosol properties. These properties are in the form of integrated moment distributions, i.e., total surface area, total mass, etc., or mathematical combinations of these moment distributions. Specifically, the innovation involves two fundamental features: a computational tool to design and optimize such sensors and the embodiment of these sensors in actual practice. The measurement of aerosol properties is a problem of general interest. Applications include, but are not limited to, environmental monitoring, assessment of human respiratory health, fire detection, emission characterization and control, and pollutant monitoring. The objectives for sensor development include increased accuracy and/or dynamic range, the inclusion in a single sensor of the ability to measure multiple aerosol properties, and developing an overall physical package that is rugged, compact, and low in power consumption, so as to enable deployment in harsh or confined field applications, and as distributed sensor networks. Existing instruments for this purpose include scattering photometers, direct-reading mass instruments, Beta absorption devices, differential mobility analyzers, and gravitational samplers. The family of sensors reported here is predicated on the interaction of light and matter; specifically, the scattering of light from distributions of aerosol particles. The particular arrangement of the sensor, e.g. the wavelength(s) of incident radiation, the number and location of optical detectors, etc., can be derived so as to optimize the sensor response to aerosol properties of practical interest. A key feature of the design is the potential embodiment as an extremely compact, integrated microsensor package. This is of fundamental importance, as it enables numerous previously inaccessible applications. The embodiment of these sensors is inherently low maintenance and high reliability by design. The novel and

  6. Electrocatalytic glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, U; Luft, G; Mund, K; Preidel, W; Richter, G J

    1983-01-01

    An artificial pancreas consists of an insulin depot, a dosage unit and a glucose sensor. The measurement of the actual glucose concentration in blood is still an unsolved problem. Two methods are described for an electrocatalytic glucose sensor. Under the interfering action of amino acids and urea in-vitro measurements show an error of between 10% and 20%.

  7. Integration of RFID and Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Miodrag; Bolic; Amiya; Nayak; Ivan; Stojmenovi.

    2007-01-01

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide limitless future potentials. However,RFID and sensor networks almost are under development in parallel way. Integration of RFID and wireless sensor networks attracts little attention from research community. This paper first presents a brief introduction on RFID,and then investigates recent research works,new products/patents and applications that integrate RFID with sensor networks. Four types of integration are discussed. They are integrating tags with sensors,integrating tags with wireless sensor nodes,integrating readers with wireless sensor nodes and wire-less devices,and mix of RFID and sensors. New challenges and future works are discussed in the end.

  8. Flexible Temperature Sensors on Fibers

    Directory of Open Access Journals (Sweden)

    Marcin Sloma

    2010-08-01

    Full Text Available The aim of this paper is to present research dedicated to the elaboration of novel, miniaturized flexible temperature sensors for textronic applications. Examined sensors were manufactured on a single yarn, which ensures their high flexibility and good compatibility with textiles. Stable and linear characteristics were obtained by special technological process and applied temperature profiles. As a thermo-sensitive materials the innovative polymer compositions filled with multiwalled carbon nanotubes were used. Elaborated material was adapted to printing and dip-coating techniques to produce NTC composites. Nanotube sensors were free from tensometric effect typical for other carbon-polymer sensor, and demonstrated TCR of 0.13%/K. Obtained temperature sensors, compatible with textile structure, can be applied in rapidly developing smart textiles and be used for health and protections purposes.

  9. Integrated Passive And Wireless Sensor

    KAUST Repository

    Li, Bodong; Kosel, Jü rgen

    2015-01-01

    A passive and wireless sensor is provided for sensing at least one of magnetic field, temperature or humidity. The sensor can provide only one of the sensing functions, individually or any combination of them simultaneously. It can be used for various applications where magnetic field changes, temperature and/or humidity need to be measured. In one or more embodiments, a surface acoustic wave (SAW) sensor is provided that can measure one or more of a magnetic field (or current that generates the magnetic field), temperature and humidity. In one or more embodiments, a magnetoimpedence (MI) sensor (for example a thin film giant magnetoimpedance (GMI) sensor), a thermally sensitive (for example a Lithium Niobite (LiNbO.sub.3)) substrate, and a humidity sensitive film (for example a hydrogel film) can be used as sensing elements.

  10. Integrated Passive And Wireless Sensor

    KAUST Repository

    Li, Bodong

    2015-04-30

    A passive and wireless sensor is provided for sensing at least one of magnetic field, temperature or humidity. The sensor can provide only one of the sensing functions, individually or any combination of them simultaneously. It can be used for various applications where magnetic field changes, temperature and/or humidity need to be measured. In one or more embodiments, a surface acoustic wave (SAW) sensor is provided that can measure one or more of a magnetic field (or current that generates the magnetic field), temperature and humidity. In one or more embodiments, a magnetoimpedence (MI) sensor (for example a thin film giant magnetoimpedance (GMI) sensor), a thermally sensitive (for example a Lithium Niobite (LiNbO.sub.3)) substrate, and a humidity sensitive film (for example a hydrogel film) can be used as sensing elements.

  11. Relational-Based Sensor Data Cleansing

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Liu, Xiufeng; Nordbjerg, Finn Ebertsen

    2015-01-01

    cleansing approaches, such as classification, prediction and moving average are not suited for embedded sensor devices, due to the limited storage and processing capabilities. In this paper, we propose a sensor data cleansing approach using the relational-based technologies, including constraints, triggers...... and granularity-based data aggregation. The proposed approach is simple but effective to cleanse different types of dirty data, including delayed data, incomplete data, incorrect data, duplicate data and missing data. We evaluate the proposed strategy to verify its efficiency, effectiveness and adaptability.......Today sensors are widely used in many monitoring applications. Due to some random environmental effects and/or sensing failures, the collected sensor data is typically noisy. Thus, it is critical to cleanse the sensor data before using it to answer queries or conduct data analysis. Popular data...

  12. Wearable sensors fundamentals, implementation and applications

    CERN Document Server

    Sazonov, Edward

    2014-01-01

    Written by industry experts, this book aims to provide you with an understanding of how to design and work with wearable sensors. Together these insights provide the first single source of information on wearable sensors that would be a valuable addition to the library of any engineer interested in this field. Wearable Sensors covers a wide variety of topics associated with the development and application of various wearable sensors. It also provides an overview and coherent summary of many aspects of current wearable sensor technology. Both industry professionals and academic researcher

  13. Quality control on planar n-in-n pixel sensors — Recent progress of ATLAS planar pixel sensors

    International Nuclear Information System (INIS)

    Klingenberg, R.

    2013-01-01

    To extend the physics reach of the Large Hadron Collider (LHC), upgrades to the accelerator are planned which will increase the peak luminosity by a factor 5–10. To cope with the increased occupancy and radiation damage, the ATLAS experiment plans to introduce an all-silicon inner tracker with the high luminosity upgrade (HL-LHC). To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Upgrade Planar Pixel Sensor (PPS) R and D Project was established. Main areas of research are the performance of planar pixel sensors at highest fluences, the exploration of possibilities for cost reduction to enable the instrumentation of large areas, the achievement of slim or active edges to provide low geometric inefficiencies without the need for shingling of modules and the investigation of the operation of highly irradiated sensors at low thresholds to increase the efficiency. The Insertable b-layer (IBL) is the first upgrade project within the ATLAS experiment and will employ a new detector layer consisting of silicon pixel sensors, which were improved and prototyped in the framework of the planar pixel sensor R and D project. A special focus of this paper is the status of the development and testing of planar n-in-n pixel sensors including the quality control of the on-going series production and postprocessing of sensor wafers. A high yield of produced planar sensor wafers and FE-I4 double chip sensors after first steps of post-processing including under bump metallization and dicing is observed. -- Highlights: ► Prototypes of irradiated planar n-in-n sensors have been successfully tested under laboratory conditions. ► A quality assurance programme on the series production of planar sensors for the IBL has started. ► A high yield of double chip sensors during the series production is observed which are compatible to the specifications to this detector component.

  14. A New User Interface for On-Demand Customizable Data Products for Sensors in a SensorWeb

    Science.gov (United States)

    Mandl, Daniel; Cappelaere, Pat; Frye, Stuart; Sohlberg, Rob; Ly, Vuong; Chien, Steve; Sullivan, Don

    2011-01-01

    A SensorWeb is a set of sensors, which can consist of ground, airborne and space-based sensors interoperating in an automated or autonomous collaborative manner. The NASA SensorWeb toolbox, developed at NASA/GSFC in collaboration with NASA/JPL, NASA/Ames and other partners, is a set of software and standards that (1) enables users to create virtual private networks of sensors over open networks; (2) provides the capability to orchestrate their actions; (3) provides the capability to customize the output data products and (4) enables automated delivery of the data products to the users desktop. A recent addition to the SensorWeb Toolbox is a new user interface, together with web services co-resident with the sensors, to enable rapid creation, loading and execution of new algorithms for processing sensor data. The web service along with the user interface follows the Open Geospatial Consortium (OGC) standard called Web Coverage Processing Service (WCPS). This presentation will detail the prototype that was built and how the WCPS was tested against a HyspIRI flight testbed and an elastic computation cloud on the ground with EO-1 data. HyspIRI is a future NASA decadal mission. The elastic computation cloud stores EO-1 data and runs software similar to Amazon online shopping.

  15. Multi-sensor Cloud Retrieval Simulator and Remote Sensing from Model Parameters . Pt. 1; Synthetic Sensor Radiance Formulation; [Synthetic Sensor Radiance Formulation

    Science.gov (United States)

    Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.

    2013-01-01

    In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.

  16. Atmospheric corrosion Monitoring with Time-of-Wetness (TOW) sensor and Thin Film Electric Resistance (TFER) sensor

    International Nuclear Information System (INIS)

    Jung, Sung Won; Kim, Young Geun; Song, Hong Seok; Lee, Seung Min; Kho, Young Tai

    2002-01-01

    In this study, TOW sensor was fabricated with the same P. J. Serada's in NRC and was evaluated according to pollutant amount and wet/dry cycle. Laboratorily fabricated thin film electric resistance (TFER) probes were applied in same environment for the measurement of corrosion rate for feasibility. TOW sensor could not differentiate the wet and dry time especially at polluted environment like 3.5% NaCl solution. This implies that wet/dry time monitoring by means of TOW sensor need careful application on various environment. TFER sensor could produce instant atmospheric corrosion rate regardless of environment condition. And corrosion rate obtained by TFER sensor could be differentiated according to wet/dry cycle, wet/dry cycle time variation and solution chemistry. Corrosion behaviors of TFER sensor showed that corrosion could proceed even after wet cycle because of remained electrolyte at the surface

  17. Overview of Fiber-Optical Sensors

    Science.gov (United States)

    Depaula, Ramon P.; Moore, Emery L.

    1987-01-01

    Design, development, and sensitivity of sensors using fiber optics reviewed. State-of-the-art and probable future developments of sensors using fiber optics described in report including references to work in field. Serves to update previously published surveys. Systems incorporating fiber-optic sensors used in medical diagnosis, navigation, robotics, sonar, power industry, and industrial controls.

  18. Vehicle Fault Diagnose Based on Smart Sensor

    Science.gov (United States)

    Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng

    In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.

  19. Sensors for online determination of CNG gas quality; Sensorer foer onlinebestaemnning av fordonsgaskvalitet

    Energy Technology Data Exchange (ETDEWEB)

    Stenlaaaas, Ola; Roedjegaard, Henrik

    2012-07-01

    Swedish automotive gas has until now been a very uniform, high quality automotive fuel. Elsewhere in Europe the quality of automotive gas varies significantly. Gas from different sources with different flammability require engine settings adjusted to the chosen gas' unique composition. The prospects for a vehicle-mounted sensor based on infrared technology for gas quality measurement has been studied and solutions are presented with questions that must be answered in a possible future work. The proposed vehicle mounted sensor is based on two channels, one of which measures the partial pressure of methane and the other measures the partial pressure of heavier hydrocarbons in 'equivalents of butane'. Ethane produces a signal of about 0.6 equivalents of butane and propane about 0.8 equivalents. The sensor can be accommodated in a cube with 5 cm side and should be equipped with nipple connections to the existing system. The sensor is expected to work throughout their entire lifetime without manual calibration, through continuous automatic calibration, so-called ABC (Automatic Baseline Compensation). The sensor will have to meet tough quality and environmental standards in which primarily contact ring, vibration and prevention of leakage are identified as extra difficult. Working temperatures and the electrical conditions of power supply and communication interface is considered less challenging. In one million volumes, the cost per sensor could be 200 to 300 SEK.

  20. Synchronizing data from irregularly sampled sensors

    Science.gov (United States)

    Uluyol, Onder

    2017-07-11

    A system and method include receiving a set of sampled measurements for each of multiple sensors, wherein the sampled measurements are at irregular intervals or different rates, re-sampling the sampled measurements of each of the multiple sensors at a higher rate than one of the sensor's set of sampled measurements, and synchronizing the sampled measurements of each of the multiple sensors.

  1. Wearable Sensor Systems for Infants

    Directory of Open Access Journals (Sweden)

    Zhihua Zhu

    2015-02-01

    Full Text Available Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant’s body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.

  2. Magnetic sensor for steady state tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-06-01

    A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).

  3. Novel Fiber-Optic Ring Acoustic Emission Sensor

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  4. Assisted editing od SensorML with EDI. A bottom-up scenario towards the definition of sensor profiles.

    Science.gov (United States)

    Oggioni, Alessandro; Tagliolato, Paolo; Fugazza, Cristiano; Bastianini, Mauro; Pavesi, Fabio; Pepe, Monica; Menegon, Stefano; Basoni, Anna; Carrara, Paola

    2015-04-01

    Sensor observation systems for environmental data have become increasingly important in the last years. The EGU's Informatics in Oceanography and Ocean Science track stressed the importance of management tools and solutions for marine infrastructures. We think that full interoperability among sensor systems is still an open issue and that the solution to this involves providing appropriate metadata. Several open source applications implement the SWE specification and, particularly, the Sensor Observation Services (SOS) standard. These applications allow for the exchange of data and metadata in XML format between computer systems. However, there is a lack of metadata editing tools supporting end users in this activity. Generally speaking, it is hard for users to provide sensor metadata in the SensorML format without dedicated tools. In particular, such a tool should ease metadata editing by providing, for standard sensors, all the invariant information to be included in sensor metadata, thus allowing the user to concentrate on the metadata items that are related to the specific deployment. RITMARE, the Italian flagship project on marine research, envisages a subproject, SP7, for the set-up of the project's spatial data infrastructure. SP7 developed EDI, a general purpose, template-driven metadata editor that is composed of a backend web service and an HTML5/javascript client. EDI can be customized for managing the creation of generic metadata encoded as XML. Once tailored to a specific metadata format, EDI presents the users a web form with advanced auto completion and validation capabilities. In the case of sensor metadata (SensorML versions 1.0.1 and 2.0), the EDI client is instructed to send an "insert sensor" request to an SOS endpoint in order to save the metadata in an SOS server. In the first phase of project RITMARE, EDI has been used to simplify the creation from scratch of SensorML metadata by the involved researchers and data managers. An interesting by

  5. A Risk Based Approach to Limit the Effects of Covert Channels for Internet Sensor Data Aggregators for Sensor Privacy

    Science.gov (United States)

    Viecco, Camilo H.; Camp, L. Jean

    Effective defense against Internet threats requires data on global real time network status. Internet sensor networks provide such real time network data. However, an organization that participates in a sensor network risks providing a covert channel to attackers if that organization’s sensor can be identified. While there is benefit for every party when any individual participates in such sensor deployments, there are perverse incentives against individual participation. As a result, Internet sensor networks currently provide limited data. Ensuring anonymity of individual sensors can decrease the risk of participating in a sensor network without limiting data provision.

  6. 1st National Conference on Sensors

    CERN Document Server

    D’Amico, Arnaldo; Natale, Corrado; Siciliano, Pietro; Seeber, Renato; Stefano, Luca; Bizzarri, Ranieri; Andò, Bruno

    2014-01-01

    This book contains a selection of papers presented at the First National Conference on Sensors held in Rome 15-17 February 2011. The conference highlighted state-of-the-art results from both theoretical and applied research in the field of sensors and related technologies. This book presents material in an interdisciplinary approach, covering many aspects of the disciplines related to sensors, including physics, chemistry, materials science, biology and applications.   ·         Provides a selection of the best papers from the First Italian National Conference on Sensors; ·         Covers a broad range of topics relating to sensors and microsystems, including physics, chemistry, materials science, biology and applications;       ·        Offers interdisciplinary coverage, aimed at defining a common ground for sensors beyond the specific differences among the different particular implementation of sensors.

  7. 2nd National Conference on Sensors

    CERN Document Server

    Baldini, Francesco; Natale, Corrado; Betta, Giovanni; Siciliano, Pietro

    2015-01-01

    This book contains a selection of papers presented at the Second National Conference on Sensors held in Rome 19-21 February 2014. The conference highlighted state-of-the-art results from both theoretical and applied research in the field of sensors and related technologies. This book presents material in an interdisciplinary approach, covering many aspects of the disciplines related to sensors, including physics, chemistry, materials science, biology and applications. ·         Provides a selection of the best papers from the Second Italian National Conference on Sensors; ·         Covers a broad range of topics relating to sensors and microsystems, including physics, chemistry, materials science, biology and applications; ·         Offers interdisciplinary coverage, aimed at defining a common ground for sensors beyond the specific differences among the different particular implementation of sensors.

  8. Correlative studies of satellite ozone sensor measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.

    1983-01-01

    Comparisons are made between total ozone measurements made by four satellite ozone sensors (TOMS, SBUV, TOVS and MFR). The comparisons were made during July 1979 when all sensors were operating simultaneously. The TOMS and SBUV sensors were observed to measure less total ozone than the MFR sensor, 10 and 15 Dobson units (DU) respectively. The MFR and TOMS sensors measured less ozone than the TOVS sensor, 19 an 28 DU, respectively. Latitudinal variability of the total ozone comparisons is discussed

  9. Wireless passive radiation sensor

    Science.gov (United States)

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  10. Interfacing Sensors To Micro Controllers

    KAUST Repository

    Norain, Mohamed

    2018-01-01

    This lecture will cover the most common interface and interface techniques between sensors and microcontrollers. The presentation will introduce the pros and cons of each interface type including analogue, digital and serial output sensors. It will also cover the basic required electronics knowledge to help you in selecting and designing your next sensor to microcontroller interface.

  11. Interfacing Sensors To Micro Controllers

    KAUST Repository

    Norain, Mohamed

    2018-01-15

    This lecture will cover the most common interface and interface techniques between sensors and microcontrollers. The presentation will introduce the pros and cons of each interface type including analogue, digital and serial output sensors. It will also cover the basic required electronics knowledge to help you in selecting and designing your next sensor to microcontroller interface.

  12. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  13. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya

    2018-01-30

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  14. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  15. Sensors in Distributed Mixed Reality Environments

    Directory of Open Access Journals (Sweden)

    Felix Hamza-Lup

    2005-04-01

    Full Text Available A distributed mixed-reality (MR or virtual reality (VR environment implies the cooperative engagement of a set of software and hardware resources. With the advances in sensors and computer networks we have seen an increase in the number of potential MR/VR applications that require large amounts of information from the real world collected through sensors (e.g. position and orientation tracking sensors. These sensors collect data from the real environment in real-time at different locations and a distributed environment connecting them must assure data distribution among collaborative sites at interactive speeds. With the advances in sensor technology, we envision that in future systems a significant amount of data will be collected from sensors and devices attached to the participating nodes This paper proposes a new architecture for sensor based interactive distributed MR/VR environments that falls in-between the atomistic peer-to-peer model and the traditional client-server model. Each node is autonomous and fully manages its resources and connectivity. The dynamic behavior of the nodes is dictated by the human participants that manipulate the sensors attached to these nodes.

  16. A risk-based sensor placement methodology

    International Nuclear Information System (INIS)

    Lee, Ronald W.; Kulesz, James J.

    2008-01-01

    A risk-based sensor placement methodology is proposed to solve the problem of optimal location of sensors to protect population against the exposure to, and effects of, known and/or postulated chemical, biological, and/or radiological threats. Risk is calculated as a quantitative value representing population at risk from exposure at standard exposure levels. Historical meteorological data are used to characterize weather conditions as the frequency of wind speed and direction pairs. The meteorological data drive atmospheric transport and dispersion modeling of the threats, the results of which are used to calculate risk values. Sensor locations are determined via an iterative dynamic programming algorithm whereby threats detected by sensors placed in prior iterations are removed from consideration in subsequent iterations. In addition to the risk-based placement algorithm, the proposed methodology provides a quantification of the marginal utility of each additional sensor. This is the fraction of the total risk accounted for by placement of the sensor. Thus, the criteria for halting the iterative process can be the number of sensors available, a threshold marginal utility value, and/or a minimum cumulative utility achieved with all sensors

  17. Microwave Sensors for Breast Cancer Detection.

    Science.gov (United States)

    Wang, Lulu

    2018-02-23

    Breast cancer is the leading cause of death among females, early diagnostic methods with suitable treatments improve the 5-year survival rates significantly. Microwave breast imaging has been reported as the most potential to become the alternative or additional tool to the current gold standard X-ray mammography for detecting breast cancer. The microwave breast image quality is affected by the microwave sensor, sensor array, the number of sensors in the array and the size of the sensor. In fact, microwave sensor array and sensor play an important role in the microwave breast imaging system. Numerous microwave biosensors have been developed for biomedical applications, with particular focus on breast tumor detection. Compared to the conventional medical imaging and biosensor techniques, these microwave sensors not only enable better cancer detection and improve the image resolution, but also provide attractive features such as label-free detection. This paper aims to provide an overview of recent important achievements in microwave sensors for biomedical imaging applications, with particular focus on breast cancer detection. The electric properties of biological tissues at microwave spectrum, microwave imaging approaches, microwave biosensors, current challenges and future works are also discussed in the manuscript.

  18. Trusted Operations on Sensor Data †

    Directory of Open Access Journals (Sweden)

    Hassaan Janjua

    2018-04-01

    Full Text Available The widespread use of mobile devices has allowed the development of participatory sensing systems that capture various types of data using the existing or external sensors attached to mobile devices. Gathering data from such anonymous sources requires a mechanism to establish the integrity of sensor readings. In many cases, sensor data need to be preprocessed on the device itself before being uploaded to the target server while ensuring the chain of trust from capture to the delivery of the data. This can be achieved by a framework that provides a means to implement arbitrary operations to be performed on trusted sensor data, while guaranteeing the security and integrity of the data. This paper presents the design and implementation of a framework that allows the capture of trusted sensor data from both external and internal sensors on a mobile phone along with the development of trusted operations on sensor data while providing a mechanism for performing predefined operations on the data such that the chain of trust is maintained. The evaluation shows that the proposed system ensures the security and integrity of sensor data with minimal performance overhead.

  19. Application of commercial sensor manufacturing methods for NOx/NH3 mixed potential sensors for emissions control

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, Eric L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Nelson, Mark A [Los Alamos National Laboratory; Sekhar, Praveen [Los Alamos National Laboratory; Williamson, Todd [Los Alamos National Laboratory; Garzon, Fernando H [Los Alamos National Laboratory

    2009-01-01

    The purpose of this research effort is to develop a low cost on-board Nitrogen Oxide (NO{sub x})/Ammonia (NH{sub 3}) sensor that can not only be used for emissions control but has the potential to improve efficiency through better monitoring of the combustion process and feedback control in both vehicle and stationary systems. Over the past decade, Los AJamos National Laboratory (LANL) has developed a unique class of electrochemical gas sensors for the detection of carbon monoxide, hydrocarbons, hydrogen and nitrogen oxides. These sensors are based on the mixed-potential phenomenon and are a modification of the existing automotive lambda (oxygen) sensor and have the potential to meet the stringent sensitivity, selectivity and stability requirements of an on-board emissions/engine control sensor system. The current state of the art LANL technology is based on the stabilization of the electrochemical interfaces and relies on an externally heated, hand-made, tape cast device. We are now poised to apply our patented sensing principles in a mass production sensor platform that is more suitable for real world engine-out testing such as on dynamometers for vehicle applications and for exhaust-out testing in heavy boilers/SCR systems in power plants. In this present work, our goal is to advance towards commercialization of this technology by packaging the unique LANL sensor design in a standard automotive sensor-type platform. This work is being performed with the help of a leading US technical ceramics firm, utilizing commercial manufacturing techniques. Initial tape cast platforms with screen printed metal oxide and Pt sensor electrodes have shown promising results but also clearly show the need for us to optimize the electrode and electrolyte compositions/morphologies and interfaces of these devices in order to demonstrate a sensitive, selective, and stable NO{sub x} sensor. Our previous methods and routes to preparing stable and reproducible mixed potential sensors

  20. Polymer laser bio-sensors

    DEFF Research Database (Denmark)

    Kristensen, Anders; Vannahme, Christoph; Hermannsson, Pétur Gordon

    2014-01-01

    Organic dye based distributed feed-back lasers, featuring narrow linewidth and thus high quality spectral resolution, are used as highly sensitive refractive index sensors. The design, fabrication and application of the laser intra-cavity sensors are discussed....

  1. Hybrid architecture for building secure sensor networks

    Science.gov (United States)

    Owens, Ken R., Jr.; Watkins, Steve E.

    2012-04-01

    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

  2. Temperature-modulated direct thermoelectric gas sensors: thermal modeling and results for fast hydrocarbon sensors

    International Nuclear Information System (INIS)

    Rettig, Frank; Moos, Ralf

    2009-01-01

    Direct thermoelectric gas sensors are a promising alternative to conductometric gas sensors. For accurate results, a temperature modulation technique in combination with a regression analysis is advantageous. However, the thermal time constant of screen-printed sensors is quite large. As a result, up to now the temperature modulation frequency (20 mHz) has been too low and the corresponding principle-related response time (50 s) has been too high for many applications. With a special design, respecting the physical properties of thermal waves and the use of signal processing similar to a lock-in-amplifier, it is possible to achieve response times of about 1 s. As a result, direct thermoelectric gas sensors with SnO 2 as a gas-sensitive material respond fast and are reproducible to the propane concentration in the ambient atmosphere. Due to the path-independent behavior of the thermovoltage and the temperature, the measured thermopower of two sensors is almost identical

  3. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  4. Piezoelectric power generation for sensor applications: design of a battery-less wireless tire pressure sensor

    Science.gov (United States)

    Makki, Noaman; Pop-Iliev, Remon

    2011-06-01

    An in-wheel wireless and battery-less piezo-powered tire pressure sensor is developed. Where conventional battery powered Tire Pressure Monitoring Systems (TPMS) are marred by the limited battery life, TPMS based on power harvesting modules provide virtually unlimited sensor life. Furthermore, the elimination of a permanent energy reservoir simplifies the overall sensor design through the exclusion of extra circuitry required to sense vehicle motion and conserve precious battery capacity during vehicle idling periods. In this paper, two design solutions are presented, 1) with very low cost highly flexible piezoceramic (PZT) bender elements bonded directly to the tire to generate power required to run the sensor and, 2) a novel rim mounted PZT harvesting unit that can be used to power pressure sensors incorporated into the valve stem requiring minimal change to the presently used sensors. While both the designs eliminate the use of environmentally unfriendly battery from the TPMS design, they offer advantages of being very low cost, service free and easily replaceable during tire repair and replacement.

  5. Alkaline pH sensor molecules.

    Science.gov (United States)

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  6. MFTF sensor verification computer program

    International Nuclear Information System (INIS)

    Chow, H.K.

    1984-01-01

    The design, requirements document and implementation of the MFE Sensor Verification System were accomplished by the Measurement Engineering Section (MES), a group which provides instrumentation for the MFTF magnet diagnostics. The sensors, installed on and around the magnets and solenoids, housed in a vacuum chamber, will supply information about the temperature, strain, pressure, liquid helium level and magnet voltage to the facility operator for evaluation. As the sensors are installed, records must be maintained as to their initial resistance values. Also, as the work progresses, monthly checks will be made to insure continued sensor health. Finally, after the MFTF-B demonstration, yearly checks will be performed as well as checks of sensors as problem develops. The software to acquire and store the data was written by Harry Chow, Computations Department. The acquired data will be transferred to the MFE data base computer system

  7. Graphene Squeeze-Film Pressure Sensors.

    Science.gov (United States)

    Dolleman, Robin J; Davidovikj, Dejan; Cartamil-Bueno, Santiago J; van der Zant, Herre S J; Steeneken, Peter G

    2016-01-13

    The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area.

  8. Micro technology based sun sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Pedersen, Martin; Fléron, René

    2003-01-01

    various payloads and platforms. The conventional and commercial actuators and attitude sensors are in most cases not suited for these satellites, which again lead to new design considerations. Another important property is the launch cost, which can be kept relatively low as a result of the concept....... This fact enables students to get hands-on experience with satellite systems design and project management. This paper describes the attitude control and determination system of a Danish student satellite (DTUsat), with main focus on the two-axis MOEMS sun sensor developed. On the magnetotorquer controlled...... DTUsat sun sensors are needed along with a magnetometer to obtain unambiguous attitude determination for the ACDS and the payloads - an electrodynamic tether and a camera. The accuracy needed was not obtainable by employing conventional attitude sensors. Hence a linear slit sensor was designed...

  9. A novel design of an automatic lighting control system for a wireless sensor network with increased sensor lifetime and reduced sensor numbers.

    Science.gov (United States)

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.

  10. Rancang Bangun Sistem Pengukur Kecepatan Kendaraan Menggunakan Sensor Magnetik

    Directory of Open Access Journals (Sweden)

    Aris Ramdhani

    2017-06-01

    Full Text Available Data kecepatan kendaran di jalan raya sangat berpengaruh bagi keamanan dan keselamatan pengguna jalan raya. Kemajuan tekhnologi sensor sangat membantu dalam mengukur kecepatan kendaraan dengan otomatis. Metode yang umum dipakai ialah metode dengan menggunakan dua buah rangkaian sensor yang sudah diatur pada jarak tertentu. Sensor digunakan sebagai pendeteksi keberadaan kendaraan. Data kecepatan kendaraan didapatkan dengan mencari selang waktu yang dibutuhkan kendaraan melaju dari sensor pertama menuju sensor kedua. Saat kendaraan melaju melewati sensor maka sinyal keluaran sensor menjadi acuan perhitungan waktu start dan stop. Berbagai jenis sensor yang sudah digunakan ialah sensor LDR, sensor ultrasonic, sensor laser, sensor loop induktif dan sensor kamera. Setiap sensor yang sudah dipergunakan memiliki berbagai jenis kekurangan dalam mendeteksi kendaraan pada jalan raya. Oleh karena itu penulis memunculkan ide baru dengan menggunakan sensor magnetik yang memiliki faktor gangguan eksternal yang rendah. Sensor magnetik yang digunakan ialah sensor Giant MagnetoResistance (GMR. Perancangan sistem pengukur kecepatan kendaraan yang penulis lakukan berupa sebuah prototype. Hasil pengujian sistem pengukur kecepatan kendaraan menggunakan sensor magnetik GMR menunjukan respon yang bagus saat pengujian dilakukan pada jarak 30cm dan 70cm antara dua buah sensor GMR. Data speed of vehicles on the highway are very influential to the security and safety of users of the highway. Advances in sensor technology is very helpful in measuring the speed of vehicles with automatic. A common method used is the method by using two sensor circuit which is set at a certain distance. The sensor is used as a detector for the exixtance of the vehicle. Vehicle speed data obtained by finding the time required vehicles drove from the first sensor to the second sensor. When the vehicle drove past the sensor, the sensor output signal to be a reference calculation start and stop

  11. All-plastic fiber-based pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, Richard; Leon-Saval, Sergio

    2016-01-01

    We present a feasibility study and a prototype of an all-plastic fiber-based pressure sensor. The sensor is based on long period gratings inscribed for the first time to the best of our knowledge by a CO2 laser in polymethyl methacrylate (PMMA) microstructured fibers and coupled to a pod......-like transducer that converts pressure to strain. The sensor prototype was characterized for pressures up to 150 mbars, and various parameters related to its construction were also characterized in order to enhance sensitivity. We consider this sensor in the context of future applications in endoscopic pressure...... sensors....

  12. Microscale autonomous sensor and communications module

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N

    2014-03-25

    Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

  13. Low cost sensors: Field evaluations and multi-sensor approaches for emissions factors

    Science.gov (United States)

    The development, and application of low cost sensors to measure both particulate and gas-phase air pollutants is poised to explode over the next several years. The need for the sensors is driven by poor air quality experienced in inhabited regions throughout the world, in both de...

  14. Development of smart active layer sensor

    International Nuclear Information System (INIS)

    Lee, Young Sup; Lee, Sang Il; Yoon, Dong Jin; Kwon, Jae Hwa

    2004-01-01

    Structural health monitoring (SHM) is a new technology that will be increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper. In this study, SAL sensor can be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves.

  15. A wireless sensor enabled by wireless power.

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  16. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  17. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  18. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  19. Low-power high-accuracy micro-digital sun sensor by means of a CMOS image sensor

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.

    2013-01-01

    A micro-digital sun sensor (?DSS) is a sun detector which senses a satellite’s instant attitude angle with respect to the sun. The core of this sensor is a system-on-chip imaging chip which is referred to as APS+. The APS+ integrates a CMOS active pixel sensor (APS) array of 368×368??pixels , a

  20. Special instrumentation developed for FARO and KROTOS FCI experiments: High temperature ultrasonic sensor and dynamic level sensor

    International Nuclear Information System (INIS)

    Huhtiniemi, I.; Jorzik, E.; Anselmi, M.

    1998-01-01

    Development and application of special instrumentation for FARO and KROTOS fuel-coolant interaction experiments at JRC-Ispra are described. A temperature sensor based on ultrasonic techniques is described with the discussion on the improvements in sensor fabrication technique and design. The sensor can be used to measure temperatures in the range from 1800 deg C to 3100 deg C with an accuracy of ± 50 deg C. The design allows local temperature measurements in multiple zones along the sensor element. This sensor has been used successfully in a number of FARO experiments where temperature distributions in molten corium pools have been measured. It will be also used in the future Phebus FP tests. Furthermore, a water level meter sensor based on the time domain reflectometry technique is described. This high speed sensor allows monitoring of liquid level under very demanding ambient conditions, as e.g. 5MPa, 550 K in FARO. This sensor has been successfully applied in a number of FARO and KROTOS tests where the water level rise caused by a molten corium and Al 2 O 3 pours have been measured. (author)

  1. Cross-sensor iris recognition through kernel learning.

    Science.gov (United States)

    Pillai, Jaishanker K; Puertas, Maria; Chellappa, Rama

    2014-01-01

    Due to the increasing popularity of iris biometrics, new sensors are being developed for acquiring iris images and existing ones are being continuously upgraded. Re-enrolling users every time a new sensor is deployed is expensive and time-consuming, especially in applications with a large number of enrolled users. However, recent studies show that cross-sensor matching, where the test samples are verified using data enrolled with a different sensor, often lead to reduced performance. In this paper, we propose a machine learning technique to mitigate the cross-sensor performance degradation by adapting the iris samples from one sensor to another. We first present a novel optimization framework for learning transformations on iris biometrics. We then utilize this framework for sensor adaptation, by reducing the distance between samples of the same class, and increasing it between samples of different classes, irrespective of the sensors acquiring them. Extensive evaluations on iris data from multiple sensors demonstrate that the proposed method leads to improvement in cross-sensor recognition accuracy. Furthermore, since the proposed technique requires minimal changes to the iris recognition pipeline, it can easily be incorporated into existing iris recognition systems.

  2. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  3. Distributed pressure sensors for a urethral catheter.

    Science.gov (United States)

    Ahmadi, Mahdi; Rajamani, Rajesh; Timm, Gerald; Sezen, A S

    2015-01-01

    A flexible strip that incorporates multiple pressure sensors and is capable of being fixed to a urethral catheter is developed. The urethral catheter thus instrumented will be useful for measurement of pressure in a human urethra during urodynamic testing in a clinic. This would help diagnose the causes of urinary incontinence in patients. Capacitive pressure sensors are fabricated on a flexible polyimide-copper substrate using surface micromachining processes and alignment/assembly of the top and bottom portions of the sensor strip. The developed sensor strip is experimentally evaluated in an in vitro test rig using a pressure chamber. The sensor strip is shown to have adequate sensitivity and repeatability. While the calibration factors for the sensors on the strip vary from one sensor to another, even the least sensitive sensor has a resolution better than 0.1 psi.

  4. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  5. MEMS climate sensor for crops in greenhouses

    DEFF Research Database (Denmark)

    Birkelund, Karen; Jensen, Kim Degn; Højlund-Nielsen, Emil

    2010-01-01

    We have developed and fabricated a multi-sensor chip for greenhouse applications and demonstrated the functionality under controlled conditions. The sensor consists of a humidity sensor, temperature sensor and three photodiodes sensitive to blue, red and white light, respectively. The humidity...... sensor responds linearly with humidity with a full scale change of 5.6 pF. The best performing design measures a relative change of 48%. The temperature sensor responds linearly with temperature with a temperature coefficient of resistance of 3.95 x 10(-3) K-1 and a sensitivity of 26.5 Omega degrees C-1...... and humidity sensors have further been tested on plants in a greenhouse, demonstrating that individual plant behavior can be monitored....

  6. Magnetic Nanocomposite Cilia Tactile Sensor

    KAUST Repository

    Alfadhel, Ahmed; Kosel, Jü rgen

    2015-01-01

    A multifunctional biomimetic nanocomposite tactile sensor is developed that can detect shear and vertical forces, feel texture, and measure flow with extremely low power consumption. The sensor's high performance is maintained within a wide operating range that can be easily adjusted. The concept works on rigid and flexible substrates and the sensors can be used in air or water without any modifications.

  7. USGS VDP Infrasound Sensor Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Slad, George William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Sandia National Laboratories has tested and evaluated two infrasound sensors, the model VDP100 and VDP250, built in-house at the USGS Cascades Volcano Observatory. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, self-noise, dynamic range and nominal transfer function. Notable features of the VDP sensors include novel and durable construction and compact size.

  8. Online Sensor Calibration Assessment in Nuclear Power Systems

    International Nuclear Information System (INIS)

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-01-01

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors

  9. Wearable Optical Sensors

    KAUST Repository

    Ballard, Zachary S.

    2017-07-12

    The market for wearable sensors is predicted to grow to $5.5 billion by 2025, impacting global health in unprecedented ways. Optics and photonics will play a key role in the future of these wearable technologies, enabling highly sensitive measurements of otherwise invisible information and parameters about our health and surrounding environment. Through the implementation of optical wearable technologies, such as heart rate, blood pressure, and glucose monitors, among others, individuals are becoming more empowered to generate a wealth of rich, multifaceted physiological and environmental data, making personalized medicine a reality. Furthermore, these technologies can also be implemented in hospitals, clinics, point-of-care offices, assisted living facilities or even in patients’ homes for real-time, remote patient monitoring, creating more expeditious as well as resource-efficient systems. Several key optical technologies make such sensors possible, including e.g., optical fiber textiles, colorimetric, plasmonic, and fluorometric sensors, as well as Organic Light Emitting Diode (OLED) and Organic Photo-Diode (OPD) technologies. These emerging technologies and platforms show great promise as basic sensing elements in future wearable devices and will be reviewed in this chapter along-side currently existing fully integrated wearable optical sensors.

  10. Joint sensor placement and power rating selection in energy harvesting wireless sensor networks

    KAUST Repository

    Bushnaq, Osama M.; Al-Naffouri, Tareq Y.; Chepuri, Sundeep Prabhakar; Leus, Geert

    2017-01-01

    In this paper, the focus is on optimal sensor placement and power rating selection for parameter estimation in wireless sensor networks (WSNs). We take into account the amount of energy harvested by the sensing nodes, communication link quality

  11. Smart paint sensor for monitoring structural vibrations

    International Nuclear Information System (INIS)

    Al-Saffar, Y; Baz, A; Aldraihem, O

    2012-01-01

    A class of smart paint sensors is proposed for monitoring the structural vibration of beams. The sensor is manufactured from an epoxy resin which is mixed with carbon black nano-particles to make it electrically conducting and sensitive to mechanical vibrations. A comprehensive theoretical and experimental investigation is presented to understand the underlying phenomena governing the operation of this class of paint sensors and evaluate its performance characteristics. A theoretical model is presented to model the electromechanical behavior of the sensor system using molecular theory. The model is integrated with an amplifier circuit in order to predict the current and voltage developed by the paint sensor when subjected to loading. Furthermore, the sensor/amplifier circuit models are coupled with a finite element model of a base beam to which the sensor is bonded. The resulting multi-field model is utilized to predict the behavior of both the sensor and the beam when subjected to a wide variety of vibration excitations. The predictions of the multi-field finite element model are validated experimentally and the behavior of the sensor is evaluated both in the time and the frequency domains. The performance of the sensor is compared with the performance of conventional strain gages to emphasize its potential and merits. The presented techniques are currently being extended to sensors that can monitor the vibration and structural power flow of two-dimensional structures. (paper)

  12. Sensor Placement Optimization using Chama

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geotechnology and Engineering Dept.; Nicholson, Bethany L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Discrete Math and Optimization Dept.; Laird, Carl Damon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Discrete Math and Optimization Dept.

    2017-10-01

    Continuous or regularly scheduled monitoring has the potential to quickly identify changes in the environment. However, even with low - cost sensors, only a limited number of sensors can be deployed. The physical placement of these sensors, along with the sensor technology and operating conditions, can have a large impact on the performance of a monitoring strategy. Chama is an open source Python package which includes mixed - integer, stochastic programming formulations to determine sensor locations and technology that maximize monitoring effectiveness. The methods in Chama are general and can be applied to a wide range of applications. Chama is currently being used to design sensor networks to monitor airborne pollutants and to monitor water quality in water distribution systems. The following documentation includes installation instructions and examples, description of software features, and software license. The software is intended to be used by regulatory agencies, industry, and the research community. It is assumed that the reader is familiar with the Python Programming Language. References are included for addit ional background on software components. Online documentation, hosted at http://chama.readthedocs.io/, will be updated as new features are added. The online version includes API documentation .

  13. Optimization of the coplanar interdigital capacitive sensor

    Science.gov (United States)

    Huang, Yunzhi; Zhan, Zheng; Bowler, Nicola

    2017-02-01

    Interdigital capacitive sensors are applied in nondestructive testing and material property characterization of low-conductivity materials. The sensor performance is typically described based on the penetration depth of the electric field into the sample material, the sensor signal strength and its sensitivity. These factors all depend on the geometry and material properties of the sensor and sample. In this paper, a detailed analysis is provided, through finite element simulations, of the ways in which the sensor's geometrical parameters affect its performance. The geometrical parameters include the number of digits forming the interdigital electrodes and the ratio of digit width to their separation. In addition, the influence of the presence or absence of a metal backplane on the sample is analyzed. Further, the effects of sensor substrate thickness and material on signal strength are studied. The results of the analysis show that it is necessary to take into account a trade-off between the desired sensitivity and penetration depth when designing the sensor. Parametric equations are presented to assist the sensor designer or nondestructive evaluation specialist in optimizing the design of a capacitive sensor.

  14. Bio-Inspired Micromechanical Directional Acoustic Sensor

    Science.gov (United States)

    Swan, William; Alves, Fabio; Karunasiri, Gamani

    Conventional directional sound sensors employ an array of spatially separated microphones and the direction is determined using arrival times and amplitudes. In nature, insects such as the Ormia ochracea fly can determine the direction of sound using a hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are mechanically coupled, only separated by about 1 mm, and have remarkable directional sensitivity. A micromechanical sensor based on the fly's hearing system was designed and fabricated on a silicon on insulator (SOI) substrate using MEMS technology. The sensor consists of two 1 mm2 wings connected using a bridge and to the substrate using two torsional legs. The dimensions of the sensor and material stiffness determine the frequency response of the sensor. The vibration of the wings in response to incident sound at the bending resonance was measured using a laser vibrometer and found to be about 1 μm/Pa. The electronic response of the sensor to sound was measured using integrated comb finger capacitors and found to be about 25 V/Pa. The fabricated sensors showed good directional sensitivity. In this talk, the design, fabrication and characteristics of the directional sound sensor will be described. Supported by ONR and TDSI.

  15. Observability-Based Guidance and Sensor Placement

    Science.gov (United States)

    Hinson, Brian T.

    Control system performance is highly dependent on the quality of sensor information available. In a growing number of applications, however, the control task must be accomplished with limited sensing capabilities. This thesis addresses these types of problems from a control-theoretic point-of-view, leveraging system nonlinearities to improve sensing performance. Using measures of observability as an information quality metric, guidance trajectories and sensor distributions are designed to improve the quality of sensor information. An observability-based sensor placement algorithm is developed to compute optimal sensor configurations for a general nonlinear system. The algorithm utilizes a simulation of the nonlinear system as the source of input data, and convex optimization provides a scalable solution method. The sensor placement algorithm is applied to a study of gyroscopic sensing in insect wings. The sensor placement algorithm reveals information-rich areas on flexible insect wings, and a comparison to biological data suggests that insect wings are capable of acting as gyroscopic sensors. An observability-based guidance framework is developed for robotic navigation with limited inertial sensing. Guidance trajectories and algorithms are developed for range-only and bearing-only navigation that improve navigation accuracy. Simulations and experiments with an underwater vehicle demonstrate that the observability measure allows tuning of the navigation uncertainty.

  16. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... sampled gratings, was produced and investigated. It is based on the different temperature and strain response of these gratings. Both a transfer matrix method and an overlap calculation is performed to explain the sensor response. Another type of sensor is based on tuning and modulation of a laser...

  17. EDITORIAL: Nanotechnology impact on sensors Nanotechnology impact on sensors

    Science.gov (United States)

    Brugger, Jürgen

    2009-10-01

    A sensor is a device that responds to a stimulus by generating a functional output induced by a change in some intrinsic properties. We are surrounded by sensors and sensing networks that monitor a multitude of parameters in view of enhancing our safety and quality of life. Sensors assist us in health care and diagnostics, they monitor our environment, our aeroplanes and automobiles, our mobile phones, game consoles and watches, and last but not least, many of our human body functions. Modern sensing systems have greatly benefited in recent decades from advances in microelectronics and microengineering, mainly in view of making sensors smaller, cheaper, more sensitive, more selective, and with a better signal-to-noise ratio, following classical scaling rules. So how about nanotechnology-enabled sensing? Nanoscale features have a great impact on many (though not all) sensing systems, in particular where the surface-to-volume ratio plays a fundamental role, such as in certain chemical and gas sensors. The high surface-to-volume ratios of nanoporous and nanostructured materials have led to their implementation in sensing systems since sensing research first began to engage with the nanotechnology. The surface plasmon resonances of nanostructures have also enriched the scope for developing novel sensing devices. On the other hand, sensors where bulk properties dominate, such as inertial sensors, are less likely to benefit from extreme scaling. Advances in thin film techniques and chemical synthesis have allowed material properties to be tailored to sensing requirements for enhanced performance. These bottom-up fabrication techniques enable parallel fabrication of ordered nanostructures, often in domain-like areas with molecular precision. At the same time the progress in top-down methods such as scanning probe lithography, nanoimprint lithography, soft-lithography and stencil lithography have also facilitated research into sensing and actuating nanotechnology. Although

  18. Wireless radiation sensor

    Science.gov (United States)

    Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.; Kress, Reid L.

    2016-08-09

    Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  19. Ultrasonic sensor for sodium perspective device

    International Nuclear Information System (INIS)

    Ogawa, Fujio; Onuki, Koji.

    1995-01-01

    The present invention concerns an ultrasonic wave sensor for a sodium perspective device disposed in an FBR type reactor, which can change the directing angle of the ultrasonic sensor irrespective of the external conditions in liquid sodium. Namely, the sensor comprises (1) a sensor main body, (2) a diaphragm disposed on an oscillating surface of ultrasonic waves generated from the sensor main body, (3) a pressurizing and depressurizing nozzle connected to the sensor main body, and (4) a pressure detector disposed to these nozzles. A gas is charged/discharged to and from the sensor main body to control a gas pressure in the main body. If the gas pressure is made higher, the diaphragm is deformed convexly. If the gas pressure is lowered, the diaphragm is deformed concavely. The directing angle is greater when it is deformed a convexly, and it is smaller when it is deformed concavely. Accordingly, ultrasonic wave receiving/sending range in the sodium can be varied optionally by controlling the gas pressure in the main body. (I.S.)

  20. Ultrasensitive surveillance of sensors and processes

    International Nuclear Information System (INIS)

    Wegerich, S.W.; Jarman, K.K.; Gross, K.C.

    1999-01-01

    A method and apparatus for monitoring a source of data for determining an operating state of a working system are disclosed. The method includes determining a sensor (or source of data) arrangement associated with monitoring the source of data for a system, activating a method for performing a sequential probability ratio test if the data source includes a single data (sensor) source, activating a second method for performing a regression sequential possibility ratio testing procedure if the arrangement includes a pair of sensors (data sources) with signals which are linearly or non-linearly related; activating a third method for performing a bounded angle ratio test procedure if the sensor arrangement includes multiple sensors and utilizing at least one of the first, second and third methods to accumulate sensor signals and determining the operating state of the system

  1. Sensors and Microsystems : AISEM 2011 Proceedings

    CERN Document Server

    Natale, Corrado; Mosiello, Lucia; Zappa, Giovanna

    2012-01-01

    This book contains a selection of papers presented at the 16th AISEM (“Associazione Italiana Sensori e Microsistemi”) National Conference on Sensors and Microsystems, held in Rome 7-9 February 2011. The conference highlighted updated results from both theoretical and applied research in the field of sensors and microsystems. This book presents material in an interdisciplinary approach, covering many aspects of the disciplines related to sensors and microsystems, including physics, chemistry, materials science, biology and applications. Provides a selection of the best papers from the most recent AISEM conference; Covers a broad range of topics relating to sensors and microsystems, including physics, chemistry, materials science, biology and applications; Offers interdisciplinary coverage, aimed at defining a common ground for sensors beyond the specific differences among the different particular implementation of sensors.              

  2. Pressure-Sensor Assembly Technique

    Science.gov (United States)

    Pruzan, Daniel A.

    2003-01-01

    Nielsen Engineering & Research (NEAR) recently developed an ultrathin data acquisition system for use in turbomachinery testing at NASA Glenn Research Center. This system integrates a microelectromechanical- systems- (MEMS-) based absolute pressure sensor [0 to 50 psia (0 to 345 kPa)], temperature sensor, signal-conditioning application-specific integrated circuit (ASIC), microprocessor, and digital memory into a package which is roughly 2.8 in. (7.1 cm) long by 0.75 in. (1.9 cm) wide. Each of these components is flip-chip attached to a thin, flexible circuit board and subsequently ground and polished to achieve a total system thickness of 0.006 in. (0.15 mm). Because this instrument is so thin, it can be quickly adhered to any surface of interest where data can be collected without disrupting the flow being investigated. One issue in the development of the ultrathin data acquisition system was how to attach the MEMS pressure sensor to the circuit board in a manner which allowed the sensor s diaphragm to communicate with the ambient fluid while providing enough support for the chip to survive the grinding and polishing operations. The technique, developed by NEAR and Jabil Technology Services Group (San Jose, CA), is described below. In the approach developed, the sensor is attached to the specially designed circuit board, see Figure 1, using a modified flip-chip technique. The circular diaphragm on the left side of the sensor is used to actively measure the ambient pressure, while the diaphragm on the right is used to compensate for changes in output due to temperature variations. The circuit board is fabricated with an access hole through it so that when the completed system is installed onto a wind tunnel model (chip side down), the active diaphragm is exposed to the environment. After the sensor is flip-chip attached to the circuit board, the die is underfilled to support the chip during the subsequent grinding and polishing operations. To prevent this

  3. Sensors and sensor integration; Proceedings of the Meeting, Orlando, FL, Apr. 4, 1991

    Science.gov (United States)

    Dean, Peter D.

    Consideration is given to adaptive control of propellant slosh for launch vehicles, a lidar for expendable launch vehicles, a high-resolution airborne multisensor system, an optical velocity sensor for air data applications, and use of absorption spectroscopy for refined petroleum product discrimination. Attention is also given to edge effects in silicon photodiode arrays, sensing and environment perception for a mobile vehicle, distributed-effect optical fiber sensors for trusses and plates, and instrumentation concepts for multiplexed Bragg grating sensors. (For individual items see A93-21962 to A93-21972)

  4. Passive (self-powered) fiber-optic sensors

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Falter, D.D.; Todd, R.A.; Simpson, M.L.; Mihalczo, J.T.

    1992-01-01

    ORNL is developing new group of fiber-optic sensors for characterizing physical aspects such as ambient temperature. These sensors exploit the inherent property of thermographic materials that the lifetime and/or intensity of the emitted fluorescence decreases with increasing temperature. Unlike current fluorescent temperature sensors that use a light source for excitation, these sensors are totally passive (self-powered) and use either an embedded or external radiation source. A proof-of-principle temperature sensor was developed, based on this concept, using a well-known thermographic material, magnesium fluorogermanate. Experimental results showed that the radiation-induced fluorescence resulted in an intensity change but no significant decay rate change with increasing temperature

  5. Electro-optical rendezvous and docking sensors

    Science.gov (United States)

    Tubbs, David J.; Kesler, Lynn O.; Sirko, Robert J.

    1991-01-01

    Electro-optical sensors provide unique and critical functionality for space missions requiring rendezvous, docking, and berthing. McDonnell Douglas is developing a complete rendezvous and docking system for both manned and unmanned missions. This paper examines our sensor development and the systems and missions which benefit from rendezvous and docking sensors. Simulation results quantifying system performance improvements in key areas are given, with associated sensor performance requirements. A brief review of NASA-funded development activities and the current performance of electro-optical sensors for space applications is given. We will also describe current activities at McDonnell Douglas for a fully functional demonstration to address specific NASA mission needs.

  6. Chemical sensors are hybrid-input memristors

    Science.gov (United States)

    Sysoev, V. I.; Arkhipov, V. E.; Okotrub, A. V.; Pershin, Y. V.

    2018-04-01

    Memristors are two-terminal electronic devices whose resistance depends on the history of input signal (voltage or current). Here we demonstrate that the chemical gas sensors can be considered as memristors with a generalized (hybrid) input, namely, with the input consisting of the voltage, analyte concentrations and applied temperature. The concept of hybrid-input memristors is demonstrated experimentally using a single-walled carbon nanotubes chemical sensor. It is shown that with respect to the hybrid input, the sensor exhibits some features common with memristors such as the hysteretic input-output characteristics. This different perspective on chemical gas sensors may open new possibilities for smart sensor applications.

  7. A Novel Design of an Automatic Lighting Control System for a Wireless Sensor Network with Increased Sensor Lifetime and Reduced Sensor Numbers

    Science.gov (United States)

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114

  8. Evaluation of the sensor properties of the pH-static enzyme sensor

    NARCIS (Netherlands)

    van der Schoot, B.H.; van der Schoot, Bart H.; Bergveld, Piet

    1990-01-01

    The pH-static enzyme sensor consists of a chemical sensor-actuator system covered with a thin enzyme-entrapping membrane. By the electrochemical generation of protons or hydroxyl ions, pH changes induced by the conversion of a substrate by the enzymatic reaction are compensated. The pH inside the

  9. Microsoft Kinect Sensor Evaluation

    Science.gov (United States)

    Billie, Glennoah

    2011-01-01

    My summer project evaluates the Kinect game sensor input/output and its suitability to perform as part of a human interface for a spacecraft application. The primary objective is to evaluate, understand, and communicate the Kinect system's ability to sense and track fine (human) position and motion. The project will analyze the performance characteristics and capabilities of this game system hardware and its applicability for gross and fine motion tracking. The software development kit for the Kinect was also investigated and some experimentation has begun to understand its development environment. To better understand the software development of the Kinect game sensor, research in hacking communities has brought a better understanding of the potential for a wide range of personal computer (PC) application development. The project also entails the disassembly of the Kinect game sensor. This analysis would involve disassembling a sensor, photographing it, and identifying components and describing its operation.

  10. Development of Innovative and Inexpensive Optical Sensors in Wireless Ad-hoc Sensor Networks for Environmental Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Schima, Robert; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    Due to the heterogeneity and dynamic of ecosystems, the observation and monitoring of natural processes necessitate a high temporal and spatial resolution. This also requires inexpensive and adaptive measurements as well as innovative monitoring strategies. To this end, the application of ad-hoc wireless sensor networks holds the potential of creating an adequate monitoring platform. In order to achieve a comprehensive monitoring in space and time with affordability, it is necessary to reduce the sensor costs. Common investigation methods, especially with regard to vegetation processes, are based on optical measurements. In particular, different wavelengths correspond to specific properties of the plants and preserve the possibility to derive information about the ecosystem, e.g. photosynthetic performance or nutrient content. In this context, photosynthetically active radiation (PAR) sensors and hyperspectral sensors are in major use. This work aims the development, evaluation and application of inexpensive but high performance optical sensors for the implementation in wireless sensor networks. Photosynthetically active radiation designates the spectral range from 400 to 700 nanometers that photosynthetic organisms are able to use in the process of photosynthesis. PAR sensors enable the detection of the reflected solar light of the vegetation in the whole PAR wave band. The amount of absorption indicates photosynthetic activity of the plant, with good approximation. Hyperspectral sensors observe specific parts or rather distinct wavelengths of the solar light spectrum and facilitate the determination of the main pigment classes, e.g. Chlorophyll, Carotenoid and Anthocyanin. Due to the specific absorption of certain pigments, a characteristic spectral signature can be seen in the visible part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, also the presence and concentration of different nutrients cause a characteristic spectral

  11. Communication Buses and Protocols for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Andrew Mason

    2002-07-01

    Full Text Available This paper overviews existing digital communication buses which are commonly used in sensor networks, discusses sensor network architectures, and introduces a new sensor bus for low power microsystem applications. The new intra-module multi-element microsystem (IM2 bus is nine-line interface with 8b serial data which implements several advanced features such as power management and plug-n-play while maintaining minimum hardware overhead at the sensor node. Finally, some issues in wireless sensor networking are discussed. The coverage of these issues provides a guideline for choosing the appropriate bus for different sensor network applications.

  12. Fixed SMRF Sensor Network Application Concepts

    NARCIS (Netherlands)

    Wit, J.J.M. de; Rossum, W.L. van; Smits, F.M.A.; Theije, P.A.M. de; Monni, S.; Huizing, A.G.

    2010-01-01

    Advantages of scalable multifunction RF (SMRF) sensors and networked operation of sensors are well-known. Some advantages are surveillance persistence, multipath resistance, and interference resistance. The particular benefits of applying multifunction RF sensors in a network still need to be

  13. A Sentinel Sensor Network for Hydrogen Sensing

    Directory of Open Access Journals (Sweden)

    Andrew J. Mason

    2003-02-01

    Full Text Available A wireless sensor network is presented for in-situ monitoring of atmospheric hydrogen concentration. The hydrogen sensor network consists of multiple sensor nodes, equipped with titania nanotube hydrogen sensors, distributed throughout the area of interest; each node is both sensor, and data-relay station that enables extended wide area monitoring without a consequent increase of node power and thus node size. The hydrogen sensor is fabricated from a sheet of highly ordered titania nanotubes, made by anodization of a titanium thick film, to which platinum electrodes are connected. The electrical resistance of the hydrogen sensor varies from 245 Ω at 500 ppm hydrogen, to 10.23 kΩ at 0 ppm hydrogen (pure nitrogen environment. The measured resistance is converted to voltage, 0.049 V at 500 ppm to 2.046 V at 0 ppm, by interface circuitry. The microcontroller of the sensor node digitizes the voltage and transmits the digital information, using intermediate nodes as relays, to a host node that downloads measurement data to a computer for display. This paper describes the design and operation of the sensor network, the titania nanotube hydrogen sensors with an apparent low level resolution of approximately 0.05 ppm, and their integration in one widely useful device.

  14. Mechanoluminescent Contact Type Sensor

    Directory of Open Access Journals (Sweden)

    A. K. Yefremov

    2017-01-01

    Full Text Available Mechanoluminescent sensing elements convert mechanical stress into optical radiation. Advantages of such sensors are the ability to generate an optical signal, solid-state, simple structure, and resistance to electromagnetic interference. Mechanoluminescent sensor implementations can possess the concentrated and distributed sensitivity, thereby allowing us to detect the field of mechanical stresses distributed across the area and in volume. Most modern semiconductor photo-detectors can detect mechanoluminescent radiation, so there are no difficulties to provide its detection when designing the mechanoluminescent sensing devices. Mechanoluminescent substances have especial sensitivity to shock loads, and this effect can be used to create a fuse the structure of which includes a target contact type sensor with a photosensitive actuator. The paper briefly describes the theoretical basics of mechanoluminiscence: a light signal emerges from the interaction of crystalline phosphor luminescence centers with electrically charged dislocations, moving due to the deformation of the crystal. A mathematical model of the mechanoluminescent conversion is represented as a functional interaction between parameters of the mechanical shock excitation and the sensor light emission. Examples of computing the optical mechanoluminescent output signal depending on the duration and peak level of impulse load are given. It is shown that the luminous flux, generated by mechanoluminescent sensing element when there is an ammunition-target collision causes the current emerging in photo-detector (photodiode that is sufficient for a typical actuator of the fuse train to operate. The potential possibility to create a contact target type sensor based on the light-sensitive mechanoluminescent sensor was proved by the calculation and simulation results.

  15. Photoacoustic CO2-Sensor for Automotive Applications

    OpenAIRE

    Huber, J.; Weber, C.; Eberhardt, A.; Wöllenstein, J.

    2016-01-01

    We present a field-tested miniaturized spectroscopic CO2 sensor which is based on the photoacoustic effect. The sensor is developed for automotive applications and considers the requirements for the usage in vehicles. The sensor measures two measurement ranges simultaneously: The monitoring of the indoor air quality and the detection of possible leakages of the coolant in CO2 air-conditioning systems. The sensor consists of a miniaturized innovative photoacoustic sensor unit with integrated e...

  16. Resource Discovery in Activity-Based Sensor Networks

    DEFF Research Database (Denmark)

    Bucur, Doina; Bardram, Jakob

    This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networ....... ABSN enhances the generic Extended Zone Routing Protocol with logical sensor grouping and greatly lowers network overhead during the process of discovery, while keeping discovery latency close to optimal.......This paper proposes a service discovery protocol for sensor networks that is specifically tailored for use in humancentered pervasive environments. It uses the high-level concept of computational activities (as logical bundles of data and resources) to give sensors in Activity-Based Sensor Networks...... (ABSNs) knowledge about their usage even at the network layer. ABSN redesigns classical network-level service discovery protocols to include and use this logical structuring of the network for a more practically applicable service discovery scheme. Noting that in practical settings activity-based sensor...

  17. Projective Method for Generic Sensor Fusion Problem

    International Nuclear Information System (INIS)

    Rao, N.S.V.

    1999-01-01

    In a multiple sensor system, each sensor produces an output which is related to the desired feature according to a certain probability distribution. We propose a fuser that combines the sensor outputs to more accurately predict the desired feature. The fuser utilizes the lower envelope of regression curves of sensors to project the sensor with the least error at each point of the feature space. This fuser is optimal among all projective fusers and also satisfies the isolation property that ensures a performance at least as good as the best sensor. In the case the sensor distributions are not known, we show that a consistent estimator of this fuser can be computed entirely based on a training sample. Compared to linear fusers, the projective fusers provide a complementary performance. We propose two classes of metafusers that utilize both linear and projectives fusers to perform at least as good as the best sensor as well as the best fuser

  18. Characterization of Pixel Sensors

    CERN Document Server

    Oliveira, Felipe Ferraz

    2017-01-01

    It was commissioned at CERN ATLAS pixel group a fluorescence setup for characterization of pixel sensors. The idea is to measure the energies of different targets to calibrate your sensor. It was measured four matrices (80, 95, 98 and 106) of the Investigator1 sensor with different deep PW using copper, iron and titanium as target materials. The matrix 80 has a higher gain (0.065 ± 0.002) and matrix 106 has a better energy resolution (0.05 ± 0.04). The noise of the setup is around 3.6 mV .

  19. Slot-waveguide biochemical sensor.

    Science.gov (United States)

    Barrios, Carlos A; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Sohlström, H; Holgado, M; Casquel, R

    2007-11-01

    We report an experimental demonstration of an integrated biochemical sensor based on a slot-waveguide microring resonator. The microresonator is fabricated on a Si3N4-SiO2 platform and operates at a wavelength of 1.3 microm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.33 to 1.42. A linear shift of the resonant wavelength with increasing ambient refractive index of 212 nm/refractive index units (RIU) is observed. The sensor detects a minimal refractive index variation of 2x10(-4) RIU.

  20. Autonomous Mission Operations for Sensor Webs

    Science.gov (United States)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC

  1. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  2. Sensor Characteristics Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

    2013-04-01

    The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

  3. Adaptive sensor fusion using genetic algorithms

    International Nuclear Information System (INIS)

    Fitzgerald, D.S.; Adams, D.G.

    1994-01-01

    Past attempts at sensor fusion have used some form of Boolean logic to combine the sensor information. As an alteniative, an adaptive ''fuzzy'' sensor fusion technique is described in this paper. This technique exploits the robust capabilities of fuzzy logic in the decision process as well as the optimization features of the genetic algorithm. This paper presents a brief background on fuzzy logic and genetic algorithms and how they are used in an online implementation of adaptive sensor fusion

  4. The art of wireless sensor networks

    CERN Document Server

    2014-01-01

    During the last one and a half decades, wireless sensor networks have witnessed significant growth and tremendous development in both academia and industry.   “The Art of Wireless Sensor Networks: Volume 1: Fundamentals” focuses on the fundamentals concepts in the design, analysis, and implementation of wireless sensor networks. It covers the various layers of the lifecycle of this type of network from the physical layer up to the application layer. Its rationale is that the first volume covers contemporary design issues, tools, and protocols for radio-based two-dimensional terrestrial sensor networks. All the book chapters in this volume include up-to-date research work spanning various classic facets of the physical properties and functional behavior of wireless sensor networks, including physical layer, medium access control, data routing, topology management, mobility management, localization, task management, data management, data gathering, security, middleware, sensor technology, standards, and ...

  5. Zirconia-based solid state chemical gas sensors

    CERN Document Server

    Zhuiykov, S

    2000-01-01

    This paper presents an overview of chemical gas sensors, based on solid state technology, that are sensitive to environmental gases, such as O sub 2 , SO sub x , NO sub x , CO sub 2 and hydrocarbons. The paper is focussed on performance of electrochemical gas sensors that are based on zirconia as a solid electrolyte. The paper considers sensor structures and selection of electrode materials. Impact of interfaces on sensor performance is discussed. This paper also provides a brief overview of electrochemical properties of zirconia and their effect on sensor performance. Impact of auxiliary materials on sensors performance characteristics, such as sensitivity, selectivity, response time and recovery time, is also discussed. Dual gas sensors that can be applied for simultaneous monitoring of the concentration of both oxygen and other gas phase components, are briefly considered

  6. Design of a dynamic compensated temperature sensor

    International Nuclear Information System (INIS)

    Yan, Wu; Katz, E.M.; Kerlin, T.W.

    1991-01-01

    One important function of a temperature sensor in a nuclear power plant is to track changing process temperatures, but the sensor output lags the changing temperature. This lag may have a large influence when the sensor is used in control or safety systems. Therefore, it is advantageous to develop methods that increase the sensor response speed. The goal of this project is to develop a fast-responding temperature sensor, the dynamic compensated temperature sensor (DCTS), based on signal dynamic compensation technology. To verify the theoretical basis of the DCTS and incorporate the DCTS into a real temperature measurement process, several experiments have been performed. The DCTS is a simple approach that can decrease the temperature sensor's response time, and it can provide faster temperature signals to the nuclear power plant safety system

  7. Irradiance sensors for solar systems

    Energy Technology Data Exchange (ETDEWEB)

    Storch, A.; Schindl, J. [Oesterreichisches Forschungs- und Pruefzentrum Arsenal GesmbH, Vienna (Austria). Business Unit Renewable Energy

    2004-07-01

    The presented project surveyed the quality of irradiance sensors used for applications in solar systems. By analysing an outdoor measurement, the accuracies of ten commercially available irradiance sensors were evaluated, comparing their results to those of a calibrated Kipp and Zonen pyranometer CM21. Furthermore, as a simple method for improving the quality of the results, for each sensor an irradiance-calibration was carried out and examined for its effectiveness. (orig.)

  8. Wireless Sensor Network Security Analysis

    OpenAIRE

    Hemanta Kumar Kalita; Avijit Kar

    2009-01-01

    The emergence of sensor networks as one of the dominant technology trends in the coming decades hasposed numerous unique challenges to researchers. These networks are likely to be composed of hundreds,and potentially thousands of tiny sensor nodes, functioning autonomously, and in many cases, withoutaccess to renewable energy resources. Cost constraints and the need for ubiquitous, invisibledeployments will result in small sized, resource-constrained sensor nodes. While the set of challenges ...

  9. Observations of sensor bias dependent cluster centroid shifts in a prototype sensor for the LHCb Vertex Locator detector

    CERN Document Server

    Papadelis, Aras

    2006-01-01

    We present results from a recent beam test of a prototype sensor for the LHCb Vertex Locator detector, read out with the Beetle 1.3 front-end chip. We have studied the effect of the sensor bias voltage on the reconstructed cluster positions in a sensor placed in a 120GeV pion beam at a 10° incidence angle. We find an unexplained sysematic shift in the reconstructed cluster centroid when increasing the bias voltage on an already overdepleted sensor. The shift is independent of strip pitch and sensor thickness.

  10. Optical sensors for earth observation. Chikyu kansokuyo kogaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ono, A [National Research Laboratory of Metrology, Tsukuba (Japan)

    1991-10-10

    Developments are made on an optical imager (ASTER) used to collect mainly images of land areas and an infrared sounder (IMG) to measure vertical air temperature distribution and vertical concentration distribution of specific gases, as satellite mounted sensors for earth observation. All the sensor characteristics of the ASTER comprising a visible near infrared radiometer, short wave infrared radiometer and thermal infrared radiometer are required to be capable of providing measurement, evaluation and assurance at the required accuracies during the entire life time. A problem to be solved is how to combine the on-ground calibration prior to launching, on-satellite calibration, and calibration between the test site and the sensors. The IMG is a Fourier transform spectroscopic infrared sounder, which is demanded of a high wave resolution over extended periods of time as well as a high radiation measuring capability. Also required are the level elevation of analysis algorithms to solve inverse problems from the observed radiation spectra, and the data base with high accuracy. 19 refs., 4 figs., 4 tabs.

  11. On-irrigator pasture soil moisture sensor

    International Nuclear Information System (INIS)

    Tan, Adrian Eng-Choon; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-01-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements. (paper)

  12. Laser self-mixing interference fibre sensor

    International Nuclear Information System (INIS)

    Zhu Jun; Zhao Yan; Jin Guofan

    2008-01-01

    Fibre sensors exhibit a number of advantages over other sensors such as high sensitivity, electric insulation, corrosion resistance, interference rejection and so on. And laser self-mixing interference can accurately detect the phase difference of feedback light. In this paper, a novel laser self-mixing interference fibre sensor that combines the advantages of fibre sensors with those of laser self-mixing interference is presented. Experimental configurations are set up to study the relationship between laser power output and phase of laser feedback light when the fibre trembles or when the fibre is stretched or pressed. The theoretical analysis of pressure sensors based on laser self-mixing interference is indicated to accord with the experimental results. (classical areas of phenomenology)

  13. Geometrical modification of magnetoelastic sensors to enhance sensitivity

    International Nuclear Information System (INIS)

    Pacella, Nina; DeRouin, Andrew; Pereles, Brandon; Ghee Ong, Keat

    2015-01-01

    The magnetoelastic sensor is a wireless, passive sensor platform typically comprised of a strip of magnetoelastic material that exhibits a mechanical vibration when under the excitation of a magnetic ac field. At the resonant frequency, the vibration of the sensor is most prominent, generating a significant secondary magnetic field that can be detected with a remotely located coil. Biological and chemical sensing can be realized by functionalizing a mass- or elasticity-changing coating on the magnetoelastic sensor, causing a shift in the resonant frequency when exposed to the target analyte. To date, most magnetoelastic sensors are rectangular and are designed to sense a uniform coating over the entire sensor surface. This paper presents a new magnetoelastic sensor design with higher sensitivity, achieved by applying non-uniform coatings and altering the sensor to a triangular shape. In addition, the new design allows the magnetoelastic sensor to form a sensor array that requires only a fraction of sample volume for multi-parameter sensing compared to the current sensor design. (paper)

  14. A MEMS SOI-based piezoresistive fluid flow sensor

    Science.gov (United States)

    Tian, B.; Li, H. F.; Yang, H.; Song, D. L.; Bai, X. W.; Zhao, Y. L.

    2018-02-01

    In this paper, a SOI (silicon-on-insulator)-based piezoresistive fluid flow sensor is presented; the presented flow sensor mainly consists of a nylon sensing head, stainless steel cantilever beam, SOI sensor chip, printed circuit board, half-cylinder gasket, and stainless steel shell. The working principle of the sensor and some detailed contrastive analysis about the sensor structure were introduced since the nylon sensing head and stainless steel cantilever beam have distinct influence on the sensor performance; the structure of nylon sensing head and stainless steel cantilever beam is also discussed. The SOI sensor chip was fabricated using micro-electromechanical systems technologies, such as reactive ion etching and low pressure chemical vapor deposition. The designed fluid sensor was packaged and tested; a calibration installation system was purposely designed for the sensor experiment. The testing results indicated that the output voltage of the sensor is proportional to the square of the fluid flow velocity, which is coincident with the theoretical derivation. The tested sensitivity of the sensor is 3.91 × 10-4 V ms2/kg.

  15. Sensors: From biosensors to the electronic nose

    Directory of Open Access Journals (Sweden)

    Aparicio, Ramón

    2002-03-01

    Full Text Available The recent advances in sensor devices have allowed the developing of new applications in many technological fields. This review describes the current state-of-the-art of this sensor technology, placing special emphasis on the food applications. The design, technology and sensing mechanism of each type of sensor are analysed. A description of the main characteristics of the electronic nose and electronic tongue (taste sensors is also given. Finally, the applications of some statistical procedures in sensor systems are described briefly.Los recientes avances en los sistemas de sensores han permitido el desarrollo de nuevas aplicaciones en muchos campos tecnológicos. Este artículo de revisión describe el estado actual de esta nueva tecnología, con especial énfasis en las aplicaciones alimentarias. El diseño, la tecnología y el mecanismo sensorial de cada tipo de sensor son analizados en el artículo. También se describen las principales características de la nariz y la lengua electrónica (sensores de sabor. Finalmente, se describe brevemente el uso de algunos procedimientos estadísticos en sistemas de sensores.

  16. Sensitivity Enhancement of FBG-Based Strain Sensor.

    Science.gov (United States)

    Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian

    2018-05-17

    A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.

  17. Distributed estimation of sensors position in underwater wireless sensor network

    Science.gov (United States)

    Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi

    2016-05-01

    In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.

  18. Illumination adaptation with rapid-response color sensors

    Science.gov (United States)

    Zhang, Xinchi; Wang, Quan; Boyer, Kim L.

    2014-09-01

    Smart lighting solutions based on imaging sensors such as webcams or time-of-flight sensors suffer from rising privacy concerns. In this work, we use low-cost non-imaging color sensors to measure local luminous flux of different colors in an indoor space. These sensors have much higher data acquisition rate and are much cheaper than many o_-the-shelf commercial products. We have developed several applications with these sensors, including illumination feedback control and occupancy-driven lighting.

  19. Model-based Sensor Data Acquisition and Management

    OpenAIRE

    Aggarwal, Charu C.; Sathe, Saket; Papaioannou, Thanasis G.; Jeung, Ho Young; Aberer, Karl

    2012-01-01

    In recent years, due to the proliferation of sensor networks, there has been a genuine need of researching techniques for sensor data acquisition and management. To this end, a large number of techniques have emerged that advocate model-based sensor data acquisition and management. These techniques use mathematical models for performing various, day-to-day tasks involved in managing sensor data. In this chapter, we survey the state-of-the-art techniques for model-based sensor data acquisition...

  20. Model-Based Method for Sensor Validation

    Science.gov (United States)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  1. Introduction to wireless sensor networks

    CERN Document Server

    Forster, Anna

    2016-01-01

    Explores real-world wireless sensor network development, deployment, and applications. The book begins with an introduction to wireless sensor networks and their fundamental concepts. Hardware components, operating systems, protocols, and algorithms that make up the anatomy of a sensor node are described in chapter two. Properties of wireless communications, medium access protocols, wireless links, and link estimation protocols are described in chapter three and chapter four. Routing basics and metrics, clustering techniques, time synchronization and localization protocols, as well as sensing techniques are introduced in chapter five to nine. The concluding chapter summarizes the learnt methods and shows how to use them to deploy real-world sensor networks in a structured way.

  2. Planar Hall effect sensor with magnetostatic compensation layer

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Donolato, Marco; Hansen, Mikkel Fougt

    2012-01-01

    Demagnetization effects in cross-shaped planar Hall effect sensors cause inhomogeneous film magnetization and a hysteretic sensor response. Furthermore, when using sensors for detection of magnetic beads, the magnetostatic field from the sensor edges attracts and holds magnetic beads near...... the sensor edges causing inhomogeneous and non-specific binding of the beads. We show theoretically that adding a compensation magnetic stack beneath the sensor stack and exchange-biasing it antiparallel to the sensor stack, the magnetostatic field is minimized. We show experimentally that the compensation...... stack removes nonlinear effects from the sensor response, it strongly reduces hysteresis, and it increases the homogeneity of the bead distribution. Finally, it reduces the non-specific binding due to magnetostatic fields allowing us to completely remove beads from the compensated sensor using a water...

  3. Medical Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Andersen, Jacob

    researchers have been developing power-efficient security mechanisms for sensor networks. However, most of this work ignores the special usability demands from the clinical use-scenarios: set-up must be fast, and key pre-distribution is problematic if disposable sensors are discarded after being used for only...

  4. Aggregating Linked Sensor Data

    NARCIS (Netherlands)

    Stasch, Christoph; Schade, Sven; Llaves, Alejandro; Janowicz, K.; Bröring, Arne; Taylor, Kerry; Ayyagari, Arun; De Roure, David

    2011-01-01

    Sensor observations are usually oered in relation to a specific purpose, e.g., for reporting fine dust emissions, following strict procedures, and spatio-temporal scales. Consequently, the huge amount of data gathered by today's public and private sensor networks is most often not reused outside of

  5. Application of inertial sensors for motion analysis

    Directory of Open Access Journals (Sweden)

    Ferenc Soha

    2012-06-01

    Full Text Available This paper presents our results on the application of various inertial sensors for motion analysis. After the introduction of different sensor types (accelerometer, gyroscope, magnetic field sensor, we discuss the possible data collection and transfer techniques using embedded signal processing and wireless data communication methods [1,2]. Special consideration is given to the interpretation of accelerometer readings, which contains both the static and dynamic components, and is affected by the orientation and rotation of the sensor. We will demonstrate the possibility to decompose these components for quasiperiodic motions. Finally we will demonstrate the application of commercially available devices (Wii sensor, Kinect sensor, mobile phone for motion analysis applications.

  6. The influence of hard-baking temperature applied for SU8 sensor layer on the sensitivity of capacitive chemical sensor

    Science.gov (United States)

    Klanjšek Gunde, Marta; Hauptman, Nina; Maček, Marijan; Kunaver, Matjaž

    2009-06-01

    SU8, the near-UV photosensitive epoxy-based polymer was used as a sensor layer in the capacitive chemical sensor, ready for integration with a generic double-metal CMOS technology. It was observed that the response of the sensor slowly increases with the temperature applied in hard-baking process as long as it remains below 300°C. At this temperature the response of the sensor abruptly increases and becomes almost threefold. It was shown that fully crosslinked structure of the sensor layer becomes opened and disordered when the sensor is hard-baked at temperatures between 300°C and 320°C, that is, still well below the degradation temperature of the polymer. These changes in chemical structure were analyzed by Fourier-transform infrared spectroscopy. The temperature-dependent changes of the sensor layer structure enable one to prepare a combination of capacitive chemical sensors with good discrimination between some volatile organic compounds.

  7. Relative Vessel Motion Tracking using Sensor Fusion, Aruco Markers, and MRU Sensors

    Directory of Open Access Journals (Sweden)

    Sondre Sanden Tordal

    2017-04-01

    Full Text Available This paper presents a novel approach for estimating the relative motion between two moving offshore vessels. The method is based on a sensor fusion algorithm including a vision system and two motion reference units (MRUs. The vision system makes use of the open-source computer vision library OpenCV and a cube with Aruco markers placed onto each of the cube sides. The Extended Quaternion Kalman Filter (EQKF is used for bad pose rejection for the vision system. The presented sensor fusion algorithm is based on the Indirect Feedforward Kalman Filter for error estimation. The system is self-calibrating in the sense that the Aruco cube can be placed in an arbitrary location on the secondary vessel. Experimental 6-DOF results demonstrate the accuracy and efficiency of the proposed sensor fusion method compared with the internal joint sensors of two Stewart platforms and the industrial robot. The standard deviation error was found to be 31mm or better when the Arcuo cube was placed at three different locations.

  8. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    Science.gov (United States)

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  9. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jeongyeup Paek

    2014-08-01

    Full Text Available This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet’s built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  10. Uncooled tunneling infrared sensor

    Science.gov (United States)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  11. Virtual Sensor Web Architecture

    Science.gov (United States)

    Bose, P.; Zimdars, A.; Hurlburt, N.; Doug, S.

    2006-12-01

    NASA envisions the development of smart sensor webs, intelligent and integrated observation network that harness distributed sensing assets, their associated continuous and complex data sets, and predictive observation processing mechanisms for timely, collaborative hazard mitigation and enhanced science productivity and reliability. This paper presents Virtual Sensor Web Infrastructure for Collaborative Science (VSICS) Architecture for sustained coordination of (numerical and distributed) model-based processing, closed-loop resource allocation, and observation planning. VSICS's key ideas include i) rich descriptions of sensors as services based on semantic markup languages like OWL and SensorML; ii) service-oriented workflow composition and repair for simple and ensemble models; event-driven workflow execution based on event-based and distributed workflow management mechanisms; and iii) development of autonomous model interaction management capabilities providing closed-loop control of collection resources driven by competing targeted observation needs. We present results from initial work on collaborative science processing involving distributed services (COSEC framework) that is being extended to create VSICS.

  12. Darwin model in plasma physics revisited

    International Nuclear Information System (INIS)

    Xie, Huasheng; Zhu, Jia; Ma, Zhiwei

    2014-01-01

    Dispersion relations from the Darwin (a.k.a., magnetoinductive or magnetostatic) model are given and compared with those of the full electromagnetic model. Analytical and numerical solutions show that the errors from the Darwin approximation can be large even if phase velocity for a low-frequency wave is close to or larger than the speed of light. Besides missing two wave branches associated mainly with the electron dynamics, the coupling branch of the electrons and ions in the Darwin model is modified to become a new artificial branch that incorrectly represents the coupling dynamics of the electrons and ions. (paper)

  13. Membrane gas sensors for fermentation monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mandenius, C F

    1987-12-01

    Results of a study on membrane gas sensors are presented to show their general applicability to fermentation monitoring of volatiles, such as alcohols, organic acids and aldehydes under various process and reactor conditions. Permeable silicone (Noax AB) and teflon (fluorcarbon AB) are tested as material for a gas sensor. The silicone tubing method is mainly used and ethanolic fermentation is performed in the study. Investigation is made to determine the dependence of the sensitivity of the sensors on the temperature, pH, concentration and other properties of fermentation liquid. The effect of temperature on the ethanol response is investigated in the temperature range of 7-50/sup 0/C to reveal that the response time decreases while the sensor's sensitivity increases with an increasing temperature. Comparison among methanol, ethyl acetate, acetaldehyde and ethanol is made with respect to the effect of their concentration on the sensitivity of a sensor. Results of a three-month measurement with the sensor immersed in fermentation liquid are compared with those of GC analysis to investigate the correlation between the sensor's sensitivity and GC analysis data. (11 figs, 17 refs)

  14. Wearable sensors for human health monitoring

    Science.gov (United States)

    Asada, H. Harry; Reisner, Andrew

    2006-03-01

    Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.

  15. Review on water quality sensors

    Science.gov (United States)

    Kruse, Peter

    2018-05-01

    Terrestrial life may be carbon-based, but most of its mass is made up of water. Access to clean water is essential to all aspects of maintaining life. Mainly due to human activity, the strain on the water resources of our planet has increased substantially, requiring action in water management and purification. Water quality sensors are needed in order to quantify the problem and verify the success of remedial actions. This review summarizes the most common chemical water quality parameters, and current developments in sensor technology available to monitor them. Particular emphasis is on technologies that lend themselves to reagent-free, low-maintenance, autonomous and continuous monitoring. Chemiresistors and other electrical sensors are discussed in particular detail, while mechanical, optical and electrochemical sensors also find mentioning. The focus here is on the physics of chemical signal transduction in sensor elements that are in direct contact with the analyte. All other sensing methods, and all other elements of sampling, sample pre-treatment as well as the collection, transmission and analysis of the data are not discussed here. Instead, the goal is to highlight the progress and remaining challenges in the development of sensor materials and designs for an audience of physicists and materials scientists.

  16. Polymer temperature sensor for textronic applications

    International Nuclear Information System (INIS)

    Bielska, Sylwia; Sibinski, Maciej; Lukasik, Andrzej

    2009-01-01

    The aim of this paper is to present research work of designing prototype textile sensors dedicated to human body temperature measurements. The sensor construction was especially elaborated to be integrated into protective clothing as a practical realization of intelligent e-textile concept. These types of sensors should be easily incorporable in clothing structures without disturbance of fabric flexibility (Carpi and De Rossi). The construction of the new type functional sensor testing is presented and illustrated by its parameters and thermal characteristics.

  17. Relaxor-PT Single Crystal Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2014-07-01

    Full Text Available Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and future trends of relaxor-PT sensors are also suggested in this review paper.

  18. Wireless sensor network

    Science.gov (United States)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  19. Sensors - technology and application. Sensoren - Technologie und Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The development of sensors could not keep pace with the progress made in microelectronics. The monolithic integration of sensor and signal processing circuits was realised in some cases. More development is needed though before they can be applied in microelectronics, household appliances and automobiles. Descriptions are supplied of: new materials and technologies for sensors, sensor systems, sensors for mechanical parameters, temperatures, chemical paramters and sensors on magnetic basis.

  20. SensorDB: a virtual laboratory for the integration, visualization and analysis of varied biological sensor data.

    Science.gov (United States)

    Salehi, Ali; Jimenez-Berni, Jose; Deery, David M; Palmer, Doug; Holland, Edward; Rozas-Larraondo, Pablo; Chapman, Scott C; Georgakopoulos, Dimitrios; Furbank, Robert T

    2015-01-01

    To our knowledge, there is no software or database solution that supports large volumes of biological time series sensor data efficiently and enables data visualization and analysis in real time. Existing solutions for managing data typically use unstructured file systems or relational databases. These systems are not designed to provide instantaneous response to user queries. Furthermore, they do not support rapid data analysis and visualization to enable interactive experiments. In large scale experiments, this behaviour slows research discovery, discourages the widespread sharing and reuse of data that could otherwise inform critical decisions in a timely manner and encourage effective collaboration between groups. In this paper we present SensorDB, a web based virtual laboratory that can manage large volumes of biological time series sensor data while supporting rapid data queries and real-time user interaction. SensorDB is sensor agnostic and uses web-based, state-of-the-art cloud and storage technologies to efficiently gather, analyse and visualize data. Collaboration and data sharing between different agencies and groups is thereby facilitated. SensorDB is available online at http://sensordb.csiro.au.

  1. A comparative study of misalignment detection using a novel Wireless Sensor with conventional Wired Sensors

    International Nuclear Information System (INIS)

    Arebi, L; Gu, F; Ball, A

    2012-01-01

    The advancement in low cost and low power MEMS sensors makes it possible to develop a cost-effective wireless accelerometer for condition monitoring. Especially, the MEMS accelerometer can be mounted directly on a rotating shaft, which has the potential to capture the dynamics of the shaft more accurately and hence to achieve high monitoring performance. In this paper a systematic comparison of shaft misalignment detection is conducted, based on a bearing test rig, between the wireless sensor measurement scheme and other three common sensors: a laser vibrometer, an accelerometer and a shaft encoder. These four sensors are used to measure simultaneously the dynamic responses: Instantaneous Angular Speed (IAS) from the encoder, bearing house acceleration from the accelerometer, shaft displacements from the laser vibrometer and angular acceleration from the wireless sensor. These responses are then compared in both the time and frequency domains in detecting and diagnosing different levels of shaft misalignment. Results show the effectiveness of wireless accelerometer in detecting the faults.

  2. Non-contact optical Liquid Level Sensors

    Science.gov (United States)

    Kiseleva, L. L.; Tevelev, L. V.; Shaimukhametov, R. R.

    2016-06-01

    Information about characteristics of the optical liquid level sensor are present. Sensors are used to control of the light level limit fluid - water, kerosene, alcohol, solutions, etc. Intrinsically safe, reliable and easy to use. The operating principle of the level sensor is an optoelectronic infrared device.

  3. Medical preparation container comprising microwave powered sensor assembly

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave ...... oven. The microwave powered sensor assembly is configured for harvesting energy from microwave radiation emitted by the microwave oven and energize the sensor by the harvested microwave energy.......The present invention relates to a medical preparation container which comprises a microwave powered sensor assembly. The microwave powered sensor assembly comprises a sensor configured to measure a physical property or chemical property of a medical preparation during its heating in a microwave...

  4. Electrochemical sensors based on polyconjugated conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G. (Ist. di Polarografia ed Elettrochimica Preparativa, Consiglio Nazionale delle Ricerche, Padua (Italy))

    1992-09-01

    An overview of the applications of polyconjugated conducting polymers to electrochemical sensors is given. Gas sensors, ion sensors, and biosensors (non-enzyme and enzyme sensors) are presented and discussed. The role of the polymer as enzyme host and mediator of charge transfer is particularly emphasized in the light of recent results. (orig.).

  5. Tape-cast sensors and method of making

    Science.gov (United States)

    Mukundan, Rangachary [Santa Fe, NM; Brosha, Eric L [Los Alamos, NM; Garzon, Fernando H [Santa Fe, NM

    2009-08-18

    A method of making electrochemical sensors in which an electrolyte material is cast into a tape. Prefabricated electrodes are then partially embedded between two wet layers of the electrolyte tape to form a green sensor, and the green sensor is then heated to sinter the electrolyte tape around the electrodes. The resulting sensors can be used in applications such as, but not limited to, combustion control, environmental monitoring, and explosive detection. A electrochemical sensor formed by the tape-casting method is also disclosed.

  6. Sensor data fusion to predict multiple soil properties

    NARCIS (Netherlands)

    Mahmood, H.S.; Hoogmoed, W.B.; Henten, van E.J.

    2012-01-01

    The accuracy of a single sensor is often low because all proximal soil sensors respond to more than one soil property of interest. Sensor data fusion can potentially overcome this inability of a single sensor and can best extract useful and complementary information from multiple sensors or sources.

  7. Handheld Broadband Electromagnetic UXO Sensor

    National Research Council Canada - National Science Library

    Won, I. J; San Filipo, William A; Marqusee, Jeffrey; Andrews, Anne; Robitaille, George; Fairbanks, Jeffrey; Overbay, Larry

    2005-01-01

    The broadband electromagnetic sensor improvement and demonstration undertaken in this project took the prototype GEM-3 and evolved it into an operational sensor with increased bandwidth and dynamic...

  8. Neural network-based sensor signal accelerator.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    2000-10-16

    A strategy has been developed to computationally accelerate the response time of a generic electronic sensor. The strategy can be deployed as an algorithm in a control system or as a physical interface (on an embedded microcontroller) between a slower responding external sensor and a higher-speed control system. Optional code implementations are available to adjust algorithm performance when computational capability is limited. In one option, the actual sensor signal can be sampled at the slower rate with adaptive linear neural networks predicting the sensor's future output and interpolating intermediate synthetic output values. In another option, a synchronized collection of predictors sequentially controls the corresponding synthetic output voltage. Error is adaptively corrected in both options. The core strategy has been demonstrated with automotive oxygen sensor data. A prototype interface device is under construction. The response speed increase afforded by this strategy could greatly offset the cost of developing a replacement sensor with a faster physical response time.

  9. Miniaturized multi-sensor for aquatic studies

    DEFF Research Database (Denmark)

    Birkelund, Karen; Hyldgård, Anders; Mortensen, Dennis

    2011-01-01

    that allows for direct exposure to the seawater and thereby more accurate measurements. The chip contains a piezo-resistive pressure sensor, a pn-junction photodiode sensitive to visible light, a four-terminal platinum resistor for temperature measurement and four conductivity electrodes for the determination...... of the salinity of saltwater. Pressure, light intensity, temperature and salinity are all essential parameters when mapping the migration route of fish. The pressure sensor has a sensitivity of S = 1.44 × 10−7 Pa−1 and is optimized to 20 bar pressure; the light sensor has a quantum efficiency between 52% and 74......We have developed and fabricated a multi-sensor chip for fisheries’ research and demonstrated the functionality under controlled conditions. The outer dimensions of the sensor chip are 3.0 × 7.4 × 0.8 mm3 and both sides of the chip are utilized for sensors. Hereby a more compact chip is achieved...

  10. Chemical sensors based on surface charge transfer

    Science.gov (United States)

    Mohtasebi, Amirmasoud; Kruse, Peter

    2018-02-01

    The focus of this review is an introduction to chemiresistive chemical sensors. The general concept of chemical sensors is briefly introduced, followed by different architectures of chemiresistive sensors and relevant materials. For several of the most common systems, the fabrication of the active materials used in such sensors and their properties are discussed. Furthermore, the sensing mechanism, advantages, and limitations of each group of chemiresistive sensors are briefly elaborated. Compared to electrochemical sensors, chemiresistive sensors have the key advantage of a simpler geometry, eliminating the need for a reference electrode. The performance of bulk chemiresistors can be improved upon by using freestanding ultra-thin films (nanomaterials) or field effect geometries. Both of those concepts have also been combined in a gateless geometry, where charge transport though a percolation network of nanomaterials is modulated via adsorbate doping.

  11. Wireless Sensor Network Safety Study

    OpenAIRE

    M.Shankar; Dr.M.Sridar; Dr.M.Rajani

    2012-01-01

    Few security mechanisms in wireless sensor networks (WSNs) have been implemented, and even fewer have been applied in real deployments. The limited resources of each sensor node makes security in WSNs hard, as the tradeoff between security and practicality must be carefully considered. These complex systems include in their design different types of information and communication technology systems, such as wireless (mesh) sensor networks, to carry out control processes in real time. This fact...

  12. ALC Rooftop Sensor System

    Science.gov (United States)

    2017-10-31

    Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an... Interior view of the new sensor box ...................................................... 3 Fig. 4 Interior of original sensor box...7 Fig. 10 Interior of fiber patch panel .................................................................. 7 Fig. 11

  13. Wearable sensor glove based on conducting fabric using electrodermal activity and pulse-wave sensors for e-health application.

    Science.gov (United States)

    Lee, Youngbum; Lee, Byungwoo; Lee, Myoungho

    2010-03-01

    Improvement of the quality and efficiency of health in medicine, both at home and the hospital, calls for improved sensors that might be included in a common carrier such as a wearable sensor device to measure various biosignals and provide healthcare services that use e-health technology. Designed to be user-friendly, smart clothes and gloves respond well to the end users for health monitoring. This study describes a wearable sensor glove that is equipped with an electrodermal activity (EDA) sensor, pulse-wave sensor, conducting fabric, and an embedded system. The EDA sensor utilizes the relationship between drowsiness and the EDA signal. The EDA sensors were made using a conducting fabric instead of silver chloride electrodes, as a more practical and practically wearable device. The pulse-wave sensor measurement system, which is widely applied in oriental medicinal practices, is also a strong element in e-health monitoring systems. The EDA and pulse-wave signal acquisition module was constructed by connecting the sensor to the glove via a conductive fabric. The signal acquisition module is then connected to a personal computer that displays the results of the EDA and pulse-wave signal processing analysis and gives accurate feedback to the user. This system is designed for a number of applications for the e-health services, including drowsiness detection and oriental medicine.

  14. Heimdall System for MSSS Sensor Tasking

    Science.gov (United States)

    Herz, A.; Jones, B.; Herz, E.; George, D.; Axelrad, P.; Gehly, S.

    In Norse Mythology, Heimdall uses his foreknowledge and keen eyesight to keep watch for disaster from his home near the Rainbow Bridge. Orbit Logic and the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado (CU) have developed the Heimdall System to schedule observations of known and uncharacterized objects and search for new objects from the Maui Space Surveillance Site. Heimdall addresses the current need for automated and optimized SSA sensor tasking driven by factors associated with improved space object catalog maintenance. Orbit Logic and CU developed an initial baseline prototype SSA sensor tasking capability for select sensors at the Maui Space Surveillance Site (MSSS) using STK and STK Scheduler, and then added a new Track Prioritization Component for FiSST-inspired computations for predicted Information Gain and Probability of Detection, and a new SSA-specific Figure-of-Merit (FOM) for optimized SSA sensor tasking. While the baseline prototype addresses automation and some of the multi-sensor tasking optimization, the SSA-improved prototype addresses all of the key elements required for improved tasking leading to enhanced object catalog maintenance. The Heimdall proof-of-concept was demonstrated for MSSS SSA sensor tasking for a 24 hour period to attempt observations of all operational satellites in the unclassified NORAD catalog, observe a small set of high priority GEO targets every 30 minutes, make a sky survey of the GEO belt region accessible to MSSS sensors, and observe particular GEO regions that have a high probability of finding new objects with any excess sensor time. This Heimdall prototype software paves the way for further R&D that will integrate this technology into the MSSS systems for operational scheduling, improve the software's scalability, and further tune and enhance schedule optimization. The Heimdall software for SSA sensor tasking provides greatly improved performance over manual tasking, improved

  15. Sensor technology for smart homes.

    Science.gov (United States)

    Ding, Dan; Cooper, Rory A; Pasquina, Paul F; Fici-Pasquina, Lavinia

    2011-06-01

    A smart home is a residence equipped with technology that observes the residents and provides proactive services. Most recently, it has been introduced as a potential solution to support independent living of people with disabilities and older adults, as well as to relieve the workload from family caregivers and health providers. One of the key supporting features of a smart home is its ability to monitor the activities of daily living and safety of residents, and in detecting changes in their daily routines. With the availability of inexpensive low-power sensors, radios, and embedded processors, current smart homes are typically equipped with a large amount of networked sensors which collaboratively process and make deductions from the acquired data on the state of the home as well as the activities and behaviors of its residents. This article reviews sensor technology used in smart homes with a focus on direct environment sensing and infrastructure mediated sensing. The article also points out the strengths and limitations of different sensor technologies, as well as discusses challenges and opportunities from clinical, technical, and ethical perspectives. It is recommended that sensor technologies for smart homes address actual needs of all stake holders including end users, their family members and caregivers, and their doctors and therapists. More evidence on the appropriateness, usefulness, and cost benefits analysis of sensor technologies for smart homes is necessary before these sensors should be widely deployed into real-world residential settings and successfully integrated into everyday life and health care services. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Planning and Scheduling for Environmental Sensor Networks

    Science.gov (United States)

    Frank, J. D.

    2005-12-01

    Environmental Sensor Networks are a new way of monitoring the environment. They comprise autonomous sensor nodes in the environment that record real-time data, which is retrieved, analyzed, integrated with other data sets (e.g. satellite images, GIS, process models) and ultimately lead to scientific discoveries. Sensor networks must operate within time and resource constraints. Sensors have limited onboard memory, energy, computational power, communications windows and communications bandwidth. The value of data will depend on when, where and how it was collected, how detailed the data is, how long it takes to integrate the data, and how important the data was to the original scientific question. Planning and scheduling of sensor networks is necessary for effective, safe operations in the face of these constraints. For example, power bus limitations may preclude sensors from simultaneously collecting data and communicating without damaging the sensor; planners and schedulers can ensure these operations are ordered so that they do not happen simultaneously. Planning and scheduling can also ensure best use of the sensor network to maximize the value of collected science data. For example, if data is best recorded using a particular camera angle but it is costly in time and energy to achieve this, planners and schedulers can search for times when time and energy are available to achieve the optimal camera angle. Planning and scheduling can handle uncertainty in the problem specification; planners can be re-run when new information is made available, or can generate plans that include contingencies. For example, if bad weather may prevent the collection of data, a contingent plan can check lighting conditions and turn off data collection to save resources if lighting is not ideal. Both mobile and immobile sensors can benefit from planning and scheduling. For example, data collection on otherwise passive sensors can be halted to preserve limited power and memory

  17. Bearing estimation with acoustic vector-sensor arrays

    International Nuclear Information System (INIS)

    Hawkes, M.; Nehorai, A.

    1996-01-01

    We consider direction-of-arrival (DOA) estimation using arrays of acoustic vector sensors in free space, and derive expressions for the Cramacute er-Rao bound on the DOA parameters when there is a single source. The vector-sensor array is seen to have improved performance over the traditional scalar-sensor (pressure-sensor) array for two distinct reasons: its elements have an inherent directional sensitivity and the array makes a greater number of measurements. The improvement is greatest for small array apertures and low signal-to-noise ratios. Examination of the conventional beamforming and Capon DOA estimators shows that vector-sensor arrays can completely resolve the bearing, even with a linear array, and can remove the ambiguities associated with spatial undersampling. We also propose and analyze a diversely-oriented array of velocity sensors that possesses some of the advantages of the vector-sensor array without the increase in hardware and computation. In addition, in certain scenarios it can avoid problems with spatially correlated noise that the vector-sensor array may suffer. copyright 1996 American Institute of Physics

  18. A triboelectric motion sensor in wearable body sensor network for human activity recognition.

    Science.gov (United States)

    Hui Huang; Xian Li; Ye Sun

    2016-08-01

    The goal of this study is to design a novel triboelectric motion sensor in wearable body sensor network for human activity recognition. Physical activity recognition is widely used in well-being management, medical diagnosis and rehabilitation. Other than traditional accelerometers, we design a novel wearable sensor system based on triboelectrification. The triboelectric motion sensor can be easily attached to human body and collect motion signals caused by physical activities. The experiments are conducted to collect five common activity data: sitting and standing, walking, climbing upstairs, downstairs, and running. The k-Nearest Neighbor (kNN) clustering algorithm is adopted to recognize these activities and validate the feasibility of this new approach. The results show that our system can perform physical activity recognition with a successful rate over 80% for walking, sitting and standing. The triboelectric structure can also be used as an energy harvester for motion harvesting due to its high output voltage in random low-frequency motion.

  19. Magnetic Tactile Sensor for Braille Reading

    KAUST Repository

    Alfadhel, Ahmed

    2016-04-27

    We report a biomimetic magnetic tactile sensor for Braille characters reading. The sensor consists of magnetic nanocomposite artificial cilia implemented on magnetic micro sensors. The nanocomposite is produced from the highly elastic polydimethylsiloxane and iron nanowires that exhibit a permanent magnetic behavior. This design enables remote operation and does not require an additional magnetic field to magnetize the nanowires. The highly elastic nanocomposite is easy to pattern, corrosion resistant and thermally stable. The tactile sensors can detect vertical and shear forces, which allows recognizing small changes in surface texture, as in the case of Braille dots. The 6 dots of a braille cell are read from top to bottom with a tactile sensor array consisting of 4 elements and 1 mm long nanocomposite cilia.

  20. A carbon nanotube-based pressure sensor

    International Nuclear Information System (INIS)

    Karimov, Kh S; Saleem, M; Khan, Adam; Qasuria, T A; Mateen, A; Karieva, Z M

    2011-01-01

    In this study, a carbon nanotube (CNT)-based Al/CNT/Al pressure sensor was designed, fabricated and investigated. The sensor was fabricated by depositing CNTs on an adhesive elastic polymer tape and placing this in an elastic casing. The diameter of multiwalled nanotubes varied between 10 and 30 nm. The nominal thickness of the CNT layers in the sensors was in the range ∼300-430 μm. The inter-electrode distance (length) and the width of the surface-type sensors were in the ranges 4-6 and 3-4 mm, respectively. The dc resistance of the sensors decreased 3-4 times as the pressure was increased up to 17 kN m -2 . The resistance-pressure relationships were simulated.

  1. Magnetic Tactile Sensor for Braille Reading

    KAUST Repository

    Alfadhel, Ahmed; Khan, Mohammed; Cardoso, Susana; Kosel, Jü rgen

    2016-01-01

    We report a biomimetic magnetic tactile sensor for Braille characters reading. The sensor consists of magnetic nanocomposite artificial cilia implemented on magnetic micro sensors. The nanocomposite is produced from the highly elastic polydimethylsiloxane and iron nanowires that exhibit a permanent magnetic behavior. This design enables remote operation and does not require an additional magnetic field to magnetize the nanowires. The highly elastic nanocomposite is easy to pattern, corrosion resistant and thermally stable. The tactile sensors can detect vertical and shear forces, which allows recognizing small changes in surface texture, as in the case of Braille dots. The 6 dots of a braille cell are read from top to bottom with a tactile sensor array consisting of 4 elements and 1 mm long nanocomposite cilia.

  2. Metal/Metal Oxide Differential Electrode pH Sensors

    Science.gov (United States)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  3. Novel nanostructured oxygen sensor

    Science.gov (United States)

    Boardman, Alan James

    New government regulations and industry requirements for medical oxygen sensors require the development of alternate materials and process optimization of primary sensor components. Current oxygen sensors are not compliant with the Restriction of Hazardous Substances (RoHS) Directive. This work focused on two areas. First, was finding suitable readily available materials for the sensor anodes. Second was optimizing the processing of the sensor cathode membrane for reduced delamination. Oxygen sensors were made using tin (Sn) and bismuth (Bi) electrodes, potassium hydroxide (KOH) and acetic acid (CH3COOH) electrolytes with platinum (Pt) and gold (Au) reference electrodes. Bi electrodes were fabricated by casting and pressing processes. Electrochemical characterization of the Sn and Bi electrodes was performed by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and sensing characterization per BSEN ISO 21647:2009 at various oxygen percentages, 0%, 20.9% and 100% oxygen levels with an automated test apparatus. The Sn anode with both electrolyte solutions showed good oxygen sensing properties and performance in a sensor. This system shows promise for replacement of Pb electrodes as required by the RoHS Directive. The Bi anode with Au cathode in both KOH and CH3COOH electrolytes showed acceptable performance and oxygen sensing properties. The Bi anodes fabricated by separate manufacturing methods demonstrated effectiveness for use in medical oxygen sensors. Gold thin films were prepared by magnetron sputtering on Flouroethylene Polymer (FEP) films. The FEP substrate temperature ranged from -77°C to 50°C. X-Ray Diffraction (XRD) and 4-point resistivity characterized the effects of substrate temperature to Au thin film particle size. XRD peak broadening and resistivity measurements showed a strong correlation of particle size to FEP substrate temperature. Particle size at 50°C was 594A and the -77°C particle size was 2.4 x 103A. Substrate

  4. Air to fuel ratio sensor for internal combustion engine control system; Nainen kikan no nensho seigyoyo kunen hi sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, M.; Kawai, T.; Yamada, T.; Nishio [NGK Spark Plug Co. Ltd., Aichi (Japan)

    1998-06-01

    Air to fuel ratio sensor is used for emission control system of three-way catalyst, and constitutes the important functional part of combustion control system. For further precise combustion control application, universal air to fuel ratio heated exhaust gas oxygen sensor (UEGO sensor) has been developed. This paper introduces heater control system for constant element temperature of UEGO sensor. By the heater wattage feedback control of sensing cell impedance, the change of sensor element temperature is decreased. 9 refs., 13 figs.

  5. Pollution Monitoring System Using Gas Sensor based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    M. Udin Harun Al Rasyid

    2016-01-01

    Full Text Available Carbon monoxide (CO and carbon dioxide (CO2 gases are classified as colorless and odorless gas so we need special tools to monitor their concentration in the air. Concentration of air pollution of CO and CO2 that are high in the air will give serious effects for health status. CO is a poisonous gas that damages the circulation of oxygen in the blood when inhaled, while CO2 is one of the gases that causes global warming. In this paper, we developed an integrated pollution monitoring (IPOM system to monitor the concentration of air pollution. This research implemented three sensor nodes (end-device which each node contains CO and CO2 sensors on the gas sensors board to perform sensing from the environment. Furthermore, the data taken from the environment by the sensor will be sent to the meshlium gateway using IEEE 802.15.4 Zigbee communications and processed by the gateway in order to be sent to the computer server. The data is stored in meshlium gateway using MySQL database as a backup, and it will be synchronized to the MySQL database in the computer server. We provide services for public to access the information in database server through a desktop and website application.

  6. Robust optical sensors for safety critical automotive applications

    Science.gov (United States)

    De Locht, Cliff; De Knibber, Sven; Maddalena, Sam

    2008-02-01

    Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.

  7. The parameters of a sensor

    International Nuclear Information System (INIS)

    Neacsu, A.; Ciucu, C.

    2004-01-01

    The development of electronics and technology led to the development of high precision sensors. Generally all sensors are based on the inertia of a suspended mass which remains stationary with respect to the ground's movement. In the case of electromagnetic instruments, a coil is linked to the mass of a pendulum that moves in a magnetic field, creating an electric tension. In the case of this sensor, there is no need for a damper mechanism due to the fact that the damping force is produced by the currents induced in a copper plate oscillating in a strong magnetic field. In the experiment we determined the inner oscillating frequency and the damping factor of a sensor based on a mobile coil. (authors)

  8. A positioning sensor for tonometric applications

    NARCIS (Netherlands)

    den Besten, C.; den Besten, C.; Bergveld, Piet

    1992-01-01

    In this paper we present a sensor, which is designed for application in a tonometer, an instrument for the measurement of intraocular pressure. The sensor measures diameter and position of a part of the eye globe that is flattened by the tonometer. The sensor principle is based on a change in

  9. RF Energy Harvesting Peel-and-Stick Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lalau-Keraly, Christopher [PARC; Schwartz, David; Daniel, George; Lee, Joseph

    2017-08-29

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to the automatically located sensor nodes, and relays data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by a RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost by eliminating batteries and photovoltaic devices. The sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths when the RF beam is swept allows for sensor localization, further reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with a duty cycle less than a minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna dimensions was less than 5cmx9cm, demonstrating the possibility of small form factor for the sensor nodes.

  10. pH sensor calibration procedure

    OpenAIRE

    Artero Delgado, Carola; Nogueras Cervera, Marc; Manuel Lázaro, Antonio; Prat Tasias, Jordi; Prat Farran, Joana d'Arc

    2013-01-01

    This paper describes the calibration of pH sensor located at the OBSEA marine Observatory. This instrument is based on an industrial pH electrode that is connected to a CTD instrument (Conductivity, Temperature, and Depth ). The calibration of the pH sensor has been done using a high precision spectrophotometer pH meter from Institute of Marine Sciences (ICM), and in this way it has been obtained a numerical function for the p H sensor propor...

  11. Range-Measuring Video Sensors

    Science.gov (United States)

    Howard, Richard T.; Briscoe, Jeri M.; Corder, Eric L.; Broderick, David

    2006-01-01

    Optoelectronic sensors of a proposed type would perform the functions of both electronic cameras and triangulation- type laser range finders. That is to say, these sensors would both (1) generate ordinary video or snapshot digital images and (2) measure the distances to selected spots in the images. These sensors would be well suited to use on robots that are required to measure distances to targets in their work spaces. In addition, these sensors could be used for all the purposes for which electronic cameras have been used heretofore. The simplest sensor of this type, illustrated schematically in the upper part of the figure, would include a laser, an electronic camera (either video or snapshot), a frame-grabber/image-capturing circuit, an image-data-storage memory circuit, and an image-data processor. There would be no moving parts. The laser would be positioned at a lateral distance d to one side of the camera and would be aimed parallel to the optical axis of the camera. When the range of a target in the field of view of the camera was required, the laser would be turned on and an image of the target would be stored and preprocessed to locate the angle (a) between the optical axis and the line of sight to the centroid of the laser spot.

  12. CMOS: efficient clustered data monitoring in sensor networks.

    Science.gov (United States)

    Min, Jun-Ki

    2013-01-01

    Tiny and smart sensors enable applications that access a network of hundreds or thousands of sensors. Thus, recently, many researchers have paid attention to wireless sensor networks (WSNs). The limitation of energy is critical since most sensors are battery-powered and it is very difficult to replace batteries in cases that sensor networks are utilized outdoors. Data transmission between sensor nodes needs more energy than computation in a sensor node. In order to reduce the energy consumption of sensors, we present an approximate data gathering technique, called CMOS, based on the Kalman filter. The goal of CMOS is to efficiently obtain the sensor readings within a certain error bound. In our approach, spatially close sensors are grouped as a cluster. Since a cluster header generates approximate readings of member nodes, a user query can be answered efficiently using the cluster headers. In addition, we suggest an energy efficient clustering method to distribute the energy consumption of cluster headers. Our simulation results with synthetic data demonstrate the efficiency and accuracy of our proposed technique.

  13. Photonic Crystal Slab Sensors in Microfluidics

    DEFF Research Database (Denmark)

    Sørensen, Kristian Tølbøl

    refractive index. The underlying phenomenon is called guidedmode resonance (GMR), which responds to changes in the refractive index of fluids only within the first few hundred nanometers from the sensor surface. PCS sensors can be fabricated entirely out of polymers, and read out using instrumentation...... to provide adaptive resolution. This algorithm can routinely make GMR simulations more than 100 times faster. The second manuscript, submitted to Optics Express, describes the practical application of polymeric PCS sensors. As with any refractive index sensor, the devices are highly sensitive to temperature...

  14. The Sensors and Instrumentation Knowledge Transfer Network

    International Nuclear Information System (INIS)

    Cooper, P

    2009-01-01

    The Sensors and Instrumentation KTN has established itself as the UK's national network in sensors and instrumentation, developing a community of over 2,250 member organisations. This paper describes the background to Knowledge Transfer Networks (KTNs) and the changes that are happening to KTNs at a national level, before describing the market size, activities and successes of the Sensors and Instrumentation KTN. The paper concludes by describing the merger between the Sensors and Instrumentation KTN and four other KTNs to create a new KTN, with a working title of the Electronics, Sensors and Photonics KTN.

  15. Resistive flex sensors: a survey

    International Nuclear Information System (INIS)

    Saggio, Giovanni; Riillo, Francesco; Sbernini, Laura; Quitadamo, Lucia Rita

    2016-01-01

    Resistive flex sensors can be used to measure bending or flexing with relatively little effort and a relatively low budget. Their lightness, compactness, robustness, measurement effectiveness and low power consumption make these sensors useful for manifold applications in diverse fields. Here, we provide a comprehensive survey of resistive flex sensors, taking into account their working principles, manufacturing aspects, electrical characteristics and equivalent models, useful front-end conditioning circuitry, and physic-bio-chemical aspects. Particular effort is devoted to reporting on and analyzing several applications of resistive flex sensors, related to the measurement of body position and motion, and to the implementation of artificial devices. In relation to the human body, we consider the utilization of resistive flex sensors for the measurement of physical activity and for the development of interaction/interface devices driven by human gestures. Concerning artificial devices, we deal with applications related to the automotive field, robots, orthosis and prosthesis, musical instruments and measuring tools. The presented literature is collected from different sources, including bibliographic databases, company press releases, patents, master’s theses and PhD theses. (topical review)

  16. Self-Recovering Sensor-Actor Networks

    Directory of Open Access Journals (Sweden)

    Maryam Kamali

    2010-07-01

    Full Text Available Wireless sensor-actor networks are a recent development of wireless networks where both ordinary sensor nodes and more sophisticated and powerful nodes, called actors, are present. In this paper we formalize a recently introduced algorithm that recovers failed actor communication links via the existing sensor infrastructure. We prove via refinement that the recovery is terminating in a finite number of steps and is distributed, thus self-performed by the actors. Most importantly, we prove that the recovery can be done at different levels, via different types of links, such as direct actor links or indirect links between the actors, in the latter case reusing the wireless infrastructure of sensors. This leads to identifying coordination classes, e.g., for delegating the most security sensitive coordination to the direct actor-actor coordination links, the least real-time constrained coordination to indirect links, and the safety critical coordination to both direct actor links and indirect sensor paths between actors. Our formalization is done using the theorem prover in the RODIN platform.

  17. Resistive flex sensors: a survey

    Science.gov (United States)

    Saggio, Giovanni; Riillo, Francesco; Sbernini, Laura; Quitadamo, Lucia Rita

    2016-01-01

    Resistive flex sensors can be used to measure bending or flexing with relatively little effort and a relatively low budget. Their lightness, compactness, robustness, measurement effectiveness and low power consumption make these sensors useful for manifold applications in diverse fields. Here, we provide a comprehensive survey of resistive flex sensors, taking into account their working principles, manufacturing aspects, electrical characteristics and equivalent models, useful front-end conditioning circuitry, and physic-bio-chemical aspects. Particular effort is devoted to reporting on and analyzing several applications of resistive flex sensors, related to the measurement of body position and motion, and to the implementation of artificial devices. In relation to the human body, we consider the utilization of resistive flex sensors for the measurement of physical activity and for the development of interaction/interface devices driven by human gestures. Concerning artificial devices, we deal with applications related to the automotive field, robots, orthosis and prosthesis, musical instruments and measuring tools. The presented literature is collected from different sources, including bibliographic databases, company press releases, patents, master’s theses and PhD theses.

  18. Sensor distributions for structural monitoring

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio

    2017-01-01

    Deciding on the spatial distribution of output sensors for vibration-based structural health monitoring (SHM) is a task that has been, and still is, studied extensively. Yet, when referring to the conventional damage characterization hierarchy, composed of detection, localization, and quantificat......Deciding on the spatial distribution of output sensors for vibration-based structural health monitoring (SHM) is a task that has been, and still is, studied extensively. Yet, when referring to the conventional damage characterization hierarchy, composed of detection, localization......, and quantification, it is primarily the first component that has been addressed with regard to optimal sensor placement. In this particular context, a common approach is to distribute sensors, of which the amount is determined a priori, such that some scalar function of the probability of detection for a pre......-defined set of damage patterns is maximized. Obviously, the optimal sensor distribution, in terms of damage detection, is algorithm-dependent, but studies have showed how correlation generally exists between the different strategies. However, it still remains a question how this “optimality” correlates...

  19. Electronically-Scanned Pressure Sensors

    Science.gov (United States)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  20. Sensor fusion for mobile robot navigation

    International Nuclear Information System (INIS)

    Kam, M.; Zhu, X.; Kalata, P.

    1997-01-01

    The authors review techniques for sensor fusion in robot navigation, emphasizing algorithms for self-location. These find use when the sensor suite of a mobile robot comprises several different sensors, some complementary and some redundant. Integrating the sensor readings, the robot seeks to accomplish tasks such as constructing a map of its environment, locating itself in that map, and recognizing objects that should be avoided or sought. The review describes integration techniques in two categories: low-level fusion is used for direct integration of sensory data, resulting in parameter and state estimates; high-level fusion is used for indirect integration of sensory data in hierarchical architectures, through command arbitration and integration of control signals suggested by different modules. The review provides an arsenal of tools for addressing this (rather ill-posed) problem in machine intelligence, including Kalman filtering, rule-based techniques, behavior based algorithms and approaches that borrow from information theory, Dempster-Shafer reasoning, fuzzy logic and neural networks. It points to several further-research needs, including: robustness of decision rules; simultaneous consideration of self-location, motion planning, motion control and vehicle dynamics; the effect of sensor placement and attention focusing on sensor fusion; and adaptation of techniques from biological sensor fusion