WorldWideScience

Sample records for magnetic resonance neuroimages

  1. Neuroimaging in Parkinsonism: a study with magnetic resonance and spectroscopy as tools in the differential diagnosis

    International Nuclear Information System (INIS)

    Vasconcellos, Luiz Felipe Rocha; Novis, Sergio A. Pereira; Rosso, Ana Lucia Z.; Moreira, Denise Madeira

    2009-01-01

    The differential diagnosis of Parkinsonism based on clinical features, sometimes may be difficult. Diagnostic tests in these cases might be useful, especially magnetic resonance imaging, a noninvasive exam, not as expensive as positron emission tomography, and provides a good basis for anatomical analysis. The magnetic resonance spectroscopy analyzes cerebral metabolism, yielding inconsistent results in parkinsonian disorders. We selected 40 individuals for magnetic resonance imaging and spectroscopy analysis, 12 with Parkinson's disease, 11 with progressive supranuclear palsy, 7 with multiple system atrophy (parkinsonian type), and 10 individuals without any psychiatric or neurological disorders (controls). Clinical scales included Hoenh and Yahr, unified Parkinson's disease rating scale and mini mental status examination. The results showed that patients with Parkinson's disease and controls presented the same aspects on neuroimaging, with few or absence of abnormalities, and supranuclear progressive palsy and multiple system atrophy showed abnormalities, some of which statistically significant. Thus, magnetic resonance imaging and spectroscopy could be useful as a tool in differential diagnosis of Parkinsonism. (author)

  2. Neuroimaging in Parkinsonism: a study with magnetic resonance and spectroscopy as tools in the differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Luiz Felipe Rocha [1Hospital dos Servidores do Estado, Rio de Janeiro RJ (Brazil)], e-mail: luizneurol@terra.com.br; Novis, Sergio A. Pereira; Rosso, Ana Lucia Z. [Hospital Universitario Clementino Fraga Filho (HUCFF), Rio de Janeiro, RJ (Brazil); Moreira, Denise Madeira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Neurologia Deolindo Couto; Leite, Ana Claudia C.B. [Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil)

    2009-03-15

    The differential diagnosis of Parkinsonism based on clinical features, sometimes may be difficult. Diagnostic tests in these cases might be useful, especially magnetic resonance imaging, a noninvasive exam, not as expensive as positron emission tomography, and provides a good basis for anatomical analysis. The magnetic resonance spectroscopy analyzes cerebral metabolism, yielding inconsistent results in parkinsonian disorders. We selected 40 individuals for magnetic resonance imaging and spectroscopy analysis, 12 with Parkinson's disease, 11 with progressive supranuclear palsy, 7 with multiple system atrophy (parkinsonian type), and 10 individuals without any psychiatric or neurological disorders (controls). Clinical scales included Hoenh and Yahr, unified Parkinson's disease rating scale and mini mental status examination. The results showed that patients with Parkinson's disease and controls presented the same aspects on neuroimaging, with few or absence of abnormalities, and supranuclear progressive palsy and multiple system atrophy showed abnormalities, some of which statistically significant. Thus, magnetic resonance imaging and spectroscopy could be useful as a tool in differential diagnosis of Parkinsonism. (author)

  3. Magnetic Resonance Imaging of Stroke

    NARCIS (Netherlands)

    Bouts, Mark. J. R. J.; Wu, O.; Dijkhuizen, R. M.

    2017-01-01

    Magnetic resonance imaging (MRI) provides a powerful (neuro)imaging modality for the diagnosis and outcome prediction after (acute) stroke. Since MRI allows noninvasive, longitudinal, and three-dimensional assessment of vessel occlusion (with magnetic resonance angiography (MRA)), tissue injury

  4. Neuroimaging of HIV-associated cryptococcal meningitis: comparison of magnetic resonance imaging findings in patients with and without immune reconstitution.

    Science.gov (United States)

    Katchanov, Juri; Branding, Gordian; Jefferys, Laura; Arastéh, Keikawus; Stocker, Hartmut; Siebert, Eberhard

    2016-02-01

    To determine the frequency, imaging characteristics, neuroanatomical distribution and dynamics of magnetic resonance imaging findings in HIV-associated cryptococcal meningitis in immunocompromised patients we compared patients without antiretroviral therapy with patients undergoing immune reconstitution. Neuroimaging and clinical data of 21 consecutive patients presenting to a German HIV centre in a 10-year period between 2005 and 2014 were reviewed. We identified eight patients with magnetic resonance imaging findings related to cryptococcal disease: five patients without antiretroviral therapy and three patients receiving effective antiretroviral therapy resulting in immune reconstitution. The pattern of magnetic resonance imaging manifestations was different in the two groups. In patients not on antiretroviral therapy, pseudocysts (n = 3) and lacunar ischaemic lesions (n = 2) were detected. Contrast-enhancing focal leptomeningeal and/or parenchymal lesions were found in all patients under immune reconstitution (n = 3). Magnetic resonance imaging lesions suggestive of leptomeningitis or meningoencephalitis were detected in all patients with a recurrence of cryptococcal meningitis under immune reconstitution, which differs from the classical magnetic resonance imaging findings in patients without antiretroviral therapy. In antiretroviral therapy-treated patients with past medical history of cryptococcal meningitis, detection of contrast-enhancing focal meningeal and/or parenchymal lesions should prompt further investigations for a recurrence of cryptococcal meningitis under immune reconstitution. © The Author(s) 2015.

  5. Neuroimaging in Antisocial Personality Disorder

    Directory of Open Access Journals (Sweden)

    Abdullah Yildirim

    2015-03-01

    Full Text Available Neuroimaging has been used in antisocial personality disorder since the invention of computed tomography and new modalities are introduced as technology advances. Magnetic resonance imaging, diffusion tensor imaging, functional magnetic resonance imaging and radionuclide imaging are such techniques that are currently used in neuroimaging. Although neuroimaging is an indispensible tool for psychiatric reseach, its clinical utility is questionable until new modalities become more accessible and regularly used in clinical practice. The aim of this paper is to provide clinicians with an introductory knowledge on neuroimaging in antisocial personality disorder including basic physics principles, current contributions to general understanding of pathophysiology in antisocial personality disorder and possible future applications of neuroimaging. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2015; 7(1: 98-108

  6. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke

    International Nuclear Information System (INIS)

    Buckley, B.T.; Wainwright, A.; Meagher, T.; Briley, D.

    2003-01-01

    AIM: To audit the feasibility and use of diffusion-weighted (DW) magnetic resonance imaging (MRI) as initial neuroimaging for in-patients with clinically suspected acute stroke. MATERIALS AND METHODS: In April 2000, MRI with DW and T2-weighted sequence was locally instituted as initial neuroimaging for patients with clinically suspected acute stroke. This retrospective study reviewed imaging performed for in-patients with suspected acute stroke over a 9-month period. Data were collected on image type, result and need for repeat imaging. RESULTS: During the study period, 124 patients had neuroimaging for suspected cerebrovascular accident, and 119 were MRI safe. Eighty-eight (73.9%) patients underwent DW MRI as first-line investigation. Five patients were not MRI safe and 31 had computed tomography (CT) as first-line imaging due to lack of available MRI capacity. Repeat neuroimaging was performed in 16 (12.9%) patients. Study times were comparable for both types of neuroimaging: a mean of 13 min for MRI and 11 min for CT. CONCLUSION: The audit standard was achieved in 88 (73.9%) patients. The use of DW MRI as a first-line investigation for patients with a clinical diagnosis of acute stroke is achievable in a district general hospital setting

  7. Audit of a policy of magnetic resonance imaging with diffusion-weighted imaging as first-line neuroimaging for in-patients with clinically suspected acute stroke

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, B.T.; Wainwright, A.; Meagher, T.; Briley, D

    2003-03-01

    AIM: To audit the feasibility and use of diffusion-weighted (DW) magnetic resonance imaging (MRI) as initial neuroimaging for in-patients with clinically suspected acute stroke. MATERIALS AND METHODS: In April 2000, MRI with DW and T2-weighted sequence was locally instituted as initial neuroimaging for patients with clinically suspected acute stroke. This retrospective study reviewed imaging performed for in-patients with suspected acute stroke over a 9-month period. Data were collected on image type, result and need for repeat imaging. RESULTS: During the study period, 124 patients had neuroimaging for suspected cerebrovascular accident, and 119 were MRI safe. Eighty-eight (73.9%) patients underwent DW MRI as first-line investigation. Five patients were not MRI safe and 31 had computed tomography (CT) as first-line imaging due to lack of available MRI capacity. Repeat neuroimaging was performed in 16 (12.9%) patients. Study times were comparable for both types of neuroimaging: a mean of 13 min for MRI and 11 min for CT. CONCLUSION: The audit standard was achieved in 88 (73.9%) patients. The use of DW MRI as a first-line investigation for patients with a clinical diagnosis of acute stroke is achievable in a district general hospital setting.

  8. Introduction to neuroimaging

    International Nuclear Information System (INIS)

    Orrison, W.W.

    1989-01-01

    The author focuses on neuroradiology with emphasis on the current imaging modalities. There are chapters on angiography, myelography, nuclear medicine, ultrasonography, computer tomography (CT), and magnetic resonance (MR) imaging. The other chapters are dedicated to the spine, skull, head and neck, and pediatric neuroimaging

  9. Structural neuroimaging in neuropsychology: History and contemporary applications.

    Science.gov (United States)

    Bigler, Erin D

    2017-11-01

    Neuropsychology's origins began long before there were any in vivo methods to image the brain. That changed with the advent of computed tomography in the 1970s and magnetic resonance imaging in the early 1980s. Now computed tomography and magnetic resonance imaging are routinely a part of neuropsychological investigations with an increasing number of sophisticated methods for image analysis. This review examines the history of neuroimaging utilization in neuropsychological investigations, highlighting the basic methods that go into image quantification and the various metrics that can be derived. Neuroimaging methods and limitations for identify what constitutes a lesion are discussed. Likewise, the influence of various demographic and developmental factors that influence quantification of brain structure are reviewed. Neuroimaging is an integral part of 21st Century neuropsychology. The importance of neuroimaging to advancing neuropsychology is emphasized. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Neuroimaging for psychotherapy research: current trends.

    Science.gov (United States)

    Weingarten, Carol P; Strauman, Timothy J

    2015-01-01

    This article reviews neuroimaging studies that inform psychotherapy research. An introduction to neuroimaging methods is provided as background for the increasingly sophisticated breadth of methods and findings appearing in psychotherapy research. We compiled and assessed a comprehensive list of neuroimaging studies of psychotherapy outcome, along with selected examples of other types of studies that also are relevant to psychotherapy research. We emphasized magnetic resonance imaging (MRI) since it is the dominant neuroimaging modality in psychological research. We summarize findings from neuroimaging studies of psychotherapy outcome, including treatment for depression, obsessive compulsive disorder (OCD), and schizophrenia. The increasing use of neuroimaging methods in the study of psychotherapy continues to refine our understanding of both outcome and process. We suggest possible directions for future neuroimaging studies in psychotherapy research.

  11. Magnetic Resonance Imaging Studies of Postpartum Depression: An Overview

    Directory of Open Access Journals (Sweden)

    Marco Fiorelli

    2015-01-01

    Full Text Available Postpartum depression is a frequent and disabling condition whose pathophysiology is still unclear. In recent years, the study of the neural correlates of mental disorders has been increasingly approached using magnetic resonance techniques. In this review we synthesize the results from studies on postpartum depression in the context of structural, functional, and spectroscopic magnetic resonance studies of major depression as a whole. Compared to the relative wealth of data available for major depression, magnetic resonance studies of postpartum depression are limited in number and design. A systematic literature search yielded only eleven studies conducted on about one hundred mothers with postpartum depression overall. Brain magnetic resonance findings in postpartum depression appear to replicate those obtained in major depression, with minor deviations that are not sufficient to delineate a distinct neurobiological profile for this condition, due to the small samples used and the lack of direct comparisons with subjects with major depression. However, it seems reasonable to expect that studies conducted in larger populations, and using a larger variety of brain magnetic resonance techniques than has been done so far, might allow for the identification of neuroimaging signatures for postpartum depression.

  12. Neuroimaging Biomarkers of Neurodegenerative Diseases and Dementia

    OpenAIRE

    Risacher, Shannon L.; Saykin, Andrew J.

    2013-01-01

    Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer’s disease (AD) and prodromal stages, famili...

  13. Neuroimaging in eating disorders

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2011-09-01

    Full Text Available Ignacio Jáuregui-LoberaBehavioral Sciences Institute and Pablo de Olavide University, Seville, SpainAbstract: Neuroimaging techniques have been useful tools for accurate investigation of brain structure and function in eating disorders. Computed tomography, magnetic resonance imaging, positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy, and voxel-based morphometry have been the most relevant technologies in this regard. The purpose of this review is to update the existing data on neuroimaging in eating disorders. The main brain changes seem to be reversible to some extent after adequate weight restoration. Brain changes in bulimia nervosa seem to be less pronounced than in anorexia nervosa and are mainly due to chronic dietary restrictions. Different subtypes of eating disorders might be correlated with specific brain functional changes. Moreover, anorectic patients who binge/purge may have different functional brain changes compared with those who do not binge/purge. Functional changes in the brain might have prognostic value, and different changes with respect to the binding potential of 5-HT1A, 5-HT2A, and D2/D3 receptors may be persistent after recovering from an eating disorder.Keywords: neuroimaging, brain changes, brain receptors, anorexia nervosa, bulimia nervosa, eating disorders

  14. Magnetic resonance spectroscopy in schizophrenia. Possibilities and limitations

    International Nuclear Information System (INIS)

    Wobrock, T.; Scherk, H.; Falkai, P.

    2005-01-01

    Magnetic resonance spectroscopy is a noninvasive investigative technique for in vivo detection of biochemical changes in neuropsychiatric disorders for which especially proton ( 1 H-MRS) and phosphorus ( 31 P-MRS) magnetic resonance spectroscopy have been used. In this review we explain the principles of MRS and summarize the studies in schizophrenia. A systematic literature review was carried out for 1 H-MRS studies investigating schizophrenic patients compared to controls. The inconsistent results in the cited studies may be due to different study population, specific neuroimaging technique, and selected brain regions. Frequent findings are decreased PME and increased PDE concentrations ( 31 P-MRS) linked to altered metabolism of membrane phospholipids and decreased N-acetylaspartate (NAA) or NAA/choline ratio ( 1 H-MRS) linked to neuronal damage in frontal (DLPFC) or temporal regions in patients with schizophrenia. These results contribute to the disturbed frontotemporal-thalamic network assumed in schizophrenia and are supported by additional functional neuroimaging, MRI morphometry, and neuropsychological evaluation. The combination of the described investigative techniques with MRS in follow-up studies may provide more specific clues for understanding the pathogenesis and disease course in schizophrenia. (orig.) [de

  15. A Review of Transcranial Magnetic Stimulation and Multimodal Neuroimaging to Characterize Post-Stroke Neuroplasticity

    Science.gov (United States)

    Auriat, Angela M.; Neva, Jason L.; Peters, Sue; Ferris, Jennifer K.; Boyd, Lara A.

    2015-01-01

    Following stroke, the brain undergoes various stages of recovery where the central nervous system can reorganize neural circuitry (neuroplasticity) both spontaneously and with the aid of behavioral rehabilitation and non-invasive brain stimulation. Multiple neuroimaging techniques can characterize common structural and functional stroke-related deficits, and importantly, help predict recovery of function. Diffusion tensor imaging (DTI) typically reveals increased overall diffusivity throughout the brain following stroke, and is capable of indexing the extent of white matter damage. Magnetic resonance spectroscopy (MRS) provides an index of metabolic changes in surviving neural tissue after stroke, serving as a marker of brain function. The neural correlates of altered brain activity after stroke have been demonstrated by abnormal activation of sensorimotor cortices during task performance, and at rest, using functional magnetic resonance imaging (fMRI). Electroencephalography (EEG) has been used to characterize motor dysfunction in terms of increased cortical amplitude in the sensorimotor regions when performing upper limb movement, indicating abnormally increased cognitive effort and planning in individuals with stroke. Transcranial magnetic stimulation (TMS) work reveals changes in ipsilesional and contralesional cortical excitability in the sensorimotor cortices. The severity of motor deficits indexed using TMS has been linked to the magnitude of activity imbalance between the sensorimotor cortices. In this paper, we will provide a narrative review of data from studies utilizing DTI, MRS, fMRI, EEG, and brain stimulation techniques focusing on TMS and its combination with uni- and multimodal neuroimaging methods to assess recovery after stroke. Approaches that delineate the best measures with which to predict or positively alter outcomes will be highlighted. PMID:26579069

  16. Three-dimensional registration methods for multi-modal magnetic resonance neuroimages

    International Nuclear Information System (INIS)

    Triantafyllou, C.

    2001-08-01

    In this thesis, image alignment techniques are developed and evaluated for applications in neuroimaging. In particular, the problem of combining cross-sequence MRI (Magnetic Resonance Imaging) intra-subject scans is considered. The challenge in this case is to find topographically uniform mappings in order to register (find a mapping between) low resolution echo-planar images and their high resolution structural counterparts. Such an approach enables us to effectually fuse, in a clinically useful way, information across scans. This dissertation devises a new framework by which this may be achieved, involving appropriate optimisation of the required mapping functions, which turn out to be non-linear and high-dimensional in nature. Novel ways to constrain and regularise these functions to enhance the computational speed of the process and the accuracy of the solution are also studied. The algorithms, whose characteristics are demonstrated for this specific application should be fully generalisable to other medical imaging modalities and potentially, other areas of image processing. To begin with, some existing registration methods are reviewed, followed by the introduction of an automated global 3-D registration method. Its performance is investigated on extracted cortical and ventricular surfaces by utilising the principles of the chamfer matching approach. Evaluations on synthetic and real data-sets, are performed to show that removal of global image differences is possible in principle, although the true accuracy of the method depends on the type of geometrical distortions present. These results also reveal that this class of algorithm is unable to solve more localised variations and higher order magnetic field distortions between the images. These facts motivate the development of a high-dimensional 3-D registration method capable of effecting a one-to-one correspondence by capturing the localised differences. This method was seen to account not only for

  17. Neuroimaging the Effectiveness of Substance Use Disorder Treatments.

    Science.gov (United States)

    Cabrera, Elizabeth A; Wiers, Corinde E; Lindgren, Elsa; Miller, Gregg; Volkow, Nora D; Wang, Gene-Jack

    2016-09-01

    Neuroimaging techniques to measure the function and biochemistry of the human brain such as positron emission tomography (PET), proton magnetic resonance spectroscopy ((1)H MRS), and functional magnetic resonance imaging (fMRI), are powerful tools for assessing neurobiological mechanisms underlying the response to treatments in substance use disorders. Here, we review the neuroimaging literature on pharmacological and behavioral treatment in substance use disorder. We focus on neural effects of medications that reduce craving (e.g., naltrexone, bupropion hydrochloride, baclofen, methadone, varenicline) and that improve cognitive control (e.g., modafinil, N-acetylcysteine), of behavioral treatments for substance use disorders (e.g., cognitive bias modification training, virtual reality, motivational interventions) and neuromodulatory interventions such as neurofeedback and transcranial magnetic stimulation. A consistent finding for the effectiveness of therapeutic interventions identifies the improvement of executive control networks and the dampening of limbic activation, highlighting their values as targets for therapeutic interventions in substance use disorders.

  18. A review of transcranial magnetic stimulation and multimodal neuroimaging to characterize post-stroke neuroplasticity

    Directory of Open Access Journals (Sweden)

    Angela Michelle Auriat

    2015-10-01

    Full Text Available Following stroke, the brain undergoes various stages of recovery where the central nervous system can reorganize neural circuitry (neuroplasticity both spontaneously and with the aid of behavioural rehabilitation and non-invasive brain stimulation. Multiple neuroimaging techniques can characterize common structural and functional stroke-related deficits, and importantly, help predict recovery of function. Diffusion tensor imaging (DTI typically reveals increased overall diffusivity throughout the brain following stroke, and is capable of indexing the extent of white matter damage. Magnetic resonance spectroscopy (MRS provides an index of metabolic changes in surviving neural tissue after stroke, serving as a marker of brain function. The neural correlates of altered brain activity after stroke have been demonstrated by abnormal activation of sensorimotor cortices during task performance, and at rest, using functional magnetic resonance imaging (fMRI. Electroencephalography (EEG has been used to characterize motor dysfunction in terms of increased cortical amplitude in the sensorimotor regions when performing upper-limb movement, indicating abnormally increased cognitive effort and planning in individuals with stroke. Transcranial magnetic stimulation (TMS work reveals changes in ipsilesional and contralesional cortical excitability in the sensorimotor cortices. The severity of motor deficits indexed using TMS has been linked to the magnitude of activity imbalance between the sensorimotor cortices. In this paper we will provide a narrative review of data from studies utilizing DTI, MRS, fMRI, EEG and brain stimulation techniques focusing on TMS and its combination with uni and multi-modal neuroimaging methods to assess recovery after stroke. Approaches that delineate the best measures with which to predict or positively alter outcomes will be highlighted.

  19. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques

    International Nuclear Information System (INIS)

    Li, Tie-Qiang; Wahlund, Lars-Olof

    2011-01-01

    The aim of this review is to examine the recent literature on using advanced magnetic resonance imaging (MRI) techniques for finding neuroimaging biomarkers that are sensitive to the detection of risks for Alzheimer's disease (AD). Since structural MRI techniques, such as brain structural volumetry and voxel based morphometry (VBM), have been widely used for AD studies and extensively reviewed, we will only briefly touch on the topics of volumetry and morphometry. The focus of the current review is about the more recent developments in the search for AD neuroimaging biomarkers with functional MRI (fMRI), resting-state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), arterial spin-labeling (ASL), and magnetic resonance spectroscopy (MRS)

  20. Magnetic resonance annual 1986

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1986-01-01

    This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging

  1. Presurgical functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Stippich, C.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is an important and novel neuroimaging modality for patients with brain tumors. By non-invasive measurement, localization and lateralization of brain activiation, most importantly of motor and speech function, fMRI facilitates the selection of the most appropriate and sparing treatment and function-preserving surgery. Prerequisites for the diagnostic use of fMRI are the application of dedicated clinical imaging protocols and standardization of the respective imaging procedures. The combination with diffusion tensor imaging (DTI) also enables tracking and visualization of important fiber bundles such as the pyramidal tract and the arcuate fascicle. These multimodal MR data can be implemented in computer systems for functional neuronavigation or radiation treatment. The practicability, accuracy and reliability of presurgical fMRI have been validated by large numbers of published data. However, fMRI cannot be considered as a fully established modality of diagnostic neuroimaging due to the lack of guidelines of the responsible medical associations as well as the lack of medical certification of important hardware and software components. This article reviews the current research in the field and provides practical information relevant for presurgical fMRI. (orig.) [de

  2. Functional neuroimaging of sleep disorders

    International Nuclear Information System (INIS)

    Qiu Chun; Zhao Jun; Guan Yihui

    2013-01-01

    Sleep disorders may affect the health and normal life of human badly. However, the pathophysiology underlying adult sleep disorders is still unclear. Functional neuroimaging can be used to investigate whether sleep disorders are associated with specific changes in brain structure or regional activity. This paper reviews functional brain imaging findings in major intrinsic sleep disorders (i.e., idiopathic insomnia, narcolepsy, and obstructive sleep apnea) and in abnormal motor behavior during sleep (i.e., periodic limb movement disorder and REM sleep behavior disorder). Metabolic/functional investigations (positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging) are mainly reviewed, as well as neuroanatomical assessments (voxel-based morphometry, magnetic resonance spectroscopy). Meanwhile, here are some brief introduction of different kinds of sleep disorders. (authors)

  3. Magnetic Resonance Techniques Applied to the Diagnosis and Treatment of Parkinson’s Disease

    Science.gov (United States)

    de Celis Alonso, Benito; Hidalgo-Tobón, Silvia S.; Menéndez-González, Manuel; Salas-Pacheco, José; Arias-Carrión, Oscar

    2015-01-01

    Parkinson’s disease (PD) affects at least 10 million people worldwide. It is a neurodegenerative disease, which is currently diagnosed by neurological examination. No neuroimaging investigation or blood biomarker is available to aid diagnosis and prognosis. Most effort toward diagnosis using magnetic resonance (MR) has been focused on the use of structural/anatomical neuroimaging and diffusion tensor imaging (DTI). However, deep brain stimulation, a current strategy for treating PD, is guided by MR imaging (MRI). For clinical prognosis, diagnosis, and follow-up investigations, blood oxygen level-dependent MRI, DTI, spectroscopy, and transcranial magnetic stimulation have been used. These techniques represent the state of the art in the last 5 years. Here, we focus on MR techniques for the diagnosis and treatment of Parkinson’s disease. PMID:26191037

  4. Hitchhiker'S Guide to Voxel Segmentation for Partial Volume Correction of in Vivo Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Scott Quadrelli

    2016-01-01

    Full Text Available Partial volume effects have the potential to cause inaccuracies when quantifying metabolites using proton magnetic resonance spectroscopy (MRS. In order to correct for cerebrospinal fluid content, a spectroscopic voxel needs to be segmented according to different tissue contents. This article aims to detail how automated partial volume segmentation can be undertaken and provides a software framework for researchers to develop their own tools. While many studies have detailed the impact of partial volume correction on proton magnetic resonance spectroscopy quantification, there is a paucity of literature explaining how voxel segmentation can be achieved using freely available neuroimaging packages.

  5. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tie-Qiang (Karolinska Huddinge - Medical Physics, Stockholm (Sweden)), email: tieqiang.li@karolinska.se; Wahlund, Lars-Olof (Dept. of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm (Sweden))

    2011-02-15

    The aim of this review is to examine the recent literature on using advanced magnetic resonance imaging (MRI) techniques for finding neuroimaging biomarkers that are sensitive to the detection of risks for Alzheimer's disease (AD). Since structural MRI techniques, such as brain structural volumetry and voxel based morphometry (VBM), have been widely used for AD studies and extensively reviewed, we will only briefly touch on the topics of volumetry and morphometry. The focus of the current review is about the more recent developments in the search for AD neuroimaging biomarkers with functional MRI (fMRI), resting-state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), arterial spin-labeling (ASL), and magnetic resonance spectroscopy (MRS)

  6. The utility of neuroimaging in the management of dementia

    Directory of Open Access Journals (Sweden)

    Uduak E Williams

    2015-01-01

    Full Text Available Dementia is a syndrome of progressive dysfunction of two or more cognitive domains associated with impairment of activities of daily living. An understanding of the pathophysiology of dementia and its early diagnosis is important in the pursuit of possible disease modifying therapy for dementia. Neuroimaging has greatly transformed this field of research as its function has changed from a mere tool for diagnosing treatable causes of dementia to an instrument for pre-symptomatic diagnosis of dementia. This review focuses on the diagnostic utility of neuroimaging in the management of progressive dementias. Structural imaging techniques like computerized tomography scan and magnetic resonance imaging highlights the anatomical, structural and volumetric details of the brain; while functional imaging techniques such as positron emission tomography, arterial spin labeling, single photon emission computerized tomography and blood oxygen level-dependent functional magnetic resonance imaging focuses on chemistry, circulatory status and physiology of the different brain structures and regions.

  7. Practical Introduction to Cerebral Functional Magnetic Resonance (fMRI)

    International Nuclear Information System (INIS)

    Delgado, Jorge Andres; Rascovsky Simon; Sanz, Alexander; Castrillon, Juan Gabriel

    2008-01-01

    Magnetic resonance (MR ) imaging holds a privileged position within neuroimaging techniques owing to its high anatomic detail and its capacity to study many physiological processes. The appearance of functional magnetic resonance (fMR I) brings more relevance to MR , turning it into a powerful tool with the ability to group, in a single exam, high-resolution anatomy and cerebral function. In this article we describe the principles and some advantages of fMRI compared to other neuro functional imaging modalities. In addition, we present the site wide and analysis requisites for the performance and post-processing of the most common neuro functional experiments in clinical practice. We also include neuro functional images obtained at Instituto de Alta Tecnologia Medica of Antioquia (IATM ) on a healthy volunteer group and two pathological cases. Lastly, we mention some of the practical indications of this technique which is still in an intense development, research and validation phase.

  8. Neuroimaging: do we really need new contrast agents for MRI?

    International Nuclear Information System (INIS)

    Roberts, T.P.L.; Chuang, N.; Roberts, H.C.

    2000-01-01

    The use of exogenous contrast media in magnetic resonance imaging of the brain has brought dramatic improvement in the sensitivity of detection and delineation of pathological structures, such as primary and metastatic brain tumors, inflammation and ischemia. Disruption of the blood brain barrier leads to accumulation of the intravenously injected contrast material in the extravascular space, leading to signal enhancement. Magnetic resonance angiography benefits from T 1 -shortening effects of contrast agent, improving small vessel depiction and providing vascular visualization even in situations of slow flow. High speed dynamic MRI after bolus injection of contrast media allows tracer kinetic modeling of cerebral perfusion. Progressive enhancement over serial post-contrast imaging allows modeling of vascular permeability and thus quantitative estimation of the severity of blood brain barrier disruption. With such an array of capabilities and ever improving technical abilities, it seems that the role of contrast agents in MR neuroimaging is established and the development of new agents may be superfluous. However, new agents are being developed with prolonged intravascular residence times, and with in-vivo binding of ever-increasing specificity. Intravascular, or blood pool, agents are likely to benefit magnetic resonance angiography of the carotid and cerebral vessels; future agents may allow the visualization of therapeutic drug delivery, the monitoring of, for example, gene expression, and the imaging evaluation of treatment efficacy. So while there is a substantial body of work that can be performed with currently available contrast agents, especially in conjunction with optimized image acquisition strategies, post processing, and mathematical analysis, there are still unrealized opportunities for novel contrast agent introduction, particularly those exploiting biological specificity. This article reviews the current use of contrast media in magnetic resonance

  9. Ultra high field magnetic resonance imaging

    International Nuclear Information System (INIS)

    Lethimonnier, F.; Vedrine, P.

    2007-01-01

    Understanding human brain function, brain development and brain dysfunction is one of the great challenges of the twenty first century. Biomedical imaging has now run up against a number of technical constraints that are exposing limits to its potential. In order to overcome the current limits to high-field magnetic resonance cerebral imaging (MRI) and unleash its fullest potential, the Cea has built NeuroSpin, an ultra-high-field neuroimaging facility at its Saclay centre (in the Essonne). NeuroSpin already boasts three fully operational MRI systems. The first is a 3-tesla high-field system and the second is a very-high-field 7-tesla system, both of which are dedicated to clinical studies and investigations in humans, while the third is an ultra-high-field 17.65-tesla system designed for studies on small animals. In 2011, NeuroSpin will be commissioning an 11.7-tesla ultra-high-field system of unprecedented power that is designed for research on human subjects. The level of the magnetic field and the scale required will make this joint French-German project to build the magnet a breakthrough in the international arena. (authors)

  10. A Neuroimaging Web Services Interface as a Cyber Physical System for Medical Imaging and Data Management in Brain Research: Design Study.

    Science.gov (United States)

    Lizarraga, Gabriel; Li, Chunfei; Cabrerizo, Mercedes; Barker, Warren; Loewenstein, David A; Duara, Ranjan; Adjouadi, Malek

    2018-04-26

    Structural and functional brain images are essential imaging modalities for medical experts to study brain anatomy. These images are typically visually inspected by experts. To analyze images without any bias, they must be first converted to numeric values. Many software packages are available to process the images, but they are complex and difficult to use. The software packages are also hardware intensive. The results obtained after processing vary depending on the native operating system used and its associated software libraries; data processed in one system cannot typically be combined with data on another system. The aim of this study was to fulfill the neuroimaging community’s need for a common platform to store, process, explore, and visualize their neuroimaging data and results using Neuroimaging Web Services Interface: a series of processing pipelines designed as a cyber physical system for neuroimaging and clinical data in brain research. Neuroimaging Web Services Interface accepts magnetic resonance imaging, positron emission tomography, diffusion tensor imaging, and functional magnetic resonance imaging. These images are processed using existing and custom software packages. The output is then stored as image files, tabulated files, and MySQL tables. The system, made up of a series of interconnected servers, is password-protected and is securely accessible through a Web interface and allows (1) visualization of results and (2) downloading of tabulated data. All results were obtained using our processing servers in order to maintain data validity and consistency. The design is responsive and scalable. The processing pipeline started from a FreeSurfer reconstruction of Structural magnetic resonance imaging images. The FreeSurfer and regional standardized uptake value ratio calculations were validated using Alzheimer’s Disease Neuroimaging Initiative input images, and the results were posted at the Laboratory of Neuro Imaging data archive. Notable

  11. Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications

    International Nuclear Information System (INIS)

    Panigrahy, Ashok; Nelson, Marvin D.; Blueml, Stefan

    2010-01-01

    Magnetic resonance spectroscopy (MRS) offers a unique, noninvasive approach to assess pediatric neurological abnormalities at microscopic levels by quantifying cellular metabolites. The most widely available MRS method, proton ( 1 H; hydrogen) spectroscopy, is FDA approved for general use and can be ordered by clinicians for pediatric neuroimaging studies if indicated. There are a multitude of both acquisition and post-processing methods that can be used in the implementation of MR spectroscopy. MRS in pediatric neuroimaging is challenging to interpret because of dramatic normal developmental changes that occur in metabolites, particularly in the first year of life. Still, MRS has been proven to provide additional clinically relevant information for several pediatric neurological disease processes such as brain tumors, infectious processes, white matter disorders, and neonatal injury. MRS can also be used as a powerful quantitative research tool. In this article, specific research applications using MRS will be demonstrated in relation to neonatal brain injury and pediatric brain tumor imaging. (orig.)

  12. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  13. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, Tatiana M., E-mail: t_vasilevs@mail.ru [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation); Sementsov, Dmitriy I.; Shutyi, Anatoliy M. [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation)

    2012-09-15

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: Black-Right-Pointing-Pointer An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. Black-Right-Pointing-Pointer Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. Black-Right-Pointing-Pointer Both regular and chaotic precession modes are realized within bifurcation resonance range. Black-Right-Pointing-Pointer Appearance of dynamic bistability is typical for bifurcation resonance.

  14. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    International Nuclear Information System (INIS)

    Vasilevskaya, Tatiana M.; Sementsov, Dmitriy I.; Shutyi, Anatoliy M.

    2012-01-01

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: ► An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. ► Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. ► Both regular and chaotic precession modes are realized within bifurcation resonance range. ► Appearance of dynamic bistability is typical for bifurcation resonance.

  15. Deducing magnetic resonance neuroimages based on knowledge from samples.

    Science.gov (United States)

    Jiang, Yuwei; Liu, Feng; Fan, Mingxia; Li, Xuzhou; Zhao, Zhiyong; Zeng, Zhaoling; Wang, Yi; Xu, Dongrong

    2017-12-01

    Because individual variance always exists, using the same set of predetermined parameters for magnetic resonance imaging (MRI) may not be exactly suitable for each participant. We propose a knowledge-based method that can repair MRI data of undesired contrast as if a new scan were acquired using imaging parameters that had been individually optimized. The method employed a strategy called analogical reasoning to deduce voxel-wise relaxation properties using morphological and biological similarity. The proposed framework involves steps of intensity normalization, tissue segmentation, relaxation time deducing, and image deducing. This approach has been preliminarily validated using conventional MRI data at 3T from several examples, including 5 normal and 9 clinical datasets. It can effectively improve the contrast of real MRI data by deducing imaging data using optimized imaging parameters based on deduced relaxation properties. The statistics of deduced images shows a high correlation with real data that were actually collected using the same set of imaging parameters. The proposed method of deducing MRI data using knowledge of relaxation times alternatively provides a way of repairing MRI data of less optimal contrast. The method is also capable of optimizing an MRI protocol for individual participants, thereby realizing personalized MR imaging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Ethier, R.; Melanson, D.; Peters, T.M.

    1983-01-01

    Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography [fr

  17. Neuroimaging and electroconvulsive therapy

    DEFF Research Database (Denmark)

    Bolwig, Tom G

    2014-01-01

    BACKGROUND: Since the 1970s, a number of neuroimaging studies of electroconvulsive therapy (ECT) have been conducted to elucidate the working action of this highly efficacious treatment modality. The technologies used are single photon emission tomography, positron emission tomography, magnetic...... in localized cortical and subcortical areas of the brain and have revealed differences in neurophysiology and metabolism between the hyperactive ictal state and the restorative interictal/postictal periods. Recent magnetic resonance imaging studies seem to pave way for new insights into ECT's effects...... on increased connectivity in the brain during depression. CONCLUSION: The existing data reveal considerable variations among studies and therefore do not yet allow the formulation of a unified hypothesis for the mechanism of ECT. The rapid developments in imaging technology, however, hold promises for further...

  18. 25 years of neuroimaging in amyotrophic lateral sclerosis

    Science.gov (United States)

    Foerster, Bradley R.; Welsh, Robert C.; Feldman, Eva L.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques—such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy—allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development. PMID:23917850

  19. Magnetic resonance imaging apparatus

    International Nuclear Information System (INIS)

    Ehnholm, G.J.

    1991-01-01

    This patent describes an electron spin resonance enhanced magnetic resonance (MR) imaging (ESREMRI) apparatus able to generate a primary magnetic field during periods of nuclear spin transition excitation and magnetic resonance signal detection. This allows the generation of ESREMRI images of a subject. A primary magnetic field of a second and higher value generated during periods of nuclear spin transition excitation and magnetic resonance signal detection can be used to generate conventional MR images of a subject. The ESREMRI and native MR images so generated may be combined, (or superimposed). (author)

  20. Retrospective study on structural neuroimaging in first-episode psychosis

    Directory of Open Access Journals (Sweden)

    Ricardo Coentre

    2016-05-01

    Full Text Available Background. No consensus between guidelines exists regarding neuroimaging in first-episode psychosis. The purpose of this study is to assess anomalies found in structural neuroimaging exams (brain computed tomography (CT and magnetic resonance imaging (MRI in the initial medical work-up of patients presenting first-episode psychosis. Methods. The study subjects were 32 patients aged 18–48 years (mean age: 29.6 years, consecutively admitted with first-episode psychosis diagnosis. Socio-demographic and clinical data and neuroimaging exams (CT and MRI were retrospectively studied. Diagnostic assessments were made using the Operational Criteria Checklist +. Neuroimaging images (CT and MRI and respective reports were analysed by an experienced consultant psychiatrist. Results. None of the patients had abnormalities in neuroimaging exams responsible for psychotic symptoms. Thirty-seven percent of patients had incidental brain findings not causally related to the psychosis (brain atrophy, arachnoid cyst, asymmetric lateral ventricles, dilated lateral ventricles, plagiocephaly and falx cerebri calcification. No further medical referral was needed for any of these patients. No significant differences regarding gender, age, diagnosis, duration of untreated psychosis, in-stay and cannabis use were found between patients who had neuroimaging abnormalities versus those without. Discussion. This study suggests that structural neuroimaging exams reveal scarce abnormalities in young patients with first-episode psychosis. Structural neuroimaging is especially useful in first-episode psychosis patients with neurological symptoms, atypical clinical picture and old age.

  1. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  2. Neuroimaging in pediatric traumatic head injury: diagnostic considerations and relationships to neurobehavioral outcome.

    Science.gov (United States)

    Bigler, E D

    1999-08-01

    Contemporary neuorimaging techniques in child traumatic brain injury are reviewed, with an emphasis on computerized tomography (CT) and magnetic resonance (MR) imaging. A brief overview of MR spectroscopy (MRS), functional MR imaging (fMRI), single-photon emission computed tomography (SPECT), and magnetoencephalography (MEG) is also provided because these techniques will likely constitute important neuroimaging techniques of the future. Numerous figures are provided to illustrate the multifaceted manner in which traumatic deficits can be imaged and the role of neuroimaging information as it relates to TBI outcome.

  3. Specific magnetic resonance imaging findings in patient with progressive supranuciear palsy

    International Nuclear Information System (INIS)

    Vuchkova, R.; Zlatareva, D.

    2013-01-01

    Progressive supranuclear palsy (PSP) is a progressive neurodegenerative disease. The clinical symptoms are vertical supranuclear palsy, gait and postural instability, cognitive deficit, Parkinsonism. It is not always possible to differentiate clinically PSP from other atypical Parkinsonian syndromes and from Parkinson disease. We present a case of 56-years old women with clinically suspected PSP. The typical magnetic resonance findings were of most importance in diagnosis. For diagnosing the disease by means of neuroimaging it is necessary to analyze the sagittal MR images what is achievable in daily routine practice without additional software and post processing. (authors)

  4. Looking inside the brain the power of neuroimaging

    CERN Document Server

    Le Bihan, Denis

    2014-01-01

    It is now possible to witness human brain activity while we are talking, reading, or thinking, thanks to revolutionary neuroimaging techniques like magnetic resonance imaging (MRI). These groundbreaking advances have opened infinite fields of investigation—into such areas as musical perception, brain development in utero, and faulty brain connections leading to psychiatric disorders—and have raised unprecedented ethical issues. In Looking Inside the Brain, one of the leading pioneers of the field, Denis Le Bihan, offers an engaging account of the sophisticated interdisciplinary research in physics, neuroscience, and medicine that have led to the remarkable neuroimaging methods that give us a detailed look into the human brain. Introducing neurological anatomy and physiology, Le Bihan walks readers through the historical evolution of imaging technology—from the x-ray and CT scan to the PET scan and MRI—and he explains how neuroimaging uncovers afflictions like stroke or cancer and the workings of high...

  5. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Magnetic resonance imaging (MRI) is a new and innovative technique that affords anatomic images in multiple planes and that may provide information about tissue characterization. The magnetic resonance images are obtained by placing the patient or the area of interest within a powerful, highly uniform, static magnetic field. Magnetized protons (hydrogen nuclei) within the patient align like small magnets in this field. Radiofrequency pulses are then used to create an oscillating magnetic field perpendicular to the main field. Magnetic resonance images differ from those produced by x-rays: the latter are associated with absorption of x-ray energy while magnetic resonance images are based on proton density and proton relaxation dynamics. Proton characteristics vary according to the tissue under examination and reflect its physical and chemical properties. To resolve issues regarding safety and efficacy, the Warren Grant Magnuson Clinical Center and the Office of Medical Applications of Research of the National Institutes of Health (NIH) convened a consensus conference about MRI Oct 26 through 28, 1987. At the NIH, the Consensus Development Conference brings together investigators in the biomedical sciences, clinical investigators, practicing physicians, and consumer and special interest groups to make a scientific assessment of technologies, including drugs, devices, and procedures, and to seek agreement on their safety and effectiveness

  6. The Co-evolution of Neuroimaging and Psychiatric Neurosurgery.

    Science.gov (United States)

    Dyster, Timothy G; Mikell, Charles B; Sheth, Sameer A

    2016-01-01

    The role of neuroimaging in psychiatric neurosurgery has evolved significantly throughout the field's history. Psychiatric neurosurgery initially developed without the benefit of information provided by modern imaging modalities, and thus lesion targets were selected based on contemporary theories of frontal lobe dysfunction in psychiatric disease. However, by the end of the 20th century, the availability of structural and functional magnetic resonance imaging (fMRI) allowed for the development of mechanistic theories attempting to explain the anatamofunctional basis of these disorders, as well as the efficacy of stereotactic neuromodulatory treatments. Neuroimaging now plays a central and ever-expanding role in the neurosurgical management of psychiatric disorders, by influencing the determination of surgical candidates, allowing individualized surgical targeting and planning, and identifying network-level changes in the brain following surgery. In this review, we aim to describe the coevolution of psychiatric neurosurgery and neuroimaging, including ways in which neuroimaging has proved useful in elucidating the therapeutic mechanisms of neuromodulatory procedures. We focus on ablative over stimulation-based procedures given their historical precedence and the greater opportunity they afford for post-operative re-imaging, but also discuss important contributions from the deep brain stimulation (DBS) literature. We conclude with a discussion of how neuroimaging will transition the field of psychiatric neurosurgery into the era of precision medicine.

  7. Dizziness in a community hospital: central neurological causes, clinical predictors, and diagnostic yield and cost of neuroimaging studies.

    Science.gov (United States)

    Ammar, Hussam; Govindu, Rukma; Fouda, Ragai; Zohdy, Wael; Supsupin, Emilio

    2017-03-01

    Objectives : Neuroimaging is contributing to the rising costs of dizziness evaluation. This study examined the rate of central neurological causes of dizziness, relevant clinical predictors, and the costs and diagnostic yields of neuroimaging in dizziness assessment. Methods : We retrospectively reviewed the records of 521 adult patients who visited the hospital during a 12-month period with dizziness as the chief complaint. Clinical findings were analyzed using Fisher's exact test to determine how they correlated with central neurological causes of dizziness identified by neuroimaging. Costs and diagnostic yields of neuroimaging were calculated. Results : Of the 521 patients, 1.5% had dizziness produced by central neurological causes. Gait abnormalities, limb ataxia, diabetes mellitus, and the existence of multiple neurological findings predicted central causes. Cases were associated with gait abnormalities, limb ataxia, diabetes mellitus, and the existence of multiple neurological findings . Brain computed tomography (CT) and magnetic resonance imaging (MRI) were performed in 42% and 9.5% of the examined cases, respectively, with diagnostic yields of 3.6% and 12%, respectively. Nine cases of dizziness were diagnosed from 269 brain scans, costing $607 914. Conclusion : Clinical evaluation can predict the presence of central neurological causes of dizziness, whereas neuroimaging is a costly and low-yield approach. Guidelines are needed for physicians, regarding the appropriateness of ordering neuroimaging studies. Abbreviations : OR: odds ratio; CI: confidence interval; ED: emergency department; CT: computed tomography; MRI: magnetic resonance imaging; HINTS: Head impulse, Nystagmus, Test of skew.

  8. Pediatric magnetic resonance imaging

    International Nuclear Information System (INIS)

    Cohen, M.D.

    1986-01-01

    This book defines the current clinical potential of magnetic resonance imaging and focuses on direct clinical work with pediatric patients. A section dealing with the physics of magnetic resonance imaging provides an introduction to enable clinicians to utilize the machine and interpret the images. Magnetic resonance imaging is presented as an appropriate imaging modality for pediatric patients utilizing no radiation

  9. Advances in magnetic resonance 10

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  10. Update on neuroimaging phenotypes of mid-hindbrain malformations

    Energy Technology Data Exchange (ETDEWEB)

    Jissendi-Tchofo, Patrice [University Hospital of Lille (CHRU), Department of Neuroradiology, MRI 3T Research, Plateforme Imagerie du vivant, IMPRT-IFR 114, Lille-Cedex (France); CHU Saint-Pierre, Radiology Department, Pediatric Neuroradiology Section, Brussels (Belgium); Severino, Mariasavina [Istituto Giannina Gaslini, Neuroradiology Unit, Genoa (Italy); Nguema-Edzang, Beatrice; Toure, Cisse; Soto Ares, Gustavo [University Hospital of Lille (CHRU), Department of Neuroradiology, MRI 3T Research, Plateforme Imagerie du vivant, IMPRT-IFR 114, Lille-Cedex (France); Barkovich, Anthony James [University of California, Neuroradiology Section, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2014-10-23

    Neuroimaging techniques including structural magnetic resonance imaging (MRI) and functional positron emission tomography (PET) are useful in categorizing various midbrain-hindbrain (MHB) malformations, both in allowing diagnosis and in helping to understand the developmental processes that were disturbed. Brain imaging phenotypes of numerous malformations are characteristic features that help in guiding the genetic testing in case of direct neuroimaging-genotype correlation or, at least, to differentiate among MHB malformations entities. The present review aims to provide the reader with an update of the use of neuroimaging applications in the fine analysis of MHB malformations, using a comprehensive, recently proposed developmental and genetic classification. We have performed an extensive systematic review of the literature, from the embryology main steps of MHB development through the malformations entities, with regard to their molecular and genetic basis, conventional MRI features, and other neuroimaging characteristics. We discuss disorders in which imaging features are distinctive and how these features reflect the structural and functional impairment of the brain. Recognition of specific MRI phenotypes, including advanced imaging features, is useful to recognize the MHB malformation entities, to suggest genetic investigations, and, eventually, to monitor the disease outcome after supportive therapies. (orig.)

  11. Subependymal Heterotopia Mimicking Mass in Conventional Magnetic Resonance Imaging: Demonstration With 3T Advanced Neuroimages.

    Science.gov (United States)

    Aktas, Filiz; Ogul, Hayri

    2017-10-01

    The authors reported a rare patient with large subependymal heterotopia mimicking cerebral neoplasia. A 22-year-old female was admitted with a history of right-sided paresthesia accompanied by progressive headache. Cerebral magnetic resonance (MR) imaging showed a large solid lesion in the left frontal lobe. Advanced MR images proved that the lesion was compatible with subependymal heterotopia. Large subependymal heterotopia may mimick cerebral neoplasia.

  12. Children's (Pediatric) Magnetic Resonance Imaging

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  13. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  15. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  16. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging ( ... the limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a ...

  17. Magnetic resonance angiography (MRA)

    International Nuclear Information System (INIS)

    Arlart, I.P.; Guhl, L.

    1992-01-01

    An account is given in this paper of the physical and technical principles underlying the 'time-of-flight' technique for imaging of vessels by magnetic resonance tomography. Major indications for the new procedure of magnetic resonance angiography at present are intracerebral and extracerebral vessels, with digital subtraction angiography quite often being required to cope with minor alterations (small aneurysms, small occlusions). Magnetic resonance angiography and digital subtraction angiography are compared to each other for advantages and disadvantages. Basically, replacement of radiological angiography by magnetic resonance angiography appears to be possible only within limits, since X-ray diagnostics primarily provides morphological information about vessels, whereas flow dynamics is visualized by the 'time-of-flight' technique. (orig.) [de

  18. How the blind "see" Braille: lessons from functional magnetic resonance imaging.

    Science.gov (United States)

    Sadato, Norihiro

    2005-12-01

    What does the visual cortex of the blind do during Braille reading? This process involves converting simple tactile information into meaningful patterns that have lexical and semantic properties. The perceptual processing of Braille might be mediated by the somatosensory system, whereas visual letter identity is accomplished within the visual system in sighted people. Recent advances in functional neuroimaging techniques, such as functional magnetic resonance imaging, have enabled exploration of the neural substrates of Braille reading. The primary visual cortex of early-onset blind subjects is functionally relevant to Braille reading, suggesting that the brain shows remarkable plasticity that potentially permits the additional processing of tactile information in the visual cortical areas.

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  20. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    Science.gov (United States)

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  1. Integration of a neuroimaging processing pipeline into a pan-canadian computing grid

    International Nuclear Information System (INIS)

    Lavoie-Courchesne, S; Chouinard-Decorte, F; Doyon, J; Bellec, P; Rioux, P; Sherif, T; Rousseau, M-E; Das, S; Adalat, R; Evans, A C; Craddock, C; Margulies, D; Chu, C; Lyttelton, O

    2012-01-01

    The ethos of the neuroimaging field is quickly moving towards the open sharing of resources, including both imaging databases and processing tools. As a neuroimaging database represents a large volume of datasets and as neuroimaging processing pipelines are composed of heterogeneous, computationally intensive tools, such open sharing raises specific computational challenges. This motivates the design of novel dedicated computing infrastructures. This paper describes an interface between PSOM, a code-oriented pipeline development framework, and CBRAIN, a web-oriented platform for grid computing. This interface was used to integrate a PSOM-compliant pipeline for preprocessing of structural and functional magnetic resonance imaging into CBRAIN. We further tested the capacity of our infrastructure to handle a real large-scale project. A neuroimaging database including close to 1000 subjects was preprocessed using our interface and publicly released to help the participants of the ADHD-200 international competition. This successful experiment demonstrated that our integrated grid-computing platform is a powerful solution for high-throughput pipeline analysis in the field of neuroimaging.

  2. Magnetic resonance fingerprinting.

    Science.gov (United States)

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A

    2013-03-14

    Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.

  3. Advances in magnetic resonance 6

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 6 focuses on the theoretical and practical aspects of applying magnetic resonance methods to various problems in physical chemistry, emphasizing the different aspects of the exegesis of these problems. This book discusses the gas phase magnetic resonance of electronically excited molecules; techniques for observing excited electronic states; NMR studies in liquids at high pressure; and effect of pressure on self-diffusion in liquids. The nuclear magnetic resonance investigations of organic free radicals; measurement of proton coupling constants by NMR; an

  4. Neuroimaging of autism

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, Judith S; Cock, Paul de; Lagae, Lieven [University Hospitals of the Catholic University of Leuven, Department of Pediatrics, Leuven (Belgium); Sunaert, Stefan [University Hospitals of the Catholic University of Leuven, Department of Radiology, Leuven (Belgium)

    2010-01-15

    Neuroimaging studies done by means of magnetic resonance imaging (MRI) have provided important insights into the neurobiological basis for autism. The aim of this article is to review the current state of knowledge regarding brain abnormalities in autism. Results of structural MRI studies dealing with total brain volume, the volume of the cerebellum, caudate nucleus, thalamus, amygdala and the area of the corpus callosum are summarised. In the past 5 years also new MRI applications as functional MRI and diffusion tensor imaging brought considerable new insights in the pathophysiological mechanisms of autism. Dysfunctional activation in key areas of verbal and non-verbal communication, social interaction, and executive functions are revised. Finally, we also discuss white matter alterations in important communication pathways in the brain of autistic patients. (orig.)

  5. Neuroimaging of autism

    International Nuclear Information System (INIS)

    Verhoeven, Judith S.; Cock, Paul de; Lagae, Lieven; Sunaert, Stefan

    2010-01-01

    Neuroimaging studies done by means of magnetic resonance imaging (MRI) have provided important insights into the neurobiological basis for autism. The aim of this article is to review the current state of knowledge regarding brain abnormalities in autism. Results of structural MRI studies dealing with total brain volume, the volume of the cerebellum, caudate nucleus, thalamus, amygdala and the area of the corpus callosum are summarised. In the past 5 years also new MRI applications as functional MRI and diffusion tensor imaging brought considerable new insights in the pathophysiological mechanisms of autism. Dysfunctional activation in key areas of verbal and non-verbal communication, social interaction, and executive functions are revised. Finally, we also discuss white matter alterations in important communication pathways in the brain of autistic patients. (orig.)

  6. The Shepherd's Crook Sign: A New Neuroimaging Pareidolia in Joubert Syndrome.

    Science.gov (United States)

    Manley, Andrew T; Maertens, Paul M

    2015-01-01

    By pareidolically recognizing specific patterns indicative of particular diseases, neuroimagers reinforce their mnemonic strategies and improve their neuroimaging diagnostic skills. Joubert Syndrome (JS) is an autosomal recessive disorder characterized clinically by mental retardation, episodes of abnormal deep and rapid breathing, abnormal eye movements, and ataxia. Many neuroimaging signs characteristic of JS have been reported. In retrospective case study, two consanguineous neonates diagnosed with JS were evaluated with brain magnetic resonance imaging (MRI), computed tomography (CT), and neurosonography. Both cranial ultrasound and MRI of the brain showed the characteristic molar tooth sign. There was a shepherd's crook in the sagittal views of the posterior fossa where the shaft of the crook is made by the brainstem and the pons. The arc of the crook is made by the abnormal superior cerebellar peduncle and cerebellar hemisphere. By ultrasound, the shepherd's crook sign was seen through the posterior fontanelle only. CT imaging also showed the shepherd's crook sign. Neuroimaging diagnosis of JS, which already involves the pareidolical recognition of specific patterns indicative of the disease, can be improved by recognition of the shepherd's crook sign on MRI, CT, and cranial ultrasound. Copyright © 2014 by the American Society of Neuroimaging.

  7. Proton magnetic resonance spectroscopy and perfusion magnetic resonance imaging in the evaluation of musculoskeletal tumors

    International Nuclear Information System (INIS)

    Costa, Flavia Martins; Setti, Marcela; Vianna, Evandro Miguelote; Domingues, Romulo Cortes; Meohas, Walter; Rezende, Jose Francisco; Gasparetto, Emerson Leandro

    2009-01-01

    Objective: To assess the role of proton magnetic resonance spectroscopy and dynamic contrast-enhanced magnetic resonance imaging in the differentiation between malignant and benign musculoskeletal tumors. Materials And Methods: Fifty-five patients with musculoskeletal tumors (27 malignant and 28 benign) were studied. The examinations were performed in a 1.5 T magnetic resonance scanner with standard protocol, and single voxel proton magnetic resonance spectroscopy with 135 msec echo time. The dynamic contrast study was performed using T1-weighted gradient-echo sequence after intravenous gadolinium injection. Time signal intensity curves and slope values were calculated. The statistical analysis was performed with the Levene's test, followed by a Student's t-test, besides the Pearson's chi-squared and Fischer's exact tests. Results: Proton magnetic resonance spectroscopy sensitivity, specificity and accuracy were, respectively, 87.5%, 92.3% and 90.9% (p < 0.0001). Statistically significant difference was observed in the slope (%/min) between benign (mean, 27.5%/min) and malignant (mean, 110.9%/min) lesions (p < 0.0001). Conclusion: The time-intensity curve and slope values using dynamic-enhanced perfusion magnetic resonance imaging in association with the presence of choline peak demonstrated by single voxel magnetic resonance spectroscopy study are useful in the differentiation between malignant and benign musculoskeletal tumors. (author)

  8. Magnetic resonance for wireless power transfer

    OpenAIRE

    Hui, SYR

    2016-01-01

    Magnetic resonance has been a cornerstone of nonradiative wireless power transfer (WPT) since the late 19th century. However, some researchers have the misconception that magnetic resonance for WPT was developed recently. This article traces some early work of Tesla and other researchers related to the use of magnetic resonance in WPT. Included are some examples of magnetic resonance-based WPT projects conducted by researchers in the biomedical and power electronics communities over the last ...

  9. Cardiac magnetic resonance imaging

    African Journals Online (AJOL)

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  10. Contributions of neuroimaging in singing voice studies: a systematic review

    Directory of Open Access Journals (Sweden)

    Geová Oliveira de Amorim

    Full Text Available ABSTRACT It is assumed that singing is a highly complex activity, which requires the activation and interconnection of sensorimotor areas. The aim of the current research was to present the evidence from neuroimaging studies in the performance of the motor and sensory system in the process of singing. Research articles on the characteristics of human singing analyzed by neuroimaging, which were published between 1990 and 2016, and indexed and listed in databases such as PubMed, BIREME, Lilacs, Web of Science, Scopus, and EBSCO were chosen for this systematic review. A total of 9 articles, employing magnetoencephalography, functional magnetic resonance imaging, positron emission tomography, and electrocorticography were chosen. These neuroimaging approaches enabled the identification of a neural network interconnecting the spoken and singing voice, to identify, modulate, and correct pitch. This network changed with the singer's training, variations in melodic structure and harmonized singing, amusia, and the relationship among the brain areas that are responsible for speech, singing, and the persistence of musicality. Since knowledge of the neural networks that control singing is still scarce, the use of neuroimaging methods to elucidate these pathways should be a focus of future research.

  11. Uncovering the etiology of conversion disorder: insights from functional neuroimaging

    Science.gov (United States)

    Ejareh dar, Maryam; Kanaan, Richard AA

    2016-01-01

    Conversion disorder (CD) is a syndrome of neurological symptoms arising without organic cause, arguably in response to emotional stress, but the exact neural substrates of these symptoms and the underlying mechanisms remain poorly understood with the hunt for a biological basis afoot for centuries. In the past 15 years, novel insights have been gained with the advent of functional neuroimaging studies in patients suffering from CDs in both motor and nonmotor domains. This review summarizes recent functional neuroimaging studies including functional magnetic resonance imaging (fMRI), single photon emission computerized tomography (SPECT), and positron emission tomography (PET) to see whether they bring us closer to understanding the etiology of CD. Convergent functional neuroimaging findings suggest alterations in brain circuits that could point to different mechanisms for manifesting functional neurological symptoms, in contrast with feigning or healthy controls. Abnormalities in emotion processing and in emotion-motor processing suggest a diathesis, while differential reactions to certain stressors implicate a specific response to trauma. No comprehensive theory emerges from these clues, and all results remain preliminary, but functional neuroimaging has at least given grounds for hope that a model for CD may soon be found. PMID:26834476

  12. Advances in magnetic resonance 12

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 12, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains six chapters and begins with a discussion of diffusion and self-diffusion measurements by nuclear magnetic resonance. This is followed by separate chapters on spin-lattice relaxation time in hydrogen isotope mixtures; the principles of optical detection of nuclear spin alignment and nuclear quadropole resonance; and the spin-1 behavior, including the relaxation of the quasi-invariants of the motion of a system of pairs of dipolar coupled spin-1/2 nu

  13. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  14. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Robertson, Angus

    1990-01-01

    An assessment is made of the clinical benefits of expensive diagnostic technology, such as the magnetic resonance imaging. It is concluded that to most radiologists, magnetic resonance imaging has a definite place in the diagnostic scenario, especially for demonstrating central nervous system lesions in multiple sclerosis. While it is recognized that medical and financial resources are limited, it is emphasised that the cost to society must be balanced against the patient benefit. 17 refs

  15. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression.

    Science.gov (United States)

    McIntosh, Allison L; Gormley, Shane; Tozzi, Leonardo; Frodl, Thomas; Harkin, Andrew

    2017-01-01

    Magnetic resonance imaging (MRI) is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.

  16. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression

    Directory of Open Access Journals (Sweden)

    Allison L. McIntosh

    2017-05-01

    Full Text Available Magnetic resonance imaging (MRI is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.

  17. Advances in magnetic resonance 11

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 11, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters and begins with a discussion of the principles and applications of dynamic nuclear polarization, with emphasis on molecular motions and collisions, intermolecular couplings, and chemical interactions. Subsequent chapters focus on the assessment of a proposed broadband decoupling method and studies of time-domain (or Fourier transform) multiple-quantum nuclear magnetic resonance.

  18. Recent progress of neuroimaging studies on sleeping brain

    International Nuclear Information System (INIS)

    Sasaki, Yuka

    2012-01-01

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed. (author)

  19. [Recent progress of neuroimaging studies on sleeping brain].

    Science.gov (United States)

    Sasaki, Yuka

    2012-06-01

    Although sleep is a familiar phenomenon, its functions are yet to be elucidated. Understanding these functions of sleep is an important focus area in neuroscience. Electroencephalography (EEG) has been the predominantly used method in human sleep research but does not provide detailed spatial information about brain activation during sleep. To supplement the spatial information provided by this method, researchers have started using a combination of EEG and various advanced neuroimaging techniques that have been recently developed, including positron emission tomography (PET) and magnetic resonance imaging (MRI). In this paper, we will review the recent progress in sleep studies, especially studies that have used such advanced neuroimaging techniques. First, we will briefly introduce several neuroimaging techniques available for use in sleep studies. Next, we will review the spatiotemporal brain activation patterns during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, the dynamics of functional connectivity during sleep, and the consolidation of learning and memory during sleep; studies on the neural correlates of dreams, which have not yet been identified, will also be discussed. Lastly, possible directions for future research in this area will be discussed.

  20. Magnetic resonance imaging: effects of magnetic field strength

    International Nuclear Information System (INIS)

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-01-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields

  1. Introduction lecture to magnetic resonance

    International Nuclear Information System (INIS)

    Conard, J.

    1980-01-01

    This lecture deals with all that is common either to electron paramagnetic resonance (E.P.R.) or to nuclear magnetic resonance (N.M.R.). It will present, in an as elementary form as possible, the main concepts used in magnetic resonance emphasizing some aspects, specific for interface science. (orig./BHO)

  2. Functional-structural reorganisation of the neuronal network for auditory perception in subjects with unilateral hearing loss: Review of neuroimaging studies.

    Science.gov (United States)

    Heggdal, Peder O Laugen; Brännström, Jonas; Aarstad, Hans Jørgen; Vassbotn, Flemming S; Specht, Karsten

    2016-02-01

    This paper aims to provide a review of studies using neuroimaging to measure functional-structural reorganisation of the neuronal network for auditory perception after unilateral hearing loss. A literature search was performed in PubMed. Search criterions were peer reviewed original research papers in English completed by the 11th of March 2015. Twelve studies were found to use neuroimaging in subjects with unilateral hearing loss. An additional five papers not identified by the literature search were provided by a reviewer. Thus, a total of 17 studies were included in the review. Four different neuroimaging methods were used in these studies: Functional magnetic resonance imaging (fMRI) (n = 11), diffusion tensor imaging (DTI) (n = 4), T1/T2 volumetric images (n = 2), magnetic resonance spectroscopy (MRS) (n = 1). One study utilized two imaging methods (fMRI and T1 volumetric images). Neuroimaging techniques could provide valuable information regarding the effects of unilateral hearing loss on both auditory and non-auditory performance. fMRI-studies showing a bilateral BOLD-response in patients with unilateral hearing loss have not yet been followed by DTI studies confirming their microstructural correlates. In addition, the review shows that an auditory modality-specific deficit could affect multi-modal brain regions and their connections. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Advances in magnetic resonance 9

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 9 describes the magnetic resonance in split constants and dipolar relaxation. This book discusses the temperature-dependent splitting constants in the ESR spectra of organic free radicals; temperature-dependent splittings in ion pairs; and magnetic resonance induced by electrons. The electron impact excitation of atoms and molecules; intramolecular dipolar relaxation in multi-spin systems; and dipolar cross-correlation problem are also elaborated. This text likewise covers the NMR studies of molecules oriented in thermotropic liquid crystals and diffusion

  4. Early neuroimaging findings of glioblastoma mimicking non-neoplastic cerebral lesion.

    Science.gov (United States)

    Jung, Tae-Young; Jung, Shin

    2007-09-01

    A 54-year-old man and a 63-year-old woman presented with glioblastoma manifesting as seizure and headache, respectively. Magnetic resonance imaging of the two patients revealed hypointense area on T(1)-weighted imaging, and hyperintense area on T(2)-weighted and diffusion-weighted imaging, with no enhancement after gadolinium administration. Both patients underwent conservative therapy under diagnoses of non-neoplastic cerebral lesion. Six months later, they suffered aggravated symptoms and new neurological deficits. Follow-up magnetic resonance imaging revealed hypointense area on diffusion-weighted imaging and ring enhancement on T(1)-weighted imaging with gadolinium at the site of the previously detected lesions. The tumors showed growth pattern of superficial origin. The large enhanced masses were totally removed through craniotomy under neuronavigator guidance. The histological diagnoses were glioblastoma. Glioblastoma may mimic non-neoplastic conditions on neuroimaging in the early stages. Close follow up of such patients is essential.

  5. Technological challenges in Magnetic Resonance Imaging: enhancing sensitivity, moving to quantitative imaging and searching for disease biomarkers

    Science.gov (United States)

    Retico, A.

    2018-02-01

    Diagnostic imaging based on the Nuclear Magnetic Resonance phenomenon has increasingly spread in the recent few decades, mainly owing to its exquisite capability in depicting a contrast between soft tissues, to its generally non-invasive nature, and to the priceless advantage of using non-ionizing radiation. Magnetic Resonance (MR)-based acquisition techniques allow gathering information on the structure (through Magnetic Resonance Imaging— MRI), the metabolic composition (through Magnetic Resonance Spectroscopy—MRS), and the functioning (through functional MRI —fMRI) of the human body. MR investigations are the methods of choice for studying the brain in vivo, including anatomy, structural wiring and functional connectivity, in healthy and pathological conditions. Alongside the efforts of the clinical research community in extending the acquisition protocols to allow the exploration of a large variety of pathologies affecting diverse body regions, some relevant technological improvements are on the way to maximize the impact of MR in medical diagnostic. The development of MR scanners operating at ultra-high magnetic field (UHF) strength (>= 7 tesla), is pushing forward the spatial resolution of MRI and the spectral resolution of MRS, and it is increasing the specificity of fMRI to grey matter signal. UHF MR systems are currently in use for research purposes only; nevertheless, UHF technological advances are positively affecting MR investigations at clinical field strengths. To overcome the current major limitation of MRI, which is mostly based on contrast between tissues rather than on absolute measurements of physical quantities, a new acquisition modality is under development, which is referred as Magnetic Resonance Fingerprinting technique. Finally, as neuroimaging data acquired worldwide are reaching the typical size of Big Data, dedicated technical solutions are required to mine large amount of information and to identify specific biomarkers of

  6. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining ...

  7. Magnetic resonance study of maghemite-based magnetic fluid

    International Nuclear Information System (INIS)

    Figueiredo, L.C.; Lacava, B.M.; Skeff Neto, K.; Pelegrini, F.; Morais, P.C.

    2008-01-01

    This study reports on the magnetic resonance (MR) data (X-band experiment) of 10.2 nm average diameter maghemite nanoparticle in the temperature range of 100-230 K. Maghemite nanoparticles were suspended as low-pH ionic magnetic fluid containing 2.3x10 17 particles/cm 3 . The temperature dependence of both resonance linewidth and resonance field of the zero-field-cooled sample as well as the resonance field of the field-cooled sample (angular variation experiment) was analyzed using well-established methodology. Information regarding particle size, particle clusterization and surface magnetic anisotropy were obtained from the analysis of the MR data. The number of magnetic sites per particle from the MR data is in excellent agreement with the number provided by the transmission electron microscopy (TEM) data. The demagnetizing field value obtained from the MR data indicates cluster of particles containing on average 1.42 particles. The MR angular variation data suggest that magnetoelastic effect accounts for the non-linearity observed for the surface component of the magnetic anisotropy

  8. Advances in magnetic resonance 1

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 1, discusses developments in various areas of magnetic resonance. The subject matter ranges from original theoretical contributions through syntheses of points of view toward series of phenomena to critical and painstaking tabulations of experimental data. The book contains six chapters and begins with a discussion of the theory of relaxation processes. This is followed by separate chapters on the development of magnetic resonance techniques for studying rate processes in chemistry and the application of these techniques to various problems; the geometri

  9. Resonant and nonresonant magnetic scattering (invited)

    International Nuclear Information System (INIS)

    McWhan, D.B.; Hastings, J.B.; Kao, C.; Siddons, D.P.

    1992-01-01

    The tunability and the polarization of synchrotron radiation open up new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and they fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin-polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation

  10. A superconducting magnet for whole-body magnetic-resonance imaging

    International Nuclear Information System (INIS)

    Kan, Hisao; Watanabe, Tsugio; Takechi, Moriaki; Ogino, Osamu; Yamada, Tadatoshi

    1986-01-01

    Magnetic-resonance imaging is a promising new clinical diagnosis system that employs magnetic resonance to generate cross-sectional images of the object under examination. A large magnet plays a critical role in this system-it must supply a high-strength magnetic field that meets rigid standards of space and time uniformity. Mitsubishi Electric has developed a superconducting magnet that not only offers excellent magnetic characteristics but also features reduced helium consumption and a horizontal service port, and permits direct mounting of a magnetic shield. (author)

  11. Functional neuroimaging in the assessment of cerebral ischaemia

    International Nuclear Information System (INIS)

    Sartor, K.; Heiland, S.

    1997-01-01

    Cerebral infarct causes over 170, 000 deaths per year in the United States. Recent developments in neuroimaging are providing an insight into focal cerebral ischaemia, including its pathophysiology and the area of brain at risk. Perfusion-weighted magnetic resonance (MR) allows evaluation of the blood supply to the ischaemic area, and diffusion-weighted MR permits assessment of tissue damage. Although both functional imaging techniques require some refinement, it is likely that they will soon become part of the normal clinical routine and allow accurate characterisation of pathology. It is expected that this may eventually lead to the development of new treatments. (orig.)

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association ... MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  13. Magnetic resonance elastometry using a single-sided permanent magnet

    International Nuclear Information System (INIS)

    Tan, Carl S; Marble, Andrew E; Ono, Yuu

    2012-01-01

    In this paper, we describe a magnetic resonance method of measuring material elasticity using a single-sided magnet with a permanent static field gradient. This method encodes sample velocity in a reciprocal space using Hahn spin-echoes with variable timing. The experimental results show a strong correlation between magnetic resonance signal attenuation and elasticity when an oscillating force is applied on the sample. This relationship in turn provides us with information about the displacement velocity experienced by the sample, which is inversely proportional to Young's modulus. The proposed method shows promise in offering a portable and cost-effective magnetic resonance elastography system. (paper)

  14. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses ... identify and accurately characterize diseases than other imaging methods. This detail makes MRI an invaluable tool in ...

  15. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  16. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful ... for an MRI exam contains a metal called gadolinium . Gadolinium can be used in patients with iodine ...

  17. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... work? Unlike conventional x-ray examinations and computed tomography (CT) scans, MRI does not utilize ionizing radiation. Instead, ... Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging (MRI) Safety Contrast Materials Children ...

  18. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  19. Exploring brain function with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Di Salle, F.; Formisano, E.; Linden, D.E.J.; Goebel, R.; Bonavita, S.; Pepino, A.; Smaltino, F.; Tedeschi, G.

    1999-01-01

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology

  20. Exploring brain function with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Di Salle, F.; Formisano, E.; Linden, D.E.J.; Goebel, R.; Bonavita, S.; Pepino, A.; Smaltino, F.; Tedeschi, G

    1999-05-01

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology.

  1. Nuclear magnetic resonance gyroscope

    International Nuclear Information System (INIS)

    Grover, B.C.

    1984-01-01

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor

  2. Magnetically coupled Fano resonance of dielectric pentamer oligomer

    International Nuclear Information System (INIS)

    Zhang, Fuli; Li, Chang; He, Xuan; Chen, Lei; Fan, Yuancheng; Zhao, Qian; Zhang, Weihong; Zhou, Ji

    2017-01-01

    We present magnetically induced Fano resonance inside a dielectric metamaterial pentamer composed of ceramic bricks. Unlike previous reports where different sizes of dielectric resonators were essential to produce Fano resonance, under external magnetic field excitation, central and outer dielectric bricks with identical sizes exhibit in-phase and out-of-phase magnetic Mie oscillations. An asymmetric line shape of Fano resonance along with enhanced group delay is observed due to the interference between the magnetic resonance of the central brick and the symmetric magnetic resonance of outer bricks. Besides, Fano resonance blueshifts with the increasing resonance of the smaller central brick. The thermal-dependent permittivity of ceramics allows Fano resonance to be reversibly tuned by 300 MHz when temperature varies by 60 °C. (paper)

  3. Advances in mechanical detection of magnetic resonance

    International Nuclear Information System (INIS)

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge.

  4. Investigation of magnetic interactions in sulfides by means of magnetic resonance

    International Nuclear Information System (INIS)

    Veen, G. van.

    1978-01-01

    Investigations have been designed to gather more information about magnetic pair interactions in sulfides by isomorphic substitution of the magnetic ions in suitable chosen diamagnetic host lattices and measurement of electron spin resonance of coupled pairs and of electron spin resonance or electron nuclear double resonance of the hyperfine interaction due to the nuclei of diamagnetic cations. The greater part of this thesis is devoted to preliminaries of magnetic resonance interpretation and sample selection and preparation. The measurements on the magnetically diluted compounds, which are described, only have an exploratory nature. (Auth.)

  5. Magnetic resonance imaging the basics

    CERN Document Server

    Constantinides, Christakis

    2014-01-01

    Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction and provides a detailed explanation of the mathematical formulation of MRI. Numerous image quantitative indices are discussed, including (among others) signal, noise, signal-to-noise, contrast, and resolution. The second part of the book examines the hardware and electronics of an MRI scanner and the typical measurements and simulations of m...

  6. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus...... on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification methods. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We...

  7. Neuroimaging. Recent issues and future progresses

    International Nuclear Information System (INIS)

    Fukuyama, Hidenao

    2002-01-01

    Recent advances in the technology of non-invasive neuroimaging techniques, include X-ray CT, magnetic resonance imaging, positron CT, etc. The trend of neuroimaging is from the diagnosis of the brain structural change to the functional localization of the brain function with accurate topographical data. Brain activation studies disclosed the responsible regions in the brain for various kinds of paradigms, including motor, sensory, cognitive functions. Another aspect of brain imaging shows the pathophysiological changes of the neurological disorders, such as Alzheimer's disease by abnormal CBF or metabolism changes. It is very important to note that the neurotransmitter receptor imaging is now available for various kinds of transmitters. We recently developed a new tracer for nicotinic type acetylcholine receptor, which might be involved in the pathophysiology of Alzheimer's disease and its treatment. In the near future, we will be able to visualize the proteins in the brain such as amyloid protein, which will make us to diagnose Alzheimer's patients accurately, and with respect to neuroscience research, not only neuronal functional localizations but also relationship between them will become important to disclose the functional aspects of the brain. (author)

  8. Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Douglas C.; Dirks, Holly; Walker, Lindsay; Lehman, Katie; Han, Michelle; Waskiewicz, Nicole; Deoni, Sean C.L. [Brown University, Advanced Baby Imaging Lab, School of Engineering, Providence, RI (United States); O' Muircheartaigh, Jonathan [Brown University, Advanced Baby Imaging Lab, School of Engineering, Providence, RI (United States); King' s College London, Institute of Psychiatry, Department of NeuroImaging Sciences, London (United Kingdom); Jerskey, Beth A. [Brown University, Department of Human Behaviour and Psychiatry, Warren Alpert Medical School, Providence, RI (United States)

    2014-01-15

    Etiological studies of many neurological and psychiatric disorders are increasingly turning toward longitudinal investigations of infant brain development in order to discern predisposing structural and/or functional differences prior to the onset of overt clinical symptoms. While MRI provides a noninvasive window into the developing brain, MRI of infants and toddlers is challenging due to the modality's extreme motion sensitivity and children's difficulty in remaining still during image acquisition. Here, we outline a broad research protocol for successful MRI of children under 4 years of age during natural, non-sedated sleep. All children were imaged during natural, non-sedated sleep. Active and passive measures to reduce acoustic noise were implemented to reduce the likelihood of the children waking up during acquisition. Foam cushions and vacuum immobilizers were used to limit intra-scan motion artifacts. More than 380 MRI datasets have been successfully acquired from 220 children younger than 4 years of age within the past 39 months. Implemented measures permitted children to remain asleep for the duration of the scan and allowed the data to be acquired with an overall 97% success rate. The proposed method greatly advances current pediatric imaging techniques and may be readily implemented in other research and clinical settings to facilitate and further improve pediatric neuroimaging. (orig.)

  9. Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep

    International Nuclear Information System (INIS)

    Dean, Douglas C.; Dirks, Holly; Walker, Lindsay; Lehman, Katie; Han, Michelle; Waskiewicz, Nicole; Deoni, Sean C.L.; O'Muircheartaigh, Jonathan; Jerskey, Beth A.

    2014-01-01

    Etiological studies of many neurological and psychiatric disorders are increasingly turning toward longitudinal investigations of infant brain development in order to discern predisposing structural and/or functional differences prior to the onset of overt clinical symptoms. While MRI provides a noninvasive window into the developing brain, MRI of infants and toddlers is challenging due to the modality's extreme motion sensitivity and children's difficulty in remaining still during image acquisition. Here, we outline a broad research protocol for successful MRI of children under 4 years of age during natural, non-sedated sleep. All children were imaged during natural, non-sedated sleep. Active and passive measures to reduce acoustic noise were implemented to reduce the likelihood of the children waking up during acquisition. Foam cushions and vacuum immobilizers were used to limit intra-scan motion artifacts. More than 380 MRI datasets have been successfully acquired from 220 children younger than 4 years of age within the past 39 months. Implemented measures permitted children to remain asleep for the duration of the scan and allowed the data to be acquired with an overall 97% success rate. The proposed method greatly advances current pediatric imaging techniques and may be readily implemented in other research and clinical settings to facilitate and further improve pediatric neuroimaging. (orig.)

  10. [Magnetic resonance compatibility research for coronary mental stents].

    Science.gov (United States)

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.

  11. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  12. The nuclear magnetic resonance well logging

    International Nuclear Information System (INIS)

    Zhang Yumin; Shen Huitang

    2003-01-01

    In this paper, the characteristic of the nuclear magnetic resonance logging is described at first. Then its development and its principle is presented. Compared with the nuclear magnetic resonance spectrometer, the magnet techniques is the first question that we must solve in the manufacture of the NMR well logging

  13. Advances in magnetic and optical resonance

    CERN Document Server

    Warren, Warren S

    1997-01-01

    Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.

  14. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  15. Advances on functional neuroimaging in substance misuse

    International Nuclear Information System (INIS)

    Lv Rongbin; Liu Xingdang; Han Mei

    2009-01-01

    Over the past decade, functional neuroimaging has contributed greatly to our knowledge about the neuropharmacology of substance misuse in man. In this review, discussed the application and the progress of the positron emission tomography, single photon emission computed tomography and functional magnetic resonance imaging in the substance misuse. After reading some papers, found that the dopamine transporter was significantly decreased in the brain of subjects with heroin abuse. Also observed a significant decrease of regional cerebral blood flow in bilateral cerebral frontal lobes, temporal lobes, the insula and the ipsilateral basal nuclei in substance misuse subjects. Taken together, functional images will lead the direction in future research formedication development of addiction treatment. (authors)

  16. Linking variability in brain chemistry and circuit function through multimodal human neuroimaging

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Hariri, A R

    2012-01-01

    and dopamine system and its effects on threat- and reward-related brain function, we review evidence for how such a multimodal neuroimaging strategy can be successfully implemented. Furthermore, we discuss how multimodal PET-fMRI can be integrated with techniques such as imaging genetics, pharmacological......Identifying neurobiological mechanisms mediating the emergence of individual differences in behavior is critical for advancing our understanding of relative risk for psychopathology. Neuroreceptor positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) can be used...

  17. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  18. Nuclear magnetic resonance diagnostic apparatus

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1985-01-01

    Nuclear magnetic resonance diagnostic apparatus including a coil for generating a gradient field in a plane perpendicular to a static magnetic field, means for controlling the operation of the coil to rotationally shift in angular steps the gradient direction of the gradient field at an angle pitch of some multiple of the unit index angle through a plurality of rotations to assume all the shift positions of the gradient direction, a rough image reconstructor for reconstructing a rough tomographic image on the basis of nuclear magnetic resonance signals acquired during a rotation of the second gradient magnetic field, a rough image display for depicting the rough tomographic image, a final image reconstructor for reconstructing a final tomographic image on the basis of all nuclear magnetic resonance signals corresponding to all of the expected rotation shift positions acquired during a plurality of rotations and a final image display for depicting the final tomographic image

  19. Nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Lambert, R.

    1991-01-01

    In order to include the effect of a magnetic object in a subject under investigation, Nuclear Magnetic Resonance (NMR) apparatus is operable at more than one radio frequency (RF) frequency. The apparatus allows normal practice as far as obtaining an NMR response or image from a given nuclear species is concerned, but, in addition, interrogates the nuclear spin system at a frequency which is different from the resonance frequency normally used for the given nuclear species, as determined from the applied magnetic field. The magnetic field close to a magnetised or magnetisable object is modified and the given nuclear species gives a response at the different frequency. Thus detection of a signal at the frequency indicates the presence of the chosen nuclei close to the magnetised or magnetisable object. Applications include validation of an object detection or automatic shape inspection system in the presence of magnetic impurities, and the detection of magnetic particles which affect measurement of liquid flow in a pipe. (author)

  20. Magnetic resonance and porous materials

    International Nuclear Information System (INIS)

    McDonald, P.; Strange, J.

    1998-01-01

    Mention the words magnetic resonance to your medical advisor and he or she will immediately think of a multi-million pound scanner that peers deep into the brain. A chemist, on the other hand, will imagine a machine that costs several hundred thousand pounds and produces high-resolution spectra for chemical analysis. Food technologists will probably think of a bench-top instrument for determining moisture content, while an oil prospector will envisage a device that can be operated several kilometres down an oil well. To a physicist the term is more likely to conjure up a mental picture of nuclear spins precessing in a magnetic field. These examples illustrate the diverse aspects of a phenomenon discovered by physicists over 50 years ago. Electron spin resonance was first discovered by Russian scientists, and nuclear magnetic resonance was discovered in the US shortly afterwards by Ed Purcell at Harvard University and Felix Bloch at Stanford University. Today, nuclear magnetic resonance (NMR) is the most widely used technique. Modern NMR machines are making it possible to probe microstructure and molecular movement in materials as diverse as polymers, cements, rocks, soil and foods. NMR allows the distribution of different components in a material to be determined with a resolution approaching 1μm, although the signal can be sensitive to even smaller lengthscales. In this article the authors describe how physicists are still developing magnetic resonance to exploit a range of new applications. (UK)

  1. Magnetic resonance imaging by using nano-magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Khorramdin, A. [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Isapour, Gh. [Department of Materials and Engineering, Hakim Sabzevari University (Iran, Islamic Republic of)

    2014-11-15

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants. - Highlights: • This paper studies the physics of MRI as a powerful diagnostic technique. • MRI uses the differentiation between healthy and pathological tissues. • The relaxation times can be shortened by the use of a magnetic contrast agent. • The magnetic nanoparticles act as contrast agents, helping to increase the resolution. • Different synthesis methods can influence the magnetic resonance behavior.

  2. Neuroimaging Studies of Essential Tremor: How Well Do These Studies Support/Refute the Neurodegenerative Hypothesis?

    Directory of Open Access Journals (Sweden)

    Elan D. Louis

    2014-05-01

    Full Text Available Background: Tissue‐based research has recently led to a new patho‐mechanistic model of essential tremor (ET—the cerebellar degenerative model. We are not aware of a study that has reviewed the current neuroimaging evidence, focusing on whether the studies support or refute the neurodegenerative hypothesis of ET. This was our aim.Methods: References for this review were identified by searches of PubMed (1966 to February 2014.Results: Several neuroimaging methods have been used to study ET, most of them based on magnetic resonance imaging (MRI. The methods most specific to address the question of neurodegeneration are MRI‐based volumetry, magnetic resonance spectroscopy, and diffusion‐weighted imaging. Studies using each of these methods provide support for the presence of cerebellar degeneration in ET, finding reduced cerebellar brain volumes, consistent decreases in cerebellar N‐acetylaspartate, and increased mean diffusivity. Other neuroimaging techniques, such as functional MRI and positron emission tomography (PET are less specific, but still sensitive to potential neurodegeneration. These techniques are used for measuring a variety of brain functions and their impairment. Studies using these modalities also largely support cerebellar neuronal impairment. In particular, changes in 11C‐flumazenil binding in PET studies and changes in iron deposition in an MRI study provide evidence along these lines. The composite data point to neuronal impairment and likely neuronal degeneration in ET.Discussion: Recent years have seen a marked increase in the number of imaging studies of ET. As a whole, the combined data provide support for the presence of cerebellar neuronal degeneration in this disease.

  3. Research progress of functional magnetic resonance imaging in cross-modal activation of visual cortex during tactile perception

    International Nuclear Information System (INIS)

    Zhan Jie; Gong Honghan

    2013-01-01

    An increasing amount of neuroimaging studies recently demonstrated activation of visual cortex in both blind and sighted participants when performing a variety of tactile tasks such as Braille reading and tactile object recognition, which indicates that visual cortex not only receives visual information, but may participate in tactile perception. To address these cross-modal changes of visual cortex and the neurophysiological mechanisms, many researchers conducted explosive studies using functional magnetic resonance imaging (fMRI) and have made some achievements. This review focuses on cross-modal activation of visual cortex and the underlying mechanisms during tactile perception in both blind and sighted individuals. (authors)

  4. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Douaud, Gwenaëlle; Filippini, Nicola; Knight, Steven; Talbot, Kevin; Turner, Martin R

    2011-12-01

    Amyotrophic lateral sclerosis as a system failure is a concept supported by the finding of consistent extramotor as well as motor cerebral pathology. The functional correlates of the structural changes detected using advanced magnetic resonance imaging techniques such as diffusion tensor imaging and voxel-based morphometry have not been extensively studied. A group of 25 patients with amyotrophic lateral sclerosis was compared to healthy control subjects using a multi-modal neuroimaging approach comprising T(1)-weighted, diffusion-weighted and resting-state functional magnetic resonance imaging. Using probabilistic tractography, a grey matter connection network was defined based upon the prominent corticospinal tract and corpus callosum involvement demonstrated by white matter tract-based spatial statistics. This 'amyotrophic lateral sclerosis-specific' network included motor, premotor and supplementary motor cortices, pars opercularis and motor-related thalamic nuclei. A novel analysis protocol, using this disease-specific grey matter network as an input for a dual-regression analysis, was then used to assess changes in functional connectivity directly associated with this network. A spatial pattern of increased functional connectivity spanning sensorimotor, premotor, prefrontal and thalamic regions was found. A composite of structural and functional magnetic resonance imaging measures also allowed the qualitative discrimination of patients from controls. An integrated structural and functional connectivity approach therefore identified apparently dichotomous processes characterizing the amyotrophic lateral sclerosis cerebral network failure, in which there was increased functional connectivity within regions of decreased structural connectivity. Patients with slower rates of disease progression showed connectivity measures with values closer to healthy controls, raising the possibility that functional connectivity increases might not simply represent a

  5. Magnetic resonance imaging of the prostate

    DEFF Research Database (Denmark)

    Iversen, P; Kjaer, L; Thomsen, C

    1988-01-01

    Magnetic resonance imaging offers new possibilities in investigation of the prostate gland. Current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be useful in the staging of carcinoma of the prostate....

  6. Nonhuman primate positron emission tomography neuroimaging in drug abuse research.

    Science.gov (United States)

    Howell, Leonard Lee; Murnane, Kevin Sean

    2011-05-01

    Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive properties. With novel radiotracers and enhanced resolution, PET neuroimaging techniques have also characterized in vivo drug interactions with specific protein targets in the brain, including neurotransmitter receptors and transporters. In vivo determinations of cerebral blood flow and metabolism have localized brain circuits implicated in the effects of abused drugs and drug-associated stimuli. Moreover, determinations of the predisposing factors to chronic drug use and long-term neurobiological consequences of chronic drug use, such as potential neurotoxicity, have led to novel insights regarding the pathology and treatment of drug addiction. However, similar approaches clearly need to be extended to drug classes other than stimulants. Although dopaminergic systems have been extensively studied, other neurotransmitter systems known to play a critical role in the pharmacological effects of abused drugs have been largely ignored in nonhuman primate PET neuroimaging. Finally, the study of brain activation with PET neuroimaging has been replaced in humans mostly by functional magnetic resonance imaging (fMRI). There has been some success in implementing pharmacological fMRI in awake nonhuman primates. Nevertheless, the unique versatility of PET imaging will continue to complement the systems-level strengths of fMRI, especially in the context of nonhuman primate drug abuse research.

  7. Heterogeneity within autism spectrum disorders: what have we learned from neuroimaging studies?

    Directory of Open Access Journals (Sweden)

    Rhoshel Krystyna Lenroot

    2013-10-01

    Full Text Available Autism spectrum disorders (ASD display significant heterogeneity. Although most neuroimaging studies in ASD have been designed to identify commonalities among affected individuals, rather than differences, some studies have explored variation within ASD. There have been two general types of approaches used for this in the neuroimaging literature to date: comparison of subgroups within ASD, and analyses using dimensional measures to link clinical variation to brain differences. This review focuses on structural and functional magnetic resonance imaging studies that have used these approaches to begin to explore heterogeneity between individuals with ASD. Although this type of data is yet sparse, recognition is growing of the limitations of behaviourally defined categorical diagnoses for understanding neurobiology. Study designs that are more informative regarding the sources of heterogeneity in ASD have the potential to improve our understanding of the neurobiological processes underlying ASD.

  8. Neuropsychiatric dynamics: the study of mental illness using functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Callicott, Joseph H.; Weinberger, Daniel R.

    1999-01-01

    Functional magnetic resonance imaging (fMRI) is poised to make significant contributions to the study of neuropsychiatric illnesses. Whatever neural pathology attends such illnesses has proven subtle at best. By identifying predictable, regionally specific deficits in brain function, fMRI can suggest brain regions for detailed cellular analyses, provide valuable in vivo data regarding effective connectivity, provide a means to model the effects of various drug challenge paradigms, and characterize intermediate phenotypes in the search for the genes underlying mental illness. Nonetheless, as promising as fMRI appears to be in terms of its relative safety, repeatability, ability to generate individual brain maps and widespread availability, it is still subject to a number of unresolved conceptual conundrums inherited from earlier neuroimaging work. For example, functional neuroimaging has not generated any pathognomic findings in mental illness, has not established a clear link between neurophysiology and observable behavior, and has not resolved the potential confounds of medication. In this article, we will review the relevant historical background preceding fMRI, address methodological considerations in fMRI, and summarize recent fMRI findings in psychiatry. Finally, fMRI is being used to simplify the complex genetics of neuropsychiatric illness by generating quantitative and qualitative brain phenotypes

  9. Neuropsychiatric dynamics: the study of mental illness using functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Callicott, Joseph H. E-mail: callicoj@intra.nimh.nih.gov; Weinberger, Daniel R

    1999-05-01

    Functional magnetic resonance imaging (fMRI) is poised to make significant contributions to the study of neuropsychiatric illnesses. Whatever neural pathology attends such illnesses has proven subtle at best. By identifying predictable, regionally specific deficits in brain function, fMRI can suggest brain regions for detailed cellular analyses, provide valuable in vivo data regarding effective connectivity, provide a means to model the effects of various drug challenge paradigms, and characterize intermediate phenotypes in the search for the genes underlying mental illness. Nonetheless, as promising as fMRI appears to be in terms of its relative safety, repeatability, ability to generate individual brain maps and widespread availability, it is still subject to a number of unresolved conceptual conundrums inherited from earlier neuroimaging work. For example, functional neuroimaging has not generated any pathognomic findings in mental illness, has not established a clear link between neurophysiology and observable behavior, and has not resolved the potential confounds of medication. In this article, we will review the relevant historical background preceding fMRI, address methodological considerations in fMRI, and summarize recent fMRI findings in psychiatry. Finally, fMRI is being used to simplify the complex genetics of neuropsychiatric illness by generating quantitative and qualitative brain phenotypes.

  10. Magnetic resonance imaging of the prostate

    DEFF Research Database (Denmark)

    Iversen, P; Kjaer, L; Thomsen, C

    1987-01-01

    Magnetic resonance imaging offers new possibilities in the investigation of the prostate. The current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be of value in the staging of carcinoma of the prostate....

  11. Magnetic resonance of low dimensional magnetic solids

    Energy Technology Data Exchange (ETDEWEB)

    Gatteschi, D.; Ferraro, F.; Sessoli, R. (Florence Univ. (Italy))

    1994-06-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs.

  12. Magnetic resonance of low dimensional magnetic solids

    International Nuclear Information System (INIS)

    Gatteschi, D.; Ferraro, F.; Sessoli, R.

    1994-01-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs

  13. The nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Goyer, Ph.

    1997-01-01

    The spectroscopy of nuclear magnetic resonance constitutes a major analytical technique in biological and organic analysis. This technique appears now in the programme of preparatory classes and its teaching is developed in the second year of DEUG. The following article reviews on the nuclear magnetic resonance and on the possibilities it offers to bring to the fore the physico-chemical properties of molecules. (N.C.)

  14. Advances in magnetic resonance 2

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 2, features a mixture of experimental and theoretical contributions. The book contains four chapters and begins with an ambitious and general treatment of the problem of signal-to-noise ratio in magnetic resonance. This is followed by separate chapters on the interpretation of nuclear relaxation in fluids, with special reference to hydrogen; and various aspects of molecular theory of importance in NMR.

  15. Magnetic resonance annual, 1988

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system

  16. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

    OpenAIRE

    Gorgolewski, Krzysztof J.; Auer, Tibor; Calhoun, Vince D.; Craddock, R. Cameron; Das, Samir; Duff, Eugene P.; Flandin, Guillaume; Ghosh, Satrajit S.; Glatard, Tristan; Halchenko, Yaroslav O.; Handwerker, Daniel A.; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary

    2016-01-01

    International audience; The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment....

  17. Magnetic resonance angiography

    Science.gov (United States)

    ... Saunders; 2015:chap 17. Litt H, Carpenter JP. Magnetic resonance imaging. In: Cronenwett JL, Johnston KW, eds. Rutherford's Vascular Surgery . 8th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap ...

  18. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... magnetic resonance imaging (MRI) uses a powerful magnetic field, radio waves and a computer to produce detailed ... problems, medications, recent surgeries and allergies. The magnetic field is not harmful, but it may cause some ...

  19. The amygdala in schizophrenia: a trimodal magnetic resonance imaging study.

    Science.gov (United States)

    Kalus, Peter; Slotboom, Johannes; Gallinat, Jürgen; Wiest, Roland; Ozdoba, Christoph; Federspiel, Andrea; Strik, Werner K; Buri, Caroline; Schroth, Gerhard; Kiefer, Claus

    2005-03-03

    In schizophrenic psychoses, structural and functional alterations of the amygdala have been demonstrated by several neuroimaging studies. However, postmortem examinations on the brains of schizophrenics did not confirm the volume changes reported by volumetric magnetic resonance imaging (MRI) studies. In order to address these contradictory findings and to further elucidate the possibly underlying pathophysiological process of the amygdala, we employed a trimodal MRI design including high-resolution volumetry, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) in a sample of 14 schizophrenic patients and 14 matched controls. Three-dimensional MRI volumetry revealed a significant reduction of amygdala raw volumes in the patient group, while amygdala volumes normalized for intracranial volume did not differ between the two groups. The regional diffusional anisotropy of the amygdala, expressed as inter-voxel coherence (COH), showed a marked and significant reduction in schizophrenics. Assessment of qMTI parameters yielded significant group differences for the T2 time of the bound proton pool and the T1 time of the free proton pool, while the semi-quantitative magnetization transfer ratio (MTR) did not differ between the groups. The application of multimodal MRI protocols is diagnostically relevant for the differentiation between schizophrenic patients and controls and provides a new strategy for the detection and characterization of subtle structural alterations in defined regions of the living brain.

  20. GENE X ENVIRONMENT INTERACTIONS IN SCHIZOPHRENIA AND BIPOLAR DISORDER:EVIDENCE FROM NEUROIMAGING

    Directory of Open Access Journals (Sweden)

    Pierre Alexis Geoffroy

    2013-10-01

    Full Text Available Introduction: Schizophrenia (SZ and Bipolar disorder (BD are considered as severe multifactorial diseases, stemming from genetic and environmental influences. Growing evidence supports gene x environment (GxE interactions in these disorders and neuroimaging studies can help us to understand how those factors mechanistically interact. No reviews synthesized the existing data of neuroimaging studies in these issues.Methods: We conduct a systematic review on the neuroimaging studies exploring GxE interactions relative to SZ or BD in PubMed.Results: First results of the influence of genetic and environmental risks on brain structures came from monozygotic twin pairs concordant and discordant for SZ or BD. Few structural magnetic resonance imaging (sMRI studies have explored the GxE interactions. No other imaging methods were found. Two main GxE interactions on brain volumes have arisen. First, an interaction between genetic liability to SZ and obstetric complications on gray matter, cerebrospinal fluid and hippocampal volumes. Second, cannabis use and genetic liability interaction effects on cortical thickness and white matter volumes.Conclusion: Combining GxE interactions and neuroimaging domains is a promising approach. Genetic risk and environmental exposures such as cannabis or obstetrical complications seem to interact leading to specific neuroimaging cerebral alterations in SZ. They are suggestive of GxE interactions that confer phenotypic abnormalities in SZ and possibly BD. We need further, larger neuroimaging studies of GxE interactions for which we may propose a framework focusing on GxE interactions data already known to have a clinical effect such as infections, early stress, urbanicity and substance abuse.

  1. Magnetic resonance imaging: hazard, risk and safety

    International Nuclear Information System (INIS)

    Narayan, Pradeep; Suri, S.; Singh, P.

    2001-01-01

    The hazard and risk associated with magnetic resonance imaging is a matter of concern. In 1982, the Food and Drug Administration (FDA), USA issued guidelines to Hospital's Investigational Review Board (IRBs) in 'Guidelines for Evaluating Electromagnetic Exposure Risks for Trials of Clinical Nuclear Magnetic Resonance (NMR)'. In 1997, the Berufsgenossenschaft (BG), professional association for precision engineering and electronics of Germany, in their preliminary proposal for safety limits extended their concerns on static magnetic field. Owing to both time varying and static magnetic fields applied in Magnetic Resonance Imaging (MRI) this became of immediate concern to user community to assess the potential hazard and risk associated with the NMR system

  2. Magnetic resonance phenomena in dynamics of relativistic particles

    International Nuclear Information System (INIS)

    Ternov, I.M.; Bordovitsyn, V.A.

    1987-01-01

    A relativistic generalization of Rabi's formula for magnetic resonance is given. On this basis, we consider fast and slow passage through resonance. We define a magnetic resonance exterior field as usual, using unit vectors of a Cartesian coordinate system, a homogeneous magnetic field, and the amplitude of a rotating magnetic field. For the description of spin dynamics we use the Bargmann-Michel-Telegdi equation

  3. Recent neuroimaging techniques in mild traumatic brain injury.

    Science.gov (United States)

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  4. Magnetic resonance imaging in sudden deafness

    International Nuclear Information System (INIS)

    Ramos, Hugo Valter Lisboa; Barros, Flavia Alencar; Penido, Norma de Oliveira; Souza, Ana Claudia Valerio de; Yamaoka, Wellington Yugo; Yamashita, Helio

    2005-01-01

    The etiology of sudden deafness can remain undetermined despite extensive investigation. This study addresses the value of magnetic resonance imaging in the analysis of sudden deafness patients.Study Design: transversal cohort.Material And Method: In a prospective study, 49 patients attended at otolaryngology emergency room of Federal University of Sao Paulo - Escola Paulista de Medicina, from April 2001 to May 2003, were submitted to magnetic resonance imaging.Results: Magnetic Resonance abnormalities were seen in 23 (46.9%) patients and revealed two tumors suggestive of meningioma, three vestibular schwannomas, thirteen microangiopathic changes of the brain and five (21.7%) pathological conditions of the labyrinth.Conclusion: Sudden deafness should be approached as a symptom common to different diseases. The presence of cerebellopontine angle tumors in 10.2% of our cases, among other treatable causes, justifies the recommendation of gadolinium-enhanced magnetic resonance use, not only to study the auditory peripheral pathway, but to study the whole auditory pathway including the brain. (author)

  5. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Brain KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Brain What's in this article? What ...

  6. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn; Creber, Sarah A.; Vrouwenvelder, Johannes S.; Johns, Michael L.

    2015-01-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  7. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  8. Magnetic Resonance Imaging. Chapter 15

    Energy Technology Data Exchange (ETDEWEB)

    Leach, M. O. [The Institute of Cancer Research and The Royal Marsden Hospital, London (United Kingdom)

    2014-09-15

    In Chapter 14, the principles of nuclear magnetic resonance were presented, along with an introduction to image forming processes. In this chapter, magnetic resonance imaging (MRI) will be reviewed, beginning with the hardware needed and its impact on image quality. The acquisition processes and image reconstruction will be discussed, as well as the artefacts that are possible, with discussion of the important area of safety and bioeffects completing the chapter.

  9. Force detection of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Rugar, D.; Zueger, O.; Hoen, S.; Yannoni, C.S.; Vieth, H.M.; Kendrick, R.D.

    1994-01-01

    Micromechanical sensing of magnetic force was used to detect nuclear magnetic resonance with exceptional sensitivity and spatial resolution. With a 900 angstrom thick silicon nitride cantilever capable of detecting subfemtonewton forces, a single shot sensitivity of 1.6 x 10 13 protons was achieved for an ammonium nitrate sample mounted on the cantilever. A nearby millimeter-size iron particle produced a 600 tesla per meter magnetic field gradient, resulting in a spatial resolution of 2.6 micrometers in one dimension. These results suggest that magnetic force sensing is a viable approach for enhancing the sensitivity and spatial resolution of nuclear magnetic resonance microimaging

  10. Principles of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mlynarik, V.; Tkac, I.; Srbecky, M.

    1995-01-01

    The aim of this review is to describe and explain the basic principles of magnetic resonance imaging. The first part of the text is devoted to the phenomenon of magnetic resonance (the interaction of RF magnetic field with the set of magnetic moments in the homogeneous magnetic field) and to relaxation processes. Then, the creation of MR image is described (slice selection, phase and frequency encoding of spatial information). The basic and the most frequently used techniques are explained (spin echo, gradient echo). The way the repetition and echo times influence the image quality and contrast (T1 or T2 weighing) is described. The part with the technical description of the MR equipment is included in the review. The MR imagination examination are compared with X-ray computer tomography technique

  11. Magnetic resonance imaging in clinically-definite multiple sclerosis

    International Nuclear Information System (INIS)

    Noakes, J.B.; Herkes, G.K.; Frith, J.A.

    1990-01-01

    Forty-two patients with clinically-definite multiple sclerosis were examined by magnetic resonance imaging using a 1.5-T instrument. Magnetic resonance imaging detected an abnormality in 90% of patients. In four patients, no lesions were demonstrated. The number, size and site of the lesions by magnetic resonance imaging were compared with the patients' clinical status and other variables. The Kurtzke disability status scale score increased in patients with corpus callosum atrophy, brainstem and basal ganglia lesions, and correlated with the total number of lesions. No correlation was shown between the findings of magnetic resonance imaging and disease duration, age, sex or pattern-reversal visual-evoked potentials. The variety of magnetic resonance images that could be obtained in patients with clinically-definite multiple sclerosis is highlighted. 24 refs., 8 figs., 1 tab

  12. Effect of Spatial Alignment Transformations in PCA and ICA of Functional Neuroimages

    DEFF Research Database (Denmark)

    Lukic, Ana S.; Wernick, Miles N.; Yang, Yongui

    2007-01-01

    this observation is true, not only for spatial ICA, but also for temporal ICA and for principal component analysis (PCA). In each case we find conditions that the spatial alignment operator must satisfy to ensure invariance of the results. We illustrate our findings using functional magnetic-resonance imaging (f......It has been previously observed that spatial independent component analysis (ICA), if applied to data pooled in a particular way, may lessen the need for spatial alignment of scans in a functional neuroimaging study. In this paper we seek to determine analytically the conditions under which...

  13. Nuclear magnetic resonance method and apparatus

    International Nuclear Information System (INIS)

    Burl, M.; Young, I.R.

    1984-01-01

    A method and apparatus for determining the rate of flow of a liquid in a selected region of a body by nuclear magnetic resonance techniques are described. The method includes a sequence of applying a first magnetic pulse effective to excite nuclear magnetic resonance of a chosen nucleus within the liquid preferentially in a slice of the body which includes the selected region. A period of time (tsub(D)) is waited and then a second magnetic pulse is applied which is effective to excite nuclear magnetic resonance of the nuclei preferentially in the slice, and the free induction decay signal is measured. The whole sequence is repeated for different values of the period of time (tsub(D)). The variation in the value of the measured signal with tsub(D) is then related to the rate of flow of the liquid through the slice. (author)

  14. Consensus paper: combining transcranial stimulation with neuroimaging

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Bergmann, Til O; Bestmann, Sven

    2009-01-01

    neuroimaging (online approach), TMS can be used to test how focal cortex stimulation acutely modifies the activity and connectivity in the stimulated neuronal circuits. TMS and neuroimaging can also be separated in time (offline approach). A conditioning session of repetitive TMS (rTMS) may be used to induce...... information obtained by neuroimaging can be used to define the optimal site and time point of stimulation in a subsequent experiment in which TMS is used to probe the functional contribution of the stimulated area to a specific task. In this review, we first address some general methodologic issues that need......In the last decade, combined transcranial magnetic stimulation (TMS)-neuroimaging studies have greatly stimulated research in the field of TMS and neuroimaging. Here, we review how TMS can be combined with various neuroimaging techniques to investigate human brain function. When applied during...

  15. Interaction of magnetic resonators studied by the magnetic field enhancement

    Directory of Open Access Journals (Sweden)

    Yumin Hou

    2013-12-01

    Full Text Available It is the first time that the magnetic field enhancement (MFE is used to study the interaction of magnetic resonators (MRs, which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  16. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  17. Magnetic resonance imaging of the fetal brain.

    Science.gov (United States)

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  18. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  19. Resonance of magnetization excited by voltage in magnetoelectric heterostructures

    Science.gov (United States)

    Yu, Guoliang; Zhang, Huaiwu; Li, Yuanxun; Li, Jie; Zhang, Dainan; Sun, Nian

    2018-04-01

    Manipulation of magnetization dynamics is critical for spin-based devices. Voltage driven magnetization resonance is promising for realizing low-power information processing systems. Here, we show through Finite Element Method (FEM) simulations that magnetization resonance in nanoscale magnetic elements can be generated by a radio frequency (rf) voltage via the converse magnetoelectric (ME) effect. The magnetization dynamics induced by voltage in a ME heterostructures is simulated by taking into account the magnetoelastic and piezoelectric coupling mechanisms among magnetization, strain and voltage. The frequency of the excited magnetization resonance is equal to the driving rf voltage frequency. The proposed voltage driven magnetization resonance excitation mechanism opens a way toward energy-efficient spin based device applications.

  20. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study

    Directory of Open Access Journals (Sweden)

    Hitoshi eShitara

    2013-09-01

    Full Text Available Neuroimaging combined with transcranial magnetic stimulation (TMS to primary motor cortex (M1 is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or electrically stimulated the right median nerve (MNS in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG. We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10-20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.

  1. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  2. Waveguide volume probe for magnetic resonance imaging and spectroscopy

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a probe for use within the field of nuclear magnetic resonance, such as magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS)). One embodiment relates to an RF probe for magnetic resonance imaging and/or spectroscopy comprising a conductive...... non-magnetic hollow waveguide having an internal volume and at least one open end, one or more capacitors and at least a first conductive non-magnetic wire, wherein said first conductive wire connects at least one of said one or more capacitors to opposite walls of one open end of the waveguide...

  3. Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Zhang, Z.; Hammel, P.C.; Wigen, P.E.

    1996-01-01

    We report the observation of a ferromagnetic resonance signal arising from a microscopic (∼20μmx40μm) particle of thin (3μm) yttrium iron garnet film using magnetic resonance force microscopy (MRFM). The large signal intensity in the resonance spectra suggests that MRFM could become a powerful microscopic ferromagnetic resonance technique with a micron or sub-micron resolution. We also observe a very strong nonresonance signal which occurs in the field regime where the sample magnetization readily reorients in response to the modulation of the magnetic field. This signal will be the main noise source in applications where a magnet is mounted on the cantilever. copyright 1996 American Institute of Physics

  4. Microstructural parcellation of the human cerebral cortex – from Brodmann's post-mortem map to in vivo mapping with high-field magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Stefan Geyer

    2011-02-01

    Full Text Available The year 2009 marked the 100th anniversary of the publication of the famous brain map of Korbinian Brodmann. Although a "classic" guide to microanatomical parcellation of the cerebral cortex, it is – from today's state-of-the-art neuroimaging perspective – problematic to use Brodmann's map as a structural guide to functional units in the cortex. In this article we discuss some of the reasons, especially the problematic compatibility of the "post-mortem world" of microstructural brain maps with the "in vivo world" of neuroimaging. We conclude with some prospects for the future of in vivo structural brain mapping: a new approach which has the enormous potential to make direct correlations between microstructure and function in living human brains: "in vivo Brodmann mapping" with high-field magnetic resonance imaging.

  5. The particle concentration effect on magnetic resonance linewidth for magnetic liquids with chain aggregates

    International Nuclear Information System (INIS)

    Marin, C.N.

    2002-01-01

    Based on the assumption of particle chains formation within a magnetic liquid, computer simulation of the magnetic resonance line is presented. The dependence on particle concentration within a magnetic liquid of magnetic resonance linewidth is analyzed. The computer simulation demonstrates that the particles chaining has an important effect on the enlargement of the magnetic resonance line. Increasing the particle concentration within magnetic liquid leads to an increase in the linewidth. The agreement with some experimental findings is discussed

  6. Cognitive-behavioral therapy for obsessive–compulsive disorder: access to treatment, prediction of long-term outcome with neuroimaging

    Directory of Open Access Journals (Sweden)

    O’Neill J

    2015-07-01

    Full Text Available Joseph O'Neill,1 Jamie D Feusner,2 1Division of Child Psychiatry, 2Division of Adult Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA Abstract: This article reviews issues related to a major challenge to the field for obsessive–compulsive disorder (OCD: improving access to cognitive-behavioral therapy (CBT. Patient-related barriers to access include the stigma of OCD and reluctance to take on the demands of CBT. Patient-external factors include the shortage of trained CBT therapists and the high costs of CBT. The second half of the review focuses on one partial, yet plausible aid to improve access – prediction of long-term response to CBT, particularly using neuroimaging methods. Recent pilot data are presented revealing a potential for pretreatment resting-state functional magnetic resonance imaging and magnetic resonance spectroscopy of the brain to forecast OCD symptom severity up to 1 year after completing CBT. Keywords: follow-up, access to treatment, relapse, resting-state fMRI, magnetic resonance spectroscopy

  7. 76 FR 58281 - Magnetic Resonance Imaging Safety; Public Workshop

    Science.gov (United States)

    2011-09-20

    ...] Magnetic Resonance Imaging Safety; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION... announcing a public workshop entitled: ``Magnetic Resonance Imaging (MRI) Safety Public Workshop.'' The purpose of the public workshop is to discuss factors affecting the safe use of magnetic resonance imaging...

  8. Functional magnetic resonance imaging of the primary motor cortex ...

    Indian Academy of Sciences (India)

    Unknown

    Abbreviations used: BOLD, Blood oxygenation level dependent; CBF, cerebral blood flow; fMRI, functional magnetic resonance imaging; EPI, eco-planar imaging; FOV, field of view; MRI, Magnetic resonance imaging; MRS, magnetic resonance spectroscopy;. PET, position emission tomography; rCBF, regional cerebral ...

  9. Visualization of Nonlinear Classification Models in Neuroimaging - Signed Sensitivity Maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Schmah, Tanya; Madsen, Kristoffer Hougaard

    2012-01-01

    Classification models are becoming increasing popular tools in the analysis of neuroimaging data sets. Besides obtaining good prediction accuracy, a competing goal is to interpret how the classifier works. From a neuroscientific perspective, we are interested in the brain pattern reflecting...... the underlying neural encoding of an experiment defining multiple brain states. In this relation there is a great desire for the researcher to generate brain maps, that highlight brain locations of importance to the classifiers decisions. Based on sensitivity analysis, we develop further procedures for model...... direction the individual locations influence the classification. We illustrate the visualization procedure on a real data from a simple functional magnetic resonance imaging experiment....

  10. Magnetic resonance angiography for the head and neck region

    International Nuclear Information System (INIS)

    Aschenbach, R.; Esser, D.

    2004-01-01

    Magnetic resonance angiography is a noninvasive method in vascular imaging using noncontrast- enhanced and contrast-enhanced techniques. The contrast media used in contrast- enhanced magnetic resonance angiography are different from the X-ray contrast media and do not affect the thyroid gland or renal function. In detecting hypervascularized lesions in the head and neck, contrast-enhanced magnetic resonance angiography is the method of choice, which provides an acceptable quality in comparison to digital subtraction angiography. Future developments in magnetic resonance imaging techniques will cause a wider use of magnetic resonance angiography, especially in head and neck imaging. Digital subtraction angiography should therefore only be used in problem cases and for preoperative embolization [de

  11. Single voxel magnetic resonance spectroscopy in distinguishing ...

    African Journals Online (AJOL)

    Objective: Assess diagnostic utility of combined magnetic resonance imaging and magnetic resonance spectroscopy (MRI, MRS) in differentiating focal neoplastic lesions from focal non- neoplastic (infective or degenerative) brain lesions. Design: Descriptive, analytical - prospective study. Setting: The Aga Khan University ...

  12. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info dot ... I’d like to talk with you about magnetic resonance angiography, or as it’s commonly known, MRA. MRA ...

  13. The pilot European Alzheimer's Disease Neuroimaging Initiative of the European Alzheimer's Disease Consortium

    DEFF Research Database (Denmark)

    Frisoni, G.B.; Henneman, W.J.; Weiner, M.W.

    2008-01-01

    BACKGROUND: In North America, the Alzheimer's Disease Neuroimaging Initiative (ADNI) has established a platform to track the brain changes of Alzheimer's disease. A pilot study has been carried out in Europe to test the feasibility of the adoption of the ADNI platform (pilot E-ADNI). METHODS: Seven...... academic sites of the European Alzheimer's Disease Consortium (EADC) enrolled 19 patients with mild cognitive impairment (MCI), 22 with AD, and 18 older healthy persons by using the ADNI clinical and neuropsychological battery. ADNI compliant magnetic resonance imaging (MRI) scans, cerebrospinal fluid...

  14. Contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Karadjian, V.

    1987-01-01

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes [fr

  15. Magnetic resonance: discovery, investigations, and applications

    International Nuclear Information System (INIS)

    Kessenikh, Aleksandr V

    2009-01-01

    The history of the development of the theoretical ideas and experimental methods of magnetic resonance, as well as the applications of these methods in modern natural science, technology, and medicine, are outlined, with allowance for the contribution of Russian researchers. An assessment of some promising trends of studies and applications of magnetic resonance is given. (from the history of physics)

  16. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  17. Pulse sequences for contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Graves, Martin J.

    2007-01-01

    The theory and application of magnetic resonance imaging (MRI) pulse sequences following the administration of an exogenous contrast agent are discussed. Pulse sequences are categorised according to the contrast agent mechanism: changes in proton density, relaxivity, magnetic susceptibility and resonant frequency shift. Applications in morphological imaging, magnetic resonance angiography, dynamic imaging and cell labelling are described. The importance of optimising the pulse sequence for each application is emphasised

  18. Magnetic field induced incommensurate resonance in cuprate superconductors

    International Nuclear Information System (INIS)

    Zhang Jingge; Cheng Li; Guo Huaiming; Feng Shiping

    2009-01-01

    The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough

  19. Inhalant-Abuse Myocarditis Diagnosed by Cardiac Magnetic Resonance.

    Science.gov (United States)

    Dinsfriend, William; Rao, Krishnasree; Matulevicius, Susan

    2016-06-01

    Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis.

  20. Magnetic resonance imaging- physical principles and clinical application

    International Nuclear Information System (INIS)

    Tavri, Omprakash J.

    1996-01-01

    The advances in equipment and knowledge related to radiology are occurring at an astonishingly rapid rate. On November 8, 1895, William Conrad Roentgen discovered x-rays. In 1972, Godfrey Hounsfield and George Ambrose introduced computec tomography at a meeting of the British Institute of Radiology. In the same year, Paul Lauterbur published the idea of spatially resolving nuclear magnetic resonance samples, naming it zeugmatography. In 1977, Waldo Hinshaw and co-workers published a magnetic resonance image of a human hand and wrist, and by 1981 several centres were obtaining clinical magnetic resonance (MR) images. In a very short time, magnetic resonance imaging (MRI) has gained acceptance as a clinically useful imaging tool. (author)

  1. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... by the interpreting radiologist. Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with ... Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  3. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    Science.gov (United States)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  4. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...

  5. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  6. Characterization of human breast disease using phosphorus magnetic resonance spectroscopy and proton magnetic resonance imaging

    International Nuclear Information System (INIS)

    Merchant, T.E.

    1992-01-01

    This thesis provides the fundamental characterization and differentiation of breast tissues using in vivo and ex vivo MR techniques in the hope that these techniques and experimental findings will be used on a larger scale and in a predictive manner in order to improve the specificity of diagnosis and treatment of breast cancer. In this dissertation, clinical studies were performed using proton magnetic resonance imaging and phosphorus magnetic resonance spectro-scopy ( 31 P MRS) to characterize and differentiate malignant breast tumors, benign breast tumors and normal breast tissues in vivo. These studies were carried out following the methodical characterization of chemical extracts of malignant breast tumor, benign breast tumor and normal breast parenchymal surgical tissue specimens using high resolution 31 P MRS. Alterations in breast tissue metabolism, as a result of pathological processes, were postulated to be responsible for measurable differences between malignant breast tumors, benign breast tumors and normal breast tissues using magnetic resonance techniques. (author). 365 refs.; 37 figs.; 25 tabs

  7. Cardiovascular magnetic resonance in congenital heart disease

    International Nuclear Information System (INIS)

    Cazacu, A.; Ciubotaru, A.

    2010-01-01

    The increasing prevalence of congenital heart disease can be attributed to major improvements in diagnosis and treatment. Cardiovascular magnetic resonance imaging plays an important role in the clinical management strategy of patients with congenital heart disease. The development of new cardiovascular magnetic resonance (CMR) techniques allows comprehensive assessment of complex cardiac anatomy and function and provides information about the long-term residual post-operative lesions and complications of surgery. It overcomes many of the limitations of echocardiography and cardiac catheterization. This review evaluates the role of cardiovascular magnetic resonance imaging modality in the management of subject with congenital heart disease (CHD). (authors)

  8. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic ... the possible charges you will incur. Web page review process: This Web page is reviewed regularly by ...

  9. Magnetic resonance imaging of the central nervous system

    International Nuclear Information System (INIS)

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This book presents the papers on technological advancement and diagnostic uses g magnetic resonance imaging. A comparative evaluation with computerized tomography is presented. Topics covered are imaging principles g magnetic resonance;instrumentation of magnetic resonance (MR);pathophysiology;quality and limitations g images;NMR imaging of brain and spinal cord;MR spectroscopy and its applications;neuroanatomy;Congenital malformations of brain and MR imaging;planning g MR imaging of spine and head and neck imaging

  10. Nuclear magnetic resonance spectroscopy and imaging

    International Nuclear Information System (INIS)

    Jiang Weiping; Wang Qi; Zhou Xin

    2013-01-01

    This paper briefly introduces the basic principle of nuclear magnetic resonance (NMR). Protein's structures and functions and dynamics studied by liquid NMR are elaborated; methods for enhancing the resolution of solid state NMR and its applications are discussed; the principle of magnetic resonance imaging (MRI) is interpreted, and applications in different aspects are reviewed. Finally, the progress of NMR is commented. (authors)

  11. Diagnostic apparatus employing nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Hoshino, K.; Yamada, N.; Yoshitome, E.; Matsuura, H.

    1987-01-01

    An NMR diagnostic apparatus is described comprising means for applying a primary magnetic field to a subject; means for applying RF pulses to the subject to give nuclear magnetic resonance to the nuclei of atoms in the subject; means for applying gradient magnetic fields to project an NMR signal of the nuclei at least in one direction; means for observing the NMR signal projected by the gradient magnetic fields applying means; and arithmetic means for constructing a distribution of information on resonance energy as an image from an output signal from the observing means; wherein the gradient magnetic fields applying means comprises means for applying the gradient magnetic fields at a predetermined time and for not applying the gradient magnetic fields at another predetermined time, during the time period of one view; and wherein the gradient magnetic fields applying means further comprises means for measuring the NMR signal during the predetermined time when the gradient magnetic fields are applied, and means for measuring the intensity of the primary magnetic field during the other predetermined time when no gradient magnetic fields are applied

  12. Neuroimaging in aphasia treatment research: Consensus and practical guidelines for data analysis

    Science.gov (United States)

    Meinzer, Marcus; Beeson, Pélagie M.; Cappa, Stefano; Crinion, Jenny; Kiran, Swathi; Saur, Dorothee; Parrish, Todd; Crosson, Bruce; Thompson, Cynthia K.

    2012-01-01

    Functional magnetic resonance imaging is the most widely used imaging technique to study treatment-induced recovery in post-stroke aphasia. The longitudinal design of such studies adds to the challenges researchers face when studying patient populations with brain damage in cross-sectional settings. The present review focuses on issues specifically relevant to neuroimaging data analysis in aphasia treatment research identified in discussions among international researchers at the Neuroimaging in Aphasia Treatment Research Workshop held at Northwestern University (Evanston, Illinois, USA). In particular, we aim to provide the reader with a critical review of unique problems related to the pre-processing, statistical modeling and interpretation of such data sets. Despite the fact that data analysis procedures critically depend on specific design features of a given study, we aim to discuss and communicate a basic set of practical guidelines that should be applicable to a wide range of studies and useful as a reference for researchers pursuing this line of research. PMID:22387474

  13. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... immediately after the exam. A few patients experience side effects from the contrast material, including nausea and local ... Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic ...

  14. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Inst. de Radiologia]. E-mail: mvmfonte@uol.com.br; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Radiologia; Reed, Umbertina Conti [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Neurologia; Rosemberg, Sergio [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Dept. de Patologia

    2008-11-15

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  15. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes; Reed, Umbertina Conti; Rosemberg, Sergio

    2008-01-01

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  16. Principles of Functional Magnetic Resonance Imaging and its Applications in Cognitive Neuroscience

    Directory of Open Access Journals (Sweden)

    Şule Tınaz

    2005-02-01

    Full Text Available Functional magnetic resonance imaging (fMRI is a neuroimaging technique that provides brain activation maps with a spatial resolution of a few millimeters. The BOLD (blood oxygenation level dependent fMRI method is the most commonly used technique. It measures the hemodynamic response to neural activity. The BOLD fMRI signal is based on the magnetic properties of the oxygenated / deoxygenated hemoglobin which is the oxygen carrier in blood. FMRI is noninvasive, and unlike in positron emission tomography (PET individuals are not exposed to radiation. This allows data collection from the same individual over multiple sessions. The relatively high temporal resolution of fMRI compared to PET provides flexibility in experimental designs of cognitive tasks. In this paper we review the key principles of MRI physics, and the underlying metabolic, hemodynamic, and electrophysiological mechanisms of BOLD signal. We introduce frequently used experimental design paradigms and present examples. Next, we give an overview of theoretical considerations and applications of analysis methods in fMRI time series. Neural network modeling based on fMRI data is also discussed. Finally, we present an ongoing study in our laboratory to demonstrate the application of design types and analysis methods

  17. Evaluation of nuclear magnetic resonance spectroscopy variability

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Felipe Rodrigues; Salmon, Carlos Ernesto Garrido, E-mail: garrido@ffclrp.usp.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filisofia, Ciencias e Letras; Otaduy, Maria Concepcion Garcia [Universidade de Sao Paulo (FAMUS/USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Departamento de Radiologia

    2014-11-01

    Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)

  18. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Lumbar Spine What's in this article? ...

  19. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  20. Neuroimaging of the Injured Pediatric Brain: Methods and New Lessons.

    Science.gov (United States)

    Dennis, Emily L; Babikian, Talin; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2018-02-01

    Traumatic brain injury (TBI) is a significant public health problem in the United States, especially for children and adolescents. Current epidemiological data estimate over 600,000 patients younger than 20 years are treated for TBI in emergency rooms annually. While many patients experience a full recovery, for others there can be long-lasting cognitive, neurological, psychological, and behavioral disruptions. TBI in youth can disrupt ongoing brain development and create added family stress during a formative period. The neuroimaging methods used to assess brain injury improve each year, providing researchers a more detailed characterization of the injury and recovery process. In this review, we cover current imaging methods used to quantify brain disruption post-injury, including structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, resting state fMRI, and magnetic resonance spectroscopy (MRS), with brief coverage of other methods, including electroencephalography (EEG), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). We include studies focusing on pediatric moderate-severe TBI from 2 months post-injury and beyond. While the morbidity of pediatric TBI is considerable, continuing advances in imaging methods have the potential to identify new treatment targets that can lead to significant improvements in outcome.

  1. Resonance double magnetic bremsstrahlung in a strong magnetic field

    International Nuclear Information System (INIS)

    Fomin, P.I.; Kholodov, R.I.

    2003-01-01

    The possibility of resonance double magnetic bremsstrahlung in the approximation of weakly excited electron states in a strong external magnetic field is analyzed. The differential probability of this process in the Breit-Wigner form is obtained. The probability of double magnetic bremsstrahlung (second-order process of perturbation theory) is compared with the probability of magnetic bremsstrahlung (first-order process of perturbation theory)

  2. Evaluation of urogenital fistulas by magnetic resonance urography

    International Nuclear Information System (INIS)

    Mamere, Augusto Elias; Coelho, Rafael Darahem Souza; Cecin, Alexandre Oliveira; Feltrin, Leonir Terezinha; Lucchesi, Fabiano Rubiao; Seabra, Daniel

    2008-01-01

    Objective: Vesicovaginal and ureterovaginal fistulas are unusual complications secondary to pelvic surgery or pelvic diseases. The therapeutic success in these cases depends on an appropriate preoperative evaluation for diagnosis and visualization of the fistulous tract. The present study is aimed at demonstrating the potential of magnetic resonance urography for the diagnosis of vesicovaginal and ureterovaginal fistulas as well as for defining the fistulous tracts. Materials And Methods: Seven female patients clinically diagnosed with vesicovaginal or ureterovaginal fistulas had their medical records, radiological and magnetic resonance images retrospectively reviewed. Magnetic resonance urography included 3D-HASTE sequences with fat saturation. Results: Six patients presented vesicovaginal fistulas and, in one patient, a right-sided ureterovaginal fistula was diagnosed. Magnetic resonance urography allowed the demonstration of the fistulous tract in six (85.7%) of the seven patients evaluated in the present study, without the need of bladder catheterization or contrast injection. Conclusion: This study demonstrates both the potential and applicability of magnetic resonance urography in the evaluation of these types of fistulas. (author)

  3. Object-oriented magnetic resonance classes and objects, calculations and computations

    CERN Document Server

    Mehring, Michael

    2001-01-01

    This book presents, for the first time, a unified treatment of the quantum mechanisms of magnetic resonance, including both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). Magnetic resonance is perhaps the most advanced type of spectroscopy and it is applied in biology, chemistry, physics, material science, and medicine. If applied in conjunction with spectroscopy, the imaging version of magnetic resonance has no counterpart in any type of experimental technique. The authors present explanations and applications from fundamental to advanced levels. Additionally, the

  4. Magnetic resonance enterography in pediatric celiac disease.

    Science.gov (United States)

    Koc, Gonca; Doganay, Selim; Sevinc, Eylem; Deniz, Kemal; Chavhan, Govind; Gorkem, Sureyya B; Karacabey, Neslihan; Dogan, Mehmet S; Coskun, Abdulhakim; Aslan, Duran

    To assess if magnetic resonance enterography is capable of showing evidence/extent of disease in pediatric patients with biopsy-proven celiac disease by comparing with a control group, and to correlate the magnetic resonance enterography findings with anti-endomysial antibody level, which is an indicator of gluten-free dietary compliance. Thirty-one pediatric patients (mean age 11.7±3.1 years) with biopsy-proven celiac disease and 40 pediatric patients as a control group were recruited in the study. The magnetic resonance enterography images of both patients with celiac disease and those of the control group were evaluated by two pediatric radiologists in a blinded manner for the mucosal pattern, presence of wall thickening, luminal distention of the small bowel, and extra-intestinal findings. Patient charts were reviewed to note clinical features and laboratory findings. The histopathologic review of the duodenal biopsies was re-conducted. The mean duration of the disease was 5.6±1.8 years (range: 3-7.2 years). In 24 (77%) of the patients, anti-endomysial antibody levels were elevated (mean 119.2±66.6RU/mL). Magnetic resonance enterography revealed normal fold pattern in all the patients. Ten (32%) patients had enlarged mesenteric lymph nodes. Although a majority of the patients had elevated anti-endomysial antibody levels indicating poor dietary compliance, magnetic resonance enterography did not show any mucosal abnormality associated with the inability of magnetic resonance enterography to detect mild/early changes of celiac disease in children. Therefore, it may not be useful for the follow-up of pediatric celiac disease. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  5. Neuroimaging characteristics and growth pattern on magnetic resonance imaging in a 52-year-old man presenting with pituicytoma: a case report

    Directory of Open Access Journals (Sweden)

    Kosuge Yasushi

    2012-09-01

    Full Text Available Abstract Introduction Pituicytoma is a rare neoplasm of the neurohypophysis. To the best of our knowledge there have been no reports of pituicytoma in which long-term magnetic resonance imaging observation was performed. We calculated the doubling time of the tumor volume and described the growth pattern of a pituicytoma. Case presentation A 52-year-old Japanese man with a history of decreased libido was found to have a sellar and suprasellar mass. He underwent transsphenoidal surgery, but only a small specimen was obtained because of intraoperative bleeding. The tentative histological diagnosis was schwannoma. He noticed bitemporal hemianopsia 7 years later. A follow-up magnetic resonance imaging disclosed a tumor volume doubling time of 3830 days. Transcranial gross-total tumor resection was performed. The lesion consisted of elongated and plump tumor cells that were arranged in a fascicular or storiform pattern and were positive for S-100 protein and focally positive for glial fibrillary acidic protein. The final histological diagnosis was pituicytoma. Conclusion Pituicytoma is a slow-growing tumor, but the growth rate may change during follow-up.

  6. Theoretical study of ferromagnetic resonance in exchange - coupled magnetic / nonmagnetic / magnetic multilayer structure

    International Nuclear Information System (INIS)

    Oezdogan, K.; Oezdemir, M.; Yalcin, O.; Aktas, B.

    2002-01-01

    The dispersion relation on ferromagnetic films was calculation by using torque equation of motion with a damping term. The total energy including zeeman, demagnetizing and anisotropy energy terms was used to get ferromagnetic resonance frequency for both uniform and higher order spin wave modes. In antiferromagnetic films, the torque equation of motion for each sub-lattice were written to derive an expression for the dispersion relation. The magnetic trilayer system under investigation consist of two ferromagnetic layers separated by a nonmagnetic layer. The dispersion relation of magnetic/nonmagnetic/magnetic three layers is calculated by using Landau-Lifshitz dynamic equation of motion for the magnetization with interlayer exchange energy. As for the exchange-coupled resonance of ferromagnetic resonance (FMR), the theoretical study has been calculated for both symmetrical and asymmetrical structures. In this systems, the exchange-coupling parameter A 12 between neighboring layers was used to get resonance fields as a function of the angle between the magnetization vectors of each magnetic layers

  7. Magnetic elliptical polarization of Schumann resonances

    International Nuclear Information System (INIS)

    Sentman, D.D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours. 16 references

  8. Functional magnetic resonance imaging by visual stimulation

    International Nuclear Information System (INIS)

    Nishimura, Yukiko; Negoro, Kiyoshi; Morimatsu, Mitsunori; Hashida, Masahiro

    1996-01-01

    We evaluated functional magnetic resonance images obtained in 8 healthy subjects in response to visual stimulation using a conventional clinical magnetic resonance imaging system with multi-slice spin-echo echo planar imaging. Activation in the visual cortex was clearly demonstrated by the multi-slice experiment with a task-related change in signal intensity. In addition to the primary visual cortex, other areas were also activated by a complicated visual task. Multi-slice spin-echo echo planar imaging offers high temporal resolution and allows the three-dimensional analysis of brain function. Functional magnetic resonance imaging provides a useful noninvasive method of mapping brain function. (author)

  9. Musculoskeletal applications of magnetic resonance imaging: Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Harms, S.E.; Fisher, C.F.; Fulmer, J.M.

    1989-01-01

    Magnetic resonance imaging provides superior contrast, resolution, and multiplanar imaging capability, allowing excellent definition of soft-tissue and bone marrow abnormalities. For these reasons, magnetic resonance imaging has become a major diagnostic imaging method for the evaluation of many musculoskeletal disorders. The applications of magnetic resonance imaging for musculoskeletal diagnosis are summarized and examples of common clinical situations are given. General guidelines are suggested for the musculoskeletal applications of magnetic resonance imaging

  10. Magnetic resonance of native defects of spin-Peierls magnetics CuGeO3

    International Nuclear Information System (INIS)

    Smirnov, A.I.; Glazkov, V.N.; Leonyuk, L.I.; Vetkin, A.G.; Eremina, R.M.

    1998-01-01

    Magnetic resonance within 9-75 GHz frequency range and 1.2-25 K temperature range was studied in pure monocrystalline spin-Peierls CuGwO 3 . Splitting of the magnetic resonance line is observed within temperature range below 5 K. Analysis of magnetic resonance spectra at various directions of magnetic field and under various temperatures enables to set off EPR-signals of spin-Peierls phase defects with S=1/2 and defects with S=1 from these components; g-factor corresponding to these EPR signals is similar one and close to values typical for Cu 2+ ion [ru

  11. Green’s function theory of ferromagnetic resonance in magnetic superlattices with damping

    International Nuclear Information System (INIS)

    Qiu, R.K.; Guo, F.F.; Zhang, Z.D.

    2016-01-01

    We explore a quantum Green’s-function method to study the resonance absorption of magnetic materials. The relationship between the resonance magnon (spin wave) density and the resonance frequency of a superlattice consisting of two magnetic layers with damping and antiferromagnetic interlayer exchange coupling is studied. The effects of temperature, interlayer coupling, anisotropy, external magnetic field and damping on the the resonance frequency and resonance magnon density are investigated. The resonance excitation probability for a magnon is proportional to the resonance magnon density. In the classic methods, the imaginary part of magnetic permeability represents the resonance absorption in magnetic materials. In the quantum approach, the resonance magnon density can be used to estimate the strength of the resonance absorption. In the present work, a quantum approach is developed to study resonance absorption of magnetic materials and the results show the method to obtain a magnetic multilayered materials with both high resonance frequency and high resonance absorption.

  12. Green’s function theory of ferromagnetic resonance in magnetic superlattices with damping

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.K., E-mail: rkqiu@163.com [Shenyang University of Technology, Shenyang 110870 (China); Guo, F.F. [Shenyang University of Technology, Shenyang 110870 (China); Zhang, Z.D. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2016-02-01

    We explore a quantum Green’s-function method to study the resonance absorption of magnetic materials. The relationship between the resonance magnon (spin wave) density and the resonance frequency of a superlattice consisting of two magnetic layers with damping and antiferromagnetic interlayer exchange coupling is studied. The effects of temperature, interlayer coupling, anisotropy, external magnetic field and damping on the the resonance frequency and resonance magnon density are investigated. The resonance excitation probability for a magnon is proportional to the resonance magnon density. In the classic methods, the imaginary part of magnetic permeability represents the resonance absorption in magnetic materials. In the quantum approach, the resonance magnon density can be used to estimate the strength of the resonance absorption. In the present work, a quantum approach is developed to study resonance absorption of magnetic materials and the results show the method to obtain a magnetic multilayered materials with both high resonance frequency and high resonance absorption.

  13. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  14. Clinical magnetic resonance: imaging and spectroscopy

    International Nuclear Information System (INIS)

    Andrew, E.R.; Bydder, Graeme; Griffiths, John; Iles, Richard; Styles, Peter

    1990-01-01

    This book begins with a readable, comprehensive but non-mathematical introduction to the basic underlying principles of magnetic resonance. Further chapters include information on the theory and principles of MRI and MRS, the interpretation of MR images, the clinical applications and scope of MRI and MRS, practical aspects of spectroscopy and magnetic resonance, and also the practical problems associated with the siting, safety and operation of large MRI and MRS equipment. (author)

  15. Magnetic resonance in prenatal diagnosis of thoracic anomalies

    International Nuclear Information System (INIS)

    Pietrani, M.; Elias, D.; Wojakowski, A.; Fataljaef, V.; Carcano, M.; Otano, L.

    2007-01-01

    The objective of this article is to communicate the experience in the evaluation of fetal anomalies thoracic by means of magnetic resonance. Between January, 2001 - March, 2007 16 fetus were evaluated by means of magnetic resonance with echographic diagnosis of thoracic anomalies. An equipment of 1.5 TESLA was used. The thoracic anatomy was valued in general. At the presence of discovering pulmonary mass, their size, volume and intensity of sign were determined. The echographic and magnetic resonance findings were checked against the perinatal results [es

  16. Role of chelates in magnetic resonance imaging studies

    Directory of Open Access Journals (Sweden)

    Tripathi Laxmi

    2009-01-01

    Full Text Available Imaging studies are tests performed with a variety of techniques that produce pictures of the inside of a patient′s body. Magnetic resonance imaging (MRI is an imaging technique based on the principles of nuclear magnetic resonance. MRI uses a powerful magnetic field, radio waves, and a computer to produce detailed pictures of organs, soft tissues, bone, and virtually all other internal body structures. Chelates have a wide application in such imaging techniques. Chelates in imaging studies are used alone as radioactive agents or conjugated to monoclonal antibodies or to DNA as radioactive agents. Technetium chelates and gadolinium chelates are being widely used as magnetic resonance contrast media.

  17. Recommendations concerning magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    1986-01-01

    In medicine the technique of nuclear magnetic resonance (NMR) is applied in the form of in vivo nuclear magnetic resonance spectroscopy (MRS). In vivo MRS can be carried out non-invasively. The committee of the Dutch Health Council briefly discusses the qualities and potentialities of the nuclei that will probably be used in future clinical spectroscopy: 31 P, 13 C, 1 H (and possibly 19 F and 23 Na). The committee discusses several possibilities of combining imaging and spectroscopy. The imaging of nuclei other than protons is also possible with MRS. Potential applications are considered in oncology, cardiology, neurology and hepatology. (Auth.)

  18. Prebiopsy magnetic resonance spectroscopy and imaging in the diagnosis of prostate cancer

    International Nuclear Information System (INIS)

    Kumar, V.; Jagannathan, N.R.; Thulkar, S.; Kumar, R.

    2012-01-01

    Existing screening investigations for the diagnosis of early prostate cancer lack specificity, resulting in a high negative biopsy rate. There is increasing interest in the use of various magnetic resonance methods for improving the yield of transrectal ultrasound-guided biopsies of the prostate in men suspected to have prostate cancer. We review the existing status of such investigations. A literature search was carried out using the Pubmed database to identify articles related to magnetic resonance methods for diagnosing prostate cancer. References from these articles were also extracted and reviewed. Recent studies have focused on prebiopsy magnetic resonance investigations using conventional magnetic resonance imaging, dynamic contrast enhanced magnetic resonance imaging, diffusion weighted magnetic resonance imaging, magnetization transfer imaging and magnetic resonance spectroscopy of the prostate. This marks a shift from the earlier strategy of carrying out postbiopsy magnetic resonance investigations. Prebiopsy magnetic resonance investigations has been useful in identifying patients who are more likely to have a biopsy positive for malignancy. Prebiopsy magnetic resonance investigations has a potential role in increasing specificity of screening for early prostate cancer. It has a role in the targeting of biopsy sites, avoiding unnecessary biopsies and predicting the outcome of biopsies. (author)

  19. Magnetic Resonance Imaging of Surgical Implants Made from Weak Magnetic Materials

    Science.gov (United States)

    Gogola, D.; Krafčík, A.; Štrbák, O.; Frollo, I.

    2013-08-01

    Materials with high magnetic susceptibility cause local inhomogeneities in the main field of the magnetic resonance (MR) tomograph. These inhomogeneities lead to loss of phase coherence, and thus to a rapid loss of signal in the image. In our research we investigated inhomogeneous field of magnetic implants such as magnetic fibers, designed for inner suture during surgery. The magnetic field inhomogeneities were studied at low magnetic planar phantom, which was made from four thin strips of magnetic tape, arranged grid-wise. We optimized the properties of imaging sequences with the aim to find the best setup for magnetic fiber visualization. These fibers can be potentially exploited in surgery for internal stitches. Stitches can be visualized by the magnetic resonance imaging (MRI) method after surgery. This study shows that the imaging of magnetic implants is possible by using the low field MRI systems, without the use of complicated post processing techniques (e.g., IDEAL).

  20. Magnetic resonance instrumentation

    International Nuclear Information System (INIS)

    Bell, R.A.

    1987-01-01

    Magnetic resonance (MR), while opening new vistas to diagnostic medicine, utilizes equipment that is unfamiliar to most clinicians. Beyond learning to cope with new terms, such as spin-echo, T1, T2, and spin density, health care professionals are faced with the inclusion of magnetic and radiofrequency effects in their facilities produced by a complex array of devices. It is the purpose of this chapter to outline the components of an MR imaging system, to discuss their functions, and to note the variations in equipment commercially available

  1. Parenchymal abnormalities in cerebral venous thrombosis: findings of magnetic resonance imaging and magnetic resonance angiography

    International Nuclear Information System (INIS)

    Ferreira, Clecia Santos; Pellini, Marcos; Boasquevisque, Edson; Souza, Luis Alberto M. de

    2006-01-01

    Objective: to determine the frequency and localization of parenchymal abnormalities in cerebral venous thrombosis on magnetic resonance imaging and magnetic resonance angiography as well as their correlation with the territory and affected venous drainage. Materials and methods: retrospective analysis (1996 to 2004) of 21 patients (3 male and 18 female) age range between 3 and 82 years (mean 40 years, median 36 years) with clinical and radiological diagnosis of cerebral venous thrombosis on magnetic resonance imaging and magnetic resonance angiography in 2D PC, 3D PC and contrast-enhanced 3D TOF sequences. The statistical analysis was performed with the qui-square test. Four patients had follow-up exams and three patients underwent digital subtraction angiography. Results: main predisposing factors were: infection, use of oral contraceptives, hormone replacement therapy and collagenosis. Predominant symptoms included: focal deficit, headache, alteration of consciousness level and seizures. Most frequent parenchymal manifestations were: cortical/subcortical edema or infarct, venous congestion and collateral circulation, meningeal enhancement and thalamic and basal ganglia edema or infarct. Occlusion occurred mainly in superior sagittal, left transverse, left sigmoid and straight sinuses. Cavernous sinus and cortical veins thrombosis are uncommon events. Conclusion: cerebral venous thrombosis is an uncommon cause of stroke, with favorable prognosis because of its reversibility. Diagnosis is highly dependent on the radiologist capacity to recognize the presentations of this disease, principally in cases where the diagnosis is suggested by parenchymal abnormalities rather than necessarily by visualization of the thrombus itself. An accurate and rapid diagnosis allows an immediate treatment, reducing the morbidity and mortality rates. (author)

  2. Nuclear magnetic resonance spectroscopy in organic chemistry. 2. ed.

    International Nuclear Information System (INIS)

    Zschunke, A.

    1977-01-01

    The fundamentals of nuclear magnetic resonance spectroscopy are discussed only briefly. The emphasis is laid on developing reader's ability to evaluate resonance spectra. The following topics are covered: principles of nuclear magnetic resonance spectroscopy; chemical shift and indirect nuclear spin coupling constants and their relation to the molecular structure; analysis of spectra; and uses for structural analysis and solution of kinetic problems, mainly with regard to organic compounds. Of interest to chemists and graduate students who want to make themselves acquainted with nuclear magnetic resonance spectroscopy

  3. Complications after liver transplantation: evaluation with magnetic resonance imaging, magnetic resonance cholangiography, and 3-dimensional contrast-enhanced magnetic resonance angiography in a single session

    International Nuclear Information System (INIS)

    Boraschi, P.; Donati, F.; Gigoni, R.; Salemi, S.; Urbani, L.; Filipponi, F.; Falaschi, F.; Bartolozzi, C.

    2008-01-01

    To evaluate a comprehensive magnetic resonance imaging (MRI) protocol as noninvasive diagnostic modality for simultaneous detection of parenchymal, biliary, and vascular complications after liver transplantation. Fifty-two liver transplant recipients suspected to have parenchymal, biliary, and (or) vascular complications underwent our MRI protocol at 1.5T unit using a phased array coil. After preliminary acquisition of axial T 1 w and T 2 w sequences, magnetic resonance cholangiography (MRC) was performed through a breath-hold, thin- and thick-slab, single-shot T 2 w sequence in the coronal plane. Contrast-enhanced magnetic resonance angiography (CEMRA) was obtained using a 3-dimensional coronal spoiled gradient-echo sequence, which enabled acquisition of 32 partitions 2.0 mm thick. A fixed dose of 20 ml gadobenate dimeglumine was administered at 2 mL/s. A post-contrast T 1 w sequence was also performed. Two observers in conference reviewed source images and 3-dimensional reconstructions to determine the presence of parenchymal, biliary, and vascular complications. MRI findings were correlated with surgery, endoscopic retrograde cholangiography (ERC), biopsy, digital subtraction angiography (DSA), and imaging follow-up. MRI revealed abnormal findings in 32 out of 52 patients (61%), including biliary complications (anastomotic and nonanastomotic strictures, and lithiasis) in 31, vascular disease (hepatic artery stenosis and thrombosis) in 9, and evidence of hepatic abscess and hematoma in 2. ERC confirmed findings of MRC in 30 cases, but suggested disease underestimation in 2. DSA confirmed 7 magnetic resonance angiogram (MRA) findings, but suggested disease overestimation in 2. MRI combined with MRC and CEMRA can provide a comprehensive assessment of parenchymal, biliary, and vascular complications in most recipients of liver transplantation. (author)

  4. Magnetic resonance imaging - first human images in Australia

    International Nuclear Information System (INIS)

    Baddeley, H.; Doddrell, D.M.; Brooks, W.M.; Field, J.; Irving, M.; Williams, J.E.

    1986-01-01

    The use of magnetic resonance imaging, in the demonstration of internal human anatomy and in the diagnosis of disease, has the major advantages that the technique is non-invasive, does not require the use of ionizing radiation and that it can demonstrate neurological and cardiovascular lesions that cannot be diagnosed easily by other imaging methods. The first magnetic resonance images of humans were obtained in Australia in October 1985 on the research instrument of the Queensland Medical Magnetic Resonance Research Centre, which is based at the Mater Hospital in Brisbane

  5. Magnetic resonance imaging of radiation optic neuropathy

    International Nuclear Information System (INIS)

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S.

    1990-01-01

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence

  6. Giant magnetic modulation of a planar, hybrid metamolecule resonance

    International Nuclear Information System (INIS)

    Gregory, Simon A; Stenning, Gavin B G; Bowden, Graham J; De Groot, Peter A J; Zheludev, Nikolay I

    2014-01-01

    Coupling magnetic elements to metamaterial structures creates hybrid metamolecules with new opportunities. Here we report on the magnetic control of a metamolecule resonance, by utilizing the interaction between a single split ring resonator (SRR) and a magnetic thin film of permalloy. To suppress eddy current shielding, the permalloy films are patterned into arrays of 30–500 μm diameter discs. Strong hybridized resonances were observed at the anticrossing between the split ring resonance and the ferromagnetic resonance (FMR) of the permalloy. In particular, it is possible to achieve 40 dB modulation of the electric (symmetric) mode of the SRR on sweeping the applied magnetic field through the SRR/FMR anticrossing. The results open the way to the design of planar metamaterials, with potential applications in nonlinear metamaterials, tunable metamaterials and spintronics. (papers)

  7. Magnetic resonance imaging of muscle tears

    International Nuclear Information System (INIS)

    De Smet, A.A.; Fisher, D.R.; Heiner, J.P.; Keene, J.S.

    1990-01-01

    Magnetic resonance scans were obtained on 17 patients with acute, subacute, or chronic muscle tears. These patients presented with complaints of persistent pain or a palpable mass. Magnetic resonance findings were characterized according to alterations in muscle shape and the presence of abnormal high signal within the injured muscle. These areas of high signal were noted on both T1-weighted and T2-weighted scans and were presumed to represent areas of intramuscular hemorrhage. (orig.)

  8. Magnetic resonance of rubidium atoms passing through a multi-layered transmission magnetic grating

    International Nuclear Information System (INIS)

    Nagata, Y; Kurokawa, S; Hatakeyama, A

    2017-01-01

    We measured the magnetic resonance of rubidium atoms passing through periodic magnetic fields generated by two types of multi-layered transmission magnetic grating. One of the gratings reported here was assembled by stacking four layers of magnetic films so that the direction of magnetization alternated at each level. The other grating was assembled so that the magnetization at each level was aligned. For both types of grating, the experimental results were in good agreement with our calculations. We studied the feasibility of extending the frequency band of the grating and narrowing its resonance linewidth by performing calculations. For magnetic resonance precision spectroscopy, we conclude that the multi-layered transmission magnetic grating can generate periodic fields with narrower linewidths at higher frequencies when a larger number of layers are assembled at a shorter period length. Moreover, the frequency band of this type of grating can potentially achieve frequencies of up to hundreds of PHz. (paper)

  9. Magnetic resonance imaging of breast implants.

    Science.gov (United States)

    Shah, Mala; Tanna, Neil; Margolies, Laurie

    2014-12-01

    Silicone breast implants have significantly evolved since their introduction half a century ago, yet implant rupture remains a common and expected complication, especially in patients with earlier-generation implants. Magnetic resonance imaging is the primary modality for assessing the integrity of silicone implants and has excellent sensitivity and specificity, and the Food and Drug Administration currently recommends periodic magnetic resonance imaging screening for silent silicone breast implant rupture. Familiarity with the types of silicone implants and potential complications is essential for the radiologist. Signs of intracapsular rupture include the noose, droplet, subcapsular line, and linguine signs. Signs of extracapsular rupture include herniation of silicone with a capsular defect and extruded silicone material. Specific sequences including water and silicone suppression are essential for distinguishing rupture from other pathologies and artifacts. Magnetic resonance imaging provides valuable information about the integrity of silicone implants and associated complications.

  10. Magnetic Resonance (MR) Defecography

    Science.gov (United States)

    ... to a CD or uploaded to a digital cloud server. Magnetic resonance (MR) defecography is a special ... with you. top of page What are the benefits vs. risks? Benefits MR defecography helps assess pelvic ...

  11. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy.

    Science.gov (United States)

    Samardzic, Dejan; Thamburaj, Krishnamoorthy

    2015-01-01

    To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.

  12. First national meeting of magnetic resonance and hyperfine interactions

    International Nuclear Information System (INIS)

    1985-07-01

    Works performed at CNEA's: Magnetic Resonance Division; Moessbauer Spectroscopy; Solid State Physics Division; Nuclear magnetic Resonance Laboratory and Theoretical Physics Group; Mossbauer Spectroscopy Group; Nuclear Quadrupole Resonance; Physics and Materials Group; Perturbed Angular Correlation and Moessbauer Spectroscopy and Physics Department. (M.E.L.) [es

  13. Neuroimaging of amblyopia and binocular vision: a review.

    Science.gov (United States)

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them.

  14. Neuroimaging and obesity: current knowledge and future directions

    Science.gov (United States)

    Carnell, S.; Gibson, C.; Benson, L.; Ochner, C. N.; Geliebter, A.

    2011-01-01

    Summary Neuroimaging is becoming increasingly common in obesity research as investigators try to understand the neurological underpinnings of appetite and body weight in humans. Positron emission tomography (PET), functional magnetic resonance imaging (fMRI) and magnetic resonance imaging (MRI) studies examining responses to food intake and food cues, dopamine function and brain volume in lean vs. obese individuals are now beginning to coalesce in identifying irregularities in a range of regions implicated in reward (e.g. striatum, orbitofrontal cortex, insula), emotion and memory (e.g. amygdala, hippocampus), homeostatic regulation of intake (e.g. hypothalamus), sensory and motor processing (e.g. insula, precentral gyrus), and cognitive control and attention (e.g. prefrontal cortex, cingulate). Studies of weight change in children and adolescents, and those at high genetic risk for obesity, promise to illuminate causal processes. Studies examining specific eating behaviours (e.g. external eating, emotional eating, dietary restraint) are teaching us about the distinct neural networks that drive components of appetite, and contribute to the phenotype of body weight. Finally, innovative investigations of appetite-related hormones, including studies of abnormalities (e.g. leptin deficiency) and interventions (e.g. leptin replacement, bariatric surgery), are shedding light on the interactive relationship between gut and brain. The dynamic distributed vulnerability model of eating behaviour in obesity that we propose has scientific and practical implications. PMID:21902800

  15. Contributions of neuroimaging, balance testing, electrophysiology and blood markers to the assessment of sport-related concussion.

    Science.gov (United States)

    Davis, G A; Iverson, G L; Guskiewicz, K M; Ptito, A; Johnston, K M

    2009-05-01

    To review the diagnostic tests and investigations used in the management of sports concussion, in the adult and paediatric populations, to (a) monitor the severity of symptoms and deficits, (b) track recovery and (c) advance knowledge relating to the natural history and neurobiology of the injury. Qualitative literature review of the neuroimaging, balance testing, electrophysiology, blood marker and concussion literature. PubMed and Medline databases were reviewed for investigations used in the management of adult and paediatric concussion, including structural imaging (computerised tomography, magnetic resonance imaging, diffusion tensor imaging), functional imaging (single photon emission computerised tomography, positron emission tomography, functional magnetic resonance imaging), spectroscopy (magnetic resonance spectroscopy, near infrared spectroscopy), balance testing (Balance Error Scoring System, Sensory Organization Test, gait testing, virtual reality), electrophysiological tests (electroencephalography, evoked potentials, event related potentials, magnetoencephalography, heart rate variability), genetics (apolipoprotein E4, channelopathies) and blood markers (S100, neuron-specific enolase, cleaved Tau protein, glutamate). For the adult and paediatric populations, each test has been classified as being: (1) clinically useful, (2) a research tool only or (3) not useful in sports-related concussion. The current status of the diagnostic tests and investigations is analysed, and potential directions for future research are provided. Currently, all tests and investigations, with the exception of clinical balance testing, remain experimental. There is accumulating research, however, that shows promise for the future clinical application of functional magnetic resonance imaging in sport concussion assessment and management.

  16. Deep-level defects in semiconductors: studies by magnetic resonance

    International Nuclear Information System (INIS)

    Ammerlaan, C.A.J.

    1983-01-01

    This work is divided into two parts. In the first one, the following topics are discussed: paramagnetic centers in semiconductors, principles of magnetic resonance, spin-Hamiltonian, g-tensor, hyperfine interaction, magnetic resonance spectrometer. In the second part it is dicussed defects studied by magnetic resonance including vacancy and divacancy in silicon, iron in silicon, nitrogen in diamond and antisite defects in III-V compounds. (A.C.A.S.) [pt

  17. An introduction to magnetic resonance in medicine. 2. rev. ed.

    International Nuclear Information System (INIS)

    Rinck, P.A.; Muller, R.N.; Petersen, S.B.

    1990-01-01

    The second edition of this introduction to magnetic resonance in medicine is published five years after the first. During these years, magnetic resonance has established itself as a leading diagnostic modality in medicine. With the introduction of fast imaging methods and contrast agents, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) have become even more complicated and complex than before. The purpose of this introduction to biomedical MRI and MRS is to give the readers a basic knowledge that will make it possible for them to pursue studies of their own and to cope with some of the most common problems such as image artifacts or patient questions concerning possible hazards of magnetic resonance. (orig./MG) With 99 figs., 11 tabs

  18. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    Science.gov (United States)

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  19. Resonant Magnetization Tunneling in Molecular Magnets: Where is the Inhomogeneous Broadening?

    Science.gov (United States)

    Friedman, Jonathan R.; Sarachik, M. P.

    1998-03-01

    Since the discovery(J. R. Friedman, et al., Phys. Rev. Lett. 76), 3830 (1996) of resonant magnetization tunneling in the molecular magnet Mn_12 there has been intense research into the underlying mechanism of tunneling. Most current theories( V. Dobrovitski and A. Zvezdin, Europhys. Lett. 38), 377 (1997); L. Gunther, Europhys. Lett. 39, 1 (1997); D Garanin and E. Chudnovsky, Phys. Rev. B 56, 11102 (1997). suggest that a local internal (hyperfine or dipole) field transverse to the easy magnetization axis induces tunneling. These theories predict a resonance width orders of magnitude smaller than that actually observed. This discrepancy is attributed to inhomogeneous broadening of the resonance by the random internal fields. We present a detailed study of the tunnel resonance lineshape and show that it is Lorentzian, suggesting it has a deeper physical origin. Since the hyperfine fields are believed to be comparable to the observed width, it is surprising that there is no Gaussian broadening.

  20. Capsular contracture and possible implant rupture: is magnetic resonance imaging useful?

    Science.gov (United States)

    Paetau, Alyssa A; McLaughlin, Sarah A; McNeil, Rebecca B; Sternberg, Erez; TerKonda, Sarvam P; Waldorf, James C; Perdikis, Galen

    2010-03-01

    Currently, magnetic resonance imaging is considered the accepted standard to evaluate breast implant integrity. To evaluate its utility in diagnosing ruptured silicone implants in the setting of capsular contracture and to correlate the preoperative assessment of implant integrity with or without magnetic resonance imaging with operative findings, 319 capsulectomies (171 patients with capsular contractures) were retrospectively reviewed. Preoperative magnetic resonance imaging was done on 160 implants, whereas the remaining 159 were evaluated using only physical examination and/or mammography. Postoperative results were analyzed to determine the sensitivity, specificity, and accuracy of preoperative magnetic resonance imaging in comparison with clinical and/or mammography evaluation alone. Although occasionally valuable, overall, preoperative magnetic resonance imaging was no more accurate than clinical evaluation with or without mammography in predicting implant status: magnetic resonance imaging 124 of 160 (78 percent) and clinical 121 of 159 (76 percent; p = 0.77). In the setting of capsular contracture, physical examination with or without mammogram is as accurate as magnetic resonance imaging in determining implant integrity. Although magnetic resonance imaging is a sensitive diagnostic tool, in symptomatic patients with capsular contracture, it cannot be viewed as infallible.

  1. SQUID-detected magnetic resonance imaging in microtesla magnetic fields

    International Nuclear Information System (INIS)

    McDermott, Robert; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Mueck, Michael; Myers, Whittier; Haken, Bernard ten; Seton, H.C.; Trabesinger, Andreas H.; Pines, Alex; Clarke, John

    2003-01-01

    We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging

  2. Magnetic resonance of field-frozen and zero-field-frozen magnetic fluids

    International Nuclear Information System (INIS)

    Pereira, A.R.; Pelegrini, F.; Neto, K. Skeff; Buske, N.; Morais, P.C.

    2004-01-01

    In this study magnetic resonance was used to investigate magnetic fluid samples frozen under zero and non-zero (15 kG) external fields. The magnetite-based sample containing 2x10 17 particle/cm 3 was investigated from 100 to 400 K. Analysis of the temperature dependence of the resonance field revealed bigger magnetic structures in the frozen state than in the liquid phase. Also, differences in the mesoscopic organization in the frozen state may explain the data obtained from samples frozen under zero and non-zero fields

  3. [Neuroimaging and Blood Biomarkers in Functional Prognosis after Stroke].

    Science.gov (United States)

    Branco, João Paulo; Costa, Joana Santos; Sargento-Freitas, João; Oliveira, Sandra; Mendes, Bruno; Laíns, Jorge; Pinheiro, João

    2016-11-01

    Stroke remains one of the leading causes of morbidity and mortality around the world and it is associated with an important long-term functional disability. Some neuroimaging resources and certain peripheral blood or cerebrospinal fluid proteins can give important information about etiology, therapeutic approach, follow-up and functional prognosis in acute ischemic stroke patients. However, among the scientific community, there is currently more interest in the stroke vital prognosis over the functional prognosis. Predicting the functional prognosis during acute phase would allow more objective rehabilitation programs and better management of the available resources. The aim of this work is to review the potential role of acute phase neuroimaging and blood biomarkers as functional recovery predictors after ischemic stroke. Review of the literature published between 2005 and 2015, in English, using the terms "ischemic stroke", "neuroimaging" e "blood biomarkers". We included nine studies, based on abstract reading. Computerized tomography, transcranial doppler ultrasound and diffuse magnetic resonance imaging show potential predictive value, based on the blood flow study and the evaluation of stroke's volume and localization, especially when combined with the National Institutes of Health Stroke Scale. Several biomarkers have been studied as diagnostic, risk stratification and prognostic tools, namely the S100 calcium binding protein B, C-reactive protein, matrix metalloproteinases and cerebral natriuretic peptide. Although some biomarkers and neuroimaging techniques have potential predictive value, none of the studies were able to support its use, alone or in association, as a clinically useful functionality predictor model. All the evaluated markers were considered insufficient to predict functional prognosis at three months, when applied in the first hours after stroke. Additional studies are necessary to identify reliable predictive markers for functional

  4. The teen brain: insights from neuroimaging.

    Science.gov (United States)

    Giedd, Jay N

    2008-04-01

    Few parents of a teenager are surprised to hear that the brain of a 16-year-old is different from the brain of an 8-year-old. Yet to pin down these differences in a rigorous scientific way has been elusive. Magnetic resonance imaging, with the capacity to provide exquisitely accurate quantifications of brain anatomy and physiology without the use of ionizing radiation, has launched a new era of adolescent neuroscience. Longitudinal studies of subjects from ages 3-30 years demonstrate a general pattern of childhood peaks of gray matter followed by adolescent declines, functional and structural increases in connectivity and integrative processing, and a changing balance between limbic/subcortical and frontal lobe functions, extending well into young adulthood. Although overinterpretation and premature application of neuroimaging findings for diagnostic purposes remains a risk, converging data from multiple imaging modalities is beginning to elucidate the implications of these brain changes on cognition, emotion, and behavior.

  5. Magnetic resonance, a phenomenon with a great potential in medicine, but with a complex physical background – Part 2: The basics of magnetic resonance

    Directory of Open Access Journals (Sweden)

    Bojan Božič

    2014-01-01

    Full Text Available Magnetic resonance imaging is a very complex diagnostic technique. Therefore, both practical experiences and theoretical understanding is needed for effective diagnostics. It is therefore important that physicians are sufficiently familiar with the basic physical principles of magnetic resonance. In the interpretation of physical concepts, we will rely both on the classical as well as on the quantum-mechanical view of the signal formation in magnetic resonance, which are to some extent complementary. The signal appearance in magnetic resonance imaging will be discussed. A special emphasis will be put on the role of the resonance frequency and the pulse sequences. Furthermore, the spin echo as one of the most used classical signal sequences in diagnostic investigations will be described.

  6. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    International Nuclear Information System (INIS)

    Jin, L.

    2016-01-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.

  7. Nuclear magnetic resonance scattering

    International Nuclear Information System (INIS)

    Young, I.R.

    1985-01-01

    A nuclear magnetic resonance apparatus is described including a magnet system which is capable of providing a steady magnetic field along an axis, and is constructed so as to define a plurality of regions along the axis in each of which the field is substantially homogeneous so that in each region an imaging operation may be separately carried out. Iron shields increase the field homogeneity. In use, each patient lies on a wheeled trolley which is provided with magnetic field gradient coils and an RF coil system, some of the coils being movable to facilitate positioning of the patient, and there are terminals for connection to a common computing and control facility. (author)

  8. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Magnetic resonance diagnostic device. 892.1000 Section 892.1000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance diagnostic...

  9. Concepts and indications of abdominal magnetic resonance

    International Nuclear Information System (INIS)

    Murillo Viera, Wendy

    2012-01-01

    A literature review and conceptualization was performed of the main indications of magnetic resonance studies of the abdomen and the characteristic findings for each sequence, according to organ and pathology. The radiologist has had in mind main indications for magnetic resonance studies of the abdomen, with the purpose to guide the clinician in the choice of imaging modality that works best for the patient at diagnosis [es

  10. Magnetic resonance imaging validation of pituitary gland compression and distortion by typical sellar pathology.

    Science.gov (United States)

    Cho, Charles H; Barkhoudarian, Garni; Hsu, Liangge; Bi, Wenya Linda; Zamani, Amir A; Laws, Edward R

    2013-12-01

    Identification of the normal pituitary gland is an important component of presurgical planning, defining many aspects of the surgical approach and facilitating normal gland preservation. Magnetic resonance imaging is a proven imaging modality for optimal soft-tissue contrast discrimination in the brain. This study is designed to validate the accuracy of localization of the normal pituitary gland with MRI in a cohort of surgical patients with pituitary mass lesions, and to evaluate for correlation between presurgical pituitary hormone values and pituitary gland characteristics on neuroimaging. Fifty-eight consecutive patients with pituitary mass lesions were included in the study. Anterior pituitary hormone levels were measured preoperatively in all patients. Video recordings from the endoscopic or microscopic surgical procedures were available for evaluation in 47 cases. Intraoperative identification of the normal gland was possible in 43 of 58 cases. Retrospective MR images were reviewed in a blinded fashion for the 43 cases, emphasizing the position of the normal gland and the extent of compression and displacement by the lesion. There was excellent agreement between imaging and surgery in 84% of the cases for normal gland localization, and in 70% for compression or noncompression of the normal gland. There was no consistent correlation between preoperative pituitary dysfunction and pituitary gland localization on imaging, gland identification during surgery, or pituitary gland compression. Magnetic resonance imaging proved to be accurate in identifying the normal gland in patients with pituitary mass lesions, and was useful for preoperative surgical planning.

  11. [Leigh's encephalopathy (subacute necrotizing encephalopathy). Documentation of its evolution through neuroimaging].

    Science.gov (United States)

    Pena, J A; González-Ferrer, S; Martínez, C; Prieto-Carrasquero, M; Delgado, W; Mora La Cruz, E

    1996-09-01

    A 30 months-old boy developed bilateral nistagmus, tremor, gait disturbance, hypotonia and disartria. The diagnose of Leigh encephalopathy was suggested on the basis of clinical, neuroimaging and laboratory findings. Computed tomography and magnetic resonance imaging (MRI) at an early stage revealed bilateral and symmetric lesions in the putamen, appearing as hyperintense signal on T2-weighted images. Twelve months later a relatively large hypertense area in the posterior brainstem was observed. At this stage, the patient exhibited marked deterioration, dystonic manifestations, rigidity and respiratory disturbances. He died 6 months later for respiratory arrest during bronconeumonic infection. We believe MRI is a valuable means to allow assessment of the evolution of the disease.

  12. Magnetic resonance imaging in the evaluation of periosteal reactions

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira-Barbosa, Marcello Henrique; Trad, Clovis Simao; Muglia, Valdair Francisco; Elias Junior, Jorge; Simao, Marcelo Novelino, E-mail: marcello@fmrp.usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Centro de Ciencias das Imagens e Fisica Medica; Sa, Jose Luiz de [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Hospital das Clinicas; Oliveira, Rodrigo Cecilio Vieira de [Clinica de Diagnostico por Imagem Tomoson, Aracatuba, SP (Brazil); Engel, Edgard Eduard [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Biomecanica, Medicina e Reabilitacao do Aparelho Locomotor

    2010-07-15

    The objective of the present essay was to encourage a careful evaluation of periosteal reactions on magnetic resonance images. The initial approach to bone lesions is made by conventional radiography and, based on the imaging findings, periosteal reactions are classified into classical subtypes. Although magnetic resonance imaging is considered as the gold standard for local staging of bone tumors, the utilization of such method in the study of periosteal reactions related to focal bone lesions has been poorly emphasized, with relatively few studies approaching this subject. The literature review revealed a study describing an experimental animal model of osteomyelitis suggesting that magnetic resonance imaging is superior to other imaging methods in the early identification of periosteal reactions. Another study has suggested a good correlation between conventional radiography and magnetic resonance imaging in the identification and classification of periosteal reactions in cases of osteosarcoma. The present essay illustrates cases of periosteal reactions observed at magnetic resonance imaging in correlation with findings of conventional radiography or other imaging methods. (author)

  13. Magnetic resonance imaging in the evaluation of periosteal reactions

    International Nuclear Information System (INIS)

    Nogueira-Barbosa, Marcello Henrique; Trad, Clovis Simao; Muglia, Valdair Francisco; Elias Junior, Jorge; Simao, Marcelo Novelino; Engel, Edgard Eduard

    2010-01-01

    The objective of the present essay was to encourage a careful evaluation of periosteal reactions on magnetic resonance images. The initial approach to bone lesions is made by conventional radiography and, based on the imaging findings, periosteal reactions are classified into classical subtypes. Although magnetic resonance imaging is considered as the gold standard for local staging of bone tumors, the utilization of such method in the study of periosteal reactions related to focal bone lesions has been poorly emphasized, with relatively few studies approaching this subject. The literature review revealed a study describing an experimental animal model of osteomyelitis suggesting that magnetic resonance imaging is superior to other imaging methods in the early identification of periosteal reactions. Another study has suggested a good correlation between conventional radiography and magnetic resonance imaging in the identification and classification of periosteal reactions in cases of osteosarcoma. The present essay illustrates cases of periosteal reactions observed at magnetic resonance imaging in correlation with findings of conventional radiography or other imaging methods. (author)

  14. Resting-state functional magnetic resonance imaging: the impact of regression analysis.

    Science.gov (United States)

    Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi

    2015-01-01

    To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.

  15. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  16. Resonance magnetic x-ray scattering study of erbium

    DEFF Research Database (Denmark)

    Sanyal, M.K.; Gibbs, D.; Bohr, J.

    1994-01-01

    The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...... of this magnetic scattering and analyzed it using a simple model based on electric dipole and quadrupole transitions among atomic orbitals. The line shapes can be fitted to a magnetic structure combining both c-axis-modulated and basal-plane components. Below 18 K, we have observed unusual behavior of the magnetic...

  17. Neuroimaging findings in Joubert syndrome with C5orf42 gene mutations: A milder form of molar tooth sign and vermian hypoplasia.

    Science.gov (United States)

    Enokizono, Mikako; Aida, Noriko; Niwa, Tetsu; Osaka, Hitoshi; Naruto, Takuya; Kurosawa, Kenji; Ohba, Chihiro; Suzuki, Toshifumi; Saitsu, Hirotomo; Goto, Tomohide; Matsumoto, Naomichi

    2017-05-15

    Little is known regarding neuroimaging-genotype correlations in Joubert syndrome (JBTS). To elucidate one of these correlations, we investigated the neuroimaging findings of JBTS patients with C5orf42 mutations. Neuroimaging findings in five JBTS patients with C5orf42 mutations were retrospectively assessed with regard to the infratentorial and supratentorial structures on T1-magnetization prepared rapid gradient echo (MPRAGE), T2-weighted images, and color-coded fractional anisotropy (FA) maps; the findings were compared to those in four JBTS patients with mutations in other genes (including three with AHI1 and one with TMEM67 mutations). In C5orf42-mutant patients, the infratentorial magnetic resonance (MR) images showed normal or minimally thickened and minimally elongated superior cerebellar peduncles (SCP), normal or minimally deepened interpeduncular fossa (IF), and mild vermian hypoplasia (VH). However, in other patients, all had severe abnormalities in the SCP and IF, and moderate to marked VH. Supratentorial abnormalities were found in one individual in other JBTS. In JBTS with all mutations, color-coded FA maps showed the absence of decussation of the SCP (DSCP). The morphological neuroimaging findings in C5orf42-mutant JBTS were distinctly mild and made diagnosis difficult. However, the absence of DSCP on color-coded FA maps may facilitate the diagnosis of JBTS. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Magnetic Resonance Cholangiopancreatography (MRCP)

    Science.gov (United States)

    ... radio waves and a computer to evaluate the liver, gallbladder, bile ducts, pancreas and pancreatic duct for disease. It is ... of the hepatobiliary and pancreatic systems, including the liver, gallbladder, bile ducts, pancreas and pancreatic duct . Magnetic resonance imaging (MRI) ...

  19. Testosterone in the brain: neuroimaging findings and the potential role for neuropsychopharmacology.

    Science.gov (United States)

    Höfer, Peter; Lanzenberger, Rupert; Kasper, Siegfried

    2013-02-01

    Testosterone plays a substantial role in a number of physiological processes in the brain. It is able to modulate the expression of certain genes by binding to androgen receptors. Acting via neurotransmitter receptors, testosterone shows the potential to mediate a non-genomic so-called "neuroactive effect". Various neurotransmitter systems are also influenced by the aromatized form of testosterone, estradiol. The following article summarizes the findings of preclinical and clinical neuroimaging studies including structural and functional magnetic resonance imaging (MRI/fMRI), voxel based morphometry (VBM), as well as pharmacological fMRI (phfMRI) and positron emission tomography (PET) regarding the effects of testosterone on the human brain. The impact of testosterone on the pathogenesis of psychiatric disorders and on sex-related prevalence differences have been supported by a wide range of clinical studies. An antidepressant effect of testosterone can be implicitly explained by its effects on the limbic system--especially amygdala, a major target in the treatment of depression--solidly demonstrated by a large body of neuroimaging findings. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  20. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  1. Voxel-Based Correlation between Coregistered Single-Photon Emission Computed Tomography and Dynamic Susceptibility Contrast Magnetic Resonance Imaging in Subjects with Suspected Alzheimer Disease

    International Nuclear Information System (INIS)

    Cavallin, L.; Axelsson, R.; Wahlund, L.O.; Oeksengard, A.R.; Svensson, L.; Juhlin, P.; Wiberg, M. Kristoffersen; Frank, A.

    2008-01-01

    Background: Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. Purpose: To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). Material and Methods: 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using 99m Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm (SE)) on both SPECT and DSC-MRI. Results: Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. Conclusion: SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease

  2. Frequency-domain analysis of resonant-type ring magnet power supplies

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Reiniger, K.W.

    1993-01-01

    For fast-cycling synchrotrons, resonant-type ring magnet power supplies are commonly used to provide a dc-biased ac excitation for the ring magnets. Up to the present, this power supply system has been analyzed using simplified analytical approximation, namely assuming the resonant frequency of the ring magnet network is fixed and equal to the accelerator frequency. This paper presents a frequency-domain analysis technique for a more accurate analysis of resonant-type ring magnet power supplies. This approach identifies that, with the variation of the resonant frequency, the operating conditions of the power supply changes quite dramatically because of the high Q value of the resonant network. The analytical results are verified, using both experimental results and simulation results

  3. Resonant cell of a double nuclear electron resonance spectrometer for performance in a 120-350 Gs magnetic field

    International Nuclear Information System (INIS)

    Baldin, V.I.; Stepanov, A.P.

    1976-01-01

    Spectrometer double-frequency resonance cell construction of a double nuclear electron resonance for operation in 120-350 Gs magnetic fields is described. The cell has been developed from a special decimeter resonator with a concentrated capacitance. The electric and magnetic components of a high frequency field are efficiently divided in the separator. Therefore, the insertion of a measuring coil and a sample in the maximum of the magnetic component of the field does not practically affect the distribution and parameters of the high-frequency field. The double-frequency resonance cell proposed provides for a higher accuracy of measuring amplifications of the nuclear magnetic resonance signals when there is the overhauzer effect for 120-350 Gs magnetic fields

  4. Can magnetic resonance imaging differentiate undifferentiated arthritis?

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Duer, Anne; Hørslev-Petersen, K

    2005-01-01

    A high sensitivity for the detection of inflammatory and destructive changes in inflammatory joint diseases makes magnetic resonance imaging potentially useful for assigning specific diagnoses, such as rheumatoid arthritis and psoriatic arthritis in arthritides, that remain undifferentiated after...... conventional clinical, biochemical and radiographic examinations. With recent data as the starting point, the present paper describes the current knowledge on magnetic resonance imaging in the differential diagnosis of undifferentiated arthritis....

  5. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  6. Magnetic resonance imaging of infectious myositis

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji Young; Kim, Jee Young; Kim, Sang Heum; Jung, Youn Ju; Cha, Eun Suk; Park, Joung Mi; Park, Young Ha [The Catholic Univ., College of Medicine, Suwon (Korea, Republic of)

    1998-09-01

    To describe the findings of magnetic resonance imaging in infectious myositis and to determine their value for differentiation between ruberculous and bacterial myositis. Magnetic resonance images of ten proven cases of infectious myositis (five tuberculous and five bacterial) were retrospectively reviewed in the light of clinical and laboratory findings. On the basis of magnetic resonance images, signal intensity of the mass, the presence or absence of an abscess, signal intensity of the peripheral wall, patterns of contrast enhancement, and associated findings were evaluated. Compared with those of bacterial myositis, the symptoms of tuberculous myositis lasted longer but there were no difinite local inflammatory signs. In three of five cases of bacterial myositis there were specific medical records;trauma in two cases and systemic lupus erythematosus in one. All tuberculous myositis cases involved a single muscle, but bacterial myositis affected multipe muscles in three cases(60%). All but one case showed a mass in the involved muscles. In one bacterial case, there was diffuse swelling in the involved muscle. On T1-weighted images, eight infectious cases showed low signal intensity;two, of the bactrerial type, showed subtle increased signal intensity. all cases demonstrated high signal intensity on t2-weighted images. The signal intensity of peripheral wall was slightly increased on T1-weighted images, but low on T2-weighted. In four cases there was associated cellulitis, and in one case each, adjacent joint effusion and deep vein thrombosis were seen. After gadolinium infusion, peripheral rim enhancement was noted in nine cases and heterogeneous enhancement in one. After magnetic resonance imaging of infectious myositis, the characteristic finding was an abscessed lesion, with the peripheral wall showing high signal intensity on T1-weighted images and low signal intensity on T2 weighted. Although we found it difficult to differentiate bacterial from tuberculous

  7. Magnetic resonance imaging of infectious myositis

    International Nuclear Information System (INIS)

    Yun, Ji Young; Kim, Jee Young; Kim, Sang Heum; Jung, Youn Ju; Cha, Eun Suk; Park, Joung Mi; Park, Young Ha

    1998-01-01

    To describe the findings of magnetic resonance imaging in infectious myositis and to determine their value for differentiation between ruberculous and bacterial myositis. Magnetic resonance images of ten proven cases of infectious myositis (five tuberculous and five bacterial) were retrospectively reviewed in the light of clinical and laboratory findings. On the basis of magnetic resonance images, signal intensity of the mass, the presence or absence of an abscess, signal intensity of the peripheral wall, patterns of contrast enhancement, and associated findings were evaluated. Compared with those of bacterial myositis, the symptoms of tuberculous myositis lasted longer but there were no difinite local inflammatory signs. In three of five cases of bacterial myositis there were specific medical records;trauma in two cases and systemic lupus erythematosus in one. All tuberculous myositis cases involved a single muscle, but bacterial myositis affected multipe muscles in three cases(60%). All but one case showed a mass in the involved muscles. In one bacterial case, there was diffuse swelling in the involved muscle. On T1-weighted images, eight infectious cases showed low signal intensity;two, of the bactrerial type, showed subtle increased signal intensity. all cases demonstrated high signal intensity on t2-weighted images. The signal intensity of peripheral wall was slightly increased on T1-weighted images, but low on T2-weighted. In four cases there was associated cellulitis, and in one case each, adjacent joint effusion and deep vein thrombosis were seen. After gadolinium infusion, peripheral rim enhancement was noted in nine cases and heterogeneous enhancement in one. After magnetic resonance imaging of infectious myositis, the characteristic finding was an abscessed lesion, with the peripheral wall showing high signal intensity on T1-weighted images and low signal intensity on T2 weighted. Although we found it difficult to differentiate bacterial from tuberculous

  8. Molecular structure and motion in zero field magnetic resonance

    International Nuclear Information System (INIS)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed

  9. Functional magnetic resonance imaging to determine hemispheric language dominance prior to carotid endarterectomy.

    Science.gov (United States)

    Smits, M; Wieberdink, R G; Bakker, S L M; Dippel, D W J

    2011-04-01

    We describe a left-handed patient with transient aphasia and bilateral carotid stenosis. Computed tomography (CT) arteriography showed a 90% stenosis of the right and 30% stenosis of the left internal carotid artery. Head CT and magnetic resonance imaging (MRI) of the brain showed no recent ischemic changes. As only the symptomatic side would require surgical intervention, and because hemispheric dominance for language in left-handed patients may be either left or right sided, a preoperative assessment of hemispheric dominance was required. We used functional MRI to determine hemispheric dominance for language and hence to establish the indication for carotid endarterectomy surgery. Functional MRI demonstrated right hemispheric dominance for language and right-sided carotid endarterectomy was performed. We propose that the clinical use of functional MRI as a noninvasive imaging technique for the assessment of hemispheric language dominance may be extended to the assessment of hemispheric language dominance prior to carotid endarterectomy. Copyright © 2010 by the American Society of Neuroimaging.

  10. Diagnostic imaging of psoriatic arthritis. Part II: magnetic resonance imaging and ultrasonography

    Directory of Open Access Journals (Sweden)

    Iwona Sudoł-Szopińska

    2016-06-01

    Full Text Available Plain radiography reveals specific, yet late changes of advanced psoriatic arthritis. Early inflammatory changes are seen both on magnetic resonance imaging and ultrasound within peripheral joints (arthritis, synovitis, tendons sheaths (tenosynovitis, tendovaginitis and entheses (enthesitis, enthesopathy. In addition, magnetic resonance imaging enables the assessment of inflammatory features in the sacroiliac joints (sacroiliitis, and the spine (spondylitis. In this article, we review current opinions on the diagnostics of some selective, and distinctive features of psoriatic arthritis concerning magnetic resonance imaging and ultrasound and present some hypotheses on psoriatic arthritis etiopathogenesis, which have been studied with the use of magnetic resonance imaging. The following elements of the psoriatic arthritis are discussed: enthesitis, extracapsular inflammation, dactylitis, distal interphalangeal joint and nail disease, and the ability of magnetic resonance imaging to differentiate undifferentiated arthritis, the value of whole-body magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging.

  11. Magnetic resonance spectroscopy as a diagnostic modality for carcinoma thyroid

    International Nuclear Information System (INIS)

    Gupta, Nikhil; Kakar, Arun K.; Chowdhury, Veena; Gulati, Praveen; Shankar, L. Ravi; Vindal, Anubhav

    2007-01-01

    Aim: The aim of this study was to observe the findings of magnetic resonance spectroscopy of solitary thyroid nodules and its correlation with histopathology. Materials and methods: In this study, magnetic resonance spectroscopy was carried out on 26 patients having solitary thyroid nodules. Magnetic resonance spectroscopy (MRS) was performed on a 1.5 T super conductive system with gradient strength of 33 mTs. Fine needle aspiration cytology was done after MRS. All 26 patients underwent surgery either because of cytopathologically proven malignancy or because of cosmetic reasons. Findings of magnetic resonance spectroscopy were compared with histopathology of thyroid specimens. Results and conclusion: It was seen that presence or absence of choline peak correlates very well with presence or absence of malignant foci with in the nodule (sensitivity = 100%; specificity = 88.88%). These results indicate that magnetic resonance spectroscopy may prove to be an useful diagnostic modality for carcinoma thyroid

  12. Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging.

    Science.gov (United States)

    Pitman, R K; Shin, L M; Rauch, S L

    2001-01-01

    Rapidly evolving brain neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) are proving fruitful in exploring the pathogenesis and pathophysiology of posttraumatic stress disorder (PTSD). Structural abnormalities in PTSD found with MRI include nonspecific white matter lesions and decreased hippocampal volume. These abnormalities may reflect pretrauma vulnerability to develop PTSD, or they may be a consequence of traumatic exposure, PTSD, and/or PTSD sequelae. Functional neuroimaging symptom provocation and cognitive activation paradigms using PET measurement of regional cerebral blood flow have revealed greater activation of the amygdala and anterior paralimbic structures (which are known to be involved in processing negative emotions such as fear), greater deactivation of Broca's region (motor speech) and other nonlimbic cortical regions, and failure of activation of the cingulate cortex (which possibly plays an inhibitory role) in response to trauma-related stimuli in individuals with PTSD. Functional MRI research has shown the amygdala to be hyperresponsive to fear-related stimuli in this disorder. Research with PET suggests that cortical, notably hippocampal, metabolism is suppressed to a greater extent by pharmacologic stimulation of the noradrenergic system in persons with PTSD. The growth of knowledge concerning the anatomical and neurochemical basis of this important mental disorder will hopefully eventually lead to rational psychological and pharmacologic treatments.

  13. Magnetic resonance, especially spin echo, in spinor Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Yasunaga, Masashi; Tsubota, Makoto

    2009-01-01

    Magnetic resonance, especially NMR and ESR, has been studied in magnetic materials for a long time, having been used in various fields. Spin echo is typical phenomenon in magnetic resonance. The magnetic resonance should be applied to spinor Bose-Einstein condensates (BECs). We numerically study spin echo of a spinor BEC in a gradient magnetic field by calculating the spin-1 two-dimensional Gross-Pitaevskii equations, obtaining the recovery of the signal of the spins, which is called spin echo. We will discuss the relation between the spin echo and the Stern-Gelrach separation in the system.

  14. Quantitative magnetic resonance micro-imaging methods for pharmaceutical research.

    Science.gov (United States)

    Mantle, M D

    2011-09-30

    The use of magnetic resonance imaging (MRI) as a tool in pharmaceutical research is now well established and the current literature covers a multitude of different pharmaceutically relevant research areas. This review focuses on the use of quantitative magnetic resonance micro-imaging techniques and how they have been exploited to extract information that is of direct relevance to the pharmaceutical industry. The article is divided into two main areas. The first half outlines the theoretical aspects of magnetic resonance and deals with basic magnetic resonance theory, the effects of nuclear spin-lattice (T(1)), spin-spin (T(2)) relaxation and molecular diffusion upon image quantitation, and discusses the applications of rapid magnetic resonance imaging techniques. In addition to the theory, the review aims to provide some practical guidelines for the pharmaceutical researcher with an interest in MRI as to which MRI pulse sequences/protocols should be used and when. The second half of the article reviews the recent advances and developments that have appeared in the literature concerning the use of quantitative micro-imaging methods to pharmaceutically relevant research. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Comparative analysis of nuclear magnetic resonance well logging and nuclear magnetic resonance mud logging

    International Nuclear Information System (INIS)

    Yuan Zugui

    2008-01-01

    The hydrogen atoms in oil and water are able to resonate and generate signals in the magnetic field, which is used by the NMR (nuclear magnetic resonance) technology in petroleum engineering to research and evaluate rock characteristics. NMR well logging was used to measure the physical property parameters of the strata in well bore, whereas NMR mud logging was used to analyze (while drilling) the physical property parameters of cores, cuttings and sidewall coring samples on surface (drilling site). Based on the comparative analysis of the porosity and permeability parameters obtained by NMR well logging and those from analysis of the cores, cuttings and sidewall coring samples by NMR mud logging in the same depth of 13 wells, these two methods are of certain difference, but their integral tendency is relatively good. (authors)

  16. Magnetic resonance tomography for trauma of the cervical spine

    International Nuclear Information System (INIS)

    Meydam, K.; Sehlen, S.; Schlenkhoff, D.; Kiricuta, J.C.; Beyer, H.K.

    1986-01-01

    Twenty patients who had suffered spinal trauma were examined by magnetic resonance tomography. Fifteen patients with first degree trauma in Erdmann's classification showed no abnormality. Magnetic resonance tomography of the cervical spine appears to be a suitable method for investigating patients with whiplash injuries. It is indicated following severe flexion injuries with subluxations and neurological symptoms, since it is the only method that can demonstrate the spinal cord directly and completely and show the extent of cord compression. For patients with thoracic trauma and rapidly developing neurological symptoms, magnetic resonance tomography is ideal for showing post-traumatic syringomyelia. Magnetic resonance tomography following whiplash injuries is recommended if plain films of the cervical spine show any abnormalities, as well as for the investigation of acute or sub-acute neurological abnormalities. The various findings are discussed. (orig.) [de

  17. Magnetic resonance tomography for trauma of the cervical spine

    Energy Technology Data Exchange (ETDEWEB)

    Meydam, K.; Sehlen, S.; Schlenkhoff, D.; Kiricuta, J.C.; Beyer, H.K.

    1986-12-01

    Twenty patients who had suffered spinal trauma were examined by magnetic resonance tomography. Fifteen patients with first degree trauma in Erdmann's classification showed no abnormality. Magnetic resonance tomography of the cervical spine appears to be a suitable method for investigating patients with whiplash injuries. It is indicated following severe flexion injuries with subluxations and neurological symptoms, since it is the only method that can demonstrate the spinal cord directly and completely and show the extent of cord compression. For patients with thoracic trauma and rapidly developing neurological symptoms, magnetic resonance tomography is ideal for showing post-traumatic syringomyelia. Magnetic resonance tomography following whiplash injuries is recommended if plain films of the cervical spine show any abnormalities, as well as for the investigation of acute or sub-acute neurological abnormalities. The various findings are discussed.

  18. Normal perinatal and paediatric postmortem magnetic resonance imaging appearances

    Energy Technology Data Exchange (ETDEWEB)

    Arthurs, Owen J. [Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); UCL Institute of Child Health, London (United Kingdom); Barber, Joy L. [Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); Taylor, Andrew M. [Cardiorespiratory Division, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London (United Kingdom); Sebire, Neil J. [UCL Institute of Child Health, London (United Kingdom); Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom)

    2015-04-01

    As postmortem imaging becomes more widely used following perinatal and paediatric deaths, the correct interpretation of images becomes imperative, particularly given the increased use of postmortem magnetic resonance imaging. Many pathological processes may have similar appearances in life and following death. A thorough knowledge of normal postmortem changes is therefore required within postmortem magnetic resonance imaging to ensure that these are not mistakenly interpreted as significant pathology. Similarly, some changes that are interpreted as pathological if they occur during life may be artefacts on postmortem magnetic resonance imaging that are of limited significance. This review serves to illustrate briefly those postmortem magnetic resonance imaging changes as part of the normal changes after death in fetuses and children, and highlight imaging findings that may confuse or mislead an observer to identifying pathology where none is present. (orig.)

  19. Human fear conditioning and extinction in neuroimaging: a systematic review.

    Directory of Open Access Journals (Sweden)

    Christina Sehlmeyer

    Full Text Available Fear conditioning and extinction are basic forms of associative learning that have gained considerable clinical relevance in enhancing our understanding of anxiety disorders and facilitating their treatment. Modern neuroimaging techniques have significantly aided the identification of anatomical structures and networks involved in fear conditioning. On closer inspection, there is considerable variation in methodology and results between studies. This systematic review provides an overview of the current neuroimaging literature on fear conditioning and extinction on healthy subjects, taking into account methodological issues such as the conditioning paradigm. A Pubmed search, as of December 2008, was performed and supplemented by manual searches of bibliographies of key articles. Two independent reviewers made the final study selection and data extraction. A total of 46 studies on cued fear conditioning and/or extinction on healthy volunteers using positron emission tomography or functional magnetic resonance imaging were reviewed. The influence of specific experimental factors, such as contingency and timing parameters, assessment of conditioned responses, and characteristics of conditioned and unconditioned stimuli, on cerebral activation patterns was examined. Results were summarized descriptively. A network consisting of fear-related brain areas, such as amygdala, insula, and anterior cingulate cortex, is activated independently of design parameters. However, some neuroimaging studies do not report these findings in the presence of methodological heterogeneities. Furthermore, other brain areas are differentially activated, depending on specific design parameters. These include stronger hippocampal activation in trace conditioning and tactile stimulation. Furthermore, tactile unconditioned stimuli enhance activation of pain related, motor, and somatosensory areas. Differences concerning experimental factors may partly explain the variance

  20. Topical questions in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.; Florida Univ., Gainesville, FL; Florida Univ., Gainesville, FL

    1989-01-01

    This paper examines a number of practical questions concerning magnetic resonance imaging. These include the choice of operating magnetic field strength, the problem of siting and screening, a procedure for securing precise slice selection and the use of paramagnetic contrast agents. (author). 5 refs

  1. 'Blocking' effects in magnetic resonance? The ferromagnetic nanowires case

    International Nuclear Information System (INIS)

    Ramos, C.A.; De Biasi, E.; Zysler, R.D.; Vassallo Brigneti, E.; Vazquez, M.

    2007-01-01

    We present magnetic resonance results obtained at L, X, and Q bands (1.2, 9.4 and 34GHz, respectively) on ferromagnetic nanowires with a hysteresis cycle characterized by a remanent magnetization M r /M s ∼0.92 and a coercive field H c =1.0kOe. The hysteretic response of the ferromagnetic resonance spectra is discussed in terms of independent contributions of the nanowires aligned along and opposite to the applied field. We will discuss the implications of this study on the magnetic resonance in nanoparticles and other systems with large anisotropy

  2. Recent trends in high spin sensitivity magnetic resonance

    Science.gov (United States)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    Magnetic resonance is a very powerful methodology that has been employed successfully in many applications for about 70 years now, resulting in a wealth of scientific, technological, and diagnostic data. Despite its many advantages, one major drawback of magnetic resonance is its relatively poor sensitivity and, as a consequence, its bad spatial resolution when examining heterogeneous samples. Contemporary science and technology often make use of very small amounts of material and examine heterogeneity on a very small length scale, both of which are well beyond the current capabilities of conventional magnetic resonance. It is therefore very important to significantly improve both the sensitivity and the spatial resolution of magnetic resonance techniques. The quest for higher sensitivity led in recent years to the development of many alternative detection techniques that seem to rival and challenge the conventional ;old-fashioned; induction-detection approach. The aim of this manuscript is to briefly review recent advances in the field, and to provide a quantitative as well as qualitative comparison between various detection methods with an eye to future potential advances and developments. We first offer a common definition of sensitivity in magnetic resonance to enable proper quantitative comparisons between various detection methods. Following that, up-to-date information about the sensitivity capabilities of the leading recently-developed detection approaches in magnetic resonance is provided, accompanied by a critical comparison between them and induction detection. Our conclusion from this comparison is that induction detection is still indispensable, and as such, it is very important to look for ways to significantly improve it. To do so, we provide expressions for the sensitivity of induction-detection, derived from both classical and quantum mechanics, that identify its main limiting factors. Examples from current literature, as well as a description of

  3. Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting.

    Science.gov (United States)

    McGivney, Debra; Deshmane, Anagha; Jiang, Yun; Ma, Dan; Badve, Chaitra; Sloan, Andrew; Gulani, Vikas; Griswold, Mark

    2018-07-01

    To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Low field magnetic resonance experiments in superfluid 3He--A

    International Nuclear Information System (INIS)

    Gully, W.J. Jr.

    1976-01-01

    Measurements of the longitudinal and transverse nuclear magnetic resonance signals have been made on the A phase of liquid 3 He. They were performed on a sample of 3 He self-cooled by the Pomeranchuk effect to the critical temperature of the superfluid at 2.7 m 0 K. The longitudinal resonance is a magnetic mode of the liquid excited by radio frequency magnetic fields applied in the direction of the static magnetic field. Frequency profiles of this resonance were indirectly obtained by contour techniques from signals recorded by sweeping the temperature. Its frequency is found to be related to the frequency shift of the transverse resonance in agreement with theoretical predictions for the ABM pairing state. Its linewidth also agrees with theoretical predictions based upon dissipative phenomena peculiar to the superfluid phase. An analysis of the linewidth of the longitudinal resonance yields a value for the quasiparticle collision time. Transverse NMR lines were also studied. In low magnetic fields (20 Oersted) these lines were found to become extremely broad. This is shown to be a manifestation of the same collisional processes that broaden the longitudinal resonance lines. Also, the effects of various textures on the resonance lines are discussed, including the results of an attempt to create a single domain of 3 He with crossed electric and magnetic fields

  5. Nuclear magnetic resonance in ferromagnetic terbium metal

    International Nuclear Information System (INIS)

    Cha, C.L.T.

    1974-01-01

    The magnetic properties of terbium were studied by the method of zero field nuclear magnetic resonance at 1.5 to 4 and 85 to 160 0 K. Two unconventional experimental techniques have been employed: the swept frequency and the swept temperature technique. Near 4 0 K, triplet resonance line structures were found and interpreted in terms of the magnetic domain and wall structures of ferromagnetic terbium. In the higher temperature range, temperature dependence of the resonance frequency and the quadrupole splitting were measured. The former provides a measurement of the temperature dependence of the magnetization M, and it agrees with bulk M measurements as well as the latest spin wave theory of M(T) (Brooks 1968). The latter agrees well with a calculation using a very general single ion density matrix for collective excitations (Callen and Shtrikman 1965). In addition, the small temperature-independent contribution to the electric field gradient at the nucleus due to the lattice and conduction electrons was untangled from the P(T) data. Also an anomalous and unexplained relaxation phenomenon was also observed

  6. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Guy, J.; Mancuso, A.; Beck, R.; Moster, M.L.; Sedwick, L.A.; Quisling, R.G.; Rhoton, A.L. Jr.; Protzko, E.E.; Schiffman, J.

    1991-01-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence of both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain

  7. Brain Magnetic Resonance Imaging Findings in Developmentally Delayed Children

    Directory of Open Access Journals (Sweden)

    Ali Akbar Momen

    2011-01-01

    Full Text Available Background. Developmental disorders are failure or inability to acquire various age-specific skills at expected maturational age, which affects about 5–10% of preschool children. One of the most important methods for evaluation of developmentally delayed children is neuroimaging, especially, brain magnetic resonance imaging (MRI that provides useful information regarding brain tissue structures and anomalies. Method and Material. In this study, hospital records of 580 developmentally delayed children (aged 2 months to 15 years who admitted in pediatric ward of Golestan Hospital from 1997 to 2009 were selected. Information such as age, MRI findings were collected in the questionnaire and statistically analyzed. Results. Total, 580 children including 333 males (57.4% and 247 females (42.6% were studied. Abnormal brain MRI was observed in 340 (58.6% cases (204 Males, 136 females. The finding includes nonspecific in 38 (6.6%, congenital and developmental anomalies of brain in 39 (6.7%, recognizable syndromes in 3 (0.5%, neurovascular diseases or trauma in 218 (37.6%, and metabolic or neurodegenerative diseases in 42 (7.2% cases. Conclusion. Because 60% of all study groups showed abnormal brain MRI, using this method could be effective in diagnosis, management, and almost prognosis determination processes.

  8. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  9. Moessbauer and magnetic resonance experiments on amorphous iron-silicon films

    International Nuclear Information System (INIS)

    Bansal, C.; Campbell, S.J.; Stewart, A.M.

    1982-01-01

    Moessbauer measurements at room temperature and 4.2 K, and room temperature magnetic resonance measurments on a series of amorphous Fesub(x)Sisub(1-x) thin films (0.23 <= x <= 0.81) are presented. The concentration dependence of the isomer shifts and quadrupole splittings provides information on the nature of the local coordination in these amorphous materials. Analysis of the distributions of magnetic hyperfine splitting combined with the presence of multiple resonance in the magnetic resonance data indiates that magnetoanisotropy plays a dominant role in determining the magnetic behaviour of these films. (orig.)

  10. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sigal, R.

    1988-01-01

    This book is an introduction to magnetic resonance imaging (MRI). The basic principles for the interpretation of MR images are developed. The book is divided into five chapters: introduction, tissue, parameters, acquisition parameters, contribution to diagnosis, and practical management of an MR examination. Eight exercises allow the reader to test the knowledge he has acquired. Signal localization and MR artefacts are reviewed in an appendix

  11. Neuroimaging of amblyopia and binocular vision: a review

    Directory of Open Access Journals (Sweden)

    Olivier eJoly

    2014-08-01

    Full Text Available Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia. Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarise the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging (fMRI. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence show that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterise the brain response changes associated with these treatments and help devise them.

  12. [Functional neuroimaging of the brain structures associated with language in healthy individuals and patients with post-stroke aphasia].

    Science.gov (United States)

    Alferova, V V; Mayorova, L A; Ivanova, E G; Guekht, A B; Shklovskij, V M

    2017-01-01

    The introduction of non-invasive functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI), in the practice of scientific and clinical research can increase our knowledge about the organization of cognitive processes, including language, in normal and reorganization of these cognitive functions in post-stroke aphasia. The article discusses the results of fMRI studies of functional organization of the cortex of a healthy adult's brain in the processing of various voice information as well as the main types of speech reorganization after post-stroke aphasia in different stroke periods. The concepts of 'effective' and 'ineffective' brain plasticity in post-stroke aphasia were considered. It was concluded that there was an urgent need for further comprehensive studies, including neuropsychological testing and several complementary methods of functional neuroimaging, to develop a phased treatment plan and neurorehabilitation of patients with post-stroke aphasia.

  13. Neuroimaging in Parkinsonism: a study with magnetic resonance and spectroscopy as tools in the differential diagnosis Neuroimagem no parkinsonismo: estudo com ressonância magnética e espectroscopia por ressonância como ferramentas no diagnóstico diferencial

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Rocha Vasconcellos

    2009-03-01

    Full Text Available The differential diagnosis of Parkinsonism based on clinical features, sometimes may be difficult. Diagnostic tests in these cases might be useful, especially magnetic resonance imaging, a noninvasive exam, not as expensive as positron emission tomography, and provides a good basis for anatomical analysis. The magnetic resonance spectroscopy analyzes cerebral metabolism, yielding inconsistent results in parkinsonian disorders. We selected 40 individuals for magnetic resonance imaging and spectroscopy analysis, 12 with Parkinson's disease, 11 with progressive supranuclear palsy, 7 with multiple system atrophy (parkinsonian type, and 10 individuals without any psychiatric or neurological disorders (controls. Clinical scales included Hoenh and Yahr, unified Parkinson's disease rating scale and mini mental status examination. The results showed that patients with Parkinson's disease and controls presented the same aspects on neuroimaging, with few or absence of abnormalities, and supranuclear progressive palsy and multiple system atrophy showed abnormalities, some of which statistically significant. Thus, magnetic resonance imaging and spectroscopy could be useful as a tool in differential diagnosis of Parkinsonism.O diagnóstico diferencial do parkinsonismo baseado em parâmetros clínicos pode ser difícil. Alguns exames complementares podem ser úteis, especialmente a ressonância magnética, um método não invasivo, de menor custo quando comparado a tomografia por emissão de pósitrons, proporcionando uma análise anatômica satisfatória. A ressonância por espectroscopia analisa o metabolismo cerebral, com resultados variáveis na literatura no estudo das síndromes parkinsonianas. Selecionamos 40 indivíduos para realização de ressonância magnética e espectroscopia, sendo 12 com doença de Parkinson, 11 com paralisia supranuclear progressiva, 7 com atrofia de múltiplos sistemas tipo parkinsoniana e 10 indivíduos sem manifesta

  14. How Shakespeare tempests the brain: neuroimaging insights.

    Science.gov (United States)

    Keidel, James L; Davis, Philip M; Gonzalez-Diaz, Victorina; Martin, Clara D; Thierry, Guillaume

    2013-04-01

    Shakespeare made extensive use of the functional shift (FS), a rhetorical device involving a change in the grammatical status of words, e.g., using nouns as verbs. Previous work using event-related brain potentials showed how FS triggers a surprise effect inviting mental re-evaluation, seemingly independent of semantic processing. Here, we used functional magnetic resonance imaging to investigate brain activation in participants making judgements on the semantic relationship between sentences -some containing a Shakespearean FS- and subsequently presented words. Behavioural performance in the semantic decision task was high and unaffected by sentence type. However, neuroimaging results showed that sentences featuring FS elicited significant activation beyond regions classically activated by typical language tasks, including the left caudate nucleus, the right inferior frontal gyrus and the right inferior temporal gyrus. These findings show how Shakespeare's grammatical exploration forces the listener to take a more active role in integrating the meaning of what is said. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Neuroimaging for drug addiction and related behaviors

    International Nuclear Information System (INIS)

    Parvaz, M.A.; Alia-Klein, N.; Woicik, P.A.; Volkow, N.D.; Goldstein, R.Z.

    2011-01-01

    In this review, we highlight the role of neuroimaging techniques in studying the emotional and cognitive-behavioral components of the addiction syndrome by focusing on the neural substrates subserving them. The phenomenology of drug addiction can be characterized by a recurrent pattern of subjective experiences that includes drug intoxication, craving, bingeing, and withdrawal with the cycle culminating in a persistent preoccupation with obtaining, consuming, and recovering from the drug. In the past two decades, imaging studies of drug addiction have demonstrated deficits in brain circuits related to reward and impulsivity. The current review focuses on studies employing positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG) to investigate these behaviors in drug-addicted human populations. We begin with a brief account of drug addiction followed by a technical account of each of these imaging modalities. We then discuss how these techniques have uniquely contributed to a deeper understanding of addictive behaviors.

  16. Neuroimaging for drug addiction and related behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Parvaz M. A.; Parvaz, M.A.; Alia-Klein, N.; Woicik,P.A.; Volkow, N.D.; Goldstein, R.Z.

    2011-10-01

    In this review, we highlight the role of neuroimaging techniques in studying the emotional and cognitive-behavioral components of the addiction syndrome by focusing on the neural substrates subserving them. The phenomenology of drug addiction can be characterized by a recurrent pattern of subjective experiences that includes drug intoxication, craving, bingeing, and withdrawal with the cycle culminating in a persistent preoccupation with obtaining, consuming, and recovering from the drug. In the past two decades, imaging studies of drug addiction have demonstrated deficits in brain circuits related to reward and impulsivity. The current review focuses on studies employing positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG) to investigate these behaviors in drug-addicted human populations. We begin with a brief account of drug addiction followed by a technical account of each of these imaging modalities. We then discuss how these techniques have uniquely contributed to a deeper understanding of addictive behaviors.

  17. On effect of stability of magnetic resonance position by harmonized field

    International Nuclear Information System (INIS)

    Ivanchenko, E.A.; Tolstoluzhsky, A.P.

    2006-01-01

    The formalism of density matrix in a two level system is used to study the time-periodic modulation of the magnetic field stabilizating the magnetic resonance position. An exact solution for density matrix at resonance is found. It is shown that the fundamental resonance is stable with respect to consistent variations of longitudinal and transversal magnetic fields. A differential equation for the transition probability is obtained. The dependence of time-averaged spin flip probability on the normalized Larmor frequency was numerically researched in different parameter regimes with account of dissipation and decoherence. It is shown that the position of the main resonance is independent of field deformation and dissipation; only the width of resonance line changes upon field deformation and dissipation. The odd parametric (multi-photon) resonance transitions is studied. Static magnetization induced by time-periodic modulated magnetic field is considered. The results of the investigation may be useful for analysis of interference experiments, improvement of magnetic spectrometers and in the field of quantum computing manipulation of q-bits

  18. Magnetic hysteresis effects in superconducting coplanar microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Bothner, D.; Gaber, T.; Kemmler, M.; Gruenzweig, M.; Ferdinand, B.; Koelle, D.; Kleiner, R. [Universitaet Tuebingen (Germany); Wuensch, S.; Siegel, M. [Karlsruher Institut fuer Technologie (Germany); Mikheenko, P.; Johansen, T.H. [University of Oslo (Norway)

    2013-07-01

    We present experimental data regarding the impact of external magnetic fields on quality factor and resonance frequency of superconducting microwave resonators in a coplanar waveguide geometry. In particular we focus on the influence of magnetic history and show with the assistance of numerical calculations that the found hysteretic behaviour can be well understood with a highly inhomogeneous microwave current density in combination with established field penetration models for type-II superconducting thin films. Furthermore we have used magneto-optical imaging techniques to check the field distribution which we have assumed in our calculations. Finally, we demonstrate that and how the observed hysteretic behaviour can be used to optimize and tune the resonator performance for possible hybrid quantum sytems in magnetic fields.

  19. Slotted cage resonator for high-field magnetic resonance imaging of rodents

    Energy Technology Data Exchange (ETDEWEB)

    Marrufo, O; Vasquez, F; Solis, S E; Rodriguez, A O, E-mail: arog@xanum.uam.mx [Departamento de Ingenieria Electrica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340 (Mexico)

    2011-04-20

    A variation of the high-frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. Circular slots were used instead of cavities to form the coil endplates and it was called the slotted cage resonator coil. The theoretical principles were validated via a coil equivalent circuit and also experimentally with a coil prototype. The radio frequency magnetic field, B1, produced by several coil configurations was numerically simulated using the finite-element approach to investigate their performances. A transceiver coil, 8 cm long and 7.6 cm in diameter, and composed of 4 circular slots with a 15 mm diameter on both endplates, was built to operate at 300 MHz and quadrature driven. Experimental results obtained with the slotted cage resonator coil were presented and showed very good agreement with the theoretical expectations for the resonant frequency as a function of the coil dimensions and slots. A standard birdcage coil was also built for performance comparison purposes. Phantom images were then acquired to compute the signal-to-noise ratio of both coils showing an important improvement of the slotted cage coil over the birdcage coil. The whole-body images of the mouse were also obtained showing high-quality images. Volume resonator coils can be reliably built following the physical principles of the cavity resonator design for high-field magnetic resonance imaging applications of rodents.

  20. Neuroimaging of tic disorders with co-existing attention-deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Plessen, Kerstin J; Royal, Jason M; Peterson, Bradley S

    2007-01-01

    BACKGROUND: Tourette syndrome (TS) and Attention-Deficit/Hyperactivity Disorder (ADHD) are common and debilitating neuropsychiatric illnesses that typically onset in the preschool years. Recently, both conditions have been subject to neuroimaging studies, with the aim of understanding...... contrast these findings with those in ADHD without comorbid tic disorders. RESULTS: The frequent comorbidity of TS and ADHD may reflect a common underlying neurobiological substrate, and studies confirm the hypothesized involvement of fronto-striatal circuits in both TS and ADHD. However, poor inhibitory...... their underlying neurobiological correlates. OBJECTIVE: The relation of TS and ADHD is discussed against the background of findings from previous Magnetic Resonance Imaging (MRI) studies. METHODS: We review the designs and major findings of previous studies that have examined TS with comorbid ADHD, and we briefly...

  1. Virtual brain mapping: Meta-analysis and visualization in functional neuroimaging

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup

    Results from functional neuroimaging such as positron emission tomography and functional magnetic resonance are often reported as sets of 3-dimensional coordinates in Talairach stereotactic space. By utilizing data collected in the BrainMap database and from our own small XML database we can...... data matrix. By conditioning on elements in the databases other than the coordinate data, e.g., anatomical labels associated with many coordinates we can make conditional novelty detection identifying outliers in the database that might be errorneous entries or seldom occuring patterns. In the Brain......Map database we found errors, e.g., stemming from confusion of centimeters and millimeters during entering and errors in the original article. Conditional probability density modeling also enables generation of probabilistic atlases and automatic probabilistic anatomical labeling of new coordinates...

  2. Evaluation of magnetic resonance velocimetry for steady flow.

    Science.gov (United States)

    Ku, D N; Biancheri, C L; Pettigrew, R I; Peifer, J W; Markou, C P; Engels, H

    1990-11-01

    Whole body magnetic resonance (MR) imaging has recently become an important diagnostic tool for cardiovascular diseases. The technique of magnetic resonance phase velocity encoding allows the quantitative measurement of velocity for an arbitrary component direction. A study was initiated to determine the ability and accuracy of MR velocimetry to measure a wide range of flow conditions including flow separation, three-dimensional secondary flow, high velocity gradients, and turbulence. A steady flow system pumped water doped with manganese chloride through a variety of test sections. Images were produced using gradient echo sequences on test sections including a straight tube, a curved tube, a smoothly converging-diverging nozzle, and an orifice. Magnetic resonance measurements of laminar and turbulent flows were depicted as cross-sectional velocity profiles. MR velocity measurements revealed such flow behavior as spatially varying velocity, recirculation and secondary flows over a wide range of conditions. Comparisons made with published experimental laser Doppler anemometry measurements and theoretical calculations for similar flow conditions revealed excellent accuracy and precision levels. The successful measurement of velocity profiles for a variety of flow conditions and geometries indicate that magnetic resonance imaging is an accurate, non-contacting velocimeter.

  3. Introduction to magnetic resonance and its application to dipole magnet testing

    International Nuclear Information System (INIS)

    Clark, W.G.

    1992-01-01

    An introduction to the features of magnetic resonance that are essential for understanding its application to testing accelerator dipole magnets is presented, including the accuracy that can be expected in field measurements and the factors that limit it. The use of an array of coils to measure the multipole moments of dipole magnets is discussed

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - ...

  5. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... MRI) exam. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, ...

  6. Imaging by magnetic resonance

    International Nuclear Information System (INIS)

    Duroure, J.F.; Serpolay, H.; Vallens, D.

    1995-01-01

    Here are described the advanced technology for nuclear magnetic resonance imaging: reduction of acquisition times, and rebuilding times, images quality improvement. The tendency is to open the machines at low and middle field, on a market being at 10% of NMR I sales, with economical, scientifical and ergonomic reasons broadly developed by constructors

  7. Suppressing magnetic island growth by resonant magnetic perturbation

    Science.gov (United States)

    Yu, Q.; Günter, S.; Lackner, K.

    2018-05-01

    The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.

  8. Magnetic moment oscillation in ammonium perchlorate in a DC SQUID-based magnetic resonance experiment

    International Nuclear Information System (INIS)

    Montero, V.; Cernicchiaro, G.

    2008-01-01

    In this work we describe experimental results in which a DC SQUID (superconducting quantum interference device) is used as free induction decay detector. Measurements of a solid ammonium perchlorate (NH 4 ClO 4 ) sample were performed, in zero field, at 4.2 K. Unexpected magnetic moment oscillations were detected at 1.5 kHz. The computation of the magnetic fields suggests that the proton nuclear magnetic resonance may explain the measured resonance, considering reorientation of the ammonium group by quantum tunneling of protons and a magnetic proton dipole-dipole intermolecular interaction model

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... are the limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging ( ... brain) in routine clinical practice. top of page What are some common uses of the procedure? MR ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no ... Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. ...

  11. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... necessary in trauma situations. Although there is no reason to believe that magnetic resonance imaging harms the ...

  13. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... it is useful to bring that to the attention of the technologist or scheduler before the exam. ... patient for magnetic resonance imaging (MRI) exam. View full size with caption Pediatric Content Some imaging tests ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... it is useful to bring that to the attention of the scheduler before the exam and bring ... Image Gallery Magnetic Resonance Imaging (MRI) procedure View full size with caption Pediatric Content Some imaging tests ...

  15. Simulation of a resonant-type ring magnet power supply with multiple resonant cells and energy storage chokes

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Blackmore, E.W.; Reiniger, K.W.

    1992-01-01

    For the TRIUMF KAON Factory Booster Ring, a resonant-type magnet power supply has been proposed for the dipole magnet excitation. The Booster Ring magnet power supply system based on resonant circuits, coupled with distributed energy make-up networks, is a complex system, sensitive to many system parameters. When multiple resonant cells, each with its own energy make-up network, are connected in a ring, it is very difficult to derive closed-form solutions to determine the operating conditions of the power supply system. A meaningful way to understand and analyze such a complex system is to use a simulation tool. This paper presents the analysis of operating conditions of the resonant-type ring magnet power supply with multiple resonant cells, using the circuit simulation tool, SPICE. The focus of the study is on the effect of circuit parameter variations in energy storage chokes

  16. Soft X-ray resonant scattering from magnetic heterostructures

    International Nuclear Information System (INIS)

    Grabis, J.

    2005-01-01

    Heterogenous magnetic multilayers are of great interest both because of their relevance for technological applications and since they provide model systems to understand magnetic behavior and interactions. Soft x-ray resonant magnetic scattering (XRMS) allows to determine element-specific and depth-resolving information of the local magnetic order of such systems. Within the framework of the present thesis the diffractometer ALICE for soft XRMS has been constructed. XRMS measurements of two different physical systems are presented in this thesis: The antiferromagnetic and ferromagnetic order in interlayer exchange-coupled Fe/Cr(001) superlattices are studied as a function of the applied field by measuring the reflected intensity at different positions in reciprocal space. Thin films and multilayers of the Heusler compound Co 2 MnGe are studied by means of soft x-ray absorption spectroscopy, magnetic circular dichroism and resonant magnetic scattering

  17. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cremin, B.J.

    1981-01-01

    Recent advances in diagnostic imaging, have been the medical application of nuclear magnetic resonance (NMR). It's been used to study the structure of various compounds in chemistry and physics, and in the mid-1970 to produce images of rabbits and eventually of the human hand and head. The images are produced by making use of the nuclear magnetization of the hydrogen ion, or proton, that is present in biological material to record the density distribution of protons in cellular water and lipids. An exploration of the end-results of complicated free induction decay signals, that have been digitized and frequency-analysed by mathematical computerized techniques to produce an image of tissue density, is given. At present NMR produces images comparable to those of early computed tomography

  18. Artifacts Affecting Musculoskeletal Magnetic Resonance Imaging: Their Origins and Solutions.

    Science.gov (United States)

    Roth, Eira; Hoff, Michael; Richardson, Michael L; Ha, Alice S; Porrino, Jack

    2016-01-01

    Among articles within the radiology literature, few present the manifestations of magnetic resonance imaging artifacts in a clinically oriented manner. Recognizing such artifacts is imperative given the increasing clinical use of magnetic resonance imaging and the emphasis by the American Board of Radiology on practical physics applications. The purpose of this article is to present magnetic resonance physics principles visually and conceptually in the context of common musculoskeletal radiology artifacts and their solutions, described using nonmathematical explanations. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... or thyroid problems. Any of these conditions may influence the decision on whether contrast material will be ... bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  1. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  2. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary ... story about radiology? Share your patient story here Images × Image Gallery Radiologist prepping patient for magnetic resonance ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary ... story about radiology? Share your patient story here Images × Image Gallery Magnetic Resonance Imaging (MRI) procedure View ...

  4. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  5. Lymphoma of uterine cervix: magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Kanaan, Daniel; Constantino, Carolina Pesce Lamas; Souza, Rodrigo Canellas de, E-mail: daniel.kanaan@hotmail.com [Department of Radiology, Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Parente, Daniella Braz [Instituto D' Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil)

    2012-05-15

    Lymphoma of the cervix is a rare disease. About 1.0% to 1.5% of extranodal lymphomas originates in the female genital tract. The clinical presentation of this condition is nonspecific and magnetic resonance imaging is important for diagnostic elucidation. The present report describes the case of a 80-year-old patient with lumbar pain, whose magnetic resonance imaging showed a large uterine mass. The final diagnosis was lymphoma. (author)

  6. Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Novikov, S. M.; Zywietz, U.

    2012-01-01

    Strong resonant light scattering by individual spherical Si nanoparticles is experimentally demonstrated, revealing pronounced resonances associated with the excitation of magnetic and electric modes in these nanoparticles. It is shown that the low-frequency resonance corresponds to the magnetic...... dipole excitation. Due to high permittivity, the magnetic dipole resonance is observed in the visible spectral range for Si nanoparticles with diameters of similar to 200 nm, thereby opening a way to the realization of isotropic optical metamaterials with strong magnetic responses in the visible region....

  7. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    International Nuclear Information System (INIS)

    Godoy Morais, J.P.M.; Azevedo, R.B.; Silva, L.P.; Lacava, Z.G.M.; Bao, S.N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P.C.

    2004-01-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall

  8. Application of the annihilation and creation operators in magnetic resonance problems

    International Nuclear Information System (INIS)

    Nosel, W.

    1981-01-01

    Application of the annihilation and creation operators in the following problems is presented: in the resonance of the free spins in rotating and oscillating magnetic field, in the influence of the nonresonance magnetic fields on magnetic resonance, in the thermodynamics of the spins with dipolar interaction and in the nuclear magnetic relaxation. (author)

  9. Method for increasing nuclear magnetic resonance signals in living biological tissue

    International Nuclear Information System (INIS)

    Krongrad, A.

    1995-01-01

    A method of enhancing a magnetic resonance comprising the steps of administering a quantity of a selected magnetic isotope to a living biological tissue at a concentration greater than the naturally occurring concentration of such isotope and detecting magnetic resonance signal from the administered magnetic isotope in the living biological tissue. (author)

  10. The market for magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Carlson, L.

    1990-01-01

    The medical market is, at present, the most dominant market for low T c superconductors. Indeed, without magnetic resonance imaging (MRI), there would hardly be a low T c superconductor market at all. According to the author, any development that can expand the medical market for MRI machines would be a welcome one. This paper reports how the recent advances in magnetic resonance spectroscopy (MRS) are such a development. While the principle of MRS has bee around as long as MRI, only recently have advances in technique, computer programming and magnet technology allowed MRS to advance to a point where it may become an important technology-one that could increase the medical market for superconductors. The author discussed how MRS can be used to analyze oil core samples for their oil content, oil/water ratios, how the oil is bound and how to extract it

  11. Magnetic Barkhausen noise measurement by resonant coil method

    Energy Technology Data Exchange (ETDEWEB)

    Capo-Sanchez, J. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba)], E-mail: jcapo@usp.br; Padovese, L. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2009-09-15

    This paper describes a powerful new technique for nondestructive evaluation of ferromagnetic material. A method has been developed for measuring magnetic Barkhausen signals under different coil resonance frequencies. The measurements allow one to establish the behavior relating the power spectral density maximum and the resonant coil frequency. Time-frequency analysis of Barkhausen signals puts in evidence the tuning regions for each coil, and allows clear identification of each contribution to the Barkhausen signal spectrum. This concept was used in order to evaluate the relation between the degree of plastic deformation in carbon steel samples, and the power spectral density maximum at different resonance frequencies. This result also makes it possible to the selectively modify measurement sensibility to the magnetic Barkhausen signal by using different resonance frequencies.

  12. Methodological aspects of functional neuroimaging at high field strength: a critical review

    International Nuclear Information System (INIS)

    Scheef, L.; Landsberg, M.W.; Boecker, H.

    2007-01-01

    The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications. (orig.)

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...

  14. Imaging of juvenile spondyloarthritis. Part II: Ultrasonography and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Iwona Sudoł-Szopińska

    2017-09-01

    Full Text Available Juvenile spondyloarthropathies are mainly manifested by symptoms of peripheral arthritis and enthesitis. Early involvement of sacroiliac joints and spine is exceptionally rare in children; this usually happens in adulthood. Conventional radiographs visualize late inflammatory lesions. Early diagnosis is possible with the use of ultrasonography and magnetic resonance imaging. The first part of the article presented classifications and radiographic presentation of juvenile spondyloarthropathies. This part discusses changes seen on ultrasonography and magnetic resonance imaging. In patients with juvenile spondyloarthropathies, these examinations are conducted to diagnose inflammatory lesions in peripheral joints, tendon sheaths, tendons and bursae. Moreover, magnetic resonance also shows subchondral bone marrow edema, which is considered an early sign of inflammation. Ultrasonography and magnetic resonance imaging do not show specific lesions for any rheumatic disease. Nevertheless, they are conducted for early diagnosis, treatment monitoring and identifying complications. This article presents a spectrum of inflammatory changes and discusses the diagnostic value of ultrasonography and magnetic resonance imaging.

  15. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Magnetic Resonance Imaging Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  16. Magnetic resonance imaging of generalised musculo-skeletal diseases

    International Nuclear Information System (INIS)

    Kaiser, W.A.; Schalke, B.C.G.

    1989-01-01

    The results presented are drawn from 320 examinations by NMR imaging of patients with various systemic muscle diseases (dystrophies, myositides, metabolic disorders), and are interpreted so as to explain the relevant characteristic distribution patterns of the degenerative processes in the femoral musculature as shown by the NMR images. Four basic patterns are presented according to the criteria homogeneous-heterogeneous and symmetric-asymmetric, and the diseases identified by the differential diagnostic evaluation are discussed. The optimum measuring conditions for magnetic resonance imaging of the musculature are given, and the specific magnetic resonance criteria of myositides, neurogenic myopathies, myofonous dystrophies, c.n. polio, morbus Pompe, familial hypokalemic paralysis, centronuclear mypathy, morbus Duchenne are explained. The significance of NMR imaging with regard to biopsy or therapy planning is discussed, and magnetic resonance examination is recommended to be applied prior to biopsy. (orig.) [de

  17. Ultra-small v-shaped gold split ring resonators for biosensing using fundamental magnetic resonance in the visible spectrum

    Science.gov (United States)

    Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye

    2017-10-01

    Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.

  18. Physics of Magnetic Resonance. Chapter 14

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hee Kwon [Hospital of the University of Pennsylvania, Philadelphia (United States)

    2014-09-15

    The discovery of nuclear magnetic resonance (NMR), a property of nuclei in a magnetic field where they are able to absorb applied radiofrequency (RF) energy and subsequently release it at a specific frequency, goes back many decades to the early 1900s. Physicist Isidor I. Rabi, fascinated by the work of Otto Stern and Walther Gerlach which demonstrated that particles have intrinsic quantum properties, delved into the magnetic properties of nuclei, and in 1938 Rabi discovered the phenomenon of NMR. Several years later, in 1946, Felix Bloch and Edward Purcell refined the methods and successfully measured the NMR signal from liquids and solids. For their discoveries, Rabi received the Nobel Prize for physics in 1944 and Bloch and Purcell in 1952. While Rabi, Bloch, Purcell and other physicists working in this field had laid the foundations, a major discovery that transformed the NMR phenomenon for imaging was not made until 1973, when Paul Lauterbur developed a method for spatially encoding the NMR signal by utilizing linear magnetic field gradients. About the same time, Peter Mansfield had also discovered a means of determining the spatial structure of solids by introducing a linear gradient across the object. The idea of applying magnetic field gradients to induce spatially varying resonance frequencies to resolve the spatial distribution of magnetization was a major milestone and the beginning of magnetic resonance imaging (MRI). For their work, Lauterbur and Mansfield were awarded the Nobel Prize for medicine in 2003. Since its discovery, MRI has quickly become one of the most important medical imaging devices available to physicians today. Unlike other imaging modalities, such as X ray and computed tomography, MRI does not involve ionizing radiation. MRI also offers superior soft tissue contrast that is not possible with other imaging modalities. Furthermore, in MRI, the desired level of image contrast among different tissues can often be precisely controlled

  19. Magnetic islands created by resonant helical windings

    International Nuclear Information System (INIS)

    Fernandes, A.S.; Heller, M.V.; Caldas, I.L.

    1986-01-01

    The triggering of disruptive instabilities by resonant helical windings in large aspect-ratio tokamaks is associated to destruction of magnetic surfaces. The Chirikov condition is applied to estimate analytically the helical winding current thresholds for ergodization of the magnetic field lines. (Autor) [pt

  20. Mesoscopic Magnetic Resonance Spectroscopy with a Remote Spin Sensor

    Science.gov (United States)

    Xie, Tianyu; Shi, Fazhan; Chen, Sanyou; Guo, Maosen; Chen, Yisheng; Zhang, Yixing; Yang, Yu; Gao, Xingyu; Kong, Xi; Wang, Pengfei; Tateishi, Kenichiro; Uesaka, Tomohiro; Wang, Ya; Zhang, Bo; Du, Jiangfeng

    2018-06-01

    Quantum sensing based on nitrogen-vacancy (N -V ) centers in diamond has been developed as a powerful tool for microscopic magnetic resonance. However, the reported sensor-to-sample distance is limited within tens of nanometers resulting from the cubic decrease of the signal of spin fluctuation with the increasing distance. Here we extend the sensing distance to tens of micrometers by detecting spin polarization rather than spin fluctuation. We detect the mesoscopic magnetic resonance spectra of polarized electrons of a pentacene-doped crystal, measure its two typical decay times, and observe the optically enhanced spin polarization. This work paves the way for the N -V -based mesoscopic magnetic resonance spectroscopy and imaging at ambient conditions.

  1. Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet

    International Nuclear Information System (INIS)

    Huo Wenqing; Guo Shijie; Ding Liang; Xu Yuemin

    2013-01-01

    A large magnetized plasma sheet with size of 60 cm × 60 cm × 2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the electron density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus. Moreover, it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion

  2. Resonant inverter supplied Interior Permanent Magnet (IPM) motor ...

    African Journals Online (AJOL)

    In this paper, rotor position in relation to the resonant frequency component current in the stator winding of DC-voltage link resonant inverter supplied Interior Permanent Magnet (IPM) motor has been developed. Six reference frames are used to relate the rotor position angle to the resonant frequency component current ...

  3. Magnetic structure and resonance properties of hexagonal antidot lattice

    International Nuclear Information System (INIS)

    Marchenko, A.I.; Krivoruchko, V.N.

    2012-01-01

    Static and resonance properties of ferromagnetic films with an antidot lattice (pores in the film) are studied. The description of the system is based on micromagnetic modeling and analytical solution of the Landau-Lifshitz equation. The dependences of ferromagnetic resonance spectra on the in-plane direction of applied magnetic field and on the lattice parameters are investigated. The dependences of a dynamic system response on frequency at fixed magnetic field and on field at fixed frequency, when the field changes cause the static magnetic order to change are explored. It is found that the specific peculiarities of the system dynamics leave unchange for both of these experimental conditions. Namely, for low damping the resonance spectra contain three quasi-homogeneous modes which are due to the resonance of different regions (domains) of the antidot lattice cell. It is shown the angular field dependences of each mode are characterized by a twofold symmetry and the related easy axes are mutually rotated by 60 degrees. As the result, a hexagonal symmetry of the system static and dynamic magnetic characteristics is realized. The existence in the resonance spectrum of several quasi-homogeneous modes related to different regions of the unit cell could be fundamental for working elements of magnonic devices.

  4. Ferromagnetic linewidth measurements employing electrodynamic model of the magnetic plasmon resonance

    Science.gov (United States)

    Krupka, Jerzy; Aleshkevych, Pavlo; Salski, Bartlomiej; Kopyt, Pawel

    2018-02-01

    The mode of uniform precession, or Kittel mode, in a magnetized ferromagnetic sphere, has recently been proven to be the magnetic plasmon resonance. In this paper we show how to apply the electrodynamic model of the magnetic plasmon resonance for accurate measurements of the ferromagnetic resonance linewidth ΔH. Two measurement methods are presented. The first one employs Q-factor measurements of the magnetic plasmon resonance coupled to the resonance of an empty metallic cavity. Such coupled modes are known as magnon-polariton modes, i.e. hybridized modes between the collective spin excitation and the cavity excitation. The second one employs direct Q-factor measurements of the magnetic plasmon resonance in a filter setup with two orthogonal semi-loops used for coupling. Q-factor measurements are performed employing a vector network analyser. The methods presented in this paper allow one to extend the measurement range of the ferromagnetic resonance linewidth ΔH well beyond the limits of the commonly used measurement standards in terms of the size of the samples and the lowest measurable linewidths. Samples that can be measured with the newly proposed methods may have larger size as compared to the size of samples that were used in the standard methods restricted by the limits of perturbation theory.

  5. Imaging of the hip joint. Computed tomography versus magnetic resonance imaging

    Science.gov (United States)

    Lang, P.; Genant, H. K.; Jergesen, H. E.; Murray, W. R.

    1992-01-01

    The authors reviewed the applications and limitations of computed tomography (CT) and magnetic resonance (MR) imaging in the assessment of the most common hip disorders. Magnetic resonance imaging is the most sensitive technique in detecting osteonecrosis of the femoral head. Magnetic resonance reflects the histologic changes associated with osteonecrosis very well, which may ultimately help to improve staging. Computed tomography can more accurately identify subchondral fractures than MR imaging and thus remains important for staging. In congenital dysplasia of the hip, the position of the nonossified femoral head in children less than six months of age can only be inferred by indirect signs on CT. Magnetic resonance imaging demonstrates the cartilaginous femoral head directly without ionizing radiation. Computed tomography remains the imaging modality of choice for evaluating fractures of the hip joint. In some patients, MR imaging demonstrates the fracture even when it is not apparent on radiography. In neoplasm, CT provides better assessment of calcification, ossification, and periosteal reaction than MR imaging. Magnetic resonance imaging, however, represents the most accurate imaging modality for evaluating intramedullary and soft-tissue extent of the tumor and identifying involvement of neurovascular bundles. Magnetic resonance imaging can also be used to monitor response to chemotherapy. In osteoarthrosis and rheumatoid arthritis of the hip, both CT and MR provide more detailed assessment of the severity of disease than conventional radiography because of their tomographic nature. Magnetic resonance imaging is unique in evaluating cartilage degeneration and loss, and in demonstrating soft-tissue alterations such as inflammatory synovial proliferation.

  6. Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders

    DEFF Research Database (Denmark)

    Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav

    2011-01-01

    An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...

  7. Evanescent Waves Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order...

  8. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... of which shows a thin slice of the body. The images can then be studied from different angles by ... about radiology? Share your patient story here Images ... Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  10. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  11. Atypical Neuroimaging Manifestations of Linear Scleroderma “en coup de sabre”

    Science.gov (United States)

    M. ALLMENDINGER, Andrew; A. RICCI, Joseph; S. DESAI, Naman; VISWANADHAN, Narayan; RODRIGUEZ, Diana

    2015-01-01

    Linear scleroderma “en coup de sabre” is a subset of localized scleroderma with band-like sclerotic lesions typically involving the fronto-parietal regions of the scalp. Patients often present with neurologic symptoms. On imaging, patients may have lesions in the cerebrum ipsilateral to the scalp abnormality. Infratentorial lesions and other lesions not closely associated with the overlying scalp abnormality, such as those found in the cerebellum, have been reported, but are extremely uncommon. We present a case of an 8-year-old boy with a left fronto-parietal “en coup de sabre” scalp lesion and describe the neuroimaging findings of a progressively enlarging left cerebellar lesion discovered incidentally on routine magnetic resonance imaging. Interestingly, the patient had no neurologic symptoms given the size of the mass identified. PMID:26401155

  12. Basis of the nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bahceli, S.

    1996-08-01

    The aim of this book which is translated from English language is to explain the physical and mathematical basis of nuclear magnetic resonance (NMR). There are nine chapters covering different aspects of NMR. In the firs chapter fundamental concepts of quantum mechanics are given at a level suitable for readers to understand NMR fully. The remaining chapters discuss the magnetic properties of nucleus, the interactions between atoms and molecules, continuous wave NMR, pulsed NMR, nuclear magnetic relaxation and NMR of liquids

  13. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbaran, M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khalkhali, S.M.H. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2017-02-15

    Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in M{sub x} configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design. - Highlights: • Highly sensitive atomic magnetometers have been used to measure weak magentic filed. • To obtain narrower resonance signal, we impalnted harmonic detection of magnetic resonance. • The nonlinear spin polarization dynamics in detetion of the higher harmonics were imployed.

  14. Magnetic resonance spectroscopy and imaging in cerebral ischemia

    International Nuclear Information System (INIS)

    Rijen, P.C. van.

    1991-01-01

    In-vivo proton and phosphorus magnetic resonance spectroscopy was used to detect changes in cerebral metabolism during ischemia and other types of metabolic stress. Magnetic resonance imaging was performed in an animal model to observe morphological alterations during focal cerebral ischemia. Spectroscopy was performed in animal models with global ischemia, in volunteers during hyperventilation and pharmaco-logically altered cerebral perfusion, and in patients with acute and prolonged focal cerebral ischemia. (author). 396 refs.; 44 figs.; 14 tabs

  15. Low losses left-handed materials with optimized electric and magnetic resonance

    Science.gov (United States)

    Zhou, Xin; Liu, Yahong; Zhao, Xiaopeng

    2010-03-01

    We propose that the losses in left-handed materials (LHMs) can be significantly affected by changing the coupling relationship between electric and magnetic resonance. A double bowknot shaped structure (DBS) is used to construct the LHMs. And the magnetic resonance of the DBS, which resonated in the case of lower and higher frequencies than the electric resonant dip, is studied in simulation and experiment by tailoring the structural parameters. The case of magnetic resonance located at low electric resonance frequencies band is confirmed to have relatively low losses. Using full wave simulation of prism shaped structure composed of DBS unit cells, we prove the negative refraction behavior in such a frame. This study can serve as a guide for designing other similar metal-dielectric-metal (MDM) in low losses at terahertz or higher frequencies.

  16. Proceedings of the 4. Brazilian meeting on magnetic resonance. Abstracts

    International Nuclear Information System (INIS)

    1996-01-01

    This publication contains the abstracts of the papers presented during the 4. Brazilian meeting on magnetic resonance and also during the Course on advances in nuclear magnetic resonance. Works on the areas of materials, rare earths, polymers, structural chemical analysis and NMR spectra are presented

  17. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rueterjans, H.

    1987-01-01

    Contributions by various authors who are working in the field of NMR imaging present the current status and the perspectives of in-vivo nuclear magnetic resonance spectroscopy, explaining not only the scientific and medical aspects, but also technical and physical principles as well as questions concerning practical organisation and training, and points of main interest for further research activities. (orig./TRV) [de

  18. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    1983-06-01

    This report summarises the aspects of nuclear magnetic resonance imaging (NMRI) considered by the National Health Technology Advisory Panel and makes recommendations on its introduction in Australia with particular regard to the need for thorough evaluation of its cost effectiveness. Topics covered are: principles of the technique, equipment required, installation, costs, reliability, performance parameters, clinical indications, training and staff requirements, and safety considerations

  19. Adjunctive role of preoperative liver magnetic resonance imaging for potentially resectable pancreatic cancer.

    Science.gov (United States)

    Kim, Hyoung Woo; Lee, Jong-Chan; Paik, Kyu-Hyun; Kang, Jingu; Kim, Young Hoon; Yoon, Yoo-Seok; Han, Ho-Seong; Kim, Jaihwan; Hwang, Jin-Hyeok

    2017-06-01

    The adjunctive role of magnetic resonance imaging of the liver before pancreatic ductal adenocarcinoma has been unclear. We evaluated whether the combination of hepatic magnetic resonance imaging with multidetector computed tomography using a pancreatic protocol (pCT) could help surgeons select appropriate candidates and decrease the risk of early recurrence. We retrospectively enrolled 167 patients in whom complete resection was achieved without grossly visible residual tumor; 102 patients underwent pCT alone (CT group) and 65 underwent both hepatic magnetic resonance imaging and pCT (magnetic resonance imaging group). By adding hepatic magnetic resonance imaging during preoperative evaluation, hepatic metastases were newly discovered in 3 of 58 patients (5%) without hepatic lesions on pCT and 17 of 53 patients (32%) with indeterminate hepatic lesions on pCT. Patients with borderline resectability, a tumor size >3 cm, or preoperative carbohydrate antigen 19-9 level >1,000 U/mL had a greater rate of hepatic metastasis on subsequent hepatic magnetic resonance imaging. Among 167 patients in whom R0/R1 resection was achieved, the median overall survival was 18.2 vs 24.7 months (P = .020) and the disease-free survival was 8.5 vs 10.0 months (P = .016) in the CT and magnetic resonance imaging groups, respectively (median follow-up, 18.3 months). Recurrence developed in 82 (80%) and 43 (66%) patients in the CT and magnetic resonance imaging groups, respectively. The cumulative hepatic recurrence rate was greater in the CT group than in the magnetic resonance imaging group (P magnetic resonance imaging should be considered in patients with potentially resectable pancreatic ductal adenocarcinoma, especially those with high tumor burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Multiple systems atrophy: Differentiation and findings by Magnetic resonance

    International Nuclear Information System (INIS)

    Vargas Velez, Sergio Alberto; Alzate Betancur, Catalina Maria

    2006-01-01

    Multiple system atrophy (MSA) is a neuro degenerative disorder of undetermined cause, characterized clinically by Parkinson's, autonomic, cerebellar or pyramidal sing and symptoms. lts differentiation from Parkinson's disease may be difficult, mainly in the early stages owing to overlapping features. Magnetic resonance imaging has demonstrated usefulness in MSA diagnosis and in differentiation with Parkinson's disease. One case with magnetic resonance findings is described

  1. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Science.gov (United States)

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  2. Image production by magnetic resonance: transparency via the atom

    International Nuclear Information System (INIS)

    Kanel, A.

    1984-01-01

    The author gives a general description of the nuclear magnetic resonance technique to study the human body. The use of superconducting magnets to generate the required magnetic field is discussed. (G.T.H.)

  3. The introduction of clinical magnetic resonance imaging in Australia

    International Nuclear Information System (INIS)

    Sorby, W.; Baddeley, H.

    1986-01-01

    Magnetic resonance imaging is a new, but expensive, modality that is being introduced into clinical use in Australia. While it promises increased safety and accuracy in many situations, its precise role when compared with computed tomography and other modalities is not fully established. Therefore, a Government financed evaluation of costs and efficacy of magnetic resonance imaging units in five teaching hospitals is to be conducted over two years (1986-1988). Experience with the introduction of computed tomography to Australia and other nations has revealed difficulties in the evaluation by conventional methods of a diagnostic technology that is improving rapidly; it is to be hoped that a systematic evaluation of the clinical applications of magnetic resonance imaging will be more achievable and useful

  4. Magnetic resonance neurography for the identification of pudendal neuralgia

    Directory of Open Access Journals (Sweden)

    Claudia P. Cejas

    2017-06-01

    Full Text Available The pudendal nerve entrapment is an entity understudied by diagnosis imaging. Various causes are recognized in relation to difficult labors, rectal, perineal, urological and gynecological surgery, pelvic trauma fracture, bones tumors and compression by tumors or pelvic pseudotumors. Pudendal neuropathy should be clinically suspected, and confirmed by different methods such as electrofisiological testing: evoked potentials, terminal motor latency test and electromyogram, neuronal block and magnetic resonance imaging. The radiologist should be acquainted with the complex anatomy of the pelvic floor, particularly on the path of pudendal nerve studied by magnetic resonance imaging. High resolution magnetic resonance neurography should be used as a complementary diagnostic study along with clinical and electrophysiological examinations in patients with suspected pudendal nerve neuralgia.

  5. Studies of magnetic resonance in anemia of hematies falciformes

    International Nuclear Information System (INIS)

    Lores Guevara, Manuel Arsenio; Balcom, Bruce John; Cabal Mirabal, Carlos

    2012-01-01

    Magnetic Resonance applications to the study of Sickle Cell Disease are analyzed using classical procedures and Unilateral Magnetic Resonance. Hemoglobin and whole blood samples were obtained from healthy individual and patients with Sickle Cell Anemia to be used as samples. Classical pulse sequence as spin echo and inversion recovery were used in the experimental studies, the STEPR method was used for EPR spectrometric determinations. The results show the possibility of NMR methods to follow the molecular process causing the disease and allows to present quantitative procedures to estimate the clinical state of the patients and the results of clinical options. We present the Unilateral Magnetic Resonance as a new method to study Sickle Cell disease considering its portability and new possibilities as new image method

  6. Can Emotional and Behavioral Dysregulation in Youth Be Decoded from Functional Neuroimaging?

    Directory of Open Access Journals (Sweden)

    Liana C L Portugal

    Full Text Available High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points.A sample of fifty-seven youth (mean age: 14.5 years; 32 males was selected from a multi-site study of youth with parent-reported behavioral and emotional dysregulation. Participants performed a block-design reward paradigm during functional Magnetic Resonance Imaging (fMRI. Pattern regression analyses consisted of Relevance Vector Regression (RVR and two cross-validation strategies implemented in the Pattern Recognition for Neuroimaging toolbox (PRoNTo. Medication was treated as a binary confounding variable. Decoded and actual clinical scores were compared using Pearson's correlation coefficient (r and mean squared error (MSE to evaluate the models. Permutation test was applied to estimate significance levels.Relevance Vector Regression identified patterns of neural activity associated with symptoms of behavioral and emotional dysregulation at the initial study screen and close to the fMRI scanning session. The correlation and the mean squared error between actual and decoded symptoms were significant at the initial study screen and close to the fMRI scanning session. However, after controlling for potential medication effects, results remained significant only for decoding symptoms at the initial study screen. Neural regions with the highest contribution to the pattern regression model

  7. Resting State and Diffusion Neuroimaging Predictors of Clinical Improvements Following Constraint-Induced Movement Therapy in Children With Hemiplegic Cerebral Palsy.

    Science.gov (United States)

    Manning, Kathryn Y; Fehlings, Darcy; Mesterman, Ronit; Gorter, Jan Willem; Switzer, Lauren; Campbell, Craig; Menon, Ravi S

    2015-10-01

    The aim was to identify neuroimaging predictors of clinical improvements following constraint-induced movement therapy. Resting state functional magnetic resonance and diffusion tensor imaging data was acquired in 7 children with hemiplegic cerebral palsy. Clinical and magnetic resonance imaging (MRI) data were acquired at baseline and 1 month later following a 3-week constraint therapy regimen. A more negative baseline laterality index characterizing an atypical unilateral sensorimotor resting state network significantly correlated with an improvement in the Canadian Occupational Performance Measure score (r = -0.81, P = .03). A more unilateral network with decreased activity in the affected hemisphere was associated with greater improvements in clinical scores. Higher mean diffusivity in the posterior limb of the internal capsule of the affect tract correlated significantly with improvements in the Jebsen-Taylor score (r = -0.83, P = .02). Children with more compromised networks and tracts improved the most following constraint therapy. © The Author(s) 2015.

  8. Proceedings of the nuclear magnetic resonance user meeting

    International Nuclear Information System (INIS)

    1987-01-01

    Studies on utilization of nuclear magnetic resonance, such as: chemical analysis in complexes and organic compounds; structures and magnetic properties of solids; construction of images and; spectrometer designs, are presented. (M.C.K.) [pt

  9. Magnetic resonance angiography vs. angiography in tetralogy of Fallot.

    Science.gov (United States)

    Rao, Uppalapati Venkateswara; Vanajakshamma, Velam; Rajasekhar, Durgaprasad; Lakshmi, Amancharla Yadagiri; Reddy, Reddivari Niranjan

    2013-08-01

    : To determine whether gadolinium-enhanced three-dimensional magnetic resonance angiography can provide a noninvasive alternative to diagnostic catheterization for evaluation of pulmonary artery anatomy in tetralogy of Fallot. Thirty-five consecutive patients with tetralogy of Fallot, who attended the cardiology outpatient department between January 2008 and December 2009, were included in the study. There were 21 males and 14 females, with a mean age of 9 ± 4.15 years (range, 3-21 years). Thirty-two patients had tetralogy of Fallot with varying severities of valvular and infundibular stenosis. Three patients had tetralogy of Fallot with pulmonary atresia. All patients underwent both cardiac catheterization with X-ray angiography and 3-dimensional magnetic resonance angiography within one month. Measurements of right and left pulmonary arteries and aortopulmonary collaterals were equal by both methods. There was a good correlation between magnetic resonance angiography and catheterization measurements of branch pulmonary arteries. Gadolinium-enhanced three-dimensional magnetic resonance angiography can be used as a reliable noninvasive alternative to X-ray cineangiography for delineation of pulmonary arterial anatomy in sick infants and young children, obviating the need for catheterization.

  10. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  11. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.

    Science.gov (United States)

    Hamed, Abbi; Masamune, Ken; Tse, Zion Tsz Ho; Lamperth, Michael; Dohi, Takeyoshi

    2012-07-01

    Minimally invasive surgery is a widely used medical technique, one of the drawbacks of which is the loss of direct sense of touch during the operation. Palpation is the use of fingertips to explore and make fast assessments of tissue morphology. Although technologies are developed to equip minimally invasive surgery tools with haptic feedback capabilities, the majority focus on tissue stiffness profiling and tool-tissue interaction force measurement. For greatly increased diagnostic capability, a magnetic resonance imaging-compatible tactile sensor design is proposed, which allows minimally invasive surgery to be performed under image guidance, combining the strong capability of magnetic resonance imaging soft tissue and intuitive palpation. The sensing unit is based on a piezoelectric sensor methodology, which conforms to the stringent mechanical and electrical design requirements imposed by the magnetic resonance environment The sensor mechanical design and the device integration to a 0.2 Tesla open magnetic resonance imaging scanner are described, together with the device's magnetic resonance compatibility testing. Its design limitations and potential future improvements are also discussed. A tactile sensing unit based on a piezoelectric sensor principle is proposed, which is designed for magnetic resonance imaging guided interventions.

  12. Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes.

    Science.gov (United States)

    Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf

    2012-04-01

    Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.

  13. Limits to magnetic resonance microscopy

    International Nuclear Information System (INIS)

    Glover, Paul; Mansfield, Peter

    2002-01-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit. (author)

  14. Magnetic resonance imaging of chemistry.

    Science.gov (United States)

    Britton, Melanie M

    2010-11-01

    Magnetic resonance imaging (MRI) has long been recognized as one of the most important tools in medical diagnosis and research. However, MRI is also well placed to image chemical reactions and processes, determine the concentration of chemical species, and look at how chemistry couples with environmental factors, such as flow and heterogeneous media. This tutorial review will explain how magnetic resonance imaging works, reviewing its application in chemistry and its ability to directly visualise chemical processes. It will give information on what resolution and contrast are possible, and what chemical and physical parameters can be measured. It will provide examples of the use of MRI to study chemical systems, its application in chemical engineering and the identification of contrast agents for non-clinical applications. A number of studies are presented including investigation of chemical conversion and selectivity in fixed-bed reactors, temperature probes for catalyst pellets, ion mobility during tablet dissolution, solvent dynamics and ion transport in Nafion polymers and the formation of chemical waves and patterns.

  15. Resonant diffuse X-ray scattering from magnetic multilayers

    International Nuclear Information System (INIS)

    Spezzani, Carlo; Torelli, Piero; Delaunay, Renaud; Hague, C.F.; Petroff, Frederic; Scholl, Andreas; Gullikson, E.M.; Sacchi, Maurizio

    2004-01-01

    We have measured field-dependent resonant diffuse scattering from a magnetoresistive Co/Cu multilayer. We have observed that the magnetic domain size in zero field depends on the magnetic history of the sample. The results of the X-ray scattering analysis have been compared to PEEM images of the magnetic domains

  16. Susceptibility effects in nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ziener, Christian Herbert

    2008-01-01

    The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. (orig.)

  17. Magnetic resonance imaging of the elbow. Part I: Normal anatomy, imaging technique, and osseous abnormalities

    International Nuclear Information System (INIS)

    Kijowski, Richard; Tuite, Michael; Sanford, Matthew

    2004-01-01

    Part I of this comprehensive review on magnetic resonance imaging of the elbow discusses normal elbow anatomy and the technical factors involved in obtaining high-quality magnetic resonance images of the elbow. Part I also discusses the role of magnetic resonance imaging in evaluating patients with osseous abnormalities of the elbow. With proper patient positioning and imaging technique, magnetic resonance imaging can yield high-quality multiplanar images which are useful in evaluating the osseous structures of the elbow. Magnetic resonance imaging can detect early osteochondritis dissecans of the capitellum and can be used to evaluate the size, location, stability, and viability of the osteochondritis dissecans fragment. Magnetic resonance imaging can detect early stress injury to the proximal ulna in athletes. Magnetic resonance imaging can detect radiographically occult fractures of the elbow in both children and adults. Magnetic resonance imaging is also useful in children to further evaluate elbow fractures which are detected on plain-film radiographs. (orig.)

  18. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage.

    Science.gov (United States)

    Ma, Dan; Jiang, Yun; Chen, Yong; McGivney, Debra; Mehta, Bhairav; Gulani, Vikas; Griswold, Mark

    2018-04-01

    The purpose of this study was to accelerate the acquisition and reconstruction time of 3D magnetic resonance fingerprinting scans. A 3D magnetic resonance fingerprinting scan was accelerated by using a single-shot spiral trajectory with an undersampling factor of 48 in the x-y plane, and an interleaved sampling pattern with an undersampling factor of 3 through plane. Further acceleration came from reducing the waiting time between neighboring partitions. The reconstruction time was accelerated by applying singular value decomposition compression in k-space. Finally, a 3D premeasured B 1 map was used to correct for the B 1 inhomogeneity. The T 1 and T 2 values of the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology MRI phantom showed a good agreement with the standard values, with an average concordance correlation coefficient of 0.99, and coefficient of variation of 7% in the repeatability scans. The results from in vivo scans also showed high image quality in both transverse and coronal views. This study applied a fast acquisition scheme for a fully quantitative 3D magnetic resonance fingerprinting scan with a total acceleration factor of 144 as compared with the Nyquist rate, such that 3D T 1 , T 2 , and proton density maps can be acquired with whole-brain coverage at clinical resolution in less than 5 min. Magn Reson Med 79:2190-2197, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Impact of magnetic resonance imaging on preoperative planning for breast cancer surgery.

    Science.gov (United States)

    Law, Y; Cheung, Polly S Y; Lau, Silvia; Lo, Gladys G

    2013-08-01

    To review the impact of preoperative breast magnetic resonance imaging on the management of planned surgery, and the appropriateness of any resulting alterations. Retrospective review. A private hospital in Hong Kong. PATIENTS; For the 147 consecutive biopsy-proven breast cancer patients who underwent preoperative magnetic resonance imaging to determine tumour extent undergoing operation by a single surgeon between 1 January 2006 and 31 December 2009, the impact of magnetic resonance imaging findings was reviewed in terms of management alterations and their appropriateness. The most common indication for breast magnetic resonance imaging was the presence of multiple indeterminate shadows on ultrasound scans (53%), followed by ill-defined border of the main tumour on ultrasound scans (19%). In 66% (97 out of 147) of the patients, the extent of the operation was upgraded. Upgrading entailed: lumpectomy to wider lumpectomy (23 out of 97), lumpectomy to mastectomy (47 out of 97), lumpectomy to bilateral lumpectomy (15 out of 97), and other (12 out of 97). Mostly, these management changes were because magnetic resonance imaging showed more extensive disease (n=29), additional cancer foci (n=39), or contralateral disease (n=24). In five instances, upgrading was due to patient preference. In 34% (50 out of 147) of the patients, there was no change in the planned operation. Regarding 97 of the patients having altered management, in 12 the changes were considered inappropriately extensive (due to false-positive magnetic resonance imaging findings). In terms of magnetic resonance imaging detection of more extensive, multifocal, multicentric, or contralateral disease, the false-positive rate was 13% and false-negative rate 7%. Corresponding rates for sensitivity and specificity were 95% and 81%, using the final pathology as the gold standard. Preoperative magnetic resonance imaging had a clinically significant and mostly correct impact on management plans. Magnetic resonance

  20. Gadolinium-enhanced magnetic resonance imaging in acute myocardial infarction

    International Nuclear Information System (INIS)

    Dijkman, P.R.M. van; Wall, E.E. van der; Roos, A. de; Doornbos, J.; Laarse, A. van der; Voorthuisen, A.E. van; Bruschke, A.V.G.; Rossum, A.C. van

    1990-01-01

    To evaluate he usefulness of the paramagnetic contrast agent Gadolinium-DTPA (diethylenetriaminepentaacetic acid) in Magnetic Resonance. Imaging of acute myocardial infarction, we studied a total of 45 patients with a first acute myocardial infarction by ECG-gated magnetic resonance imaging before and after intravenous administration of 0.1 mmol/kg Gadolinium-DTPA. All patients received thrombolytic treatment by intravenous streptokinase. The magnetic resonance imaging studies were preformed after a meam of 88 h (range 15-241) after the acute onset of acute myocardial infarction. Five patients without evidence of cardiac disease served as controls. Spin-echo measurements (TE 30 ms) were made using a Philips Gyroscan (0.5 Tesla) or a Teslacon II (0.6 Tesla). The 45 patients were divided into four groups of patients. In Group I( patients) Gadolinium-DTPA improved the detection of myocardial infarction by Gadolinium-DTPA. In Group II (20 patients) the magnetic resonance imaging procedure was repeated every 10 min for up to 40 min following administration of Gadolinium-DTPA. Optimal contrast enhancement was obtained 20-25 min after Gadolinium-DTPA. In Group III (27 patients) signal intensities were significantly higher in the patients who underwent the magnetic resonance imaging study more than 72 h (mean 120) after the acute event, suggesting increased acculumation of Gadolinium-DTPA in a more advanced stage of the infarction process. In Group IV (45 patients) Gadolinium-DTPA was administered in an attempt to distinguish between reperfused and nonreperfused myocardial areas after thrombolytic treatment for acute myocardial infarction. The signal intensities did not differ, but reperfused areas showed a more homogeneous aspect whereas nonreperfused areas were visualized as a more heterogeneous contrast enhancement. It is concluded that magnetic resonance imaging using the contrast agent Gadolinium-DTPA significantly improves the detection of infarcted myocardial areas

  1. Investigations of the human visual system using functional magnetic resonance imaging (FMRI)

    International Nuclear Information System (INIS)

    Kollias, Spyros S.

    2004-01-01

    The application of functional magnetic resonance imaging (fMRI) in studies of the visual system provided significant advancement in our understanding of the organization and functional properties of visual areas in the human cortex. Recent technological and methodological improvements allowed studies to correlate neuronal activity with visual perception and demonstrated the ability of fMRI to observe distributed neural systems and to explore modulation of neural activity during higher cognitive processes. Preliminary applications in patients with visual impairments suggest that this method provides a powerful tool for the assessment and management of brain pathologies. Recent research focuses on obtaining new information about the spatial localization, organization, functional specialization and participation in higher cognitive functions of visual cortical areas in the living human brain and in further establishment of the method as a useful clinical tool of diagnostic and prognostic significance for various pathologic processes affecting the integrity of the visual system. It is anticipated that the combined neuroimaging approach in patients with lesions and healthy controls will provide new insight on the topography and functional specialization of cortical visual areas and will further establish the clinical value of the method for improving diagnostic accuracy and treatment planning

  2. Neuroimaging revolutionizes therapeutic approaches to chronic pain

    Directory of Open Access Journals (Sweden)

    Borsook David

    2007-09-01

    Full Text Available Abstract An understanding of how the brain changes in chronic pain or responds to pharmacological or other therapeutic interventions has been significantly changed as a result of developments in neuroimaging of the CNS. These developments have occurred in 3 domains : (1 Anatomical Imaging which has demonstrated changes in brain volume in chronic pain; (2 Functional Imaging (fMRI that has demonstrated an altered state in the brain in chronic pain conditions including back pain, neuropathic pain, and complex regional pain syndromes. In addition the response of the brain to drugs has provided new insights into how these may modify normal and abnormal circuits (phMRI or pharmacological MRI; (3 Chemical Imaging (Magnetic Resonance Spectroscopy or MRS has helped our understanding of measures of chemical changes in chronic pain. Taken together these three domains have already changed the way in which we think of pain – it should now be considered an altered brain state in which there may be altered functional connections or systems and a state that has components of degenerative aspects of the CNS.

  3. Advances in cardiac magnetic resonance imaging of congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, Mieke M.P. [University of Utrecht, University Medical Center Utrecht, Department of Radiology, PO Box 85500, Utrecht (Netherlands); University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); The Interuniversity Cardiology Institute of the Netherlands (ICIN) - Netherlands Heart Institute, PO Box 19258, Utrecht (Netherlands); Breur, Johannes M.P.J. [Wilhelmina Children' s Hospital, University Medical Center Utrecht, Department of Pediatric Cardiology, PO Box 85500, Utrecht (Netherlands); Budde, Ricardo P.J.; Oorschot, Joep W.M. van; Leiner, Tim [University of Utrecht, University Medical Center Utrecht, Department of Radiology, PO Box 85500, Utrecht (Netherlands); Kimmenade, Roland R.J. van; Sieswerda, Gertjan Tj [University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); Meijboom, Folkert J. [University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Center Utrecht, Department of Pediatric Cardiology, PO Box 85500, Utrecht (Netherlands)

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization. (orig.)

  4. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskikh, Sergey V.; Furo, Istvan (Industrial NMR Centre and Div. of Physical Chemistry, Dept. of Chemistry, Royal Institute of Technology, Stockholm (Sweden))

    2009-09-15

    This report summarizes results from a set of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) experiments performed on Ca and Na montmorillonite samples interacting with water. The primary goal with these studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during and after different physical processes such as swelling and sedimentation and on the time scale from minutes to years. Additionally, we also studied the distribution of foreign particles (such as native minerals as well as magnetic model particles) within bentonite systems and performed some diffusion NMR experiments with the aim of characterizing the state of colloids that form after clay dissolution. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Bulk samples confined in a vertical tube and in a horizontal channel were investigated. A critical issue for the stability of clay buffer layer in deep underground repository is to prevent or minimize the release of clay particles into the water phase. In our experiments, the most significant particle losses were found for Na-MX80 clay exposed to water with low ionic strength. With increasing the concentration of CaCl{sub 2} in the water phase both swelling and particle release are slowed down but not completely eliminated due probably to gradual change of water ion content via ion exchange with the clay itself. For natural MX80 samples, in spite of significant swelling expansion, no clay particle release above the sensitivity limit of 0.001 volume% was observed. Ca-MX80 exhibited the smallest expansion and no trace of clay particle released into the aqueous phase

  5. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems

    International Nuclear Information System (INIS)

    Dvinskikh, Sergey V.; Furo, Istvan

    2009-09-01

    This report summarizes results from a set of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) experiments performed on Ca and Na montmorillonite samples interacting with water. The primary goal with these studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during and after different physical processes such as swelling and sedimentation and on the time scale from minutes to years. Additionally, we also studied the distribution of foreign particles (such as native minerals as well as magnetic model particles) within bentonite systems and performed some diffusion NMR experiments with the aim of characterizing the state of colloids that form after clay dissolution. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Bulk samples confined in a vertical tube and in a horizontal channel were investigated. A critical issue for the stability of clay buffer layer in deep underground repository is to prevent or minimize the release of clay particles into the water phase. In our experiments, the most significant particle losses were found for Na-MX80 clay exposed to water with low ionic strength. With increasing the concentration of CaCl 2 in the water phase both swelling and particle release are slowed down but not completely eliminated due probably to gradual change of water ion content via ion exchange with the clay itself. For natural MX80 samples, in spite of significant swelling expansion, no clay particle release above the sensitivity limit of 0.001 volume% was observed. Ca-MX80 exhibited the smallest expansion and no trace of clay particle released into the aqueous phase

  6. Magnetic resonance imaging of the elbow. Part II: Abnormalities of the ligaments, tendons, and nerves

    Energy Technology Data Exchange (ETDEWEB)

    Kijowski, Richard; Tuite, Michael; Sanford, Matthew [University of Wisconsin Hospital, Department of Radiology, Madison, WI (United States)

    2005-01-01

    Part II of this comprehensive review on magnetic resonance imaging of the elbow discusses the role of magnetic resonance imaging in evaluating patients with abnormalities of the ligaments, tendons, and nerves of the elbow. Magnetic resonance imaging can yield high-quality multiplanar images which are useful in evaluating the soft tissue structures of the elbow. Magnetic resonance imaging can detect tears of the ulnar collateral ligament and lateral collateral ligament of the elbow with high sensitivity and specificity. Magnetic resonance imaging can determine the extent of tendon pathology in patients with medial epicondylitis and lateral epicondylitis. Magnetic resonance imaging can detect tears of the biceps tendon and triceps tendon and can distinguishing between partial and complete tendon rupture. Magnetic resonance imaging is also helpful in evaluating patients with nerve disorders at the elbow. (orig.)

  7. Generation of nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Beckmann, N.X.

    1986-01-01

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  8. Magnetic resonance imaging of aneurysmal subarachnoid hemorrhage

    International Nuclear Information System (INIS)

    Ogawa, Toshihide; Shimosegawa, Eku; Inugami, Atsushi; Shishido, Fumio; Fujita, Hideaki; Ito, Hiroshi; Uemura, Kazuo; Yasui, Nobuyuki

    1991-01-01

    Magnetic resonance imaging of subarachnoid hemorrhage (SAH) due to aneurysm rupture was evaluated in relation to CT findings in nine patients. Six patients were studied within 3 days and the other three patients were studied 4 to 6 days from the ictus of SAH using a 0.5 Tesla superconducting unit. In all of the patients, hematoma in the subarachnoid space and ventricles was demonstrated by the proton density-weighted spin echo sequence, which showed that bloody cerebrospinal fluid (CSF) had a higher signal intensity than brain tissue or normal CSF. Magnetic resonance imaging was more sensitive in detecting SAH and more informative as to the site of the ruptured aneurysm than CT. Despite some limitations in applying it to patients with acute SAH, magnetic resonace imaging has clear advantages in the diagnosis of SAH. (author)

  9. Magnetic resonance imaging of aneurysmal subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toshihide; Shimosegawa, Eku; Inugami, Atsushi; Shishido, Fumio; Fujita, Hideaki; Ito, Hiroshi; Uemura, Kazuo; Yasui, Nobuyuki (Research Inst. of Brain and Blood Vessels, Akita (Japan))

    1991-11-01

    Magnetic resonance imaging of subarachnoid hemorrhage (SAH) due to aneurysm rupture was evaluated in relation to CT findings in nine patients. Six patients were studied within 3 days and the other three patients were studied 4 to 6 days from the ictus of SAH using a 0.5 Tesla superconducting unit. In all of the patients, hematoma in the subarachnoid space and ventricles was demonstrated by the proton density-weighted spin echo sequence, which showed that bloody cerebrospinal fluid (CSF) had a higher signal intensity than brain tissue or normal CSF. Magnetic resonance imaging was more sensitive in detecting SAH and more informative as to the site of the ruptured aneurysm than CT. Despite some limitations in applying it to patients with acute SAH, magnetic resonace imaging has clear advantages in the diagnosis of SAH. (author).

  10. Fifty years of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Valderrama, Juan Crisostomo

    1997-01-01

    Short information about the main developments of nuclear magnetic resonance during their fifty existence years is presented. Beside two examples of application (HETCOR and INADEQUATE) to the structural determination of organic compounds are described

  11. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Science.gov (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  12. Magnetic resonance imaging of popliteal artery pathologies

    International Nuclear Information System (INIS)

    Holden, Andrew; Merrilees, Stephen; Mitchell, Nicola; Hill, Andrew

    2008-01-01

    This paper illustrates examples of popliteal artery pathologies imaged with contrast enhanced magnetic resonance angiography (CE-MRA) and magnetic resonance imaging (MRI) at a single tertiary referral centre. Popliteal artery pathologies were identified in 1710 patients referred over a 6-year period with symptoms suggesting lower limb arterial occlusive disease. Common pathologies such as atherosclerotic occlusive disease, thromboemboli and aneurysm disease are discussed as well as unusual pathologies such as cystic adventitial disease, mycotic aneurysm and arterial entrapment. The combination of CE-MRA and the excellent soft tissue resolution of MRI allow detailed evaluation of arterial and peri-arterial pathologies, and facilitate appropriate management decisions

  13. Magnetic resonance imaging of popliteal artery pathologies

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Andrew [Department of Radiology, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: andrewh@adhb.govt.nz; Merrilees, Stephen [Department of Radiology, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: smerrilees@adhb.govt.nz; Mitchell, Nicola [Department of Radiology, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: nmit010@ec.auckland.ac.nz; Hill, Andrew [Department of Vascular Surgery, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: ahill@adhb.govt.nz

    2008-07-15

    This paper illustrates examples of popliteal artery pathologies imaged with contrast enhanced magnetic resonance angiography (CE-MRA) and magnetic resonance imaging (MRI) at a single tertiary referral centre. Popliteal artery pathologies were identified in 1710 patients referred over a 6-year period with symptoms suggesting lower limb arterial occlusive disease. Common pathologies such as atherosclerotic occlusive disease, thromboemboli and aneurysm disease are discussed as well as unusual pathologies such as cystic adventitial disease, mycotic aneurysm and arterial entrapment. The combination of CE-MRA and the excellent soft tissue resolution of MRI allow detailed evaluation of arterial and peri-arterial pathologies, and facilitate appropriate management decisions.

  14. Magnetic resonance imaging in the cranio-cervical region

    International Nuclear Information System (INIS)

    Koschorek, F.; Jensen, H.P.; Terwey, B.

    1987-01-01

    Since the introduction of nuclear magnetic resonance imaging (NMR) in the neurosurgical and neurological diagnostic this new imaging modality has shown to be of high diagnostic value - especially in disease process of the cranio-vertebral junction. Other imaging moralities such as x-ray CT and myelography are of inferior quality as the images are degraded by bone artifacts and superposition of other structures. NMR can reveal many aspects of the cranio-vertebral region in a single examination without artifacts from surrounding structures. A further improvement of NMR is the introduction of para-magnetic agents, such as gadolinium-DTPA, as it increases the specifity by dynamic magnetic resonance imaging. The authors present a review of their clinical experience

  15. Synergy of image analysis for animal and human neuroimaging supports translational research on drug abuse

    Directory of Open Access Journals (Sweden)

    Guido eGerig

    2011-10-01

    Full Text Available The use of structural magnetic resonance imaging (sMRI and diffusion tensor imaging (DTI in animals models of neuropathology is of increasing interest to the neuroscience community. In this work, we present our approach to create optimal translational studies that include both animal and human neuroimaging data within the frameworks of a study of postnatal neuro-development in intra-uterine cocaine exposure. We propose the use of non-invasive neuroimaging to study developmental brain structural and white matter pathway abnormalities via sMRI and DTI, as advanced MR imaging technology is readily available and automated image analysis methodology have recently been transferred from the human to animal imaging setting. For this purpose, we developed a synergistic, parallel approach to imaging and image analysis for the human and the rodent branch of our study. We propose an equivalent design in both the selection of the developmental assessment stage and the neuroimaging setup. This approach brings significant advantages to study neurobiological features of early brain development that are common to animals and humans but also preserve analysis capabilities only possible in animal research. This paper presents the main framework and individual methods for the proposed cross-species study design, as well as preliminary DTI cross-species comparative results in the intra-uterine cocaine exposure study.

  16. Electronic and transport properties of noncollinear magnetic monatomic Mn chains: Fano resonances in the superlattice of noncollinear magnetic barriers and magnetic anisotropic bands

    International Nuclear Information System (INIS)

    Dai, C.J.; Yan, X.H.; Xiao, Y.; Guo, Y.D.

    2015-01-01

    By means of the density functional theory combined with non-equilibrium Green's function method, ballistic transport properties of one-dimensional noncollinear magnetic monatomic chains were investigated using the single-atomic Mn chains as a model system. Fano resonances are found to exist in the monatomic Mn chains with spin-spiral structure. Furthermore, in the monatomic Mn chains with magnetic soliton lattice, Fano resonances are enhanced and cause the conductance splitting in the transmission spectra. The Fano resonances in the noncollinear magnetic single-atomic Mn chains are arising from the coupling of the localized d-states and the extended states of the quantum channels. By constructing a theoretical model and calculating its conductance, it is found that the phenomena of Fano resonances and the accompanying conductance splitting exist universally in the superlattice of one-dimensional noncollinear magnetic barriers, due to the interference of the incident waves and reflected waves by the interfaces between the neighboring barriers. Moreover, the band structures of the ferromagnetic and spin-spiral monatomic Mn chains exhibit a strong dependence on the spatial arrangement of the magnetic moments of Mn atoms when spin–orbit coupling is considered. - Highlights: • Transport properties of noncollinear magnetic monatomic Mn chains are studied. • Fano resonances are found in the noncollinear magnetic monatomic Mn chains. • Magnetic soliton lattice leads to conductance splitting in the transmission curve. • Fano resonances exist in the superlattice of noncollinear magnetic barriers. • Effect of SOC on the band structure of FM and spin-spiral Mn chains are studied

  17. Optimization of saddle coils for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Salmon, Carlos Ernesto Garrido; Vidoto, Edson Luiz Gea; Martins, Mateus Jose; Tannus, Alberto

    2006-01-01

    In Nuclear Magnetic Resonance (NMR) experiments, besides the apparatus designed to acquire the NMR signal, it is necessary to generate a radio frequency electromagnetic field using a device capable to transduce electromagnetic power into a transverse magnetic field. We must generate this transverse homogeneous magnetic field inside the region of interest with minimum power consumption. Many configurations have been proposed for this task, from coils to resonators. For low field intensity (<0.5 T) and small sample dimensions (<30 cm), the saddle coil configuration has been widely used. In this work we present a simplified method for calculating the magnetic field distribution in these coils considering the current density profile. We propose an optimized saddle configuration as a function of the dimensions of the region of interest, taking into account the uniformity and the sensitivity. In order to evaluate the magnetic field uniformity three quantities have been analyzed: Non-uniformity, peak-to-peak homogeneity and relative uniformity. Some experimental results are presented to validate our calculation. (author)

  18. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  19. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    Science.gov (United States)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  20. Magnetic resonance and the diagnosis of short stature of hypothalamic-hypophyseal origin

    International Nuclear Information System (INIS)

    Vannelli, S.; Avataneo, T.; Benso, L.; Potenzoni, F.; Cirillo, S.; Mostert, M.; Bona, G.

    1993-01-01

    Magnetic resonance imaging was performed in 23 patients with short stature (7 had multiple pituitary hormone defect, 11 had isolated growth hormone deficiency and 5 had normal variant short stature) to investigate if there is a relation between magnetic resonance findings and results of endocrine tests. Magnetic resonance imaging of patients with multiple pituitary hormone deficiency or with serious isolated growth hormone deficiency (growth hormone 3μg/l) or with normal variant short stature, the technique revealed a normal or hypoplastic hypophysis. Magnetic resonance appears to be a useful second-level diagnostic tool in defining the type of alteration in growth defects of endocrine origin. 26 refs., 5 figs., 2 tabs

  1. Neuroimaging in aphasia treatment research: Standards for establishing the effects of treatment

    Science.gov (United States)

    Kiran, Swathi; Ansaldo, Ana; Bastiaanse, Roelien; Cherney, Leora R.; Howard, David; Faroqi-Shah, Yasmeen; Meinzer, Marcus; Thompson, Cynthia K

    2012-01-01

    The goal of this paper is to discuss experimental design options available for establishing the effects of treatment in studies that aim to examine the neural mechanisms associated with treatment-induced language recovery in aphasia, using functional magnetic resonance imaging (fMRI). We present both group and single-subject experimental or case-series design options for doing this and address advantages and disadvantages of each. We also discuss general components of and requirements for treatment research studies, including operational definitions of variables, criteria for defining behavioral change and treatment efficacy, and reliability of measurement. Important considerations that are unique to neuroimaging-based treatment research are addressed, pertaining to the relation between the selected treatment approach and anticipated changes in language processes/functions and how such changes are hypothesized to map onto the brain. PMID:23063559

  2. Nitroxide radicals as contrast substances for magnetic resonance imaging diagnostics. Part 1

    International Nuclear Information System (INIS)

    Zhelev, Z.

    2016-01-01

    In last ten years, there is a significant progress in the selective and localized detection of redox-active compounds in the cells, tissues, and intact organisms. This progress is due to the development of new synthetic and genetically encoded redox-sensitive contrast substances, as well as due to the improvement of the techniques for their imaging: fluorescent, chemiluminescent, magnetic resonance, nuclear, ultrasonic. One of the most attractive redox-sensitive contrast substances are cyclic (stable) nitroxide radicals. They can be visualized and analyzed in vitro and in vivo by a variety of magnetic resonance techniques - electron-paramagnetic resonance imaging (EPRI), magnetic resonance imaging (MRI), Overhauser-enhanced MRI (OMRI). This review describes the merits and demerits of the nitroxide-enhanced EPR and MRI and the perspectives for their application in biomedical studies and clinical practice. The article is intended for a wide range of readers - from students to specialists in the field. Key words: Magnetic Resonance Imaging (MRI). Electron-Paramagnetic Resonance (EPR). Overhauser-Enhanced MRI (O MRI). Nitroxide

  3. Bony vibration stimulation test combined with magnetic resonance imaging. Can discography be replaced?

    Science.gov (United States)

    Yrjämä, M; Tervonen, O; Kurunlahti, M; Vanharanta, H

    1997-04-01

    The results of two noninvasive methods, magnetic resonance imaging and a bony vibration test, were compared with discographic pain provocation findings. To evaluate whether the combination of magnetic resonance imaging and vibration pain provocation tests could be used to replace discography in low back pain diagnostics. Magnetic resonance imaging gives a wealth of visual information on anatomic changes of the spine with often unknown clinical significance. Discographic examination of the spine is still the only widely accepted diagnostic method that can relate the pathoanatomic changes to the patient's clinical pain. Internal anular rupture has been shown to be one of the sources of back pain. The bony vibration test of the spinal processes has been shown correlate well with discographic pain provocation tests in cases of internal anular rupture. The three lowest lumbar discs of 33 patients with back pain were examined by means of magnetic resonance imaging and a bony vibration stimulation test, and the results were compared with those from computed tomography-discography. In cases of intradiscal magnetic resonance imaging findings, the vibration provocation test showed a sensitivity of 0.88 and a specificity of 0.50 compared with the discographic pain provocation test. If the patients with previous back surgery were excluded, the specificity was 0.75. In the cases of total anular rupture, the sensitivity was 0.50, and the specificity was 0.33. The combination of the two noninvasive methods, vibration stimulation and magnetic resonance imaging, gives more information on the origin of the back pain than magnetic resonance imaging alone. The pathoanatomic changes seen in magnetic resonance imaging can be correlated with the patient's disorder more reliably using the vibration provocation test in the cases of partial anular ruptures. The use of discography can be limited mostly to cases with total anular ruptures detected by magnetic resonance imaging.

  4. An intra-neural microstimulation system for ultra-high field magnetic resonance imaging and magnetoencephalography.

    Science.gov (United States)

    Glover, Paul M; Watkins, Roger H; O'Neill, George C; Ackerley, Rochelle; Sanchez-Panchuelo, Rosa; McGlone, Francis; Brookes, Matthew J; Wessberg, Johan; Francis, Susan T

    2017-10-01

    Intra-neural microstimulation (INMS) is a technique that allows the precise delivery of low-current electrical pulses into human peripheral nerves. Single unit INMS can be used to stimulate individual afferent nerve fibres during microneurography. Combining this with neuroimaging allows the unique monitoring of central nervous system activation in response to unitary, controlled tactile input, with functional magnetic resonance imaging (fMRI) providing exquisite spatial localisation of brain activity and magnetoencephalography (MEG) high temporal resolution. INMS systems suitable for use within electrophysiology laboratories have been available for many years. We describe an INMS system specifically designed to provide compatibility with both ultra-high field (7T) fMRI and MEG. Numerous technical and safety issues are addressed. The system is fully analogue, allowing for arbitrary frequency and amplitude INMS stimulation. Unitary recordings obtained within both the MRI and MEG screened-room environments are comparable with those obtained in 'clean' electrophysiology recording environments. Single unit INMS (current met. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Electromagnetically induced transparency resonances inverted in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, A.; Sarkisyan, D., E-mail: davsark@yahoo.com, E-mail: david@ipr.sci.am [National Academy of Sciences of Armenia, Institute for Physical Research (Armenia); Pashayan-Leroy, Y.; Leroy, C. [Université de Bourgogne-Dijon, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS (France); Cartaleva, S. [Bulgarian Academy of Sciences, Institute of Electronics (Bulgaria); Wilson-Gordon, A. D. [Bar-Ilan University Ramat Gan, Department of Chemistry (Israel); Auzinsh, M. [University of Latvia, Department of Physics (Latvia)

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  6. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    Science.gov (United States)

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  7. Functional Magnetic Resonance Imaging with Concurrent Urodynamic Testing Identifies Brain Structures Involved in Micturition Cycle in Patients with Multiple Sclerosis.

    Science.gov (United States)

    Khavari, Rose; Karmonik, Christof; Shy, Michael; Fletcher, Sophie; Boone, Timothy

    2017-02-01

    Neurogenic lower urinary tract dysfunction, which is common in patients with multiple sclerosis, has a significant impact on quality of life. In this study we sought to determine brain activity processes during the micturition cycle in female patients with multiple sclerosis and neurogenic lower urinary tract dysfunction. We report brain activity on functional magnetic resonance imaging and simultaneous urodynamic testing in 23 ambulatory female patients with multiple sclerosis. Individual functional magnetic resonance imaging activation maps at strong desire to void and at initiation of voiding were calculated and averaged at Montreal Neuroimaging Institute. Areas of significant activation were identified in these average maps. Subgroup analysis was performed in patients with elicitable neurogenic detrusor overactivity or detrusor-sphincter dyssynergia. Group analysis of all patients at strong desire to void yielded areas of activation in regions associated with executive function (frontal gyrus), emotional regulation (cingulate gyrus) and motor control (putamen, cerebellum and precuneus). Comparison of the average change in activation between previously reported healthy controls and patients with multiple sclerosis showed predominantly stronger, more focal activation in the former and lower, more diffused activation in the latter. Patients with multiple sclerosis who had demonstrable neurogenic detrusor overactivity and detrusor-sphincter dyssynergia showed a trend toward distinct brain activation at full urge and at initiation of voiding respectively. We successfully studied brain activation during the entire micturition cycle in female patients with neurogenic lower urinary tract dysfunction and multiple sclerosis using a concurrent functional magnetic resonance imaging/urodynamic testing platform. Understanding the central neural processes involved in specific parts of micturition in patients with neurogenic lower urinary tract dysfunction may identify areas

  8. Principles of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Pykett, I.L.; Newhouse, J.H.; Buonanno, F.S.; Brady, T.J.; Goldman, M.R.; Kistler, J.P.; Pohost, G.M.

    1982-01-01

    The physical principles which underlie the phenomenon of nuclear magnetic resonance (NMR) are presented in this primer. The major scanning methods are reviewed, and the principles of technique are discussed. A glossary of NMR terms is included

  9. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    International Nuclear Information System (INIS)

    Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro

    2015-01-01

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs

  10. Functional and molecular neuroimaging of menopause and hormone replacement therapy

    DEFF Research Database (Denmark)

    Comasco, Erika; Frøkjær, Vibe; Sundström-Poromaa, Inger

    2014-01-01

    The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone fluctuat......The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone...... fluctuations and of hormone replacement therapy in the menopause have only begun to be understood. The present review summarizes the findings of thirty-five studies of human brain function, including functional magnetic resonance imaging, positron and single-photon computed emission tomography studies, in peri......-controlled multi-modal prospective neuroimaging studies as well as investigation on the related molecular mechanisms of effects of menopausal hormonal variations on the brain....

  11. Neuroimaging to Investigate Multisystem Involvement and Provide Biomarkers in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Pradat, Pierre-François; El Mendili, Mohamed-Mounir

    2014-01-01

    Neuroimaging allows investigating the extent of neurological systems degeneration in amyotrophic lateral sclerosis (ALS). Advanced MRI methods can detect changes related to the degeneration of upper motor neurons but have also demonstrated the participation of other systems such as the sensory system or basal ganglia, demonstrating in vivo that ALS is a multisystem disorder. Structural and functional imaging also allows studying dysfunction of brain areas associated with cognitive signs. From a biomarker perspective, numerous studies using diffusion tensor imaging showed a decrease of fractional anisotropy in the intracranial portion of the corticospinal tract but its diagnostic value at the individual level remains limited. A multiparametric approach will be required to use MRI in the diagnostic workup of ALS. A promising avenue is the new methodological developments of spinal cord imaging that has the advantage to investigate the two motor system components that are involved in ALS, that is, the lower and upper motor neuron. For all neuroimaging modalities, due to the intrinsic heterogeneity of ALS, larger pooled banks of images with standardized image acquisition and analysis procedures are needed. In this paper, we will review the main findings obtained with MRI, PET, SPECT, and nuclear magnetic resonance spectroscopy in ALS. PMID:24949452

  12. Magnetic resonance of semiconductors and their nanostructures basic and advanced applications

    CERN Document Server

    Baranov, Pavel G; Jelezko, Fedor; Wrachtrup, Jörg

    2017-01-01

    This book explains different magnetic resonance (MR) techniques and uses different combinations of these techniques to analyze defects in semiconductors and nanostructures. It also introduces novelties such as single defects MR and electron-paramagnetic-resonance-based methods: electron spin echo, electrically detected magnetic resonance, optically detected magnetic resonance and electron-nuclear double resonance – the designated tools for investigating the structural and spin properties of condensed systems, living matter, nanostructures and nanobiotechnology objects. Further, the authors address problems existing in semiconductor and nanotechnology sciences that can be resolved using MR, and discuss past, current and future applications of MR, with a focus on advances in MR methods. The book is intended for researchers in MR studies of semiconductors and nanostructures wanting a comprehensive review of what has been done in their own and related fields of study, as well as future perspectives.

  13. Diffusion and Perfusion Magnetic Resonance Imaging:Fundamentals and Advances

    OpenAIRE

    Assili, Sanam

    2016-01-01

    Over the past few decades, magnetic resonance imaging has been utilized as a powerful imaging modality to evaluate the structure and function of various organs in the human body,such as the brain. Additionally, diffusion and perfusion MR imaging have been increasingly used in neurovascular clinical applications. In diffusion-weighted magnetic resonance imaging, the mobility of water molecules is explored in order to obtain information about the microscopic behavior of the tissues. In contrast...

  14. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions

    Science.gov (United States)

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-01-01

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including non-alcoholic fatty liver disease, will be elaborated. PMID:27563019

  15. Magnetic resonance studies of intercalation compounds

    International Nuclear Information System (INIS)

    Miller, G.R.

    1990-01-01

    During the last three or four years, nearly tow hundred papers have been published that used NMR or ESR spectroscopy to study compounds formed by the intercalation of molecules or ions into the van der Waals gap of a layered hast compound. The host lattices have ranged from the simple, such as graphite, to the complex, such as clay. In many cases, magnetic resonance techniques now enable one to obtain quite detailed information on even fairly complex intercalated species, on the nature of the changes in the host lattice accompanying intercalation, and on the nature of the interactions between the intercalant species and the host lattice. Magnetic resonance is used in conunction with many other techniques to obtain a fuller picture of these interesting systems, but this review will limit its focus to the use of NMR and ESR techniques. (author). 51 refs

  16. Nonlinear nuclear magnetic resonance in ferromagnets

    International Nuclear Information System (INIS)

    Nurgaliev, T.

    1988-01-01

    The properties of nonlinear nuclear magnetic resonance (NMR) have been studied theoretically by taking into account the interaction between NMR and FMR in the ferromagnets. The Landau-Lifshitz-Bloch equations, describing the electron and nuclear magnetization behaviour in ferromagnets are presented in an integral form for a weakly excited electronic system. The stationary solution of these equations has been analysed in the case of equal NMR and FMR frequencies: the criteria for the appearance of two stable dynamic states is found and the high-frequency magnetic susceptibility for these systems is investigated. 2 figs., 8 refs

  17. Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2015-03-16

    In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.

  18. A Magnetic Resonance Imaging Receiver Design Based on NI PXIe-7966R

    Directory of Open Access Journals (Sweden)

    HU Jin-jie

    2017-12-01

    Full Text Available A magnetic resonance imaging receiver design based on NI PXIe-7966R is proposed, with which the magnetic resonance signals are sampled directly and down-converted digitally, the raw data are uploaded and the magnetic resonance image are restored. The system-level digital signal processing (DSP development tools offered by NI LabVIEW field programmable gate array (FPGA was used for FPGA function modeling, simulation and automatic code generation of hardware description language (HDL. It was very flexible during the digital down conversion (DDC designing. The sampling rate of this module was 50 Mbps, and the receiver bandwidth could be varied between 100 Hz and 1 MHz. The experimental results showed that the receiver design is a high performance magnetic resonance receiver solution.

  19. Efeitos cerebrais da maconha: resultados dos estudos de neuroimagem Brain effects of cannabis: neuroimaging findings

    Directory of Open Access Journals (Sweden)

    José Alexandre Crippa

    2005-03-01

    Full Text Available A maconha é a droga ilícita mais utilizada. Apesar disto, apenas um pequeno número de estudos investigaram as conseqüências neurotóxicas de longo prazo do uso de cannabis. As técnicas de neuroimagem se constituem em poderosos instrumentos para investigar alterações neuroanatômicas e neurofuncionais e suas correlações clínicas e neuropsicológicas. Uma revisão computadorizada da literatura foi conduzida nos indexadores MEDLINE e PsycLIT entre 1966 e novembro de 2004 com os termos 'cannabis', 'marijuana', 'neuroimaging', 'magnetic resonance', 'computed tomography', 'positron emission tomography', 'single photon emission computed tomography", 'SPET', 'MRI' e 'CT'. Estudos de neuroimagem estrutural apresentam resultados conflitantes, com a maioria dos estudos não relatando atrofia cerebral ou alterações volumétricas regionais. Contudo, há uma pequena evidência de que usuários de longo prazo que iniciaram um uso regular no início da adolescência apresentam atrofia cerebral assim como redução na substância cinzenta. Estudos de neuroimagem funcional relatam aumento na atividade neural em regiões que podem estar relacionadas com intoxicação por cannabis e alteração do humor (lobos frontais mesial e orbital e redução na atividade de regiões relacionadas com funções cognitivas prejudicadas durante a intoxicação aguda. A questão crucial se efeitos neurotóxicos residuais ocorrem após o uso prolongado e regular de maconha permanece obscura, não existindo até então estudo endereçando esta questão diretamente. Estudos de neuroimagem com melhores desenhos, combinados com avaliação cognitiva, podem ser elucidativos neste aspecto.Cannabis is the most widely used illicit drug. Despite this, only a small number of studies have investigated the long-term neurotoxic consequences of cannabis use. Structural and functional neuroimaging techniques are powerful research tools to investigate possible cannabis

  20. Sensorineural hearing loss after magnetic resonance imaging

    DEFF Research Database (Denmark)

    Mollasadeghi, Abolfazl; Mehrparvar, Amir Houshang; Atighechi, Saeid

    2013-01-01

    Magnetic resonance imaging (MRI) devices produce noise, which may affect patient's or operators' hearing. Some cases of hearing impairment after MRI procedure have been reported with different patterns (temporary or permanent, unilateral or bilateral, with or without other symptoms like tinnitus)......). In this report, a case of bilateral sensorineural hearing loss in an otherwise healthy patient underwent brain MRI was described. The patient's hearing loss was accompanied with tinnitus and was not improved after 3 months of followup.......Magnetic resonance imaging (MRI) devices produce noise, which may affect patient's or operators' hearing. Some cases of hearing impairment after MRI procedure have been reported with different patterns (temporary or permanent, unilateral or bilateral, with or without other symptoms like tinnitus...

  1. Vascular Complications of Intercavernous Sinuses during Transsphenoidal Surgery: An Anatomical Analysis Based on Autopsy and Magnetic Resonance Venography.

    Science.gov (United States)

    Deng, Xuefei; Chen, Shijun; Bai, Ya; Song, Wen; Chen, Yongchao; Li, Dongxue; Han, Hui; Liu, Bin

    2015-01-01

    Vascular complications induced by intercavernous sinus injury during dural opening in the transsphenoidal surgery may contribute to incomplete tumour resections. Preoperative neuro-imaging is of crucial importance in planning surgical approach. The aim of this study is to correlate the microanatomy of intercavernous sinuses with its contrast-enhanced magnetic resonance venography (CE-MRV). Eighteen human adult cadavers and 24 patients were examined based on autopsy and CE-MRV. Through dissection of the cadavers and CE-MRV, the location, shape, number, diameter and type of intercavernous sinuses were measured and compared. Different intercavernous sinuses were identified by their location and shape in all the cadavers and CE-MRV. Compared to the cadavers, CE-MRV revealed 37% of the anterior intercavernous sinus, 48% of the inferior intercavernous sinus, 30% of the posterior intercavernous sinus, 30% of the dorsum sellae sinus and 100% of the basilar sinus. The smaller intercavernous sinuses were not seen in the neuro-images. According to the presence of the anterior and inferior intercavernous sinus, four types of the intercavernous sinuses were identified in cadavers and CE-MRV, and the corresponding operative space in the transsphenoidal surgical approach was implemented. The morphology and classification of the cavernous sinus can be identified by CE-MRV, especially for the larger vessels, which cause bleeding more easily. Therefore, CE-MRV provides a reliable measure for individualized preoperative planning during transsphenoidal surgery.

  2. Assessment of coronary artery disease with nicorandil stress magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kawase, Yoshio; Nichimoto, Masaki; Hato, Katsunori; Okajima, Kazue; Yoshikawa, Junichi

    2004-01-01

    Although dipyridamole and adenosine have been used as vasodilator agents, we believe they are inadequate for vasodilator perfusion magnetic resonance imaging, due to adverse effects (flushing, warmth, headaches, and arrhythmia). Nicorandil, a potassium channel opener, has been reported to increase coronary blood flow and it was associated with fewer adverse effects than adenosine or dipiridamole. We set out to investigate whether the coronary artery stenosis could be assessed by nicorandil stress perfusion magnetic resonance imaging. First-pass contrast-enhanced magnetic resonance images of the left ventricle acquired from 50 patients at rest and during intravenous administration of nicorandil using multi-slice turbo field echo with multi shot echo-planar-imaging. Coronary angiography was performed within 1 week. There was no adverse effects during nicorandil stress in any patients. The overall sensitivity and specificity of magnetic resonance imaging in identifying patients with significant stenosis of at least one coronary artery were 93.9% (31 of 33 patients) and 94.1% (16 of 17 patients), respectively. The sensitivity of magnetic resonance imaging for detecting significant stenosis in the left anterior descending artery was 87.5%; the sensitivity in the left circumflex artery was 80%; the sensitivity in the right coronary artery was 92.3%. Similar sensitivities were observed for all 3 vascular regions, indicating that all myocardial segments were visualized with similar image quality. The present study shows that nicorandil stress perfusion magnetic resonance imaging is a safe, feasible technique for assessing coronary artery stenosis severity in a totally-noninvasive manner. (authors)

  3. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rabenstein, D.L.; Guo, W.

    1988-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most widely used instrumental methods, with applications ranging from the characterization of pure compounds by high-resolution NMR to the diagnosis of disease by magnetic resonance imaging (MRI). To give some idea of the wide-spread use of NMR, a computer search for the period 1985-1987 turned up over 500 books and review articles and over 7000 literature citations, not including papers in which NMR was used together with other spectroscopic methods for the routine identification of organic compounds. Consequently, they have by necessity been somewhat selective in the topics they have chosen to cover and in the articles they have cited. In this review, which covers the published literature for the approximate period Sept 1985-Aug 1987, they have focused on new developments and applications of interest to the chemist. First they review recent developments in instrumentation and techniques. Although there have not been any major break-throughs in NMR instrumentation during the past two years, significant refinements have been reported which optimize instrumentation for the demanding multiple pulse experiments in routine use today. Next they review new developments in methods for processing NMR data, followed by reviews of one-dimensional and two-dimensional NMR experiments

  4. Electron-nuclear magnetic resonance in the inverted state

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1975-01-01

    The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed

  5. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S.; Gammon, W.J.; Pappas, D.P. [Virginia Commonwealth Univ., Richmond, VA (United States)] [and others

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.

  6. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    International Nuclear Information System (INIS)

    Mishra, S.; Gammon, W.J.; Pappas, D.P.

    1997-01-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield

  7. Numerical study of remote detection outside the magnet with travelling wave Magnetic Resonance Imaging at 3T

    International Nuclear Information System (INIS)

    López, M; Vázquez, F; Solís-Nájera, S; Rodriguez, A O

    2015-01-01

    The use of the travelling wave approach for high magnetic field magnetic resonance imaging has been used recently with very promising results. This approach offer images one with greater field-of-view and a reasonable signal-to-noise ratio using a circular waveguide. This scheme has been proved to be successful at 7 T and 9.4 T with whole-body imager. Images have also been acquired with clinical magnetic resonance imaging systems whose resonant frequencies were 64 MHz and 128 MHz. These results motivated the use of remote detection of the magnetic resonance signal using a parallel-plate waveguide together with 3 T clinical scanners, to acquired human leg images. The cut-off frequency of this waveguide is zero for the principal mode, allowing us to overcome the barrier of transmitting waves at lower frequency than 300 MHz or 7 T for protons. These motivated the study of remote detection outside the actual magnet. We performed electromagnetic field simulations of a parallel-plate waveguide and a phantom. The signal transmission was done at 128 MHz and using a circular surface coil located almost 200 cm away for the magnet isocentre. Numerical simulations demonstrated that the magnetic field of the principal mode propagate inside a waveguide outside the magnet. Numerical results were compared with previous experimental-acquired image data under similar conditions

  8. Cardiac magnetic resonance imaging in clinical practice

    Directory of Open Access Journals (Sweden)

    Adriana Dias Barranhas

    2014-01-01

    Full Text Available Objective To evaluate and describe indications, mainly diagnoses and cardiac magnetic resonance imaging findings observed in clinical practice. Materials and Methods Retrospective and descriptive study of cardiac magnetic resonance performed at a private hospital and clinic in the city of Niterói, RJ, Brazil, in the period from May 2007 to April 2011. Results The sample included a total of 1000 studies performed in patients with a mean age of 53.7 ± 16.2 years and predominance for male gender (57.2%. The majority of indications were related to assessment of myocardial perfusion at rest and under pharmacological stress (507/1000; 51%, with positive results in 36.2% of them. Suspected myocarditis was the second most frequent indication (140/1000; 14%, with positive results in 63.4% of cases. These two indications were followed by study of arrhythmias (116/1000; 12%, myocardial viability (69/1000; 7% and evaluation of cardiomyopathies (47/1000; 5%. In a subanalysis, it was possible to identify that most patients were assessed on an outpatient basis (58.42%. Conclusion Cardiac magnetic resonance has been routinely performed in clinical practice, either on an outpatient or emergency/inpatient basis, and myocardial ischemia represented the main indication, followed by investigation of myocarditis, arrhythmogenic right ventricular dysplasia and myocardial viability.

  9. Magnetism in heterogeneous thin film systems: Resonant X-ray scattering studies

    International Nuclear Information System (INIS)

    Kortright, J.B.; Jiang, J.S.; Bader, S.D.; Hellwig, O.; Marguiles, D.T.; Fullerton, E.E.

    2002-01-01

    Magnetic and chemical heterogeneity are common in a broad range of magnetic thin film systems. Emerging resonant soft x-ray scattering techniques are well suited to resolve such heterogeneity at relevant length scales. Resonant x-ray magneto-optical Kerr effect measurements laterally average over heterogeneity but can provide depth resolution in different ways, as illustrated in measurements resolving reversible and irreversible changes in different layers of exchange-spring heterostructures. Resonant small-angle scattering measures in-plane heterogeneity and can resolve magnetic and chemical scattering sources in different ways, as illustrated in measurements of granular alloy recording media

  10. Making MR Imaging Child's Play - Pediatric Neuroimaging Protocol, Guidelines and Procedure

    Science.gov (United States)

    Raschle, Nora M.; Lee, Michelle; Buechler, Roman; Christodoulou, Joanna A.; Chang, Maria; Vakil, Monica; Stering, Patrice L.; Gaab, Nadine

    2009-01-01

    Within the last decade there has been an increase in the use of structural and functional magnetic resonance imaging (fMRI) to investigate the neural basis of human perception, cognition and behavior 1, 2. Moreover, this non-invasive imaging method has grown into a tool for clinicians and researchers to explore typical and atypical brain development. Although advances in neuroimaging tools and techniques are apparent, (f)MRI in young pediatric populations remains relatively infrequent 2. Practical as well as technical challenges when imaging children present clinicians and research teams with a unique set of problems 3, 2. To name just a few, the child participants are challenged by a need for motivation, alertness and cooperation. Anxiety may be an additional factor to be addressed. Researchers or clinicians need to consider time constraints, movement restriction, scanner background noise and unfamiliarity with the MR scanner environment2,4-10. A progressive use of functional and structural neuroimaging in younger age groups, however, could further add to our understanding of brain development. As an example, several research groups are currently working towards early detection of developmental disorders, potentially even before children present associated behavioral characteristics e.g.11. Various strategies and techniques have been reported as a means to ensure comfort and cooperation of young children during neuroimaging sessions. Play therapy 12, behavioral approaches 13, 14,15, 16-18 and simulation 19, the use of mock scanner areas 20,21, basic relaxation 22 and a combination of these techniques 23 have all been shown to improve the participant's compliance and thus MRI data quality. Even more importantly, these strategies have proven to increase the comfort of families and children involved 12. One of the main advances of such techniques for the clinical practice is the possibility of avoiding sedation or general anesthesia (GA) as a way to manage children

  11. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...... in the methodology and quality of the MRS migraine studies over time, some results were consistent and reproducible. 31P-MRS studies suggested reduced availability of neuronal energy and implied a mitochondrial dysfunction in the migraine brain. 1H-MRS studies reported interictal abnormalities in the excitatory...... and inhibitory neurotransmitters, glutamate and g-aminobutyric acid (GABA), suggesting persistent altered excitability in migraine patients. N-Acetylaspartate levels were decreased in migraine, probably due to a mitochondrial dysfunction and abnormal energy metabolism. The reported abnormalities may increase...

  12. Pharyngeal branchial cyst: magnetic resonance findings

    Energy Technology Data Exchange (ETDEWEB)

    Cerezal, L.; Canga, A. [Department of Radiology of the ' Santa Cruz' Hospital Liencres, Cantabria (Spain); Morales, C. [Department of Otorhinolaryngology of the ' Sierrallana' Hospital Torrelavega, Cantabria (Spain); Abascal, F.; Usamentiaga, E.; Bustamante, M. [Department of Radiology of the University Hospital ' Marques de Valdecilla' , Av. de Valdecilla s/n Santander 39008 (Spain); Olcinas, O. [Department of Pathology of the University Hospital ' Marques de Valdecilla' , Av. de Valdecilla s/n Santander 39008 (Spain)

    1998-11-01

    An unusual case of pharyngeal cyst in a 25-year-old man studied by Magnetic Resonance (MR) is described. Anatomic location and pathological findings indicated the second branchial pouch origin. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Pharyngeal branchial cyst: magnetic resonance findings

    International Nuclear Information System (INIS)

    Cerezal, L.; Canga, A.; Morales, C.; Abascal, F.; Usamentiaga, E.; Bustamante, M.; Olcinas, O.

    1998-01-01

    An unusual case of pharyngeal cyst in a 25-year-old man studied by Magnetic Resonance (MR) is described. Anatomic location and pathological findings indicated the second branchial pouch origin. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Magnetic resonance imaging (MRI)

    OpenAIRE

    Takavar A

    1993-01-01

    Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I), a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D.) factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  15. Dynamic study of pelvic floor in patients with constipation: dynamic magnetic resonance vs defecography

    International Nuclear Information System (INIS)

    Gonzalez Vasquez, Carlos Mario; Pulgarin, Ricardo Luis German; Melo Arango, Catalina; Delgado de Bedout, Jorge Andres; Llano Serna, Juan Fernando; Restrepo Restrepo, Jose Ignacio

    2007-01-01

    Purpose: to compare the concordance between defecography and magnetic resonance in patients with constipation. Materials and methods: we did a prospective and descriptive assay to determine the concordance of a diagnostic test with 17 patients. The evaluation of the studies was double blind. Results: the 17 patients were females, age range 31 - 77 year the symptoms were present between 3 to 120 months. Anterior rectocele was the most common diagnosis (11 patients) and magnetic resonance had sensibility 100%, specificity 50%, positive predictive value 78, 57% and negative predictive value 100%. 7 patients had pelvic floor descent and magnetic resonance had sensibility 71.4%, specificity 20% positive predictive value 38.46% and negative predictive value 50%. Defecography found patients with enterocele and magnetic resonance had sensibility 0% and specificity 100 anismus was present in 2 patients and magnetic resonance didn't find them. Conclusion defecography is still the gold standard for patients with eonstipation. Magnetic resonance are a promise for those patients but has to improve

  16. Using 3 Tesla magnetic resonance imaging in the pre-operative evaluation of tongue carcinoma.

    Science.gov (United States)

    Moreno, K F; Cornelius, R S; Lucas, F V; Meinzen-Derr, J; Patil, Y J

    2017-09-01

    This study aimed to evaluate the role of 3 Tesla magnetic resonance imaging in predicting tongue tumour thickness via direct and reconstructed measures, and their correlations with corresponding histological measures, nodal metastasis and extracapsular spread. A prospective study was conducted of 25 patients with histologically proven squamous cell carcinoma of the tongue and pre-operative 3 Tesla magnetic resonance imaging from 2009 to 2012. Correlations between 3 Tesla magnetic resonance imaging and histological measures of tongue tumour thickness were assessed using the Pearson correlation coefficient: r values were 0.84 (p Tesla magnetic resonance imaging had 83 per cent sensitivity, 82 per cent specificity, 82 per cent accuracy and a 90 per cent negative predictive value for detecting cervical lymph node metastasis. In this cohort, 3 Tesla magnetic resonance imaging measures of tumour thickness correlated highly with the corresponding histological measures. Further, 3 Tesla magnetic resonance imaging was an effective method of detecting malignant adenopathy with extracapsular spread.

  17. Resonant magnetic scattering of polarized soft x rays

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, M. [Centre Universitaire Paris-Sud, Orsay (France); Hague, C.F. [Universite Pierre et Marie Curie, Paris (France); Gullikson, E.M.; Underwood, J. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  18. A clinical study and the diagnosis in magnetic resonance imaging of renal scarring

    International Nuclear Information System (INIS)

    Tsugaya, Masayuki; Hirao, Noriaki; Ohtaguro, Kazuo; Kato, Jiro.

    1989-01-01

    Twenty-nine kidneys of seventeen patients (nine boys and eight girls) with vesicoureteral reflux and repeated urinary tract infection were studied by magnetic resonance imaging for diagnosis of renal scarring and correlation between clinical data and the degree renal scarring. Renal scarring is classified into three types according to findings in magnetic resonance imaging. The degree of renal scarring are classified into five grades according to traditional grading of intravenous pyelogram. If a fine deformity of calyx is shown on intravenous pyelogram, magnetic resonance imaging demonstrates renal scarring. Magnetic resonance imaging without irradiation is exceedingly valuable for the diagnosis of renal scarring. The appearances of magnetic resonance imaging were supported by X-ray computed tomography. There is a substantial correlation between serum creatinine and the grades of renal scarring by magnetic resonance imaging. There is a substantial correlation between fever attacks and the grade of renal scarring, and there is a significant reverse correlation between the age of the onset of upper urinary tract infection and the grade of renal scarring. It is suggested that upper urinary tract infection is the most significant factor in scar formation. (author)

  19. A review of magnetic resonance imaging in spinal trauma

    International Nuclear Information System (INIS)

    Davis, S.J.; Khangure, M.S.

    1994-01-01

    One hundred and ninety-five magnetic resonance (MR) images of 167 patients with neurological impairment following spinal trauma were reviewed. Acute cord injury produces central haemorrhagic necrosis that extends transversely and longitudinally with time and increased injury severity. Oedema appears more homogeneous, extensive and dominant in minimal lesions. Magnetic resonance appearances correlate with neurological status and outcome. Patients with MR evidence of cord blood had severe clinical lesions and failed to show useful clinical improvement. Patients with homogeneous 'oedema' improved to useful function. Lesion signal inhomogeneity relates to a worse prognosis. The clinical level correlates closely with cord blood or signal in homogeneity but imprecisely with homogeneous oedema. Disc herniations require differentiation from epidural blood and venous engorgement, which are prominent with bone displacement. Magnetic resonance is recommended in incomplete cord syndromes and in cord injuries with no apparent fracture, particularly of clinically deteriorating. 18 ref., 2 figs., 3 tabs

  20. On field line resonances of hydromagnetic Alfven waves in dipole magnetic field

    International Nuclear Information System (INIS)

    Chen, Liu; Cowley, S.C.

    1989-07-01

    Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs

  1. Scalable nanofabrication of U-shaped nanowire resonators with tunable optical magnetism.

    Science.gov (United States)

    Zhou, Fan; Wang, Chen; Dong, Biqin; Chen, Xiangfan; Zhang, Zhen; Sun, Cheng

    2016-03-21

    Split ring resonators have been studied extensively in reconstituting the diminishing magnetism at high electromagnetic frequencies in nature. However, breakdown in the linear scaling of artificial magnetism is found to occur at the near-infrared frequency mainly due to the increasing contribution of self-inductance while reducing dimensions of the resonators. Although alternative designs have enabled artificial magnetism at optical frequencies, their sophisticated configurations and fabrication procedures do not lend themselves to easy implementation. Here, we report scalable nanofabrication of U-shaped nanowire resonators (UNWRs) using the high-throughput nanotransfer printing method. By providing ample area for conducting oscillating electric current, UNWRs overcome the saturation of the geometric scaling of the artificial magnetism. We experimentally demonstrated coarse and fine tuning of LC resonances over a wide wavelength range from 748 nm to 1600 nm. The added flexibility in transferring to other substrates makes UNWR a versatile building block for creating functional metamaterials in three dimensions.

  2. Magnetic resonance imaging in sudden deafness; Ressonancia magnetica em surdez subita

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Hugo Valter Lisboa; Barros, Flavia Alencar; Penido, Norma de Oliveira; Souza, Ana Claudia Valerio de; Yamaoka, Wellington Yugo [Sao Paulo Univ., SP (Brazil). Dept. de Otorinolaringologia e Cirurgia da Cabeca e Pescoco; Yamashita, Helio [Sao Paulo Univ., SP (Brazil). Dept. de Imagem e Diagnostico]. E-mail: hvlramos@gmail.com

    2005-07-15

    The etiology of sudden deafness can remain undetermined despite extensive investigation. This study addresses the value of magnetic resonance imaging in the analysis of sudden deafness patients.Study Design: transversal cohort.Material And Method: In a prospective study, 49 patients attended at otolaryngology emergency room of Federal University of Sao Paulo - Escola Paulista de Medicina, from April 2001 to May 2003, were submitted to magnetic resonance imaging.Results: Magnetic Resonance abnormalities were seen in 23 (46.9%) patients and revealed two tumors suggestive of meningioma, three vestibular schwannomas, thirteen microangiopathic changes of the brain and five (21.7%) pathological conditions of the labyrinth.Conclusion: Sudden deafness should be approached as a symptom common to different diseases. The presence of cerebellopontine angle tumors in 10.2% of our cases, among other treatable causes, justifies the recommendation of gadolinium-enhanced magnetic resonance use, not only to study the auditory peripheral pathway, but to study the whole auditory pathway including the brain. (author)

  3. Thermal and particle size distribution effects on the ferromagnetic resonance in magnetic fluids

    International Nuclear Information System (INIS)

    Marin, C.N.

    2006-01-01

    Thermal and particle size distribution effects on the ferromagnetic resonance of magnetic fluids were theoretically investigated, assuming negligible interparticle interactions and neglecting the viscosity of the carrier liquid. The model is based on the usual approach for the ferromagnetic resonance description of single-domain magnetic particle systems, which was amended in order to take into account the finite particle size effect, the particle size distribution and the orientation mobility of the particles within the magnetic fluid. Under these circumstances the shape of the resonance line, the resonance field and the line width are found to be strongly affected by the temperature and by the particle size distribution of magnetic fluids

  4. Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Zhang, Z.; Roukes, M.L.; Hammel, P.C.

    1996-01-01

    The signal intensity of electron spin resonance in magnetic resonance force microscopy (MRFM) experiments employing periodic saturation of the electron spin magnetization is determined by four parameters: the rf field H 1 , the modulation level of the bias field H m , the spin relaxation time τ 1 , and the magnetic size R(∂H/∂z) of the sample. Calculations of the MRFM spectra obtained from a 2,2-diphenyl-1-picrylhydrazyl particle have been performed for various conditions. The results are compared with experimental data and excellent agreement is found. The systematic variation of the signal intensity as a function of H 1 and H m provides a powerful tool to characterize the MRFM apparatus. copyright 1996 American Institute of Physics

  5. Resonant Magnetic Field Sensors Based On MEMS Technology

    Directory of Open Access Journals (Sweden)

    Elías Manjarrez

    2009-09-01

    Full Text Available Microelectromechanical systems (MEMS technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  6. Resonant Magnetic Field Sensors Based On MEMS Technology

    Science.gov (United States)

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  7. Layer-resolved readout of magnetic signals using ferromagnetic resonance effect

    International Nuclear Information System (INIS)

    Yang, T.; Suto, H.; Nagasawa, T.; Kudo, K.; Mizushima, K.; Sato, R.

    2013-01-01

    We introduce a method to read the data stored in a three-dimensional (3D) magnetic recording medium comprising plural storage layers. The readout is realized by selecting the storage layer with the ferromagnetic resonance frequency, and detecting the magnetization orientation with the ferromagnetic resonance absorption. This concept is experimentally confirmed with magnetic media comprising NiFe and CoFe layers. The feasibility of applying this method to a realistic 3D magnetic recording medium is discussed by calculating the absorption spectra of several storage layers with different perpendicular magnetic anisotropy constants. - Highlights: ► A method is introduced to read data in the 3-dimensional magnetic recording medium. ► The storage layer to read is selected according to its particular FMR frequency. ► The magnetization of the selected storage layer is detected with the FMR absorption

  8. Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents

    International Nuclear Information System (INIS)

    Yan Guoping; Liu Maili; Li Liyun

    2005-01-01

    Purpose: A series of polyaspartamide gadolinium complexes containing pyridoxamine groups were studied as the potential magnetic resonance imaging (MRI) contrast agents for liver enhancement. Methods: These polyaspartamide gadolinium complexes were prepared and evaluated by relaxivity, acute toxicity studies and magnetic resonance imaging of the liver in rats. Results: These polyaspartamide gadolinium complexes have higher relaxation effectiveness than that of the clinically used gadolinium diethylenetriaminepentaacetic acid and possess the low intravenous acute toxicities to Institute for Cancer Research (ICR) mice. Magnetic resonance imaging of the liver in rats indicated that they greatly enhance the contrast of magnetic resonance images and provide prolonged intravascular duration in the liver. Conclusion: These results indicated that the polyaspartamide gadolinium complexes containing pyridoxamine groups could be considered as the appropriate MRI contrast agents for liver enhancement

  9. Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals.

    Science.gov (United States)

    Lin, Tingting; Zhou, Kun; Yu, Sijia; Wang, Pengfei; Wan, Ling; Zhao, Jing

    2018-04-25

    LC resonance magnetic sensors are widely used in low-field nuclear magnetic resonance (LF-NMR) and surface nuclear magnetic resonance (SNMR) due to their high sensitivity, low cost and simple design. In magnetically shielded rooms, LC resonance magnetic sensors can exhibit sensitivities at the fT/√Hz level in the kHz range. However, since the equivalent magnetic field noise of this type of sensor is greatly affected by the environment, weak signals are often submerged in practical applications, resulting in relatively low signal-to-noise ratios (SNRs). To determine why noise increases in unshielded environments, we analysed the noise levels of an LC resonance magnetic sensor ( L ≠ 0) and a Hall sensor ( L ≈ 0) in different environments. The experiments and simulations indicated that the superposed ringing of the LC resonance magnetic sensors led to the observed increase in white noise level caused by environmental interference. Nevertheless, ringing is an inherent characteristic of LC resonance magnetic sensors. It cannot be eliminated when environmental interference exists. In response to this problem, we proposed a method that uses matching resistors with various values to adjust the quality factor Q of the LC resonance magnetic sensor in different measurement environments to obtain the best sensitivity. The LF-NMR experiment in the laboratory showed that the SNR is improved significantly when the LC resonance magnetic sensor with the best sensitivity is selected for signal acquisition in the light of the test environment. (When the matching resistance is 10 kΩ, the SNR is 3.46 times that of 510 Ω). This study improves LC resonance magnetic sensors for nuclear magnetic resonance (NMR) detection in a variety of environments.

  10. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong; Chen, Youhe

    2015-01-01

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields

  11. Magnetic resonance spectroscopy in schizophrenia. Possibilities and limitations; Magnetresonanzspektroskopie bei Schizophrenie. Moeglichkeiten und Grenzen

    Energy Technology Data Exchange (ETDEWEB)

    Wobrock, T. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Psychiatrie und Psychotherapie; Universitaetsklinikum des Saarlandes, Klinik fuer Psychiatrie und Psychotherapie, Homburg/Saar (Germany); Scherk, H.; Falkai, P. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Psychiatrie und Psychotherapie

    2005-02-01

    Magnetic resonance spectroscopy is a noninvasive investigative technique for in vivo detection of biochemical changes in neuropsychiatric disorders for which especially proton ({sup 1}H-MRS) and phosphorus ({sup 31}P-MRS) magnetic resonance spectroscopy have been used. In this review we explain the principles of MRS and summarize the studies in schizophrenia. A systematic literature review was carried out for {sup 1}H-MRS studies investigating schizophrenic patients compared to controls. The inconsistent results in the cited studies may be due to different study population, specific neuroimaging technique, and selected brain regions. Frequent findings are decreased PME and increased PDE concentrations ({sup 31}P-MRS) linked to altered metabolism of membrane phospholipids and decreased N-acetylaspartate (NAA) or NAA/choline ratio ({sup 1}H-MRS) linked to neuronal damage in frontal (DLPFC) or temporal regions in patients with schizophrenia. These results contribute to the disturbed frontotemporal-thalamic network assumed in schizophrenia and are supported by additional functional neuroimaging, MRI morphometry, and neuropsychological evaluation. The combination of the described investigative techniques with MRS in follow-up studies may provide more specific clues for understanding the pathogenesis and disease course in schizophrenia. (orig.) [German] Die Magnetresonanzspektroskopie (MRS) stellt ein nichtinvasives Verfahren dar, mit dem in vivo biochemische Veraenderungen spezifischer Hirnregionen bei verschiedenen psychiatrischen Erkrankungen untersucht werden koennen. Dabei werden insbesondere die Protonenmagnetresonanzspektroskopie ({sup 1}H-MRS) sowie die Phosphormagnetresonanzspektroskopie ({sup 31}P-MRS) verwendet. In der vorliegenden Uebersichtsarbeit werden die methodischen Grundlagen erlaeutert sowie die Befundlage bei der Schizophrenie referiert. Fuer die Darstellung der Studien zur {sup 1}H-MRS bei schizophrenen Patienten im Vergleich zu einer Kontrollgruppe

  12. Numerical methods in electron magnetic resonance

    International Nuclear Information System (INIS)

    Soernes, A.R.

    1998-01-01

    The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system

  13. Numerical methods in electron magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Soernes, A.R

    1998-07-01

    The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system.

  14. Cryogenic Preamplifiers for Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Johansen, Daniel H.; Sanchez-Heredia, Juan D.; Petersen, Jan R.

    2018-01-01

    Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier...

  15. On the resonant state of magnetization in array of interacting nanodots

    Science.gov (United States)

    Kim, P. D.; Orlov, V. A.; Rudenko, R. Yu.; Prokopenko, V. S.; Orlova, I. N.; Kobyakov, A. V.

    2017-10-01

    Development of the interpretation of the phenomenon of the lift of the magnetic resonance frequencies degeneracy caused by the magnetostatic interaction in assemblies of nanodisks has been done. The difference of the resonance behavior of magnetic vortexes in a round and rectangular nanodots has been studied experimentally and explained.

  16. Transport and magnetic resonance in normal and superfluid Fermi liquids

    International Nuclear Information System (INIS)

    Smith, H.

    1976-10-01

    This thesis provides a framework for a series of 19 papers published by the author in a study of transport and magnetic resonance in normal and superfluid Fermi liquids. The Boltzmann equation and methods for its solution are discussed. Electron-electron scattering in metals, with particular emphasis on alkali metals, is considered. Transport in a normal uncharged Fermi liquid such as pure 3 He at temperatures well below its degeneracy temperature of approximately 1 K or mixtures of 3 He in 4 He with degeneracy temperatures ranging typically from 100 to 200 mk is discussed with emphasis on comparison with experiments with the aim of testing models of the particle-particle scattering amplitude. Transport and magnetic resonance in superfluid 3 He is considered. The phenomenological treatment of relaxation is reviewed and the magnitude of the phenomenlogical relaxation time close to Tsub(c) is derived for the case of longitudinal resonance. Comments are made on non-linear magnetic resonance and textures and spin waves. (B.R.H.)

  17. Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays

    International Nuclear Information System (INIS)

    Cao Zhi-Shen; Pan Jian; Chen Zhuo; Zhan Peng; Min Nai-Ben; Wang Zhen-Lin

    2011-01-01

    We experimentally and numerically investigate the optical properties of metamaterial arrays composed of double partially-overlapped metallic nanotriangles fabricated by an angle-resolved nanosphere lithography. We demonstrate that each double-triangle can be viewed as an artificial magnetic element analogous to the conventional metal split-ring-resonator. It is shown that under normal-incidence conditions, individual double-triangle can exhibit a strong local magnetic resonance, but the collective response of the metamaterial arrays is purely electric because magnetic resonances of the two double-triangles in a unit cell having opposite openings are out of phase. For oblique incidences the metamaterial arrays are shown to support a pure magnetic response at the same frequency band. Therefore, switchable electric and magnetic resonances are achieved in double-triangle arrays. Moreover, both the electric and magnetic resonances are shown to allow for a tunability over a large spectral range down to near-infrared. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Proton magnetic resonance spectroscopy in the fetus.

    Science.gov (United States)

    Story, Lisa; Damodaram, Mellisa S; Allsop, Joanna M; McGuinness, Amy; Wylezinska, Marzena; Kumar, Sailesh; Rutherford, Mary A

    2011-09-01

    Magnetic Resonance Imaging (MRI) has become an established technique in fetal medicine, providing complementary information to ultrasound in studies of the brain. MRI can provide detailed structural information irrespective of the position of the fetal head or maternal habitus. Proton Magnetic Resonance Spectroscopy ((1)HMRS) is based on the same physical principles as MRI but data are collected as a spectrum, allowing the biochemical and metabolic status of in vivo tissue to be studied in a non-invasive manner. (1)HMRS has been used to assess metabolic function in the neonatal brain but fetal studies have been limited, primarily due to fetal motion. This review will assess the technique and findings from fetal studies to date. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Magnetic resonance imaging in Pelizaeus-Merzbacher disease

    International Nuclear Information System (INIS)

    Journel, H.; Roussey, M.; Allaire, C.; Le Marec, B.; Gandon, Y.; Carsin, M.

    1987-01-01

    Pelizaeus-Merzbacher's disease is a progressive encephalopathy with demyelination of the cerebral white matter. The diagnosis cannot be made on clinical or biological grounds: pathological investigation is necessary to confirm tigroid demyelination. CT scanning failure to visualize this type of anomaly but detection is now possible with the advent of magnetic resonance imaging (MRI). The authors studied the case of a boy who, at the age of 8 presented with symptoms characeristic of the disease, rotatory nystagmus, progressive encephalopathy, and inherited X-linked recessive traits. Magnetic resonance imaging revealed a high signal in the supra-tentorial white matter and the usual contrast was inverted. The authors believe that MRI can make an important contribution to the diagnosis of the disease. (orig.)

  20. Quantification of aortic regurgitation by magnetic resonance velocity mapping

    DEFF Research Database (Denmark)

    Søndergaard, Lise; Lindvig, K; Hildebrandt, P

    1993-01-01

    The use of magnetic resonance (MR) velocity mapping in the quantification of aortic valvular blood flow was examined in 10 patients with angiographically verified aortic regurgitation. MR velocity mapping succeeded in identifying and quantifying the regurgitation in all patients, and the regurgit......The use of magnetic resonance (MR) velocity mapping in the quantification of aortic valvular blood flow was examined in 10 patients with angiographically verified aortic regurgitation. MR velocity mapping succeeded in identifying and quantifying the regurgitation in all patients...

  1. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    Science.gov (United States)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  2. Magnetic resonance vs. computerized tomography, ultrasonic examinations and nuclear medicine

    International Nuclear Information System (INIS)

    Bruna, J.

    1985-01-01

    A symposium on magnetic resonance in nuclear medicine was held from 23rd to 27th January, 1985 in Munich and Garmisch-Partenkirchen. Discussed were suitable methods, the use of contrast media, the evaluation of results, the application of nuclear magnetic resonance in examining various body organs, and the latest apparatus. NMR achievements in medicine were compared to those by other diagnostic methods. (M.D.)

  3. Co-Funding for the Conference on Magnetic Resonance in Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan McLaughlin, Ph.D., Director, Division of Applied Science & Technology, NIBIB, NIH

    2008-10-01

    The XXIst International Conference on Magnetic Resonance in Biological Systems (ICMRBS 2005), '60th anniversary of the discovery of Nuclear Magnetic Resonance,' was held between 16 and 21 January 2005 in Hyderabad, India. The meeting focused on a broad range of magnetic resonance methods as applied to studies of biological processes related to human health. The biennial ICMRBS has become the major venue for discussion of advances in nuclear and electron magnetic resonance (NMR & EMR/EPR) studies of the structure, dynamics, and chemical properties of important classes of biomolecules. Magnetic resonance has become an established tool in structural biology, and its special importance derives from its ability to provide atomic level information. It is becoming increasingly evident that the dynamic features of biomolecules, their intermolecular interactions, and accessible conformations in solution are data of key importance in understanding molecular recognition and function. NMR, which is already contributing to approximately 25% of the new structures being deposited with the Protein Data Bank, is destined to be a major player in the post genomic structure age with its emphasis on structure and function. In-vivo magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) results shed light on human metabolic processes and on the cellular ramifications of cancer, stroke, cardiovascular disease, and other pathologies. New methodologies in metabonomics may lead to development of new drugs and medical diagnosis. The ICMRBS is the one conference that brings together experts from high-resolution NMR, solid state NMR, EPR, in-vivo MRS and MRI, and developers of instrumentation, techniques, software, and databases. Symposia at this ICMRBS are designed to continue the fruitful cross-fertilization of ideas that has been so successful in driving the spectacular advances in this field. ICMRBS 2005 maintained the traditional format of poster sessions, and

  4. Magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Takavar A

    1993-04-01

    Full Text Available Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I, a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D. factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  5. Disc pathology after whiplash injury. A prospective magnetic resonance imaging and clinical investigation.

    Science.gov (United States)

    Pettersson, K; Hildingsson, C; Toolanen, G; Fagerlund, M; Björnebrink, J

    1997-02-01

    This study was used to evaluate the relationship between magnetic resonance imaging findings and clinical findings after whiplash injury. To identify initial soft-tissue damage after whiplash injury, the development of disc pathology, and the relationship of disc pathology to clinical findings. Although a few studies have reported pathological magnetic resonance imaging findings after whiplash injuries, there is no prospective study published to our knowledge. Thirty-nine patients, 20 women and 19 men with a mean age of 32 years, were treated for whiplash injury. Magnetic resonance imaging and clinical examination were performed in a blinded manner at a mean of 11 days after trauma. The procedure was repeated at a 2-year follow-up visit. Two patients could not be examined with the second magnetic resonance imaging because of claustrophobia and pregnancy, respectively. The authors found 13 patients (33%) with disc herniations with medullary (six cases) or dura (seven cases) impingement over the 2-year follow-up period. At the follow-up examination all patients with medullary impingement had persistent or increased symptoms, and three of 27 patients (11%) with no or slight changes on magnetic resonance imaging had persistent symptoms. No ligament injuries were diagnosed. Although disc pathology seems to be one contributing factor in the development of chronic symptoms after whiplash injury, it may be unnecessary to examine these patients in the acute phase with magnetic resonance imaging; correlating initial symptoms and signs to magnetic resonance imaging findings is difficult because of the relatively high proportion of false-positive results. Magnetic resonance imaging is indicated later in the course of treatment in patients with persistent arm pain, neurologic deficits or clinical signs of nerve root compression to diagnose disc herniations requiring surgery.

  6. Magnetic resonance of seminal vesicles: a noninvasive study of seminal way

    International Nuclear Information System (INIS)

    Ocantos, J.A.; Rey Valzacchi, G.; Sinclair, M.E.; Loor Guadamud, G.

    2010-01-01

    The magnetic resonance without endorectal coil is an excellent diagnostic tool for studying the entire route of seminal non-invasive way in a single step diagnosis. We call magnetic resonance of seminal vesicles, but includes both the study of the seminal vesicles as the channels of the seminal way. [es

  7. Evaluation of toroidal torque by non-resonant magnetic perturbations in tokamaks for resonant transport regimes using a Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Christopher G.; Heyn, Martin F.; Kapper, Gernot; Kernbichler, Winfried; Martitsch, Andreas F. [Fusion@ÖAW, Institut für Theoretische Physik - Computational Physics, Technische Universität Graz, Petersgasse 16, 8010 Graz (Austria); Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik - Computational Physics, Technische Universität Graz, Petersgasse 16, 8010 Graz (Austria); Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and Technology,” ul. Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2016-08-15

    Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant neoclassical toroidal viscosity regimes including superbanana-plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. The resulting expressions are shown to match the existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shear term in the magnetic drift frequency and a significant effect of the magnetic drift on drift-orbit resonances are demonstrated.

  8. Magnetic resonance imaging of the knee

    International Nuclear Information System (INIS)

    Nederveen, D.; Bakker, C.J.G.; Scholten, F.G.; Feldberg, N.A.M.; Postma, J.H.; Vis, H. van der

    1989-01-01

    Sixteen patients suspected of having meniscal lesions, were examined bt magnetic resonance (MR) and arthroscopy, MR and arthroscopy corelate well for meniscal and cruciate ligament lesions. Damage of the articular cartilage was, however, not detected by MR (author). 15 refs.; 4 figs.; 1 tab

  9. Application of magnetic resonance techniques for imaging tumour physiology

    International Nuclear Information System (INIS)

    Stubbs, M.

    1999-01-01

    Magnetic resonance (MR) techniques have the unique ability to measure in vivo the biochemical content of living tissue in the body in a dynamic, non-invasive and non-destructive manner. MR also permits serial investigations of steady-state tumour physiology and biochemistry, as well as the response of a tumour to treatment. Magnetic resonance imaging (MRI), Magnetic resonance spectroscopy (MRS) and a mixture of the two techniques (spectroscopic imaging) allow some physiological parameters, for example pH, to be 'imaged'. Using these methods, information on tissue bioenergetics and phospolipid membrane turnover, pH, hypoxia, oxygenation, and various aspects of vascularity including blood flow, angiogenesis, permeability and vascular volume can be obtained. In addition, MRS methods can be used for monitoring anticancer drugs (e.g. 5FU, ifosfamide) and their metabolites at their sites of action. The role of these state-of-the-art MR methods in imaging tumour physiology and their potential role in the clinic are discussed. (orig.)

  10. Ultra high field magnetic resonance imaging; L'imagerie par resonance magnetique a ultra-haut champ. L'aimant, piece maitresse de l'imageur. Memo C: les principales techniques d'imagerie medicale

    Energy Technology Data Exchange (ETDEWEB)

    Lethimonnier, F. [CEA Saclay, Institut d' Imagerie Biomedicale - NeuroSpin, Dir. des Sciences du Vivant, 91 - Gif-sur-Yvette (France); Vedrine, P. [CEA Saclay, Direction des Sciences de la Matiere, 91 - Gif-sur-Yvette (France)

    2008-07-01

    Understanding human brain function, brain development and brain dysfunction is one of the great challenges of the twenty first century. Biomedical imaging has now run up against a number of technical constraints that are exposing limits to its potential. In order to overcome the current limits to high-field magnetic resonance cerebral imaging (MRI) and unleash its fullest potential, the Cea has built NeuroSpin, an ultra-high-field neuroimaging facility at its Saclay centre (in the Essonne). NeuroSpin already boasts three fully operational MRI systems. The first is a 3-tesla high-field system and the second is a very-high-field 7-tesla system, both of which are dedicated to clinical studies and investigations in humans, while the third is an ultra-high-field 17.65-tesla system designed for studies on small animals. In 2011, NeuroSpin will be commissioning an 11.7-tesla ultra-high-field system of unprecedented power that is designed for research on human subjects. The level of the magnetic field and the scale required will make this joint French-German project to build the magnet a breakthrough in the international arena. (authors)

  11. A magnet without a magnetic circuit, of high homogeneity, specially for nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Barjhoux, Yves.

    1981-01-01

    This invention concerns a high homogeneity, double access magnet without a magnetic circuit. It is specially adapted for nuclear magnetic resonance (N.M.R.) imagery. Another advantage worth stressing resides in the possibilities of NMR in biochemical analysis which will enable, for instance, cancerous tumours to be detected in vivo. In order to increase the NMR signal ratio over background noise, it is necessary to increase the homogeneity of the B 0 orientating magnetic field. This magnetic field must orientate the nuclear magnetic moments of the elementary particles which compose the body being examined and in particular the protons. It must therefore be relatively constant in intensity and direction in the entire domain of the examination [fr

  12. Chronic liver disease: evaluation by magnetic resonance

    International Nuclear Information System (INIS)

    Stark, D.D.; Goldberg, H.I.; Moss, A.A.; Bass, N.M.

    1984-01-01

    Magnetic resonance (MR) imaging distinguished hepatitis from fatty liver and cirrhosis in a woman with a history of alcohol abuse. Anatomic and physiologic manifestations of portal hypertension were also demonstrated by MR

  13. Neurobiological Foundations of Acupuncture: The Relevance and Future Prospect Based on Neuroimaging Evidence

    Directory of Open Access Journals (Sweden)

    Lijun Bai

    2013-01-01

    Full Text Available Acupuncture is currently gaining popularity as an important modality of alternative and complementary medicine in the western world. Modern neuroimaging techniques such as functional magnetic resonance imaging, positron emission tomography, and magnetoencephalography open a window into the neurobiological foundations of acupuncture. In this review, we have summarized evidence derived from neuroimaging studies and tried to elucidate both neurophysiological correlates and key experimental factors involving acupuncture. Converging evidence focusing on acute effects of acupuncture has revealed significant modulatory activities at widespread cerebrocerebellar brain regions. Given the delayed effect of acupuncture, block-designed analysis may produce bias, and acupuncture shared a common feature that identified voxels that coded the temporal dimension for which multiple levels of their dynamic activities in concert cause the processing of acupuncture. Expectation in acupuncture treatment has a physiological effect on the brain network, which may be heterogeneous from acupuncture mechanism. “Deqi” response, bearing clinical relevance and association with distinct nerve fibers, has the specific neurophysiology foundation reflected by neural responses to acupuncture stimuli. The type of sham treatment chosen is dependent on the research question asked and the type of acupuncture treatment to be tested. Due to the complexities of the therapeutic mechanisms of acupuncture, using multiple controls is an optimal choice.

  14. Autism Spectrum Disorder: Does Neuroimaging Support the DSM-5 Proposal for a Symptom Dyad? A Systematic Review of Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Studies

    Science.gov (United States)

    Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sanchez, Francisco J.; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2012-01-01

    A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with "autism spectrum disorder" (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported…

  15. Content Based Retrieval System for Magnetic Resonance Images

    International Nuclear Information System (INIS)

    Trojachanets, Katarina

    2010-01-01

    The amount of medical images is continuously increasing as a consequence of the constant growth and development of techniques for digital image acquisition. Manual annotation and description of each image is impractical, expensive and time consuming approach. Moreover, it is an imprecise and insufficient way for describing all information stored in medical images. This induces the necessity for developing efficient image storage, annotation and retrieval systems. Content based image retrieval (CBIR) emerges as an efficient approach for digital image retrieval from large databases. It includes two phases. In the first phase, the visual content of the image is analyzed and the feature extraction process is performed. An appropriate descriptor, namely, feature vector is then associated with each image. These descriptors are used in the second phase, i.e. the retrieval process. With the aim to improve the efficiency and precision of the content based image retrieval systems, feature extraction and automatic image annotation techniques are subject of continuous researches and development. Including the classification techniques in the retrieval process enables automatic image annotation in an existing CBIR system. It contributes to more efficient and easier image organization in the system.Applying content based retrieval in the field of magnetic resonance is a big challenge. Magnetic resonance imaging is an image based diagnostic technique which is widely used in medical environment. According to this, the number of magnetic resonance images is enormously growing. Magnetic resonance images provide plentiful medical information, high resolution and specific nature. Thus, the capability of CBIR systems for image retrieval from large database is of great importance for efficient analysis of this kind of images. The aim of this thesis is to propose content based retrieval system architecture for magnetic resonance images. To provide the system efficiency, feature

  16. Direct magnetic resonance arthrography of the canine elbow

    Directory of Open Access Journals (Sweden)

    Yauheni Zhalniarovich

    2017-01-01

    Full Text Available This study compares the effects of four dilutions of the gadolinium-containing contrast media (1:100; 1:400; 1:800; 1:1,200 administered to the elbow on the quality of magnetic resonance images. All the examined dilutions had a positive effect on image quality, and 1:800 was regarded as the optimal dilution of gadolinium for viewing the elbow because it imparted good contrast to the joint cavity without obliterating the contours of articular surfaces. Transverse, sagittal, and dorsal low-field magnetic resonance images were obtained in 24 canine cadaver front limbs. The musculus biceps brachii, m. triceps brachii, m. extensor carpi radialis, m. flexor carpi ulnaris, the articular surfaces, the medial coronoid process and the anconeal process of the ulna were well visualized by High Resolution Gradient Echo, XBONE T2 and Spin Echo T1 sequences in the sagittal plane. The biceps brachii, pronator teres, flexor carpi radialis, extensor digitorum communis, extensor carpi radialis, deltoid muscle and the articular surface of the medial condyle of the humerus were very well visualized by 3D SST1 and XBONE T2 sequences in the transverse plane. The triceps brachii muscle, extensor digitorum lateralis muscle, superficial digital flexor, deep digital flexor and the medial condyle of the humerus were very well visualized by the Spin Echo T1 sequence in the dorsal plane. This article describes for the first time the use of the gadolinium contrast agent administered to the canine elbow joint during magnetic resonance modality. Magnetic resonance arthrography can be a helpful visualization technique in treating canine soft tissue elbow injury.

  17. Magnetic resonance tomography in syringomyelia

    International Nuclear Information System (INIS)

    Koehler, D.; Treisch, J.; Hertel, G.; Schoerner, W.; Fiegler, W.; Staedtisches Rudolf-Virchow Krankenhaus, Berlin

    1985-01-01

    Thirteen patients with a clinical diagnosis of syringomyelia were examined by nuclear tomography (0.35 T magnet) in the spin-echo mode. In all thirteen patients, the T1 images (Se 400/35) showed a longitudinal cavity with a signal intensity of CSF. The shape and extent of the syrinx could be adequately demonstrated in 12 of the 13 examinations. Downward displacement of the cerebellar tonsils was seen in eight cases. The examination took between half and one hour. Advantages of magnetic resonance tomography (nuclear tomography) include the absence of artifacts, images in the line of the lesion and its non-invasiveness. (orig.) [de

  18. Atomic spin resonance in a rubidium beam obliquely incident to a transmission magnetic grating

    International Nuclear Information System (INIS)

    Hatakeyama, A; Goto, K

    2016-01-01

    We studied atomic spin resonance induced by atomic motion in a spatially periodic magnetostatic field. A rubidium atomic beam, with a velocity of about 400 m s −1 , was obliquely incident to a transmission magnetic grating that produced a spatially periodic magnetic field. The magnetic grating was formed by a magnetic thin film on a polyimide substrate that had multiple slits at 150 μm intervals. The atoms experienced field oscillation, depending on their velocity and the field period when passing through the grating, and underwent magnetic resonance. Resonance spectra obtained with a perpendicular magnetization film were in clear contrast to ones obtained with an in-plane magnetization film. The former exhibited resonance peaks at odd multiples of the frequency, determined by the velocity over the period, while the latter had dips at the same frequencies. (paper)

  19. The role of body image and self-perception in anorexia nervosa: the neuroimaging perspective.

    Science.gov (United States)

    Esposito, Roberto; Cieri, Filippo; di Giannantonio, Massimo; Tartaro, Armando

    2018-03-01

    Anorexia nervosa is a severe psychiatric illness characterized by intense fear of gaining weight, relentless pursuit of thinness, deep concerns about food and a pervasive disturbance of body image. Functional magnetic resonance imaging tries to shed light on the neurobiological underpinnings of anorexia nervosa. This review aims to evaluate the empirical neuroimaging literature about self-perception in anorexia nervosa. This narrative review summarizes a number of task-based and resting-state functional magnetic resonance imaging studies in anorexia nervosa about body image and self-perception. The articles listed in references were searched using electronic databases (PubMed and Google Scholar) from 1990 to February 2016 using specific key words. All studies were reviewed with regard to their quality and eligibility for the review. Differences in brain activity were observed using body image perception and body size estimation tasks showing significant modifications in activity of specific brain areas (extrastriate body area, fusiform body area, inferior parietal lobule). Recent studies highlighted the role of emotions and self-perception in anorexia nervosa and their neural substrate involving resting-state networks and particularly frontal and posterior midline cortical structures within default mode network and insula. These findings open new horizons to understand the neural substrate of anorexia nervosa. © 2016 The British Psychological Society.

  20. Research on Wireless Power Transfer System via Magnetically Coupled Resonance

    Directory of Open Access Journals (Sweden)

    ZHU Meng

    2017-04-01

    Full Text Available In order to extend the transmission distance and improve the transmission efficiency of the traditional wireless power transmission(WPTsystem composed with the transmitting and receiving coil resonators based on magnetic resonance coupling,we proposed an effective method to add a magnetic core between repeating coil and receiving coil based on the single repeating three coils mode. This paper deduced a mathematical expression of the transmission efficiency,and built a model by the circuit theory,and also simulated the transmission system added with the magnetic core between repeating and receiving coil. Then we selected the flat magnetic core for test. At last,we verified the feasibility of the proposal by actual experiment.

  1. Magnetic resonance angiography: Physical principles and clinical applications

    International Nuclear Information System (INIS)

    Hausmann, R.; Mueller, E.

    1992-01-01

    Within the last four years magnetic resonance angiography (MRA) developed very rapidly towards a well accepted screening technique for vascular examinations as a fast add-on to conventional MR. This review describes the basic physical principles as well as the different methods like time-of-flight and phase-sensitive MRA for visualization of blood vessels. Different applications of 3D, 2D sequential and 3D multivolume MRA are shown from various regions of the head and body. A short outlock to quantitative flow measurments is given in the last chapter including some interesting applications of these techniques which show the still expanding potential of magnetic resonance. (orig.) [de

  2. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Cui He; Wang Yunjiu; Chen Runsheng; Tang Xiaowei.

    1996-01-01

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  3. Meniscal configuration using magnetic resonance imaging; Configuracao meniscal pela ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Arthur da Rocha C.; Turrini, Elisabete; Karoauk, Teresa C.C.; Lederman, Henrique M. [Escola Paulista de Medicina, Sao Paulo, SP (Brazil). Dept. de Diagnostico por Imagem

    1997-04-01

    The authors present a review of the normal meniscal configuration and correlation with anatomic specimens. The images were obtained by magnetic resonance imaging. The images were obtained by magnetic resonance imaging. The authors emphasize the importance of knowing the relationship between the meniscus and the adjacent anatomic structures. (author) 31 refs., 10 figs., tabs.

  4. Magnetic resonance study of bulk and thin film EuTiO3

    International Nuclear Information System (INIS)

    Laguta, V V; Kamba, S; Maryško, M; Andrzejewski, B; Kachlík, M; Maca, K; Lee, J H; Schlom, D G

    2017-01-01

    Magnetic resonance spectra of EuTiO 3 in both bulk and thin film form were taken at temperatures from 3–350 K and microwave frequencies from 9.2–9.8 and 34 GHz. In the paramagnetic phase, magnetic resonance spectra are determined by magnetic dipole and exchange interactions between Eu 2+ spins. In the film, a large contribution arises from the demagnetization field. From detailed analysis of the linewidth and its temperature dependence, the parameters of spin–spin interactions were determined: the exchange frequency is 10.5 GHz and the estimated critical exponent of the spin correlation length is  ≈0.4. In the bulk samples, the spectra exhibited a distinct minimum in the linewidth at the Néel temperature, T N   ≈  5.5 K, while the resonance field practically does not change even on cooling below T N . This is indicative of a small magnetic anisotropy ∼320 G in the antiferromagnetic phase. In the film, the magnetic resonance spectrum is split below T N into several components due to excitation of the magnetostatic modes, corresponding to a non-uniform precession of magnetization. Moreover, the film was observed to degrade over two years. This was manifested by an increase of defects and a change in the domain structure. The saturated magnetization in the film, estimated from the magnetic resonance spectrum, was about 900 emu cm −3 or 5.5 µ B /unit cell at T   =  3.5 K. (paper)

  5. RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Giagkiozis, I.; Verth, G. [Solar Plasma Physics Research Centre, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield, S3 7RH (United Kingdom); Goossens, M.; Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Amy Johnson Building, Sheffield, S1 3JD (United Kingdom)

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.

  6. Safety guidelines for magnetic resonance diagnostic facilities (1991)

    International Nuclear Information System (INIS)

    1992-01-01

    These guidelines provide information on levels and health effects of exposure to magnetic and radiofrequency electromagnetic fields associated with magnetic resonance (MR) devices, and on precautions to minimize effects on patients, staff, and the general public. The guidelines are for use by regulatory authorities, MR users and health professionals. 22 refs., 1 tab

  7. Comparison among T1-weighted magnetic resonance imaging, modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat.

    Science.gov (United States)

    Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye

    2013-01-01

    An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  8. Current-driven parametric resonance in magnetic multilayers

    International Nuclear Information System (INIS)

    Wang, C; Seinige, H; Tsoi, M

    2013-01-01

    Current-induced parametric excitations were observed in point-contact spin-valve nanodevices. Point contacts were used to inject high densities of direct and microwave currents into spin valves, thus producing oscillating spin-transfer and Oersted-field torques on magnetic moments. The resulting magnetodynamics were observed electrically by measuring rectified voltage signals across the contact. In addition to the spin-torque-driven ferromagnetic resonance we observe doubled-frequency signals which correspond to the parametric excitation of magnetic moments. Numerical simulations suggest that while both spin-transfer torque and ac Oersted field contribute to the parametrically excited dynamics, the ac spin torque dominates, and dc spin torque can switch it on and off. The dc bias dependence of the parametric resonance signal enabled the mapping of instability regions characterizing the nonlinearity of the oscillation. (paper)

  9. Parameter dependence of resonant spin torque magnetization reversal

    International Nuclear Information System (INIS)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H.W.

    2012-01-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  10. Parameter dependence of resonant spin torque magnetization reversal

    Science.gov (United States)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H. W.

    2012-04-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  11. Neuroimaging in dementia and Alzheimer's disease: Current protocols and practice in the Republic of Ireland

    International Nuclear Information System (INIS)

    Kelly, I.; Butler, M.-L.; Ciblis, A.; McNulty, J.P.

    2016-01-01

    Introduction: Neuroimaging plays an essential supportive role in the diagnosis of dementia, assisting in establishing the dementia subtype(s). This has significant value in both treatment and care decisions and has important implications for prognosis. This study aims to explore the development and nature of neuroimaging protocols currently used in the assessment of dementia and Alzheimer's disease (AD). Methods: An online questionnaire was designed and distributed to lead radiography personnel working in computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) departments (n = 94) in both hospital-based and out-patient imaging centres in the Republic of Ireland. Results: Response rates for each modality ranged from 42 to 44%. CT, MRI, and PET were used to specifically diagnose dementia or AD by 43%, 40% and 50% of responding centres respectively. Of these, dementia-specific neuroimaging protocols were utilised in 33%, 50% and 100% of CT, MRI and PET centres respectively, with the remainder using either standard or other non-specific protocols. Both radiologists and clinical specialist radiographers participated in the development of the majority of protocols. The Royal College of Radiologists (RCR) guidelines were most commonly referenced as informing protocol development, however, none of the MRI respondents were able to identify any guidelines used to inform MR protocol development. Conclusion: Currently there is no consensus in Ireland on optimal dementia/AD neuroimaging protocols, particularly for PET and MRI. Similarly the use of validated and published guidelines to inform protocols is not universal. - Highlights: • We examined the nature of neuroimaging protocols for dementia and Alzheimer's disease in Ireland. • Dementia or Alzheimer's disease-specific protocols were used by between 33 and 100% of centres depending on modality. • Stated dementia-specific protocols were identical for CT whereas

  12. Tools and methods for teaching magnetic resonance concepts and techniques

    DEFF Research Database (Denmark)

    Hanson, Lars G.

    2012-01-01

    Teaching of MRI methodology can be challenging for teachers as well as students. To support student learning, two graphical simulators for exploration of basic magnetic resonance principles are here introduced. The first implements a simple compass needle analogy implemented for day one of NMR...... and MRI education. After a few minutes of use, any user with minimal experience of magnetism will be able to explain the basic magnetic resonance principle. A second piece of software, the Bloch Simulator, aims much further, as it can be used to demonstrate and explore a wide range of phenomena including...

  13. Magnetic resonance appearance of monoclonal gammopathies of unknown significance and multiple myeloma. The GRI Study Group.

    Science.gov (United States)

    Bellaïche, L; Laredo, J D; Lioté, F; Koeger, A C; Hamze, B; Ziza, J M; Pertuiset, E; Bardin, T; Tubiana, J M

    1997-11-01

    A prospective multicenter study. To evaluate the use of magnetic resonance imaging, in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. Although multiple myeloma has been studied extensively with magnetic resonance imaging, to the authors' knowledge, no study has evaluated the clinical interest of magnetic resonance imaging in the differentiation between monoclonal gammopathies of unknown significance and multiple myeloma. The magnetic resonance examinations of the thoracolumbar spine in 24 patients with newly diagnosed monoclonal gammopathies of unknown significance were compared with those performed in 44 patients with newly diagnosed nontreated multiple myeloma. All findings on magnetic resonance examination performed in patients with monoclonal gammopathies of unknown significance were normal, whereas findings on 38 (86%) of the 44 magnetic resonance examinations performed in patients with multiple myeloma were abnormal. Magnetic resonance imaging can be considered as an additional diagnostic tool in differentiating between monoclonal gammopathies of unknown significance and multiple myeloma, which may be helpful when routine criteria are not sufficient. An abnormal finding on magnetic resonance examination in a patient with monoclonal gammopathies of unknown significance should suggest the diagnosis of multiple myeloma after other causes of marrow signal abnormalities are excluded. Magnetic resonance imaging also may be proposed in the long-term follow-up of monoclonal gammopathies of unknown significance when a new biologic or clinical event suggests the diagnosis of malignant monoclonal gammopathy.

  14. Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.

    Science.gov (United States)

    Keenan, Kathryn E; Ainslie, Maureen; Barker, Alex J; Boss, Michael A; Cecil, Kim M; Charles, Cecil; Chenevert, Thomas L; Clarke, Larry; Evelhoch, Jeffrey L; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Liu, Guoying; Russek, Stephen E; Sharma, Samir D; Steckner, Michael; Stupic, Karl F; Trzasko, Joshua D; Yuan, Chun; Zheng, Jie

    2018-01-01

    The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Quantitative dosing by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Solomon, I.

    1958-01-01

    The measurement of the absolute concentration of a heavy water reference containing approximately 99.8 per cent of D 2 O has been performed, by an original magnetic resonance method ('Adiabatic fast passage method') with a precision of 5.10 -5 on the D 2 O concentration. (author) [fr

  16. Unusual Presentation of Popliteal Cyst on Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ohishi

    2016-01-01

    Full Text Available Popliteal cyst commonly presents as an ellipsoid mass with uniform low signal intensity on T1-weighted magnetic resonance images and high signal intensity on T2-weighted images. Here, we describe a popliteal cyst with unusual appearance on magnetic resonance imaging, including heterogeneous intermediate signal intensity on T2-weighted images. Arthroscopic cyst decompression revealed that the cyst was filled with necrotic synovial villi, indicative of rheumatoid arthritis. Arthroscopic enlargement of unidirectional valvular slits with synovectomy was useful for the final diagnosis and treatment.

  17. Nuclear magnetic resonance spectroscopy in food applications: a critical appraisal

    International Nuclear Information System (INIS)

    Divakar, S.

    1998-01-01

    Usefulness of Nuclear Magnetic Resonance (NMR) spectroscopy in food applications is presented in this review. Some of the basic concepts of NMR pertaining to one-dimensional and two-dimensional techniques, solid-state NMR and Magnetic Resonance Imaging (MRI) are discussed. Food applications dealt with encompass such diverse areas like nature and state of water in foods, detection and quantitation of important constituents of foods, intact food systems and NMR related to food biology. (author)

  18. Review of magnetic resonance-guided focused ultrasound in the treatment of uterine fibroids

    Directory of Open Access Journals (Sweden)

    Pedro Felipe Magalhães Peregrino

    Full Text Available Uterine leiomyoma is the most frequently occurring solid pelvic tumor in women during the reproductive period. Magnetic resonance-guided high-intensity focused ultrasound is a promising technique for decreasing menorrhagia and dysmenorrhea in symptomatic women. The aim of this study is to review the role of Magnetic resonance-guided high-intensity focused ultrasound in the treatment of uterine fibroids in symptomatic patients. We performed a review of the MEDLINE and Cochrane databases up to April 2016. The analysis and data collection were performed using the following keywords: Leiomyoma, High-Intensity Focused Ultrasound Ablation, Ultrasonography, Magnetic Resonance Imaging, Menorrhagia. Two reviewers independently performed a quality assessment; when there was a disagreement, a third reviewer was consulted. Nineteen studies of Magnetic resonance-guided high-intensity focused ultrasound-treated fibroid patients were selected. The data indicated that tumor size was reduced and that symptoms were improved after treatment. There were few adverse effects, and they were not severe. Some studies have reported that in some cases, additional sessions of Magnetic resonance-guided high-intensity focused ultrasound or other interventions, such as myomectomy, uterine artery embolization or even hysterectomy, were necessary. This review suggests that Magnetic resonance-guided high-intensity focused ultrasound is a safe and effective technique. However, additional evidence from future studies will be required before the technique can be recommended as an alternative treatment for fibroids.

  19. Cerebral misery perfusion diagnosed using hypercapnic blood-oxygenation-level-dependent contrast functional magnetic resonance imaging: a case report

    Directory of Open Access Journals (Sweden)

    D'Souza Olympio

    2010-02-01

    Full Text Available Abstract Introduction Cerebral misery perfusion represents a failure of cerebral autoregulation. It is an important differential diagnosis in post-stroke patients presenting with collapses in the presence of haemodynamically significant cerebrovascular stenosis. This is particularly the case when cortical or internal watershed infarcts are present. When this condition occurs, further investigation should be done immediately. Case presentation A 50-year-old Caucasian man presented with a stroke secondary to complete occlusion of his left internal carotid artery. He went on to suffer recurrent seizures. Neuroimaging demonstrated numerous new watershed-territory cerebral infarcts. No source of arterial thromboembolism was demonstrable. Hypercapnic blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging was used to measure his cerebrovascular reserve capacity. The findings were suggestive of cerebral misery perfusion. Conclusions Blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging allows the inference of cerebral misery perfusion. This procedure is cheaper and more readily available than positron emission tomography imaging, which is the current gold standard diagnostic test. The most evaluated treatment for cerebral misery perfusion is extracranial-intracranial bypass. Although previous trials of this have been unfavourable, the results of new studies involving extracranial-intracranial bypass in high-risk patients identified during cerebral perfusion imaging are awaited. Cerebral misery perfusion is an important and under-recognized condition in which emerging imaging and treatment modalities present the possibility of practical and evidence-based management in the near future. Physicians should thus be aware of this disorder and of recent developments in diagnostic tests that allow its detection.

  20. The role of magnetic resonance cholangiopancreatography and ...

    African Journals Online (AJOL)

    ) is accepted as the gold standard, there is a place for magnetic resonance cholangiopancreatography (MRCP) and diffusion-weighted imaging (DWI) in the diagnosis of obstructive biliary disorders. Aim: To compare the findings of MRCP with ...