WorldWideScience

Sample records for magnetic resonance metabolite

  1. In vivo measurement of phosphorus energy metabolites by topical magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Watari, Hiroshi [National Institute for Physiological Sciences, Okazaki Aichi (Japan); Koizuka, Izumi; Takada, Muneharu; Naruse, Shoji

    1982-12-01

    An apparatus of TMR (topical magnetic resonance) was briefly described, and the technique to use it was shown. The effect of digital filter was demonstrated and measurement of a pulse width was shown using a phantom. Pulse width and /sup 31/P-NMR spectrum measured in a rat head were shown. The /sup 31/P-NMR spectrum well revealed the phosphorus energy metabolites such as creatine phosphoric acid, ATP, and ADP.

  2. Optimization of metabolite detection by quantum mechanics simulations in magnetic resonance spectroscopy.

    Science.gov (United States)

    Gambarota, Giulio

    2017-07-15

    Magnetic resonance spectroscopy (MRS) is a well established modality for investigating tissue metabolism in vivo. In recent years, many efforts by the scientific community have been directed towards the improvement of metabolite detection and quantitation. Quantum mechanics simulations allow for investigations of the MR signal behaviour of metabolites; thus, they provide an essential tool in the optimization of metabolite detection. In this review, we will examine quantum mechanics simulations based on the density matrix formalism. The density matrix was introduced by von Neumann in 1927 to take into account statistical effects within the theory of quantum mechanics. We will discuss the main steps of the density matrix simulation of an arbitrary spin system and show some examples for the strongly coupled two spin system. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. N-acetylated metabolites in urine: proton nuclear magnetic resonance spectroscopic study on patients with inborn errors of metabolism.

    NARCIS (Netherlands)

    Engelke, U.F.H.; Liebrand-van Sambeek, M.L.F.; Jong, J.G.N. de; Leroy, J.G.; Morava, E.; Smeitink, J.A.M.; Wevers, R.A.

    2004-01-01

    BACKGROUND: There is no comprehensive analytical technique to analyze N-acetylated metabolites in urine. Many of these compounds are involved in inborn errors of metabolism. In the present study, we examined the potential of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy as a tool to

  4. Non-invasive quantitation of phosphorus metabolites in human brain and brain tumors by magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Naruse, Shoji; Higuchi, Toshihiro; Horikawa, Yoshiharu; Tanaka, Chuzo; Roth, K.; Hubesch, B.; Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    In obtaining localized magnetic resonance spectra in the clinical setting, the exact determination of volume of interest (VOI), the relative sensitivity of detection within the VOI, the inhomogeneity of B 1 field, the Q factor of the coil, and saturation factors should be considered. Taking these items into account, a quantitative method for calculating the absolute amount of phosphorus metabolites was developed. Using this method, phosphorus metabolites in the brain were determined in 15 patients with brain tumors - meningioma (8) and astrocytoma (7), and 10 normal volunteers. The integrals for metabolite signals were determined by using the curve-fitting software. The concentrations for ATP, PCr, PDE, inorganic orthophosphate (Pi), and phosphomonosters (PME) were 2.5, 4.9, 11.3, 1.9 and 3.9 mM, respectively, in the normal brain. For the brain tumors, phosphorus metabolites were decreased, except for Pi and PME. These results encourage the clinical use of this method in the quantitative analysis of metabolites of the diseased brain. (Namekawa, K)

  5. Evaluation of nuclear magnetic resonance spectroscopy variability

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Felipe Rodrigues; Salmon, Carlos Ernesto Garrido, E-mail: garrido@ffclrp.usp.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filisofia, Ciencias e Letras; Otaduy, Maria Concepcion Garcia [Universidade de Sao Paulo (FAMUS/USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Departamento de Radiologia

    2014-11-01

    Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)

  6. Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Gredal, O; Rosenbaum, S; Topp, S

    1997-01-01

    We performed proton magnetic resonance spectroscopy (1H-MRS) in patients with motor neuron disease (MND) to determine the absolute in vivo concentrations in the brain of the metabolites N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr/PCr). We examined the spectra acquired from a 20 x 20 x...... subjects. We estimated the concentrations of the metabolites using the water signal as an internal standard. The concentrations of Cho and Cr/PCr in both brain regions, as well as the concentration of NAA in the cerebellum, were unaltered in the MND patients compared with the controls. Only MND patients...... with both upper and lower motor neuron signs had a significantly decreased concentration of NAA (9.13 +/- 0.28 mM, mean +/- SEM) in the primary motor cortex when compared with healthy controls (10.03 +/- 0.22 mM). In conclusion, the slightly decreased concentration of NAA in the primary motor cortex from...

  7. Structural Elucidation of Metabolites of Synthetic Cannabinoid UR-144 by Cunninghamella elegans Using Nuclear Magnetic Resonance (NMR) Spectroscopy.

    Science.gov (United States)

    Watanabe, Shimpei; Kuzhiumparambil, Unnikrishnan; Fu, Shanlin

    2018-03-08

    The number of new psychoactive substances keeps on rising despite the controlling efforts by law enforcement. Although metabolism of the newly emerging drugs is continuously studied to keep up with the new additions, the exact structures of the metabolites are often not identified due to the insufficient sample quantities for techniques such as nuclear magnetic resonance (NMR) spectroscopy. The aim of the study was to characterise several metabolites of the synthetic cannabinoid (1-pentyl-1H-indol-3-yl) (2,2,3,3-tetramethylcyclopropyl) methanone (UR-144) by NMR spectroscopy after the incubation with the fungus Cunninghamella elegans. UR-144 was incubated with C. elegans for 72 h, and the resulting metabolites were chromatographically separated. Six fractions were collected and analysed by NMR spectroscopy. UR-144 was also incubated with human liver microsomes (HLM), and the liquid chromatography-high resolution mass spectrometry analysis was performed on the HLM metabolites with the characterised fungal metabolites as reference standards. Ten metabolites were characterised by NMR analysis including dihydroxy metabolites, carboxy and hydroxy metabolites, a hydroxy and ketone metabolite, and a carboxy and ketone metabolite. Of these metabolites, dihydroxy metabolite, carboxy and hydroxy metabolites, and a hydroxy and ketone metabolite were identified in HLM incubation. The results indicate that the fungus is capable of producing human-relevant metabolites including the exact isomers. The capacity of the fungus C. elegans to allow for NMR structural characterisation by enabling production of large amounts of metabolites makes it an ideal model to complement metabolism studies.

  8. Optimization of metabolite basis sets prior to quantitation in magnetic resonance spectroscopy: an approach based on quantum mechanics

    International Nuclear Information System (INIS)

    Lazariev, A; Graveron-Demilly, D; Allouche, A-R; Aubert-Frécon, M; Fauvelle, F; Piotto, M; Elbayed, K; Namer, I-J; Van Ormondt, D

    2011-01-01

    High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1 H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed

  9. Optimization of metabolite basis sets prior to quantitation in magnetic resonance spectroscopy: an approach based on quantum mechanics

    Science.gov (United States)

    Lazariev, A.; Allouche, A.-R.; Aubert-Frécon, M.; Fauvelle, F.; Piotto, M.; Elbayed, K.; Namer, I.-J.; van Ormondt, D.; Graveron-Demilly, D.

    2011-11-01

    High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed.

  10. A sex-specific metabolite identified in a marine invertebrate utilizing phosphorus-31 nuclear magnetic resonance.

    Directory of Open Access Journals (Sweden)

    Robert A Kleps

    Full Text Available Hormone level differences are generally accepted as the primary cause for sexual dimorphism in animal and human development. Levels of low molecular weight metabolites also differ between men and women in circulating amino acids, lipids and carbohydrates and within brain tissue. While investigating the metabolism of blue crab tissues using Phosphorus-31 Nuclear Magnetic Resonance, we discovered that only the male blue crab (Callinectes sapidus contained a phosphorus compound with a chemical shift well separated from the expected phosphate compounds. Spectra obtained from male gills were readily differentiated from female gill spectra. Analysis from six years of data from male and female crabs documented that the sex-specificity of this metabolite was normal for this species. Microscopic analysis of male and female gills found no differences in their gill anatomy or the presence of parasites or bacteria that might produce this phosphorus compound. Analysis of a rare gynandromorph blue crab (laterally, half male and half female proved that this sex-specificity was an intrinsic biochemical process and was not caused by any variations in the diet or habitat of male versus female crabs. The existence of a sex-specific metabolite is a previously unrecognized, but potentially significant biochemical phenomenon. An entire enzyme system has been synthesized and activated only in one sex. Unless blue crabs are a unique species, sex-specific metabolites are likely to be present in other animals. Would the presence or absence of a sex-specific metabolite affect an animal's development, anatomy and biochemistry?

  11. BATMAN--an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model.

    Science.gov (United States)

    Hao, Jie; Astle, William; De Iorio, Maria; Ebbels, Timothy M D

    2012-08-01

    Nuclear Magnetic Resonance (NMR) spectra are widely used in metabolomics to obtain metabolite profiles in complex biological mixtures. Common methods used to assign and estimate concentrations of metabolites involve either an expert manual peak fitting or extra pre-processing steps, such as peak alignment and binning. Peak fitting is very time consuming and is subject to human error. Conversely, alignment and binning can introduce artefacts and limit immediate biological interpretation of models. We present the Bayesian automated metabolite analyser for NMR spectra (BATMAN), an R package that deconvolutes peaks from one-dimensional NMR spectra, automatically assigns them to specific metabolites from a target list and obtains concentration estimates. The Bayesian model incorporates information on characteristic peak patterns of metabolites and is able to account for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies a Markov chain Monte Carlo algorithm to sample from a joint posterior distribution of the model parameters and obtains concentration estimates with reduced error compared with conventional numerical integration and comparable to manual deconvolution by experienced spectroscopists. http://www1.imperial.ac.uk/medicine/people/t.ebbels/ t.ebbels@imperial.ac.uk.

  12. Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: nuclear-magnetic-resonance-based metabolomics study

    Directory of Open Access Journals (Sweden)

    Phaiwan Pramai

    2018-01-01

    Full Text Available In an attempt to profile the metabolites of three different varieties of germinated rice, specifically black (GBR, red, and white rice, a 1H-nuclear-magnetic-resonance-based metabolomics approach was conducted. Multivariate data analysis was applied to discriminate between the three different varieties using a partial least squares discriminant analysis (PLS-DA model. The PLS model was used to evaluate the relationship between chemicals and biological activities of germinated rice. The PLS-DA score plot exhibited a noticeable separation between the three rice varieties into three clusters by PC1 and PC2. The PLS model indicated that α-linolenic acid, γ-oryzanol, α-tocopherol, γ-aminobutyric acid, 3-hydroxybutyric acid, fumaric acid, fatty acids, threonine, tryptophan, and vanillic acid were significantly correlated with the higher bioactivities demonstrated by GBR that was extracted in 100% ethanol. Subsequently, the proposed biosynthetic pathway analysis revealed that the increased quantities of secondary metabolites found in GBR may contribute to its nutritional value and health benefits.

  13. In vivo proton magnetic resonance spectroscopy (1H-MRS) evaluation of the metabolite concentration of optic radiation in primary open angle glaucoma

    Energy Technology Data Exchange (ETDEWEB)

    Sidek, Sabrilhakim [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Kuala Lumpur (Malaysia); Universiti Teknologi MARA, Medical Imaging Unit, Faculty of Medicine, Sg Buloh, Selangor (Malaysia); Ramli, Norlisah; Rahmat, Kartini; Kuo, Tan Li [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Kuala Lumpur (Malaysia); Ramli, Norlina Mohd; Abdulrahman, Fadzlina [University of Malaya, Department of Ophthalmology, Faculty of Medicine, Kuala Lumpur (Malaysia)

    2016-12-15

    To compare the metabolite concentration of optic radiation in glaucoma patients with that of healthy subjects using Proton Magnetic Resonance Spectroscopy (1H-MRS). 1H-MRS utilising the Single-Voxel Spectroscopy (SVS) technique was performed using a 3.0Tesla MRI on 45 optic radiations (15 from healthy subjects, 15 from mild glaucoma patients, and 15 from severe glaucoma patients). A standardised Volume of Interest (VOI) of 20 x 20 x 20 mm was placed in the region of optic radiation. Mild and severe glaucoma patients were categorised based on the Hodapp-Parrish-Anderson (HPA) classification. Mean and multiple group comparisons for metabolite concentration and metabolite concentration ratio between glaucoma grades and healthy subjects were obtained using one-way ANOVA. The metabolite concentration and metabolite concentration ratio between the optic radiations of glaucoma patients and healthy subjects did not demonstrate any significant difference (p > 0.05). Our findings show no significant alteration of metabolite concentration associated with neurodegeneration that could be measured by single-voxel 1H-MRS in optic radiation among glaucoma patients. (orig.)

  14. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    NARCIS (Netherlands)

    van Doormaal, Pieter Jan; Meiners, Linda C.; ter Horst, Hendrik J.; Veere, van der Christa; Sijens, Paul E.

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and

  15. Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma.

    Science.gov (United States)

    Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro

    2016-05-11

    Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth.

  16. Magnetic resonance annual 1986

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1986-01-01

    This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging

  17. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong; Chen, Youhe

    2015-01-01

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields

  18. Proton magnetic resonance spectroscopic imaging in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Schuff, Norbert; Vermathen, Peter; Maudsley, Andrew A.; Weiner, Michael W.

    1999-01-01

    Proton magnetic resonance spectroscopic imaging ( 1 H MRSI) was used to investigate changes in brain metabolites in Alzheimer's disease, epilepsy, and amyotrophic lateral sclerosis. Examples of results from several ongoing clinical studies are provided. Multislice 1 H MRSI of the human brain, without volume pre selection offers considerable advantage over previously available techniques. Furthermore, MRI tissue segmentation and completely automated spectral curve fitting greatly facilitate quantitative data analysis. Future efforts will be devoted to obtain full volumetric brain coverage and data acquisition at short spin-echo times (TE<30 ms) for the detection of metabolites. (author)

  19. Application of magnetic resonance techniques for imaging tumour physiology

    International Nuclear Information System (INIS)

    Stubbs, M.

    1999-01-01

    Magnetic resonance (MR) techniques have the unique ability to measure in vivo the biochemical content of living tissue in the body in a dynamic, non-invasive and non-destructive manner. MR also permits serial investigations of steady-state tumour physiology and biochemistry, as well as the response of a tumour to treatment. Magnetic resonance imaging (MRI), Magnetic resonance spectroscopy (MRS) and a mixture of the two techniques (spectroscopic imaging) allow some physiological parameters, for example pH, to be 'imaged'. Using these methods, information on tissue bioenergetics and phospolipid membrane turnover, pH, hypoxia, oxygenation, and various aspects of vascularity including blood flow, angiogenesis, permeability and vascular volume can be obtained. In addition, MRS methods can be used for monitoring anticancer drugs (e.g. 5FU, ifosfamide) and their metabolites at their sites of action. The role of these state-of-the-art MR methods in imaging tumour physiology and their potential role in the clinic are discussed. (orig.)

  20. Prognostic value of proton magnetic resonance spectroscopy findings in near drowning patients: reversibility of the early metabolite abnormalities relates with a good outcome

    International Nuclear Information System (INIS)

    Aragao, Maria de Fatima Vasco; Law, Meng; Prola Netto, Joao; Naidich, Thomas; Valenca, Marcelo Moraes

    2009-01-01

    In two children with near drowning hypoxic encephalopathy and normal-appearing structural MRI, acute proton magnetic resonance spectroscopy ( 1 H MRS) showed biochemical alterations that correctly indicated prognosis and helped to guide management decisions. Elevation of the lipid-lactate and glutamine-glutamate peaks, on the early (72 hour) 1 H MRS, predicts a poor prognosis. Absence of lipid-lactate and glutamine-glutamate peaks on the early 1 H MRS and reversibility of early mild metabolite abnormalities on follow up examination relates with good outcome. (author)

  1. Clinical applications of proton magnetic resonance spectroscopy of the brain

    International Nuclear Information System (INIS)

    Laubenberger, J.; Bayer, S.; Thiel, T.; Hennig, J.; Langer, M.

    1998-01-01

    In spite of all the scientific advances of the past few years, proton magnetic resonance spectroscopy of the brain has not attained the status of a routine examination technique with clinically accepted indications. The method should be considered as an additional option to MR imaging for inherited and acquired encephalopathic changes as well as, in future, for localization diagnosis of epilepsies. A proton magnetic resonance spectroscopic investigation without a prior intensive clinical and imaging investigation is not useful. Above all, factors influencing metabolite distribution such as for example, serum osmolability must be known. Methodological prerequisites for the clinical application of proton resonance spectroscopy are, first of all, a high stability of the chosen technique as well as a sufficiently certain quantification of metabolites and the availability of a reference group. The use of short echo times is necessary for the quantification of glutamine and the osmolyte myo-inositol. Indications for individual cases in which clinical investigations and MR topography cannot provide sufficient certainty and spectroscopy can furnish additional information are, in addition to uses in neuropediatrics, the suspicion of Alzheimer's dementia, HIV encephalopathy in early manifestations, and unclarified depressions of consciousness accompanying liver cirrhosis. (orig.) [de

  2. Magnetic resonance spectroscopy: clinical application in neuroradiology

    International Nuclear Information System (INIS)

    Penev, L.

    2012-01-01

    Full text: Magnetic Resonance Spectroscopy (MRS) provides a non-invasive method of studying metabolism in vivo. Magnetic resonance spectroscopy (MRS) defines neuro chemistry on a regional basis by acquiring a radiofrequency signal with chemical shift from one or many voxels or volumes previously selected on MRI. The tissue's chemical environment determines the frequency of a metabolite peak in an MRS spectrum. Candidates for MRS include: 1 H, 31 P, 13 C, 23 Na, 7 Li, 19 F, 14 N, 15 N, 17 O, 39 K The most commonly studied nuclei are 1 H and 31 P. This lecture is focused on Proton ( 1 H) Spectroscopy. Proton MRS can be added on to conventional MR imaging protocols. It can be used to serially monitor biochemical changes in tumors, stroke, epilepsy, metabolic disorders, infections, and neurodegenerative diseases.The MR spectra do not come labeled with diagnoses. They require interpretation and should always be correlated with the MR images before making a final diagnosis. As a general rule, the single voxel, short TE technique is used to make the initial diagnosis, because the signal-to-noise is high and all metabolites are represented. Multi-voxel, long TE techniques are used to further characterize different regions of a mass and to assess brain parenchyma around or adjacent to the mass. Multi-voxel, long TE techniques are also used to assess response to therapy and to search for tumor recurrence. Each metabolite appears at a specific ppm, and each one reflects specific cellular and biochemical processes

  3. Robust high-resolution quantification of time signals encoded by in vivo magnetic resonance spectroscopy

    Science.gov (United States)

    Belkić, Dževad; Belkić, Karen

    2018-01-01

    This paper on molecular imaging emphasizes improving specificity of magnetic resonance spectroscopy (MRS) for early cancer diagnostics by high-resolution data analysis. Sensitivity of magnetic resonance imaging (MRI) is excellent, but specificity is insufficient. Specificity is improved with MRS by going beyond morphology to assess the biochemical content of tissue. This is contingent upon accurate data quantification of diagnostically relevant biomolecules. Quantification is spectral analysis which reconstructs chemical shifts, amplitudes and relaxation times of metabolites. Chemical shifts inform on electronic shielding of resonating nuclei bound to different molecular compounds. Oscillation amplitudes in time signals retrieve the abundance of MR sensitive nuclei whose number is proportional to metabolite concentrations. Transverse relaxation times, the reciprocal of decay probabilities of resonances, arise from spin-spin coupling and reflect local field inhomogeneities. In MRS single voxels are used. For volumetric coverage, multi-voxels are employed within a hybrid of MRS and MRI called magnetic resonance spectroscopic imaging (MRSI). Common to MRS and MRSI is encoding of time signals and subsequent spectral analysis. Encoded data do not provide direct clinical information. Spectral analysis of time signals can yield the quantitative information, of which metabolite concentrations are the most clinically important. This information is equivocal with standard data analysis through the non-parametric, low-resolution fast Fourier transform and post-processing via fitting. By applying the fast Padé transform (FPT) with high-resolution, noise suppression and exact quantification via quantum mechanical signal processing, advances are made, presented herein, focusing on four areas of critical public health importance: brain, prostate, breast and ovarian cancers.

  4. Radiation-induced changes in human brain metabolites as studied by 1H nuclear magnetic resonance spectroscopy in vivo

    International Nuclear Information System (INIS)

    Usenius, Taina; Usenius, Jussi-Pekka; Tenhunen, Mikko; Vainio, Pauli; Johansson, Risto; Soimakallio, Seppo; Kauppinen, Risto

    1995-01-01

    Purpose: External radiation therapy for brain tumors exposes healthy areas of brain to considerable doses of radiation. This may cause cognitive and psychological impairment, which indicate neuronal dysfunction. 1 H-magnetic resonance spectroscopy (MRS) was used to study brain metabolites in the adjacent regions 0.5-13 years after exposure to therapeutic irradiation. Methods and Materials: Eight patients with irradiated brain tumors were examined by means of in vivo 1 H-MRS using a point-resolved spectroscopy (PRESS) sequence with echo times of 60 or 270 ms. The metabolites were quantified by using brain water concentration as internal reference. The volume of interest (VOI) was positioned in irradiated brain areas excluding, however, scar and recurrent tumor. The respective radiation doses were measured based on radiation therapy plans, simulator films, and localization MR images. Results: The concentration of the neuron-specific metabolite N-acetyl-l-aspartate (NAA) was 13.2 ± 1.4 mmol/l in controls, whereas it was reduced in the brains of treated patients to 8.6 ± 0.9 mmol/l (total radiation dose 59-62 Gy). Concentrations of creatine and choline-containing compounds were unchanged. The T2 of water was longer in irradiated than in unexposed brain areas. Conclusion: Therapeutic brain irradiation causes neuronal damage, which is reflected by reduction of N-acetyl-l-aspartate (NAA) concentrations. 1 H-MRS could serve clinically as a means of evaluating adverse effects in the central nervous system, enabling intervention and rehabilitation

  5. Prognostic value of proton magnetic resonance spectroscopy findings in near drowning patients: reversibility of the early metabolite abnormalities relates with a good outcome

    Energy Technology Data Exchange (ETDEWEB)

    Aragao, Maria de Fatima Vasco; Law, Meng; Prola Netto, Joao; Naidich, Thomas [Mount Sinai School of Medicine, New York, NY (United States). Dept. of Radiology], e-mail: aragao@truenet.com; Valenca, Marcelo Moraes [Federal University of Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Neuropsychiatry and Behavioral Studies

    2009-03-15

    In two children with near drowning hypoxic encephalopathy and normal-appearing structural MRI, acute proton magnetic resonance spectroscopy ({sup 1}H MRS) showed biochemical alterations that correctly indicated prognosis and helped to guide management decisions. Elevation of the lipid-lactate and glutamine-glutamate peaks, on the early (72 hour) {sup 1}H MRS, predicts a poor prognosis. Absence of lipid-lactate and glutamine-glutamate peaks on the early {sup 1}H MRS and reversibility of early mild metabolite abnormalities on follow up examination relates with good outcome. (author)

  6. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy.

    Science.gov (United States)

    Li, Lele; Tong, Rong; Li, Mengyuan; Kohane, Daniel S

    2016-03-01

    Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities. Published by Elsevier Ltd.

  7. Radiation-induced changes in human brain metabolites as studied by {sup 1}H nuclear magnetic resonance spectroscopy in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Usenius, Taina; Usenius, Jussi-Pekka; Tenhunen, Mikko; Vainio, Pauli; Johansson, Risto; Soimakallio, Seppo; Kauppinen, Risto

    1995-10-15

    Purpose: External radiation therapy for brain tumors exposes healthy areas of brain to considerable doses of radiation. This may cause cognitive and psychological impairment, which indicate neuronal dysfunction. {sup 1}H-magnetic resonance spectroscopy (MRS) was used to study brain metabolites in the adjacent regions 0.5-13 years after exposure to therapeutic irradiation. Methods and Materials: Eight patients with irradiated brain tumors were examined by means of in vivo{sup 1}H-MRS using a point-resolved spectroscopy (PRESS) sequence with echo times of 60 or 270 ms. The metabolites were quantified by using brain water concentration as internal reference. The volume of interest (VOI) was positioned in irradiated brain areas excluding, however, scar and recurrent tumor. The respective radiation doses were measured based on radiation therapy plans, simulator films, and localization MR images. Results: The concentration of the neuron-specific metabolite N-acetyl-l-aspartate (NAA) was 13.2 {+-} 1.4 mmol/l in controls, whereas it was reduced in the brains of treated patients to 8.6 {+-} 0.9 mmol/l (total radiation dose 59-62 Gy). Concentrations of creatine and choline-containing compounds were unchanged. The T2 of water was longer in irradiated than in unexposed brain areas. Conclusion: Therapeutic brain irradiation causes neuronal damage, which is reflected by reduction of N-acetyl-l-aspartate (NAA) concentrations. {sup 1}H-MRS could serve clinically as a means of evaluating adverse effects in the central nervous system, enabling intervention and rehabilitation.

  8. Radioimmunotherapy of human lymphoma in athymic, nude mice as monitored by 31P nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Adams, D.A.; DeNardo, G.L.; DeNardo, S.J.; Matson, G.B.; Epstein, A.L.; Bradbury, E.M.

    1985-01-01

    Human B cell lymphoma (Raji) growing in athymic, nude mice has been successfully treated with a single pulse dose of 131 I-labeled monoclonal antibody (Lym-1) specific for this tumor. Sequential in vivo measurements of phosphate metabolites in the tumors by 31 P surface coil nuclear magnetic resonance showed a significant initial decrease of phosphocreatine following radioimmunotherapy. Diminution of relative ATP to Pi peak area ratio suggesting tissue damage occurred within 3-4 days. The sequence of alterations of nuclear magnetic resonance spectra from tumors of treated mice were strikingly different from sequential nuclear magnetic resonance spectra obtained from tumors of control mice. These observations lead us to conclude that 31 P surface coil nuclear magnetic resonance is a promising non-invasive method for assessing and predicting the efficacy of radioimmunotherapy. Further spatial discrimination of the region of tissue observed by the surface coil nuclear magnetic resonance experiment is under exploration in an effort to increase the utility of these methods

  9. Brain metabolite changes on proton magnetic resonance spectroscopy in children with poorly controlled type 1 diabetes mellitus

    International Nuclear Information System (INIS)

    Sarac, K.; Alkan, A.; Baysal, T.; Akinci, A.; Aslan, M.; Oezcan, C.

    2005-01-01

    The metabolite changes in the brains of children with poorly controlled type 1 diabetes mellitus (DM) were investigated by proton magnetic resonance spectroscopy (MRS). A total of 30 subjects and 14 age-matched healthy volunteers underwent single-voxel MRS (TE: 136). The duration of disease, medication, presence of hypoglycaemia episodes and the level of haemoglobin A1C (HbA1C) in the patients were noted. Voxels were placed in the pons, left basal ganglion (LBG) and left posterior parietal white matter (PPWM). N-acetylaspartate (NAA)/creatinine (Cr) and choline (Cho)/Cr ratios were calculated. The average HbA1c level was 11.9±3.4 (8.2-19.4). The average number of keto-acidosis episodes was 1.9±2.2 (0-9) and the average number of daily insulin injections was 2.8±0.97 (2-4). MRS revealed lower NAA/Cr and Cho/Cr ratios in the pons and lower NAA/Cr ratio in the PPWM of patients with DM than in control subjects. No significant correlation was observed between the number of hypoglycaemia episodes and metabolite ratios. Metabolic abnormalities have been observed by MRS in the brain of poorly controlled type 1 DM children. These metabolic changes, in particular in the pons region, include a decrease in NAA, indicating neuronal loss or functional impairment, and likely explanations for a decrease in Cho may be dynamic changes in membrane lipids and/or decreased membrane turnover. (orig.)

  10. Brain metabolite changes on proton magnetic resonance spectroscopy in children with poorly controlled type 1 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Sarac, K.; Alkan, A.; Baysal, T. [Inonu University School of Medicine, Department of Radiology, Malatya (Turkey); Akinci, A.; Aslan, M. [Inonu University School of Medicine, Department of Paediatric Endocrinology, Malatya (Turkey); Oezcan, C. [Inonu University School of Medicine, Department of Neurology, Malatya (Turkey)

    2005-07-01

    The metabolite changes in the brains of children with poorly controlled type 1 diabetes mellitus (DM) were investigated by proton magnetic resonance spectroscopy (MRS). A total of 30 subjects and 14 age-matched healthy volunteers underwent single-voxel MRS (TE: 136). The duration of disease, medication, presence of hypoglycaemia episodes and the level of haemoglobin A1C (HbA1C) in the patients were noted. Voxels were placed in the pons, left basal ganglion (LBG) and left posterior parietal white matter (PPWM). N-acetylaspartate (NAA)/creatinine (Cr) and choline (Cho)/Cr ratios were calculated. The average HbA1c level was 11.9{+-}3.4 (8.2-19.4). The average number of keto-acidosis episodes was 1.9{+-}2.2 (0-9) and the average number of daily insulin injections was 2.8{+-}0.97 (2-4). MRS revealed lower NAA/Cr and Cho/Cr ratios in the pons and lower NAA/Cr ratio in the PPWM of patients with DM than in control subjects. No significant correlation was observed between the number of hypoglycaemia episodes and metabolite ratios. Metabolic abnormalities have been observed by MRS in the brain of poorly controlled type 1 DM children. These metabolic changes, in particular in the pons region, include a decrease in NAA, indicating neuronal loss or functional impairment, and likely explanations for a decrease in Cho may be dynamic changes in membrane lipids and/or decreased membrane turnover. (orig.)

  11. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  12. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, Tatiana M., E-mail: t_vasilevs@mail.ru [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation); Sementsov, Dmitriy I.; Shutyi, Anatoliy M. [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation)

    2012-09-15

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: Black-Right-Pointing-Pointer An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. Black-Right-Pointing-Pointer Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. Black-Right-Pointing-Pointer Both regular and chaotic precession modes are realized within bifurcation resonance range. Black-Right-Pointing-Pointer Appearance of dynamic bistability is typical for bifurcation resonance.

  13. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    International Nuclear Information System (INIS)

    Vasilevskaya, Tatiana M.; Sementsov, Dmitriy I.; Shutyi, Anatoliy M.

    2012-01-01

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: ► An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. ► Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. ► Both regular and chaotic precession modes are realized within bifurcation resonance range. ► Appearance of dynamic bistability is typical for bifurcation resonance.

  14. Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation.

    Science.gov (United States)

    Bathen, Tone F; Sitter, Beathe; Sjøbakk, Torill E; Tessem, May-Britt; Gribbestad, Ingrid S

    2010-09-01

    Personalized medicine is increasingly important in cancer treatment for its role in staging and its potential to improve stratification of patients. Different types of molecules, genes, proteins, and metabolites are being extensively explored as potential biomarkers. This review discusses the major findings and potential of tissue metabolites determined by high-resolution magic angle spinning magnetic resonance spectroscopy for cancer detection, characterization, and treatment monitoring.

  15. 1D-¹H-nuclear magnetic resonance metabolomics reveals age-related changes in metabolites associated with experimental venous thrombosis.

    Science.gov (United States)

    Obi, Andrea T; Stringer, Kathleen A; Diaz, Jose A; Finkel, Michael A; Farris, Diana M; Yeomans, Larisa; Wakefield, Thomas; Myers, Daniel D

    2016-04-01

    Age is a significant risk factor for the development of venous thrombosis (VT), but the mechanism(s) that underlie this risk remain(s) undefined and poorly understood. Aging is known to adversely influence inflammation and affect metabolism. Untargeted metabolomics permits an agnostic assessment of the physiological landscape and lends insight into the mechanistic underpinnings of clinical phenotypes. The objective of this exploratory study was to test the feasibility of a metabolomics approach for identifying potential metabolic mechanisms of age-related VT. We subjected whole blood samples collected from young and old nonthrombosed controls and VT mice 2 days after thrombus induction using the electrolytic inferior vena cava, to a methanol:chloroform extraction and assayed the resulting aqueous fractions using 1D-(1)H- nuclear magnetic resonance. Normalized mouse metabolite data were compared across groups using analysis of variance (ANOVA) with Holm-Sidak post-testing. In addition, associations between metabolite concentrations and parameters of thrombosis such as thrombus and vein wall weights, and markers of inflammation, vein wall P- and E-selectin levels, were assessed using linear regression. The relatedness of the found significant metabolites was visually assessed using a bioinformatics tool, Metscape, which generates compound-reaction-enzyme-gene networks to aid in the interpretation of metabolomics data. Old mice with VT had a greater mean vein wall weight compared with young mice with VT (P metabolomics as a new approach to furthering knowledge about the mechanisms of age-related VT. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  16. Magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    A major function of the liver is regulation of carbohydrate, lipid, and nitrogen metabolism. Food is absorbed by the intestines and transported to the liver by the portal circulation. Substrates are metabolized and stored in the liver to maintain optimal blood concentrations of glucose and lipids. Ammonia generated in the gastrointestinal tract is converted to urea in the liver by the urea cycle. Various forms of liver disease are associated with disorders of carbohydrate, fat, and nitrogen metabolism. Therefore the ability to characterize liver metabolism noninvasively is of potential diagnostic value. Magnetic resonance spectroscopy (MRS) provides information about tissue metabolism by measuring concentrations of metabolites. However, to determine the anatomic location from which spectroscopic signals are derived, MRS could be performed in conjunction with MRI. This paper summarizes the current experience with spectroscopy ion animal models of human disease and reviews the clinical experience with hepatic MRS to date

  17. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Ethier, R.; Melanson, D.; Peters, T.M.

    1983-01-01

    Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography [fr

  18. Phosphorus magnetic resonance spectroscopic imaging at 7 T in patients with prostate cancer.

    Science.gov (United States)

    Lagemaat, Miriam W; Vos, Eline K; Maas, Marnix C; Bitz, Andreas K; Orzada, Stephan; van Uden, Mark J; Kobus, Thiele; Heerschap, Arend; Scheenen, Tom W J

    2014-05-01

    The aim of this study was to identify characteristics of phosphorus (P) spectra of the human prostate and to investigate changes of individual phospholipid metabolites in prostate cancer through in vivo P magnetic resonance spectroscopic imaging (MRSI) at 7 T. In this institutional review board-approved study, 15 patients with biopsy-proven prostate cancer underwent T2-weighted magnetic resonance imaging and 3-dimensional P MRSI at 7 T. Voxels were selected at the tumor location, in normal-appearing peripheral zone tissue, normal-appearing transition zone tissue, and in the base of the prostate close to the seminal vesicles. Phosphorus metabolite ratios were determined and compared between tissue types. Signals of phosphoethanolamine (PE) and phosphocholine (PC) were present and well resolved in most P spectra in the prostate. Glycerophosphocholine signals were observable in 43% of the voxels in malignant tissue, but in only 10% of the voxels in normal-appearing tissue away from the seminal vesicles. In many spectra, independent of tissue type, 2 peaks resonated in the chemical shift range of inorganic phosphate, possibly representing 2 separate pH compartments. The PC/PE ratio in the seminal vesicles was highly elevated compared with the prostate in 5 patients. A considerable overlap of P metabolite ratios was found between prostate cancer and normal-appearing prostate tissue, preventing direct discrimination of these tissues. The only 2 patients with high Gleason scores tumors (≥4+5) presented with high PC and glycerophosphocholine levels in their cancer lesions. Phosphorus MRSI at 7 T shows distinct features of phospholipid metabolites in the prostate gland and its surrounding structures. In this exploratory study, no differences in P metabolite ratios were observed between prostate cancer and normal-appearing prostate tissue possibly because of the partial volume effects of small tumor foci in large MRSI voxels.

  19. Magnetic resonance imaging apparatus

    International Nuclear Information System (INIS)

    Ehnholm, G.J.

    1991-01-01

    This patent describes an electron spin resonance enhanced magnetic resonance (MR) imaging (ESREMRI) apparatus able to generate a primary magnetic field during periods of nuclear spin transition excitation and magnetic resonance signal detection. This allows the generation of ESREMRI images of a subject. A primary magnetic field of a second and higher value generated during periods of nuclear spin transition excitation and magnetic resonance signal detection can be used to generate conventional MR images of a subject. The ESREMRI and native MR images so generated may be combined, (or superimposed). (author)

  20. Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, A.D.; Cordery, R.J.; Godbolt, A.; Rossor, M.N. [University College London, Dementia Research Group, Department of Neurodegenerative Disease, Institute of Neurology, London (United Kingdom); Imperial College of Science, Technology and Medicine, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, London (United Kingdom); MacManus, D.G. [University College London, NMR Research Unit, Department of Clinical Neurology, Institute of Neurology, London (United Kingdom); Collinge, J. [University College London, MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, London (United Kingdom)

    2006-06-15

    Inherited prion diseases are caused by mutations in the gene which codes for prion protein (PrP), leading to proliferation of abnormal PrP isomers in the brain and neurodegeneration; they include Gerstmann-Straeussler-Scheinker disease (GSS), fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). We studied two patients with symptomatic inherited prion disease (P102L) and two pre-symptomatic P102L gene carriers using quantitative magnetic resonance spectroscopy (MRS). Short echo time spectra were acquired from the thalamus, caudate region and frontal white matter, metabolite levels and ratios were measured and z-scores calculated for individual patients relative to age-matched normal controls. MRS data were compared with structural magnetic resonance imaging. One fCJD case had generalised atrophy and showed increased levels of myo-inositol (MI) in the thalamus (z=3.7). The other had decreased levels of N-acetylaspartate (z=4) and diffuse signal abnormality in the frontal white matter. Both asymptomatic gene carriers had normal imaging, but increased frontal white matter MI (z=4.3, 4.1), and one also had increased MI in the caudate (z=5.3). Isolated MI abnormalities in asymptomatic gene carriers are a novel finding and may reflect early glial proliferation, prior to significant neuronal damage. MRS provides potential non-invasive surrogate markers of early disease and progression in inherited prion disease. (orig.)

  1. Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Waldman, A.D.; Cordery, R.J.; Godbolt, A.; Rossor, M.N.; MacManus, D.G.; Collinge, J.

    2006-01-01

    Inherited prion diseases are caused by mutations in the gene which codes for prion protein (PrP), leading to proliferation of abnormal PrP isomers in the brain and neurodegeneration; they include Gerstmann-Straeussler-Scheinker disease (GSS), fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). We studied two patients with symptomatic inherited prion disease (P102L) and two pre-symptomatic P102L gene carriers using quantitative magnetic resonance spectroscopy (MRS). Short echo time spectra were acquired from the thalamus, caudate region and frontal white matter, metabolite levels and ratios were measured and z-scores calculated for individual patients relative to age-matched normal controls. MRS data were compared with structural magnetic resonance imaging. One fCJD case had generalised atrophy and showed increased levels of myo-inositol (MI) in the thalamus (z=3.7). The other had decreased levels of N-acetylaspartate (z=4) and diffuse signal abnormality in the frontal white matter. Both asymptomatic gene carriers had normal imaging, but increased frontal white matter MI (z=4.3, 4.1), and one also had increased MI in the caudate (z=5.3). Isolated MI abnormalities in asymptomatic gene carriers are a novel finding and may reflect early glial proliferation, prior to significant neuronal damage. MRS provides potential non-invasive surrogate markers of early disease and progression in inherited prion disease. (orig.)

  2. Brain Function, Structure, and Neurochemistry After Tamoxifen/Chemotherapy Assessed by Neuropsychologic Testing and H Magnetic Resonance Spectroscopy

    National Research Council Canada - National Science Library

    Ernst, Thomas

    2000-01-01

    ...). On magnetic resonance spectroscopy (1H MRS), women who received tamoxifen (average 4.4 years) had no statistically significant differences in brain metabolite ratios compared to the negative control group...

  3. [Effect of Electroacupuncture at "Neiguan"(PC 6) on Serum and Myocardial Metabolites in Rats with Myocardial Ischemia Reperfusion Injury Based on Nuclear Magnetic Resonance Spectroscopy].

    Science.gov (United States)

    Tang, Ya-Ni; Tan, Cheng-Fu; Liu, Wei-Wei; Yan, Jie; Wang, Chao; Liu, Mi; Lin, Dong-Hai; Huang, Cai-Hua; Du, Lin; Chen, Mei-Lin; Li, Jiao-Lan; Zhu, Ding-Ming

    2018-03-25

    We have repeatedly demonstrated that electroacupuncture (EA) of "Neiguan"(PC 6) can improve myocardial ischemia in rats. The present study was designed to investigate the metabolomic profile of peripheral blood se-rum and myocardium involving EA-induced improvement of myocardial ischemia-reperfusion injury (MIRI) in rats by using nuclear magnetic resonance spectroscopy. Thirty male SD rats were equally randomized into blank control, model and EA groups. Rats of the control group were only banded for 20 min, once a day for 7 days. The MIRI model was established by occlusion of the anterior descending branch of the left coronary artery for 40 min, followed by reperfusion for 60 min, and rats of the model group were banded as those in the control group. EA (10 Hz/50 Hz, 1 mA) was applied to bilateral PC 6 for 20 min, once daily for 7 days. The blood samples and left ventricular myocardial tissues were collected for assaying the profiles of differential metabolites using 1 H nuclear magnetic resonance ( 1 H NMR) spectroscopy and multivariate statistical analysis such as the principal components analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal PLS-DA (O-PLS-DA) with SIMCA-P software 12.0. A total of 19 differential metabolites (17 down-regulated, 2 up-regulated) in the serum and 14 differential metabolites (13 down-regulated and 1 up-regulated) in the ischemic left myocardium were identified after MIRI. Of the 19 serum differential metabolites, amino acids (leucine, isoleucine, valine,alanine, lysine, glycine, glutamine), 3-hydroxy butyric acid (3-HB), lactic acid, acetate, N-acetyl glycoprotein (NAc), acetone, acetoacetate, succinate, polyunsaturated fatty acids (PUFA), creatine, glycerophosphocholine (GPC) were down-regulated; while low density lipoprotein (LDL), LDL/very low density lipoprotein(LDL/VLDL)and glucose obviously up-regulated. Of the 14 myocardial differential metabolites, amino acids (alanine, lysine, glutamate

  4. Phosphorus nuclear magnetic resonance in isolated perfused rat pancreas

    International Nuclear Information System (INIS)

    Matsumoto, Takehisa; Kanno, Tomio; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi

    1988-01-01

    Phosphorus nuclear magnetic resonance spectroscopy was applied to measure phosphorus energy metabolites in isolated perfused rat pancreas. The gland was perfused with a modified Krebs-Henseleit solution at room temperature (25 degree C). 31 P resonances of creatine phosphate (PCr), ATP, ADP, inorganic phosphate (P i ) and phosphomonoesters (PMEs) were observed in all the preparations of pancreas. In different individual preparations, the resonance of PCr varied, but those of ATP were almost the same. The initial levels of PCr and ATP in individual preparations, however, remained almost unchanged during perfusion with the standard solution for 2 h. When the perfusion was stopped, the levels of ATP and PCr decreased, while the levels of PME and P i increased. At that time, the P i resonance shfted to a higher magnetic field, indicating that the tissue pH decreased. On reperfusion, the tissue levels of phosphorus compounds and the tissue pH were restored to their initial resting levels. Continuous infusion of 0.1 μM acetylcholine caused marked and sustained increases in the flow of pancreatic juice and protein output. During the stimulation the tissue levels of phosphorus compounds remained unchanged, while the tissue pH was decreased slightly

  5. Clinical relevance of magnetic resonance imaging and magnetic resonance spectroscopy for the cirrhotic without overt hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Fujishima, Yukou; Kato, Akinobu; Suzuki, Kazuyuki [Iwate Medical Univ., Morioka (Japan). School of Medicine

    1999-04-01

    To clarify the changes of pallidal high intensity on T1-weighted magnetic resonance imaging (MRI) and brain metabolites on magnetic resonance spectroscopy (MRS) as related to the severity of hepatic functions, the concentrations of blood ammonia (B-NH{sub 3}) and the levels of trace elements (Mn, Cu and Zn), 30 patients with liver cirrhosis without hepatic encephalopathy (HE) and 5 age-matched healthy control subjects underwent MRI and proton MRS. Pallidal high intensity (Pl index) and glutamine are higher in cirrhosis, and myo-inositol is lower than that of control statistically. In cirrhosis, there were statistically negative correlation between B-NH{sub 3} and myo-inositol and positive correlation between B-NH{sub 3} and glutamine. There was a statistically lower myo-inositol and higher Pl index, glutamine as the severity of hepatic functions increased. Furthermore there was a statistically positive correlation between Pl index and Mn. These data suggest that the changes of MRI and MRS findings already detected in cirrhosis without HE and these abnormalities may be reflect the B-NH{sub 3} and Mn metabolism and the severity of the hepatic functions. (author)

  6. Clinical relevance of magnetic resonance imaging and magnetic resonance spectroscopy for the cirrhotic without overt hepatic encephalopathy

    International Nuclear Information System (INIS)

    Fujishima, Yukou; Kato, Akinobu; Suzuki, Kazuyuki

    1999-01-01

    To clarify the changes of pallidal high intensity on T1-weighted magnetic resonance imaging (MRI) and brain metabolites on magnetic resonance spectroscopy (MRS) as related to the severity of hepatic functions, the concentrations of blood ammonia (B-NH 3 ) and the levels of trace elements (Mn, Cu and Zn), 30 patients with liver cirrhosis without hepatic encephalopathy (HE) and 5 age-matched healthy control subjects underwent MRI and proton MRS. Pallidal high intensity (Pl index) and glutamine are higher in cirrhosis, and myo-inositol is lower than that of control statistically. In cirrhosis, there were statistically negative correlation between B-NH 3 and myo-inositol and positive correlation between B-NH 3 and glutamine. There was a statistically lower myo-inositol and higher Pl index, glutamine as the severity of hepatic functions increased. Furthermore there was a statistically positive correlation between Pl index and Mn. These data suggest that the changes of MRI and MRS findings already detected in cirrhosis without HE and these abnormalities may be reflect the B-NH 3 and Mn metabolism and the severity of the hepatic functions. (author)

  7. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  8. Metabolites as Biomarkers of Adverse Reactions Following Vaccination: A Pilot Study using Nuclear Magnetic Resonance Metabolomics

    Science.gov (United States)

    McClenathan, Bruce M.; Stewart, Delisha A.; Spooner, Christina E.; Pathmasiri, Wimal W.; Burgess, Jason P.; McRitchie, Susan L.; Choi, Y. Sammy; Sumner, Susan C.J.

    2017-01-01

    An Adverse Event Following Immunization (AEFI) is an adverse reaction to a vaccination that goes above and beyond the usual side effects associated with vaccinations. One serious AEFI related to the smallpox vaccine is myopericarditis. Metabolomics involves the study of the low molecular weight metabolite profile of cells, tissues, and biological fluids, and provides a functional readout of the phenotype. Metabolomics may help identify a particular metabolic signature in serum of subjects who are predisposed to developing AEFIs. The goal of this study was to identify metabolic markers that may predict the development of adverse events following smallpox vaccination. Serum samples were collected from military personnel prior to and following receipt of smallpox vaccine. The study population included five subjects who were clinically diagnosed with myopericarditis, 30 subjects with asymptomatic elevation of troponins, and 31 subjects with systemic symptoms following immunization, and 34 subjects with no AEFI, serving as controls. Two-hundred pre- and post-smallpox vaccination sera were analyzed by untargeted metabolomics using 1H nuclear magnetic resonance (NMR) spectroscopy. Baseline (pre-) and post-vaccination samples from individuals who experienced clinically verified myocarditis or asymptomatic elevation of troponins were more metabolically distinguishable pre- and post-vaccination compared to individuals who only experienced systemic symptoms, or controls. Metabolomics profiles pre- and post-receipt of vaccine differed substantially when an AEFI resulted. This study is the first to describe pre- and post-vaccination metabolic profiles of subjects who developed an adverse event following immunization. The study demonstrates the promise of metabolites for determining mechanisms associated with subjects who develop AEFI and the potential to develop predictive biomarkers. PMID:28169076

  9. Assessment of Isocitrate Dehydrogenase mutational status in cerebral gliomas by in vivo Magnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Tietze, Anna; Oettingen, Gorm von; Sangill, Ryan

    concentrations in normal tissue or in gliomas with wildtype IDH. It has recently been shown that 2-HG is detectable non-invasively by clinical Magnetic Resonance Spectroscopy (MRS) [2]. The aim of our study is to establish 2-HG MRS in patients suspected for cerebral gliomas on a clinical Magnetic Resonance (MR......) system. Material and Methods: We performed pre-surgical MRS in four grade 3 glioma patients. A standard MR protocol was combined with an optimized MRS sequence (single-voxel point-resolved spectroscopy)[3]. Metabolite quantification was performed using an unsuppressed water signal as reference...

  10. Two patterns of cerebral metabolite abnormalities are detected on proton magnetic resonance spectroscopy in HIV-infected subjects commencing antiretroviral therapy

    International Nuclear Information System (INIS)

    Winston, Alan; Taylor-Robinson, Simon D.; Duncombe, Chris; Li, Patrick C.K.; Gill, John M.; Kerr, Stephen J.; Puls, Rebekah L.; Emery, Sean; Cooper, David A.

    2012-01-01

    Cerebral function impairment remains problematic in subjects with chronic human immunodeficiency virus (HIV) infection despite effective combination antiretroviral therapy (cART). Using cerebral proton magnetic resonance spectroscopy ( 1 H MRS), we aimed to determine if abnormalities could be detected in neurologically asymptomatic HIV-infected subjects electively commencing cART. Therapy-naive, HIV-infected individuals and HIV-uninfected controls underwent 1 H MRS in several anatomical voxels including the mid-frontal grey matter (FGM) and right basal ganglia (RBG). Differences in cerebral metabolite ratios between groups and correlations between immune and virological status were assessed. Forty-six subjects were recruited (26 HIV-infected and 20 control subjects). In the HIV-infected group, mean CD4+ count (SD, cells per microlitre) and plasma HIV RNA (SD, log10 copies per millilitre) were 192 (86) and 4.71 (0.64), respectively. Choline (Cho)/Creatine (Cr) and myoinositol (MI)/Cr ratios were significantly lower in the FGM in HIV-infected subjects compared to controls (0.67 (0.14) versus 0.88 (0.49), p = 0.036, and 0.94 (0.28) and 1.17 (0.26), p = 0.008, for Cho/Cr and MI/Cr, respectively) and Cho/Cr ratio associated with CD4+ lymphocyte count (p = 0.041). N-Acetyl-aspartate (NAA)/Cho ratio was significantly lower in the RBG in HIV-infected subjects compared to controls (2.27 (0.54) versus 2.63 (0.68), p = 0.002), and this was associated with greater plasma HIV RNA load (p = 0.014). Two patterns of cerebral metabolite abnormalities were observed in HIV-infected subjects electively commencing cART. Greater inflammatory metabolite ratios (Cho/Cr and MI/Cr) associated with lower markers of peripheral immune markers (CD4+ lymphocyte count) in the FGM and lower neuronal metabolite ratios (NAA/Cho) associated with greater HIV viraemia in the RBG were present in HIV-infected subjects. (orig.)

  11. 1H magnetic resonance spectroscopy metabolite profiles of neonatal rat hippocampus and brainstem regions following early postnatal exposure to intermittent hypoxia

    Science.gov (United States)

    Darnall, Robert A.; Chen, Xi; Nemani, Krishnamurthy V.; Sirieix, Chrystelle M.; Gimi, Barjor

    2017-03-01

    Most premature infants born at less than 30 weeks gestation are exposed to periods of mild intermittent hypoxia (IH) associated with apnea of prematurity and periodic breathing. In adults, IH associated with sleep apnea causes neurochemical and structural alterations in the brain. However, it is unknown whether IH in the premature infant leads to neurodevelopmental impairment. Quantification of biochemical markers that can precisely identify infants at risk of adverse neurodevelopmental outcome is essential. In vivo 1H magnetic resonance spectroscopy (1H MRS) facilitates the quantification of metabolites from distinct regions of the developing brain. We report the changes in metabolite profiles in the brainstem and hippocampal regions of developing rat brains, resulting from exposure to IH. Rat pups were chosen for study because there is rapid postnatal hippocampal development that occurs during the first 4 weeks in the developing rat brain, which corresponds to the first 2-3 postnatal years of development in humans. The brainstem was examined because of our interest in respiratory control disorders in the newborn and because of brainstem gliosis described in infants who succumb to Sudden Infant Death Syndrome (SIDS). Metabolite profiles were compared between hypoxia treated rat pups (n = 9) and normoxic controls (n = 6). Metabolite profiles were acquired using the Point-RESolved spectroscopy (PRESS) MRS sequence and were quantified using the TARQUIN software. There was a significant difference in the concentrations of creatine (p = 0.031), total creatine (creatine + phosphocreatine) (p = 0.028), and total choline (p = 0.001) in the brainstem, and glycine (p = 0.031) in the hippocampal region. The changes are consistent with altered cellular bioenergetics and metabolism associated with hypoxic insult.

  12. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Magnetic resonance imaging (MRI) is a new and innovative technique that affords anatomic images in multiple planes and that may provide information about tissue characterization. The magnetic resonance images are obtained by placing the patient or the area of interest within a powerful, highly uniform, static magnetic field. Magnetized protons (hydrogen nuclei) within the patient align like small magnets in this field. Radiofrequency pulses are then used to create an oscillating magnetic field perpendicular to the main field. Magnetic resonance images differ from those produced by x-rays: the latter are associated with absorption of x-ray energy while magnetic resonance images are based on proton density and proton relaxation dynamics. Proton characteristics vary according to the tissue under examination and reflect its physical and chemical properties. To resolve issues regarding safety and efficacy, the Warren Grant Magnuson Clinical Center and the Office of Medical Applications of Research of the National Institutes of Health (NIH) convened a consensus conference about MRI Oct 26 through 28, 1987. At the NIH, the Consensus Development Conference brings together investigators in the biomedical sciences, clinical investigators, practicing physicians, and consumer and special interest groups to make a scientific assessment of technologies, including drugs, devices, and procedures, and to seek agreement on their safety and effectiveness

  13. Potential of human saliva for nuclear magnetic resonance-based metabolomics and for health-related biomarker identification

    DEFF Research Database (Denmark)

    Bertram, Hanne Christine; Eggers, Nina; Eller, Nanna

    2009-01-01

    In the present study, the ability of (1)H nuclear magnetic resonance (NMR) for metabolic profiling of human saliva samples was investigated. High-resolution (1)H NMR spectra were obtained, and signals were assigned to various metabolites mainly representing small organic acids and amino acids...... in intensities of several metabolites including trimethylamine oxide (TMAO), choline, propionate, alanine, methanol, and N-acetyl groups. No effects of gender and body mass index (BMI) on the salivary metabolite profile were detected. The relationships between the salivary metabolome and glycated hemoglobin...

  14. Magnetic resonance spectroscopy of the canine brain at 3.0 T and 7.0 T.

    Science.gov (United States)

    Martin-Vaquero, Paula; da Costa, Ronaldo C; Echandi, Rita L; Sammet, Christina L; Knopp, Michael V; Sammet, Steffen

    2012-08-01

    The purpose of this study was to evaluate the feasibility of proton magnetic resonance spectroscopy (1H MRS) to study the concentration of metabolites in the brain of dogs at 3.0 and 7.0 T. Four healthy male beagles were scanned using 3.0 T and 7.0 T human magnetic resonance imaging (MRI) units. The results obtained showed that all dogs had excellent quality spectra for a small (1 cm3) and large (8 cm3) voxel at 3.0 T, whereas only 2 dogs had high quality spectra at 7.0 T due to insufficient water suppression. 1H MRS at 3.0 T appears to be a reliable method to study metabolite concentrations in the canine brain. The development of more advanced water suppression techniques is necessary to improve the results at 7.0 T. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Pediatric magnetic resonance imaging

    International Nuclear Information System (INIS)

    Cohen, M.D.

    1986-01-01

    This book defines the current clinical potential of magnetic resonance imaging and focuses on direct clinical work with pediatric patients. A section dealing with the physics of magnetic resonance imaging provides an introduction to enable clinicians to utilize the machine and interpret the images. Magnetic resonance imaging is presented as an appropriate imaging modality for pediatric patients utilizing no radiation

  16. Long-term cerebral metabolite changes on proton magnetic resonance spectroscopy in patients cured of acute lymphoblastic leukemia with previous intrathecal methotrexate and cranial irradiation prophylaxis

    International Nuclear Information System (INIS)

    Chan Yuleung; Roebuck, Derek J.; Yuen Manpan; Yeung Kawai; Lau Kamying; Li Chikong; Chik Kiwai

    2001-01-01

    Purpose: To evaluate the long-term brain metabolite changes on 1 H-MRS in acute lymphoblastic leukemia (ALL) patients who had intrathecal methotrexate (ITMTX) and cranial irradiation (CRT) for central nervous system (CNS) prophylaxis against CNS relapse. Methods and Materials: Thirty-seven ALL patients (12 females, 25 males) with history of ITMTX and CRT for CNS prophylaxis were studied. Age ranges at the time of diagnosis and at magnetic resonance examination were 0.8-13 years and 12-27 years, respectively. The interval since diagnosis was 5.6-19 years. T2-weighted and gradient-recalled echo (GRE) magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy ( 1 H-MRS) were performed to assess brain injury. Results: On MRI, 3 leukoencephalopathy (LEP) and 1 infarct were detected. Twenty-two patients had evidence of hemosiderin. On 1 H-MRS no statistically significant difference in choline (Cho)/creatine (Cr) and N-acetylaspartate (NAA)/Cr was associated with LEP. A lower Cho/Cr (p=0.006) and NAA/Cr (p=0.078) was observed in brains with hemosiderin. Linear-regression analysis showed no statistically significant relationship between NAA/Cr or Cho/Cr with age at diagnosis, but there was a statistically significant decreasing trend of NAA/Cr and Cho/Cr with the interval since diagnosis. Conclusion: Long-term brain injury in ALL survivors after CNS prophylaxis with ITMTX and CRT was reflected by decreasing NAA/Cr and Cho/Cr with the interval since diagnosis. The lower Cho/Cr associated with hemosiderin but not LEP suggested a different pathophysiology for these brain lesions

  17. Advances in magnetic resonance 10

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  18. Hitchhiker'S Guide to Voxel Segmentation for Partial Volume Correction of in Vivo Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Scott Quadrelli

    2016-01-01

    Full Text Available Partial volume effects have the potential to cause inaccuracies when quantifying metabolites using proton magnetic resonance spectroscopy (MRS. In order to correct for cerebrospinal fluid content, a spectroscopic voxel needs to be segmented according to different tissue contents. This article aims to detail how automated partial volume segmentation can be undertaken and provides a software framework for researchers to develop their own tools. While many studies have detailed the impact of partial volume correction on proton magnetic resonance spectroscopy quantification, there is a paucity of literature explaining how voxel segmentation can be achieved using freely available neuroimaging packages.

  19. Nuclear magnetic resonance-based serum metabolic profiling of dairy cows with footrot.

    Science.gov (United States)

    Zheng, Jiasan; Sun, Lingwei; Shu, Shi; Zhu, Kuiling; Xu, Chuang; Wang, Junsong; Wang, Hongbin

    2016-10-01

    Footrot is a debilitating and contagious disease in dairy cows, caused by the Gram-negative anaerobe Dichelobacter nodosus. 1 H-NMR (nuclear magnetic resonance)-based metabolomics has been previously used to understand the pathology and etiology of several diseases. The objective of this study was to characterize serum from dairy cows with footrot (n=10) using 1 H-NMR-based metabolomics and chemometric analyses. 1 H-NMR spectroscopy with multivariate pattern recognition (principal component analysis and orthogonal partial least-squares discriminant analysis) was performed to identify biomarkers in cows with footrot (F) and healthy controls (C). 1 H-NMR analysis facilitated the identification of 21 metabolites. Among these metabolites, 4 metabolites were higher and 17 metabolites were lower in the F group than in the C group. The serum levels of 5 metabolites were significantly different (Pcows with footrot have altered carbohydrate, amino acid, lipid and energy metabolic pathways. Metabolomic approaches are a clinically useful diagnostic tool for understanding the biochemical alterations and mechanisms of several diseases.

  20. Children's (Pediatric) Magnetic Resonance Imaging

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  1. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  3. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  4. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging ( ... the limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a ...

  5. Magnetic resonance angiography (MRA)

    International Nuclear Information System (INIS)

    Arlart, I.P.; Guhl, L.

    1992-01-01

    An account is given in this paper of the physical and technical principles underlying the 'time-of-flight' technique for imaging of vessels by magnetic resonance tomography. Major indications for the new procedure of magnetic resonance angiography at present are intracerebral and extracerebral vessels, with digital subtraction angiography quite often being required to cope with minor alterations (small aneurysms, small occlusions). Magnetic resonance angiography and digital subtraction angiography are compared to each other for advantages and disadvantages. Basically, replacement of radiological angiography by magnetic resonance angiography appears to be possible only within limits, since X-ray diagnostics primarily provides morphological information about vessels, whereas flow dynamics is visualized by the 'time-of-flight' technique. (orig.) [de

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  7. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    Science.gov (United States)

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  8. Magnetic resonance fingerprinting.

    Science.gov (United States)

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A

    2013-03-14

    Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.

  9. Advances in magnetic resonance 6

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 6 focuses on the theoretical and practical aspects of applying magnetic resonance methods to various problems in physical chemistry, emphasizing the different aspects of the exegesis of these problems. This book discusses the gas phase magnetic resonance of electronically excited molecules; techniques for observing excited electronic states; NMR studies in liquids at high pressure; and effect of pressure on self-diffusion in liquids. The nuclear magnetic resonance investigations of organic free radicals; measurement of proton coupling constants by NMR; an

  10. Two patterns of cerebral metabolite abnormalities are detected on proton magnetic resonance spectroscopy in HIV-infected subjects commencing antiretroviral therapy

    Energy Technology Data Exchange (ETDEWEB)

    Winston, Alan; Taylor-Robinson, Simon D. [Imperial College London, St. Mary' s Hospital, London (United Kingdom); Duncombe, Chris [HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok (Thailand); Li, Patrick C.K. [Queen Elizabeth Hospital, Hong Kong (China); Gill, John M. [Calgary Regional Health Authority, Calgary (Canada); Kerr, Stephen J. [HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok (Thailand); University of New South Wales, National Centre in HIV Epidemiology and Clinical Research, Sydney, NSW (Australia); Puls, Rebekah L.; Emery, Sean; Cooper, David A. [University of New South Wales, National Centre in HIV Epidemiology and Clinical Research, Sydney, NSW (Australia); Collaboration: for the Altair Study Group

    2012-12-15

    Cerebral function impairment remains problematic in subjects with chronic human immunodeficiency virus (HIV) infection despite effective combination antiretroviral therapy (cART). Using cerebral proton magnetic resonance spectroscopy ({sup 1}H MRS), we aimed to determine if abnormalities could be detected in neurologically asymptomatic HIV-infected subjects electively commencing cART. Therapy-naive, HIV-infected individuals and HIV-uninfected controls underwent {sup 1}H MRS in several anatomical voxels including the mid-frontal grey matter (FGM) and right basal ganglia (RBG). Differences in cerebral metabolite ratios between groups and correlations between immune and virological status were assessed. Forty-six subjects were recruited (26 HIV-infected and 20 control subjects). In the HIV-infected group, mean CD4+ count (SD, cells per microlitre) and plasma HIV RNA (SD, log10 copies per millilitre) were 192 (86) and 4.71 (0.64), respectively. Choline (Cho)/Creatine (Cr) and myoinositol (MI)/Cr ratios were significantly lower in the FGM in HIV-infected subjects compared to controls (0.67 (0.14) versus 0.88 (0.49), p = 0.036, and 0.94 (0.28) and 1.17 (0.26), p = 0.008, for Cho/Cr and MI/Cr, respectively) and Cho/Cr ratio associated with CD4+ lymphocyte count (p = 0.041). N-Acetyl-aspartate (NAA)/Cho ratio was significantly lower in the RBG in HIV-infected subjects compared to controls (2.27 (0.54) versus 2.63 (0.68), p = 0.002), and this was associated with greater plasma HIV RNA load (p = 0.014). Two patterns of cerebral metabolite abnormalities were observed in HIV-infected subjects electively commencing cART. Greater inflammatory metabolite ratios (Cho/Cr and MI/Cr) associated with lower markers of peripheral immune markers (CD4+ lymphocyte count) in the FGM and lower neuronal metabolite ratios (NAA/Cho) associated with greater HIV viraemia in the RBG were present in HIV-infected subjects. (orig.)

  11. Proof-of-the-Concept Study on Mathematically Optimized Magnetic Resonance Spectroscopy for Breast Cancer Diagnostics.

    Science.gov (United States)

    Belkić, Dževad; Belkić, Karen

    2015-06-01

    Magnetic resonance (MR)-based modalities aid breast cancer detection without exposure to ionizing radiation. Magnetic resonance imaging is very sensitive but costly and insufficiently specific. Molecular imaging through magnetic resonance spectroscopy (MRS) can provide information about key metabolites. Here, the measured/encoded time signals cannot be interpreted directly, necessitating mathematics for mapping to the more manageable frequency domain. Conventional applications of MRS are hampered by data analysis via the fast Fourier transform (FFT) and postprocessing by fitting techniques. Most in vivo MRS studies on breast cancer rely upon estimations of total choline (tCHO). These have yielded only incremental improvements in diagnostic accuracy. In vitro studies reveal richer metabolic information for identifying breast cancer, particularly in closely overlapping components of tCHO. Among these are phosphocholine (PC), a marker of malignant transformation of the breast. The FFT cannot assess these congested spectral components. This can be done by the fast Padé transform (FPT), a high-resolution, quantification-equipped method, which we presently apply to noisy MRS time signals consistent with those encoded in breast cancer. The FPT unequivocally and robustly extracted the concentrations of all physical metabolites, including PC. In sharp contrast, the FFT produced a rough envelope spectrum with a few distorted peaks and key metabolites absent altogether. As such, the FFT has poor resolution for these typical MRS time signals from breast cancer. Hence, based on Fourier-estimated envelope spectra, tCHO estimates are unreliable. Using even truncated time signals, the FPT clearly distinguishes noise from true metabolites whose concentrations are accurately extracted. The high resolution of the FPT translates directly into shortened examination time of the patient. These capabilities strongly suggest that by applying the FPT to time signals encoded in vivo from

  12. Proton magnetic resonance spectroscopy in disturbances of cortical development

    International Nuclear Information System (INIS)

    Kaminaga, T.; Kobayashi, M.; Abe, T.

    2001-01-01

    Proton magnetic resonance spectroscopy( 1 H-MRS) can be used for looking at cerebral metabolites in vivo. However, measurement of concentrations of cerebral metabolites in patients with disturbances of cerebral development have not been successful. Our purpose was to measure the concentrations of cerebral metabolites in such patients. We carried out quantitative 1 H-MRS in eight patients with cortical dysplasia, four with lissencephaly and three with heterotopic grey matter and six age-matched normal controls. Regions of interest for 1 H-MRS were set over the affected cortex in the patients and the occipital cortex in controls. The calculated concentration of N-acetylaspartate (NAA) was significantly lower in the affected cortex in patients with cortical dysplasia (P < 0.05), lissencephaly (P < 0.01), and heterotopia (P < 0.05) than in controls, idnicating a decreased number and/or immaturity or dysfunction of neurones in the affected cortex. The concentration of choline (Cho) was significantly lower in patients with lissencephaly (P < 0.01) than in controls, indicating glial proliferation and/or membrane abnormality. (orig.)

  13. Proton magnetic resonance spectroscopy and perfusion magnetic resonance imaging in the evaluation of musculoskeletal tumors

    International Nuclear Information System (INIS)

    Costa, Flavia Martins; Setti, Marcela; Vianna, Evandro Miguelote; Domingues, Romulo Cortes; Meohas, Walter; Rezende, Jose Francisco; Gasparetto, Emerson Leandro

    2009-01-01

    Objective: To assess the role of proton magnetic resonance spectroscopy and dynamic contrast-enhanced magnetic resonance imaging in the differentiation between malignant and benign musculoskeletal tumors. Materials And Methods: Fifty-five patients with musculoskeletal tumors (27 malignant and 28 benign) were studied. The examinations were performed in a 1.5 T magnetic resonance scanner with standard protocol, and single voxel proton magnetic resonance spectroscopy with 135 msec echo time. The dynamic contrast study was performed using T1-weighted gradient-echo sequence after intravenous gadolinium injection. Time signal intensity curves and slope values were calculated. The statistical analysis was performed with the Levene's test, followed by a Student's t-test, besides the Pearson's chi-squared and Fischer's exact tests. Results: Proton magnetic resonance spectroscopy sensitivity, specificity and accuracy were, respectively, 87.5%, 92.3% and 90.9% (p < 0.0001). Statistically significant difference was observed in the slope (%/min) between benign (mean, 27.5%/min) and malignant (mean, 110.9%/min) lesions (p < 0.0001). Conclusion: The time-intensity curve and slope values using dynamic-enhanced perfusion magnetic resonance imaging in association with the presence of choline peak demonstrated by single voxel magnetic resonance spectroscopy study are useful in the differentiation between malignant and benign musculoskeletal tumors. (author)

  14. The prognostic value of proton magnetic resonance spectroscopy in term newborns treated with therapeutic hypothermia following asphyxia

    NARCIS (Netherlands)

    Sijens, Paul E.; Wischniowsky, Katharina; ter Horst, Hendrik J.

    2017-01-01

    Objective: The purpose of this study was to correlate brain metabolism assessed shortly after therapeutic hyperthermia by H-1 magnetic resonance spectroscopy (MRS), with neurodevelopmental outcome. Methods: At the age of 6.0 +/- 1.8 days, brain metabolites of 35 term asphyxiated newborns, treated

  15. Accurate classification of brain gliomas by discriminate dictionary learning based on projective dictionary pair learning of proton magnetic resonance spectra.

    Science.gov (United States)

    Adebileje, Sikiru Afolabi; Ghasemi, Keyvan; Aiyelabegan, Hammed Tanimowo; Saligheh Rad, Hamidreza

    2017-04-01

    Proton magnetic resonance spectroscopy is a powerful noninvasive technique that complements the structural images of cMRI, which aids biomedical and clinical researches, by identifying and visualizing the compositions of various metabolites within the tissues of interest. However, accurate classification of proton magnetic resonance spectroscopy is still a challenging issue in clinics due to low signal-to-noise ratio, overlapping peaks of metabolites, and the presence of background macromolecules. This paper evaluates the performance of a discriminate dictionary learning classifiers based on projective dictionary pair learning method for brain gliomas proton magnetic resonance spectroscopy spectra classification task, and the result were compared with the sub-dictionary learning methods. The proton magnetic resonance spectroscopy data contain a total of 150 spectra (74 healthy, 23 grade II, 23 grade III, and 30 grade IV) from two databases. The datasets from both databases were first coupled together, followed by column normalization. The Kennard-Stone algorithm was used to split the datasets into its training and test sets. Performance comparison based on the overall accuracy, sensitivity, specificity, and precision was conducted. Based on the overall accuracy of our classification scheme, the dictionary pair learning method was found to outperform the sub-dictionary learning methods 97.78% compared with 68.89%, respectively. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Three-dimensional magnetic resonance spectroscopic imaging in the substantia nigra of healthy controls and patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Groeger, Adriane; Godau, Jana; Berg, Daniela; Chadzynski, Grzegorz; Klose, Uwe

    2011-01-01

    To investigate the substantia nigra in patients with Parkinson's disease three-dimensional magnetic resonance spectroscopic imaging with high spatial resolution at 3 Tesla was performed. Regional variations of spectroscopic data between the rostral and caudal regions of the substantia nigra as well as the midbrain tegmentum areas were evaluated in healthy controls and patients with Parkinson's disease. Nine patients with Parkinson's disease and eight age- and gender-matched healthy controls were included in this study. Data were acquired by using three-dimensional magnetic resonance spectroscopic imaging measurements. The ratios between rostral and caudal voxels of the substantia nigra as well as the midbrain tegmentum areas were calculated for the main-metabolites N-acetyl aspartate, creatine, choline, and myo-inositol. Additionally, the metabolite/creatine ratios were calculated. In all subjects spectra of acceptable quality could be obtained with a nominal voxel size of 0.252 ml. The calculated rostral-to-caudal ratios of the metabolites as well as of the metabolite/creatine ratios showed with exception of choline/creatine ratio significant differences between healthy controls and patients with Parkinson's disease. The findings from this study indicate that regional variations in N-acetyl aspartate/creatine ratios in the regions of the substantia nigra may differentiate patients with Parkinson's disease and healthy controls. (orig.)

  17. Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Murphy, P. S.; Viviers, L; Abson, C

    2004-01-01

    Assessment of low-grade glioma treatment response remains as much of a challenge as the treatment itself. Proton magnetic resonance spectroscopy ((1)H-MRS) and imaging were incorporated into a study of patients receiving temozolomide therapy for low-grade glioma in order to evaluate and monitor...... tumour metabolite and volume changes during treatment. Patients (n=12) received oral temozolomide (200 mg m(-2) day(-1)) over 5 days on a 28-day cycle for 12 cycles. Response assessment included baseline and three-monthly magnetic resonance imaging studies (pretreatment, 3, 6, 9 and 12 months) assessing...... months, a significant reduction in the mean choline signal was observed compared with the pretreatment (P=0.035) and 3-month scan (P=0.021). The reduction in the tumour choline/water signal paralleled tumour volume change and may reflect the therapeutic effect of temozolomide...

  18. Magnetic resonance spectroscopy of brain tumors; MR-Spektroskopie bei Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Ditter, P.; Hattingen, E. [Universitaetsklinikum Bonn, FE Neuroradiologie, Radiologische Klinik, Bonn (Germany)

    2017-06-15

    Conventional magnetic resonance imaging (MRI) under consideration of clinical information enables the correct diagnosis and therapy for the majority of cerebral space-occupying lesions. Some important differential diagnoses, e. g. low vs. high-grade tumors, require additional MRI methods. This article critically discusses the importance of magnetic resonance spectroscopy ({sup 1}H-MRS) in brain tumors. The concentration of normal and pathological brain metabolites can be non-invasively measured by {sup 1}H-MRS. It is based on the principle that chemical proton compounds of certain brain metabolites focally attenuate the external magnetic field and change the proton resonance frequency according to typical patterns. In addition, parameter maps of MRS imaging (MRSI) can show the tumor heterogeneity as well as changes in the surrounding brain tissue. In this context, the patterns of N-acetylaspartate, total choline (tCho) and creatine are relatively robust, whereas the patterns of other metabolites, such as myoinositol, glutamate, lactate or lipids greatly depend on the external field strength and echo time. The signal intensity of tCho in vital tumor tissue increases with the WHO grade of the brain tumor, i.e. increases with the level of malignancy. The use of MRSI facilitates the WHO grading of gliomas by determining target points in biopsies. Different distribution patterns and specific metabolite signals enable a better differentiation between abscesses, metastases, central nervous system (CNS) lymphomas and gliomas. The use of {sup 1}H-MRS provides valuable information on the differential diagnosis and graduation of brain tumors; however, so far artefacts, signal strength, parameter selection and a lack of standardization impede the establishment of {sup 1}H-MRS for use in clinical routine diagnostics. (orig.) [German] Die konventionelle MRT ermoeglicht unter Beruecksichtigung klinischer Information bei einem Grossteil zerebraler Raumforderungen die richtige

  19. Analysis of the brain proton magnetic resonance spectroscopy - differences between normal grey and white matter

    International Nuclear Information System (INIS)

    Krukowski, P.; Podgorski, P.; Guzinski, M.; Szewczyk, P.; Sasiadek, M.

    2010-01-01

    Background: The proton magnetic resonance spectroscopy (HMRS) is a non-invasive diagnostic method that allows for an assessment of the metabolite concentration in tissues. The sources of the strongest resonance signals within the brain are N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myoinositol (mI) and water. The aim of our study was to analyse the ratios of metabolite signals within the brain in HMRS in the healthy population, to define the differences between the grey and white matter spectra. Material/Methods: We studied prospectively 90 subjects aged from 8 to 80 years (mean 43.3 years, SD=17.9), without neurological symptoms or abnormalities in magnetic resonance imaging. In all patients, brain HMRS with Signa HDx 1.5 T MR unit (GE Healthcare) was performed with PRESS sequence, using a single voxel method, at TE of 35 ms and TR of 1500 ms. Spectroscopic evaluation involved voxels placed in the white matter of parietal lobe (PWM) and the grey matter of posterior cingulate gyrus (PGM). On the basis of the intensity of NAA, Cr, Cho, mI and water signals, the proportions of these signals were calculated, as well as the ratio of the analyzed metabolite signal to the sum of signals of NAA, Cho, Cr and mI (%Met) in the PGM and PWM voxels. We compared the proportions in the same patients in PGM and PWM voxels. Results: There has been a statistically significant difference between the proportions of a majority of the metabolite ratios evaluated in PGM and PWM, indicating the higher concentration of NAA, Cr and mI in grey matter, and higher concentration of Cho in white matter. Conclusions: HMRS spectra of the brain grey and white matter differ significantly. The concentrations of NAA, Cr and mI are higher in grey matter, while of choline - in the white matter. (authors)

  20. Two-dimensional J-resolved nuclear magnetic resonance spectral study of two bromobenzene glutathione conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, J.A.; Highet, R.J.; Pohl, L.R.; Monks, T.J.; Hinson, J.A.

    1985-09-01

    The application of two-dimensional J-resolved nuclear magnetic resonance spectroscopy to determine the structure of two bile metabolites isolated from rats injected interperitoneally with bromobenzene is described. The structures of the two molecules are obtained unambiguously from the proton-proton spin coupling constants. The paper discusses the fundamentals of the technique and demonstrates the resolution of small long-range coupling constants.

  1. Magnetic resonance for wireless power transfer

    OpenAIRE

    Hui, SYR

    2016-01-01

    Magnetic resonance has been a cornerstone of nonradiative wireless power transfer (WPT) since the late 19th century. However, some researchers have the misconception that magnetic resonance for WPT was developed recently. This article traces some early work of Tesla and other researchers related to the use of magnetic resonance in WPT. Included are some examples of magnetic resonance-based WPT projects conducted by researchers in the biomedical and power electronics communities over the last ...

  2. Cardiac magnetic resonance imaging

    African Journals Online (AJOL)

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  3. Advances in magnetic resonance 12

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 12, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains six chapters and begins with a discussion of diffusion and self-diffusion measurements by nuclear magnetic resonance. This is followed by separate chapters on spin-lattice relaxation time in hydrogen isotope mixtures; the principles of optical detection of nuclear spin alignment and nuclear quadropole resonance; and the spin-1 behavior, including the relaxation of the quasi-invariants of the motion of a system of pairs of dipolar coupled spin-1/2 nu

  4. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  5. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Robertson, Angus

    1990-01-01

    An assessment is made of the clinical benefits of expensive diagnostic technology, such as the magnetic resonance imaging. It is concluded that to most radiologists, magnetic resonance imaging has a definite place in the diagnostic scenario, especially for demonstrating central nervous system lesions in multiple sclerosis. While it is recognized that medical and financial resources are limited, it is emphasised that the cost to society must be balanced against the patient benefit. 17 refs

  6. Absolute Quantification of Human Liver Phosphorus-Containing Metabolites In Vivo Using an Inhomogeneous Spoiling Magnetic Field Gradient

    Science.gov (United States)

    Bashir, Adil; Gropler, Robert; Ackerman, Joseph

    2015-01-01

    Purpose Absolute concentrations of high-energy phosphorus (31P) metabolites in liver provide more important insight into physiologic status of liver disease compared to resonance integral ratios. A simple method for measuring absolute concentrations of 31P metabolites in human liver is described. The approach uses surface spoiling inhomogeneous magnetic field gradient to select signal from liver tissue. The technique avoids issues caused by respiratory motion, chemical shift dispersion associated with linear magnetic field gradients, and increased tissue heat deposition due to radiofrequency absorption, especially at high field strength. Methods A method to localize signal from liver was demonstrated using superficial and highly non-uniform magnetic field gradients, which eliminate signal(s) from surface tissue(s) located between the liver and RF coil. A double standard method was implemented to determine absolute 31P metabolite concentrations in vivo. 8 healthy individuals were examined in a 3 T MR scanner. Results Concentrations of metabolites measured in eight healthy individuals are: γ-adenosine triphosphate (ATP) = 2.44 ± 0.21 (mean ± sd) mmol/l of wet tissue volume, α-ATP = 3.2 ± 0.63 mmol/l, β-ATP = 2.98 ± 0.45 mmol/l, inorganic phosphates (Pi) = 1.87 ± 0.25 mmol/l, phosphodiesters (PDE) = 10.62 ± 2.20 mmol/l and phosphomonoesters (PME) = 2.12 ± 0.51 mmol/l. All are in good agreement with literature values. Conclusions The technique offers robust and fast means to localize signal from liver tissue, allows absolute metabolite concentration determination, and avoids problems associated with constant field gradient (linear field variation) localization methods. PMID:26633549

  7. Advances in magnetic resonance 11

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 11, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters and begins with a discussion of the principles and applications of dynamic nuclear polarization, with emphasis on molecular motions and collisions, intermolecular couplings, and chemical interactions. Subsequent chapters focus on the assessment of a proposed broadband decoupling method and studies of time-domain (or Fourier transform) multiple-quantum nuclear magnetic resonance.

  8. Metabolite concentrations in supraventricular white matter from teenage to early old age: A short echo time 1H magnetic resonance spectroscopy (MRS) study

    Energy Technology Data Exchange (ETDEWEB)

    Raininko, Raili (Dept. of Radiology, Uppsala Univ., Uppsala (Sweden)), e-mail: raili.raininko@radiol.uu.se; Mattsson, Peter (Dept. of Neuroscience, Neurology, Uppsala Univ., Uppsala (Sweden))

    2010-04-15

    Background: Age- and sex-related changes of metabolites in healthy adult brains have been examined with different 1H magnetic resonance spectroscopy (MRS) methods in varying populations, and with differing results. A long repetition time and short echo time technique reduces quantification errors due to T1 and T2 relaxation effects and makes it possible to measure metabolites with short T2 relaxation times. Purpose: To examine the effect of age on the metabolite concentrations measured by 1H MRS in normal supraventricular white matter using a long repetition time (TR) and a short echo time (TE). Material and Methods: Supraventricular white matter of 57 healthy subjects (25 women, 32 men), aged 13 to 72 years, was examined with a single-voxel MRS at 1.5T using a TR of 6000 ms and a TE of 22 ms. Tissue water was used as a reference in quantification. Results: Myoinositol increased slightly and total N-acetyl aspartate (NAA) decreased slightly with increasing age. Glutamine/glutamate complex (Glx) showed U-shaped age dependence, with highest concentrations in the youngest and oldest subjects. No significant age dependence was found in total choline and total creatine. No gender differences were found. Macromolecule/ lipid (ML) fractions were reliably measurable only in 36/57 or even fewer subjects and showed very large deviations. Conclusion: The concentrations of several metabolites in cerebral supraventricular white matter are age dependent on 1H MRS, even in young and middle-aged people, and age dependency can be nonlinear. Each 1H MRS study of the brain should therefore take age into account, whereas sex does not appear to be so important. The use of macromolecule and lipid evaluations is compromised by less successful quantification and large variations in healthy people

  9. Metabolite concentrations in supraventricular white matter from teenage to early old age: A short echo time 1H magnetic resonance spectroscopy (MRS) study

    International Nuclear Information System (INIS)

    Raininko, Raili; Mattsson, Peter

    2010-01-01

    Background: Age- and sex-related changes of metabolites in healthy adult brains have been examined with different 1 H magnetic resonance spectroscopy (MRS) methods in varying populations, and with differing results. A long repetition time and short echo time technique reduces quantification errors due to T1 and T2 relaxation effects and makes it possible to measure metabolites with short T2 relaxation times. Purpose: To examine the effect of age on the metabolite concentrations measured by 1H MRS in normal supraventricular white matter using a long repetition time (TR) and a short echo time (TE). Material and Methods: Supraventricular white matter of 57 healthy subjects (25 women, 32 men), aged 13 to 72 years, was examined with a single-voxel MRS at 1.5T using a TR of 6000 ms and a TE of 22 ms. Tissue water was used as a reference in quantification. Results: Myoinositol increased slightly and total N-acetyl aspartate (NAA) decreased slightly with increasing age. Glutamine/glutamate complex (Glx) showed U-shaped age dependence, with highest concentrations in the youngest and oldest subjects. No significant age dependence was found in total choline and total creatine. No gender differences were found. Macromolecule/ lipid (ML) fractions were reliably measurable only in 36/57 or even fewer subjects and showed very large deviations. Conclusion: The concentrations of several metabolites in cerebral supraventricular white matter are age dependent on 1H MRS, even in young and middle-aged people, and age dependency can be nonlinear. Each 1H MRS study of the brain should therefore take age into account, whereas sex does not appear to be so important. The use of macromolecule and lipid evaluations is compromised by less successful quantification and large variations in healthy people

  10. Magnetic resonance imaging: effects of magnetic field strength

    International Nuclear Information System (INIS)

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-01-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields

  11. Introduction lecture to magnetic resonance

    International Nuclear Information System (INIS)

    Conard, J.

    1980-01-01

    This lecture deals with all that is common either to electron paramagnetic resonance (E.P.R.) or to nuclear magnetic resonance (N.M.R.). It will present, in an as elementary form as possible, the main concepts used in magnetic resonance emphasizing some aspects, specific for interface science. (orig./BHO)

  12. Comparative test-retest reliability of metabolite values assessed with magnetic resonance spectroscopy of the brain. The LCModel versus the manufacturer software.

    Science.gov (United States)

    Fayed, Nicolas; Modrego, Pedro J; Medrano, Jaime

    2009-06-01

    Reproducibility is an essential strength of any diagnostic technique for cross-sectional and longitudinal works. To determine in vivo short-term comparatively, the test-retest reliability of magnetic resonance spectroscopy (MRS) of the brain was compared using the manufacturer's software package and the widely used linear combination of model (LCModel) technique. Single-voxel H-MRS was performed in a series of patients with different pathologies on a 1.5 T clinical scanner. Four areas of the brain were explored with the point resolved spectroscopy technique acquisition mode; the echo time was 35 milliseconds and the repetition time was 2000 milliseconds. We enrolled 15 patients for every area, and the intra-individual variations of metabolites were studied in two consecutive scans without removing the patient from the scanner. Curve fitting and analysis of metabolites were made with the software of GE and the LCModel. Spectra non-fulfilling the minimum criteria of quality in relation to linewidths and signal/noise ratio were rejected. The intraclass correlation coefficients for the N-acetylaspartate/creatine (NAA/Cr) ratios were 0.93, 0.89, 0.9 and 0.8 for the posterior cingulate gyrus, occipital, prefrontal and temporal regions, respectively, with the GE software. For the LCModel, the coefficients were 0.9, 0.89, 0.87 and 0.84, respectively. For the absolute value of NAA, the GE software was also slightly more reproducible than LCModel. However, for the choline/Cr and myo-inositol/Cr ratios, the LCModel was more reliable than the GE software. The variability we have seen hovers around the percentages observed in previous reports (around 10% for the NAA/Cr ratios). We did not find that the LCModel software is superior to the software of the manufacturer. Reproducibility of metabolite values relies more on the observance of the quality parameters than on the software used.

  13. Magnetic Resonance and Brain Function. Approaches from Physics

    International Nuclear Information System (INIS)

    Maraviglia, B.

    1999-01-01

    In the last decade of this millennium, while, on the one hand, the international scientific community has focused with increasing endeavour on the research about the great unknown of the mechanism and the pathologies of the human brain, on the other hand, the NMR community has achieved some important results, which should widely affect, in the future, the possibility of understanding the function and disfunction of the human brain. In the early 1980's, the beginning of the application of Magnetic Resonance Imaging (MRI) to the morphological study of the brain in vivo, has played an extraordinary role, which, since then, placed MRI in a leading position among the methodologies used for investigation and diagnostics of the Central Nervous System. In the 1990s, the objective of finding new means, based on MRI, capable of giving functional and metabolic information, with the highest possible space resolution, drove the scientists towards different approaches. Among these, the first one to generate a breakthrough in the localization of specific cerebral functions was the Blood Oxygen Level Development (BOLD) MRI. A very wide range of applications followed the discovery of BOLD imaging. Still, this method gives an indirect information of the localization of functions, via the variation of oxygen release and deoxyhemoglobin formation. Of course, a high-resolution spatial distribution of the metabolites, crucial to brain function, would give a deeper insight into the occurring processes. This finality is aimed at by the Double Magnetic Resonance methods, which are developing new procedures able to detect some metabolites with increasing sensitivity and resolution. A third new promising approach to functional MRI should derive from the use of hyperpolarized, opens a series of potential applications to the study of brain function

  14. Magnetic resonance spectroscopic diagnosis of acute alcohol ingestion with hidden history

    International Nuclear Information System (INIS)

    Pungavkar, S.A.; Joshi, V.; Patkar, D.P.; Lawande, M.; Gadani, S.; Shah-Mehta, N.

    2006-01-01

    Parenchymal changes within the brain in chronic alcoholics are well known, and specific MRI and MR spectroscopy findings have been described. However, recent alcohol ingestion goes undetected on routine MRI because of lack of specific parenchymal changes in the acute setting. Magnetic resonance spectroscopy can detect the presence of ethanol as a metabolite in the brain accurately and can provide valuable information regarding acute ingestion of alcohol. This may be useful especially in cases where history of alcohol ingestion is withheld. Copyright (2006) Blackwell Science Pty Ltd

  15. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    Energy Technology Data Exchange (ETDEWEB)

    Doormaal, Pieter Jan van [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Division of Neonatology, Groningen (Netherlands); Meander Medical Center Amersfoort, Department of Radiology, PO Box 1502, Amersfoort (Netherlands); Meiners, Linda C.; Sijens, Paul E. [University Medical Center Groningen and University of Groningen, Department of Radiology, Groningen (Netherlands); Horst, Hendrik J. ter; Veere, Christa N. van der [University Medical Center Groningen and University of Groningen, Department of Pediatrics, Division of Neonatology, Groningen (Netherlands)

    2012-04-15

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. (orig.)

  16. The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia

    International Nuclear Information System (INIS)

    Doormaal, Pieter Jan van; Meiners, Linda C.; Sijens, Paul E.; Horst, Hendrik J. ter; Veere, Christa N. van der

    2012-01-01

    Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. (orig.)

  17. Discriminating poststroke depression from stroke by nuclear magnetic resonance spectroscopy-based metabonomic analysis

    Directory of Open Access Journals (Sweden)

    Xiao J

    2016-08-01

    Full Text Available Jianqi Xiao,1,* Jie Zhang,2,* Dan Sun,3,* Lin Wang,4,* Lijun Yu,5 Hongjing Wu,5 Dan Wang,5 Xuerong Qiu5 1Department of Neurosurgery, The First Hospital of Qiqihar City, Qiqihar, 2Department of Internal Medicine, Central Hospital of Jiamusi City, Jiamusi, 3Department of Geriatrics, General Hospital of Daqing Oil Field, Daqing, 4Department of Nursing, 5Department of Neurology, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Poststroke depression (PSD, the most common psychiatric disease that stroke survivors face, is estimated to affect ~30% of poststroke patients. However, there are still no objective methods to diagnose PSD. In this study, to explore the differential metabolites in the urine of PSD subjects and to identify a potential biomarker panel for PSD diagnosis, the nuclear magnetic resonance-based metabonomic method was applied. Ten differential metabolites responsible for discriminating PSD subjects from healthy control (HC and stroke subjects were found, and five of these metabolites were identified as potential biomarkers (lactate, α-hydroxybutyrate, phenylalanine, formate, and arabinitol. The panel consisting of these five metabolites provided excellent performance in discriminating PSD subjects from HC and stroke subjects, achieving an area under the receiver operating characteristic curve of 0.946 in the training set (43 HC, 45 stroke, and 62 PSD subjects. Moreover, this panel could classify the blinded samples from the test set (31 HC, 33 stroke, and 32 PSD subjects with an area under the curve of 0.946. These results laid a foundation for the future development of urine-based objective methods for PSD diagnosis and investigation of PSD pathogenesis. Keywords: poststroke depression, PSD, stroke, nuclear magnetic resonance, NMR, metabonomic

  18. The study of human organs by phosphorus-31 topical magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Oberhaensli, R.D.; Galloway, G.J.; Hilton-Jones, David; Bore, P.J.; Styles, Peter; Rajagopalan, Bheeshma; Taylor, D.J.; Radda, G.K.

    1987-01-01

    The potential clinical use of topical magnetic resonance spectroscopy (volume selection by static magnetic field gradients) was tested in 50 studies in volunteers. Topical magnetic resonance spectroscopy (MRS) was shown to be a straightforward method for localising 31 P spectra of brain and liver. However, the spherical shape and fixed position of the selected volume posed serious limitations to the study of heart and transplanted kidney by topical MRS. Phosphorus-31 spectra of approx. 30 cm -3 of brain or liver could be obtained in 8 min. Ratios of metabolite concentrations could be determined with a coefficient of variation ranging from 10% to 30%. The ratios of phosphocreatine/ATP and inorganic phosphate/ATP in brain were 1.8 and 0.3, respectively. The ratio of inorganic phosphate/ATP in liver was 0.9. Intracellular pH was 7.03 in brain and 7.24 in liver. The T 1 relaxation times of phosphocreatine, inorganic phosphate and γ-ATP in brain were 4.8 s, 2.5 s and 1.0 s, respectively. (author)

  19. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients.

    Science.gov (United States)

    Qiao, Jun; Jin, Guixing; Lei, Licun; Wang, Lan; Du, Yaqiang; Wang, Xueyi

    2016-01-01

    To explore the effect of right dorsolateral prefrontal cortex (DLPFC) repetitive transcranial magnetic stimulation (rTMS) on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy ( 1 H-MRS) in recently detoxified alcohol-dependent patients. In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions) and the control group (sham stimulation). Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R) and Brief Visuospatial Memory Test-Revised (BVMT-R) before and after treatment. 1 H-MRS was used to detect the levels of N -acetyl aspartic acid (NAA), choline (Cho), and creatine (Cr) in bilateral hippocampi before and after treatment. Thirty-eight patients (18 in the experimental group and 20 in the control group) were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1 H-MRS in recently detoxified alcohol-dependent patients.

  20. Advances in magnetic resonance 9

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 9 describes the magnetic resonance in split constants and dipolar relaxation. This book discusses the temperature-dependent splitting constants in the ESR spectra of organic free radicals; temperature-dependent splittings in ion pairs; and magnetic resonance induced by electrons. The electron impact excitation of atoms and molecules; intramolecular dipolar relaxation in multi-spin systems; and dipolar cross-correlation problem are also elaborated. This text likewise covers the NMR studies of molecules oriented in thermotropic liquid crystals and diffusion

  1. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry

    International Nuclear Information System (INIS)

    Spur, Eva-Margarete; Decelle, Emily A.; Cheng, Leo L.

    2013-01-01

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases. (orig.)

  2. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Spur, Eva-Margarete [Massachusetts General Hospital, Harvard Medical School, Department of Pathology, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States); Charite Universitaetsmedizin, Berlin (Germany); Decelle, Emily A.; Cheng, Leo L. [Massachusetts General Hospital, Harvard Medical School, Department of Pathology, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2013-07-15

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases. (orig.)

  3. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining ...

  4. Magnetic resonance study of maghemite-based magnetic fluid

    International Nuclear Information System (INIS)

    Figueiredo, L.C.; Lacava, B.M.; Skeff Neto, K.; Pelegrini, F.; Morais, P.C.

    2008-01-01

    This study reports on the magnetic resonance (MR) data (X-band experiment) of 10.2 nm average diameter maghemite nanoparticle in the temperature range of 100-230 K. Maghemite nanoparticles were suspended as low-pH ionic magnetic fluid containing 2.3x10 17 particles/cm 3 . The temperature dependence of both resonance linewidth and resonance field of the zero-field-cooled sample as well as the resonance field of the field-cooled sample (angular variation experiment) was analyzed using well-established methodology. Information regarding particle size, particle clusterization and surface magnetic anisotropy were obtained from the analysis of the MR data. The number of magnetic sites per particle from the MR data is in excellent agreement with the number provided by the transmission electron microscopy (TEM) data. The demagnetizing field value obtained from the MR data indicates cluster of particles containing on average 1.42 particles. The MR angular variation data suggest that magnetoelastic effect accounts for the non-linearity observed for the surface component of the magnetic anisotropy

  5. Advances in magnetic resonance 1

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 1, discusses developments in various areas of magnetic resonance. The subject matter ranges from original theoretical contributions through syntheses of points of view toward series of phenomena to critical and painstaking tabulations of experimental data. The book contains six chapters and begins with a discussion of the theory of relaxation processes. This is followed by separate chapters on the development of magnetic resonance techniques for studying rate processes in chemistry and the application of these techniques to various problems; the geometri

  6. Resonant and nonresonant magnetic scattering (invited)

    International Nuclear Information System (INIS)

    McWhan, D.B.; Hastings, J.B.; Kao, C.; Siddons, D.P.

    1992-01-01

    The tunability and the polarization of synchrotron radiation open up new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and they fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin-polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation

  7. A superconducting magnet for whole-body magnetic-resonance imaging

    International Nuclear Information System (INIS)

    Kan, Hisao; Watanabe, Tsugio; Takechi, Moriaki; Ogino, Osamu; Yamada, Tadatoshi

    1986-01-01

    Magnetic-resonance imaging is a promising new clinical diagnosis system that employs magnetic resonance to generate cross-sectional images of the object under examination. A large magnet plays a critical role in this system-it must supply a high-strength magnetic field that meets rigid standards of space and time uniformity. Mitsubishi Electric has developed a superconducting magnet that not only offers excellent magnetic characteristics but also features reduced helium consumption and a horizontal service port, and permits direct mounting of a magnetic shield. (author)

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association ... MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  9. Magnetic Resonance Imaging of Stroke

    NARCIS (Netherlands)

    Bouts, Mark. J. R. J.; Wu, O.; Dijkhuizen, R. M.

    2017-01-01

    Magnetic resonance imaging (MRI) provides a powerful (neuro)imaging modality for the diagnosis and outcome prediction after (acute) stroke. Since MRI allows noninvasive, longitudinal, and three-dimensional assessment of vessel occlusion (with magnetic resonance angiography (MRA)), tissue injury

  10. Magnetic resonance elastometry using a single-sided permanent magnet

    International Nuclear Information System (INIS)

    Tan, Carl S; Marble, Andrew E; Ono, Yuu

    2012-01-01

    In this paper, we describe a magnetic resonance method of measuring material elasticity using a single-sided magnet with a permanent static field gradient. This method encodes sample velocity in a reciprocal space using Hahn spin-echoes with variable timing. The experimental results show a strong correlation between magnetic resonance signal attenuation and elasticity when an oscillating force is applied on the sample. This relationship in turn provides us with information about the displacement velocity experienced by the sample, which is inversely proportional to Young's modulus. The proposed method shows promise in offering a portable and cost-effective magnetic resonance elastography system. (paper)

  11. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses ... identify and accurately characterize diseases than other imaging methods. This detail makes MRI an invaluable tool in ...

  12. Magnetic resonance spectroscopy for inflammatory brain diseases; Magnetresonanzspektroskopie bei entzuendlichen Hirnerkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Grunwald, I.Q.; Hartmann, K.M.; Politi, M.; Roth, C.; Reith, W. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany); Farmakis, G. [Universitaetsklinikum des Saarlandes, Klinik fuer Nuklearmedizin, Homburg/Saar (Germany)

    2008-06-15

    Magnetic resonance spectroscopy (MRS) is a non-invasive method for investigation of cerebral metabolite concentrations in various pathologic conditions. The clinical use of MRS for intracranial disorders is well established. In this review the characteristic MRS findings for the most important inflammatory brain diseases will be discussed. (orig.) [German] Die Magnetresonanzspektroskopie (MRS) ist eine nichtinvasive Methode, die die Messung der Konzentration zerebraler Metaboliten erlaubt. Die Verwendung der MRS bei verschiedenen intrakraniellen Erkrankungen ist gut etabliert. In diesem Review werden die MRS-Charakteristiken der wichtigsten entzuendlichen Hirnerkrankungen diskutiert. (orig.)

  13. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  14. Metabolite-cycled density-weighted concentric rings k-space trajectory (DW-CRT) enables high-resolution 1 H magnetic resonance spectroscopic imaging at 3-Tesla.

    Science.gov (United States)

    Steel, Adam; Chiew, Mark; Jezzard, Peter; Voets, Natalie L; Plaha, Puneet; Thomas, Michael Albert; Stagg, Charlotte J; Emir, Uzay E

    2018-05-17

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique in both experimental and clinical settings. However, to date, MRSI has been hampered by prohibitively long acquisition times and artifacts caused by subject motion and hardware-related frequency drift. In the present study, we demonstrate that density weighted concentric ring trajectory (DW-CRT) k-space sampling in combination with semi-LASER excitation and metabolite-cycling enables high-resolution MRSI data to be rapidly acquired at 3 Tesla. Single-slice full-intensity MRSI data (short echo time (TE) semi-LASER TE = 32 ms) were acquired from 6 healthy volunteers with an in-plane resolution of 5 × 5 mm in 13 min 30 sec using this approach. Using LCModel analysis, we found that the acquired spectra allowed for the mapping of total N-acetylaspartate (median Cramer-Rao Lower Bound [CRLB] = 3%), glutamate+glutamine (8%), and glutathione (13%). In addition, we demonstrate potential clinical utility of this technique by optimizing the TE to detect 2-hydroxyglutarate (long TE semi-LASER, TE = 110 ms), to produce relevant high-resolution metabolite maps of grade III IDH-mutant oligodendroglioma in a single patient. This study demonstrates the potential utility of MRSI in the clinical setting at 3 Tesla.

  15. Metabolite concentrations in supraventricular white matter from teenage to early old age: A short echo time {sup 1}H magnetic resonance spectroscopy (MRS) study

    Energy Technology Data Exchange (ETDEWEB)

    Raininko, Raili [Dept. of Radiology, Uppsala Univ., Uppsala (Sweden)], e-mail: raili.raininko@radiol.uu.se; Mattsson, Peter [Dept. of Neuroscience, Neurology, Uppsala Univ., Uppsala (Sweden)

    2010-04-15

    Background: Age- and sex-related changes of metabolites in healthy adult brains have been examined with different {sup 1}H magnetic resonance spectroscopy (MRS) methods in varying populations, and with differing results. A long repetition time and short echo time technique reduces quantification errors due to T1 and T2 relaxation effects and makes it possible to measure metabolites with short T2 relaxation times. Purpose: To examine the effect of age on the metabolite concentrations measured by 1H MRS in normal supraventricular white matter using a long repetition time (TR) and a short echo time (TE). Material and Methods: Supraventricular white matter of 57 healthy subjects (25 women, 32 men), aged 13 to 72 years, was examined with a single-voxel MRS at 1.5T using a TR of 6000 ms and a TE of 22 ms. Tissue water was used as a reference in quantification. Results: Myoinositol increased slightly and total N-acetyl aspartate (NAA) decreased slightly with increasing age. Glutamine/glutamate complex (Glx) showed U-shaped age dependence, with highest concentrations in the youngest and oldest subjects. No significant age dependence was found in total choline and total creatine. No gender differences were found. Macromolecule/ lipid (ML) fractions were reliably measurable only in 36/57 or even fewer subjects and showed very large deviations. Conclusion: The concentrations of several metabolites in cerebral supraventricular white matter are age dependent on 1H MRS, even in young and middle-aged people, and age dependency can be nonlinear. Each 1H MRS study of the brain should therefore take age into account, whereas sex does not appear to be so important. The use of macromolecule and lipid evaluations is compromised by less successful quantification and large variations in healthy people.

  16. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful ... for an MRI exam contains a metal called gadolinium . Gadolinium can be used in patients with iodine ...

  17. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... work? Unlike conventional x-ray examinations and computed tomography (CT) scans, MRI does not utilize ionizing radiation. Instead, ... Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging (MRI) Safety Contrast Materials Children ...

  18. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  19. Methylmalonic aciduria and propionic acidaemia studied by proton nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iles, R A; Hind, A J; Chalmers, R A

    1986-12-15

    Proton nuclear magnetic resonance spectroscopy has been used to monitor changes in urinary metabolites in a patient with propionic acidaemia over a period of 10 months and in a patient with methylmalonic aciduria over a period of 11 days. Results could be obtained within 5-10 min of sample receipt. In the spectra on the patient with propionic acidaemia not only could fluctuations in 3-hydroxypropionate and propionylglycine excretion be followed, but also variations in creatine, glycine and betaine, which were often present at millimolar concentrations. The patient with methylmalonic aciduria had an acute episode of severe ketoacidosis during which the glycine excretion fell but creatine excretion rose and then fell on recovery from the episode. The changes in the creatine excretion may reflect disorders in intracellular energy supply. Nuclear magnetic resonance is a powerful technique for monitoring metabolic perturbations in the organic acidurias in 'real-time', allowing the planning and evaluation of therapy. (Auth.). 18 refs.; 4 figs.; 3 tabs.

  20. Methylmalonic aciduria and propionic acidaemia studied by proton nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Iles, R.A.; Hind, A.J.; Chalmers, R.A.

    1986-01-01

    Proton nuclear magnetic resonance spectroscopy has been used to monitor changes in urinary metabolites in a patient with propionic acidaemia over a period of 10 months and in a patient with methylmalonic aciduria over a period of 11 days. Results could be obtained within 5-10 min of sample receipt. In the spectra on the patient with propionic acidaemia not only could fluctuations in 3-hydroxypropionate and propionylglycine excretion be followed, but also variations in creatine, glycine and betaine, which were often present at millimolar concentrations. The patient with methylmalonic aciduria had an acute episode of severe ketoacidosis during which the glycine excretion fell but creatine excretion rose and then fell on recovery from the episode. The changes in the creatine excretion may reflect disorders in intracellular energy supply. Nuclear magnetic resonance is a powerful technique for monitoring metabolic perturbations in the organic acidurias in 'real-time', allowing the planning and evaluation of therapy. (Auth.)

  1. Nuclear magnetic resonance gyroscope

    International Nuclear Information System (INIS)

    Grover, B.C.

    1984-01-01

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor

  2. Magnetically coupled Fano resonance of dielectric pentamer oligomer

    International Nuclear Information System (INIS)

    Zhang, Fuli; Li, Chang; He, Xuan; Chen, Lei; Fan, Yuancheng; Zhao, Qian; Zhang, Weihong; Zhou, Ji

    2017-01-01

    We present magnetically induced Fano resonance inside a dielectric metamaterial pentamer composed of ceramic bricks. Unlike previous reports where different sizes of dielectric resonators were essential to produce Fano resonance, under external magnetic field excitation, central and outer dielectric bricks with identical sizes exhibit in-phase and out-of-phase magnetic Mie oscillations. An asymmetric line shape of Fano resonance along with enhanced group delay is observed due to the interference between the magnetic resonance of the central brick and the symmetric magnetic resonance of outer bricks. Besides, Fano resonance blueshifts with the increasing resonance of the smaller central brick. The thermal-dependent permittivity of ceramics allows Fano resonance to be reversibly tuned by 300 MHz when temperature varies by 60 °C. (paper)

  3. Advances in mechanical detection of magnetic resonance

    International Nuclear Information System (INIS)

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge.

  4. Magnetic resonance butterfly coils: Design and application for hyperpolarized 13C studies

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Attanasio, Simona

    2013-01-01

    Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables cardiac metabolism assessment and provides a powerful tool for heart physiology studies, although the low molar concentration of derivate metabolites gives rise to technological limitations in terms of data quality. The desi...... throughout the volume of interest for cardiac imaging in pig. Experimental SNR-vs-depth profiles, extracted from the [1-13C]acetate phantom chemical shift image (CSI), permitted to highlight the performance of the proposed coils configuration. © 2013 Elsevier Ltd. All rights reserved....

  5. Investigation of magnetic interactions in sulfides by means of magnetic resonance

    International Nuclear Information System (INIS)

    Veen, G. van.

    1978-01-01

    Investigations have been designed to gather more information about magnetic pair interactions in sulfides by isomorphic substitution of the magnetic ions in suitable chosen diamagnetic host lattices and measurement of electron spin resonance of coupled pairs and of electron spin resonance or electron nuclear double resonance of the hyperfine interaction due to the nuclei of diamagnetic cations. The greater part of this thesis is devoted to preliminaries of magnetic resonance interpretation and sample selection and preparation. The measurements on the magnetically diluted compounds, which are described, only have an exploratory nature. (Auth.)

  6. Magnetic resonance imaging the basics

    CERN Document Server

    Constantinides, Christakis

    2014-01-01

    Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction and provides a detailed explanation of the mathematical formulation of MRI. Numerous image quantitative indices are discussed, including (among others) signal, noise, signal-to-noise, contrast, and resolution. The second part of the book examines the hardware and electronics of an MRI scanner and the typical measurements and simulations of m...

  7. Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications

    International Nuclear Information System (INIS)

    Panigrahy, Ashok; Nelson, Marvin D.; Blueml, Stefan

    2010-01-01

    Magnetic resonance spectroscopy (MRS) offers a unique, noninvasive approach to assess pediatric neurological abnormalities at microscopic levels by quantifying cellular metabolites. The most widely available MRS method, proton ( 1 H; hydrogen) spectroscopy, is FDA approved for general use and can be ordered by clinicians for pediatric neuroimaging studies if indicated. There are a multitude of both acquisition and post-processing methods that can be used in the implementation of MR spectroscopy. MRS in pediatric neuroimaging is challenging to interpret because of dramatic normal developmental changes that occur in metabolites, particularly in the first year of life. Still, MRS has been proven to provide additional clinically relevant information for several pediatric neurological disease processes such as brain tumors, infectious processes, white matter disorders, and neonatal injury. MRS can also be used as a powerful quantitative research tool. In this article, specific research applications using MRS will be demonstrated in relation to neonatal brain injury and pediatric brain tumor imaging. (orig.)

  8. [Magnetic resonance compatibility research for coronary mental stents].

    Science.gov (United States)

    Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren

    2015-01-01

    The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.

  9. The omics era: what can nuclear magnetic resonance tell us on metabolomics?

    Directory of Open Access Journals (Sweden)

    Franca Castiglione

    2018-02-01

    Full Text Available A brief overview of the potentiality and use of the metabolic fingerprint of a system or biological process is here proposed. The information on the type, quantity and variation of the pool of metabolites and its relationship with a given biological process is commonly referred to as metabolomics. One powerful analytical approach to the detection and quantitation of metabolites is by Nuclear Magnetic Resonance Spectroscopy (NMR. Additionally, the recently introduced High Resolution Magic Angle Spinning (HR-MAS NMR approach improved dramatically the potentiality of the method allowing direct sampling of ex vivo specimens, such as tissues and cells, without any pre-treatment or extraction steps. The NMR data can be processed towards the target or non-target analysis of the metabolites. The former passes through the identification of all the metabolites, the latter adopts a multivariate statistical approach such as Principal Components Analysis. In this article, the main methodological points of NMR analysis with multivariate statistics are briefly outlined and discussed. A final case-study on the discrimination of healthy and neoplastic tissues via HR-MAS NMR metabolomics is reported as a paradigmatic application.

  10. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  11. The nuclear magnetic resonance well logging

    International Nuclear Information System (INIS)

    Zhang Yumin; Shen Huitang

    2003-01-01

    In this paper, the characteristic of the nuclear magnetic resonance logging is described at first. Then its development and its principle is presented. Compared with the nuclear magnetic resonance spectrometer, the magnet techniques is the first question that we must solve in the manufacture of the NMR well logging

  12. Advances in magnetic and optical resonance

    CERN Document Server

    Warren, Warren S

    1997-01-01

    Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.

  13. Three-dimensional magnetic resonance spectroscopic imaging in the substantia nigra of healthy controls and patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Groeger, Adriane; Godau, Jana; Berg, Daniela [University of Tuebingen, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Disease (DZNE), Tuebingen (Germany); Chadzynski, Grzegorz; Klose, Uwe [University Hospital Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Tuebingen (Germany)

    2011-09-15

    To investigate the substantia nigra in patients with Parkinson's disease three-dimensional magnetic resonance spectroscopic imaging with high spatial resolution at 3 Tesla was performed. Regional variations of spectroscopic data between the rostral and caudal regions of the substantia nigra as well as the midbrain tegmentum areas were evaluated in healthy controls and patients with Parkinson's disease. Nine patients with Parkinson's disease and eight age- and gender-matched healthy controls were included in this study. Data were acquired by using three-dimensional magnetic resonance spectroscopic imaging measurements. The ratios between rostral and caudal voxels of the substantia nigra as well as the midbrain tegmentum areas were calculated for the main-metabolites N-acetyl aspartate, creatine, choline, and myo-inositol. Additionally, the metabolite/creatine ratios were calculated. In all subjects spectra of acceptable quality could be obtained with a nominal voxel size of 0.252 ml. The calculated rostral-to-caudal ratios of the metabolites as well as of the metabolite/creatine ratios showed with exception of choline/creatine ratio significant differences between healthy controls and patients with Parkinson's disease. The findings from this study indicate that regional variations in N-acetyl aspartate/creatine ratios in the regions of the substantia nigra may differentiate patients with Parkinson's disease and healthy controls. (orig.)

  14. Region-specific effects on brain metabolites of hypoxia and hyperoxia overlaid on cerebral ischemia in young and old rats: a quantitative proton magnetic resonance spectroscopy study

    Directory of Open Access Journals (Sweden)

    Giuliani Patricia

    2010-02-01

    Full Text Available Abstract Background Both hypoxia and hyperoxia, deregulating the oxidative balance, may play a role in the pathology of neurodegenerative disorders underlain by cerebral ischemia. In the present study, quantitative proton magnetic resonance spectroscopy was used to evaluate regional metabolic alterations, following a 24-hour hypoxic or hyperoxic exposure on the background of ischemic brain insult, in two contrasting age-groups of rats: young - 3 months old and aged - 24 months old. Methods Cerebral ischemia was induced by ligation of the right common carotid artery. Concentrations of eight metabolites (alanine, choline-containing compounds, total creatine, γ-aminobutyric acid, glutamate, lactate, myo-inositol and N-acetylaspartate were quantified from extracts in three different brain regions (fronto-parietal and occipital cortices and the hippocampus from both hemispheres. Results In the control normoxic condition, there were significant increases in lactate and myo-inositol concentrations in the hippocampus of the aged rats, compared with the respective values in the young ones. In the ischemia-hypoxia condition, the most prevalent changes in the brain metabolites were found in the hippocampal regions of both young and aged rats; but the effects were more evident in the aged animals. The ischemia-hyperoxia procedure caused less dedicated changes in the brain metabolites, which may reflect more limited tissue damage. Conclusions We conclude that the hippocampus turns out to be particularly susceptible to hypoxia overlaid on cerebral ischemia and that old age further increases this susceptibility.

  15. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  16. Multimodal elucidation of choline metabolism in a murine glioma model using magnetic resonance spectroscopy and 11C-choline positron emission tomography

    NARCIS (Netherlands)

    Wehrl, H.F.; Schwab, J.; Hasenbach, K.; Reischl, G.; Tabatabai, G.; Quintanilla-Martinez, L.; Jiru, F.; Chughtai, K; Kiss, A.; Cay, F.; Bukala, D.; Heeren, R.M.A.; Pichler, B.J.; Sauter, A.W.

    2013-01-01

    The metabolites, transporters, and enzymes involved in choline metabolism are regarded as biomarkers for disease progression in a variety of cancers, but their in vivo detection is not ideal. Both magnetic resonance spectroscopy [MRS using chemical shift imaging (CSI) total choline (tCho)] and

  17. Acupuncture therapy in treating migraine: results of a magnetic resonance spectroscopy imaging study.

    Science.gov (United States)

    Gu, Tao; Lin, Lei; Jiang, Yun; Chen, Juan; D'Arcy, Ryan Cn; Chen, Min; Song, Xiaowei

    2018-01-01

    Acupuncture has been proven to be effective as an alternative therapy in treating migraine, but the pathophysiological mechanisms of the treatment remain unclear. This study investigated possible neurochemical responses to acupuncture treatment. Proton magnetic resonance spectroscopy imaging was used to investigate biochemical levels pre- and post-acupuncture treatment. Participants (N=45) included subjects diagnosed with: 1) migraine without aura; 2) cervicogenic headache; and 3) healthy controls. Participants in the two patient groups received verum acupuncture using acupoints that target migraine without aura but not cervicogenic headache, while the healthy controls received a sham treatment. All participants had magnetic resonance spectroscopy scans before and after the acupuncture therapy. Levels of brain metabolites were examined in relation to clinical headache assessment scores. A significant increase in N -acetylaspartate/creatine was observed in bilateral thalamus in migraine without aura after the acupuncture treatment, which was significantly correlated with the headache intensity score. The data demonstrate brain biochemical changes underlying the effect of acupuncture treatment of migraine.

  18. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  19. Nuclear magnetic resonance diagnostic apparatus

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1985-01-01

    Nuclear magnetic resonance diagnostic apparatus including a coil for generating a gradient field in a plane perpendicular to a static magnetic field, means for controlling the operation of the coil to rotationally shift in angular steps the gradient direction of the gradient field at an angle pitch of some multiple of the unit index angle through a plurality of rotations to assume all the shift positions of the gradient direction, a rough image reconstructor for reconstructing a rough tomographic image on the basis of nuclear magnetic resonance signals acquired during a rotation of the second gradient magnetic field, a rough image display for depicting the rough tomographic image, a final image reconstructor for reconstructing a final tomographic image on the basis of all nuclear magnetic resonance signals corresponding to all of the expected rotation shift positions acquired during a plurality of rotations and a final image display for depicting the final tomographic image

  20. Nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Lambert, R.

    1991-01-01

    In order to include the effect of a magnetic object in a subject under investigation, Nuclear Magnetic Resonance (NMR) apparatus is operable at more than one radio frequency (RF) frequency. The apparatus allows normal practice as far as obtaining an NMR response or image from a given nuclear species is concerned, but, in addition, interrogates the nuclear spin system at a frequency which is different from the resonance frequency normally used for the given nuclear species, as determined from the applied magnetic field. The magnetic field close to a magnetised or magnetisable object is modified and the given nuclear species gives a response at the different frequency. Thus detection of a signal at the frequency indicates the presence of the chosen nuclei close to the magnetised or magnetisable object. Applications include validation of an object detection or automatic shape inspection system in the presence of magnetic impurities, and the detection of magnetic particles which affect measurement of liquid flow in a pipe. (author)

  1. In vivo estimation of transverse relaxation time constant (T2 ) of 17 human brain metabolites at 3T.

    Science.gov (United States)

    Wyss, Patrik O; Bianchini, Claudio; Scheidegger, Milan; Giapitzakis, Ioannis A; Hock, Andreas; Fuchs, Alexander; Henning, Anke

    2018-08-01

    The transverse relaxation times T 2 of 17 metabolites in vivo at 3T is reported and region specific differences are addressed. An echo-time series protocol was applied to one, two, or three volumes of interest with different fraction of white and gray matter including a total number of 106 healthy volunteers and acquiring a total number of 128 spectra. The data were fitted with the 2D fitting tool ProFit2, which included individual line shape modeling for all metabolites and allowed the T 2 calculation of 28 moieties of 17 metabolites. The T 2 of 10 metabolites and their moieties have been reported for the first time. Region specific T 2 differences in white and gray matter enriched tissue occur in 16 of 17 metabolites examined including single resonance lines and coupled spin systems. The relaxation time T 2 is regions specific and has to be considered when applying tissue composition correction for internal water referencing. Magn Reson Med 80:452-461, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Magnetic resonance and porous materials

    International Nuclear Information System (INIS)

    McDonald, P.; Strange, J.

    1998-01-01

    Mention the words magnetic resonance to your medical advisor and he or she will immediately think of a multi-million pound scanner that peers deep into the brain. A chemist, on the other hand, will imagine a machine that costs several hundred thousand pounds and produces high-resolution spectra for chemical analysis. Food technologists will probably think of a bench-top instrument for determining moisture content, while an oil prospector will envisage a device that can be operated several kilometres down an oil well. To a physicist the term is more likely to conjure up a mental picture of nuclear spins precessing in a magnetic field. These examples illustrate the diverse aspects of a phenomenon discovered by physicists over 50 years ago. Electron spin resonance was first discovered by Russian scientists, and nuclear magnetic resonance was discovered in the US shortly afterwards by Ed Purcell at Harvard University and Felix Bloch at Stanford University. Today, nuclear magnetic resonance (NMR) is the most widely used technique. Modern NMR machines are making it possible to probe microstructure and molecular movement in materials as diverse as polymers, cements, rocks, soil and foods. NMR allows the distribution of different components in a material to be determined with a resolution approaching 1μm, although the signal can be sensitive to even smaller lengthscales. In this article the authors describe how physicists are still developing magnetic resonance to exploit a range of new applications. (UK)

  3. Magnetic resonance imaging by using nano-magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Khorramdin, A. [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Isapour, Gh. [Department of Materials and Engineering, Hakim Sabzevari University (Iran, Islamic Republic of)

    2014-11-15

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants. - Highlights: • This paper studies the physics of MRI as a powerful diagnostic technique. • MRI uses the differentiation between healthy and pathological tissues. • The relaxation times can be shortened by the use of a magnetic contrast agent. • The magnetic nanoparticles act as contrast agents, helping to increase the resolution. • Different synthesis methods can influence the magnetic resonance behavior.

  4. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients

    Directory of Open Access Journals (Sweden)

    Qiao J

    2016-09-01

    Full Text Available Jun Qiao,1,2 Guixing Jin,1,2 Licun Lei,3 Lan Wang,1,2 Yaqiang Du,3 Xueyi Wang1,2 1Institute of Mental Health, The First Hospital of Hebei Medical University, 2Brain Ageing and Cognitive Neuroscience Laboratory, Hebei Medical University, 3Department of Radiology, The First Hospital of Hebei Medical University, Hebei, People’s Republic of China Objective: To explore the effect of right dorsolateral prefrontal cortex (DLPFC repetitive transcranial magnetic stimulation (rTMS on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy (1H-MRS in recently detoxified alcohol-dependent patients. Materials and methods: In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions and the control group (sham stimulation. Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R and Brief Visuospatial Memory Test-Revised (BVMT-R before and after treatment. 1H-MRS was used to detect the levels of N-acetyl aspartic acid (NAA, choline (Cho, and creatine (Cr in bilateral hippocampi before and after treatment. Results: Thirty-eight patients (18 in the experimental group and 20 in the control group were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. Conclusion: High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1H-MRS in recently detoxified alcohol-dependent patients. Keywords: alcohol dependence, memory, repetitive transcranial magnetic stimulation, MR spectroscopy

  5. Targeting high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance analysis with high-resolution radical scavenging profiles - bioactive secondary metabolites from the endophytic fungus Penicillium namyslowskii

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Nyberg, Nils; Tejesvi, Mysore V.

    2013-01-01

    The high-resolution radical scavenging profile of an extract of the endophytic fungus Penicillium namyslowskii was used to target analysis by high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy, i.e., HPLC...... NMR probe designed for 1.7-mm NMR tubes. To further explore the potential of the above HPLC-HRMS-SPE-NMR platform for analysis of endophytic extracts, six peaks displaying no radical scavenging activity were also analyzed. This allowed unambiguous identification of six metabolites, i...... and griseofulvin, directly from crude extract via HPLC-HRMS-SPE-NMR. Dechlorodehydrogriseofulvin was reported for the first time from nature....

  6. Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury

    Science.gov (United States)

    Serkova, Natalie J.; Van Rheen, Zachary; Tobias, Meghan; Pitzer, Joshua E.; Wilkinson, J. Erby; Stringer, Kathleen A.

    2008-01-01

    Magnetic resonance imaging (MRI) and metabolic nuclear magnetic resonance (NMR) spectroscopy are clinically available but have had little application in the quantification of experimental lung injury. There is a growing and unfulfilled need for predictive animal models that can improve our understanding of disease pathogenesis and therapeutic intervention. Integration of MRI and NMR could extend the application of experimental data into the clinical setting. This study investigated the ability of MRI and metabolic NMR to detect and quantify inflammation-mediated lung injury. Pulmonary inflammation was induced in male B6C3F1 mice by intratracheal administration of IL-1β and TNF-α under isoflurane anesthesia. Mice underwent MRI at 2, 4, 6, and 24 h after dosing. At 6 and 24 h lungs were harvested for metabolic NMR analysis. Data acquired from IL-1β+TNF-α-treated animals were compared with saline-treated control mice. The hyperintense-to-total lung volume (HTLV) ratio derived from MRI was higher in IL-1β+TNF-α-treated mice compared with control at 2, 4, and 6 h but returned to control levels by 24 h. The ability of MRI to detect pulmonary inflammation was confirmed by the association between HTLV ratio and histological and pathological end points. Principal component analysis of NMR-detectable metabolites also showed a temporal pattern for which energy metabolism-based biomarkers were identified. These data demonstrate that both MRI and metabolic NMR have utility in the detection and quantification of inflammation-mediated lung injury. Integration of these clinically available techniques into experimental models of lung injury could improve the translation of basic science knowledge and information to the clinic. PMID:18441091

  7. Optically transmitted and inductively coupled electric reference to access in vivo concentrations for quantitative proton-decoupled ¹³C magnetic resonance spectroscopy.

    Science.gov (United States)

    Chen, Xing; Pavan, Matteo; Heinzer-Schweizer, Susanne; Boesiger, Peter; Henning, Anke

    2012-01-01

    This report describes our efforts on quantification of tissue metabolite concentrations in mM by nuclear Overhauser enhanced and proton decoupled (13) C magnetic resonance spectroscopy and the Electric Reference To access In vivo Concentrations (ERETIC) method. Previous work showed that a calibrated synthetic magnetic resonance spectroscopy-like signal transmitted through an optical fiber and inductively coupled into a transmit/receive coil represents a reliable reference standard for in vivo (1) H magnetic resonance spectroscopy quantification on a clinical platform. In this work, we introduce a related implementation that enables simultaneous proton decoupling and ERETIC-based metabolite quantification and hence extends the applicability of the ERETIC method to nuclear Overhauser enhanced and proton decoupled in vivo (13) C magnetic resonance spectroscopy. In addition, ERETIC signal stability under the influence of simultaneous proton decoupling is investigated. The proposed quantification method was cross-validated against internal and external reference standards on human skeletal muscle. The ERETIC signal intensity stability was 100.65 ± 4.18% over 3 months including measurements with and without proton decoupling. Glycogen and unsaturated fatty acid concentrations measured with the ERETIC method were in excellent agreement with internal creatine and external phantom reference methods, showing a difference of 1.85 ± 1.21% for glycogen and 1.84 ± 1.00% for unsaturated fatty acid between ERETIC and creatine-based quantification, whereas the deviations between external reference and creatine-based quantification are 6.95 ± 9.52% and 3.19 ± 2.60%, respectively. Copyright © 2011 Wiley Periodicals, Inc.

  8. Magnetic resonance imaging of the prostate

    DEFF Research Database (Denmark)

    Iversen, P; Kjaer, L; Thomsen, C

    1988-01-01

    Magnetic resonance imaging offers new possibilities in investigation of the prostate gland. Current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be useful in the staging of carcinoma of the prostate....

  9. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  10. Magnetic resonance imaging of the prostate

    DEFF Research Database (Denmark)

    Iversen, P; Kjaer, L; Thomsen, C

    1987-01-01

    Magnetic resonance imaging offers new possibilities in the investigation of the prostate. The current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be of value in the staging of carcinoma of the prostate....

  11. Magnetic resonance of low dimensional magnetic solids

    Energy Technology Data Exchange (ETDEWEB)

    Gatteschi, D.; Ferraro, F.; Sessoli, R. (Florence Univ. (Italy))

    1994-06-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs.

  12. Magnetic resonance of low dimensional magnetic solids

    International Nuclear Information System (INIS)

    Gatteschi, D.; Ferraro, F.; Sessoli, R.

    1994-01-01

    The utility of EPR and NMR in the study of low-dimensional magnetic solids is shown. A short summary of the basis of magnetic resonance in these systems is reported, and the importance of spin-diffusion and magnetic anisotropy evidenced. Some results from experiments on metal-radical chains and clusters are presented. (authors). 37 refs., 7 figs

  13. The nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Goyer, Ph.

    1997-01-01

    The spectroscopy of nuclear magnetic resonance constitutes a major analytical technique in biological and organic analysis. This technique appears now in the programme of preparatory classes and its teaching is developed in the second year of DEUG. The following article reviews on the nuclear magnetic resonance and on the possibilities it offers to bring to the fore the physico-chemical properties of molecules. (N.C.)

  14. Advances in magnetic resonance 2

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 2, features a mixture of experimental and theoretical contributions. The book contains four chapters and begins with an ambitious and general treatment of the problem of signal-to-noise ratio in magnetic resonance. This is followed by separate chapters on the interpretation of nuclear relaxation in fluids, with special reference to hydrogen; and various aspects of molecular theory of importance in NMR.

  15. Magnetic resonance annual, 1988

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system

  16. Magnetic resonance angiography

    Science.gov (United States)

    ... Saunders; 2015:chap 17. Litt H, Carpenter JP. Magnetic resonance imaging. In: Cronenwett JL, Johnston KW, eds. Rutherford's Vascular Surgery . 8th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap ...

  17. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... magnetic resonance imaging (MRI) uses a powerful magnetic field, radio waves and a computer to produce detailed ... problems, medications, recent surgeries and allergies. The magnetic field is not harmful, but it may cause some ...

  18. Magnetic resonance spectroscopy in patients with Fabry and Gaucher disease

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, S., E-mail: stephan@nmr.at [Department of Radiology, MR-Centre of Excellence, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bogner, W. [Department of Radiology, MR-Centre of Excellence, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Stadlbauer, A. [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten (Austria); Krssak, M. [Department of Radiology, MR-Centre of Excellence, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bodamer, O. [Department of Pediatrics, Medical University of Vienna (Austria)

    2011-08-15

    Objective: Fabry and Gaucher diseases are rare progressive inherited disorders of glycosphingolipid metabolism that affect multiple organ systems. The aim of this study was to investigate evidence for metabolic changes in the central nervous system involvement using proton magnetic resonance spectroscopic imaging. Methods: Seven Fabry and eight Gaucher patients were included into this study. A two-dimensional, spectroscopic imaging method with an ultra-short echo-time of 11 ms was used at a 3 T whole body magnet. Absolute metabolic values were retrieved using internal water scaling. Results were compared, with sex- and age-matched controls. Results: In contrast to previous findings, absolute and relative metabolite values of N-acetyl-aspartate (NAA) or NAA/Creatine (Cr), Cr, Choline (Cho) or Cho/Cr and myo-Inositol (mI) or mI/Cr revealed no, differences between Fabry and Gaucher Type 1 (GD1) patients and controls. Average values were, 10.22, 6.32, 2.15 and 5.39 mMol/kg wet weight for NAA, Cr, Cho and mI, respectively. In this study, we found significantly decreasing NAA/Cho with increasing age in all three groups (Fabry, GD1, patients and healthy controls) (between 5 and 8% per decade). Conclusions: There were no changes of the quantified metabolites detected by MRS in normal appearing white matter. This study shows the importance of sex- and age-matched controls.

  19. Magnetic resonance spectroscopy in patients with Fabry and Gaucher disease

    International Nuclear Information System (INIS)

    Gruber, S.; Bogner, W.; Stadlbauer, A.; Krssak, M.; Bodamer, O.

    2011-01-01

    Objective: Fabry and Gaucher diseases are rare progressive inherited disorders of glycosphingolipid metabolism that affect multiple organ systems. The aim of this study was to investigate evidence for metabolic changes in the central nervous system involvement using proton magnetic resonance spectroscopic imaging. Methods: Seven Fabry and eight Gaucher patients were included into this study. A two-dimensional, spectroscopic imaging method with an ultra-short echo-time of 11 ms was used at a 3 T whole body magnet. Absolute metabolic values were retrieved using internal water scaling. Results were compared, with sex- and age-matched controls. Results: In contrast to previous findings, absolute and relative metabolite values of N-acetyl-aspartate (NAA) or NAA/Creatine (Cr), Cr, Choline (Cho) or Cho/Cr and myo-Inositol (mI) or mI/Cr revealed no, differences between Fabry and Gaucher Type 1 (GD1) patients and controls. Average values were, 10.22, 6.32, 2.15 and 5.39 mMol/kg wet weight for NAA, Cr, Cho and mI, respectively. In this study, we found significantly decreasing NAA/Cho with increasing age in all three groups (Fabry, GD1, patients and healthy controls) (between 5 and 8% per decade). Conclusions: There were no changes of the quantified metabolites detected by MRS in normal appearing white matter. This study shows the importance of sex- and age-matched controls.

  20. Magnetic resonance imaging: hazard, risk and safety

    International Nuclear Information System (INIS)

    Narayan, Pradeep; Suri, S.; Singh, P.

    2001-01-01

    The hazard and risk associated with magnetic resonance imaging is a matter of concern. In 1982, the Food and Drug Administration (FDA), USA issued guidelines to Hospital's Investigational Review Board (IRBs) in 'Guidelines for Evaluating Electromagnetic Exposure Risks for Trials of Clinical Nuclear Magnetic Resonance (NMR)'. In 1997, the Berufsgenossenschaft (BG), professional association for precision engineering and electronics of Germany, in their preliminary proposal for safety limits extended their concerns on static magnetic field. Owing to both time varying and static magnetic fields applied in Magnetic Resonance Imaging (MRI) this became of immediate concern to user community to assess the potential hazard and risk associated with the NMR system

  1. Magnetic resonance phenomena in dynamics of relativistic particles

    International Nuclear Information System (INIS)

    Ternov, I.M.; Bordovitsyn, V.A.

    1987-01-01

    A relativistic generalization of Rabi's formula for magnetic resonance is given. On this basis, we consider fast and slow passage through resonance. We define a magnetic resonance exterior field as usual, using unit vectors of a Cartesian coordinate system, a homogeneous magnetic field, and the amplitude of a rotating magnetic field. For the description of spin dynamics we use the Bargmann-Michel-Telegdi equation

  2. Quantification of in vivo 1H magnetic resonance spectroscopy signals with baseline and lineshape estimation

    International Nuclear Information System (INIS)

    Osorio-Garcia, M I; Sima, D M; Van Huffel, S; Nielsen, F U; Dresselaers, T; Himmelreich, U; Van Leuven, F

    2011-01-01

    The in vivo quantification of magnetic resonance spectroscopy (MRS) signals is a method to estimate metabolite concentrations of living tissue. Obtaining reliable concentrations is still a challenge due to the experimental conditions affecting spectral quality. Additionally, lipids and macromolecules overlap with the metabolites of interest, affecting their reliable estimation. In this study, we propose to combine the self-deconvolution lineshape estimation method, which accounts for spectral shape distortions, with two different approaches for taking into account the macromolecular baseline contribution: (a) based on macromolecules and lipids measured in vivo using an inversion recovery technique, and (b) based on the simulation of macromolecular resonances using prior knowledge from a database of inversion recovery signals. The ultimate goal is to measure macromolecular and lipid data only once as described in (a) to create macromolecular and lipid profiles. These profiles then can be used as described in (b) for data measured under the same conditions. The method is evaluated on in vivo 1 H MRS signals at 9.4 T from mouse hippocampus. Results show that better metabolite fits are obtained when lineshape and baseline estimations are simultaneously performed and that baseline estimation based on prior knowledge from macromolecular measured signals can be reliably used to replace time-consuming individual macromolecular and lipid acquisitions

  3. Magnetic resonance imaging in sudden deafness

    International Nuclear Information System (INIS)

    Ramos, Hugo Valter Lisboa; Barros, Flavia Alencar; Penido, Norma de Oliveira; Souza, Ana Claudia Valerio de; Yamaoka, Wellington Yugo; Yamashita, Helio

    2005-01-01

    The etiology of sudden deafness can remain undetermined despite extensive investigation. This study addresses the value of magnetic resonance imaging in the analysis of sudden deafness patients.Study Design: transversal cohort.Material And Method: In a prospective study, 49 patients attended at otolaryngology emergency room of Federal University of Sao Paulo - Escola Paulista de Medicina, from April 2001 to May 2003, were submitted to magnetic resonance imaging.Results: Magnetic Resonance abnormalities were seen in 23 (46.9%) patients and revealed two tumors suggestive of meningioma, three vestibular schwannomas, thirteen microangiopathic changes of the brain and five (21.7%) pathological conditions of the labyrinth.Conclusion: Sudden deafness should be approached as a symptom common to different diseases. The presence of cerebellopontine angle tumors in 10.2% of our cases, among other treatable causes, justifies the recommendation of gadolinium-enhanced magnetic resonance use, not only to study the auditory peripheral pathway, but to study the whole auditory pathway including the brain. (author)

  4. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Brain KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Brain What's in this article? What ...

  5. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn; Creber, Sarah A.; Vrouwenvelder, Johannes S.; Johns, Michael L.

    2015-01-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  6. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  7. Magnetic Resonance Imaging. Chapter 15

    Energy Technology Data Exchange (ETDEWEB)

    Leach, M. O. [The Institute of Cancer Research and The Royal Marsden Hospital, London (United Kingdom)

    2014-09-15

    In Chapter 14, the principles of nuclear magnetic resonance were presented, along with an introduction to image forming processes. In this chapter, magnetic resonance imaging (MRI) will be reviewed, beginning with the hardware needed and its impact on image quality. The acquisition processes and image reconstruction will be discussed, as well as the artefacts that are possible, with discussion of the important area of safety and bioeffects completing the chapter.

  8. Phosphorus-31 nuclear magnetic resonance spectroscopic study of the canine pancreas: applications to acute alcoholic pancreatitis

    International Nuclear Information System (INIS)

    Janes, N.; Clemens, J.A.; Glickson, J.D.; Cameron, J.L.

    1988-01-01

    The first nuclear magnetic resonance spectroscopic study of the canine pancreas is described. Both in-vivo, ex-vivo protocols and NMR observables are discussed. The stability of the ex-vivo preparation based on the NMR observables is established for at least four hours. The spectra obtained from the in-vivo and ex-vivo preparations exhibited similar metabolite ratios, further validating the model. Metabolite levels were unchanged by a 50% increase in perfusion rate. Only trace amounts of phosphocreatine were observed either in the intact gland or in extracts. Acute alcoholic pancreatitis was mimicked by free fatty acid infusion. Injury resulted in hyperamylasemia, edema (weight gain), increased hematocrit and perfusion pressure, and depressed levels of high energy phosphates

  9. Force detection of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Rugar, D.; Zueger, O.; Hoen, S.; Yannoni, C.S.; Vieth, H.M.; Kendrick, R.D.

    1994-01-01

    Micromechanical sensing of magnetic force was used to detect nuclear magnetic resonance with exceptional sensitivity and spatial resolution. With a 900 angstrom thick silicon nitride cantilever capable of detecting subfemtonewton forces, a single shot sensitivity of 1.6 x 10 13 protons was achieved for an ammonium nitrate sample mounted on the cantilever. A nearby millimeter-size iron particle produced a 600 tesla per meter magnetic field gradient, resulting in a spatial resolution of 2.6 micrometers in one dimension. These results suggest that magnetic force sensing is a viable approach for enhancing the sensitivity and spatial resolution of nuclear magnetic resonance microimaging

  10. Principles of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mlynarik, V.; Tkac, I.; Srbecky, M.

    1995-01-01

    The aim of this review is to describe and explain the basic principles of magnetic resonance imaging. The first part of the text is devoted to the phenomenon of magnetic resonance (the interaction of RF magnetic field with the set of magnetic moments in the homogeneous magnetic field) and to relaxation processes. Then, the creation of MR image is described (slice selection, phase and frequency encoding of spatial information). The basic and the most frequently used techniques are explained (spin echo, gradient echo). The way the repetition and echo times influence the image quality and contrast (T1 or T2 weighing) is described. The part with the technical description of the MR equipment is included in the review. The MR imagination examination are compared with X-ray computer tomography technique

  11. Magnetic resonance imaging in clinically-definite multiple sclerosis

    International Nuclear Information System (INIS)

    Noakes, J.B.; Herkes, G.K.; Frith, J.A.

    1990-01-01

    Forty-two patients with clinically-definite multiple sclerosis were examined by magnetic resonance imaging using a 1.5-T instrument. Magnetic resonance imaging detected an abnormality in 90% of patients. In four patients, no lesions were demonstrated. The number, size and site of the lesions by magnetic resonance imaging were compared with the patients' clinical status and other variables. The Kurtzke disability status scale score increased in patients with corpus callosum atrophy, brainstem and basal ganglia lesions, and correlated with the total number of lesions. No correlation was shown between the findings of magnetic resonance imaging and disease duration, age, sex or pattern-reversal visual-evoked potentials. The variety of magnetic resonance images that could be obtained in patients with clinically-definite multiple sclerosis is highlighted. 24 refs., 8 figs., 1 tab

  12. Nuclear magnetic resonance method and apparatus

    International Nuclear Information System (INIS)

    Burl, M.; Young, I.R.

    1984-01-01

    A method and apparatus for determining the rate of flow of a liquid in a selected region of a body by nuclear magnetic resonance techniques are described. The method includes a sequence of applying a first magnetic pulse effective to excite nuclear magnetic resonance of a chosen nucleus within the liquid preferentially in a slice of the body which includes the selected region. A period of time (tsub(D)) is waited and then a second magnetic pulse is applied which is effective to excite nuclear magnetic resonance of the nuclei preferentially in the slice, and the free induction decay signal is measured. The whole sequence is repeated for different values of the period of time (tsub(D)). The variation in the value of the measured signal with tsub(D) is then related to the rate of flow of the liquid through the slice. (author)

  13. Translational Approaches for Studying Neurodevelopmental Disorders Utilizing in Vivo Proton (+H) Magnetic Resonance Spectroscopic Imaging in Rats

    Science.gov (United States)

    Ronca, April E.

    2014-01-01

    Intrauterine complications have been implicated in the etiology of neuripsychiatric disorders including schizophrenia, autism and ADHD. This presentation will describe new translational studies derived from in vivo magnetic resonance imaging of developing and adult brain following perinatal asphyxia (PA). Our findings reveal significant effects of PA on neurometabolic profiles at one week of age, and significant relationships between early metabolites and later life phenotypes including behavior and brain morphometry

  14. Application of 3.0T magnetic resonance spectroscopy imaging in the evaluation on the development of normal brain white matter in infants and young children

    Directory of Open Access Journals (Sweden)

    Wen-li XU

    2014-01-01

    Full Text Available Objective To calculate the radios of peak area of proton magnetic resonance spectroscopy metabolites in brain white matter of normal infants and young children, to observe the features of metabolite spectra, and to explore the relations between their ratio with age. Methods The peak areas of metabolites, including N-acetyl aspartate (NAA, choline (Cho, creatine (Cr, and their ratio of NAA/Cho, NAA/Cr, Cho/Cr, in paraventricular white matter of 180 normal infants and young children with different ages as evaluated by multi-voxel proton magnetic resonance spectroscopy. Results In paraventricular white matter, spectrum of NAA increased, and that of Cho decreased gradually, while both of them were stabilized at 2 years old. Cr was increased obviously within 3 months, and stabilized after 4 months. Significant differences were found in ratio of different metabolites in paraventricular white matter in different ages (P<0.05. The ratios of NAA/Cho and NAA/Cr in paraventricular white mater were positively correlated with age (r=0.741, r=0.625, while that of Cho/Cr was negatively correlated with age (r=–0.552, P<0.05. Conclusion The ratios of different metabolites are different in brain white matter in infants of different ages. Metabolites concentrations in brain white matter are correlated to some extent with age, which may provide a diagnostic criterion for evaluation of normal brain development and abnormal brain metabolism. DOI: 10.11855/j.issn.0577-7402.2013.12.05

  15. Interaction of magnetic resonators studied by the magnetic field enhancement

    Directory of Open Access Journals (Sweden)

    Yumin Hou

    2013-12-01

    Full Text Available It is the first time that the magnetic field enhancement (MFE is used to study the interaction of magnetic resonators (MRs, which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

  16. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  17. Magnetic resonance imaging of the fetal brain.

    Science.gov (United States)

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  18. Study of the muscular metabolism using Phosphorus 31 Magnetic Resonance Spectroscopy (31P-MRS) in normal subjects

    International Nuclear Information System (INIS)

    Batista, T.S.; Salmon, C.E.G.; Santos, A.C.

    2008-01-01

    Phosphorus 31 Magnetic Resonance Spectroscopy ( 31 P-MRS) is a powerful technique for evaluating human muscular metabolism. Some reports indicated the behavior of phosphorylated metabolites (PCr, ADP and Pi) and other indirect parameters (intracellular pH and [Mg 2+ ]) in muscles at rest and after an exercise load. The aim of this work is a quantitative study of the phosphorylated metabolite levels in the calf muscle of normal subjects at rest and post-exercise, in order to create a normal control database. 31 P spectra of seven volunteers were acquired in both conditions. Firstly, different quantification methodologies were evaluated to use the more reliable. The P Cr metabolite was the more stable at rest and it had mono-exponential behavior after exercise. The Pi was the more sensible indicator of the physical activities. The time constants of the recuperation process are report for all the evaluated metabolites and parameters. Finally, the temporal behavior of phospho monoesters was quantified. (author)

  19. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  20. Resonance of magnetization excited by voltage in magnetoelectric heterostructures

    Science.gov (United States)

    Yu, Guoliang; Zhang, Huaiwu; Li, Yuanxun; Li, Jie; Zhang, Dainan; Sun, Nian

    2018-04-01

    Manipulation of magnetization dynamics is critical for spin-based devices. Voltage driven magnetization resonance is promising for realizing low-power information processing systems. Here, we show through Finite Element Method (FEM) simulations that magnetization resonance in nanoscale magnetic elements can be generated by a radio frequency (rf) voltage via the converse magnetoelectric (ME) effect. The magnetization dynamics induced by voltage in a ME heterostructures is simulated by taking into account the magnetoelastic and piezoelectric coupling mechanisms among magnetization, strain and voltage. The frequency of the excited magnetization resonance is equal to the driving rf voltage frequency. The proposed voltage driven magnetization resonance excitation mechanism opens a way toward energy-efficient spin based device applications.

  1. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  2. (1) H-MRS processing parameters affect metabolite quantification: The urgent need for uniform and transparent standardization

    NARCIS (Netherlands)

    Bhogal, A.A.; Schur, R.R.; Houtepen, L.C.; Bank, B.L. van de; Boer, V.O.; Marsman, A.; Barker, P.B.; Scheenen, T.W.J.; Wijnen, J.P.; Vinkers, C.H.; Klomp, D.W.J.

    2017-01-01

    Proton magnetic resonance spectroscopy ((1) H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, gamma-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of (1) H-MRS metabolite

  3. Waveguide volume probe for magnetic resonance imaging and spectroscopy

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a probe for use within the field of nuclear magnetic resonance, such as magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS)). One embodiment relates to an RF probe for magnetic resonance imaging and/or spectroscopy comprising a conductive...... non-magnetic hollow waveguide having an internal volume and at least one open end, one or more capacitors and at least a first conductive non-magnetic wire, wherein said first conductive wire connects at least one of said one or more capacitors to opposite walls of one open end of the waveguide...

  4. Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Zhang, Z.; Hammel, P.C.; Wigen, P.E.

    1996-01-01

    We report the observation of a ferromagnetic resonance signal arising from a microscopic (∼20μmx40μm) particle of thin (3μm) yttrium iron garnet film using magnetic resonance force microscopy (MRFM). The large signal intensity in the resonance spectra suggests that MRFM could become a powerful microscopic ferromagnetic resonance technique with a micron or sub-micron resolution. We also observe a very strong nonresonance signal which occurs in the field regime where the sample magnetization readily reorients in response to the modulation of the magnetic field. This signal will be the main noise source in applications where a magnet is mounted on the cantilever. copyright 1996 American Institute of Physics

  5. Magnetic resonance techniques for investigation of multiple sclerosis

    Science.gov (United States)

    MacKay, Alex; Laule, Cornelia; Li, David K. B.; Meyers, Sandra M.; Russell-Schulz, Bretta; Vavasour, Irene M.

    2014-11-01

    Multiple sclerosis (MS) is a common neurological disease which can cause loss of vision and balance, muscle weakness, impaired speech, fatigue, cognitive dysfunction and even paralysis. The key pathological processes in MS are inflammation, edema, myelin loss, axonal loss and gliosis. Unfortunately, the cause of MS is still not understood and there is currently no cure. Magnetic resonance imaging (MRI) is an important clinical and research tool for MS. 'Conventional' MRI images of MS brain reveal bright lesions, or plaques, which demark regions of severe tissue damage. Conventional MRI has been extremely valuable for the diagnosis and management of people who have MS and also for the assessment of therapies designed to reduce inflammation and promote repair. While conventional MRI is clearly valuable, it lack pathological specificity and, in some cases, sensitivity to non-lesional pathology. Advanced MR techniques have been developed to provide information that is more sensitive and specific than what is available with clinical scanning. Diffusion tensor imaging and magnetization transfer provide a general but non-specific measure of the pathological state of brain tissue. MR spectroscopy provides concentrations of brain metabolites which can be related to specific pathologies. Myelin water imaging was designed to assess brain myelination and has proved useful for measuring myelin loss in MS. To combat MS, it is crucial that the pharmaceutical industry finds therapies which can reverse the neurodegenerative processes which occur in the disease. The challenge for magnetic resonance researchers is to design imaging techniques which can provide detailed pathological information relating to the mechanisms of MS therapies. This paper briefly describes the pathologies of MS and demonstrates how MS-associated pathologies can be followed using both conventional and advanced MR imaging protocols.

  6. The particle concentration effect on magnetic resonance linewidth for magnetic liquids with chain aggregates

    International Nuclear Information System (INIS)

    Marin, C.N.

    2002-01-01

    Based on the assumption of particle chains formation within a magnetic liquid, computer simulation of the magnetic resonance line is presented. The dependence on particle concentration within a magnetic liquid of magnetic resonance linewidth is analyzed. The computer simulation demonstrates that the particles chaining has an important effect on the enlargement of the magnetic resonance line. Increasing the particle concentration within magnetic liquid leads to an increase in the linewidth. The agreement with some experimental findings is discussed

  7. Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 Tesla

    International Nuclear Information System (INIS)

    Bottomley, P.A.; Hart, H.R. Jr.; Edelstein, W.A.; Schenck, J.F.; Smith, L.S.; Leue, W.M.; Mueller, O.M.; Redington, R.W.

    1984-01-01

    Proton magnetic resonance (MR) images were obtained of the human head in magnetic fields as high as 1.5 Tesla (T) using slotted resonator high radio-frequency (RF) detection coils. The images showed no RF field penetration problems and exhibited an 11 (+/-1)-fold improvement in signal-to-noise ratio over a .12-T imaging system. The first localized phosphorus 31, carbon 13, and proton MR chemical shift spectra recorded with surface coils from the head and body in the same instrument showed relative concentrations of phosphorus metabolites, triglycerides, and, when correlated with proton images, negligible lipid (-CH 2 -) signal from brain tissue on the time scale of the imaging experiment. Sugar phosphate and phosphodiester concentrations were significantly elevated in the head compared with muscle. This method should allow the combined assessment of anatomy, metabolism, and biochemistry in both the normal and diseased brain

  8. (1) H-MRS processing parameters affect metabolite quantification

    DEFF Research Database (Denmark)

    Bhogal, Alex A; Schür, Remmelt R; Houtepen, Lotte C

    2017-01-01

    investigated the influence of model parameters and spectral quantification software on fitted metabolite concentration values. Sixty spectra in 30 individuals (repeated measures) were acquired using a 7-T MRI scanner. Data were processed by four independent research groups with the freedom to choose their own...... + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. Metabolite quantification using identical (1) H-MRS data was influenced by processing parameters, basis sets and software choice. Locally preferred processing choices affected metabolite quantification, even when using identical software. Our results......Proton magnetic resonance spectroscopy ((1) H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, γ-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of (1) H-MRS metabolite quantification...

  9. 76 FR 58281 - Magnetic Resonance Imaging Safety; Public Workshop

    Science.gov (United States)

    2011-09-20

    ...] Magnetic Resonance Imaging Safety; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION... announcing a public workshop entitled: ``Magnetic Resonance Imaging (MRI) Safety Public Workshop.'' The purpose of the public workshop is to discuss factors affecting the safe use of magnetic resonance imaging...

  10. Functional magnetic resonance imaging of the primary motor cortex ...

    Indian Academy of Sciences (India)

    Unknown

    Abbreviations used: BOLD, Blood oxygenation level dependent; CBF, cerebral blood flow; fMRI, functional magnetic resonance imaging; EPI, eco-planar imaging; FOV, field of view; MRI, Magnetic resonance imaging; MRS, magnetic resonance spectroscopy;. PET, position emission tomography; rCBF, regional cerebral ...

  11. Magnetic resonance angiography for the head and neck region

    International Nuclear Information System (INIS)

    Aschenbach, R.; Esser, D.

    2004-01-01

    Magnetic resonance angiography is a noninvasive method in vascular imaging using noncontrast- enhanced and contrast-enhanced techniques. The contrast media used in contrast- enhanced magnetic resonance angiography are different from the X-ray contrast media and do not affect the thyroid gland or renal function. In detecting hypervascularized lesions in the head and neck, contrast-enhanced magnetic resonance angiography is the method of choice, which provides an acceptable quality in comparison to digital subtraction angiography. Future developments in magnetic resonance imaging techniques will cause a wider use of magnetic resonance angiography, especially in head and neck imaging. Digital subtraction angiography should therefore only be used in problem cases and for preoperative embolization [de

  12. 1H-MRS processing parameters affect metabolite quantification : The urgent need for uniform and transparent standardization

    NARCIS (Netherlands)

    Bhogal, Alex A.; Schür, Remmelt; Houtepen, Lotte C.; van de Bank, B.L.; Boer, Vincent O.; Marsman, Anouk; Barker, Peter B.; Scheenen, Tom W. J.; Wijnen, Jannie P.; Vinkers, Christiaan H.; Klomp, Dennis W.J.

    2017-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, γ-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of 1H-MRS metabolite quantification. It is

  13. Cerebral metabolic abnormalities in congestive heart failure detected by proton magnetic resonance spectroscopy.

    Science.gov (United States)

    Lee, C W; Lee, J H; Kim, J J; Park, S W; Hong, M K; Kim, S T; Lim, T H; Park, S J

    1999-04-01

    Using proton magnetic resonance spectroscopy, we investigated cerebral metabolism and its determinants in congestive heart failure (CHF), and the effects of cardiac transplantation on these measurements. Few data are available about cerebral metabolism in CHF. Fifty patients with CHF (ejection fraction OGM) and parietal white matter (PWM). Absolute levels of the metabolites (N-acetylaspartate, creatine, choline, myo-inositol) were calculated. In PWM only creatine level was significantly lower in CHF than in control subjects, but in OGM all four metabolite levels were decreased in CHF. The creatine level was independently correlated with half-recovery time and duration of heart failure symptoms in PWM (r = -0.56, p OGM (r = 0.58, p < 0.05). Cerebral metabolic abnormalities were improved after successful cardiac transplantation. This study shows that cerebral metabolism is abnormally deranged in advanced CHF and it may serve as a potential marker of the disease severity.

  14. The relationship between cognitive impairment and in vivo metabolite ratios in patients with clinical Alzheimer's disease and vascular dementia: a proton magnetic resonance spectroscopy study

    International Nuclear Information System (INIS)

    Waldman, A.D.; Rai, G.S.

    2003-01-01

    Previous magnetic resonance spectroscopy (MRS) studies have shown increased myo-inositol (MI) and decreased N-acetyl aspartate (NAA) levels in the parieto-occipital lobes of patients with Alzheimer's disease (AD) compared to those with other dementias and normal subjects. This study aimed to establish the quantitative relationship between metabolite ratios and degree of cognitive impairment in patients with mild to moderate AD and sub-cortical ischaemic vascular dementia (SIVD). Forty-four older people with clinical dementia were recruited from a memory clinic and followed up for 2.0-3.5 years; 20 cases were finally classified as probable AD, 18 as SIVD and 6 as mixed type. Mini Mental State Examination (MMSE) and short echo time single voxel automated MRS from the mesial parieto-occipital lobes were performed at the time of initial referral. Spearman rank correlation coefficients were calculated for MMSE scores and measured metabolite ratios MI/Cr, NAA/Cr, Cho/Cr and NAA/MI. The AD group showed a significant correlation between MMSE and NAA/MI (r=0.54, P=0.014) and NAA/Cr (r=0.48, P=0.033), and a negative, non-significant association with MI/Cr (r=-0.41, P=0.072). MI/Cr was negatively correlated with NAA/Cr (r=-0.51, P=0.021). Neither Cho/Cr ratios nor age correlated with cognitive function. The SIVD group showed no correlation between any of the measured metabolite ratios and MMSE score. This study reinforces the specific association between reduced NAA and increased MI levels in the parieto-occipital region and cognitive impairment in AD. MRS may have a role in evaluating disease progression and therapeutic monitoring in AD, as new treatments become available. (orig.)

  15. Single voxel magnetic resonance spectroscopy in distinguishing ...

    African Journals Online (AJOL)

    Objective: Assess diagnostic utility of combined magnetic resonance imaging and magnetic resonance spectroscopy (MRI, MRS) in differentiating focal neoplastic lesions from focal non- neoplastic (infective or degenerative) brain lesions. Design: Descriptive, analytical - prospective study. Setting: The Aga Khan University ...

  16. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info dot ... I’d like to talk with you about magnetic resonance angiography, or as it’s commonly known, MRA. MRA ...

  17. Contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Karadjian, V.

    1987-01-01

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes [fr

  18. Magnetic resonance: discovery, investigations, and applications

    International Nuclear Information System (INIS)

    Kessenikh, Aleksandr V

    2009-01-01

    The history of the development of the theoretical ideas and experimental methods of magnetic resonance, as well as the applications of these methods in modern natural science, technology, and medicine, are outlined, with allowance for the contribution of Russian researchers. An assessment of some promising trends of studies and applications of magnetic resonance is given. (from the history of physics)

  19. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  20. Pulse sequences for contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Graves, Martin J.

    2007-01-01

    The theory and application of magnetic resonance imaging (MRI) pulse sequences following the administration of an exogenous contrast agent are discussed. Pulse sequences are categorised according to the contrast agent mechanism: changes in proton density, relaxivity, magnetic susceptibility and resonant frequency shift. Applications in morphological imaging, magnetic resonance angiography, dynamic imaging and cell labelling are described. The importance of optimising the pulse sequence for each application is emphasised

  1. Magnetic resonance spectroscopic imaging in breast cancer detection: possibilities beyond the conventional theoretical framework for data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Belkic, Karen E-mail: karen.belkic@radfys.ki.se

    2004-06-01

    Magnetic Resonance Spectroscopic Imaging (MRSI) is a promising method for breast cancer diagnosis, providing, in addition to the anatomic picture, complementary biochemical and physiologic information in the form of spectra. It should be able to identify key biochemical changes before the tumour becomes detectable by other functional imaging methods that rely upon single markers not entirely sensitive or specific for malignant activity. MRSI is potentially well suited for screening and repeated monitoring since it entails no radiation exposure. There are, however, limitations to current applications of Magnetic Resonance Spectroscopy (MRS) and MRSI. Many of these can be directly related to reliance upon the conventional data analytical method, i.e. the Fast Fourier Transform (FFT), which has low resolution, poor signal/noise (S/N) in clinical signals, supplies only shape spectra and requires fitting, which is non-unique, so that the number of metabolites must be guessed in advance. This can lead to spurious peaks (over-fitting) and true metabolites being undetected (under-fitting). These limitations of the FFT can be circumvented by recent mathematical advances in signal processing via e.g. the Fast Pade Transform (FPT). As a high resolution, non-linear, stable parametric method, the FPT substantially improves S/N, and fulfills stringent requirements for tumour diagnostics: no post-processing fitting, provides precise numerical results for all peak parameters, and specifies the exact number of metabolites (including those that overlap) from the encoded data. We illustrate in a realistic synthesized model problem similar to MRS that the FPT can identify overlapping peaks that are entirely missed by the FFT, and we give an example from in vivo MRS of the superior resolving power of the FPT compared to FFT at short acquisition time. We also perform detailed paired and logistic regression analyses of Nuclear Magnetic Resonance (NMR) data on extracted breast specimens

  2. Magnetic field induced incommensurate resonance in cuprate superconductors

    International Nuclear Information System (INIS)

    Zhang Jingge; Cheng Li; Guo Huaiming; Feng Shiping

    2009-01-01

    The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough

  3. Inhalant-Abuse Myocarditis Diagnosed by Cardiac Magnetic Resonance.

    Science.gov (United States)

    Dinsfriend, William; Rao, Krishnasree; Matulevicius, Susan

    2016-06-01

    Multiple reports of toxic myocarditis from inhalant abuse have been reported. We now report the case of a 23-year-old man found to have toxic myocarditis from inhalation of a hydrocarbon. The diagnosis was made by means of cardiac magnetic resonance imaging with delayed enhancement. The use of cardiac magnetic resonance to diagnose myocarditis has become increasingly common in clinical medicine, although there is not a universally accepted criterion for diagnosis. We appear to be the first to document a case of toxic myocarditis diagnosed by cardiac magnetic resonance. In patients with a history of drug abuse who present with clinical findings that suggest myocarditis or pericarditis, cardiac magnetic resonance can be considered to support the diagnosis.

  4. Magnetic resonance imaging- physical principles and clinical application

    International Nuclear Information System (INIS)

    Tavri, Omprakash J.

    1996-01-01

    The advances in equipment and knowledge related to radiology are occurring at an astonishingly rapid rate. On November 8, 1895, William Conrad Roentgen discovered x-rays. In 1972, Godfrey Hounsfield and George Ambrose introduced computec tomography at a meeting of the British Institute of Radiology. In the same year, Paul Lauterbur published the idea of spatially resolving nuclear magnetic resonance samples, naming it zeugmatography. In 1977, Waldo Hinshaw and co-workers published a magnetic resonance image of a human hand and wrist, and by 1981 several centres were obtaining clinical magnetic resonance (MR) images. In a very short time, magnetic resonance imaging (MRI) has gained acceptance as a clinically useful imaging tool. (author)

  5. [Dementias: diagnostic contribution of imaging and proton magnetic resonance spectroscopy].

    Science.gov (United States)

    Arana, E; Martínez-Granados, B; Marti-Bonmati, L; Martínez-Bisbal, M C; Gil, A; Blasco, C; Celda, B

    2007-06-01

    The objective is analyze the complementarity between 1H magnetic resonance spectroscopy (MRS) and magnetic resonance (MR) imaging in the global diagnosis of Alzheimer's disease (AD) or vascular dementia (VD). We studied 168 patients with cognitive impairment from AD, VD, mild cognitive impairment (MCI) and major depression. All patients were evaluated by brain MR imaging and MRS using two sample volumes localized at right medial temporal gyrus and posterior parietal gyrus. Metabolites analyzed were N-acetylaspartate (NAA), myo-Inositol (mI), Choline (Cho) and creatine (Cr), as standard references for obtaining the Co/Cr, mI/Cr and NAA/Cr ratios. Imaging and spectroscopy alterations were graded from 0 to 4 and the average of both was used to draw ROC and SROC curves. Area under ROC curve (Az) was used as a measure of discriminative ability. Combination of MR imaging and MRS significantly improved AD diagnosis (Global Az: 0.722 vs. MR imaging Az: 0.624; p: 0.003). However, the combination of MR imaging and MRS did not improve VD diagnosis. SROC curve obtained for the diagnosis of global dementia was Az: 0.6658 with 0.67 sensitivity and 0.65 specificity. Combination of both MR techniques significantly improved AD diagnosis versus MR imaging alone. More studies are needed to enhance VD classification. Metabolic data found by MRS can be useful to differentiate cognitive impairment

  6. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  7. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... by the interpreting radiologist. Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with ... Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  8. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    Science.gov (United States)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  9. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...

  10. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  11. Characterization of human breast disease using phosphorus magnetic resonance spectroscopy and proton magnetic resonance imaging

    International Nuclear Information System (INIS)

    Merchant, T.E.

    1992-01-01

    This thesis provides the fundamental characterization and differentiation of breast tissues using in vivo and ex vivo MR techniques in the hope that these techniques and experimental findings will be used on a larger scale and in a predictive manner in order to improve the specificity of diagnosis and treatment of breast cancer. In this dissertation, clinical studies were performed using proton magnetic resonance imaging and phosphorus magnetic resonance spectro-scopy ( 31 P MRS) to characterize and differentiate malignant breast tumors, benign breast tumors and normal breast tissues in vivo. These studies were carried out following the methodical characterization of chemical extracts of malignant breast tumor, benign breast tumor and normal breast parenchymal surgical tissue specimens using high resolution 31 P MRS. Alterations in breast tissue metabolism, as a result of pathological processes, were postulated to be responsible for measurable differences between malignant breast tumors, benign breast tumors and normal breast tissues using magnetic resonance techniques. (author). 365 refs.; 37 figs.; 25 tabs

  12. Cardiovascular magnetic resonance in congenital heart disease

    International Nuclear Information System (INIS)

    Cazacu, A.; Ciubotaru, A.

    2010-01-01

    The increasing prevalence of congenital heart disease can be attributed to major improvements in diagnosis and treatment. Cardiovascular magnetic resonance imaging plays an important role in the clinical management strategy of patients with congenital heart disease. The development of new cardiovascular magnetic resonance (CMR) techniques allows comprehensive assessment of complex cardiac anatomy and function and provides information about the long-term residual post-operative lesions and complications of surgery. It overcomes many of the limitations of echocardiography and cardiac catheterization. This review evaluates the role of cardiovascular magnetic resonance imaging modality in the management of subject with congenital heart disease (CHD). (authors)

  13. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic ... the possible charges you will incur. Web page review process: This Web page is reviewed regularly by ...

  14. Magnetic resonance imaging of the central nervous system

    International Nuclear Information System (INIS)

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This book presents the papers on technological advancement and diagnostic uses g magnetic resonance imaging. A comparative evaluation with computerized tomography is presented. Topics covered are imaging principles g magnetic resonance;instrumentation of magnetic resonance (MR);pathophysiology;quality and limitations g images;NMR imaging of brain and spinal cord;MR spectroscopy and its applications;neuroanatomy;Congenital malformations of brain and MR imaging;planning g MR imaging of spine and head and neck imaging

  15. Nuclear magnetic resonance spectroscopy and imaging

    International Nuclear Information System (INIS)

    Jiang Weiping; Wang Qi; Zhou Xin

    2013-01-01

    This paper briefly introduces the basic principle of nuclear magnetic resonance (NMR). Protein's structures and functions and dynamics studied by liquid NMR are elaborated; methods for enhancing the resolution of solid state NMR and its applications are discussed; the principle of magnetic resonance imaging (MRI) is interpreted, and applications in different aspects are reviewed. Finally, the progress of NMR is commented. (authors)

  16. Diagnostic apparatus employing nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Hoshino, K.; Yamada, N.; Yoshitome, E.; Matsuura, H.

    1987-01-01

    An NMR diagnostic apparatus is described comprising means for applying a primary magnetic field to a subject; means for applying RF pulses to the subject to give nuclear magnetic resonance to the nuclei of atoms in the subject; means for applying gradient magnetic fields to project an NMR signal of the nuclei at least in one direction; means for observing the NMR signal projected by the gradient magnetic fields applying means; and arithmetic means for constructing a distribution of information on resonance energy as an image from an output signal from the observing means; wherein the gradient magnetic fields applying means comprises means for applying the gradient magnetic fields at a predetermined time and for not applying the gradient magnetic fields at another predetermined time, during the time period of one view; and wherein the gradient magnetic fields applying means further comprises means for measuring the NMR signal during the predetermined time when the gradient magnetic fields are applied, and means for measuring the intensity of the primary magnetic field during the other predetermined time when no gradient magnetic fields are applied

  17. Short-echo 3D H-1 Magnetic Resonance Spectroscopic Imaging of patients with glioma at 7T for characterization of differences in metabolite levels

    Science.gov (United States)

    Li, Yan; Larson, Peder; Chen, Albert P.; Lupo, Janine M.; Ozhinsky, Eugene; Kelley, Douglas; Chang, Susan M.; Nelson, Sarah J.

    2014-01-01

    Purpose The purpose of this study was to evaluate the feasibility of using a short echo time, 3D H-1 magnetic resonance spectroscopic imaging (MRSI) sequence at 7T to assess the metabolic signature of lesions for patients with glioma. Materials and Methods 29 patients with glioma were studied. MRSI data were obtained using CHESS water suppression, spectrally-selective adiabatic inversion-recovery pulses and automatically prescribed outer-volume-suppression for lipid suppression, and spin echo slice selection (TE=30ms). An interleaved flyback echo-planar trajectory was applied to shorten the total acquisition time (~10min). Relative metabolite ratios were estimated in tumor and in normal-appearing white and gray matter (NAWM, GM). Results Levels of glutamine, myo-inositol, glycine and glutathione relative to total creatine (tCr) were significantly increased in the T2 lesions for all tumor grades compared to those in the NAWM (p < 0.05), while N-acetyl aspartate to tCr were significantly decreased (p < 0.05). In grade 2 gliomas, level of total choline-containing-compounds to tCr was significantly increased (p = 0.0137), while glutamate to tCr was significantly reduced (p = 0.0012). Conclusion The improved sensitivity of MRSI and the increased number of metabolites that can be evaluated using 7T MR scanners is of interest for evaluating patients with glioma. This study has successfully demonstrated the application of a short-echo spin-echo MRSI sequence to detect characteristic differences in regions of tumor versus normal appearing brain. PMID:24935758

  18. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... immediately after the exam. A few patients experience side effects from the contrast material, including nausea and local ... Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic ...

  19. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Inst. de Radiologia]. E-mail: mvmfonte@uol.com.br; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Radiologia; Reed, Umbertina Conti [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Neurologia; Rosemberg, Sergio [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Dept. de Patologia

    2008-11-15

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  20. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes; Reed, Umbertina Conti; Rosemberg, Sergio

    2008-01-01

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  1. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Lumbar Spine What's in this article? ...

  2. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  3. Resonance double magnetic bremsstrahlung in a strong magnetic field

    International Nuclear Information System (INIS)

    Fomin, P.I.; Kholodov, R.I.

    2003-01-01

    The possibility of resonance double magnetic bremsstrahlung in the approximation of weakly excited electron states in a strong external magnetic field is analyzed. The differential probability of this process in the Breit-Wigner form is obtained. The probability of double magnetic bremsstrahlung (second-order process of perturbation theory) is compared with the probability of magnetic bremsstrahlung (first-order process of perturbation theory)

  4. Proton nuclear magnetic resonance spectroscopy of plasma lipoproteins in malignancy

    International Nuclear Information System (INIS)

    Nabholtz, J.M.; Rossignol, A.; Farnier, M.; Gambert, P.; Tremeaux, J.C.; Friedman, S.; Guerrin, J.

    1988-01-01

    A recent study described a method of detecting malignant tumors by water-supressed proton nuclear magnetic resonance (1 H NMR) study of plasma. We performed a similar study of the W 1/2, a mean of the full width at half height of the resonances of the methyl and methylene groups of the lipids of plasma lipoproteins which is inversely related to the spin-spin apparent relaxation time (T 2 * ). W 1/2 values were measured at a fixed baseline width of 310 Hz. The study was prospective and blinded and comprised 182 subjects consisting of 40 controls, 68 patients with untreated malignancies, 45 with malignant tumors undergoing therapy and 29 benign tumor patients. No differences were seen between any groups that could serve as a basis for a useful clinical test. The major difficulty in the determination of W 1/2 was due to interference of metabolite protons (particularly lactate) within the lipoprotein resonance signal. Triglyceride level was seen to correlate inversely with W 1/2 within malignant patient groups. These discrepant results may be related to differing triglyceride-rich very low density lipoprotein (VLDL) levels in the ;atient populations of each study. We conclude that the water-suppressed 1H NMR of plasma lipoproteins is not a valid measurement for assessing malignancy. (orig.)

  5. Evaluation of urogenital fistulas by magnetic resonance urography

    International Nuclear Information System (INIS)

    Mamere, Augusto Elias; Coelho, Rafael Darahem Souza; Cecin, Alexandre Oliveira; Feltrin, Leonir Terezinha; Lucchesi, Fabiano Rubiao; Seabra, Daniel

    2008-01-01

    Objective: Vesicovaginal and ureterovaginal fistulas are unusual complications secondary to pelvic surgery or pelvic diseases. The therapeutic success in these cases depends on an appropriate preoperative evaluation for diagnosis and visualization of the fistulous tract. The present study is aimed at demonstrating the potential of magnetic resonance urography for the diagnosis of vesicovaginal and ureterovaginal fistulas as well as for defining the fistulous tracts. Materials And Methods: Seven female patients clinically diagnosed with vesicovaginal or ureterovaginal fistulas had their medical records, radiological and magnetic resonance images retrospectively reviewed. Magnetic resonance urography included 3D-HASTE sequences with fat saturation. Results: Six patients presented vesicovaginal fistulas and, in one patient, a right-sided ureterovaginal fistula was diagnosed. Magnetic resonance urography allowed the demonstration of the fistulous tract in six (85.7%) of the seven patients evaluated in the present study, without the need of bladder catheterization or contrast injection. Conclusion: This study demonstrates both the potential and applicability of magnetic resonance urography in the evaluation of these types of fistulas. (author)

  6. Object-oriented magnetic resonance classes and objects, calculations and computations

    CERN Document Server

    Mehring, Michael

    2001-01-01

    This book presents, for the first time, a unified treatment of the quantum mechanisms of magnetic resonance, including both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). Magnetic resonance is perhaps the most advanced type of spectroscopy and it is applied in biology, chemistry, physics, material science, and medicine. If applied in conjunction with spectroscopy, the imaging version of magnetic resonance has no counterpart in any type of experimental technique. The authors present explanations and applications from fundamental to advanced levels. Additionally, the

  7. Magnetic resonance enterography in pediatric celiac disease.

    Science.gov (United States)

    Koc, Gonca; Doganay, Selim; Sevinc, Eylem; Deniz, Kemal; Chavhan, Govind; Gorkem, Sureyya B; Karacabey, Neslihan; Dogan, Mehmet S; Coskun, Abdulhakim; Aslan, Duran

    To assess if magnetic resonance enterography is capable of showing evidence/extent of disease in pediatric patients with biopsy-proven celiac disease by comparing with a control group, and to correlate the magnetic resonance enterography findings with anti-endomysial antibody level, which is an indicator of gluten-free dietary compliance. Thirty-one pediatric patients (mean age 11.7±3.1 years) with biopsy-proven celiac disease and 40 pediatric patients as a control group were recruited in the study. The magnetic resonance enterography images of both patients with celiac disease and those of the control group were evaluated by two pediatric radiologists in a blinded manner for the mucosal pattern, presence of wall thickening, luminal distention of the small bowel, and extra-intestinal findings. Patient charts were reviewed to note clinical features and laboratory findings. The histopathologic review of the duodenal biopsies was re-conducted. The mean duration of the disease was 5.6±1.8 years (range: 3-7.2 years). In 24 (77%) of the patients, anti-endomysial antibody levels were elevated (mean 119.2±66.6RU/mL). Magnetic resonance enterography revealed normal fold pattern in all the patients. Ten (32%) patients had enlarged mesenteric lymph nodes. Although a majority of the patients had elevated anti-endomysial antibody levels indicating poor dietary compliance, magnetic resonance enterography did not show any mucosal abnormality associated with the inability of magnetic resonance enterography to detect mild/early changes of celiac disease in children. Therefore, it may not be useful for the follow-up of pediatric celiac disease. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  8. Theoretical study of ferromagnetic resonance in exchange - coupled magnetic / nonmagnetic / magnetic multilayer structure

    International Nuclear Information System (INIS)

    Oezdogan, K.; Oezdemir, M.; Yalcin, O.; Aktas, B.

    2002-01-01

    The dispersion relation on ferromagnetic films was calculation by using torque equation of motion with a damping term. The total energy including zeeman, demagnetizing and anisotropy energy terms was used to get ferromagnetic resonance frequency for both uniform and higher order spin wave modes. In antiferromagnetic films, the torque equation of motion for each sub-lattice were written to derive an expression for the dispersion relation. The magnetic trilayer system under investigation consist of two ferromagnetic layers separated by a nonmagnetic layer. The dispersion relation of magnetic/nonmagnetic/magnetic three layers is calculated by using Landau-Lifshitz dynamic equation of motion for the magnetization with interlayer exchange energy. As for the exchange-coupled resonance of ferromagnetic resonance (FMR), the theoretical study has been calculated for both symmetrical and asymmetrical structures. In this systems, the exchange-coupling parameter A 12 between neighboring layers was used to get resonance fields as a function of the angle between the magnetization vectors of each magnetic layers

  9. Magnetic elliptical polarization of Schumann resonances

    International Nuclear Information System (INIS)

    Sentman, D.D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours. 16 references

  10. Functional magnetic resonance imaging by visual stimulation

    International Nuclear Information System (INIS)

    Nishimura, Yukiko; Negoro, Kiyoshi; Morimatsu, Mitsunori; Hashida, Masahiro

    1996-01-01

    We evaluated functional magnetic resonance images obtained in 8 healthy subjects in response to visual stimulation using a conventional clinical magnetic resonance imaging system with multi-slice spin-echo echo planar imaging. Activation in the visual cortex was clearly demonstrated by the multi-slice experiment with a task-related change in signal intensity. In addition to the primary visual cortex, other areas were also activated by a complicated visual task. Multi-slice spin-echo echo planar imaging offers high temporal resolution and allows the three-dimensional analysis of brain function. Functional magnetic resonance imaging provides a useful noninvasive method of mapping brain function. (author)

  11. Musculoskeletal applications of magnetic resonance imaging: Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Harms, S.E.; Fisher, C.F.; Fulmer, J.M.

    1989-01-01

    Magnetic resonance imaging provides superior contrast, resolution, and multiplanar imaging capability, allowing excellent definition of soft-tissue and bone marrow abnormalities. For these reasons, magnetic resonance imaging has become a major diagnostic imaging method for the evaluation of many musculoskeletal disorders. The applications of magnetic resonance imaging for musculoskeletal diagnosis are summarized and examples of common clinical situations are given. General guidelines are suggested for the musculoskeletal applications of magnetic resonance imaging

  12. An Objective Short Sleep Insomnia Disorder Subtype Is Associated With Reduced Brain Metabolite Concentrations In Vivo: A Preliminary Magnetic Resonance Spectroscopy Assessment.

    Science.gov (United States)

    Miller, Christopher B; Rae, Caroline D; Green, Michael A; Yee, Brendon J; Gordon, Christopher J; D'Rozario, Angela L; Kyle, Simon D; Espie, Colin A; Grunstein, Ronald R; Bartlett, Delwyn J

    2017-11-01

    To evaluate brain metabolites in objective insomnia subtypes defined from polysomnography (PSG): insomnia with short sleep duration (I-SSD) and insomnia with normal sleep duration (I-NSD), relative to good sleeping controls (GSCs). PSG empirically grouped insomnia patients into I-SSD (n = 12: mean [SD] total sleep time [TST] = 294.7 minutes [30.5]) or I-NSD (n = 19: TST = 394.4 minutes [34.9]). 1H magnetic resonance spectroscopy (MRS) acquired in the left occipital cortex (LOCC), left prefrontal cortex, and anterior cingulate cortex was used to determine levels of creatine, aspartate, glutamate, and glutamine (referenced to water). Glutathione, glycerophosphocholine, lactate, myoinositol, and N-acetylaspartate measurements were also obtained. Sixteen GSCs were included for comparison. Multivariate analysis of variance was used to evaluate differences in creatine, aspartate, glutamate, and glutamine. Aspartate and glutamine concentrations were reduced in the LOCC in I-SSD compared with I-NSD (both p sleep onset (r = -.40, p sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR): https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12612000050853. 12612000050853. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  13. Magnetic resonance of native defects of spin-Peierls magnetics CuGeO3

    International Nuclear Information System (INIS)

    Smirnov, A.I.; Glazkov, V.N.; Leonyuk, L.I.; Vetkin, A.G.; Eremina, R.M.

    1998-01-01

    Magnetic resonance within 9-75 GHz frequency range and 1.2-25 K temperature range was studied in pure monocrystalline spin-Peierls CuGwO 3 . Splitting of the magnetic resonance line is observed within temperature range below 5 K. Analysis of magnetic resonance spectra at various directions of magnetic field and under various temperatures enables to set off EPR-signals of spin-Peierls phase defects with S=1/2 and defects with S=1 from these components; g-factor corresponding to these EPR signals is similar one and close to values typical for Cu 2+ ion [ru

  14. (1)H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis.

    Science.gov (United States)

    Sun, L W; Zhang, H Y; Wu, L; Shu, S; Xia, C; Xu, C; Zheng, J S

    2014-03-01

    The purpose of this study was to assess the metabolic profile of plasma samples from cows with clinical and subclinical ketosis. According to clinical signs and 3-hydroxybutyrate plasma levels, 81 multiparous Holstein cows were selected from a dairy farm 7 to 21 d after calving. The cows were divided into 3 groups: cows with clinical ketosis, cows with subclinical ketosis, and healthy control cows. (1)H-Nuclear magnetic resonance-based metabolomics was used to assess the plasma metabolic profiles of the 3 groups. The data were analyzed by principal component analysis, partial least squares discriminant analysis, and orthogonal partial least-squares discriminant analysis. The differences in metabolites among the 3 groups were assessed. The orthogonal partial least-squares discriminant analysis model differentiated the 3 groups of plasma samples. The model predicted clinical ketosis with a sensitivity of 100% and a specificity of 100%. In the case of subclinical ketosis, the model had a sensitivity of 97.0% and specificity of 95.7%. Twenty-five metabolites, including acetoacetate, acetone, lactate, glucose, choline, glutamic acid, and glutamine, were different among the 3 groups. Among the 25 metabolites, 4 were upregulated, 7 were downregulated, and 14 were both upregulated and downregulated. The results indicated that plasma (1)H-nuclear magnetic resonance-based metabolomics, coupled with pattern recognition analytical methods, not only has the sensitivity and specificity to distinguish cows with clinical and subclinical ketosis from healthy controls, but also has the potential to be developed into a clinically useful diagnostic tool that could contribute to a further understanding of the disease mechanisms. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Cerebral magnetic resonance changes associated with fibromyalgia syndrome.

    Science.gov (United States)

    Murga, Iñigo; Guillen, Virginia; Lafuente, José-Vicente

    2017-06-07

    Fibromyalgia syndrome is a chronic disease, of unknown origin, whose diagnostic criteria were established in 1990 by the American College of Rheumatology. New criteria were proposed in 2010 that have not yet been validated. It is characterized by a generalized chronic musculoskeletal pain, accompanied by hyperalgesia and allodynia, as well as other motor, vegetative, cognitive and affective symptoms and signs. We have reviewed a set of studies with cerebral magnetic resonance (morphometry, connectivity and spectroscopy) that refer to changes in areas involved in pain processing. Modifications in gray and white matter volume, as well as in levels of N-acetylaspartate, choline or glutamate, among other metabolites, have been observed in the hippocampus, insula, prefrontal and cingular cortex. Neuroradiological findings are nonspecific and similar to those found in other examples of chronic pain. An increase in the sample size and a standardized methodology would facilitate comparison, allowing the drawing of general conclusions. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  16. Green’s function theory of ferromagnetic resonance in magnetic superlattices with damping

    International Nuclear Information System (INIS)

    Qiu, R.K.; Guo, F.F.; Zhang, Z.D.

    2016-01-01

    We explore a quantum Green’s-function method to study the resonance absorption of magnetic materials. The relationship between the resonance magnon (spin wave) density and the resonance frequency of a superlattice consisting of two magnetic layers with damping and antiferromagnetic interlayer exchange coupling is studied. The effects of temperature, interlayer coupling, anisotropy, external magnetic field and damping on the the resonance frequency and resonance magnon density are investigated. The resonance excitation probability for a magnon is proportional to the resonance magnon density. In the classic methods, the imaginary part of magnetic permeability represents the resonance absorption in magnetic materials. In the quantum approach, the resonance magnon density can be used to estimate the strength of the resonance absorption. In the present work, a quantum approach is developed to study resonance absorption of magnetic materials and the results show the method to obtain a magnetic multilayered materials with both high resonance frequency and high resonance absorption.

  17. Green’s function theory of ferromagnetic resonance in magnetic superlattices with damping

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.K., E-mail: rkqiu@163.com [Shenyang University of Technology, Shenyang 110870 (China); Guo, F.F. [Shenyang University of Technology, Shenyang 110870 (China); Zhang, Z.D. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2016-02-01

    We explore a quantum Green’s-function method to study the resonance absorption of magnetic materials. The relationship between the resonance magnon (spin wave) density and the resonance frequency of a superlattice consisting of two magnetic layers with damping and antiferromagnetic interlayer exchange coupling is studied. The effects of temperature, interlayer coupling, anisotropy, external magnetic field and damping on the the resonance frequency and resonance magnon density are investigated. The resonance excitation probability for a magnon is proportional to the resonance magnon density. In the classic methods, the imaginary part of magnetic permeability represents the resonance absorption in magnetic materials. In the quantum approach, the resonance magnon density can be used to estimate the strength of the resonance absorption. In the present work, a quantum approach is developed to study resonance absorption of magnetic materials and the results show the method to obtain a magnetic multilayered materials with both high resonance frequency and high resonance absorption.

  18. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  19. Clinical magnetic resonance: imaging and spectroscopy

    International Nuclear Information System (INIS)

    Andrew, E.R.; Bydder, Graeme; Griffiths, John; Iles, Richard; Styles, Peter

    1990-01-01

    This book begins with a readable, comprehensive but non-mathematical introduction to the basic underlying principles of magnetic resonance. Further chapters include information on the theory and principles of MRI and MRS, the interpretation of MR images, the clinical applications and scope of MRI and MRS, practical aspects of spectroscopy and magnetic resonance, and also the practical problems associated with the siting, safety and operation of large MRI and MRS equipment. (author)

  20. Magnetic resonance in prenatal diagnosis of thoracic anomalies

    International Nuclear Information System (INIS)

    Pietrani, M.; Elias, D.; Wojakowski, A.; Fataljaef, V.; Carcano, M.; Otano, L.

    2007-01-01

    The objective of this article is to communicate the experience in the evaluation of fetal anomalies thoracic by means of magnetic resonance. Between January, 2001 - March, 2007 16 fetus were evaluated by means of magnetic resonance with echographic diagnosis of thoracic anomalies. An equipment of 1.5 TESLA was used. The thoracic anatomy was valued in general. At the presence of discovering pulmonary mass, their size, volume and intensity of sign were determined. The echographic and magnetic resonance findings were checked against the perinatal results [es

  1. Role of chelates in magnetic resonance imaging studies

    Directory of Open Access Journals (Sweden)

    Tripathi Laxmi

    2009-01-01

    Full Text Available Imaging studies are tests performed with a variety of techniques that produce pictures of the inside of a patient′s body. Magnetic resonance imaging (MRI is an imaging technique based on the principles of nuclear magnetic resonance. MRI uses a powerful magnetic field, radio waves, and a computer to produce detailed pictures of organs, soft tissues, bone, and virtually all other internal body structures. Chelates have a wide application in such imaging techniques. Chelates in imaging studies are used alone as radioactive agents or conjugated to monoclonal antibodies or to DNA as radioactive agents. Technetium chelates and gadolinium chelates are being widely used as magnetic resonance contrast media.

  2. Recommendations concerning magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    1986-01-01

    In medicine the technique of nuclear magnetic resonance (NMR) is applied in the form of in vivo nuclear magnetic resonance spectroscopy (MRS). In vivo MRS can be carried out non-invasively. The committee of the Dutch Health Council briefly discusses the qualities and potentialities of the nuclei that will probably be used in future clinical spectroscopy: 31 P, 13 C, 1 H (and possibly 19 F and 23 Na). The committee discusses several possibilities of combining imaging and spectroscopy. The imaging of nuclei other than protons is also possible with MRS. Potential applications are considered in oncology, cardiology, neurology and hepatology. (Auth.)

  3. Multivoxel proton magnetic resonance spectroscopy in heat stroke

    International Nuclear Information System (INIS)

    Li, J.; Zhang, X.Y.; Wang, B.; Zou, Z.M.; Li, H.F.; Wang, P.Y.; Xia, J.K.

    2015-01-01

    Aim: To assess the role of proton MR spectroscopy (MRS) in the detection of changes in metabolite levels of the cerebellum after heat stroke (HS). Materials and methods: The study group consisted of eight patients after HS, with a Glasgow Coma Scale (GCS) score of 3–9. The MR studies were performed with a 1.5 T system. MR spectra were recorded from a normal-appearing cerebellum region. Spectra from patients were compared with a control group including seven age-matched healthy volunteers recorded with the same techniques. Metabolites ratios including N-acetyl aspartate/creatine (NAA/Cr), N-acetyl aspartate/creatine2 (NAA/Cr2), choline/creatine (Cho/Cr), choline/creatine2 (Cho/Cr2), and N-acetyl aspartate/choline (NAA/Cho) were calculated and the differences between the two groups were evaluated using the Mann–Whitney U-test. Pearson correlation analysis was used to analyse the relationship between NAA/Cr ratios and GCS scores for eight patients after HS. Results: In the cerebellum of the patients after HS, NAA/Cr ratios were found to be significantly decreased compared to normal controls (p = 0.004) and Cho/Cr ratios were found to be decreased compared to normal controls (p = 0.032). Significant positive correlation was found between NAA/Cr ratios and GCS scores for eight patients after HS (r = 0.748, p = 0.033). Conclusions: Metabolite abnormalities were seen in normal-appearing cerebellum structures in patients after HS. Proton MRS is a useful tool for evaluating major changes in metabolite levels of the cerebellum after HS and the severity of the disease can be effectively evaluated by NAA/Cr ratios. - Highlights: • Proton magnetic resonance spectroscopy offers important information in patients with heat stroke. • Significantly different NAA/Cr ratios were found between heat stroke and controls. • The severity of heat stroke can be effectively evaluated by NAA/Cr ratios

  4. Thalamic metabolic abnormalities in patients with Huntington's disease measured by magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Casseb, R.F.; Castellano, G.; Ruocco, H.H.

    2013-01-01

    Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations of N-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P,0.001), and glycerophosphocholine+phosphocholine (GPC+PCh; t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence. (author)

  5. Prebiopsy magnetic resonance spectroscopy and imaging in the diagnosis of prostate cancer

    International Nuclear Information System (INIS)

    Kumar, V.; Jagannathan, N.R.; Thulkar, S.; Kumar, R.

    2012-01-01

    Existing screening investigations for the diagnosis of early prostate cancer lack specificity, resulting in a high negative biopsy rate. There is increasing interest in the use of various magnetic resonance methods for improving the yield of transrectal ultrasound-guided biopsies of the prostate in men suspected to have prostate cancer. We review the existing status of such investigations. A literature search was carried out using the Pubmed database to identify articles related to magnetic resonance methods for diagnosing prostate cancer. References from these articles were also extracted and reviewed. Recent studies have focused on prebiopsy magnetic resonance investigations using conventional magnetic resonance imaging, dynamic contrast enhanced magnetic resonance imaging, diffusion weighted magnetic resonance imaging, magnetization transfer imaging and magnetic resonance spectroscopy of the prostate. This marks a shift from the earlier strategy of carrying out postbiopsy magnetic resonance investigations. Prebiopsy magnetic resonance investigations has been useful in identifying patients who are more likely to have a biopsy positive for malignancy. Prebiopsy magnetic resonance investigations has a potential role in increasing specificity of screening for early prostate cancer. It has a role in the targeting of biopsy sites, avoiding unnecessary biopsies and predicting the outcome of biopsies. (author)

  6. Magnetic Resonance Imaging of Surgical Implants Made from Weak Magnetic Materials

    Science.gov (United States)

    Gogola, D.; Krafčík, A.; Štrbák, O.; Frollo, I.

    2013-08-01

    Materials with high magnetic susceptibility cause local inhomogeneities in the main field of the magnetic resonance (MR) tomograph. These inhomogeneities lead to loss of phase coherence, and thus to a rapid loss of signal in the image. In our research we investigated inhomogeneous field of magnetic implants such as magnetic fibers, designed for inner suture during surgery. The magnetic field inhomogeneities were studied at low magnetic planar phantom, which was made from four thin strips of magnetic tape, arranged grid-wise. We optimized the properties of imaging sequences with the aim to find the best setup for magnetic fiber visualization. These fibers can be potentially exploited in surgery for internal stitches. Stitches can be visualized by the magnetic resonance imaging (MRI) method after surgery. This study shows that the imaging of magnetic implants is possible by using the low field MRI systems, without the use of complicated post processing techniques (e.g., IDEAL).

  7. Magnetic resonance instrumentation

    International Nuclear Information System (INIS)

    Bell, R.A.

    1987-01-01

    Magnetic resonance (MR), while opening new vistas to diagnostic medicine, utilizes equipment that is unfamiliar to most clinicians. Beyond learning to cope with new terms, such as spin-echo, T1, T2, and spin density, health care professionals are faced with the inclusion of magnetic and radiofrequency effects in their facilities produced by a complex array of devices. It is the purpose of this chapter to outline the components of an MR imaging system, to discuss their functions, and to note the variations in equipment commercially available

  8. Parenchymal abnormalities in cerebral venous thrombosis: findings of magnetic resonance imaging and magnetic resonance angiography

    International Nuclear Information System (INIS)

    Ferreira, Clecia Santos; Pellini, Marcos; Boasquevisque, Edson; Souza, Luis Alberto M. de

    2006-01-01

    Objective: to determine the frequency and localization of parenchymal abnormalities in cerebral venous thrombosis on magnetic resonance imaging and magnetic resonance angiography as well as their correlation with the territory and affected venous drainage. Materials and methods: retrospective analysis (1996 to 2004) of 21 patients (3 male and 18 female) age range between 3 and 82 years (mean 40 years, median 36 years) with clinical and radiological diagnosis of cerebral venous thrombosis on magnetic resonance imaging and magnetic resonance angiography in 2D PC, 3D PC and contrast-enhanced 3D TOF sequences. The statistical analysis was performed with the qui-square test. Four patients had follow-up exams and three patients underwent digital subtraction angiography. Results: main predisposing factors were: infection, use of oral contraceptives, hormone replacement therapy and collagenosis. Predominant symptoms included: focal deficit, headache, alteration of consciousness level and seizures. Most frequent parenchymal manifestations were: cortical/subcortical edema or infarct, venous congestion and collateral circulation, meningeal enhancement and thalamic and basal ganglia edema or infarct. Occlusion occurred mainly in superior sagittal, left transverse, left sigmoid and straight sinuses. Cavernous sinus and cortical veins thrombosis are uncommon events. Conclusion: cerebral venous thrombosis is an uncommon cause of stroke, with favorable prognosis because of its reversibility. Diagnosis is highly dependent on the radiologist capacity to recognize the presentations of this disease, principally in cases where the diagnosis is suggested by parenchymal abnormalities rather than necessarily by visualization of the thrombus itself. An accurate and rapid diagnosis allows an immediate treatment, reducing the morbidity and mortality rates. (author)

  9. Nuclear magnetic resonance spectroscopy in organic chemistry. 2. ed.

    International Nuclear Information System (INIS)

    Zschunke, A.

    1977-01-01

    The fundamentals of nuclear magnetic resonance spectroscopy are discussed only briefly. The emphasis is laid on developing reader's ability to evaluate resonance spectra. The following topics are covered: principles of nuclear magnetic resonance spectroscopy; chemical shift and indirect nuclear spin coupling constants and their relation to the molecular structure; analysis of spectra; and uses for structural analysis and solution of kinetic problems, mainly with regard to organic compounds. Of interest to chemists and graduate students who want to make themselves acquainted with nuclear magnetic resonance spectroscopy

  10. Complications after liver transplantation: evaluation with magnetic resonance imaging, magnetic resonance cholangiography, and 3-dimensional contrast-enhanced magnetic resonance angiography in a single session

    International Nuclear Information System (INIS)

    Boraschi, P.; Donati, F.; Gigoni, R.; Salemi, S.; Urbani, L.; Filipponi, F.; Falaschi, F.; Bartolozzi, C.

    2008-01-01

    To evaluate a comprehensive magnetic resonance imaging (MRI) protocol as noninvasive diagnostic modality for simultaneous detection of parenchymal, biliary, and vascular complications after liver transplantation. Fifty-two liver transplant recipients suspected to have parenchymal, biliary, and (or) vascular complications underwent our MRI protocol at 1.5T unit using a phased array coil. After preliminary acquisition of axial T 1 w and T 2 w sequences, magnetic resonance cholangiography (MRC) was performed through a breath-hold, thin- and thick-slab, single-shot T 2 w sequence in the coronal plane. Contrast-enhanced magnetic resonance angiography (CEMRA) was obtained using a 3-dimensional coronal spoiled gradient-echo sequence, which enabled acquisition of 32 partitions 2.0 mm thick. A fixed dose of 20 ml gadobenate dimeglumine was administered at 2 mL/s. A post-contrast T 1 w sequence was also performed. Two observers in conference reviewed source images and 3-dimensional reconstructions to determine the presence of parenchymal, biliary, and vascular complications. MRI findings were correlated with surgery, endoscopic retrograde cholangiography (ERC), biopsy, digital subtraction angiography (DSA), and imaging follow-up. MRI revealed abnormal findings in 32 out of 52 patients (61%), including biliary complications (anastomotic and nonanastomotic strictures, and lithiasis) in 31, vascular disease (hepatic artery stenosis and thrombosis) in 9, and evidence of hepatic abscess and hematoma in 2. ERC confirmed findings of MRC in 30 cases, but suggested disease underestimation in 2. DSA confirmed 7 magnetic resonance angiogram (MRA) findings, but suggested disease overestimation in 2. MRI combined with MRC and CEMRA can provide a comprehensive assessment of parenchymal, biliary, and vascular complications in most recipients of liver transplantation. (author)

  11. Magnetic resonance imaging - first human images in Australia

    International Nuclear Information System (INIS)

    Baddeley, H.; Doddrell, D.M.; Brooks, W.M.; Field, J.; Irving, M.; Williams, J.E.

    1986-01-01

    The use of magnetic resonance imaging, in the demonstration of internal human anatomy and in the diagnosis of disease, has the major advantages that the technique is non-invasive, does not require the use of ionizing radiation and that it can demonstrate neurological and cardiovascular lesions that cannot be diagnosed easily by other imaging methods. The first magnetic resonance images of humans were obtained in Australia in October 1985 on the research instrument of the Queensland Medical Magnetic Resonance Research Centre, which is based at the Mater Hospital in Brisbane

  12. Magnetic resonance imaging of radiation optic neuropathy

    International Nuclear Information System (INIS)

    Zimmerman, C.F.; Schatz, N.J.; Glaser, J.S.

    1990-01-01

    Three patients with delayed radiation optic neuropathy after radiation therapy for parasellar neoplasms underwent magnetic resonance imaging. The affected optic nerves and chiasms showed enlargement and focal gadopentetate dimeglumine enhancement. The magnetic resonance imaging technique effectively detected and defined anterior visual pathway changes of radionecrosis and excluded the clinical possibility of visual loss because of tumor recurrence

  13. Magnetic resonance imaging and spectroscopy of combretastatin A4 prodrug-induced disruption of tumour perfusion and energetic status

    OpenAIRE

    1998-01-01

    The effects of combretastatin A4 prodrug on perfusion and the levels of 31P metabolites in an implanted murine tumour were investigated for 3 h after drug treatment using nuclear magnetic resonance imaging (MRI) and spectroscopy (MRS). The area of regions of low signal intensity in spin-echo images of tumours increased slightly after treatment with the drug. These regions of low signal intensity corresponded to necrosis seen in histological sections, whereas the expanding regions surrounding ...

  14. Giant magnetic modulation of a planar, hybrid metamolecule resonance

    International Nuclear Information System (INIS)

    Gregory, Simon A; Stenning, Gavin B G; Bowden, Graham J; De Groot, Peter A J; Zheludev, Nikolay I

    2014-01-01

    Coupling magnetic elements to metamaterial structures creates hybrid metamolecules with new opportunities. Here we report on the magnetic control of a metamolecule resonance, by utilizing the interaction between a single split ring resonator (SRR) and a magnetic thin film of permalloy. To suppress eddy current shielding, the permalloy films are patterned into arrays of 30–500 μm diameter discs. Strong hybridized resonances were observed at the anticrossing between the split ring resonance and the ferromagnetic resonance (FMR) of the permalloy. In particular, it is possible to achieve 40 dB modulation of the electric (symmetric) mode of the SRR on sweeping the applied magnetic field through the SRR/FMR anticrossing. The results open the way to the design of planar metamaterials, with potential applications in nonlinear metamaterials, tunable metamaterials and spintronics. (papers)

  15. Magnetic resonance imaging of muscle tears

    International Nuclear Information System (INIS)

    De Smet, A.A.; Fisher, D.R.; Heiner, J.P.; Keene, J.S.

    1990-01-01

    Magnetic resonance scans were obtained on 17 patients with acute, subacute, or chronic muscle tears. These patients presented with complaints of persistent pain or a palpable mass. Magnetic resonance findings were characterized according to alterations in muscle shape and the presence of abnormal high signal within the injured muscle. These areas of high signal were noted on both T1-weighted and T2-weighted scans and were presumed to represent areas of intramuscular hemorrhage. (orig.)

  16. Magnetic resonance of rubidium atoms passing through a multi-layered transmission magnetic grating

    International Nuclear Information System (INIS)

    Nagata, Y; Kurokawa, S; Hatakeyama, A

    2017-01-01

    We measured the magnetic resonance of rubidium atoms passing through periodic magnetic fields generated by two types of multi-layered transmission magnetic grating. One of the gratings reported here was assembled by stacking four layers of magnetic films so that the direction of magnetization alternated at each level. The other grating was assembled so that the magnetization at each level was aligned. For both types of grating, the experimental results were in good agreement with our calculations. We studied the feasibility of extending the frequency band of the grating and narrowing its resonance linewidth by performing calculations. For magnetic resonance precision spectroscopy, we conclude that the multi-layered transmission magnetic grating can generate periodic fields with narrower linewidths at higher frequencies when a larger number of layers are assembled at a shorter period length. Moreover, the frequency band of this type of grating can potentially achieve frequencies of up to hundreds of PHz. (paper)

  17. Magnetic resonance imaging of breast implants.

    Science.gov (United States)

    Shah, Mala; Tanna, Neil; Margolies, Laurie

    2014-12-01

    Silicone breast implants have significantly evolved since their introduction half a century ago, yet implant rupture remains a common and expected complication, especially in patients with earlier-generation implants. Magnetic resonance imaging is the primary modality for assessing the integrity of silicone implants and has excellent sensitivity and specificity, and the Food and Drug Administration currently recommends periodic magnetic resonance imaging screening for silent silicone breast implant rupture. Familiarity with the types of silicone implants and potential complications is essential for the radiologist. Signs of intracapsular rupture include the noose, droplet, subcapsular line, and linguine signs. Signs of extracapsular rupture include herniation of silicone with a capsular defect and extruded silicone material. Specific sequences including water and silicone suppression are essential for distinguishing rupture from other pathologies and artifacts. Magnetic resonance imaging provides valuable information about the integrity of silicone implants and associated complications.

  18. Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue

    International Nuclear Information System (INIS)

    Schroeder, L.; California Univ., Berkeley, CA; Lawrence Berkeley National Lab., Berkeley, CA

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the AMX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed. (orig.)

  19. [Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue].

    Science.gov (United States)

    Schröder, Leif

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.

  20. Magnetic Resonance (MR) Defecography

    Science.gov (United States)

    ... to a CD or uploaded to a digital cloud server. Magnetic resonance (MR) defecography is a special ... with you. top of page What are the benefits vs. risks? Benefits MR defecography helps assess pelvic ...

  1. Analysis of energy metabolism of the rabbit liver in obstructive jaundice using 31P magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Kawasaki, Toshihiko; Moriyasu, Fuminori; Ban, Nobuyuki

    1987-01-01

    Phosphorus-31 magnetic resonance spectroscopy was used to assess the changes in hepatic high-energy phosphate metabolites in rabbits with obstructive jaundice. The rabbits, which had undergone operative ligation of the common bile duct, were studied using a 2.0 Tesla whole-body magnetic resonance imager. Comparison of the peak phosphorus signal values relative to α-ATP showed that the peak phosphodiester and γ-ATP values in the livers of the one-day-after-ligation group were significantly lower than those in the control group, and the peak phosphomonoester and phosphodiester values in the five-days-after-ligation group were larger than those in the control group, but not significantly. Comparison of the peak T 1 values in the one-day-after-ligation group with those of the control group revealed that the T 1 value of phosphodiester was significantly larger than that in control group. It is suggested that dysfunction of phospholipid metabolism appears in the early phase of hepatic dysfunction due to obstructive jaundice. (author)

  2. First national meeting of magnetic resonance and hyperfine interactions

    International Nuclear Information System (INIS)

    1985-07-01

    Works performed at CNEA's: Magnetic Resonance Division; Moessbauer Spectroscopy; Solid State Physics Division; Nuclear magnetic Resonance Laboratory and Theoretical Physics Group; Mossbauer Spectroscopy Group; Nuclear Quadrupole Resonance; Physics and Materials Group; Perturbed Angular Correlation and Moessbauer Spectroscopy and Physics Department. (M.E.L.) [es

  3. Deep-level defects in semiconductors: studies by magnetic resonance

    International Nuclear Information System (INIS)

    Ammerlaan, C.A.J.

    1983-01-01

    This work is divided into two parts. In the first one, the following topics are discussed: paramagnetic centers in semiconductors, principles of magnetic resonance, spin-Hamiltonian, g-tensor, hyperfine interaction, magnetic resonance spectrometer. In the second part it is dicussed defects studied by magnetic resonance including vacancy and divacancy in silicon, iron in silicon, nitrogen in diamond and antisite defects in III-V compounds. (A.C.A.S.) [pt

  4. An introduction to magnetic resonance in medicine. 2. rev. ed.

    International Nuclear Information System (INIS)

    Rinck, P.A.; Muller, R.N.; Petersen, S.B.

    1990-01-01

    The second edition of this introduction to magnetic resonance in medicine is published five years after the first. During these years, magnetic resonance has established itself as a leading diagnostic modality in medicine. With the introduction of fast imaging methods and contrast agents, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) have become even more complicated and complex than before. The purpose of this introduction to biomedical MRI and MRS is to give the readers a basic knowledge that will make it possible for them to pursue studies of their own and to cope with some of the most common problems such as image artifacts or patient questions concerning possible hazards of magnetic resonance. (orig./MG) With 99 figs., 11 tabs

  5. Controlling interactions between highly magnetic atoms with Feshbach resonances.

    Science.gov (United States)

    Kotochigova, Svetlana

    2014-09-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  6. Resonant Magnetization Tunneling in Molecular Magnets: Where is the Inhomogeneous Broadening?

    Science.gov (United States)

    Friedman, Jonathan R.; Sarachik, M. P.

    1998-03-01

    Since the discovery(J. R. Friedman, et al., Phys. Rev. Lett. 76), 3830 (1996) of resonant magnetization tunneling in the molecular magnet Mn_12 there has been intense research into the underlying mechanism of tunneling. Most current theories( V. Dobrovitski and A. Zvezdin, Europhys. Lett. 38), 377 (1997); L. Gunther, Europhys. Lett. 39, 1 (1997); D Garanin and E. Chudnovsky, Phys. Rev. B 56, 11102 (1997). suggest that a local internal (hyperfine or dipole) field transverse to the easy magnetization axis induces tunneling. These theories predict a resonance width orders of magnitude smaller than that actually observed. This discrepancy is attributed to inhomogeneous broadening of the resonance by the random internal fields. We present a detailed study of the tunnel resonance lineshape and show that it is Lorentzian, suggesting it has a deeper physical origin. Since the hyperfine fields are believed to be comparable to the observed width, it is surprising that there is no Gaussian broadening.

  7. Capsular contracture and possible implant rupture: is magnetic resonance imaging useful?

    Science.gov (United States)

    Paetau, Alyssa A; McLaughlin, Sarah A; McNeil, Rebecca B; Sternberg, Erez; TerKonda, Sarvam P; Waldorf, James C; Perdikis, Galen

    2010-03-01

    Currently, magnetic resonance imaging is considered the accepted standard to evaluate breast implant integrity. To evaluate its utility in diagnosing ruptured silicone implants in the setting of capsular contracture and to correlate the preoperative assessment of implant integrity with or without magnetic resonance imaging with operative findings, 319 capsulectomies (171 patients with capsular contractures) were retrospectively reviewed. Preoperative magnetic resonance imaging was done on 160 implants, whereas the remaining 159 were evaluated using only physical examination and/or mammography. Postoperative results were analyzed to determine the sensitivity, specificity, and accuracy of preoperative magnetic resonance imaging in comparison with clinical and/or mammography evaluation alone. Although occasionally valuable, overall, preoperative magnetic resonance imaging was no more accurate than clinical evaluation with or without mammography in predicting implant status: magnetic resonance imaging 124 of 160 (78 percent) and clinical 121 of 159 (76 percent; p = 0.77). In the setting of capsular contracture, physical examination with or without mammogram is as accurate as magnetic resonance imaging in determining implant integrity. Although magnetic resonance imaging is a sensitive diagnostic tool, in symptomatic patients with capsular contracture, it cannot be viewed as infallible.

  8. H-1 Nuclear Magnetic Resonance Metabolomics Analysis Identifies Novel Urinary Biomarkers for Lung Function

    International Nuclear Information System (INIS)

    McClay, Joseph L.; Adkins, Daniel E.; Isern, Nancy G.; O'Connell, Thomas M.; Wooten, Jan B.; Zedler, Barbara K.; Dasika, Madhukar S.; Webb, B.T.; Webb-Robertson, Bobbie-Jo M.; Pounds, Joel G.; Murrelle, Edward L.; Leppert, Mark F.; van den Oord, Edwin J.

    2010-01-01

    Chronic obstructive pulmonary disease (COPD), characterized by chronic airflow limitation, is a serious and growing public health concern. The major environmental risk factor for COPD is tobacco smoking, but the biological mechanisms underlying COPD are not well understood. In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to identify and quantify metabolites associated with lung function in COPD. Plasma and urine were collected from 197 adults with COPD and from 195 adults without COPD. Samples were assayed using a 600 MHz NMR spectrometer, and the resulting spectra were analyzed against quantitative spirometric measures of lung function. After correcting for false discoveries and adjusting for covariates (sex, age, smoking) several spectral regions in urine were found to be significantly associated with baseline lung function. These regions correspond to the metabolites trigonelline, hippurate and formate. Concentrations of each metabolite, standardized to urinary creatinine, were associated with baseline lung function (minimum p-value = 0.0002 for trigonelline). No significant associations were found with plasma metabolites. Two of the three urinary metabolites positively associated with baseline lung function, i.e. hippurate and formate, are often related to gut microflora. This suggests that the microbiome composition is variable between individuals with different lung function. Alternatively, the nature and origins of all three associated metabolites may reflect lifestyle differences affecting overall health. Our results will require replication and validation, but demonstrate the utility of NMR metabolomics as a screening tool for identifying novel biomarkers of lung disease or disease risk.

  9. SQUID-detected magnetic resonance imaging in microtesla magnetic fields

    International Nuclear Information System (INIS)

    McDermott, Robert; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Mueck, Michael; Myers, Whittier; Haken, Bernard ten; Seton, H.C.; Trabesinger, Andreas H.; Pines, Alex; Clarke, John

    2003-01-01

    We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging

  10. Magnetic resonance of field-frozen and zero-field-frozen magnetic fluids

    International Nuclear Information System (INIS)

    Pereira, A.R.; Pelegrini, F.; Neto, K. Skeff; Buske, N.; Morais, P.C.

    2004-01-01

    In this study magnetic resonance was used to investigate magnetic fluid samples frozen under zero and non-zero (15 kG) external fields. The magnetite-based sample containing 2x10 17 particle/cm 3 was investigated from 100 to 400 K. Analysis of the temperature dependence of the resonance field revealed bigger magnetic structures in the frozen state than in the liquid phase. Also, differences in the mesoscopic organization in the frozen state may explain the data obtained from samples frozen under zero and non-zero fields

  11. Quantitative 1H-NMR Spectroscopy for Profiling Primary Metabolites in Mulberry Leaves

    Directory of Open Access Journals (Sweden)

    Qianqian Liang

    2018-03-01

    Full Text Available The primary metabolites in aqueous extract of mulberry (Morus alba L. leaves were characterized by using proton nuclear magnetic resonance (1H-NMR spectroscopy. With the convenience of resonance assignment, GABA together with the other 10 primary metabolites was simultaneously identified and quantified in one 1H-NMR spectrum. In this study, external calibration curves for metabolites were employed to calculate the concentrations of interests. The proposed quantitative approach was demonstrated with good linearity (r2 ranged in the interval of 0.9965–0.9999, precision, repeatability, stability (RSD values in the ranges of 0.35–4.89%, 0.77–7.13% and 0.28–2.33%, respectively and accuracy (recovery rates from 89.2% to 118.5%. The established 1H-NMR method was then successfully applied to quantify 11 primary metabolites in mulberry leaves from different geographical regions within a rapid analysis time and a simple sample preparation procedure.

  12. Magnetic resonance, a phenomenon with a great potential in medicine, but with a complex physical background – Part 2: The basics of magnetic resonance

    Directory of Open Access Journals (Sweden)

    Bojan Božič

    2014-01-01

    Full Text Available Magnetic resonance imaging is a very complex diagnostic technique. Therefore, both practical experiences and theoretical understanding is needed for effective diagnostics. It is therefore important that physicians are sufficiently familiar with the basic physical principles of magnetic resonance. In the interpretation of physical concepts, we will rely both on the classical as well as on the quantum-mechanical view of the signal formation in magnetic resonance, which are to some extent complementary. The signal appearance in magnetic resonance imaging will be discussed. A special emphasis will be put on the role of the resonance frequency and the pulse sequences. Furthermore, the spin echo as one of the most used classical signal sequences in diagnostic investigations will be described.

  13. Intra- and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography-mass spectrometry and nuclear magnetic resonance

    NARCIS (Netherlands)

    Moco, S.I.A.; Forshed, J.; Vos, de C.H.; Bino, R.J.; Vervoort, J.J.M.

    2008-01-01

    Nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LCMS) are frequently used as technological platforms for metabolomics applications. In this study, the metabolic profiles of ripe fruits from 50 different tomato cultivars, including beef, cherry and round types, were

  14. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    International Nuclear Information System (INIS)

    Jin, L.

    2016-01-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.

  15. Nuclear magnetic resonance scattering

    International Nuclear Information System (INIS)

    Young, I.R.

    1985-01-01

    A nuclear magnetic resonance apparatus is described including a magnet system which is capable of providing a steady magnetic field along an axis, and is constructed so as to define a plurality of regions along the axis in each of which the field is substantially homogeneous so that in each region an imaging operation may be separately carried out. Iron shields increase the field homogeneity. In use, each patient lies on a wheeled trolley which is provided with magnetic field gradient coils and an RF coil system, some of the coils being movable to facilitate positioning of the patient, and there are terminals for connection to a common computing and control facility. (author)

  16. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Magnetic resonance diagnostic device. 892.1000 Section 892.1000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance diagnostic...

  17. Fragile X syndrome: a pilot proton magnetic resonance spectroscopy study in premutation carriers

    LENUS (Irish Health Repository)

    Hallahan, Brian P

    2012-08-30

    AbstractPurposeThere is increasing evidence that neurodevelopmental differences in people with Fragile X syndrome (FraX) may be explained by differences in glutamatergic metabolism. Premutation carriers of FraX were originally considered to be unaffected although several recent reports demonstrate neuroanatomical, cognitive, and emotional differences from controls. However there are few studies on brain metabolism in premutation carriers of FraX.MethodsWe used proton magnetic resonance spectroscopy to compare neuronal integrity of a number of brain metabolites including N-Acetyl Aspartate, Creatine + Phosphocreatinine, Choline, myoInositol, and Glutamate containing substances (Glx) in 17 male premutation carriers of FraX and 16 male healthy control individuals.ResultsThere was no significant between-group difference in the concentration of any measured brain metabolites. However there was a differential increase in N-acetyl aspartate with aging in premutation FraX individuals compared to controls.ConclusionsThis is the first 1 H-MRS study to examine premutation FraX individuals. Although we demonstrated no difference in the concentration of any of the metabolites examined between the groups, this may be due to the large age ranges included in the two samples. The differential increase in NAA levels with aging may reflect an abnormal synaptic pruning process.

  18. Molecular subgroups of medulloblastoma identification using noninvasive magnetic resonance spectroscopy.

    Science.gov (United States)

    Blüml, Stefan; Margol, Ashley S; Sposto, Richard; Kennedy, Rebekah J; Robison, Nathan J; Vali, Marzieh; Hung, Long T; Muthugounder, Sakunthala; Finlay, Jonathan L; Erdreich-Epstein, Anat; Gilles, Floyd H; Judkins, Alexander R; Krieger, Mark D; Dhall, Girish; Nelson, Marvin D; Asgharzadeh, Shahab

    2016-01-01

    Medulloblastomas in children can be categorized into 4 molecular subgroups with differing clinical characteristics, such that subgroup determination aids in prognostication and risk-adaptive treatment strategies. Magnetic resonance spectroscopy (MRS) is a widely available, noninvasive tool that is used to determine the metabolic characteristics of tumors and provide diagnostic information without the need for tumor tissue. In this study, we investigated the hypothesis that metabolite concentrations measured by MRS would differ between molecular subgroups of medulloblastoma and allow accurate subgroup determination. MRS was used to measure metabolites in medulloblastomas across molecular subgroups (SHH = 12, Groups 3/4 = 17, WNT = 1). Levels of 14 metabolites were analyzed to determine those that were the most discriminant for medulloblastoma subgroups in order to construct a multivariable classifier for distinguishing between combined Group 3/4 and SHH tumors. Medulloblastomas across molecular subgroups revealed distinct spectral features. Group 3 and Group 4 tumors demonstrated metabolic profiles with readily detectable taurine, lower levels of lipids, and high levels of creatine. SHH tumors showed prominent choline and lipid with low levels of creatine and little or no evidence of taurine. A 5-metabolite subgroup classifier inclusive of creatine, myo-inositol, taurine, aspartate, and lipid 13a was developed that could discriminate between Group 3/4 and SHH medulloblastomas with excellent accuracy (cross-validated area under the curve [AUC] = 0.88). The data show that medulloblastomas of Group 3/4 differ metabolically as measured using MRS when compared with SHH molecular subgroups. MRS is a useful and accurate tool to determine medulloblastoma molecular subgroups. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Concepts and indications of abdominal magnetic resonance

    International Nuclear Information System (INIS)

    Murillo Viera, Wendy

    2012-01-01

    A literature review and conceptualization was performed of the main indications of magnetic resonance studies of the abdomen and the characteristic findings for each sequence, according to organ and pathology. The radiologist has had in mind main indications for magnetic resonance studies of the abdomen, with the purpose to guide the clinician in the choice of imaging modality that works best for the patient at diagnosis [es

  20. Alzheimer's disease and magnetic resonance spectroscopy of the hippocampus

    International Nuclear Information System (INIS)

    Engelhardt, Eliasz; Moreira, Denise M.; Laks, Jerson; Marinho, Valeska M.; Rozenthal, Marcia; Oliveira Junior, Amarino C.

    2001-01-01

    Objective: acquisition of data of magnetic resonance metabolite spectrum of the hippocampal formation (hippocampus-hc) in the elderly, normal and with Alzheimer's disease (AD). Method: Subjects matched for age: a. normal sample (n=20), CDR=0, and b. AD sample (n=40), CDR 1 and 2. Technique: Signa Horizon LX-GE, 1.5T, 1 H-MRS with automated software PROBE/SV, VOI: hc (right and left); single voxel (2x2x2cm); TR 1500ms/TE 50ms; PRESS; metabolites: N-acetylaspartate (Naa), choline (Cho), creatine (Cr), myo-inositol (mI). Results: The present data relate to the ratios of Naa, Cho and mI, with Cr taken as reference, and the mI/Naa ratio. The study showed reduction of Naa, increase of mI and of the mI/Naa ratio, and not consistent results for Cho. The results of the whole sample of AD patients compared to the pooled normal mean ± sd were significant for Naa, mI and mI/Naa (p<0.01). Accuracy in relation to the individual values of both samples showed satisfactory levels of sensitivity, specificity and positive predictive value. Conclusion: The present results can be used as a helpful tool to detect pathologic changes of the hippocampus in AD, and allowing greater accuracy and an earlier diagnosis of this disease. (author)

  1. Magnetic resonance imaging in the evaluation of periosteal reactions

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira-Barbosa, Marcello Henrique; Trad, Clovis Simao; Muglia, Valdair Francisco; Elias Junior, Jorge; Simao, Marcelo Novelino, E-mail: marcello@fmrp.usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Centro de Ciencias das Imagens e Fisica Medica; Sa, Jose Luiz de [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Hospital das Clinicas; Oliveira, Rodrigo Cecilio Vieira de [Clinica de Diagnostico por Imagem Tomoson, Aracatuba, SP (Brazil); Engel, Edgard Eduard [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Biomecanica, Medicina e Reabilitacao do Aparelho Locomotor

    2010-07-15

    The objective of the present essay was to encourage a careful evaluation of periosteal reactions on magnetic resonance images. The initial approach to bone lesions is made by conventional radiography and, based on the imaging findings, periosteal reactions are classified into classical subtypes. Although magnetic resonance imaging is considered as the gold standard for local staging of bone tumors, the utilization of such method in the study of periosteal reactions related to focal bone lesions has been poorly emphasized, with relatively few studies approaching this subject. The literature review revealed a study describing an experimental animal model of osteomyelitis suggesting that magnetic resonance imaging is superior to other imaging methods in the early identification of periosteal reactions. Another study has suggested a good correlation between conventional radiography and magnetic resonance imaging in the identification and classification of periosteal reactions in cases of osteosarcoma. The present essay illustrates cases of periosteal reactions observed at magnetic resonance imaging in correlation with findings of conventional radiography or other imaging methods. (author)

  2. Magnetic resonance imaging in the evaluation of periosteal reactions

    International Nuclear Information System (INIS)

    Nogueira-Barbosa, Marcello Henrique; Trad, Clovis Simao; Muglia, Valdair Francisco; Elias Junior, Jorge; Simao, Marcelo Novelino; Engel, Edgard Eduard

    2010-01-01

    The objective of the present essay was to encourage a careful evaluation of periosteal reactions on magnetic resonance images. The initial approach to bone lesions is made by conventional radiography and, based on the imaging findings, periosteal reactions are classified into classical subtypes. Although magnetic resonance imaging is considered as the gold standard for local staging of bone tumors, the utilization of such method in the study of periosteal reactions related to focal bone lesions has been poorly emphasized, with relatively few studies approaching this subject. The literature review revealed a study describing an experimental animal model of osteomyelitis suggesting that magnetic resonance imaging is superior to other imaging methods in the early identification of periosteal reactions. Another study has suggested a good correlation between conventional radiography and magnetic resonance imaging in the identification and classification of periosteal reactions in cases of osteosarcoma. The present essay illustrates cases of periosteal reactions observed at magnetic resonance imaging in correlation with findings of conventional radiography or other imaging methods. (author)

  3. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  4. Resonance magnetic x-ray scattering study of erbium

    DEFF Research Database (Denmark)

    Sanyal, M.K.; Gibbs, D.; Bohr, J.

    1994-01-01

    The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...... of this magnetic scattering and analyzed it using a simple model based on electric dipole and quadrupole transitions among atomic orbitals. The line shapes can be fitted to a magnetic structure combining both c-axis-modulated and basal-plane components. Below 18 K, we have observed unusual behavior of the magnetic...

  5. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings

    DEFF Research Database (Denmark)

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P

    2017-01-01

    BACKGROUND: The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate...... concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus...... glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. METHODS: Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia...

  6. Magnetic Resonance Cholangiopancreatography (MRCP)

    Science.gov (United States)

    ... radio waves and a computer to evaluate the liver, gallbladder, bile ducts, pancreas and pancreatic duct for disease. It is ... of the hepatobiliary and pancreatic systems, including the liver, gallbladder, bile ducts, pancreas and pancreatic duct . Magnetic resonance imaging (MRI) ...

  7. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  8. Idiopathic Dilated Cardiomyopathy-proton magnetic resonance spectroscopy ( 1 H MRS ) in evaluation of myocardial metabolism. Preliminary study

    International Nuclear Information System (INIS)

    Michalak, M.; Walecki, J.; Michalak, E.; Bilinska, Z.; Ruzyllo, W.

    2002-01-01

    Primary dilated cardiomyopathy is a disease of unknown etiology and it leads to serious cardiac insufficiency. Abnormalities in cardiac metabolism can play an important role in clinical manifestation and prognosis in this group. The aim of this study was an attempt to assess cardiac metabolism using proton spectroscopy magnetic resonance method (1H MRS) and to find a relationship between cardiac metabolites and functional class NYHA and left ventricular function parameters obtained by echocardiography. Proton spectroscopy magnetic resonance was performed in 15 patients with angiographically documented idiopathic dilated cardiomyopathy and 12 healthy volunteers with voxel localized at interventricular septum area. The contents of total creatine (CR) e.g. creatine+phosphocreatine, lipids (LIP) lactates (LAC) and their ratios (CR1A, CR2A, CR1/H20, CR2/H20, CR2/CR1, LIPA, LIP/H20, LIP/CR1, LACA, LAC/H20, LAC/CR1) were examined. Patents with dilated cardiomyopathy had significantly lower level of creatine CR1A (5.04I0.88 vs. 5.94I1.15, p<0.02) and ratios LIP/H20 (4.34I2.3 vs. 15.46I20.39, p<0.04) and LIP/CR1 (24.49I21.26 vs. 34.08I13.36, p<0.05) compared to healthy volunteers. Significant correlations between NYHA functional class and ratios CR2/CR1, CR2/H20 (r=0.59 p<0.038, r=0.59 p<0.02) and between %EFLV and LIP/CR1 (r=0.64, p<0.036), as well as between the duration of the disease (CTCH) and LIP/CR1 (r=0.67, p<0.046) were found. Preliminary study with proton spectroscopy magnetic resonance (1H MRS) showed impairment cardiac metabolism in patients with idiopathic dilated cardiomyopathy. A tendency to lowered values of creatine, lipids and some ratios of these metabolites were observed in dilated cardiomyopathy group compared to healthy subjects. Our results needs further study. (author)

  9. Frequency-domain analysis of resonant-type ring magnet power supplies

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Reiniger, K.W.

    1993-01-01

    For fast-cycling synchrotrons, resonant-type ring magnet power supplies are commonly used to provide a dc-biased ac excitation for the ring magnets. Up to the present, this power supply system has been analyzed using simplified analytical approximation, namely assuming the resonant frequency of the ring magnet network is fixed and equal to the accelerator frequency. This paper presents a frequency-domain analysis technique for a more accurate analysis of resonant-type ring magnet power supplies. This approach identifies that, with the variation of the resonant frequency, the operating conditions of the power supply changes quite dramatically because of the high Q value of the resonant network. The analytical results are verified, using both experimental results and simulation results

  10. Resonant cell of a double nuclear electron resonance spectrometer for performance in a 120-350 Gs magnetic field

    International Nuclear Information System (INIS)

    Baldin, V.I.; Stepanov, A.P.

    1976-01-01

    Spectrometer double-frequency resonance cell construction of a double nuclear electron resonance for operation in 120-350 Gs magnetic fields is described. The cell has been developed from a special decimeter resonator with a concentrated capacitance. The electric and magnetic components of a high frequency field are efficiently divided in the separator. Therefore, the insertion of a measuring coil and a sample in the maximum of the magnetic component of the field does not practically affect the distribution and parameters of the high-frequency field. The double-frequency resonance cell proposed provides for a higher accuracy of measuring amplifications of the nuclear magnetic resonance signals when there is the overhauzer effect for 120-350 Gs magnetic fields

  11. Can magnetic resonance imaging differentiate undifferentiated arthritis?

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Duer, Anne; Hørslev-Petersen, K

    2005-01-01

    A high sensitivity for the detection of inflammatory and destructive changes in inflammatory joint diseases makes magnetic resonance imaging potentially useful for assigning specific diagnoses, such as rheumatoid arthritis and psoriatic arthritis in arthritides, that remain undifferentiated after...... conventional clinical, biochemical and radiographic examinations. With recent data as the starting point, the present paper describes the current knowledge on magnetic resonance imaging in the differential diagnosis of undifferentiated arthritis....

  12. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  13. Magnetic resonance imaging of infectious myositis

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji Young; Kim, Jee Young; Kim, Sang Heum; Jung, Youn Ju; Cha, Eun Suk; Park, Joung Mi; Park, Young Ha [The Catholic Univ., College of Medicine, Suwon (Korea, Republic of)

    1998-09-01

    To describe the findings of magnetic resonance imaging in infectious myositis and to determine their value for differentiation between ruberculous and bacterial myositis. Magnetic resonance images of ten proven cases of infectious myositis (five tuberculous and five bacterial) were retrospectively reviewed in the light of clinical and laboratory findings. On the basis of magnetic resonance images, signal intensity of the mass, the presence or absence of an abscess, signal intensity of the peripheral wall, patterns of contrast enhancement, and associated findings were evaluated. Compared with those of bacterial myositis, the symptoms of tuberculous myositis lasted longer but there were no difinite local inflammatory signs. In three of five cases of bacterial myositis there were specific medical records;trauma in two cases and systemic lupus erythematosus in one. All tuberculous myositis cases involved a single muscle, but bacterial myositis affected multipe muscles in three cases(60%). All but one case showed a mass in the involved muscles. In one bacterial case, there was diffuse swelling in the involved muscle. On T1-weighted images, eight infectious cases showed low signal intensity;two, of the bactrerial type, showed subtle increased signal intensity. all cases demonstrated high signal intensity on t2-weighted images. The signal intensity of peripheral wall was slightly increased on T1-weighted images, but low on T2-weighted. In four cases there was associated cellulitis, and in one case each, adjacent joint effusion and deep vein thrombosis were seen. After gadolinium infusion, peripheral rim enhancement was noted in nine cases and heterogeneous enhancement in one. After magnetic resonance imaging of infectious myositis, the characteristic finding was an abscessed lesion, with the peripheral wall showing high signal intensity on T1-weighted images and low signal intensity on T2 weighted. Although we found it difficult to differentiate bacterial from tuberculous

  14. Magnetic resonance imaging of infectious myositis

    International Nuclear Information System (INIS)

    Yun, Ji Young; Kim, Jee Young; Kim, Sang Heum; Jung, Youn Ju; Cha, Eun Suk; Park, Joung Mi; Park, Young Ha

    1998-01-01

    To describe the findings of magnetic resonance imaging in infectious myositis and to determine their value for differentiation between ruberculous and bacterial myositis. Magnetic resonance images of ten proven cases of infectious myositis (five tuberculous and five bacterial) were retrospectively reviewed in the light of clinical and laboratory findings. On the basis of magnetic resonance images, signal intensity of the mass, the presence or absence of an abscess, signal intensity of the peripheral wall, patterns of contrast enhancement, and associated findings were evaluated. Compared with those of bacterial myositis, the symptoms of tuberculous myositis lasted longer but there were no difinite local inflammatory signs. In three of five cases of bacterial myositis there were specific medical records;trauma in two cases and systemic lupus erythematosus in one. All tuberculous myositis cases involved a single muscle, but bacterial myositis affected multipe muscles in three cases(60%). All but one case showed a mass in the involved muscles. In one bacterial case, there was diffuse swelling in the involved muscle. On T1-weighted images, eight infectious cases showed low signal intensity;two, of the bactrerial type, showed subtle increased signal intensity. all cases demonstrated high signal intensity on t2-weighted images. The signal intensity of peripheral wall was slightly increased on T1-weighted images, but low on T2-weighted. In four cases there was associated cellulitis, and in one case each, adjacent joint effusion and deep vein thrombosis were seen. After gadolinium infusion, peripheral rim enhancement was noted in nine cases and heterogeneous enhancement in one. After magnetic resonance imaging of infectious myositis, the characteristic finding was an abscessed lesion, with the peripheral wall showing high signal intensity on T1-weighted images and low signal intensity on T2 weighted. Although we found it difficult to differentiate bacterial from tuberculous

  15. Molecular structure and motion in zero field magnetic resonance

    International Nuclear Information System (INIS)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed

  16. Diagnostic imaging of psoriatic arthritis. Part II: magnetic resonance imaging and ultrasonography

    Directory of Open Access Journals (Sweden)

    Iwona Sudoł-Szopińska

    2016-06-01

    Full Text Available Plain radiography reveals specific, yet late changes of advanced psoriatic arthritis. Early inflammatory changes are seen both on magnetic resonance imaging and ultrasound within peripheral joints (arthritis, synovitis, tendons sheaths (tenosynovitis, tendovaginitis and entheses (enthesitis, enthesopathy. In addition, magnetic resonance imaging enables the assessment of inflammatory features in the sacroiliac joints (sacroiliitis, and the spine (spondylitis. In this article, we review current opinions on the diagnostics of some selective, and distinctive features of psoriatic arthritis concerning magnetic resonance imaging and ultrasound and present some hypotheses on psoriatic arthritis etiopathogenesis, which have been studied with the use of magnetic resonance imaging. The following elements of the psoriatic arthritis are discussed: enthesitis, extracapsular inflammation, dactylitis, distal interphalangeal joint and nail disease, and the ability of magnetic resonance imaging to differentiate undifferentiated arthritis, the value of whole-body magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging.

  17. Magnetic resonance spectroscopy as a diagnostic modality for carcinoma thyroid

    International Nuclear Information System (INIS)

    Gupta, Nikhil; Kakar, Arun K.; Chowdhury, Veena; Gulati, Praveen; Shankar, L. Ravi; Vindal, Anubhav

    2007-01-01

    Aim: The aim of this study was to observe the findings of magnetic resonance spectroscopy of solitary thyroid nodules and its correlation with histopathology. Materials and methods: In this study, magnetic resonance spectroscopy was carried out on 26 patients having solitary thyroid nodules. Magnetic resonance spectroscopy (MRS) was performed on a 1.5 T super conductive system with gradient strength of 33 mTs. Fine needle aspiration cytology was done after MRS. All 26 patients underwent surgery either because of cytopathologically proven malignancy or because of cosmetic reasons. Findings of magnetic resonance spectroscopy were compared with histopathology of thyroid specimens. Results and conclusion: It was seen that presence or absence of choline peak correlates very well with presence or absence of malignant foci with in the nodule (sensitivity = 100%; specificity = 88.88%). These results indicate that magnetic resonance spectroscopy may prove to be an useful diagnostic modality for carcinoma thyroid

  18. Magnetic resonance, especially spin echo, in spinor Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Yasunaga, Masashi; Tsubota, Makoto

    2009-01-01

    Magnetic resonance, especially NMR and ESR, has been studied in magnetic materials for a long time, having been used in various fields. Spin echo is typical phenomenon in magnetic resonance. The magnetic resonance should be applied to spinor Bose-Einstein condensates (BECs). We numerically study spin echo of a spinor BEC in a gradient magnetic field by calculating the spin-1 two-dimensional Gross-Pitaevskii equations, obtaining the recovery of the signal of the spins, which is called spin echo. We will discuss the relation between the spin echo and the Stern-Gelrach separation in the system.

  19. Magnetic Resonance Imaging Studies of Postpartum Depression: An Overview

    Directory of Open Access Journals (Sweden)

    Marco Fiorelli

    2015-01-01

    Full Text Available Postpartum depression is a frequent and disabling condition whose pathophysiology is still unclear. In recent years, the study of the neural correlates of mental disorders has been increasingly approached using magnetic resonance techniques. In this review we synthesize the results from studies on postpartum depression in the context of structural, functional, and spectroscopic magnetic resonance studies of major depression as a whole. Compared to the relative wealth of data available for major depression, magnetic resonance studies of postpartum depression are limited in number and design. A systematic literature search yielded only eleven studies conducted on about one hundred mothers with postpartum depression overall. Brain magnetic resonance findings in postpartum depression appear to replicate those obtained in major depression, with minor deviations that are not sufficient to delineate a distinct neurobiological profile for this condition, due to the small samples used and the lack of direct comparisons with subjects with major depression. However, it seems reasonable to expect that studies conducted in larger populations, and using a larger variety of brain magnetic resonance techniques than has been done so far, might allow for the identification of neuroimaging signatures for postpartum depression.

  20. Quantitative magnetic resonance micro-imaging methods for pharmaceutical research.

    Science.gov (United States)

    Mantle, M D

    2011-09-30

    The use of magnetic resonance imaging (MRI) as a tool in pharmaceutical research is now well established and the current literature covers a multitude of different pharmaceutically relevant research areas. This review focuses on the use of quantitative magnetic resonance micro-imaging techniques and how they have been exploited to extract information that is of direct relevance to the pharmaceutical industry. The article is divided into two main areas. The first half outlines the theoretical aspects of magnetic resonance and deals with basic magnetic resonance theory, the effects of nuclear spin-lattice (T(1)), spin-spin (T(2)) relaxation and molecular diffusion upon image quantitation, and discusses the applications of rapid magnetic resonance imaging techniques. In addition to the theory, the review aims to provide some practical guidelines for the pharmaceutical researcher with an interest in MRI as to which MRI pulse sequences/protocols should be used and when. The second half of the article reviews the recent advances and developments that have appeared in the literature concerning the use of quantitative micro-imaging methods to pharmaceutically relevant research. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    Science.gov (United States)

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  2. Comparative analysis of nuclear magnetic resonance well logging and nuclear magnetic resonance mud logging

    International Nuclear Information System (INIS)

    Yuan Zugui

    2008-01-01

    The hydrogen atoms in oil and water are able to resonate and generate signals in the magnetic field, which is used by the NMR (nuclear magnetic resonance) technology in petroleum engineering to research and evaluate rock characteristics. NMR well logging was used to measure the physical property parameters of the strata in well bore, whereas NMR mud logging was used to analyze (while drilling) the physical property parameters of cores, cuttings and sidewall coring samples on surface (drilling site). Based on the comparative analysis of the porosity and permeability parameters obtained by NMR well logging and those from analysis of the cores, cuttings and sidewall coring samples by NMR mud logging in the same depth of 13 wells, these two methods are of certain difference, but their integral tendency is relatively good. (authors)

  3. Magnetic resonance tomography for trauma of the cervical spine

    International Nuclear Information System (INIS)

    Meydam, K.; Sehlen, S.; Schlenkhoff, D.; Kiricuta, J.C.; Beyer, H.K.

    1986-01-01

    Twenty patients who had suffered spinal trauma were examined by magnetic resonance tomography. Fifteen patients with first degree trauma in Erdmann's classification showed no abnormality. Magnetic resonance tomography of the cervical spine appears to be a suitable method for investigating patients with whiplash injuries. It is indicated following severe flexion injuries with subluxations and neurological symptoms, since it is the only method that can demonstrate the spinal cord directly and completely and show the extent of cord compression. For patients with thoracic trauma and rapidly developing neurological symptoms, magnetic resonance tomography is ideal for showing post-traumatic syringomyelia. Magnetic resonance tomography following whiplash injuries is recommended if plain films of the cervical spine show any abnormalities, as well as for the investigation of acute or sub-acute neurological abnormalities. The various findings are discussed. (orig.) [de

  4. Magnetic resonance tomography for trauma of the cervical spine

    Energy Technology Data Exchange (ETDEWEB)

    Meydam, K.; Sehlen, S.; Schlenkhoff, D.; Kiricuta, J.C.; Beyer, H.K.

    1986-12-01

    Twenty patients who had suffered spinal trauma were examined by magnetic resonance tomography. Fifteen patients with first degree trauma in Erdmann's classification showed no abnormality. Magnetic resonance tomography of the cervical spine appears to be a suitable method for investigating patients with whiplash injuries. It is indicated following severe flexion injuries with subluxations and neurological symptoms, since it is the only method that can demonstrate the spinal cord directly and completely and show the extent of cord compression. For patients with thoracic trauma and rapidly developing neurological symptoms, magnetic resonance tomography is ideal for showing post-traumatic syringomyelia. Magnetic resonance tomography following whiplash injuries is recommended if plain films of the cervical spine show any abnormalities, as well as for the investigation of acute or sub-acute neurological abnormalities. The various findings are discussed.

  5. Normal perinatal and paediatric postmortem magnetic resonance imaging appearances

    Energy Technology Data Exchange (ETDEWEB)

    Arthurs, Owen J. [Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); UCL Institute of Child Health, London (United Kingdom); Barber, Joy L. [Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); Taylor, Andrew M. [Cardiorespiratory Division, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom); UCL Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, London (United Kingdom); Sebire, Neil J. [UCL Institute of Child Health, London (United Kingdom); Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (United Kingdom)

    2015-04-01

    As postmortem imaging becomes more widely used following perinatal and paediatric deaths, the correct interpretation of images becomes imperative, particularly given the increased use of postmortem magnetic resonance imaging. Many pathological processes may have similar appearances in life and following death. A thorough knowledge of normal postmortem changes is therefore required within postmortem magnetic resonance imaging to ensure that these are not mistakenly interpreted as significant pathology. Similarly, some changes that are interpreted as pathological if they occur during life may be artefacts on postmortem magnetic resonance imaging that are of limited significance. This review serves to illustrate briefly those postmortem magnetic resonance imaging changes as part of the normal changes after death in fetuses and children, and highlight imaging findings that may confuse or mislead an observer to identifying pathology where none is present. (orig.)

  6. Topical questions in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.; Florida Univ., Gainesville, FL; Florida Univ., Gainesville, FL

    1989-01-01

    This paper examines a number of practical questions concerning magnetic resonance imaging. These include the choice of operating magnetic field strength, the problem of siting and screening, a procedure for securing precise slice selection and the use of paramagnetic contrast agents. (author). 5 refs

  7. 'Blocking' effects in magnetic resonance? The ferromagnetic nanowires case

    International Nuclear Information System (INIS)

    Ramos, C.A.; De Biasi, E.; Zysler, R.D.; Vassallo Brigneti, E.; Vazquez, M.

    2007-01-01

    We present magnetic resonance results obtained at L, X, and Q bands (1.2, 9.4 and 34GHz, respectively) on ferromagnetic nanowires with a hysteresis cycle characterized by a remanent magnetization M r /M s ∼0.92 and a coercive field H c =1.0kOe. The hysteretic response of the ferromagnetic resonance spectra is discussed in terms of independent contributions of the nanowires aligned along and opposite to the applied field. We will discuss the implications of this study on the magnetic resonance in nanoparticles and other systems with large anisotropy

  8. The hippocampus in patients treated with electroconvulsive therapy: a proton magnetic resonance spectroscopic imaging study.

    Science.gov (United States)

    Ende, G; Braus, D F; Walter, S; Weber-Fahr, W; Henn, F A

    2000-10-01

    We monitored the effect of electroconvulsive therapy (ECT) on the nuclear magnetic resonance-detectable metabolites N-acetylaspartate, creatine and phosphocreatine, and choline-containing compounds in the hippocampus by means of hydrogen 1 magnetic resonance spectroscopic imaging. We hypothesized that if ECT-induced memory deterioration was associated with neuronal loss in the hippocampus, the N-acetylaspartate signal would decrease after ECT and any increased membrane turnover would result in an increase in the signal from choline-containing compounds. Seventeen patients received complete courses of ECT, during which repeated proton magnetic resonance spectroscopic imaging studies of the hippocampal region were performed. Individual changes during the course of ECT were compared with values obtained in 24 healthy control subjects and 6 patients remitted from major depression without ECT. No changes in the hippocampal N-acetylaspartate signals were detected after ECT. A significant mean increase of 16% of the signal from choline-containing compounds after 5 or more ECT treatments was observed. Despite the mostly unilateral ECT application (14 of 17 patients), the increase in the choline-containing compound signal was observed bilaterally. Lactate or elevated lipid signals were not detected. All patients showed clinical amelioration of depression after ECT. Electroconvulsive therapy is not likely to induce hippocampal atrophy or cell death, which would be reflected by a decrease in the N-acetylaspartate signal. Compared with an age-matched control group, the choline-containing compounds signal in patients with a major depressive episode was significantly lower than normal, before ECT and normalized during ECT.

  9. Recent trends in high spin sensitivity magnetic resonance

    Science.gov (United States)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    Magnetic resonance is a very powerful methodology that has been employed successfully in many applications for about 70 years now, resulting in a wealth of scientific, technological, and diagnostic data. Despite its many advantages, one major drawback of magnetic resonance is its relatively poor sensitivity and, as a consequence, its bad spatial resolution when examining heterogeneous samples. Contemporary science and technology often make use of very small amounts of material and examine heterogeneity on a very small length scale, both of which are well beyond the current capabilities of conventional magnetic resonance. It is therefore very important to significantly improve both the sensitivity and the spatial resolution of magnetic resonance techniques. The quest for higher sensitivity led in recent years to the development of many alternative detection techniques that seem to rival and challenge the conventional ;old-fashioned; induction-detection approach. The aim of this manuscript is to briefly review recent advances in the field, and to provide a quantitative as well as qualitative comparison between various detection methods with an eye to future potential advances and developments. We first offer a common definition of sensitivity in magnetic resonance to enable proper quantitative comparisons between various detection methods. Following that, up-to-date information about the sensitivity capabilities of the leading recently-developed detection approaches in magnetic resonance is provided, accompanied by a critical comparison between them and induction detection. Our conclusion from this comparison is that induction detection is still indispensable, and as such, it is very important to look for ways to significantly improve it. To do so, we provide expressions for the sensitivity of induction-detection, derived from both classical and quantum mechanics, that identify its main limiting factors. Examples from current literature, as well as a description of

  10. Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting.

    Science.gov (United States)

    McGivney, Debra; Deshmane, Anagha; Jiang, Yun; Ma, Dan; Badve, Chaitra; Sloan, Andrew; Gulani, Vikas; Griswold, Mark

    2018-07-01

    To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Low field magnetic resonance experiments in superfluid 3He--A

    International Nuclear Information System (INIS)

    Gully, W.J. Jr.

    1976-01-01

    Measurements of the longitudinal and transverse nuclear magnetic resonance signals have been made on the A phase of liquid 3 He. They were performed on a sample of 3 He self-cooled by the Pomeranchuk effect to the critical temperature of the superfluid at 2.7 m 0 K. The longitudinal resonance is a magnetic mode of the liquid excited by radio frequency magnetic fields applied in the direction of the static magnetic field. Frequency profiles of this resonance were indirectly obtained by contour techniques from signals recorded by sweeping the temperature. Its frequency is found to be related to the frequency shift of the transverse resonance in agreement with theoretical predictions for the ABM pairing state. Its linewidth also agrees with theoretical predictions based upon dissipative phenomena peculiar to the superfluid phase. An analysis of the linewidth of the longitudinal resonance yields a value for the quasiparticle collision time. Transverse NMR lines were also studied. In low magnetic fields (20 Oersted) these lines were found to become extremely broad. This is shown to be a manifestation of the same collisional processes that broaden the longitudinal resonance lines. Also, the effects of various textures on the resonance lines are discussed, including the results of an attempt to create a single domain of 3 He with crossed electric and magnetic fields

  12. In vivo MRS metabolite quantification using genetic optimization

    Science.gov (United States)

    Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; van Ormondt, D.; Graveron-Demilly, D.

    2011-11-01

    The in vivo quantification of metabolites' concentrations, revealed in magnetic resonance spectroscopy (MRS) spectra, constitutes the main subject under investigation in this work. Significant contributions based on artificial intelligence tools, such as neural networks (NNs), with good results have been presented lately but have shown several drawbacks, regarding their quantification accuracy under difficult conditions. A general framework that encounters the quantification procedure as an optimization problem, which is solved using a genetic algorithm (GA), is proposed in this paper. Two different lineshape models are examined, while two GA configurations are applied on artificial data. Moreover, the introduced quantification technique deals with metabolite peaks' overlapping, a considerably difficult situation occurring under real conditions. Appropriate experiments have proved the efficiency of the introduced methodology, in artificial MRS data, by establishing it as a generic metabolite quantification procedure.

  13. In vivo MRS metabolite quantification using genetic optimization

    International Nuclear Information System (INIS)

    Papakostas, G A; Mertzios, B G; Karras, D A; Van Ormondt, D; Graveron-Demilly, D

    2011-01-01

    The in vivo quantification of metabolites' concentrations, revealed in magnetic resonance spectroscopy (MRS) spectra, constitutes the main subject under investigation in this work. Significant contributions based on artificial intelligence tools, such as neural networks (NNs), with good results have been presented lately but have shown several drawbacks, regarding their quantification accuracy under difficult conditions. A general framework that encounters the quantification procedure as an optimization problem, which is solved using a genetic algorithm (GA), is proposed in this paper. Two different lineshape models are examined, while two GA configurations are applied on artificial data. Moreover, the introduced quantification technique deals with metabolite peaks' overlapping, a considerably difficult situation occurring under real conditions. Appropriate experiments have proved the efficiency of the introduced methodology, in artificial MRS data, by establishing it as a generic metabolite quantification procedure

  14. Nuclear magnetic resonance in ferromagnetic terbium metal

    International Nuclear Information System (INIS)

    Cha, C.L.T.

    1974-01-01

    The magnetic properties of terbium were studied by the method of zero field nuclear magnetic resonance at 1.5 to 4 and 85 to 160 0 K. Two unconventional experimental techniques have been employed: the swept frequency and the swept temperature technique. Near 4 0 K, triplet resonance line structures were found and interpreted in terms of the magnetic domain and wall structures of ferromagnetic terbium. In the higher temperature range, temperature dependence of the resonance frequency and the quadrupole splitting were measured. The former provides a measurement of the temperature dependence of the magnetization M, and it agrees with bulk M measurements as well as the latest spin wave theory of M(T) (Brooks 1968). The latter agrees well with a calculation using a very general single ion density matrix for collective excitations (Callen and Shtrikman 1965). In addition, the small temperature-independent contribution to the electric field gradient at the nucleus due to the lattice and conduction electrons was untangled from the P(T) data. Also an anomalous and unexplained relaxation phenomenon was also observed

  15. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  16. Moessbauer and magnetic resonance experiments on amorphous iron-silicon films

    International Nuclear Information System (INIS)

    Bansal, C.; Campbell, S.J.; Stewart, A.M.

    1982-01-01

    Moessbauer measurements at room temperature and 4.2 K, and room temperature magnetic resonance measurments on a series of amorphous Fesub(x)Sisub(1-x) thin films (0.23 <= x <= 0.81) are presented. The concentration dependence of the isomer shifts and quadrupole splittings provides information on the nature of the local coordination in these amorphous materials. Analysis of the distributions of magnetic hyperfine splitting combined with the presence of multiple resonance in the magnetic resonance data indiates that magnetoanisotropy plays a dominant role in determining the magnetic behaviour of these films. (orig.)

  17. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sigal, R.

    1988-01-01

    This book is an introduction to magnetic resonance imaging (MRI). The basic principles for the interpretation of MR images are developed. The book is divided into five chapters: introduction, tissue, parameters, acquisition parameters, contribution to diagnosis, and practical management of an MR examination. Eight exercises allow the reader to test the knowledge he has acquired. Signal localization and MR artefacts are reviewed in an appendix

  18. Novel urinary metabolite of d-delta-tocopherol in rats

    International Nuclear Information System (INIS)

    Chiku, S.; Hamamura, K.; Nakamura, T.

    1984-01-01

    A novel metabolite of d-delta-tocopherol was isolated from the urine of rats given d-3,4-[ 3 H 2 ]-delta-tocopherol intravenously. The metabolite was collected from the urine of rats given d-delta-tocopherol in the same manner as that of the labeled compound. It was found that the metabolites consisted of sulfate conjugates. The portion of the major metabolite released with sulfatase was determined to be 2,8-dimethyl-2-(2'-carboxyethyl)-6-chromanol by infrared spectra, nuclear magnetic resonance spectra, and mass spectra. The proposed structure was confirmed by comparing the analytical results with those of a synthetically derived compound. As a result of the structural elucidation of this novel metabolite, a pathway for the biological transformation of delta-tocopherol is proposed which is different from that of alpha-tocopherol. A characteristic feature of the pathway is the absence of any opening of the chroman ring throughout the sequence

  19. Evaluation of heterogeneous metabolic profile in an orthotopic human glioblastoma xenograft model using compressed sensing hyperpolarized 3D 13C magnetic resonance spectroscopic imaging.

    Science.gov (United States)

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J; James, C David; Pieper, Russell O; Ronen, Sabrina M; Vigneron, Daniel B; Nelson, Sarah J

    2013-07-01

    High resolution compressed sensing hyperpolarized (13)C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in (13)C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D (13)C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-(13)C]-pyruvate using a 3T scanner. The (13)C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing (13)C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct (13)C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of (13)C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. Copyright © 2012 Wiley Periodicals, Inc.

  20. Observer variation factor on advanced method for accurate, robust, and efficient spectral fitting of java based magnetic resonance user interface for MRS data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Suk Jun [Dept. of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju (Korea, Republic of); Yu, Seung Man [Dept. of Radiological Science, College of Health Science, Gimcheon University, Gimcheon (Korea, Republic of)

    2016-06-15

    The purpose of this study was examined the measurement error factor on AMARES of jMRUI method for magnetic resonance spectroscopy (MRS) quantitative analysis by skilled and unskilled observer method and identified the reason of independent observers. The Point-resolved spectroscopy sequence was used to acquired magnetic resonance spectroscopy data of 10 weeks male Sprague-Dawley rat liver. The methylene protons ((-CH2-)n) of 1.3 ppm and water proton (H2O) of 4.7 ppm ratio was calculated by LCModel software for using the reference data. The seven unskilled observers were calculated total lipid (methylene/water) using the jMRUI AMARES technique twice every 1 week, and we conducted interclass correlation coefficient (ICC) statistical analysis by SPSS software. The inter-observer reliability (ICC) of Cronbach's alpha value was less than 0.1. The average value of seven observer's total lipid (0.096±0.038) was 50% higher than LCModel reference value. The jMRUI AMARES analysis method is need to minimize the presence of the residual metabolite by identified metabolite MRS profile in order to obtain the same results as the LCModel.

  1. On effect of stability of magnetic resonance position by harmonized field

    International Nuclear Information System (INIS)

    Ivanchenko, E.A.; Tolstoluzhsky, A.P.

    2006-01-01

    The formalism of density matrix in a two level system is used to study the time-periodic modulation of the magnetic field stabilizating the magnetic resonance position. An exact solution for density matrix at resonance is found. It is shown that the fundamental resonance is stable with respect to consistent variations of longitudinal and transversal magnetic fields. A differential equation for the transition probability is obtained. The dependence of time-averaged spin flip probability on the normalized Larmor frequency was numerically researched in different parameter regimes with account of dissipation and decoherence. It is shown that the position of the main resonance is independent of field deformation and dissipation; only the width of resonance line changes upon field deformation and dissipation. The odd parametric (multi-photon) resonance transitions is studied. Static magnetization induced by time-periodic modulated magnetic field is considered. The results of the investigation may be useful for analysis of interference experiments, improvement of magnetic spectrometers and in the field of quantum computing manipulation of q-bits

  2. Thalamic metabolic abnormalities in patients with Huntington's disease measured by magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Casseb, R.F.; Castellano, G., E-mail: gabriela@ifi.unicamp.br [Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin. Dept. de Raios Cosmicos e Cronologia; D' Abreu, A.; Cendes, F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Neurologia. Lab. de Neuroimagem; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Ruocco, H.H. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Neurologia. Lab. de Neuroimagem; Lopes-Cendes, I., E-mail: seixas.fk@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Genetica Medica; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil)

    2013-08-15

    Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations of N-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P,0.001), and glycerophosphocholine+phosphocholine (GPC+PCh; t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence. (author)

  3. Magnetic hysteresis effects in superconducting coplanar microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Bothner, D.; Gaber, T.; Kemmler, M.; Gruenzweig, M.; Ferdinand, B.; Koelle, D.; Kleiner, R. [Universitaet Tuebingen (Germany); Wuensch, S.; Siegel, M. [Karlsruher Institut fuer Technologie (Germany); Mikheenko, P.; Johansen, T.H. [University of Oslo (Norway)

    2013-07-01

    We present experimental data regarding the impact of external magnetic fields on quality factor and resonance frequency of superconducting microwave resonators in a coplanar waveguide geometry. In particular we focus on the influence of magnetic history and show with the assistance of numerical calculations that the found hysteretic behaviour can be well understood with a highly inhomogeneous microwave current density in combination with established field penetration models for type-II superconducting thin films. Furthermore we have used magneto-optical imaging techniques to check the field distribution which we have assumed in our calculations. Finally, we demonstrate that and how the observed hysteretic behaviour can be used to optimize and tune the resonator performance for possible hybrid quantum sytems in magnetic fields.

  4. Slotted cage resonator for high-field magnetic resonance imaging of rodents

    Energy Technology Data Exchange (ETDEWEB)

    Marrufo, O; Vasquez, F; Solis, S E; Rodriguez, A O, E-mail: arog@xanum.uam.mx [Departamento de Ingenieria Electrica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340 (Mexico)

    2011-04-20

    A variation of the high-frequency cavity resonator coil was experimentally developed according to the theoretical frame proposed by Mansfield in 1990. Circular slots were used instead of cavities to form the coil endplates and it was called the slotted cage resonator coil. The theoretical principles were validated via a coil equivalent circuit and also experimentally with a coil prototype. The radio frequency magnetic field, B1, produced by several coil configurations was numerically simulated using the finite-element approach to investigate their performances. A transceiver coil, 8 cm long and 7.6 cm in diameter, and composed of 4 circular slots with a 15 mm diameter on both endplates, was built to operate at 300 MHz and quadrature driven. Experimental results obtained with the slotted cage resonator coil were presented and showed very good agreement with the theoretical expectations for the resonant frequency as a function of the coil dimensions and slots. A standard birdcage coil was also built for performance comparison purposes. Phantom images were then acquired to compute the signal-to-noise ratio of both coils showing an important improvement of the slotted cage coil over the birdcage coil. The whole-body images of the mouse were also obtained showing high-quality images. Volume resonator coils can be reliably built following the physical principles of the cavity resonator design for high-field magnetic resonance imaging applications of rodents.

  5. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments.

    Science.gov (United States)

    Dona, Anthony C; Kyriakides, Michael; Scott, Flora; Shephard, Elizabeth A; Varshavi, Dorsa; Veselkov, Kirill; Everett, Jeremy R

    2016-01-01

    Metabonomics/metabolomics is an important science for the understanding of biological systems and the prediction of their behaviour, through the profiling of metabolites. Two technologies are routinely used in order to analyse metabolite profiles in biological fluids: nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), the latter typically with hyphenation to a chromatography system such as liquid chromatography (LC), in a configuration known as LC-MS. With both NMR and MS-based detection technologies, the identification of the metabolites in the biological sample remains a significant obstacle and bottleneck. This article provides guidance on methods for metabolite identification in biological fluids using NMR spectroscopy, and is illustrated with examples from recent studies on mice.

  6. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments

    Directory of Open Access Journals (Sweden)

    Anthony C. Dona

    2016-01-01

    Full Text Available Metabonomics/metabolomics is an important science for the understanding of biological systems and the prediction of their behaviour, through the profiling of metabolites. Two technologies are routinely used in order to analyse metabolite profiles in biological fluids: nuclear magnetic resonance (NMR spectroscopy and mass spectrometry (MS, the latter typically with hyphenation to a chromatography system such as liquid chromatography (LC, in a configuration known as LC–MS. With both NMR and MS-based detection technologies, the identification of the metabolites in the biological sample remains a significant obstacle and bottleneck. This article provides guidance on methods for metabolite identification in biological fluids using NMR spectroscopy, and is illustrated with examples from recent studies on mice.

  7. Evaluation of magnetic resonance velocimetry for steady flow.

    Science.gov (United States)

    Ku, D N; Biancheri, C L; Pettigrew, R I; Peifer, J W; Markou, C P; Engels, H

    1990-11-01

    Whole body magnetic resonance (MR) imaging has recently become an important diagnostic tool for cardiovascular diseases. The technique of magnetic resonance phase velocity encoding allows the quantitative measurement of velocity for an arbitrary component direction. A study was initiated to determine the ability and accuracy of MR velocimetry to measure a wide range of flow conditions including flow separation, three-dimensional secondary flow, high velocity gradients, and turbulence. A steady flow system pumped water doped with manganese chloride through a variety of test sections. Images were produced using gradient echo sequences on test sections including a straight tube, a curved tube, a smoothly converging-diverging nozzle, and an orifice. Magnetic resonance measurements of laminar and turbulent flows were depicted as cross-sectional velocity profiles. MR velocity measurements revealed such flow behavior as spatially varying velocity, recirculation and secondary flows over a wide range of conditions. Comparisons made with published experimental laser Doppler anemometry measurements and theoretical calculations for similar flow conditions revealed excellent accuracy and precision levels. The successful measurement of velocity profiles for a variety of flow conditions and geometries indicate that magnetic resonance imaging is an accurate, non-contacting velocimeter.

  8. Introduction to magnetic resonance and its application to dipole magnet testing

    International Nuclear Information System (INIS)

    Clark, W.G.

    1992-01-01

    An introduction to the features of magnetic resonance that are essential for understanding its application to testing accelerator dipole magnets is presented, including the accuracy that can be expected in field measurements and the factors that limit it. The use of an array of coils to measure the multipole moments of dipole magnets is discussed

  9. Magnetic resonance spectroscopy metabolite profiles predict survival in paediatric brain tumours.

    Science.gov (United States)

    Wilson, Martin; Cummins, Carole L; Macpherson, Lesley; Sun, Yu; Natarajan, Kal; Grundy, Richard G; Arvanitis, Theodoros N; Kauppinen, Risto A; Peet, Andrew C

    2013-01-01

    Brain tumours cause the highest mortality and morbidity rate of all childhood tumour groups and new methods are required to improve clinical management. (1)H magnetic resonance spectroscopy (MRS) allows non-invasive concentration measurements of small molecules present in tumour tissue, providing clinically useful imaging biomarkers. The primary aim of this study was to investigate whether MRS detectable molecules can predict the survival of paediatric brain tumour patients. Short echo time (30ms) single voxel (1)H MRS was performed on children attending Birmingham Children's Hospital with a suspected brain tumour and 115 patients were included in the survival analysis. Patients were followed-up for a median period of 35 months and Cox-Regression was used to establish the prognostic value of individual MRS detectable molecules. A multivariate model of survival was also investigated to improve prognostic power. Lipids and scyllo-inositol predicted poor survival whilst glutamine and N-acetyl aspartate predicted improved survival (pmodel of survival based on three MRS biomarkers predicted survival with a similar accuracy to histologic grading (p5e-5). A negative correlation between lipids and glutamine was found, suggesting a functional link between these molecules. MRS detectable biomolecules have been identified that predict survival of paediatric brain tumour patients across a range of tumour types. The evaluation of these biomarkers in large prospective studies of specific tumour types should be undertaken. The correlation between lipids and glutamine provides new insight into paediatric brain tumour metabolism that may present novel targets for therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Changes in hippocampal metabolites after effective treatment for fibromyalgia: a case study.

    Science.gov (United States)

    Wood, Patrick B; Ledbetter, Christina R; Patterson, James C

    2009-01-01

    Fibromyalgia has been associated with disrupted hippocampal brain metabolite ratios by studies using single voxel magnetic resonance spectroscopy (1H-MRS). Exposure to stress is considered a risk factor for the development and exacerbation of fibromyalgia symptoms. Basic science has demonstrated the hippocampus to be exquisitely sensitive to the effects of stressful experience, which results in changes including alterations in metabolite content and frank atrophy. This report details the case of a 47-year-old woman with fibromyalgia who was originally found to have a profound depression of the ratio of N-acetylaspartate to creatine in her right hippocampus during participation in a study to assess brain metabolite disturbances in fibromyalgia utilizing single voxel proton magnetic resonance spectroscopy. An individualized treatment strategy was developed based both on physiological abnormalities associated with the disorder and symptoms that characterized the patient's unique clinical profile. Clinical and spectroscopic evaluation following nine months of treatment demonstrated both an improvement in her clinical profile and normalization of the NAA/Cr ratio within her right hippocampus. Therapeutic strategies aimed at demonstrable lesions associated with fibromyalgia appear to represent rational targets for pharmacological intervention. The rationale for development of novel pharmacotherapies for this unusual disorder is discussed.

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - ...

  12. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... MRI) exam. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, ...

  13. Imaging by magnetic resonance

    International Nuclear Information System (INIS)

    Duroure, J.F.; Serpolay, H.; Vallens, D.

    1995-01-01

    Here are described the advanced technology for nuclear magnetic resonance imaging: reduction of acquisition times, and rebuilding times, images quality improvement. The tendency is to open the machines at low and middle field, on a market being at 10% of NMR I sales, with economical, scientifical and ergonomic reasons broadly developed by constructors

  14. Suppressing magnetic island growth by resonant magnetic perturbation

    Science.gov (United States)

    Yu, Q.; Günter, S.; Lackner, K.

    2018-05-01

    The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.

  15. Magnetic moment oscillation in ammonium perchlorate in a DC SQUID-based magnetic resonance experiment

    International Nuclear Information System (INIS)

    Montero, V.; Cernicchiaro, G.

    2008-01-01

    In this work we describe experimental results in which a DC SQUID (superconducting quantum interference device) is used as free induction decay detector. Measurements of a solid ammonium perchlorate (NH 4 ClO 4 ) sample were performed, in zero field, at 4.2 K. Unexpected magnetic moment oscillations were detected at 1.5 kHz. The computation of the magnetic fields suggests that the proton nuclear magnetic resonance may explain the measured resonance, considering reorientation of the ammonium group by quantum tunneling of protons and a magnetic proton dipole-dipole intermolecular interaction model

  16. Lineshape estimation for magnetic resonance spectroscopy (MRS) signals: self-deconvolution revisited

    International Nuclear Information System (INIS)

    Sima, D M; Garcia, M I Osorio; Poullet, J; Van Huffel, S; Suvichakorn, A; Antoine, J-P; Van Ormondt, D

    2009-01-01

    Magnetic resonance spectroscopy (MRS) is an effective diagnostic technique for monitoring biochemical changes in an organism. The lineshape of MRS signals can deviate from the theoretical Lorentzian lineshape due to inhomogeneities of the magnetic field applied to patients and to tissue heterogeneity. We call this deviation a distortion and study the self-deconvolution method for automatic estimation of the unknown lineshape distortion. The method is embedded within a time-domain metabolite quantitation algorithm for short-echo-time MRS signals. Monte Carlo simulations are used to analyze whether estimation of the unknown lineshape can improve the overall quantitation result. We use a signal with eight metabolic components inspired by typical MRS signals from healthy human brain and allocate special attention to the step of denoising and spike removal in the self-deconvolution technique. To this end, we compare several modeling techniques, based on complex damped exponentials, splines and wavelets. Our results show that self-deconvolution performs well, provided that some unavoidable hyper-parameters of the denoising methods are well chosen. Comparison of the first and last iterations shows an improvement when considering iterations instead of a single step of self-deconvolution

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... are the limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging ( ... brain) in routine clinical practice. top of page What are some common uses of the procedure? MR ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no ... Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. ...

  19. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... necessary in trauma situations. Although there is no reason to believe that magnetic resonance imaging harms the ...

  1. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... it is useful to bring that to the attention of the technologist or scheduler before the exam. ... patient for magnetic resonance imaging (MRI) exam. View full size with caption Pediatric Content Some imaging tests ...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... it is useful to bring that to the attention of the scheduler before the exam and bring ... Image Gallery Magnetic Resonance Imaging (MRI) procedure View full size with caption Pediatric Content Some imaging tests ...

  3. Simulation of a resonant-type ring magnet power supply with multiple resonant cells and energy storage chokes

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Blackmore, E.W.; Reiniger, K.W.

    1992-01-01

    For the TRIUMF KAON Factory Booster Ring, a resonant-type magnet power supply has been proposed for the dipole magnet excitation. The Booster Ring magnet power supply system based on resonant circuits, coupled with distributed energy make-up networks, is a complex system, sensitive to many system parameters. When multiple resonant cells, each with its own energy make-up network, are connected in a ring, it is very difficult to derive closed-form solutions to determine the operating conditions of the power supply system. A meaningful way to understand and analyze such a complex system is to use a simulation tool. This paper presents the analysis of operating conditions of the resonant-type ring magnet power supply with multiple resonant cells, using the circuit simulation tool, SPICE. The focus of the study is on the effect of circuit parameter variations in energy storage chokes

  4. Soft X-ray resonant scattering from magnetic heterostructures

    International Nuclear Information System (INIS)

    Grabis, J.

    2005-01-01

    Heterogenous magnetic multilayers are of great interest both because of their relevance for technological applications and since they provide model systems to understand magnetic behavior and interactions. Soft x-ray resonant magnetic scattering (XRMS) allows to determine element-specific and depth-resolving information of the local magnetic order of such systems. Within the framework of the present thesis the diffractometer ALICE for soft XRMS has been constructed. XRMS measurements of two different physical systems are presented in this thesis: The antiferromagnetic and ferromagnetic order in interlayer exchange-coupled Fe/Cr(001) superlattices are studied as a function of the applied field by measuring the reflected intensity at different positions in reciprocal space. Thin films and multilayers of the Heusler compound Co 2 MnGe are studied by means of soft x-ray absorption spectroscopy, magnetic circular dichroism and resonant magnetic scattering

  5. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cremin, B.J.

    1981-01-01

    Recent advances in diagnostic imaging, have been the medical application of nuclear magnetic resonance (NMR). It's been used to study the structure of various compounds in chemistry and physics, and in the mid-1970 to produce images of rabbits and eventually of the human hand and head. The images are produced by making use of the nuclear magnetization of the hydrogen ion, or proton, that is present in biological material to record the density distribution of protons in cellular water and lipids. An exploration of the end-results of complicated free induction decay signals, that have been digitized and frequency-analysed by mathematical computerized techniques to produce an image of tissue density, is given. At present NMR produces images comparable to those of early computed tomography

  6. Artifacts Affecting Musculoskeletal Magnetic Resonance Imaging: Their Origins and Solutions.

    Science.gov (United States)

    Roth, Eira; Hoff, Michael; Richardson, Michael L; Ha, Alice S; Porrino, Jack

    2016-01-01

    Among articles within the radiology literature, few present the manifestations of magnetic resonance imaging artifacts in a clinically oriented manner. Recognizing such artifacts is imperative given the increasing clinical use of magnetic resonance imaging and the emphasis by the American Board of Radiology on practical physics applications. The purpose of this article is to present magnetic resonance physics principles visually and conceptually in the context of common musculoskeletal radiology artifacts and their solutions, described using nonmathematical explanations. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... or thyroid problems. Any of these conditions may influence the decision on whether contrast material will be ... bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  9. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  10. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary ... story about radiology? Share your patient story here Images × Image Gallery Radiologist prepping patient for magnetic resonance ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary ... story about radiology? Share your patient story here Images × Image Gallery Magnetic Resonance Imaging (MRI) procedure View ...

  12. Lymphoma of uterine cervix: magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Kanaan, Daniel; Constantino, Carolina Pesce Lamas; Souza, Rodrigo Canellas de, E-mail: daniel.kanaan@hotmail.com [Department of Radiology, Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Parente, Daniella Braz [Instituto D' Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil)

    2012-05-15

    Lymphoma of the cervix is a rare disease. About 1.0% to 1.5% of extranodal lymphomas originates in the female genital tract. The clinical presentation of this condition is nonspecific and magnetic resonance imaging is important for diagnostic elucidation. The present report describes the case of a 80-year-old patient with lumbar pain, whose magnetic resonance imaging showed a large uterine mass. The final diagnosis was lymphoma. (author)

  13. Plant metabolites and nutritional quality of vegetables.

    Science.gov (United States)

    Hounsome, N; Hounsome, B; Tomos, D; Edwards-Jones, G

    2008-05-01

    Vegetables are an important part of the human diet and a major source of biologically active substances such as vitamins, dietary fiber, antioxidants, and cholesterol-lowering compounds. Despite a large amount of information on this topic, the nutritional quality of vegetables has not been defined. Historically, the value of many plant nutrients and health-promoting compounds was discovered by trial and error. By the turn of the century, the application of chromatography, mass spectrometry, infrared spectrometry, and nuclear magnetic resonance allowed quantitative and qualitative measurements of a large number of plant metabolites. Approximately 50000 metabolites have been elucidated in plants, and it is predicted that the final number will exceed 200000. Most of them have unknown function. Metabolites such as carbohydrates, organic and amino acids, vitamins, hormones, flavonoids, phenolics, and glucosinolates are essential for plant growth, development, stress adaptation, and defense. Besides the importance for the plant itself, such metabolites determine the nutritional quality of food, color, taste, smell, antioxidative, anticarcinogenic, antihypertension, anti-inflammatory, antimicrobial, immunostimulating, and cholesterol-lowering properties. This review is focused on major plant metabolites that characterize the nutritional quality of vegetables, and methods of their analysis.

  14. Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Novikov, S. M.; Zywietz, U.

    2012-01-01

    Strong resonant light scattering by individual spherical Si nanoparticles is experimentally demonstrated, revealing pronounced resonances associated with the excitation of magnetic and electric modes in these nanoparticles. It is shown that the low-frequency resonance corresponds to the magnetic...... dipole excitation. Due to high permittivity, the magnetic dipole resonance is observed in the visible spectral range for Si nanoparticles with diameters of similar to 200 nm, thereby opening a way to the realization of isotropic optical metamaterials with strong magnetic responses in the visible region....

  15. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    International Nuclear Information System (INIS)

    Godoy Morais, J.P.M.; Azevedo, R.B.; Silva, L.P.; Lacava, Z.G.M.; Bao, S.N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P.C.

    2004-01-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall

  16. Application of the annihilation and creation operators in magnetic resonance problems

    International Nuclear Information System (INIS)

    Nosel, W.

    1981-01-01

    Application of the annihilation and creation operators in the following problems is presented: in the resonance of the free spins in rotating and oscillating magnetic field, in the influence of the nonresonance magnetic fields on magnetic resonance, in the thermodynamics of the spins with dipolar interaction and in the nuclear magnetic relaxation. (author)

  17. Method for increasing nuclear magnetic resonance signals in living biological tissue

    International Nuclear Information System (INIS)

    Krongrad, A.

    1995-01-01

    A method of enhancing a magnetic resonance comprising the steps of administering a quantity of a selected magnetic isotope to a living biological tissue at a concentration greater than the naturally occurring concentration of such isotope and detecting magnetic resonance signal from the administered magnetic isotope in the living biological tissue. (author)

  18. The market for magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Carlson, L.

    1990-01-01

    The medical market is, at present, the most dominant market for low T c superconductors. Indeed, without magnetic resonance imaging (MRI), there would hardly be a low T c superconductor market at all. According to the author, any development that can expand the medical market for MRI machines would be a welcome one. This paper reports how the recent advances in magnetic resonance spectroscopy (MRS) are such a development. While the principle of MRS has bee around as long as MRI, only recently have advances in technique, computer programming and magnet technology allowed MRS to advance to a point where it may become an important technology-one that could increase the medical market for superconductors. The author discussed how MRS can be used to analyze oil core samples for their oil content, oil/water ratios, how the oil is bound and how to extract it

  19. Magnetic Barkhausen noise measurement by resonant coil method

    Energy Technology Data Exchange (ETDEWEB)

    Capo-Sanchez, J. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba)], E-mail: jcapo@usp.br; Padovese, L. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2009-09-15

    This paper describes a powerful new technique for nondestructive evaluation of ferromagnetic material. A method has been developed for measuring magnetic Barkhausen signals under different coil resonance frequencies. The measurements allow one to establish the behavior relating the power spectral density maximum and the resonant coil frequency. Time-frequency analysis of Barkhausen signals puts in evidence the tuning regions for each coil, and allows clear identification of each contribution to the Barkhausen signal spectrum. This concept was used in order to evaluate the relation between the degree of plastic deformation in carbon steel samples, and the power spectral density maximum at different resonance frequencies. This result also makes it possible to the selectively modify measurement sensibility to the magnetic Barkhausen signal by using different resonance frequencies.

  20. Emerging technologies, recent developments, and novel applications for drug metabolite identification.

    Science.gov (United States)

    Lu, Wenjie; Xu, Youzhi; Zhao, Yinglan; Cen, Xiaobo

    2014-01-01

    Drug metabolite identification and metabolic characteristics analysis play a crucial role in new drug research and development, because they can lead to varied efficacy, severe adverse reactions, and even toxicity. Classical methodologies for metabolite identification have mainly been based on mass spectrometry (MS) coupled with gas chromatography (GC) or liquid chromatography (LC), and some other techniques are used as complementary approaches, such as nuclear magnetic resonance (NMR). Over the past decade, more and more newly emerging techniques or technologies have been applied to metabolite identification, and are making the procedure easier and more robust, such as LC-NMR-MS, ion mobility MS, ambient ionization techniques, and imaging MS. A novel application of drug metabolite identification based on "omics" known as pharmacometabonomics is discussed, which is an interdisciplinary field that combines pre-dose metabolite profiling and chemometrics methods for data analysis and modeling, aiming to predict the responses of individuals to drugs.

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...

  2. Gated in vivo examination of cardiac metabolites with 31P nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Kantor, H.L.; Briggs, R.W.; Metz, K.R.; Balaban, R.S.

    1986-01-01

    Phosphorus-31 nuclear magnetic resonance ( 31 P NMR) spectroscopy was used to study the temporal aspects of metabolism of canine heart in vivo. An NMR catheter coil was passed through the jugular vein of a dog into the apex of the right ventricle and spectra were recorded at four points in the cardiac cycle by triggering from the blood pressure trace of the animal. The 31 P spin-lattice relaxation times of phosphocreatine (PC) and the γ - ,α - , and β-phosphates of ATP at 1.89 Tesla are 4.4, 1.8, 1.7, and 1.6 s, respectively. The ratio of PC to ATP is 2.0. No changes in PC/ATP were noted in any of the four portions of the cardiac cycle examined, and difference spectra exhibited no observable signals, in contrast to previously reported results for glucose-perfused rat hearts. On the assumption that intracellular pH and the total creatine pool were constant, the expression for the creatine kinase reaction was used to deduce that free ADP concentrations were invariant throughout the cardiac cycle. This is in apparent disagreement with the proposed regulatory role for ADP in heart oxidative phosphorylation

  3. Imaging of juvenile spondyloarthritis. Part II: Ultrasonography and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Iwona Sudoł-Szopińska

    2017-09-01

    Full Text Available Juvenile spondyloarthropathies are mainly manifested by symptoms of peripheral arthritis and enthesitis. Early involvement of sacroiliac joints and spine is exceptionally rare in children; this usually happens in adulthood. Conventional radiographs visualize late inflammatory lesions. Early diagnosis is possible with the use of ultrasonography and magnetic resonance imaging. The first part of the article presented classifications and radiographic presentation of juvenile spondyloarthropathies. This part discusses changes seen on ultrasonography and magnetic resonance imaging. In patients with juvenile spondyloarthropathies, these examinations are conducted to diagnose inflammatory lesions in peripheral joints, tendon sheaths, tendons and bursae. Moreover, magnetic resonance also shows subchondral bone marrow edema, which is considered an early sign of inflammation. Ultrasonography and magnetic resonance imaging do not show specific lesions for any rheumatic disease. Nevertheless, they are conducted for early diagnosis, treatment monitoring and identifying complications. This article presents a spectrum of inflammatory changes and discusses the diagnostic value of ultrasonography and magnetic resonance imaging.

  4. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Magnetic Resonance Imaging Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  5. Magnetic resonance imaging of generalised musculo-skeletal diseases

    International Nuclear Information System (INIS)

    Kaiser, W.A.; Schalke, B.C.G.

    1989-01-01

    The results presented are drawn from 320 examinations by NMR imaging of patients with various systemic muscle diseases (dystrophies, myositides, metabolic disorders), and are interpreted so as to explain the relevant characteristic distribution patterns of the degenerative processes in the femoral musculature as shown by the NMR images. Four basic patterns are presented according to the criteria homogeneous-heterogeneous and symmetric-asymmetric, and the diseases identified by the differential diagnostic evaluation are discussed. The optimum measuring conditions for magnetic resonance imaging of the musculature are given, and the specific magnetic resonance criteria of myositides, neurogenic myopathies, myofonous dystrophies, c.n. polio, morbus Pompe, familial hypokalemic paralysis, centronuclear mypathy, morbus Duchenne are explained. The significance of NMR imaging with regard to biopsy or therapy planning is discussed, and magnetic resonance examination is recommended to be applied prior to biopsy. (orig.) [de

  6. Ultra-small v-shaped gold split ring resonators for biosensing using fundamental magnetic resonance in the visible spectrum

    Science.gov (United States)

    Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye

    2017-10-01

    Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.

  7. Physics of Magnetic Resonance. Chapter 14

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hee Kwon [Hospital of the University of Pennsylvania, Philadelphia (United States)

    2014-09-15

    The discovery of nuclear magnetic resonance (NMR), a property of nuclei in a magnetic field where they are able to absorb applied radiofrequency (RF) energy and subsequently release it at a specific frequency, goes back many decades to the early 1900s. Physicist Isidor I. Rabi, fascinated by the work of Otto Stern and Walther Gerlach which demonstrated that particles have intrinsic quantum properties, delved into the magnetic properties of nuclei, and in 1938 Rabi discovered the phenomenon of NMR. Several years later, in 1946, Felix Bloch and Edward Purcell refined the methods and successfully measured the NMR signal from liquids and solids. For their discoveries, Rabi received the Nobel Prize for physics in 1944 and Bloch and Purcell in 1952. While Rabi, Bloch, Purcell and other physicists working in this field had laid the foundations, a major discovery that transformed the NMR phenomenon for imaging was not made until 1973, when Paul Lauterbur developed a method for spatially encoding the NMR signal by utilizing linear magnetic field gradients. About the same time, Peter Mansfield had also discovered a means of determining the spatial structure of solids by introducing a linear gradient across the object. The idea of applying magnetic field gradients to induce spatially varying resonance frequencies to resolve the spatial distribution of magnetization was a major milestone and the beginning of magnetic resonance imaging (MRI). For their work, Lauterbur and Mansfield were awarded the Nobel Prize for medicine in 2003. Since its discovery, MRI has quickly become one of the most important medical imaging devices available to physicians today. Unlike other imaging modalities, such as X ray and computed tomography, MRI does not involve ionizing radiation. MRI also offers superior soft tissue contrast that is not possible with other imaging modalities. Furthermore, in MRI, the desired level of image contrast among different tissues can often be precisely controlled

  8. Magnetic islands created by resonant helical windings

    International Nuclear Information System (INIS)

    Fernandes, A.S.; Heller, M.V.; Caldas, I.L.

    1986-01-01

    The triggering of disruptive instabilities by resonant helical windings in large aspect-ratio tokamaks is associated to destruction of magnetic surfaces. The Chirikov condition is applied to estimate analytically the helical winding current thresholds for ergodization of the magnetic field lines. (Autor) [pt

  9. Mesoscopic Magnetic Resonance Spectroscopy with a Remote Spin Sensor

    Science.gov (United States)

    Xie, Tianyu; Shi, Fazhan; Chen, Sanyou; Guo, Maosen; Chen, Yisheng; Zhang, Yixing; Yang, Yu; Gao, Xingyu; Kong, Xi; Wang, Pengfei; Tateishi, Kenichiro; Uesaka, Tomohiro; Wang, Ya; Zhang, Bo; Du, Jiangfeng

    2018-06-01

    Quantum sensing based on nitrogen-vacancy (N -V ) centers in diamond has been developed as a powerful tool for microscopic magnetic resonance. However, the reported sensor-to-sample distance is limited within tens of nanometers resulting from the cubic decrease of the signal of spin fluctuation with the increasing distance. Here we extend the sensing distance to tens of micrometers by detecting spin polarization rather than spin fluctuation. We detect the mesoscopic magnetic resonance spectra of polarized electrons of a pentacene-doped crystal, measure its two typical decay times, and observe the optically enhanced spin polarization. This work paves the way for the N -V -based mesoscopic magnetic resonance spectroscopy and imaging at ambient conditions.

  10. Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet

    International Nuclear Information System (INIS)

    Huo Wenqing; Guo Shijie; Ding Liang; Xu Yuemin

    2013-01-01

    A large magnetized plasma sheet with size of 60 cm × 60 cm × 2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the electron density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus. Moreover, it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion

  11. Resonant inverter supplied Interior Permanent Magnet (IPM) motor ...

    African Journals Online (AJOL)

    In this paper, rotor position in relation to the resonant frequency component current in the stator winding of DC-voltage link resonant inverter supplied Interior Permanent Magnet (IPM) motor has been developed. Six reference frames are used to relate the rotor position angle to the resonant frequency component current ...

  12. Magnetic structure and resonance properties of hexagonal antidot lattice

    International Nuclear Information System (INIS)

    Marchenko, A.I.; Krivoruchko, V.N.

    2012-01-01

    Static and resonance properties of ferromagnetic films with an antidot lattice (pores in the film) are studied. The description of the system is based on micromagnetic modeling and analytical solution of the Landau-Lifshitz equation. The dependences of ferromagnetic resonance spectra on the in-plane direction of applied magnetic field and on the lattice parameters are investigated. The dependences of a dynamic system response on frequency at fixed magnetic field and on field at fixed frequency, when the field changes cause the static magnetic order to change are explored. It is found that the specific peculiarities of the system dynamics leave unchange for both of these experimental conditions. Namely, for low damping the resonance spectra contain three quasi-homogeneous modes which are due to the resonance of different regions (domains) of the antidot lattice cell. It is shown the angular field dependences of each mode are characterized by a twofold symmetry and the related easy axes are mutually rotated by 60 degrees. As the result, a hexagonal symmetry of the system static and dynamic magnetic characteristics is realized. The existence in the resonance spectrum of several quasi-homogeneous modes related to different regions of the unit cell could be fundamental for working elements of magnonic devices.

  13. Ferromagnetic linewidth measurements employing electrodynamic model of the magnetic plasmon resonance

    Science.gov (United States)

    Krupka, Jerzy; Aleshkevych, Pavlo; Salski, Bartlomiej; Kopyt, Pawel

    2018-02-01

    The mode of uniform precession, or Kittel mode, in a magnetized ferromagnetic sphere, has recently been proven to be the magnetic plasmon resonance. In this paper we show how to apply the electrodynamic model of the magnetic plasmon resonance for accurate measurements of the ferromagnetic resonance linewidth ΔH. Two measurement methods are presented. The first one employs Q-factor measurements of the magnetic plasmon resonance coupled to the resonance of an empty metallic cavity. Such coupled modes are known as magnon-polariton modes, i.e. hybridized modes between the collective spin excitation and the cavity excitation. The second one employs direct Q-factor measurements of the magnetic plasmon resonance in a filter setup with two orthogonal semi-loops used for coupling. Q-factor measurements are performed employing a vector network analyser. The methods presented in this paper allow one to extend the measurement range of the ferromagnetic resonance linewidth ΔH well beyond the limits of the commonly used measurement standards in terms of the size of the samples and the lowest measurable linewidths. Samples that can be measured with the newly proposed methods may have larger size as compared to the size of samples that were used in the standard methods restricted by the limits of perturbation theory.

  14. Imaging of the hip joint. Computed tomography versus magnetic resonance imaging

    Science.gov (United States)

    Lang, P.; Genant, H. K.; Jergesen, H. E.; Murray, W. R.

    1992-01-01

    The authors reviewed the applications and limitations of computed tomography (CT) and magnetic resonance (MR) imaging in the assessment of the most common hip disorders. Magnetic resonance imaging is the most sensitive technique in detecting osteonecrosis of the femoral head. Magnetic resonance reflects the histologic changes associated with osteonecrosis very well, which may ultimately help to improve staging. Computed tomography can more accurately identify subchondral fractures than MR imaging and thus remains important for staging. In congenital dysplasia of the hip, the position of the nonossified femoral head in children less than six months of age can only be inferred by indirect signs on CT. Magnetic resonance imaging demonstrates the cartilaginous femoral head directly without ionizing radiation. Computed tomography remains the imaging modality of choice for evaluating fractures of the hip joint. In some patients, MR imaging demonstrates the fracture even when it is not apparent on radiography. In neoplasm, CT provides better assessment of calcification, ossification, and periosteal reaction than MR imaging. Magnetic resonance imaging, however, represents the most accurate imaging modality for evaluating intramedullary and soft-tissue extent of the tumor and identifying involvement of neurovascular bundles. Magnetic resonance imaging can also be used to monitor response to chemotherapy. In osteoarthrosis and rheumatoid arthritis of the hip, both CT and MR provide more detailed assessment of the severity of disease than conventional radiography because of their tomographic nature. Magnetic resonance imaging is unique in evaluating cartilage degeneration and loss, and in demonstrating soft-tissue alterations such as inflammatory synovial proliferation.

  15. Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders

    DEFF Research Database (Denmark)

    Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav

    2011-01-01

    An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...

  16. Evanescent Waves Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order...

  17. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... of which shows a thin slice of the body. The images can then be studied from different angles by ... about radiology? Share your patient story here Images ... Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  19. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  20. Basis of the nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bahceli, S.

    1996-08-01

    The aim of this book which is translated from English language is to explain the physical and mathematical basis of nuclear magnetic resonance (NMR). There are nine chapters covering different aspects of NMR. In the firs chapter fundamental concepts of quantum mechanics are given at a level suitable for readers to understand NMR fully. The remaining chapters discuss the magnetic properties of nucleus, the interactions between atoms and molecules, continuous wave NMR, pulsed NMR, nuclear magnetic relaxation and NMR of liquids

  1. Evaluation of cerebral blood flow, cerebral metabolism and cerebral function by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tanaka, Chuzo; Higuchi, Toshihiro; Umeda, Masahiro; Naruse, Shoji; Horikawa, Yoshiharu; Ueda, Satoshi; Furuya, Seiichi.

    1995-01-01

    The magnetic resonance (MR) method has the unique potentiality of detecting cerebral metabolites, cerebral blood flow and brain functions in a noninvasive fashion. We have developed several MR techniques to detect these cerebral parameters with the use of clinical MRI scanners. By modifying the MR spectroscopy (MRS) technique, both 31 P- and 1 H-MRS data can be obtained from multiple, localized regions (multi-voxel method) of the brain, and the distribution of each metabolite in the brain can be readily visualized by metabolite mapping. The use of diffusion weighted images (DWI) permits visualization of the anisotropy of water diffusion in white matter, and based on the difference of diffusion coefficiency, the differential diagnosis between epidermoid tumor and arachnoid cyst can be made. By employing dynamic-MRI (Dyn-MRI) with Gd-DTPA administration, it is possible to examine the difference in blood circulation between brain tumor tissue and normal tissue, as well as among different types of brain tumors. By using magnetization transfer contrast (MTC) imaging, it has become possible to detect brain tumors, and with a small dose of Gd-DTPA, to visualize the vascular system. Functional MRI (fMRI) visualizes the activated brain by using conventional gradient echo technique on conventional MRI scanners. This method has the unique characteristic of detecting a brain function with high spatial and temporal resolution by using the intrinsic substance. Moreover, the localization of motor and sensory areas was detected by noninvasive means within few minutes. The fMRI procedure will be used in the future to analyze the higher and complex brain functions. In conclusion, multi-modality MR is a powerful technique that is useful for investigating the pathogenesis of many diseases, and provides a noninvasive analytic modality for studying brain function. (author)

  2. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbaran, M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khalkhali, S.M.H. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2017-02-15

    Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in M{sub x} configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design. - Highlights: • Highly sensitive atomic magnetometers have been used to measure weak magentic filed. • To obtain narrower resonance signal, we impalnted harmonic detection of magnetic resonance. • The nonlinear spin polarization dynamics in detetion of the higher harmonics were imployed.

  3. Magnetic resonance spectroscopy and imaging in cerebral ischemia

    International Nuclear Information System (INIS)

    Rijen, P.C. van.

    1991-01-01

    In-vivo proton and phosphorus magnetic resonance spectroscopy was used to detect changes in cerebral metabolism during ischemia and other types of metabolic stress. Magnetic resonance imaging was performed in an animal model to observe morphological alterations during focal cerebral ischemia. Spectroscopy was performed in animal models with global ischemia, in volunteers during hyperventilation and pharmaco-logically altered cerebral perfusion, and in patients with acute and prolonged focal cerebral ischemia. (author). 396 refs.; 44 figs.; 14 tabs

  4. Low losses left-handed materials with optimized electric and magnetic resonance

    Science.gov (United States)

    Zhou, Xin; Liu, Yahong; Zhao, Xiaopeng

    2010-03-01

    We propose that the losses in left-handed materials (LHMs) can be significantly affected by changing the coupling relationship between electric and magnetic resonance. A double bowknot shaped structure (DBS) is used to construct the LHMs. And the magnetic resonance of the DBS, which resonated in the case of lower and higher frequencies than the electric resonant dip, is studied in simulation and experiment by tailoring the structural parameters. The case of magnetic resonance located at low electric resonance frequencies band is confirmed to have relatively low losses. Using full wave simulation of prism shaped structure composed of DBS unit cells, we prove the negative refraction behavior in such a frame. This study can serve as a guide for designing other similar metal-dielectric-metal (MDM) in low losses at terahertz or higher frequencies.

  5. Proceedings of the 4. Brazilian meeting on magnetic resonance. Abstracts

    International Nuclear Information System (INIS)

    1996-01-01

    This publication contains the abstracts of the papers presented during the 4. Brazilian meeting on magnetic resonance and also during the Course on advances in nuclear magnetic resonance. Works on the areas of materials, rare earths, polymers, structural chemical analysis and NMR spectra are presented

  6. Altered phospholipid metabolism in schizophrenia: a phosphorus 31 nuclear magnetic resonance spectroscopy study.

    Science.gov (United States)

    Weber-Fahr, Wolfgang; Englisch, Susanne; Esser, Andrea; Tunc-Skarka, Nuran; Meyer-Lindenberg, Andreas; Ende, Gabriele; Zink, Mathias

    2013-12-30

    Phospholipid (PL) metabolism is investigated by in vivo 31P magnetic resonance spectroscopy (MRS). Inconsistent alterations of phosphocholine (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) have been described in schizophrenia, which might be overcome by specific editing techniques. The selective refocused insensitive nuclei-enhanced polarization transfer (RINEPT) technique was applied in a cross-sectional study involving 11 schizophrenia spectrum disorder patients (SZP) on stable antipsychotic monotherapy and 15 matched control subjects. Metabolite signals were found to be modulated by cerebrospinal fluid (CSF) content and gray matter/brain matter ratio. Corrected metabolite concentrations of PC, GPC and PE differed between patients and controls in both subcortical and cortical regions, whereas antipsychotic medication exerted only small effects. Significant correlations were found between the severity of clinical symptoms and the assessed signals. In particular, psychotic symptoms correlated with PC levels in the cerebral cortex, depression with PC levels in the cerebellum and executive functioning with GPC in the insular and temporal cortices. In conclusion, after controlling for age and tissue composition, this investigation revealed alterations of metabolite levels in SZP and correlations with clinical properties. RINEPT 31P MRS should also be applied to at-risk-mental-state patients as well as drug-naïve and chronically treated schizophrenic patients in order to enhance the understanding of longitudinal alterations of PL metabolism in schizophrenia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rueterjans, H.

    1987-01-01

    Contributions by various authors who are working in the field of NMR imaging present the current status and the perspectives of in-vivo nuclear magnetic resonance spectroscopy, explaining not only the scientific and medical aspects, but also technical and physical principles as well as questions concerning practical organisation and training, and points of main interest for further research activities. (orig./TRV) [de

  8. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    1983-06-01

    This report summarises the aspects of nuclear magnetic resonance imaging (NMRI) considered by the National Health Technology Advisory Panel and makes recommendations on its introduction in Australia with particular regard to the need for thorough evaluation of its cost effectiveness. Topics covered are: principles of the technique, equipment required, installation, costs, reliability, performance parameters, clinical indications, training and staff requirements, and safety considerations

  9. Adjunctive role of preoperative liver magnetic resonance imaging for potentially resectable pancreatic cancer.

    Science.gov (United States)

    Kim, Hyoung Woo; Lee, Jong-Chan; Paik, Kyu-Hyun; Kang, Jingu; Kim, Young Hoon; Yoon, Yoo-Seok; Han, Ho-Seong; Kim, Jaihwan; Hwang, Jin-Hyeok

    2017-06-01

    The adjunctive role of magnetic resonance imaging of the liver before pancreatic ductal adenocarcinoma has been unclear. We evaluated whether the combination of hepatic magnetic resonance imaging with multidetector computed tomography using a pancreatic protocol (pCT) could help surgeons select appropriate candidates and decrease the risk of early recurrence. We retrospectively enrolled 167 patients in whom complete resection was achieved without grossly visible residual tumor; 102 patients underwent pCT alone (CT group) and 65 underwent both hepatic magnetic resonance imaging and pCT (magnetic resonance imaging group). By adding hepatic magnetic resonance imaging during preoperative evaluation, hepatic metastases were newly discovered in 3 of 58 patients (5%) without hepatic lesions on pCT and 17 of 53 patients (32%) with indeterminate hepatic lesions on pCT. Patients with borderline resectability, a tumor size >3 cm, or preoperative carbohydrate antigen 19-9 level >1,000 U/mL had a greater rate of hepatic metastasis on subsequent hepatic magnetic resonance imaging. Among 167 patients in whom R0/R1 resection was achieved, the median overall survival was 18.2 vs 24.7 months (P = .020) and the disease-free survival was 8.5 vs 10.0 months (P = .016) in the CT and magnetic resonance imaging groups, respectively (median follow-up, 18.3 months). Recurrence developed in 82 (80%) and 43 (66%) patients in the CT and magnetic resonance imaging groups, respectively. The cumulative hepatic recurrence rate was greater in the CT group than in the magnetic resonance imaging group (P magnetic resonance imaging should be considered in patients with potentially resectable pancreatic ductal adenocarcinoma, especially those with high tumor burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Multiple systems atrophy: Differentiation and findings by Magnetic resonance

    International Nuclear Information System (INIS)

    Vargas Velez, Sergio Alberto; Alzate Betancur, Catalina Maria

    2006-01-01

    Multiple system atrophy (MSA) is a neuro degenerative disorder of undetermined cause, characterized clinically by Parkinson's, autonomic, cerebellar or pyramidal sing and symptoms. lts differentiation from Parkinson's disease may be difficult, mainly in the early stages owing to overlapping features. Magnetic resonance imaging has demonstrated usefulness in MSA diagnosis and in differentiation with Parkinson's disease. One case with magnetic resonance findings is described

  11. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Science.gov (United States)

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  12. Image production by magnetic resonance: transparency via the atom

    International Nuclear Information System (INIS)

    Kanel, A.

    1984-01-01

    The author gives a general description of the nuclear magnetic resonance technique to study the human body. The use of superconducting magnets to generate the required magnetic field is discussed. (G.T.H.)

  13. Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection.

    Science.gov (United States)

    Sailasuta, Napapon; Ross, William; Ananworanich, Jintanat; Chalermchai, Thep; DeGruttola, Victor; Lerdlum, Sukalaya; Pothisri, Mantana; Busovaca, Edgar; Ratto-Kim, Silvia; Jagodzinski, Linda; Spudich, Serena; Michael, Nelson; Kim, Jerome H; Valcour, Victor

    2012-01-01

    Single voxel proton magnetic resonance spectroscopy (MRS) can be used to monitor changes in brain inflammation and neuronal integrity associated with HIV infection and its treatments. We used MRS to measure brain changes during the first weeks following HIV infection and in response to antiretroviral therapy (ART). Brain metabolite levels of N-acetyl aspartate (NAA), choline (tCHO), creatine (CR), myoinositol (MI), and glutamate and glutamine (GLX) were measured in acute HIV subjects (n = 31) and compared to chronic HIV+individuals (n = 26) and HIV negative control subjects (n = 10) from Bangkok, Thailand. Metabolites were measured in frontal gray matter (FGM), frontal white matter (FWM), occipital gray matter (OGM), and basal ganglia (BG). Repeat measures were obtained in 17 acute subjects 1, 3 and 6 months following initiation of ART. After adjustment for age we identified elevated BG tCHO/CR in acute HIV cases at baseline (median 14 days after HIV infection) compared to control (p = 0.0014), as well as chronic subjects (p = 0.0023). A similar tCHO/CR elevation was noted in OGM; no other metabolite abnormalities were seen between acute and control subjects. Mixed longitudinal models revealed resolution of BG tCHO/CR elevation after ART (p = 0.022) with tCHO/CR similar to control subjects at 6 months. We detected cellular inflammation in the absence of measurable neuronal injury within the first month of HIV infection, and normalization of this inflammation following acutely administered ART. Our findings suggest that early ART may be neuroprotective in HIV infection by mitigating processes leading to CNS injury.

  14. The introduction of clinical magnetic resonance imaging in Australia

    International Nuclear Information System (INIS)

    Sorby, W.; Baddeley, H.

    1986-01-01

    Magnetic resonance imaging is a new, but expensive, modality that is being introduced into clinical use in Australia. While it promises increased safety and accuracy in many situations, its precise role when compared with computed tomography and other modalities is not fully established. Therefore, a Government financed evaluation of costs and efficacy of magnetic resonance imaging units in five teaching hospitals is to be conducted over two years (1986-1988). Experience with the introduction of computed tomography to Australia and other nations has revealed difficulties in the evaluation by conventional methods of a diagnostic technology that is improving rapidly; it is to be hoped that a systematic evaluation of the clinical applications of magnetic resonance imaging will be more achievable and useful

  15. Magnetic resonance neurography for the identification of pudendal neuralgia

    Directory of Open Access Journals (Sweden)

    Claudia P. Cejas

    2017-06-01

    Full Text Available The pudendal nerve entrapment is an entity understudied by diagnosis imaging. Various causes are recognized in relation to difficult labors, rectal, perineal, urological and gynecological surgery, pelvic trauma fracture, bones tumors and compression by tumors or pelvic pseudotumors. Pudendal neuropathy should be clinically suspected, and confirmed by different methods such as electrofisiological testing: evoked potentials, terminal motor latency test and electromyogram, neuronal block and magnetic resonance imaging. The radiologist should be acquainted with the complex anatomy of the pelvic floor, particularly on the path of pudendal nerve studied by magnetic resonance imaging. High resolution magnetic resonance neurography should be used as a complementary diagnostic study along with clinical and electrophysiological examinations in patients with suspected pudendal nerve neuralgia.

  16. Studies of magnetic resonance in anemia of hematies falciformes

    International Nuclear Information System (INIS)

    Lores Guevara, Manuel Arsenio; Balcom, Bruce John; Cabal Mirabal, Carlos

    2012-01-01

    Magnetic Resonance applications to the study of Sickle Cell Disease are analyzed using classical procedures and Unilateral Magnetic Resonance. Hemoglobin and whole blood samples were obtained from healthy individual and patients with Sickle Cell Anemia to be used as samples. Classical pulse sequence as spin echo and inversion recovery were used in the experimental studies, the STEPR method was used for EPR spectrometric determinations. The results show the possibility of NMR methods to follow the molecular process causing the disease and allows to present quantitative procedures to estimate the clinical state of the patients and the results of clinical options. We present the Unilateral Magnetic Resonance as a new method to study Sickle Cell disease considering its portability and new possibilities as new image method

  17. Detection of Amide and Aromatic Proton Resonances of Human Brain Metabolites Using Localized Correlated Spectroscopy Combined with Two Different Water Suppression Schemes

    Directory of Open Access Journals (Sweden)

    Rajakumar Nagarajan

    2010-01-01

    Full Text Available The purpose of the study was to demonstrate the J-coupling connectivity network between the amide, aliphatic, and aromatic proton resonances of metabolites in human brain using two-dimensional (2D localized correlated spectroscopy (L-COSY. Two different global water suppression techniques were combined with L-COSY, one before and another after localizing the volume of interest (VOI. Phantom solutions containing several cerebral metabolites at physiological concentrations were evaluated initially for sequence optimization. Nine healthy volunteers were scanned using a 3T whole body MRI scanner. The VOI for 2D L-COSY was placed in the right occipital white/gray matter region. The 2D cross and diagonal peak volumes were measured for several metabolites such as N-acetyl aspartate (NAA, creatine (Cr, free choline (Ch, glutamate/glutamine (Glx, aspartate (Asp, myo-inositol (mI, GABA, glutathione (GSH, phosphocholine (PCh, phosphoethanolamine (PE, tyrosine (Tyr, lactate (Lac, macromolecules (MM and homocarnosine (Car. Using the pre-water suppression technique with L-COSY, the above mentioned metabolites were clearly identifiable and the relative ratios of metabolites were calculated. In addition to detecting multitude of aliphatic resonances in the high field region, we have demonstrated that the amide and aromatic resonances can also be detected using 2D L-COSY by pre water suppression more reliably than the post-water suppression.

  18. Simultaneous in vivo positron emission tomography and magnetic resonance imaging.

    Science.gov (United States)

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R

    2008-03-11

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.

  19. Proceedings of the nuclear magnetic resonance user meeting

    International Nuclear Information System (INIS)

    1987-01-01

    Studies on utilization of nuclear magnetic resonance, such as: chemical analysis in complexes and organic compounds; structures and magnetic properties of solids; construction of images and; spectrometer designs, are presented. (M.C.K.) [pt

  20. Magnetic resonance angiography vs. angiography in tetralogy of Fallot.

    Science.gov (United States)

    Rao, Uppalapati Venkateswara; Vanajakshamma, Velam; Rajasekhar, Durgaprasad; Lakshmi, Amancharla Yadagiri; Reddy, Reddivari Niranjan

    2013-08-01

    : To determine whether gadolinium-enhanced three-dimensional magnetic resonance angiography can provide a noninvasive alternative to diagnostic catheterization for evaluation of pulmonary artery anatomy in tetralogy of Fallot. Thirty-five consecutive patients with tetralogy of Fallot, who attended the cardiology outpatient department between January 2008 and December 2009, were included in the study. There were 21 males and 14 females, with a mean age of 9 ± 4.15 years (range, 3-21 years). Thirty-two patients had tetralogy of Fallot with varying severities of valvular and infundibular stenosis. Three patients had tetralogy of Fallot with pulmonary atresia. All patients underwent both cardiac catheterization with X-ray angiography and 3-dimensional magnetic resonance angiography within one month. Measurements of right and left pulmonary arteries and aortopulmonary collaterals were equal by both methods. There was a good correlation between magnetic resonance angiography and catheterization measurements of branch pulmonary arteries. Gadolinium-enhanced three-dimensional magnetic resonance angiography can be used as a reliable noninvasive alternative to X-ray cineangiography for delineation of pulmonary arterial anatomy in sick infants and young children, obviating the need for catheterization.

  1. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  2. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.

    Science.gov (United States)

    Hamed, Abbi; Masamune, Ken; Tse, Zion Tsz Ho; Lamperth, Michael; Dohi, Takeyoshi

    2012-07-01

    Minimally invasive surgery is a widely used medical technique, one of the drawbacks of which is the loss of direct sense of touch during the operation. Palpation is the use of fingertips to explore and make fast assessments of tissue morphology. Although technologies are developed to equip minimally invasive surgery tools with haptic feedback capabilities, the majority focus on tissue stiffness profiling and tool-tissue interaction force measurement. For greatly increased diagnostic capability, a magnetic resonance imaging-compatible tactile sensor design is proposed, which allows minimally invasive surgery to be performed under image guidance, combining the strong capability of magnetic resonance imaging soft tissue and intuitive palpation. The sensing unit is based on a piezoelectric sensor methodology, which conforms to the stringent mechanical and electrical design requirements imposed by the magnetic resonance environment The sensor mechanical design and the device integration to a 0.2 Tesla open magnetic resonance imaging scanner are described, together with the device's magnetic resonance compatibility testing. Its design limitations and potential future improvements are also discussed. A tactile sensing unit based on a piezoelectric sensor principle is proposed, which is designed for magnetic resonance imaging guided interventions.

  3. Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes.

    Science.gov (United States)

    Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf

    2012-04-01

    Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.

  4. Limits to magnetic resonance microscopy

    International Nuclear Information System (INIS)

    Glover, Paul; Mansfield, Peter

    2002-01-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit. (author)

  5. Magnetic resonance imaging of chemistry.

    Science.gov (United States)

    Britton, Melanie M

    2010-11-01

    Magnetic resonance imaging (MRI) has long been recognized as one of the most important tools in medical diagnosis and research. However, MRI is also well placed to image chemical reactions and processes, determine the concentration of chemical species, and look at how chemistry couples with environmental factors, such as flow and heterogeneous media. This tutorial review will explain how magnetic resonance imaging works, reviewing its application in chemistry and its ability to directly visualise chemical processes. It will give information on what resolution and contrast are possible, and what chemical and physical parameters can be measured. It will provide examples of the use of MRI to study chemical systems, its application in chemical engineering and the identification of contrast agents for non-clinical applications. A number of studies are presented including investigation of chemical conversion and selectivity in fixed-bed reactors, temperature probes for catalyst pellets, ion mobility during tablet dissolution, solvent dynamics and ion transport in Nafion polymers and the formation of chemical waves and patterns.

  6. Resonant diffuse X-ray scattering from magnetic multilayers

    International Nuclear Information System (INIS)

    Spezzani, Carlo; Torelli, Piero; Delaunay, Renaud; Hague, C.F.; Petroff, Frederic; Scholl, Andreas; Gullikson, E.M.; Sacchi, Maurizio

    2004-01-01

    We have measured field-dependent resonant diffuse scattering from a magnetoresistive Co/Cu multilayer. We have observed that the magnetic domain size in zero field depends on the magnetic history of the sample. The results of the X-ray scattering analysis have been compared to PEEM images of the magnetic domains

  7. Characterization of macromolecular baseline of human brain using metabolite cycled semi-LASER at 9.4T.

    Science.gov (United States)

    Giapitzakis, Ioannis-Angelos; Avdievich, Nikolai; Henning, Anke

    2018-08-01

    Macromolecular resonances (MM) arise mainly from cytosolic proteins and overlap with metabolites, influencing metabolite quantification. Macromolecules can serve as valuable biomarkers for diseases and pathologies. The objectives of this study were to characterize MM at 9.4T in the human brain (occipital and left parietal lobe) and to describe the RF coil setup used for MM acquisition in the two regions. An adiabatic inversion pulse was optimised for metabolite nulling at 9.4T using double inversion recovery and was combined for the first time with metabolite cycled (MC) semi-LASER and appropriate coil configuration. MM spectra (seven volunteers) from two brain locations were averaged and smoothed creating MM templates, which were then parametrized using simulated Voigt-shaped lines within LCModel. Quantification was performed on individual data sets, including corrections for different tissue composition and the T 1 and T 2 relaxation of water. Our coil configuration method resulted in efficient B1+ (>30 T/√kW) for both brain regions. The 15 MM components were detected and quantified in MM baselines of the two brain areas. No significant differences in concentration levels of MM between different regions were found. Two new MM peaks were reported (M7 & M8). Double inversion, which was combined with MC semi-LASER, enabled the acquisition of high spectral resolution MM spectra for both brain regions at 9.4T. The 15 MM components were detected and quantified. Two new MM peaks were reported for the first time (M7 & M8) and preliminarily assigned to β-methylene protons of aspartyl-groups. Magn Reson Med 80:462-473, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  8. Susceptibility effects in nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ziener, Christian Herbert

    2008-01-01

    The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. (orig.)

  9. Magnetic resonance imaging of the elbow. Part I: Normal anatomy, imaging technique, and osseous abnormalities

    International Nuclear Information System (INIS)

    Kijowski, Richard; Tuite, Michael; Sanford, Matthew

    2004-01-01

    Part I of this comprehensive review on magnetic resonance imaging of the elbow discusses normal elbow anatomy and the technical factors involved in obtaining high-quality magnetic resonance images of the elbow. Part I also discusses the role of magnetic resonance imaging in evaluating patients with osseous abnormalities of the elbow. With proper patient positioning and imaging technique, magnetic resonance imaging can yield high-quality multiplanar images which are useful in evaluating the osseous structures of the elbow. Magnetic resonance imaging can detect early osteochondritis dissecans of the capitellum and can be used to evaluate the size, location, stability, and viability of the osteochondritis dissecans fragment. Magnetic resonance imaging can detect early stress injury to the proximal ulna in athletes. Magnetic resonance imaging can detect radiographically occult fractures of the elbow in both children and adults. Magnetic resonance imaging is also useful in children to further evaluate elbow fractures which are detected on plain-film radiographs. (orig.)

  10. Metabolite Profiling of Human Amniotic Fluid by Hyphenated Nuclear Magnetic Resonance Spectroscopy

    OpenAIRE

    Graça, Gonçalo; Duarte, Iola F.; Goodfellow, Brian J.; Carreira, Isabel M.; Couceiro, Ana Bela; Domingues, Maria do Rosário; Spraul, Manfred; Tseng, Li-Hong; Gil, Ana M.

    2008-01-01

    The metabolic profiling of human amniotic fluid (HAF) is of potential interest for the diagnosis of disorders in the mother or the fetus. In order to build a comprehensive metabolite database for HAF, hyphenated NMR has been used, for the first time, for systematic HAF profiling. Experiments were carried out using reverse-phase (RP) and ion-exchange liquid chromatography (LC), in order to detect less and more polar compounds, respectively. RP-LC conditions achieved good separation of amino ac...

  11. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage.

    Science.gov (United States)

    Ma, Dan; Jiang, Yun; Chen, Yong; McGivney, Debra; Mehta, Bhairav; Gulani, Vikas; Griswold, Mark

    2018-04-01

    The purpose of this study was to accelerate the acquisition and reconstruction time of 3D magnetic resonance fingerprinting scans. A 3D magnetic resonance fingerprinting scan was accelerated by using a single-shot spiral trajectory with an undersampling factor of 48 in the x-y plane, and an interleaved sampling pattern with an undersampling factor of 3 through plane. Further acceleration came from reducing the waiting time between neighboring partitions. The reconstruction time was accelerated by applying singular value decomposition compression in k-space. Finally, a 3D premeasured B 1 map was used to correct for the B 1 inhomogeneity. The T 1 and T 2 values of the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology MRI phantom showed a good agreement with the standard values, with an average concordance correlation coefficient of 0.99, and coefficient of variation of 7% in the repeatability scans. The results from in vivo scans also showed high image quality in both transverse and coronal views. This study applied a fast acquisition scheme for a fully quantitative 3D magnetic resonance fingerprinting scan with a total acceleration factor of 144 as compared with the Nyquist rate, such that 3D T 1 , T 2 , and proton density maps can be acquired with whole-brain coverage at clinical resolution in less than 5 min. Magn Reson Med 79:2190-2197, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Impact of magnetic resonance imaging on preoperative planning for breast cancer surgery.

    Science.gov (United States)

    Law, Y; Cheung, Polly S Y; Lau, Silvia; Lo, Gladys G

    2013-08-01

    To review the impact of preoperative breast magnetic resonance imaging on the management of planned surgery, and the appropriateness of any resulting alterations. Retrospective review. A private hospital in Hong Kong. PATIENTS; For the 147 consecutive biopsy-proven breast cancer patients who underwent preoperative magnetic resonance imaging to determine tumour extent undergoing operation by a single surgeon between 1 January 2006 and 31 December 2009, the impact of magnetic resonance imaging findings was reviewed in terms of management alterations and their appropriateness. The most common indication for breast magnetic resonance imaging was the presence of multiple indeterminate shadows on ultrasound scans (53%), followed by ill-defined border of the main tumour on ultrasound scans (19%). In 66% (97 out of 147) of the patients, the extent of the operation was upgraded. Upgrading entailed: lumpectomy to wider lumpectomy (23 out of 97), lumpectomy to mastectomy (47 out of 97), lumpectomy to bilateral lumpectomy (15 out of 97), and other (12 out of 97). Mostly, these management changes were because magnetic resonance imaging showed more extensive disease (n=29), additional cancer foci (n=39), or contralateral disease (n=24). In five instances, upgrading was due to patient preference. In 34% (50 out of 147) of the patients, there was no change in the planned operation. Regarding 97 of the patients having altered management, in 12 the changes were considered inappropriately extensive (due to false-positive magnetic resonance imaging findings). In terms of magnetic resonance imaging detection of more extensive, multifocal, multicentric, or contralateral disease, the false-positive rate was 13% and false-negative rate 7%. Corresponding rates for sensitivity and specificity were 95% and 81%, using the final pathology as the gold standard. Preoperative magnetic resonance imaging had a clinically significant and mostly correct impact on management plans. Magnetic resonance

  13. Gadolinium-enhanced magnetic resonance imaging in acute myocardial infarction

    International Nuclear Information System (INIS)

    Dijkman, P.R.M. van; Wall, E.E. van der; Roos, A. de; Doornbos, J.; Laarse, A. van der; Voorthuisen, A.E. van; Bruschke, A.V.G.; Rossum, A.C. van

    1990-01-01

    To evaluate he usefulness of the paramagnetic contrast agent Gadolinium-DTPA (diethylenetriaminepentaacetic acid) in Magnetic Resonance. Imaging of acute myocardial infarction, we studied a total of 45 patients with a first acute myocardial infarction by ECG-gated magnetic resonance imaging before and after intravenous administration of 0.1 mmol/kg Gadolinium-DTPA. All patients received thrombolytic treatment by intravenous streptokinase. The magnetic resonance imaging studies were preformed after a meam of 88 h (range 15-241) after the acute onset of acute myocardial infarction. Five patients without evidence of cardiac disease served as controls. Spin-echo measurements (TE 30 ms) were made using a Philips Gyroscan (0.5 Tesla) or a Teslacon II (0.6 Tesla). The 45 patients were divided into four groups of patients. In Group I( patients) Gadolinium-DTPA improved the detection of myocardial infarction by Gadolinium-DTPA. In Group II (20 patients) the magnetic resonance imaging procedure was repeated every 10 min for up to 40 min following administration of Gadolinium-DTPA. Optimal contrast enhancement was obtained 20-25 min after Gadolinium-DTPA. In Group III (27 patients) signal intensities were significantly higher in the patients who underwent the magnetic resonance imaging study more than 72 h (mean 120) after the acute event, suggesting increased acculumation of Gadolinium-DTPA in a more advanced stage of the infarction process. In Group IV (45 patients) Gadolinium-DTPA was administered in an attempt to distinguish between reperfused and nonreperfused myocardial areas after thrombolytic treatment for acute myocardial infarction. The signal intensities did not differ, but reperfused areas showed a more homogeneous aspect whereas nonreperfused areas were visualized as a more heterogeneous contrast enhancement. It is concluded that magnetic resonance imaging using the contrast agent Gadolinium-DTPA significantly improves the detection of infarcted myocardial areas

  14. Advances in cardiac magnetic resonance imaging of congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, Mieke M.P. [University of Utrecht, University Medical Center Utrecht, Department of Radiology, PO Box 85500, Utrecht (Netherlands); University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); The Interuniversity Cardiology Institute of the Netherlands (ICIN) - Netherlands Heart Institute, PO Box 19258, Utrecht (Netherlands); Breur, Johannes M.P.J. [Wilhelmina Children' s Hospital, University Medical Center Utrecht, Department of Pediatric Cardiology, PO Box 85500, Utrecht (Netherlands); Budde, Ricardo P.J.; Oorschot, Joep W.M. van; Leiner, Tim [University of Utrecht, University Medical Center Utrecht, Department of Radiology, PO Box 85500, Utrecht (Netherlands); Kimmenade, Roland R.J. van; Sieswerda, Gertjan Tj [University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); Meijboom, Folkert J. [University of Utrecht, University Medical Center Utrecht, Department of Cardiology, PO Box 85500, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Center Utrecht, Department of Pediatric Cardiology, PO Box 85500, Utrecht (Netherlands)

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization. (orig.)

  15. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskikh, Sergey V.; Furo, Istvan (Industrial NMR Centre and Div. of Physical Chemistry, Dept. of Chemistry, Royal Institute of Technology, Stockholm (Sweden))

    2009-09-15

    This report summarizes results from a set of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) experiments performed on Ca and Na montmorillonite samples interacting with water. The primary goal with these studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during and after different physical processes such as swelling and sedimentation and on the time scale from minutes to years. Additionally, we also studied the distribution of foreign particles (such as native minerals as well as magnetic model particles) within bentonite systems and performed some diffusion NMR experiments with the aim of characterizing the state of colloids that form after clay dissolution. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Bulk samples confined in a vertical tube and in a horizontal channel were investigated. A critical issue for the stability of clay buffer layer in deep underground repository is to prevent or minimize the release of clay particles into the water phase. In our experiments, the most significant particle losses were found for Na-MX80 clay exposed to water with low ionic strength. With increasing the concentration of CaCl{sub 2} in the water phase both swelling and particle release are slowed down but not completely eliminated due probably to gradual change of water ion content via ion exchange with the clay itself. For natural MX80 samples, in spite of significant swelling expansion, no clay particle release above the sensitivity limit of 0.001 volume% was observed. Ca-MX80 exhibited the smallest expansion and no trace of clay particle released into the aqueous phase

  16. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems

    International Nuclear Information System (INIS)

    Dvinskikh, Sergey V.; Furo, Istvan

    2009-09-01

    This report summarizes results from a set of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) experiments performed on Ca and Na montmorillonite samples interacting with water. The primary goal with these studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during and after different physical processes such as swelling and sedimentation and on the time scale from minutes to years. Additionally, we also studied the distribution of foreign particles (such as native minerals as well as magnetic model particles) within bentonite systems and performed some diffusion NMR experiments with the aim of characterizing the state of colloids that form after clay dissolution. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Bulk samples confined in a vertical tube and in a horizontal channel were investigated. A critical issue for the stability of clay buffer layer in deep underground repository is to prevent or minimize the release of clay particles into the water phase. In our experiments, the most significant particle losses were found for Na-MX80 clay exposed to water with low ionic strength. With increasing the concentration of CaCl 2 in the water phase both swelling and particle release are slowed down but not completely eliminated due probably to gradual change of water ion content via ion exchange with the clay itself. For natural MX80 samples, in spite of significant swelling expansion, no clay particle release above the sensitivity limit of 0.001 volume% was observed. Ca-MX80 exhibited the smallest expansion and no trace of clay particle released into the aqueous phase

  17. Magnetic resonance imaging of the elbow. Part II: Abnormalities of the ligaments, tendons, and nerves

    Energy Technology Data Exchange (ETDEWEB)

    Kijowski, Richard; Tuite, Michael; Sanford, Matthew [University of Wisconsin Hospital, Department of Radiology, Madison, WI (United States)

    2005-01-01

    Part II of this comprehensive review on magnetic resonance imaging of the elbow discusses the role of magnetic resonance imaging in evaluating patients with abnormalities of the ligaments, tendons, and nerves of the elbow. Magnetic resonance imaging can yield high-quality multiplanar images which are useful in evaluating the soft tissue structures of the elbow. Magnetic resonance imaging can detect tears of the ulnar collateral ligament and lateral collateral ligament of the elbow with high sensitivity and specificity. Magnetic resonance imaging can determine the extent of tendon pathology in patients with medial epicondylitis and lateral epicondylitis. Magnetic resonance imaging can detect tears of the biceps tendon and triceps tendon and can distinguishing between partial and complete tendon rupture. Magnetic resonance imaging is also helpful in evaluating patients with nerve disorders at the elbow. (orig.)

  18. Generation of nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Beckmann, N.X.

    1986-01-01

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  19. Magnetic resonance imaging of aneurysmal subarachnoid hemorrhage

    International Nuclear Information System (INIS)

    Ogawa, Toshihide; Shimosegawa, Eku; Inugami, Atsushi; Shishido, Fumio; Fujita, Hideaki; Ito, Hiroshi; Uemura, Kazuo; Yasui, Nobuyuki

    1991-01-01

    Magnetic resonance imaging of subarachnoid hemorrhage (SAH) due to aneurysm rupture was evaluated in relation to CT findings in nine patients. Six patients were studied within 3 days and the other three patients were studied 4 to 6 days from the ictus of SAH using a 0.5 Tesla superconducting unit. In all of the patients, hematoma in the subarachnoid space and ventricles was demonstrated by the proton density-weighted spin echo sequence, which showed that bloody cerebrospinal fluid (CSF) had a higher signal intensity than brain tissue or normal CSF. Magnetic resonance imaging was more sensitive in detecting SAH and more informative as to the site of the ruptured aneurysm than CT. Despite some limitations in applying it to patients with acute SAH, magnetic resonace imaging has clear advantages in the diagnosis of SAH. (author)

  20. Magnetic resonance imaging of aneurysmal subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toshihide; Shimosegawa, Eku; Inugami, Atsushi; Shishido, Fumio; Fujita, Hideaki; Ito, Hiroshi; Uemura, Kazuo; Yasui, Nobuyuki (Research Inst. of Brain and Blood Vessels, Akita (Japan))

    1991-11-01

    Magnetic resonance imaging of subarachnoid hemorrhage (SAH) due to aneurysm rupture was evaluated in relation to CT findings in nine patients. Six patients were studied within 3 days and the other three patients were studied 4 to 6 days from the ictus of SAH using a 0.5 Tesla superconducting unit. In all of the patients, hematoma in the subarachnoid space and ventricles was demonstrated by the proton density-weighted spin echo sequence, which showed that bloody cerebrospinal fluid (CSF) had a higher signal intensity than brain tissue or normal CSF. Magnetic resonance imaging was more sensitive in detecting SAH and more informative as to the site of the ruptured aneurysm than CT. Despite some limitations in applying it to patients with acute SAH, magnetic resonace imaging has clear advantages in the diagnosis of SAH. (author).

  1. Fifty years of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Valderrama, Juan Crisostomo

    1997-01-01

    Short information about the main developments of nuclear magnetic resonance during their fifty existence years is presented. Beside two examples of application (HETCOR and INADEQUATE) to the structural determination of organic compounds are described

  2. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Science.gov (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  3. Magnetic resonance imaging of popliteal artery pathologies

    International Nuclear Information System (INIS)

    Holden, Andrew; Merrilees, Stephen; Mitchell, Nicola; Hill, Andrew

    2008-01-01

    This paper illustrates examples of popliteal artery pathologies imaged with contrast enhanced magnetic resonance angiography (CE-MRA) and magnetic resonance imaging (MRI) at a single tertiary referral centre. Popliteal artery pathologies were identified in 1710 patients referred over a 6-year period with symptoms suggesting lower limb arterial occlusive disease. Common pathologies such as atherosclerotic occlusive disease, thromboemboli and aneurysm disease are discussed as well as unusual pathologies such as cystic adventitial disease, mycotic aneurysm and arterial entrapment. The combination of CE-MRA and the excellent soft tissue resolution of MRI allow detailed evaluation of arterial and peri-arterial pathologies, and facilitate appropriate management decisions

  4. Magnetic resonance imaging of popliteal artery pathologies

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Andrew [Department of Radiology, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: andrewh@adhb.govt.nz; Merrilees, Stephen [Department of Radiology, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: smerrilees@adhb.govt.nz; Mitchell, Nicola [Department of Radiology, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: nmit010@ec.auckland.ac.nz; Hill, Andrew [Department of Vascular Surgery, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: ahill@adhb.govt.nz

    2008-07-15

    This paper illustrates examples of popliteal artery pathologies imaged with contrast enhanced magnetic resonance angiography (CE-MRA) and magnetic resonance imaging (MRI) at a single tertiary referral centre. Popliteal artery pathologies were identified in 1710 patients referred over a 6-year period with symptoms suggesting lower limb arterial occlusive disease. Common pathologies such as atherosclerotic occlusive disease, thromboemboli and aneurysm disease are discussed as well as unusual pathologies such as cystic adventitial disease, mycotic aneurysm and arterial entrapment. The combination of CE-MRA and the excellent soft tissue resolution of MRI allow detailed evaluation of arterial and peri-arterial pathologies, and facilitate appropriate management decisions.

  5. Magnetic resonance imaging in the cranio-cervical region

    International Nuclear Information System (INIS)

    Koschorek, F.; Jensen, H.P.; Terwey, B.

    1987-01-01

    Since the introduction of nuclear magnetic resonance imaging (NMR) in the neurosurgical and neurological diagnostic this new imaging modality has shown to be of high diagnostic value - especially in disease process of the cranio-vertebral junction. Other imaging moralities such as x-ray CT and myelography are of inferior quality as the images are degraded by bone artifacts and superposition of other structures. NMR can reveal many aspects of the cranio-vertebral region in a single examination without artifacts from surrounding structures. A further improvement of NMR is the introduction of para-magnetic agents, such as gadolinium-DTPA, as it increases the specifity by dynamic magnetic resonance imaging. The authors present a review of their clinical experience

  6. Electronic and transport properties of noncollinear magnetic monatomic Mn chains: Fano resonances in the superlattice of noncollinear magnetic barriers and magnetic anisotropic bands

    International Nuclear Information System (INIS)

    Dai, C.J.; Yan, X.H.; Xiao, Y.; Guo, Y.D.

    2015-01-01

    By means of the density functional theory combined with non-equilibrium Green's function method, ballistic transport properties of one-dimensional noncollinear magnetic monatomic chains were investigated using the single-atomic Mn chains as a model system. Fano resonances are found to exist in the monatomic Mn chains with spin-spiral structure. Furthermore, in the monatomic Mn chains with magnetic soliton lattice, Fano resonances are enhanced and cause the conductance splitting in the transmission spectra. The Fano resonances in the noncollinear magnetic single-atomic Mn chains are arising from the coupling of the localized d-states and the extended states of the quantum channels. By constructing a theoretical model and calculating its conductance, it is found that the phenomena of Fano resonances and the accompanying conductance splitting exist universally in the superlattice of one-dimensional noncollinear magnetic barriers, due to the interference of the incident waves and reflected waves by the interfaces between the neighboring barriers. Moreover, the band structures of the ferromagnetic and spin-spiral monatomic Mn chains exhibit a strong dependence on the spatial arrangement of the magnetic moments of Mn atoms when spin–orbit coupling is considered. - Highlights: • Transport properties of noncollinear magnetic monatomic Mn chains are studied. • Fano resonances are found in the noncollinear magnetic monatomic Mn chains. • Magnetic soliton lattice leads to conductance splitting in the transmission curve. • Fano resonances exist in the superlattice of noncollinear magnetic barriers. • Effect of SOC on the band structure of FM and spin-spiral Mn chains are studied

  7. Optimization of saddle coils for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Salmon, Carlos Ernesto Garrido; Vidoto, Edson Luiz Gea; Martins, Mateus Jose; Tannus, Alberto

    2006-01-01

    In Nuclear Magnetic Resonance (NMR) experiments, besides the apparatus designed to acquire the NMR signal, it is necessary to generate a radio frequency electromagnetic field using a device capable to transduce electromagnetic power into a transverse magnetic field. We must generate this transverse homogeneous magnetic field inside the region of interest with minimum power consumption. Many configurations have been proposed for this task, from coils to resonators. For low field intensity (<0.5 T) and small sample dimensions (<30 cm), the saddle coil configuration has been widely used. In this work we present a simplified method for calculating the magnetic field distribution in these coils considering the current density profile. We propose an optimized saddle configuration as a function of the dimensions of the region of interest, taking into account the uniformity and the sensitivity. In order to evaluate the magnetic field uniformity three quantities have been analyzed: Non-uniformity, peak-to-peak homogeneity and relative uniformity. Some experimental results are presented to validate our calculation. (author)

  8. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  9. Transcranial magnetic stimulation assisted by neuronavigation of magnetic resonance images

    Science.gov (United States)

    Viesca, N. Angeline; Alcauter, S. Sarael; Barrios, A. Fernando; González, O. Jorge J.; Márquez, F. Jorge A.

    2012-10-01

    Technological advance has improved the way scientists and doctors can learn about the brain and treat different disorders. A non-invasive method used for this is Transcranial Magnetic Stimulation (TMS) based on neuron excitation by electromagnetic induction. Combining this method with functional Magnetic Resonance Images (fMRI), it is intended to improve the localization technique of cortical brain structures by designing an extracranial localization system, based on Alcauter et al. work.

  10. Magnetic resonance and the diagnosis of short stature of hypothalamic-hypophyseal origin

    International Nuclear Information System (INIS)

    Vannelli, S.; Avataneo, T.; Benso, L.; Potenzoni, F.; Cirillo, S.; Mostert, M.; Bona, G.

    1993-01-01

    Magnetic resonance imaging was performed in 23 patients with short stature (7 had multiple pituitary hormone defect, 11 had isolated growth hormone deficiency and 5 had normal variant short stature) to investigate if there is a relation between magnetic resonance findings and results of endocrine tests. Magnetic resonance imaging of patients with multiple pituitary hormone deficiency or with serious isolated growth hormone deficiency (growth hormone 3μg/l) or with normal variant short stature, the technique revealed a normal or hypoplastic hypophysis. Magnetic resonance appears to be a useful second-level diagnostic tool in defining the type of alteration in growth defects of endocrine origin. 26 refs., 5 figs., 2 tabs

  11. Nitroxide radicals as contrast substances for magnetic resonance imaging diagnostics. Part 1

    International Nuclear Information System (INIS)

    Zhelev, Z.

    2016-01-01

    In last ten years, there is a significant progress in the selective and localized detection of redox-active compounds in the cells, tissues, and intact organisms. This progress is due to the development of new synthetic and genetically encoded redox-sensitive contrast substances, as well as due to the improvement of the techniques for their imaging: fluorescent, chemiluminescent, magnetic resonance, nuclear, ultrasonic. One of the most attractive redox-sensitive contrast substances are cyclic (stable) nitroxide radicals. They can be visualized and analyzed in vitro and in vivo by a variety of magnetic resonance techniques - electron-paramagnetic resonance imaging (EPRI), magnetic resonance imaging (MRI), Overhauser-enhanced MRI (OMRI). This review describes the merits and demerits of the nitroxide-enhanced EPR and MRI and the perspectives for their application in biomedical studies and clinical practice. The article is intended for a wide range of readers - from students to specialists in the field. Key words: Magnetic Resonance Imaging (MRI). Electron-Paramagnetic Resonance (EPR). Overhauser-Enhanced MRI (O MRI). Nitroxide

  12. Bony vibration stimulation test combined with magnetic resonance imaging. Can discography be replaced?

    Science.gov (United States)

    Yrjämä, M; Tervonen, O; Kurunlahti, M; Vanharanta, H

    1997-04-01

    The results of two noninvasive methods, magnetic resonance imaging and a bony vibration test, were compared with discographic pain provocation findings. To evaluate whether the combination of magnetic resonance imaging and vibration pain provocation tests could be used to replace discography in low back pain diagnostics. Magnetic resonance imaging gives a wealth of visual information on anatomic changes of the spine with often unknown clinical significance. Discographic examination of the spine is still the only widely accepted diagnostic method that can relate the pathoanatomic changes to the patient's clinical pain. Internal anular rupture has been shown to be one of the sources of back pain. The bony vibration test of the spinal processes has been shown correlate well with discographic pain provocation tests in cases of internal anular rupture. The three lowest lumbar discs of 33 patients with back pain were examined by means of magnetic resonance imaging and a bony vibration stimulation test, and the results were compared with those from computed tomography-discography. In cases of intradiscal magnetic resonance imaging findings, the vibration provocation test showed a sensitivity of 0.88 and a specificity of 0.50 compared with the discographic pain provocation test. If the patients with previous back surgery were excluded, the specificity was 0.75. In the cases of total anular rupture, the sensitivity was 0.50, and the specificity was 0.33. The combination of the two noninvasive methods, vibration stimulation and magnetic resonance imaging, gives more information on the origin of the back pain than magnetic resonance imaging alone. The pathoanatomic changes seen in magnetic resonance imaging can be correlated with the patient's disorder more reliably using the vibration provocation test in the cases of partial anular ruptures. The use of discography can be limited mostly to cases with total anular ruptures detected by magnetic resonance imaging.

  13. Electromagnetically induced transparency resonances inverted in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, A.; Sarkisyan, D., E-mail: davsark@yahoo.com, E-mail: david@ipr.sci.am [National Academy of Sciences of Armenia, Institute for Physical Research (Armenia); Pashayan-Leroy, Y.; Leroy, C. [Université de Bourgogne-Dijon, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS (France); Cartaleva, S. [Bulgarian Academy of Sciences, Institute of Electronics (Bulgaria); Wilson-Gordon, A. D. [Bar-Ilan University Ramat Gan, Department of Chemistry (Israel); Auzinsh, M. [University of Latvia, Department of Physics (Latvia)

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  14. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    Science.gov (United States)

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  15. Principles of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Pykett, I.L.; Newhouse, J.H.; Buonanno, F.S.; Brady, T.J.; Goldman, M.R.; Kistler, J.P.; Pohost, G.M.

    1982-01-01

    The physical principles which underlie the phenomenon of nuclear magnetic resonance (NMR) are presented in this primer. The major scanning methods are reviewed, and the principles of technique are discussed. A glossary of NMR terms is included

  16. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    International Nuclear Information System (INIS)

    Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro

    2015-01-01

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs

  17. Magnetic dispersive solid-phase extraction based on modified magnetic nanoparticles for the detection of cocaine and cocaine metabolites in human urine by high-performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Feiyu; Zou, Yun; Ni, Chunfang; Wang, Rong; Wu, Min; Liang, Chen; Zhang, Jiabin; Yuan, Xiaoliang; Liu, Wenbin

    2017-11-01

    An easy-to-handle magnetic dispersive solid-phase extraction procedure was developed for preconcentration and extraction of cocaine and cocaine metabolites in human urine. Divinyl benzene and vinyl pyrrolidone functionalized silanized Fe 3 O 4 nanoparticles were synthesized and used as adsorbents in this procedure. Scanning electron microscopy, vibrating sample magnetometry, and infrared spectroscopy were employed to characterize the modified adsorbents. A high-performance liquid chromatography with mass spectrometry method for determination of cocaine and its metabolites in human urine sample has been developed with pretreatment of the samples by magnetic dispersive solid-phase extraction. The obtained results demonstrated the higher extraction capacity of the prepared nanoparticles with recoveries between 75.1 to 105.7% and correlation coefficients higher than 0.9971. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.10 ng/mL. The proposed magnetic dispersive solid-phase extraction method provided a rapid, environmentally friendly and magnetic stuff recyclable approach and it was confirmed that the prepared adsorbents material was a kind of highly effective extraction materials for the trace cocaine and cocaine metabolites analyses in human urine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Magnetic resonance of semiconductors and their nanostructures basic and advanced applications

    CERN Document Server

    Baranov, Pavel G; Jelezko, Fedor; Wrachtrup, Jörg

    2017-01-01

    This book explains different magnetic resonance (MR) techniques and uses different combinations of these techniques to analyze defects in semiconductors and nanostructures. It also introduces novelties such as single defects MR and electron-paramagnetic-resonance-based methods: electron spin echo, electrically detected magnetic resonance, optically detected magnetic resonance and electron-nuclear double resonance – the designated tools for investigating the structural and spin properties of condensed systems, living matter, nanostructures and nanobiotechnology objects. Further, the authors address problems existing in semiconductor and nanotechnology sciences that can be resolved using MR, and discuss past, current and future applications of MR, with a focus on advances in MR methods. The book is intended for researchers in MR studies of semiconductors and nanostructures wanting a comprehensive review of what has been done in their own and related fields of study, as well as future perspectives.

  19. Diffusion and Perfusion Magnetic Resonance Imaging:Fundamentals and Advances

    OpenAIRE

    Assili, Sanam

    2016-01-01

    Over the past few decades, magnetic resonance imaging has been utilized as a powerful imaging modality to evaluate the structure and function of various organs in the human body,such as the brain. Additionally, diffusion and perfusion MR imaging have been increasingly used in neurovascular clinical applications. In diffusion-weighted magnetic resonance imaging, the mobility of water molecules is explored in order to obtain information about the microscopic behavior of the tissues. In contrast...

  20. Magnetic Resonance Elastography and Other Magnetic Resonance Imaging Techniques in Chronic Liver Disease: Current Status and Future Directions

    Science.gov (United States)

    Tan, Cher Heng; Venkatesh, Sudhakar Kundapur

    2016-01-01

    Recent advances in the noninvasive imaging of chronic liver disease have led to improvements in diagnosis, particularly with magnetic resonance imaging (MRI). A comprehensive evaluation of the liver may be performed with the quantification of the degree of hepatic steatosis, liver iron concentration, and liver fibrosis. In addition, MRI of the liver may be used to identify complications of cirrhosis, including portal hypertension, ascites, and the development of hepatocellular carcinoma. In this review article, we discuss the state of the art techniques in liver MRI, namely, magnetic resonance elastography, hepatobiliary phase MRI, and liver fat and iron quantification MRI. The use of these advanced techniques in the management of chronic liver diseases, including non-alcoholic fatty liver disease, will be elaborated. PMID:27563019

  1. Magnetic resonance studies of intercalation compounds

    International Nuclear Information System (INIS)

    Miller, G.R.

    1990-01-01

    During the last three or four years, nearly tow hundred papers have been published that used NMR or ESR spectroscopy to study compounds formed by the intercalation of molecules or ions into the van der Waals gap of a layered hast compound. The host lattices have ranged from the simple, such as graphite, to the complex, such as clay. In many cases, magnetic resonance techniques now enable one to obtain quite detailed information on even fairly complex intercalated species, on the nature of the changes in the host lattice accompanying intercalation, and on the nature of the interactions between the intercalant species and the host lattice. Magnetic resonance is used in conunction with many other techniques to obtain a fuller picture of these interesting systems, but this review will limit its focus to the use of NMR and ESR techniques. (author). 51 refs

  2. Nonlinear nuclear magnetic resonance in ferromagnets

    International Nuclear Information System (INIS)

    Nurgaliev, T.

    1988-01-01

    The properties of nonlinear nuclear magnetic resonance (NMR) have been studied theoretically by taking into account the interaction between NMR and FMR in the ferromagnets. The Landau-Lifshitz-Bloch equations, describing the electron and nuclear magnetization behaviour in ferromagnets are presented in an integral form for a weakly excited electronic system. The stationary solution of these equations has been analysed in the case of equal NMR and FMR frequencies: the criteria for the appearance of two stable dynamic states is found and the high-frequency magnetic susceptibility for these systems is investigated. 2 figs., 8 refs

  3. Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2015-03-16

    In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.

  4. A Magnetic Resonance Imaging Receiver Design Based on NI PXIe-7966R

    Directory of Open Access Journals (Sweden)

    HU Jin-jie

    2017-12-01

    Full Text Available A magnetic resonance imaging receiver design based on NI PXIe-7966R is proposed, with which the magnetic resonance signals are sampled directly and down-converted digitally, the raw data are uploaded and the magnetic resonance image are restored. The system-level digital signal processing (DSP development tools offered by NI LabVIEW field programmable gate array (FPGA was used for FPGA function modeling, simulation and automatic code generation of hardware description language (HDL. It was very flexible during the digital down conversion (DDC designing. The sampling rate of this module was 50 Mbps, and the receiver bandwidth could be varied between 100 Hz and 1 MHz. The experimental results showed that the receiver design is a high performance magnetic resonance receiver solution.

  5. A Proton Magnetic Resonance Spectroscopic Study in Autism Spectrum Disorder Using a 3-Tesla Clinical Magnetic Resonance Imaging (MRI) System: The Anterior Cingulate Cortex and the Left Cerebellum.

    Science.gov (United States)

    Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Goji, Aya; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-07-01

    The pathophysiology of autism spectrum disorder (ASD) is not fully understood. We used proton magnetic resonance spectroscopy to investigate metabolite concentration ratios in the anterior cingulate cortex and left cerebellum in ASD. In the ACC and left cerebellum studies, the ASD group and intelligence quotient- and age-matched control group consisted of 112 and 114 subjects and 65 and 45 subjects, respectively. In the ASD group, γ-aminobutyric acid (GABA)+/ creatine/phosphocreatine (Cr) was significantly decreased in the anterior cingulate cortex, and glutamate (Glu)/Cr was significantly increased and GABA+/Cr was significantly decreased in the left cerebellum compared to those in the control group. In addition, both groups showed negative correlations between Glu/Cr and GABA+/Cr in the left cerebellum, and positive correlations between GABA+/Cr in the anterior cingulate cortex and left cerebellum. ASD subjects have hypoGABAergic alterations in the anterior cingulate cortex and hyperglutamatergic/hypoGABAergic alterations in the left cerebellum.

  6. Sensorineural hearing loss after magnetic resonance imaging

    DEFF Research Database (Denmark)

    Mollasadeghi, Abolfazl; Mehrparvar, Amir Houshang; Atighechi, Saeid

    2013-01-01

    Magnetic resonance imaging (MRI) devices produce noise, which may affect patient's or operators' hearing. Some cases of hearing impairment after MRI procedure have been reported with different patterns (temporary or permanent, unilateral or bilateral, with or without other symptoms like tinnitus)......). In this report, a case of bilateral sensorineural hearing loss in an otherwise healthy patient underwent brain MRI was described. The patient's hearing loss was accompanied with tinnitus and was not improved after 3 months of followup.......Magnetic resonance imaging (MRI) devices produce noise, which may affect patient's or operators' hearing. Some cases of hearing impairment after MRI procedure have been reported with different patterns (temporary or permanent, unilateral or bilateral, with or without other symptoms like tinnitus...

  7. Magnetic resonance spectroscopic imaging at superresolution: Overview and perspectives.

    Science.gov (United States)

    Kasten, Jeffrey; Klauser, Antoine; Lazeyras, François; Van De Ville, Dimitri

    2016-02-01

    The notion of non-invasive, high-resolution spatial mapping of metabolite concentrations has long enticed the medical community. While magnetic resonance spectroscopic imaging (MRSI) is capable of achieving the requisite spatio-spectral localization, it has traditionally been encumbered by significant resolution constraints that have thus far undermined its clinical utility. To surpass these obstacles, research efforts have primarily focused on hardware enhancements or the development of accelerated acquisition strategies to improve the experimental sensitivity per unit time. Concomitantly, a number of innovative reconstruction techniques have emerged as alternatives to the standard inverse discrete Fourier transform (DFT). While perhaps lesser known, these latter methods strive to effect commensurate resolution gains by exploiting known properties of the underlying MRSI signal in concert with advanced image and signal processing techniques. This review article aims to aggregate and provide an overview of the past few decades of so-called "superresolution" MRSI reconstruction methodologies, and to introduce readers to current state-of-the-art approaches. A number of perspectives are then offered as to the future of high-resolution MRSI, with a particular focus on translation into clinical settings. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Assessment of coronary artery disease with nicorandil stress magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kawase, Yoshio; Nichimoto, Masaki; Hato, Katsunori; Okajima, Kazue; Yoshikawa, Junichi

    2004-01-01

    Although dipyridamole and adenosine have been used as vasodilator agents, we believe they are inadequate for vasodilator perfusion magnetic resonance imaging, due to adverse effects (flushing, warmth, headaches, and arrhythmia). Nicorandil, a potassium channel opener, has been reported to increase coronary blood flow and it was associated with fewer adverse effects than adenosine or dipiridamole. We set out to investigate whether the coronary artery stenosis could be assessed by nicorandil stress perfusion magnetic resonance imaging. First-pass contrast-enhanced magnetic resonance images of the left ventricle acquired from 50 patients at rest and during intravenous administration of nicorandil using multi-slice turbo field echo with multi shot echo-planar-imaging. Coronary angiography was performed within 1 week. There was no adverse effects during nicorandil stress in any patients. The overall sensitivity and specificity of magnetic resonance imaging in identifying patients with significant stenosis of at least one coronary artery were 93.9% (31 of 33 patients) and 94.1% (16 of 17 patients), respectively. The sensitivity of magnetic resonance imaging for detecting significant stenosis in the left anterior descending artery was 87.5%; the sensitivity in the left circumflex artery was 80%; the sensitivity in the right coronary artery was 92.3%. Similar sensitivities were observed for all 3 vascular regions, indicating that all myocardial segments were visualized with similar image quality. The present study shows that nicorandil stress perfusion magnetic resonance imaging is a safe, feasible technique for assessing coronary artery stenosis severity in a totally-noninvasive manner. (authors)

  9. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rabenstein, D.L.; Guo, W.

    1988-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most widely used instrumental methods, with applications ranging from the characterization of pure compounds by high-resolution NMR to the diagnosis of disease by magnetic resonance imaging (MRI). To give some idea of the wide-spread use of NMR, a computer search for the period 1985-1987 turned up over 500 books and review articles and over 7000 literature citations, not including papers in which NMR was used together with other spectroscopic methods for the routine identification of organic compounds. Consequently, they have by necessity been somewhat selective in the topics they have chosen to cover and in the articles they have cited. In this review, which covers the published literature for the approximate period Sept 1985-Aug 1987, they have focused on new developments and applications of interest to the chemist. First they review recent developments in instrumentation and techniques. Although there have not been any major break-throughs in NMR instrumentation during the past two years, significant refinements have been reported which optimize instrumentation for the demanding multiple pulse experiments in routine use today. Next they review new developments in methods for processing NMR data, followed by reviews of one-dimensional and two-dimensional NMR experiments

  10. Electron-nuclear magnetic resonance in the inverted state

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1975-01-01

    The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed

  11. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S.; Gammon, W.J.; Pappas, D.P. [Virginia Commonwealth Univ., Richmond, VA (United States)] [and others

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.

  12. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    International Nuclear Information System (INIS)

    Mishra, S.; Gammon, W.J.; Pappas, D.P.

    1997-01-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield

  13. Numerical study of remote detection outside the magnet with travelling wave Magnetic Resonance Imaging at 3T

    International Nuclear Information System (INIS)

    López, M; Vázquez, F; Solís-Nájera, S; Rodriguez, A O

    2015-01-01

    The use of the travelling wave approach for high magnetic field magnetic resonance imaging has been used recently with very promising results. This approach offer images one with greater field-of-view and a reasonable signal-to-noise ratio using a circular waveguide. This scheme has been proved to be successful at 7 T and 9.4 T with whole-body imager. Images have also been acquired with clinical magnetic resonance imaging systems whose resonant frequencies were 64 MHz and 128 MHz. These results motivated the use of remote detection of the magnetic resonance signal using a parallel-plate waveguide together with 3 T clinical scanners, to acquired human leg images. The cut-off frequency of this waveguide is zero for the principal mode, allowing us to overcome the barrier of transmitting waves at lower frequency than 300 MHz or 7 T for protons. These motivated the study of remote detection outside the actual magnet. We performed electromagnetic field simulations of a parallel-plate waveguide and a phantom. The signal transmission was done at 128 MHz and using a circular surface coil located almost 200 cm away for the magnet isocentre. Numerical simulations demonstrated that the magnetic field of the principal mode propagate inside a waveguide outside the magnet. Numerical results were compared with previous experimental-acquired image data under similar conditions

  14. Nuclear magnetic resonance-based metabolomics for prediction of gastric damage induced by indomethacin in rats

    Energy Technology Data Exchange (ETDEWEB)

    Um, So Young [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); Park, Jung Hyun [Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); Chung, Myeon Woo [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Kim, Kyu-Bong [College of Pharmacy, Dankook University, Dandae-ro, Cheonan, Chungnam (Korea, Republic of); Kim, Seon Hwa [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); College of Pharmacy, Dankook University, Dandae-ro, Cheonan, Chungnam (Korea, Republic of); Choi, Ki Hwan, E-mail: hyokwa11@korea.kr [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Lee, Hwa Jeong, E-mail: hwalee@ewha.ac.kr [Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer NMR based metabolomics - gastric damage by indomethacin. Black-Right-Pointing-Pointer Pattern recognition analysis was performed to biomarkers of gastric damage. Black-Right-Pointing-Pointer 2-Oxoglutarate, acetate, taurine and hippurate were selected as putative biomarkers. Black-Right-Pointing-Pointer The gastric damage induced by NSAIDs can be screened in the preclinical step of drug. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) have side effects including gastric erosions, ulceration and bleeding. In this study, pattern recognition analysis of the {sup 1}H-nuclear magnetic resonance (NMR) spectra of urine was performed to develop surrogate biomarkers related to the gastrointestinal (GI) damage induced by indomethacin in rats. Urine was collected for 5 h after oral administration of indomethacin (25 mg kg{sup -1}) or co-administration with cimetidine (100 mg kg{sup -1}), which protects against GI damage. The {sup 1}H-NMR urine spectra were divided into spectral bins (0.04 ppm) for global profiling, and 36 endogenous metabolites were assigned for targeted profiling. The level of gastric damage in each animal was also determined. Indomethacin caused severe gastric damage; however, indomethacin administered with cimetidine did not. Simultaneously, the patterns of changes in their endogenous metabolites were different. Multivariate data analyses were carried out to recognize the spectral pattern of endogenous metabolites related to indomethacin using partial least square-discrimination analysis. In targeted profiling, a few endogenous metabolites, 2-oxoglutarate, acetate, taurine and hippurate, were selected as putative biomarkers for the gastric damage induced by indomethacin. These metabolites changed depending on the degree of GI damage, although the same dose of indomethacin (10 mg kg{sup -1}) was administered to rats. The results of global and targeted profiling suggest that the gastric damage induced by

  15. Nuclear magnetic resonance-based metabolomics for prediction of gastric damage induced by indomethacin in rats

    International Nuclear Information System (INIS)

    Um, So Young; Park, Jung Hyun; Chung, Myeon Woo; Kim, Kyu-Bong; Kim, Seon Hwa; Choi, Ki Hwan; Lee, Hwa Jeong

    2012-01-01

    Highlights: ► NMR based metabolomics – gastric damage by indomethacin. ► Pattern recognition analysis was performed to biomarkers of gastric damage. ► 2-Oxoglutarate, acetate, taurine and hippurate were selected as putative biomarkers. ► The gastric damage induced by NSAIDs can be screened in the preclinical step of drug. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) have side effects including gastric erosions, ulceration and bleeding. In this study, pattern recognition analysis of the 1 H-nuclear magnetic resonance (NMR) spectra of urine was performed to develop surrogate biomarkers related to the gastrointestinal (GI) damage induced by indomethacin in rats. Urine was collected for 5 h after oral administration of indomethacin (25 mg kg −1 ) or co-administration with cimetidine (100 mg kg −1 ), which protects against GI damage. The 1 H-NMR urine spectra were divided into spectral bins (0.04 ppm) for global profiling, and 36 endogenous metabolites were assigned for targeted profiling. The level of gastric damage in each animal was also determined. Indomethacin caused severe gastric damage; however, indomethacin administered with cimetidine did not. Simultaneously, the patterns of changes in their endogenous metabolites were different. Multivariate data analyses were carried out to recognize the spectral pattern of endogenous metabolites related to indomethacin using partial least square-discrimination analysis. In targeted profiling, a few endogenous metabolites, 2-oxoglutarate, acetate, taurine and hippurate, were selected as putative biomarkers for the gastric damage induced by indomethacin. These metabolites changed depending on the degree of GI damage, although the same dose of indomethacin (10 mg kg −1 ) was administered to rats. The results of global and targeted profiling suggest that the gastric damage induced by NSAIDs can be screened in the preclinical stage of drug development using a NMR based metabolomics approach.

  16. Cardiac magnetic resonance imaging in clinical practice

    Directory of Open Access Journals (Sweden)

    Adriana Dias Barranhas

    2014-01-01

    Full Text Available Objective To evaluate and describe indications, mainly diagnoses and cardiac magnetic resonance imaging findings observed in clinical practice. Materials and Methods Retrospective and descriptive study of cardiac magnetic resonance performed at a private hospital and clinic in the city of Niterói, RJ, Brazil, in the period from May 2007 to April 2011. Results The sample included a total of 1000 studies performed in patients with a mean age of 53.7 ± 16.2 years and predominance for male gender (57.2%. The majority of indications were related to assessment of myocardial perfusion at rest and under pharmacological stress (507/1000; 51%, with positive results in 36.2% of them. Suspected myocarditis was the second most frequent indication (140/1000; 14%, with positive results in 63.4% of cases. These two indications were followed by study of arrhythmias (116/1000; 12%, myocardial viability (69/1000; 7% and evaluation of cardiomyopathies (47/1000; 5%. In a subanalysis, it was possible to identify that most patients were assessed on an outpatient basis (58.42%. Conclusion Cardiac magnetic resonance has been routinely performed in clinical practice, either on an outpatient or emergency/inpatient basis, and myocardial ischemia represented the main indication, followed by investigation of myocarditis, arrhythmogenic right ventricular dysplasia and myocardial viability.

  17. Magnetism in heterogeneous thin film systems: Resonant X-ray scattering studies

    International Nuclear Information System (INIS)

    Kortright, J.B.; Jiang, J.S.; Bader, S.D.; Hellwig, O.; Marguiles, D.T.; Fullerton, E.E.

    2002-01-01

    Magnetic and chemical heterogeneity are common in a broad range of magnetic thin film systems. Emerging resonant soft x-ray scattering techniques are well suited to resolve such heterogeneity at relevant length scales. Resonant x-ray magneto-optical Kerr effect measurements laterally average over heterogeneity but can provide depth resolution in different ways, as illustrated in measurements resolving reversible and irreversible changes in different layers of exchange-spring heterostructures. Resonant small-angle scattering measures in-plane heterogeneity and can resolve magnetic and chemical scattering sources in different ways, as illustrated in measurements of granular alloy recording media

  18. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...... in the methodology and quality of the MRS migraine studies over time, some results were consistent and reproducible. 31P-MRS studies suggested reduced availability of neuronal energy and implied a mitochondrial dysfunction in the migraine brain. 1H-MRS studies reported interictal abnormalities in the excitatory...... and inhibitory neurotransmitters, glutamate and g-aminobutyric acid (GABA), suggesting persistent altered excitability in migraine patients. N-Acetylaspartate levels were decreased in migraine, probably due to a mitochondrial dysfunction and abnormal energy metabolism. The reported abnormalities may increase...

  19. Pharyngeal branchial cyst: magnetic resonance findings

    Energy Technology Data Exchange (ETDEWEB)

    Cerezal, L.; Canga, A. [Department of Radiology of the ' Santa Cruz' Hospital Liencres, Cantabria (Spain); Morales, C. [Department of Otorhinolaryngology of the ' Sierrallana' Hospital Torrelavega, Cantabria (Spain); Abascal, F.; Usamentiaga, E.; Bustamante, M. [Department of Radiology of the University Hospital ' Marques de Valdecilla' , Av. de Valdecilla s/n Santander 39008 (Spain); Olcinas, O. [Department of Pathology of the University Hospital ' Marques de Valdecilla' , Av. de Valdecilla s/n Santander 39008 (Spain)

    1998-11-01

    An unusual case of pharyngeal cyst in a 25-year-old man studied by Magnetic Resonance (MR) is described. Anatomic location and pathological findings indicated the second branchial pouch origin. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Pharyngeal branchial cyst: magnetic resonance findings

    International Nuclear Information System (INIS)

    Cerezal, L.; Canga, A.; Morales, C.; Abascal, F.; Usamentiaga, E.; Bustamante, M.; Olcinas, O.

    1998-01-01

    An unusual case of pharyngeal cyst in a 25-year-old man studied by Magnetic Resonance (MR) is described. Anatomic location and pathological findings indicated the second branchial pouch origin. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Magnetic resonance imaging (MRI)

    OpenAIRE

    Takavar A

    1993-01-01

    Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I), a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D.) factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  2. Dynamic study of pelvic floor in patients with constipation: dynamic magnetic resonance vs defecography

    International Nuclear Information System (INIS)

    Gonzalez Vasquez, Carlos Mario; Pulgarin, Ricardo Luis German; Melo Arango, Catalina; Delgado de Bedout, Jorge Andres; Llano Serna, Juan Fernando; Restrepo Restrepo, Jose Ignacio

    2007-01-01

    Purpose: to compare the concordance between defecography and magnetic resonance in patients with constipation. Materials and methods: we did a prospective and descriptive assay to determine the concordance of a diagnostic test with 17 patients. The evaluation of the studies was double blind. Results: the 17 patients were females, age range 31 - 77 year the symptoms were present between 3 to 120 months. Anterior rectocele was the most common diagnosis (11 patients) and magnetic resonance had sensibility 100%, specificity 50%, positive predictive value 78, 57% and negative predictive value 100%. 7 patients had pelvic floor descent and magnetic resonance had sensibility 71.4%, specificity 20% positive predictive value 38.46% and negative predictive value 50%. Defecography found patients with enterocele and magnetic resonance had sensibility 0% and specificity 100 anismus was present in 2 patients and magnetic resonance didn't find them. Conclusion defecography is still the gold standard for patients with eonstipation. Magnetic resonance are a promise for those patients but has to improve

  3. Using 3 Tesla magnetic resonance imaging in the pre-operative evaluation of tongue carcinoma.

    Science.gov (United States)

    Moreno, K F; Cornelius, R S; Lucas, F V; Meinzen-Derr, J; Patil, Y J

    2017-09-01

    This study aimed to evaluate the role of 3 Tesla magnetic resonance imaging in predicting tongue tumour thickness via direct and reconstructed measures, and their correlations with corresponding histological measures, nodal metastasis and extracapsular spread. A prospective study was conducted of 25 patients with histologically proven squamous cell carcinoma of the tongue and pre-operative 3 Tesla magnetic resonance imaging from 2009 to 2012. Correlations between 3 Tesla magnetic resonance imaging and histological measures of tongue tumour thickness were assessed using the Pearson correlation coefficient: r values were 0.84 (p Tesla magnetic resonance imaging had 83 per cent sensitivity, 82 per cent specificity, 82 per cent accuracy and a 90 per cent negative predictive value for detecting cervical lymph node metastasis. In this cohort, 3 Tesla magnetic resonance imaging measures of tumour thickness correlated highly with the corresponding histological measures. Further, 3 Tesla magnetic resonance imaging was an effective method of detecting malignant adenopathy with extracapsular spread.

  4. Resonant magnetic scattering of polarized soft x rays

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, M. [Centre Universitaire Paris-Sud, Orsay (France); Hague, C.F. [Universite Pierre et Marie Curie, Paris (France); Gullikson, E.M.; Underwood, J. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  5. A clinical study and the diagnosis in magnetic resonance imaging of renal scarring

    International Nuclear Information System (INIS)

    Tsugaya, Masayuki; Hirao, Noriaki; Ohtaguro, Kazuo; Kato, Jiro.

    1989-01-01

    Twenty-nine kidneys of seventeen patients (nine boys and eight girls) with vesicoureteral reflux and repeated urinary tract infection were studied by magnetic resonance imaging for diagnosis of renal scarring and correlation between clinical data and the degree renal scarring. Renal scarring is classified into three types according to findings in magnetic resonance imaging. The degree of renal scarring are classified into five grades according to traditional grading of intravenous pyelogram. If a fine deformity of calyx is shown on intravenous pyelogram, magnetic resonance imaging demonstrates renal scarring. Magnetic resonance imaging without irradiation is exceedingly valuable for the diagnosis of renal scarring. The appearances of magnetic resonance imaging were supported by X-ray computed tomography. There is a substantial correlation between serum creatinine and the grades of renal scarring by magnetic resonance imaging. There is a substantial correlation between fever attacks and the grade of renal scarring, and there is a significant reverse correlation between the age of the onset of upper urinary tract infection and the grade of renal scarring. It is suggested that upper urinary tract infection is the most significant factor in scar formation. (author)

  6. A review of magnetic resonance imaging in spinal trauma

    International Nuclear Information System (INIS)

    Davis, S.J.; Khangure, M.S.

    1994-01-01

    One hundred and ninety-five magnetic resonance (MR) images of 167 patients with neurological impairment following spinal trauma were reviewed. Acute cord injury produces central haemorrhagic necrosis that extends transversely and longitudinally with time and increased injury severity. Oedema appears more homogeneous, extensive and dominant in minimal lesions. Magnetic resonance appearances correlate with neurological status and outcome. Patients with MR evidence of cord blood had severe clinical lesions and failed to show useful clinical improvement. Patients with homogeneous 'oedema' improved to useful function. Lesion signal inhomogeneity relates to a worse prognosis. The clinical level correlates closely with cord blood or signal in homogeneity but imprecisely with homogeneous oedema. Disc herniations require differentiation from epidural blood and venous engorgement, which are prominent with bone displacement. Magnetic resonance is recommended in incomplete cord syndromes and in cord injuries with no apparent fracture, particularly of clinically deteriorating. 18 ref., 2 figs., 3 tabs

  7. On field line resonances of hydromagnetic Alfven waves in dipole magnetic field

    International Nuclear Information System (INIS)

    Chen, Liu; Cowley, S.C.

    1989-07-01

    Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs

  8. Scalable nanofabrication of U-shaped nanowire resonators with tunable optical magnetism.

    Science.gov (United States)

    Zhou, Fan; Wang, Chen; Dong, Biqin; Chen, Xiangfan; Zhang, Zhen; Sun, Cheng

    2016-03-21

    Split ring resonators have been studied extensively in reconstituting the diminishing magnetism at high electromagnetic frequencies in nature. However, breakdown in the linear scaling of artificial magnetism is found to occur at the near-infrared frequency mainly due to the increasing contribution of self-inductance while reducing dimensions of the resonators. Although alternative designs have enabled artificial magnetism at optical frequencies, their sophisticated configurations and fabrication procedures do not lend themselves to easy implementation. Here, we report scalable nanofabrication of U-shaped nanowire resonators (UNWRs) using the high-throughput nanotransfer printing method. By providing ample area for conducting oscillating electric current, UNWRs overcome the saturation of the geometric scaling of the artificial magnetism. We experimentally demonstrated coarse and fine tuning of LC resonances over a wide wavelength range from 748 nm to 1600 nm. The added flexibility in transferring to other substrates makes UNWR a versatile building block for creating functional metamaterials in three dimensions.

  9. Magnetic resonance imaging in sudden deafness; Ressonancia magnetica em surdez subita

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Hugo Valter Lisboa; Barros, Flavia Alencar; Penido, Norma de Oliveira; Souza, Ana Claudia Valerio de; Yamaoka, Wellington Yugo [Sao Paulo Univ., SP (Brazil). Dept. de Otorinolaringologia e Cirurgia da Cabeca e Pescoco; Yamashita, Helio [Sao Paulo Univ., SP (Brazil). Dept. de Imagem e Diagnostico]. E-mail: hvlramos@gmail.com

    2005-07-15

    The etiology of sudden deafness can remain undetermined despite extensive investigation. This study addresses the value of magnetic resonance imaging in the analysis of sudden deafness patients.Study Design: transversal cohort.Material And Method: In a prospective study, 49 patients attended at otolaryngology emergency room of Federal University of Sao Paulo - Escola Paulista de Medicina, from April 2001 to May 2003, were submitted to magnetic resonance imaging.Results: Magnetic Resonance abnormalities were seen in 23 (46.9%) patients and revealed two tumors suggestive of meningioma, three vestibular schwannomas, thirteen microangiopathic changes of the brain and five (21.7%) pathological conditions of the labyrinth.Conclusion: Sudden deafness should be approached as a symptom common to different diseases. The presence of cerebellopontine angle tumors in 10.2% of our cases, among other treatable causes, justifies the recommendation of gadolinium-enhanced magnetic resonance use, not only to study the auditory peripheral pathway, but to study the whole auditory pathway including the brain. (author)

  10. Thermal and particle size distribution effects on the ferromagnetic resonance in magnetic fluids

    International Nuclear Information System (INIS)

    Marin, C.N.

    2006-01-01

    Thermal and particle size distribution effects on the ferromagnetic resonance of magnetic fluids were theoretically investigated, assuming negligible interparticle interactions and neglecting the viscosity of the carrier liquid. The model is based on the usual approach for the ferromagnetic resonance description of single-domain magnetic particle systems, which was amended in order to take into account the finite particle size effect, the particle size distribution and the orientation mobility of the particles within the magnetic fluid. Under these circumstances the shape of the resonance line, the resonance field and the line width are found to be strongly affected by the temperature and by the particle size distribution of magnetic fluids

  11. Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Zhang, Z.; Roukes, M.L.; Hammel, P.C.

    1996-01-01

    The signal intensity of electron spin resonance in magnetic resonance force microscopy (MRFM) experiments employing periodic saturation of the electron spin magnetization is determined by four parameters: the rf field H 1 , the modulation level of the bias field H m , the spin relaxation time τ 1 , and the magnetic size R(∂H/∂z) of the sample. Calculations of the MRFM spectra obtained from a 2,2-diphenyl-1-picrylhydrazyl particle have been performed for various conditions. The results are compared with experimental data and excellent agreement is found. The systematic variation of the signal intensity as a function of H 1 and H m provides a powerful tool to characterize the MRFM apparatus. copyright 1996 American Institute of Physics

  12. Resonant Magnetic Field Sensors Based On MEMS Technology

    Directory of Open Access Journals (Sweden)

    Elías Manjarrez

    2009-09-01

    Full Text Available Microelectromechanical systems (MEMS technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  13. Resonant Magnetic Field Sensors Based On MEMS Technology

    Science.gov (United States)

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  14. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review.

    Science.gov (United States)

    Henning, Anke

    2018-03-01

    Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei ( 1 H, 31 P, 13 C). Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Layer-resolved readout of magnetic signals using ferromagnetic resonance effect

    International Nuclear Information System (INIS)

    Yang, T.; Suto, H.; Nagasawa, T.; Kudo, K.; Mizushima, K.; Sato, R.

    2013-01-01

    We introduce a method to read the data stored in a three-dimensional (3D) magnetic recording medium comprising plural storage layers. The readout is realized by selecting the storage layer with the ferromagnetic resonance frequency, and detecting the magnetization orientation with the ferromagnetic resonance absorption. This concept is experimentally confirmed with magnetic media comprising NiFe and CoFe layers. The feasibility of applying this method to a realistic 3D magnetic recording medium is discussed by calculating the absorption spectra of several storage layers with different perpendicular magnetic anisotropy constants. - Highlights: ► A method is introduced to read data in the 3-dimensional magnetic recording medium. ► The storage layer to read is selected according to its particular FMR frequency. ► The magnetization of the selected storage layer is detected with the FMR absorption

  16. Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents

    International Nuclear Information System (INIS)

    Yan Guoping; Liu Maili; Li Liyun

    2005-01-01

    Purpose: A series of polyaspartamide gadolinium complexes containing pyridoxamine groups were studied as the potential magnetic resonance imaging (MRI) contrast agents for liver enhancement. Methods: These polyaspartamide gadolinium complexes were prepared and evaluated by relaxivity, acute toxicity studies and magnetic resonance imaging of the liver in rats. Results: These polyaspartamide gadolinium complexes have higher relaxation effectiveness than that of the clinically used gadolinium diethylenetriaminepentaacetic acid and possess the low intravenous acute toxicities to Institute for Cancer Research (ICR) mice. Magnetic resonance imaging of the liver in rats indicated that they greatly enhance the contrast of magnetic resonance images and provide prolonged intravascular duration in the liver. Conclusion: These results indicated that the polyaspartamide gadolinium complexes containing pyridoxamine groups could be considered as the appropriate MRI contrast agents for liver enhancement

  17. Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals.

    Science.gov (United States)

    Lin, Tingting; Zhou, Kun; Yu, Sijia; Wang, Pengfei; Wan, Ling; Zhao, Jing

    2018-04-25

    LC resonance magnetic sensors are widely used in low-field nuclear magnetic resonance (LF-NMR) and surface nuclear magnetic resonance (SNMR) due to their high sensitivity, low cost and simple design. In magnetically shielded rooms, LC resonance magnetic sensors can exhibit sensitivities at the fT/√Hz level in the kHz range. However, since the equivalent magnetic field noise of this type of sensor is greatly affected by the environment, weak signals are often submerged in practical applications, resulting in relatively low signal-to-noise ratios (SNRs). To determine why noise increases in unshielded environments, we analysed the noise levels of an LC resonance magnetic sensor ( L ≠ 0) and a Hall sensor ( L ≈ 0) in different environments. The experiments and simulations indicated that the superposed ringing of the LC resonance magnetic sensors led to the observed increase in white noise level caused by environmental interference. Nevertheless, ringing is an inherent characteristic of LC resonance magnetic sensors. It cannot be eliminated when environmental interference exists. In response to this problem, we proposed a method that uses matching resistors with various values to adjust the quality factor Q of the LC resonance magnetic sensor in different measurement environments to obtain the best sensitivity. The LF-NMR experiment in the laboratory showed that the SNR is improved significantly when the LC resonance magnetic sensor with the best sensitivity is selected for signal acquisition in the light of the test environment. (When the matching resistance is 10 kΩ, the SNR is 3.46 times that of 510 Ω). This study improves LC resonance magnetic sensors for nuclear magnetic resonance (NMR) detection in a variety of environments.

  18. 31P-nuclear magnetic resonance analysis of extracts of vascular smooth muscle

    International Nuclear Information System (INIS)

    Barron, J.T.; Messer, J.V.; Glonek, Thomas

    1986-01-01

    31 P-nuclear magnetic resonance spectroscopy was used to assess phosphate metabolites in perchloric acid extracts of rabbit aorta. In addition to the high energy phosphates, several other phosphorus compounds were detected and quantified. Most notable was the presence of a prominent phosphomonoester compound appearing at a chemical shift of 3.86 delta. This compound constituted 26% of the total extractable tissue phosphorus and is tentatively identified as ribose-5-phosphate, a pentose phosphate pathway intermediate. While ATP and phosphocreatine did not change during glucose and oxygen deprivation or during prolonged muscle contraction, the 3.86delta phosphate decreased significantly. Furthermore, theophylline, an agent that increases intracellular cAMP, also decreased the level of the 3.86 delta phosphate. These results are consistent with the concept that intermediate metabolism sustains high energy phosphate pools in vascular smooth muscle in the steady state under various conditions. The pentose phosphate pathway may play an important role in vascular smooth muscle metabolism. (author)

  19. Numerical methods in electron magnetic resonance

    International Nuclear Information System (INIS)

    Soernes, A.R.

    1998-01-01

    The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system

  20. Numerical methods in electron magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Soernes, A.R

    1998-07-01

    The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system.

  1. Cryogenic Preamplifiers for Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Johansen, Daniel H.; Sanchez-Heredia, Juan D.; Petersen, Jan R.

    2018-01-01

    Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier...

  2. On the resonant state of magnetization in array of interacting nanodots

    Science.gov (United States)

    Kim, P. D.; Orlov, V. A.; Rudenko, R. Yu.; Prokopenko, V. S.; Orlova, I. N.; Kobyakov, A. V.

    2017-10-01

    Development of the interpretation of the phenomenon of the lift of the magnetic resonance frequencies degeneracy caused by the magnetostatic interaction in assemblies of nanodisks has been done. The difference of the resonance behavior of magnetic vortexes in a round and rectangular nanodots has been studied experimentally and explained.

  3. Transport and magnetic resonance in normal and superfluid Fermi liquids

    International Nuclear Information System (INIS)

    Smith, H.

    1976-10-01

    This thesis provides a framework for a series of 19 papers published by the author in a study of transport and magnetic resonance in normal and superfluid Fermi liquids. The Boltzmann equation and methods for its solution are discussed. Electron-electron scattering in metals, with particular emphasis on alkali metals, is considered. Transport in a normal uncharged Fermi liquid such as pure 3 He at temperatures well below its degeneracy temperature of approximately 1 K or mixtures of 3 He in 4 He with degeneracy temperatures ranging typically from 100 to 200 mk is discussed with emphasis on comparison with experiments with the aim of testing models of the particle-particle scattering amplitude. Transport and magnetic resonance in superfluid 3 He is considered. The phenomenological treatment of relaxation is reviewed and the magnitude of the phenomenlogical relaxation time close to Tsub(c) is derived for the case of longitudinal resonance. Comments are made on non-linear magnetic resonance and textures and spin waves. (B.R.H.)

  4. Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays

    International Nuclear Information System (INIS)

    Cao Zhi-Shen; Pan Jian; Chen Zhuo; Zhan Peng; Min Nai-Ben; Wang Zhen-Lin

    2011-01-01

    We experimentally and numerically investigate the optical properties of metamaterial arrays composed of double partially-overlapped metallic nanotriangles fabricated by an angle-resolved nanosphere lithography. We demonstrate that each double-triangle can be viewed as an artificial magnetic element analogous to the conventional metal split-ring-resonator. It is shown that under normal-incidence conditions, individual double-triangle can exhibit a strong local magnetic resonance, but the collective response of the metamaterial arrays is purely electric because magnetic resonances of the two double-triangles in a unit cell having opposite openings are out of phase. For oblique incidences the metamaterial arrays are shown to support a pure magnetic response at the same frequency band. Therefore, switchable electric and magnetic resonances are achieved in double-triangle arrays. Moreover, both the electric and magnetic resonances are shown to allow for a tunability over a large spectral range down to near-infrared. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Metabolite changes in the ipsilateral and contralateral cerebral hemispheres in rats with middle cerebral artery occlusion

    Directory of Open Access Journals (Sweden)

    Lei Ruan

    2017-01-01

    Full Text Available Cerebral ischemia not only causes pathological changes in the ischemic areas but also induces a series of secondary changes in more distal brain regions (such as the contralateral cerebral hemisphere. The impact of supratentorial lesions, which are the most common type of lesion, on the contralateral cerebellum has been studied in patients by positron emission tomography, single photon emission computed tomography, magnetic resonance imaging and diffusion tensor imaging. In the present study, we investigated metabolite changes in the contralateral cerebral hemisphere after supratentorial unilateral ischemia using nuclear magnetic resonance spectroscopy-based metabonomics. The permanent middle cerebral artery occlusion model of ischemic stroke was established in rats. Rats were randomly divided into the middle cerebral artery occlusion 1-, 3-, 9- and 24-hour groups and the sham group. 1H nuclear magnetic resonance spectroscopy was used to detect metabolites in the left and right cerebral hemispheres. Compared with the sham group, the concentrations of lactate, alanine, γ-aminobutyric acid, choline and glycine in the ischemic cerebral hemisphere were increased in the acute stage, while the concentrations of N-acetyl aspartate, creatinine, glutamate and aspartate were decreased. This demonstrates that there is an upregulation of anaerobic glycolysis (shown by the increase in lactate, a perturbation of choline metabolism (suggested by the increase in choline, neuronal cell damage (shown by the decrease in N-acetyl aspartate and neurotransmitter imbalance (evidenced by the increase in γ-aminobutyric acid and glycine and by the decrease in glutamate and aspartate in the acute stage of cerebral ischemia. In the contralateral hemisphere, the concentrations of lactate, alanine, glycine, choline and aspartate were increased, while the concentrations of γ-aminobutyric acid, glutamate and creatinine were decreased. This suggests that there is a

  6. Proton magnetic resonance spectroscopy in the fetus.

    Science.gov (United States)

    Story, Lisa; Damodaram, Mellisa S; Allsop, Joanna M; McGuinness, Amy; Wylezinska, Marzena; Kumar, Sailesh; Rutherford, Mary A

    2011-09-01

    Magnetic Resonance Imaging (MRI) has become an established technique in fetal medicine, providing complementary information to ultrasound in studies of the brain. MRI can provide detailed structural information irrespective of the position of the fetal head or maternal habitus. Proton Magnetic Resonance Spectroscopy ((1)HMRS) is based on the same physical principles as MRI but data are collected as a spectrum, allowing the biochemical and metabolic status of in vivo tissue to be studied in a non-invasive manner. (1)HMRS has been used to assess metabolic function in the neonatal brain but fetal studies have been limited, primarily due to fetal motion. This review will assess the technique and findings from fetal studies to date. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Magnetic resonance imaging in Pelizaeus-Merzbacher disease

    International Nuclear Information System (INIS)

    Journel, H.; Roussey, M.; Allaire, C.; Le Marec, B.; Gandon, Y.; Carsin, M.

    1987-01-01

    Pelizaeus-Merzbacher's disease is a progressive encephalopathy with demyelination of the cerebral white matter. The diagnosis cannot be made on clinical or biological grounds: pathological investigation is necessary to confirm tigroid demyelination. CT scanning failure to visualize this type of anomaly but detection is now possible with the advent of magnetic resonance imaging (MRI). The authors studied the case of a boy who, at the age of 8 presented with symptoms characeristic of the disease, rotatory nystagmus, progressive encephalopathy, and inherited X-linked recessive traits. Magnetic resonance imaging revealed a high signal in the supra-tentorial white matter and the usual contrast was inverted. The authors believe that MRI can make an important contribution to the diagnosis of the disease. (orig.)

  8. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS Magnetic Resonance Spectroscopy (MRS

    Directory of Open Access Journals (Sweden)

    Taylor L. Fuss

    2016-03-01

    Full Text Available According to World Health Organization (WHO estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS magnetic resonance spectroscopy (MRS has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.

  9. Quantification of aortic regurgitation by magnetic resonance velocity mapping

    DEFF Research Database (Denmark)

    Søndergaard, Lise; Lindvig, K; Hildebrandt, P

    1993-01-01

    The use of magnetic resonance (MR) velocity mapping in the quantification of aortic valvular blood flow was examined in 10 patients with angiographically verified aortic regurgitation. MR velocity mapping succeeded in identifying and quantifying the regurgitation in all patients, and the regurgit......The use of magnetic resonance (MR) velocity mapping in the quantification of aortic valvular blood flow was examined in 10 patients with angiographically verified aortic regurgitation. MR velocity mapping succeeded in identifying and quantifying the regurgitation in all patients...

  10. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    Science.gov (United States)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  11. Magnetic resonance vs. computerized tomography, ultrasonic examinations and nuclear medicine

    International Nuclear Information System (INIS)

    Bruna, J.

    1985-01-01

    A symposium on magnetic resonance in nuclear medicine was held from 23rd to 27th January, 1985 in Munich and Garmisch-Partenkirchen. Discussed were suitable methods, the use of contrast media, the evaluation of results, the application of nuclear magnetic resonance in examining various body organs, and the latest apparatus. NMR achievements in medicine were compared to those by other diagnostic methods. (M.D.)

  12. Sequential observations of brain edema with proton magnetic resonance imaging and spectroscopy

    International Nuclear Information System (INIS)

    Kamada, Kyousuke

    1996-01-01

    The purpose of this study was to assess the relationship between morphological and metabolic changes in brain edema using proton magnetic resonance systems. The serial changes during the first 24 hours in the cold-injury trauma rat brain model were investigated by proton magnetic resonance imaging ( 1 H MRI) and high-resolution proton MR spectroscopy ( 1 H MRS). We also analyzed the efficacy of AVS 1,2-bis (nicotinamide)-propane which can scavenge free radicals to the edema in this experiment. The edema was developing extensively via the corpus callosum in ipsi- and contralateral hemispheres as shown by gradually increased signal intensity on 1 H MRI. 1 H MRS initially showed accumulation of acetate and lactate, and transient increasing of glutamine. After 24 hours, the increased glutamine decreased below the control, alanine increased, and N-acetyl aspartate decreased with the edema development. AVS-treatment significantly suppressed edema development, increases of lactate and alanine and decreases of N-acetyl aspartate. We suggest that the cold-induced lesion contains anaerobic glycolysis deterioration and results in severe brain tissue breakdown. AVS is proved valuable for the treatment of this edema lesion. Clinical 1 H MRS showed prolonged lactate elevation and significant decreases of other metabolites in human ischemic stroke edema. In peritumoral edema, decreased N-acetyl aspartate gradually improved, and slightly elevated lactate disappeared after tumor removal. 1 H MRS feasibly characterizes the ischemic and peritumoral edema and makes a quantitative analysis in human brain metabolism. We believe the combined 1 H MRI and MRS study is a practical method to monitor the brain conditions and will make it easy and possible to find new therapeutic agents to some brain disorders. (author)

  13. Co-Funding for the Conference on Magnetic Resonance in Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan McLaughlin, Ph.D., Director, Division of Applied Science & Technology, NIBIB, NIH

    2008-10-01

    The XXIst International Conference on Magnetic Resonance in Biological Systems (ICMRBS 2005), '60th anniversary of the discovery of Nuclear Magnetic Resonance,' was held between 16 and 21 January 2005 in Hyderabad, India. The meeting focused on a broad range of magnetic resonance methods as applied to studies of biological processes related to human health. The biennial ICMRBS has become the major venue for discussion of advances in nuclear and electron magnetic resonance (NMR & EMR/EPR) studies of the structure, dynamics, and chemical properties of important classes of biomolecules. Magnetic resonance has become an established tool in structural biology, and its special importance derives from its ability to provide atomic level information. It is becoming increasingly evident that the dynamic features of biomolecules, their intermolecular interactions, and accessible conformations in solution are data of key importance in understanding molecular recognition and function. NMR, which is already contributing to approximately 25% of the new structures being deposited with the Protein Data Bank, is destined to be a major player in the post genomic structure age with its emphasis on structure and function. In-vivo magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) results shed light on human metabolic processes and on the cellular ramifications of cancer, stroke, cardiovascular disease, and other pathologies. New methodologies in metabonomics may lead to development of new drugs and medical diagnosis. The ICMRBS is the one conference that brings together experts from high-resolution NMR, solid state NMR, EPR, in-vivo MRS and MRI, and developers of instrumentation, techniques, software, and databases. Symposia at this ICMRBS are designed to continue the fruitful cross-fertilization of ideas that has been so successful in driving the spectacular advances in this field. ICMRBS 2005 maintained the traditional format of poster sessions, and

  14. Magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Takavar A

    1993-04-01

    Full Text Available Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I, a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D. factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  15. Disc pathology after whiplash injury. A prospective magnetic resonance imaging and clinical investigation.

    Science.gov (United States)

    Pettersson, K; Hildingsson, C; Toolanen, G; Fagerlund, M; Björnebrink, J

    1997-02-01

    This study was used to evaluate the relationship between magnetic resonance imaging findings and clinical findings after whiplash injury. To identify initial soft-tissue damage after whiplash injury, the development of disc pathology, and the relationship of disc pathology to clinical findings. Although a few studies have reported pathological magnetic resonance imaging findings after whiplash injuries, there is no prospective study published to our knowledge. Thirty-nine patients, 20 women and 19 men with a mean age of 32 years, were treated for whiplash injury. Magnetic resonance imaging and clinical examination were performed in a blinded manner at a mean of 11 days after trauma. The procedure was repeated at a 2-year follow-up visit. Two patients could not be examined with the second magnetic resonance imaging because of claustrophobia and pregnancy, respectively. The authors found 13 patients (33%) with disc herniations with medullary (six cases) or dura (seven cases) impingement over the 2-year follow-up period. At the follow-up examination all patients with medullary impingement had persistent or increased symptoms, and three of 27 patients (11%) with no or slight changes on magnetic resonance imaging had persistent symptoms. No ligament injuries were diagnosed. Although disc pathology seems to be one contributing factor in the development of chronic symptoms after whiplash injury, it may be unnecessary to examine these patients in the acute phase with magnetic resonance imaging; correlating initial symptoms and signs to magnetic resonance imaging findings is difficult because of the relatively high proportion of false-positive results. Magnetic resonance imaging is indicated later in the course of treatment in patients with persistent arm pain, neurologic deficits or clinical signs of nerve root compression to diagnose disc herniations requiring surgery.

  16. Magnetic resonance of seminal vesicles: a noninvasive study of seminal way

    International Nuclear Information System (INIS)

    Ocantos, J.A.; Rey Valzacchi, G.; Sinclair, M.E.; Loor Guadamud, G.

    2010-01-01

    The magnetic resonance without endorectal coil is an excellent diagnostic tool for studying the entire route of seminal non-invasive way in a single step diagnosis. We call magnetic resonance of seminal vesicles, but includes both the study of the seminal vesicles as the channels of the seminal way. [es

  17. Evaluation of toroidal torque by non-resonant magnetic perturbations in tokamaks for resonant transport regimes using a Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Christopher G.; Heyn, Martin F.; Kapper, Gernot; Kernbichler, Winfried; Martitsch, Andreas F. [Fusion@ÖAW, Institut für Theoretische Physik - Computational Physics, Technische Universität Graz, Petersgasse 16, 8010 Graz (Austria); Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik - Computational Physics, Technische Universität Graz, Petersgasse 16, 8010 Graz (Austria); Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and Technology,” ul. Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2016-08-15

    Toroidal torque generated by neoclassical viscosity caused by external non-resonant, non-axisymmetric perturbations has a significant influence on toroidal plasma rotation in tokamaks. In this article, a derivation for the expressions of toroidal torque and radial transport in resonant regimes is provided within quasilinear theory in canonical action-angle variables. The proposed approach treats all low-collisional quasilinear resonant neoclassical toroidal viscosity regimes including superbanana-plateau and drift-orbit resonances in a unified way and allows for magnetic drift in all regimes. It is valid for perturbations on toroidally symmetric flux surfaces of the unperturbed equilibrium without specific assumptions on geometry or aspect ratio. The resulting expressions are shown to match the existing analytical results in the large aspect ratio limit. Numerical results from the newly developed code NEO-RT are compared to calculations by the quasilinear version of the code NEO-2 at low collisionalities. The importance of the magnetic shear term in the magnetic drift frequency and a significant effect of the magnetic drift on drift-orbit resonances are demonstrated.

  18. Magnetic resonance imaging of the knee

    International Nuclear Information System (INIS)

    Nederveen, D.; Bakker, C.J.G.; Scholten, F.G.; Feldberg, N.A.M.; Postma, J.H.; Vis, H. van der

    1989-01-01

    Sixteen patients suspected of having meniscal lesions, were examined bt magnetic resonance (MR) and arthroscopy, MR and arthroscopy corelate well for meniscal and cruciate ligament lesions. Damage of the articular cartilage was, however, not detected by MR (author). 15 refs.; 4 figs.; 1 tab

  19. A magnet without a magnetic circuit, of high homogeneity, specially for nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Barjhoux, Yves.

    1981-01-01

    This invention concerns a high homogeneity, double access magnet without a magnetic circuit. It is specially adapted for nuclear magnetic resonance (N.M.R.) imagery. Another advantage worth stressing resides in the possibilities of NMR in biochemical analysis which will enable, for instance, cancerous tumours to be detected in vivo. In order to increase the NMR signal ratio over background noise, it is necessary to increase the homogeneity of the B 0 orientating magnetic field. This magnetic field must orientate the nuclear magnetic moments of the elementary particles which compose the body being examined and in particular the protons. It must therefore be relatively constant in intensity and direction in the entire domain of the examination [fr

  20. Chronic liver disease: evaluation by magnetic resonance

    International Nuclear Information System (INIS)

    Stark, D.D.; Goldberg, H.I.; Moss, A.A.; Bass, N.M.

    1984-01-01

    Magnetic resonance (MR) imaging distinguished hepatitis from fatty liver and cirrhosis in a woman with a history of alcohol abuse. Anatomic and physiologic manifestations of portal hypertension were also demonstrated by MR