WorldWideScience

Sample records for magnetic fusion devices

  1. Pressure measurements in magnetic-fusion devices

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration

  2. Pressure measurements in magnetic-fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration.

  3. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-01-01

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10 10 to 10 11 rads, while magnet stability must be retained after the copper has been exposed to fluence above 10 19 neutrons/cm 2

  4. Fusion devices

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  5. Non-superconducting magnet structures for near-term, large fusion experimental devices

    International Nuclear Information System (INIS)

    File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.

    1980-10-01

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design

  6. Properties of plasma sheath with ion temperature in magnetic fusion devices

    International Nuclear Information System (INIS)

    Liu Jinyuan; Wang Feng; Sun Jizhong

    2011-01-01

    The plasma sheath properties in a strong magnetic field are investigated in this work using a steady state two-fluid model. The motion of ions is affected heavily by the strong magnetic field in fusion devices; meanwhile, the effect of ion temperature cannot be neglected for the plasma in such devices. A criterion for the plasma sheath in a strong magnetic field, which differs from the well-known Bohm criterion for low temperature plasma sheath, is established theoretically with a fluid model. The fluid model is then solved numerically to obtain detailed sheath information under different ion temperatures, plasma densities, and magnetic field strengths.

  7. Fusion Engineering Device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  8. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  9. Fusion engineering device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  10. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    Energy Technology Data Exchange (ETDEWEB)

    Hedditch, John, E-mail: john.hedditch@sydney.edu.au; Bowden-Reid, Richard, E-mail: rbow3948@physics.usyd.edu.au; Khachan, Joe, E-mail: joe.khachan@sydney.edu.au [School of Physics, The University of Sydney, Sydney, New South Whales 2006 (Australia)

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  11. Magnetic field coil in nuclear fusion device

    International Nuclear Information System (INIS)

    Yamaguchi, Mitsugi; Takano, Hirohisa.

    1975-01-01

    Object: To provide an electrical-insulatively stabilized magnetic field coil in nuclear fusion device, restraining an increase in voltage when plasma current is rapidly changed. Structure: A magnetic field coil comprises coils arranged coaxial with respective vacuum vessels, said coils being wound in positive and reverse polarities so as to form a vertical magnetic field within the plasma. The coils of the positive polarity are arranged along the vacuum vessel inside of an axis vertical in section of the annular plasma and are arranged symmetrically up and down of a horizontal axis. On the other hand, the coils of the reverse polarity are arranged along the vacuum vessel outside of a vertical axis and arranged symmetrically up and down of the horizontal axis. These positive and reverse polarity coils are alternately connected in series, and lead portions of the coils are connected to a power source by means of connecting wires. In this case, lead positions of the coils are arranged in one direction, and the connecting wires are disposed in closely contact relation to offset magnetic fields formed by the connecting wires each other. (Kawakami, Y.)

  12. Radiation effects on superconducting fusion magnet components

    International Nuclear Information System (INIS)

    Weber, H.W.

    2011-01-01

    Nuclear fusion devices based on the magnetic confinement principle heavily rely on the existence and performance of superconducting magnets and have always significantly contributed to advancing superconductor and magnet technology to their limits. In view of the presently ongoing construction of the tokamak device ITER and the stellerator device Wendelstein 7X and their record breaking parameters concerning size, complexity of design, stored energy, amperage, mechanical and magnetic forces, critical current densities and stability requirements, it is deemed timely to review another critical parameter that is practically unique to these devices, namely the radiation response of all magnet components to the lifetime fluence of fast neutrons and gamma rays produced by the fusion reactions of deuterium and tritium. I will review these radiation effects in turn for the currently employed standard "technical" low temperature superconductors NbTi and Nb 3 Sn, the stabilizing material (Cu) as well as the magnet insulation materials and conclude by discussing the potential of high temperature superconducting materials for future generations of fusion devices, such as DEMO. (author)

  13. Utilization of a Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research. Report of a Coordinated Research Project 2011–2016

    International Nuclear Information System (INIS)

    2016-12-01

    The IAEA actively promotes the development of controlled fusion as a source of energy. Through its coordinated research activities, the IAEA helps Member States to exchange and establish scientific and technical knowledge required for the design, construction and operation of a fusion reactor. Due to their compactness, flexibility and low operation costs, small fusion devices are a great resource for supporting and accelerating the development of mainstream fusion research on large fusion devices such as the International Thermonuclear Experimental Reactor. They play an important role in investigating the physics of controlled fusion, developing innovative technologies and diagnostics, testing new materials, training highly qualified personnel for larger fusion facilities, and supporting educational programmes for young scientists. This publication reports on the research work accomplished within the framework of the Coordinated Research Project (CRP) on Utilization of the Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research, organized and conducted by the IAEA in 2011–2016. The CRP has contributed to the coordination of a network of research institutions, thereby enhancing international collaboration through scientific visits, joint experiments and the exchange of information and equipment. A total of 16 institutions and 14 devices from 13 Member States participated in this CRP (Belgium, Bulgaria, Canada, China, Costa Rica, the Czech Republic, the Islamic Republic of Iran, Kazakhstan, Pakistan, Portugal, the Russian Federation, Ukraine and the United Kingdom).

  14. Driven reconnection in magnetic fusion experiments

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1995-11-01

    Error fields (i.e. small non-axisymmetric perturbations of the magnetic field due to coil misalignments, etc.) are a fact of life in magnetic fusion experiments. What effects do error fields have on plasma confinement? How can any detrimental effects be alleviated? These, and other, questions are explored in detail in this lecture using simple resistive magnetohydrodynamic (resistance MHD) arguments. Although the lecture concentrates on one particular type of magnetic fusion device, namely, the tokamak, the analysis is fairly general and could also be used to examine the effects of error fields on other types of device (e.g. Reversed Field Pinches, Stellerators, etc.)

  15. Magnetic systems for fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France

  16. A study of hydrogen isotopes fuel control by wall effect in magnetic fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Motevalli, S.M., E-mail: motavali@umz.ac.ir; Safari, M.

    2016-11-15

    Highlights: • A particle balance model for the main plasma and wall inventory in magnetic fusion device has been represented. • The dependence of incident particles energy on the wall has been considered in 10–300 eV for the sputtering yield and recycling coefficient. • The effect of fueling methods on plasma density behavior has been studied. - Abstract: Determination of plasma density behavior in magnetic confinement system needs to study the plasma materials interaction in the facing components such as first wall, limiter and divertor. Recycling of hydrogen isotope is an effective parameter in plasma density rate and plasma fueling. Recycling coefficient over the long pulse operation, gets to the unity, so it has a significant effect on steady state in magnetic fusion devices. Typically, sputtered carbon atoms from the plasma facing components form hydrocarbons and they redeposit on the wall. In this case little rate of hydrogen loss occurs. In present work a zero dimensional particle equilibrium model has been represented to determine particles density rate in main plasma and wall inventory under recycling effect and codeposition of hydrogen in case of continues and discontinues fueling methods and effective parameters on the main plasma decay has been studied.

  17. Benefits and drawbacks of low magnetic shears on the confinement in magnetic fusion toroidal devices

    Science.gov (United States)

    Firpo, Marie-Christine; Constantinescu, Dana

    2012-10-01

    The issue of confinement in magnetic fusion devices is addressed within a purely magnetic approach. As it is well known, the magnetic field being divergence-free, the equations of its field lines can be cast in Hamiltonian form. Using then some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is demonstrated. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and turbulence reduction. However, when low-shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be much lower than the ones obtained for strong shear profiles. The approach can be applied to assess the robustness versus magnetic perturbations of general almost-integrable magnetic steady states, including non-axisymmetric ones such as the important single helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  18. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  19. Design study of an indirect cooling superconducting magnet for a fusion device

    International Nuclear Information System (INIS)

    Mito, Toshiyuki; Hemmi, Tsutomu

    2009-01-01

    The design study of superconducting magnets adapting a new coil winding scheme of an indirect cooling method is reported. The superconducting magnet system for the spherical tokamak (ST), which is proposed to study the steady state plasma experiment with Q - equiv-1, requires high performances with a high current density compared to the ordinal magnet design because of its tight spatial restriction. The superconducting magnet system for the fusion device has been used in the condition of high magnetic field, high electromagnetic force, and high heat load. The pool boiling liquid helium cooling outside of the conductor or the forced flow of supercritical helium cooling inside of the conductor, such as cable-in-conduit conductors, were used so far for the cooling method of the superconducting magnet for a fusion application. The pool cooling magnet has the disadvantages of low mechanical rigidities and low withstand voltages of the coil windings. The forced flow cooling magnet with cable-in-conduit conductors has the disadvantages of the restriction of the coil design because of the path of the electric current must be the same as that of the cooling channel for refrigerant. The path of the electric current and that of the cooling channel for refrigerant can be independently designed by adopting the indirect cooling method that inserts the independent cooling panel in the coil windings and cools the conductor from the outside. Therefore the optimization of the coil windings structure can be attempted. It was shown that the superconducting magnet design of the high current density became possible by the indirect cooling method compared with those of the conventional cooling scheme. (author)

  20. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    Science.gov (United States)

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  1. Particle and impurity control in toroidal fusion devices

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1986-01-01

    A review of working particle and impurity control techniques used in and proposed for magnetic fusion devices is presented. The requirements of both present-day machines and envisaged fusion reactors are considered. The various techniques which have been proposed are characterized by whether they affect sources, sinks, or fluxes; in many cases a particular method or device can appear in more than one category. Examples are drawn from published results. The solutions proposed for the large devices which will be operating during the next 5 years are discussed

  2. Data-Acquisition Systems for Fusion Devices

    NARCIS (Netherlands)

    van Haren, P. C.; Oomens, N. A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology

  3. Use of high current density superconducting coils in fusion devices

    International Nuclear Information System (INIS)

    Green, M.A.

    1979-11-01

    Superconducting magnets will play an important role in fusion research in years to come. The magnets which are currently proposed for fusion research use the concept of cryostability to insure stable operation of the superconducting coils. This paper proposes the use of adiabatically stable high current density superconducting coils in some types of fusion devices. The advantages of this approach are much lower system cold mass, enhanced cryogenic safety, increased access to the plasma and lower cost

  4. Cermet coatings for magnetic fusion reactors

    International Nuclear Information System (INIS)

    Smith, M.F.; Whitley, J.B.; McDonald, J.M.

    1984-01-01

    Cermet coatings consisting of SiC particles in an aluminum matrix were produced by a low pressure chamber plasma spray process. Properties of these coatings are being investigated to evaluate their suitability for use in the next generation of magnetic confinement fusion reactors. Although this preliminary study has focused primarily upon SiC-Al cermets, the deposition process can be adapted to other ceramic-metal combinations. Potential applications for cermet coatings in magnetic fusion devices are presented along with experimental results from thermal tests of candidate coatings. (Auth.)

  5. Energy system for the generation of divertor magnetic fields in the PDX fusion research device

    International Nuclear Information System (INIS)

    Turitzin, N.M.

    1975-01-01

    One of the major problems encountered in the development of Tokamak type fusion reactors is the presence of impurities in the plasma. The PDX device is designed to study the operation of poloidal magnetic field divertors and consequent magnetic limiters for controlling and reducing the amount of impurities. A system of coils placed at specific locations produces a required field configuration for the poloidal divertor. This paper describes the system of energy supplies required and the interrelations of field coil currents during plasma current initiation, growth and steady state

  6. Energy system for the generation of divertor magnetic fields in the PDX fusion research device

    International Nuclear Information System (INIS)

    Turitzin, N.M.

    1976-05-01

    One of the major problems encountered in the development of Tokamak type fusion reactors is the presence of impurities in the plasma. The PDX device is designed to study the operation of poloidal magnetic field divertors and consequent magnetic limiters for controlling and reducing the amount of impurities. A system of coils placed at specific locations produces a required field configuration for the poloidal divertor. This paper describes the system of energy supplies required and the interrelations of field coil currents during plasma current initiation, growth and steady state

  7. Maximum neutron yeidls in experimental fusion devices

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-02-01

    The optimal performances of 12 types of fusion devices are compared with regard to neutron production rate, neutrons per pulse, and fusion energy multiplication, Q/sub p/ (converted to the equivalent value in D-T operation). The record values in all categories are held by the beam-injected tokamak plasma, followed by other beam-target systems. The achieved values of Q/sub p/ for nearly all laboratory plasma fusion devices (magnetically or inertially confined) are found to roughly satisfy a common empirical scaling, Q/sub p/ approx. 10 -6 E/sub in//sup 3/2/, where E/sub in/ is the energy (in kilojoules) injected into the plasma during one or two energy confinement times, or the total energy delivered to the target for inertially confined systems. Fusion energy break-even (Q/sub p/ = 1) in any system apparently requires E/sub in/ approx. 10,000 kJ

  8. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    International Nuclear Information System (INIS)

    Karpenko, V.N.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 10 14 cm -3 .s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  9. Stress analysis of superconducting magnets for magnetic fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akin, J.E.; Gray, W.H.; Baudry, T.V.

    1980-01-01

    Superconducting devices involve several factors that normally are not encountered in the structural analysis of more common systems. Several of these factors ae noted and methods for including them in an analysis are cited. To illustrate the state of the analysis art for superconducting magnets, in magnetic fusion reactors, two specific projects are illustrated. They are the Large Coil Program (LCP) and the Engineering Test Facility (ETF).

  10. Stress analysis of superconducting magnets for magnetic fusion reactors

    International Nuclear Information System (INIS)

    Akin, J.E.; Gray, W.H.; Baudry, T.V.

    1980-01-01

    Superconducting devices involve several factors that normally are not encountered in the structural analysis of more common systems. Several of these factors ae noted and methods for including them in an analysis are cited. To illustrate the state of the analysis art for superconducting magnets, in magnetic fusion reactors, two specific projects are illustrated. They are the Large Coil Program (LCP) and the Engineering Test Facility

  11. Progress of research and development of nuclear fusion and development of large nuclear fusion device technology

    International Nuclear Information System (INIS)

    1994-01-01

    In the last several years, the results of tokamak experiments were conspicuous, and the progress of plasma confinement performance, transport mechanism, divertors and impurities, helium transport and exhaust, electric current drive, magnetic field ripple effect and high speed particle transport and DT experiment are reported. The other confinement methods than tokamak, the related theories and reactor technology are described. The conceptual design of ITER was carried out by the cooperation of Japan, USA, EC and the former USSR. The projects of developing nuclear fusion in various countries, the design and the required research and development of ITER, the reconstruction and the required research and development of JT-60, JET and TFTR, the design and the required research and development of large helical device, the state of research and development of laser nuclear fusion and inversion magnetic field pinch nuclear fusion, the activities and roles of industrial circles in large nuclear fusion device technology, and the long term perspective of the technical development of nuclear fusion are described. (K.I.)

  12. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  13. Fusion Engineering Device. Volume 1. Mission and program summary

    International Nuclear Information System (INIS)

    1981-10-01

    This volume presents, in summary form, a recommended approach to implementing the Magnetic Fusion Energy Engineering Act of 1980. These recommendations constitute the findings of the FED Technical Management Board (TMB). The TMB and the affiliated technical managers gave particular scrutiny to elucidating the role of FED in fusion development and to defining the device mission

  14. Eddy current analysis in fusion devices

    International Nuclear Information System (INIS)

    Turner, L.R.

    1988-06-01

    In magnetic fusion devices, particularly tokamaks and reversed field pinch (RFP) experiments, time-varying magnetic fields are in intimate contact with electrically conducting components of the device. Induced currents, fields, forces, and torques result. This note reviews the analysis of eddy current effects in the following systems: Interaction of a tokamak plasma with the eddy currents in the first wall, blanket, and shield (FWBS) systems; Eddy currents in a complex but two-dimensional vacuum vessel, as in TFTR, JET, and JT-60; Eddy currents in the FWBS system of a tokamak reactor, such as NET, FER, or ITER; and Eddy currents in a RFP shell. The cited studies are chosen to be illustrative, rather than exhaustive. 42 refs

  15. Magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    1984-02-01

    This report on the Department of Energy's Magnetic Fusion Program was requested by the Secretary of Energy. The Panel finds that substantial progress has been made in the three years since the previous ERAB review, although budget constraints have precluded the engineering initiatives recommended in that review and authorized in the Magnetic Fusion Energy Engineering Act of 1980 (the Act). Recognizing that the goals of the Act cannot now be met, the Panel recommends that the engineering phase be further postponed in favor of a strong base program in physics and technology, including immediate commitment to a major new tokamak-based device for the investigation of an ignited long-pulse plasma designated in this report as the Burning Core Experiment or BCX. Resources to design such a device could be obtained from within the existing program by redirecting work toward to BCX. At this time it is not possible to assess accurately the potential economic viability of fusion power in the future. The Panel strongly recommends expansion of international collaboration, particularly the joint construction and operation of major new unique facilities, such as the proposed BCX

  16. Overview of the US Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    Wiffen, F.W.; Dowling, R.J.; Marton, W.A.; Eckstrand, S.A.

    1990-01-01

    Since the 1988 Symposium on Fusion Technology, steady progress has been made in the US Magnetic Fusion Energy Program. The large US tokamaks have reached new levels of plasma performance with associated improvements in the understanding of transport. The technology support for ongoing and future devices is similarly advancing with notable advances in magnetic, rf heating tubes, pellet injector, plasma interactive materials, tritium handling, structural materials, and system studies. Currently, a high level DOE review of the program is underway to provide recommendations for a strategic plan

  17. Magnetic fusion and project ITER

    International Nuclear Information System (INIS)

    Park, H.K.

    1992-01-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called ''International Thermonuclear Experimental Reactor (ITER)'' will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind

  18. Initial trade and design studies for the fusion engineering device

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-06-01

    The Magnetic Fusion Energy Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. The Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), initiated a program of trade and design studies in October 1980 to support the selection of the FED concept. This document presents the results of these initial trade and design studies. Based on these results, a baseline configuration has been identified and the Design Center effort for the remainder of the fiscal year will be devoted to the development of a self-consistent FED design description

  19. Neutral beam systems for the magnetic fusion program

    International Nuclear Information System (INIS)

    Beal, J.W.; Staten, H.S.

    1977-01-01

    The attainment of economic, safe fusion power has been described as the most sophisticated scientific problem ever attacked by mankind. The presently established goal of the magnetic fusion program is to develop and demonstrate pure fusion central electric power stations for commercial applications. Neutral beam heating systems are a basic component of the tokamak and mirror experimental fusion plasma confinement devices. The requirements placed upon neutral beam heating systems are reviewed. The neutral beam systems in use or being developed are presented. Finally, the needs of the future are discussed

  20. Neutral particle kinetics in fusion devices

    International Nuclear Information System (INIS)

    Tendler, M.; Heifetz, D.

    1986-05-01

    The theory of neutral particle kinetics treats the transport of mass, momentum, and energy in a plasma due to neutral particles which themselves are unaffected by magnetic fields. This transport affects the global power and particle balances in fusion devices, as well as profile control and plasma confinement quality, particle and energy fluxes onto device components, performance of pumping systems, and the design of diagnostics and the interpretation of their measurements. This paper reviews the development of analytic, numerical, and Monte Carlo methods of solving the time-independent Boltzmann equation describing neutral kinetics. These models for neutral particle behavior typically use adaptations of techniques developed originally for computing neutron transport, due to the analogy between the two phenomena, where charge-exchange corresponds to scattering and ionization to absorption. Progress in the field depends on developing multidimensional analytic methods, and obtaining experimental data for the physical processes of wall reflection, the neutral/plasma interaction, and for processes in fusion devices which are directly related to neutral transport, such as H/sub α/ emission rates, plenum pressures, and charge-exchange emission spectra

  1. Neutral particle kinetics in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Tendler, M.; Heifetz, D.

    1986-05-01

    The theory of neutral particle kinetics treats the transport of mass, momentum, and energy in a plasma due to neutral particles which themselves are unaffected by magnetic fields. This transport affects the global power and particle balances in fusion devices, as well as profile control and plasma confinement quality, particle and energy fluxes onto device components, performance of pumping systems, and the design of diagnostics and the interpretation of their measurements. This paper reviews the development of analytic, numerical, and Monte Carlo methods of solving the time-independent Boltzmann equation describing neutral kinetics. These models for neutral particle behavior typically use adaptations of techniques developed originally for computing neutron transport, due to the analogy between the two phenomena, where charge-exchange corresponds to scattering and ionization to absorption. Progress in the field depends on developing multidimensional analytic methods, and obtaining experimental data for the physical processes of wall reflection, the neutral/plasma interaction, and for processes in fusion devices which are directly related to neutral transport, such as H/sub ..cap alpha../ emission rates, plenum pressures, and charge-exchange emission spectra.

  2. Magnetic Fusion Advisory Committee report on recommended fusion program priorities and strategy

    International Nuclear Information System (INIS)

    1983-09-01

    The Magnetic Fusion Advisory Committee recommends a new program strategy with the following principal features: (1) Initiation in FY86 of the Tokamak Fusion Core Experiment (TFCX), a moderate-cost tokamak reactor device (less than $1 B PACE) designed to achieve ignition and long-pulse equilibrium burn. Careful trade-off studies are needed before making key design choices in interrelated technology areas. Cost reductions relative to earlier plans can be realized by exploiting new plasma technology, by locating the TFCX at the TFTR site, and by assigning responsibility for complementary reactor engineering tasks to other sectors of the fusion program. (2) Potential utilization of the MFTF Upgrade to provide a cost-effective means for quasi-steady-state testing of blanket and power-system components, complementary to TFCX. This will depend on future assessments of the data base for tandem mirrors. (3) Vigorous pursuit of the broad US base program in magnetic confinement, including new machine starts, where appropriate, at approximately the present total level of support. (4) Utilization of Development and Technology programs in plasma and magnet technology in support of specific hardware requirements of the TFCX and of other major fusion facilities, so as to minimize overall program cost

  3. Magnetic-fusion program

    International Nuclear Information System (INIS)

    1980-08-01

    In February 1980, the Director of Energy Research requested that the Energy Research Advisory Board (ERAB) review the Department of Energy (DOE) Magnetic Fusion Program. Of particular concern to the DOE was the judicious choice of the next major steps toward demonstration of economic power production from fusion. Of equal concern was the overall soundness of the DOE Magnetic Fusion Program: its pace, scope, and funding profiles. Their finding and recommendations are included

  4. Magnetic and inertial fusion status and development plans

    International Nuclear Information System (INIS)

    Correll, D.; Storm, E.

    1987-01-01

    Controlled fusion, pursued by investigators in both the magnetic and inertial confinement research programs, continues to be a strong candidate as an intrinsically safe and virtually inexhaustible long-term energy source. We describe the status of magnetic and inertial confinement fusion in terms of the accomplishments made by the research programs for each concept. The improvement in plasma parameters (most frequently discussed in terms of the Tn tau product of ion temperature, T, density, n, and confinement time, tau) can be linked with the construction and operation of experimental facilities. The scientific progress exhibited by larger scale fusion experiments within the US, such as Princeton Plasma Physics Laboratory's Fusion Test Reactor for magnetic studies and Lawrence Livermore National Laboratory's Nova laser for inertial studies, has been optimized by the theoretical advances in plasma and computational physics. Both TFTR and Nova have exhibited ion temperatures in excess of 10 keV at confinement parameters of n tau near 10 13 cm -3 . sec. At slightly lower temperatures (near a few keV), the value of n tau has exceeded 10 14 cm -3 . sec in both devices. Near-term development plans in fusion research include experiments within the US, Europe, and Japan to improve the plasma performance to reach conditions where the rate of fusion energy production equals or exceeds the heating power incident upon the plasma. 9 refs., 7 figs

  5. Linear magnetic fusion: summary of Seattle workshop

    International Nuclear Information System (INIS)

    1977-12-01

    The linear-geometry magnetic confinement concept is among the oldest used in the study of high-temperature plasmas. However, it has generally been discounted as a suitable approach for demonstrating controlled thermonuclear fusion because rapid losses from the plasma column ends necessitate very long devices. Further, the losses and how to overcome them have not yet received parametric experimental study, nor do facilities exist with which such definitive experiments could be performed. Nonetheless, the important positive attribute, simplicity, together with the appearance of several ideas for reducing end losses have provided motivation for continued research on linear magnetic fusion (LMF). These motivations led to the LMF workshop, held in Seattle, March 9--11, 1977, which explored the potential of LMF as an alternate approach to fusion. A broad range of LMF aspects were addressed, including radial and axial losses, stability and equilibrium, heating, technology, and reactor considerations. The conclusions drawn at the workshop are summarized

  6. Magnetic stochasticity in magnetically confined fusion plasmas chaos of field lines and charged particle dynamics

    CERN Document Server

    Abdullaev, Sadrilla

    2014-01-01

    This is the first book to systematically consider the modern aspects of chaotic dynamics of magnetic field lines and charged particles in magnetically confined fusion plasmas.  The analytical models describing the generic features of equilibrium magnetic fields and  magnetic perturbations in modern fusion devices are presented. It describes mathematical and physical aspects of onset of chaos, generic properties of the structure of stochastic magnetic fields, transport of charged particles in tokamaks induced by magnetic perturbations, new aspects of particle turbulent transport, etc. The presentation is based on the classical and new unique mathematical tools of Hamiltonian dynamics, like the action--angle formalism, classical perturbation theory, canonical transformations of variables, symplectic mappings, the Poincaré-Melnikov integrals. They are extensively used for analytical studies as well as for numerical simulations of magnetic field lines, particle dynamics, their spatial structures and  statisti...

  7. Superconductor technology for fusion magnets

    International Nuclear Information System (INIS)

    Dustmann, C.H.; Juengst, K.P.; Komarek, P.; Krafft, G.; Krauth, H.; Maier, P.; Ries, G.; Schauer, W.; Schmidt, C.; Seibt, E.; Turowski, P.

    1976-11-01

    The development of advanced suoerconductors for magnets in fusion experiments is an essential problem. In this report the parameters of a big Tokamak magnet system are presented and the resulting constraints for the conductor are given. Comparing this constraints with the state of the art of the magnet and conductor technology, the goals of the needed conductor development are defined. Existing conductor concepts are described. Based on considerations on the main problems (cooling concepts, mechanical stress analysis, stabilization, ac-losses) a concept of an economically feasable and cryogenically stabilized flat cable conductor is developed. Typical parameters of a 10 kA conductor with NbTi at 8 T are given. The experimental investigations needed for the conductor development are discussed. Existing devices for measurements of Isub(c), ac-losses and the behaviour of the conductor under mechanical stress are described and typical experimental results are presented. The need of the completion of the measuring devices and programmes is stressed. The construction of a versatile conductor test facility is proposed. (orig.) [de

  8. A remote monitoring system of environmental electromagnetic field in magnetic confinement fusion test facilities

    International Nuclear Information System (INIS)

    Tanaka, Masahiro; Uda, Tatsuhiko; Takami, Shigeyuki; Wang, Jianqing; Fujiwara, Osamu

    2010-01-01

    A remote, continuous environmental electromagnetic field monitoring system for use in magnetic confinement fusion test facilities is developed. Using this system, both the static magnetic field and the high frequency electromagnetic field could be measured. The required frequency range of the measurement system is from 25 to 100 MHz for the ICRF (Ion Cyclotron Range of Frequencies) heating system. The outputs from the measurement instruments are measured simultaneously by custom-built software using a laptop-type personal computer connected to a local area network. In this way, the electromagnetic field strength could be monitored from a control room located about 200 m from the fusion device building. Examples of measurement data from the vicinity of a high-frequency generator and amplifier and the leakage static magnetic field from a fusion test device are presented. (author)

  9. Special-purpose materials for magnetically confined fusion reactors. Third annual progress report

    International Nuclear Information System (INIS)

    1981-11-01

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. It is recognized that there will be numerous materials problems that will arise during the design and construction of large magnetic-fusion energy devices such as the Engineering Test Facility (ETF) and Demonstration Reactor (DEMO). Most of these problems will be specific to a particular design or project and are the responsibility of the project, not the Materials and Radiation Effects Branch. Consequently, the Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  10. The physics of magnetic fusion energy

    International Nuclear Information System (INIS)

    Roberts, K.V.

    1980-01-01

    A personal account is given covering the period April 1956 until the present day of the challenging theoretical problems posed by the controlled release of energy by magnetic confinement fusion. The need to analyse in detail the working of a plasma apparatus or reactor as a function of time is stressed and the application of such analysis to the various thermonuclear devices which have been considered during this period, is examined. (UK)

  11. Fusion, magnetic confinement

    International Nuclear Information System (INIS)

    Berk, H.L.

    1992-01-01

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or 3 He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied

  12. Magnetic Fusion Energy Program of India

    International Nuclear Information System (INIS)

    Sen, Abhijit

    2013-01-01

    The magnetic fusion energy program of India started in the early eighties with the construction of an indigenous tokamak device ADITYA at the Institute for Plasma Research in Gandhinagar. The initial thrust was on fundamental studies related to plasma instabilities and turbulence phenomena but there was also a significant emphasis on technology development in the areas of magnetics, high vacuum, radio-frequency heating and neutral beam technology. The program took a major leap forward in the late nineties with the decision to build a state-of-the-art superconducting tokamak (SST-1) that catapulted India into the mainstream of the international tokamak research effort. The SST experience and the associated technological and human resource development has now earned the country a place in the ITER collaboration as an equal partner with other major nations. Keeping in mind the rapidly growing and enormous energy needs of the future the program has also identified and launched key development projects that can lead us to a DEMO reactor and eventually a Fusion Power Plant in a systematic manner. I will give a brief overview of the early origins, the present status and some of the highlights of the future road map of the Indian Fusion Program. (author)

  13. Magnetic-fusion energy and computers

    International Nuclear Information System (INIS)

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups

  14. Magnetic fusion energy and computers

    International Nuclear Information System (INIS)

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups

  15. Cold nuclear fusion device

    International Nuclear Information System (INIS)

    Ogino, Shinji.

    1991-01-01

    Selection of cathode material is a key to the attainment of cold nuclear fusion. However, there are only few reports on the cathode material at present and an effective development has been demanded. The device comprises an anode and a cathode and an electrolytic bath having metal salts dissolved therein and containing heavy water in a glass container. The anode is made of gold or platinum and the cathode is made of metals of V, Sr, Y, Nb, Hf or Ta, and a voltage of 3-25V is applied by way of a DC power source between them. The metal comprising V, Sr, Y, Nb, Hf or Ta absorbs deuterium formed by electrolysis of heavy water effectively to cause nuclear fusion reaction at substantially the same frequency and energy efficiency as palladium and titanium. Accordingly, a cold nuclear fusion device having high nuclear fusion generation frequency can be obtained. (N.H.)

  16. Reactor potential for magnetized target fusion

    International Nuclear Information System (INIS)

    Dahlin, J.E.

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well

  17. Reactor potential for magnetized target fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, J.E

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well.

  18. Safety of magnetic fusion facilities: Guidance

    International Nuclear Information System (INIS)

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities

  19. Progress in fusion technology in the U.S. magnetic fusion program

    International Nuclear Information System (INIS)

    Dowling, R.J.; Beard, D.S.; Haas, G.M.; Stone, P.M.; George, T.V.

    1987-01-01

    In this paper the authors discuss the major technological achievements that have taken place during the past few years in the U.S. magnetic fusion program which have contributed to the global efforts. The goal has been to establish the scientific and technological base required for fusion energy. To reach this goal the fusion RandD program is focused on four key technical issues: determine the optimum configuration of magnetic confinement systems; determine the properties of burning plasmas; develop materials for fusion systems; and establish the nuclear technology of fusion systems. The objective of the fusion technology efforts has been to develop advanced technologies and provide the necessary support for research of these four issues. This support is provided in a variety of areas such as: high vacuum technology, large magnetic field generation by superconducting and copper coils, high voltage and high current power supplies, electromagnetic wave and particle beam heating systems, plasma fueling, tritium breeding and handling, remote maintenance, energy recovery. The U.S. Fusion Technology Program provides major support or has the primary responsibility in each of the four key technical issues of fusion, as described in the Magnetic Fusion Program Plan of February 1985. This paper has summarized the Technology Program in terms of its activities and progress since the Proceedings of the SOFT Conference in 1984

  20. Neutronic analysis of fusion tokamak devices by PHITS

    International Nuclear Information System (INIS)

    Sukegawa, Atsuhiko M.; Takiyoshi, Kouji; Amano, Toshio; Kawasaki, Hiromitsu; Okuno, Koichi

    2011-01-01

    A complete 3D neutronic analysis by PHITS (Particle and Heavy Ion Transport code System) has been performed for fusion tokamak devices such as JT-60U device and JT-60 Superconducting tokamak device (JT-60 Super Advanced). The mono-energetic neutrons (E n =2.45 MeV) of the DD fusion devices are used for the neutron source in the analysis. The visual neutron flux distribution for the estimation of the port streaming and the dose rate around the fusion tokamak devices has been calculated by the PHITS. The PHITS analysis makes it clear that the effect of the port streaming of superconducting fusion tokamak device with the cryostat is crucial and the calculated neutron spectrum results by PHITS agree with the MCNP-4C2 results. (author)

  1. High temperature superconductors for fusion magnets -influence of neutron irradiation

    International Nuclear Information System (INIS)

    Chudy, M.; Eisterer, M.; Weber, H. W.

    2010-01-01

    In this work authors present the results of study of influence of neutron irradiation of high temperature superconductors for fusion magnets. High temperature superconductors (type of YBCO (Yttrium-Barium-Copper-Oxygen)) are strong candidates to be applied in the next step of fusion devices. Defects induced by fast neutrons are effective pinning centres, which can significantly improve critical current densities and reduce J c anisotropy. Due to induced lattice disorder, T c is reduced. Requirements for ITER (DEMO) are partially achieved at 64 K.

  2. Magnetic compression/magnetized target fusion (MAGO/MTF)

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.

    1997-03-01

    Magnetized Target Fusion (MTF) was reported in two papers at the First Symposium on Current Trends in International Fusion Research. MTF is intermediate between two very different mainline approaches to fusion: Inertial Confinement Fusion (ICF) and magnetic confinement fusion (MCF). The only US MTF experiments in which a target plasma was compressed were the Sandia National Laboratory ''Phi targets''. Despite the very interesting results from that series of experiments, the research was not pursued, and other embodiments of MTF concept such as the Fast Liner were unable to attract the financial support needed for a firm proof of principle. A mapping of the parameter space for MTF showed the significant features of this approach. The All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) has an on-going interest in this approach to thermonuclear fusion, and Los Alamos National Laboratory (LANL) and VNIIEF have done joint target plasma generation experiments relevant to MTF referred to as MAGO (transliteration of the Russian acronym for magnetic compression). The MAGO II experiment appears to have achieved on the order of 200 eV and over 100 KG, so that adiabatic compression with a relatively small convergence could bring the plasma to fusion temperatures. In addition, there are other experiments being pursued for target plasma generation and proof of principle. This paper summarizes the previous reports on MTF and MAGO and presents the progress that has been made over the past three years in creating a target plasma that is suitable for compression to provide a scientific proof of principle experiment for MAGO/MTF

  3. Pacing the US magnetic fusion program

    International Nuclear Information System (INIS)

    1989-01-01

    This study addresses the priority and pace of the nation's magnetic fusion research and development program in the context of long-term national energy policy. In particular, the committee interpreted its task as follows: To review the implications of long-term national energy policy for current research and development in magnetic fusion; to identify factors that should enter the further development of such policy to reduce risks associated with the future electricity supply system; to propose criteria applicable to research and develop in electric generation in reaching long-term energy policy goals; to apply these criteria to magnetic fusion and alternative electric generation technologies in order to develop recommendations on the priority pace of the magnetic fusion program; and to present its results in a final report. The most important goals of the US Department of Energy's current Magnetic Fusion Energy Program Plan are to demonstrate the scientific and engineering feasibility of fusion, Demonstrating engineering feasibility will require the design, construction, and operation of an engineering test reactor, which the plan envisions financing through a combination of domestic and international funding. The committee believes that current domestic program funding levels are inadequate to meet even the near-term objectives of the plan

  4. Fusion and technology: An introduction to the physics and technology of magnetic confinment fusion

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1984-01-01

    This book is an introduction covering all aspects of magnetic fusion and magnetic fusion technology. Physical property data relevant to fusion technology and a summary of fusion reactor design parameters are provided. Topics covered include: basic properties; equilibrium and transport confinement concepts; plasma heating; plasma wall interaction; magnetics; energy storage and transfer; interaction of radiation with matter; primary energy conversion and tritium breeding blanket; tritium and vacuum; and Fusion Reactor Design

  5. Applications of high-speed dust injection to magnetic fusion

    International Nuclear Information System (INIS)

    Wang, Zhehui; Li, Yangfang

    2012-01-01

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance (∼ 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located ∼1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage

  6. Fourth annual progress report on special-purpose materials for magnetically confined fusion reactors

    International Nuclear Information System (INIS)

    1982-08-01

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. The Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  7. Program for development of toroidal superconducting magnets for fusion research, May 1975

    International Nuclear Information System (INIS)

    Long, H.M.; Lubell, M.S.

    1975-11-01

    The objective of this program is a tested magnet design which demonstrates the suitability and reliability needed to qualify toroidal superconducting magnets for fusion research devices in a time compatible with the D-T burning experiments time frame. The overall applied development program including tasks, manpower, and cost estimates is detailed here, but for the full toroidal system only the cost and time frame are outlined to show compatibility with the present program. The details of the full toroidal system fall under major device fabrication and will be included in a subsequent document

  8. Mirror Fusion Test Facility magnet

    International Nuclear Information System (INIS)

    Henning, C.H.; Hodges, A.J.; Van Sant, J.H.; Hinkle, R.E.; Horvath, J.A.; Hintz, R.E.; Dalder, E.; Baldi, R.; Tatro, R.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given

  9. Data acquisition systems for fusion devices

    International Nuclear Information System (INIS)

    Van Haren, P.C.; Oomens, N.A.

    1993-01-01

    During the last two decades, computerized data acquisition systems (DASs) have been applied at magnetic confinement fusion devices. Present-day data acquisition is done by means of distributed computer systems and transient recorders in CAMAC systems. The development of DASs has been technology driven; the emphasis has been on the development of computer hardware and system software. For future DASs, challenging problems are to be solved: The DASs have to be better optimized with respect to the needs of the users. Existing bottlenecks, such as CAMAC-computer coupling or pulse file merging, need to be eliminated. Continuous or long-pulse operation will require the introduction of event abstraction in DAS design. 59 refs., 4 figs., 1 tab

  10. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  11. Software problems in magnetic fusion research

    International Nuclear Information System (INIS)

    Gruber, R.

    1982-01-01

    The main world effort in magnetic fusion research involves studying the plasma in a Tokamak device. Four large Tokamaks are under construction (TFTR in USA, JET in Europe, T15 in USSR and JT60 in Japan). To understand the physical phenomena that occur in these costly devices, it is generally necessary to carry out extensive numerical calculations. These computer simulations make use of sophisticated numerical methods and demand high power computers. As a consequence they represent a substantial investment. To reduce software costs, the computer codes are more and more often exhanged among scientists. Standardization (STANDARD FORTRAN, OLYMPUS system) and good documentation (CPC program library) are proposed to make codes exportable. Centralized computing centers would also help in the exchange of codes and ease communication between the staff at different laboratories. (orig.)

  12. Generic magnetic fusion reactor cost assessment

    International Nuclear Information System (INIS)

    Sheffield, J.

    1985-01-01

    The Fusion Energy Division of the Oak Ridge National Laboratory discusses ''generic'' magnetic fusion reactors. The author comments on DT burning magnetic fusion reactor models being possibly operational in the 21st century. Representative parameters from D-T reactor studies are given, as well as a shematic diagram of a generic fusion reactor. Values are given for winding pack current density for existing and future superconducting coils. Topics included are the variation of the cost of electricity (COE), the dependence of the COE on the net electric power of the reactor, and COE formula definitions

  13. Modelling of surface evolution of rough surface on divertor target in fusion devices

    International Nuclear Information System (INIS)

    Dai, Shuyu; Liu, Shengguang; Sun, Jizhong; Kirschner, A.; Kawamura, G.; Tskhakaya, D.; Ding, Rui; Luo, Guangnan; Wang, Dezhen

    2015-01-01

    Highlights: • We study the surface evolution of rough surface on divertor target in fusion devices. • The effects of gyration motion and E × B drift affect 3D angular distribution. • A larger magnetic field angle leads to a reduced net eroded areal density. • The rough surface evolution affects the physical sputtering yield. - Abstract: The 3D Monte-Carlo code SURO has been used to study the surface evolution of rough surface on the divertor target in fusion devices. The edge plasma at divertor region is modelled by the SDPIC code and used as input data for SURO. Coupled with SDPIC, SURO can perform more sophisticated simulations to calculate the local angle and surface evolution of rough surface. The simulation results show that the incident direction of magnetic field, gyration and E × B force has a significant impact on 3D angular distribution of background plasma and accordingly on the erosion of rough surface. The net eroded areal density of rough surface is studied by varying the magnetic field angle with surface normal. The evolution of the microscopic morphology of rough surface can lead to a significant change in the physical sputtering yield

  14. Highly radiation-resistant vacuum impregnation resin systems for fusion magnet insulation

    International Nuclear Information System (INIS)

    Fabian, P.E.; Munshi, N.A.; Denis, R.J.

    2002-01-01

    Magnets built for fusion devices such as the newly proposed Fusion Ignition Research Experiment (FIRE) need to be highly reliable, especially in a high radiation environment. Insulation materials are often the weak link in the design of superconducting magnets due to their sensitivity to high radiation doses, embrittlement at cryogenic temperatures, and the limitations on their fabricability. An insulation system capable of being vacuum impregnated with desirable properties such as a long pot-life, high strength, and excellent electrical integrity and which also provides high resistance to radiation would greatly improve magnet performance and reduce the manufacturing costs. A new class of insulation materials has been developed utilizing cyanate ester chemistries combined with other known radiation-resistant resins, such as bismaleimides and polyimides. These materials have been shown to meet the demanding requirements of the next generation of devices, such as FIRE. Post-irradiation testing to levels that exceed those required for FIRE showed no degradation in mechanical properties. In addition, the cyanate ester-based systems showed excellent performance at cryogenic temperatures and possess a wide range of processing variables, which will enable cost-effective fabrication of new magnets. This paper details the processing parameters, mechanical properties at 76 K and 4 K, as well as post-irradiation testing to dose levels surpassing 10 8 Gy

  15. The international magnetic fusion energy program

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1988-01-01

    In May of 1988, the long tradition of international cooperation in magnetic fusion energy research culminated in the initiation of design work on the International Thermonuclear Experimental Reactor (ITER). If eventually constructed in the 1990s, ITER would be the world's first magnetic fusion reactor. This paper discusses the background events that led to ITER and the present status of the ITER activity. This paper presents a brief summary of the technical, political, and organizational activities that have led to the creation of the ITER design activity. The ITER activity is now the main focus of international cooperation in magnetic fusion research and one of the largest international cooperative efforts in all of science. 2 refs., 12 figs

  16. Performance of Hall sensor-based devices for magnetic field diagnosis at fusion reactors

    Czech Academy of Sciences Publication Activity Database

    Bolshakova, I.; Ďuran, Ivan; Holyaka, R.; Hristoforou, E.; Marusenkov, A.

    2007-01-01

    Roč. 5, č. 1 (2007), s. 283-288 ISSN 1546-198X R&D Projects: GA AV ČR KJB100430504 Institutional research plan: CEZ:AV0Z20430508 Keywords : Galvanomagnetic * Sensor * Fusion Reactor * Magnetic Diagnostics * Radiation Hardness Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.587, year: 2007

  17. Magnetic mirror fusion systems: Characteristics and distinctive features

    International Nuclear Information System (INIS)

    Post, R.F.

    1987-01-01

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power

  18. Increasing the magnetic-field capability of the magneto-inertial fusion electrical discharge system using an inductively coupled coil

    Science.gov (United States)

    Barnak, D. H.; Davies, J. R.; Fiksel, G.; Chang, P.-Y.; Zabir, E.; Betti, R.

    2018-03-01

    Magnetized high energy density physics (HEDP) is a very active and relatively unexplored field that has applications in inertial confinement fusion, astrophysical plasma science, and basic plasma physics. A self-contained device, the Magneto-Inertial Fusion Electrical Discharge System, MIFEDS [G. Fiksel et al., Rev. Sci. Instrum. 86, 016105 (2015)], was developed at the Laboratory for Laser Energetics to conduct magnetized HEDP experiments on both the OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495-506 (1997)] and OMEGA EP [J. H. Kelly et al., J. Phys. IV France 133, 75 (2006) and L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)] laser systems. Extremely high magnetic fields are a necessity for magnetized HEDP, and the need for stronger magnetic fields continues to drive the redevelopment of the MIFEDS device. It is proposed in this paper that a magnetic coil that is inductively coupled rather than directly connecting to the MIFEDS device can increase the overall strength of the magnetic field for HEDP experiments by increasing the efficiency of energy transfer while decreasing the effective magnetized volume. A brief explanation of the energy delivery of the MIFEDS device illustrates the benefit of inductive coupling and is compared to that of direct connection for varying coil size and geometry. A prototype was then constructed to demonstrate a 7-fold increase in energy delivery using inductive coupling.

  19. Numerical modelling of electromagnetic loads on fusion device structures

    International Nuclear Information System (INIS)

    Bettini, Paolo; Palumbo, Maurizio Furno; Specogna, Ruben

    2014-01-01

    In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine

  20. Numerical modelling of electromagnetic loads on fusion device structures

    Science.gov (United States)

    Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben

    2014-03-01

    In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.

  1. Magnetic surface compression heating in the heliotron device

    International Nuclear Information System (INIS)

    Uo, K.; Motojima, O.

    1982-01-01

    The slow adiabatic compression of the plasma in the heliotron device is examined. It has a prominent characteristic that the plasma equilibrium always exists at each stage of the compression. The heating efficiency is calculated. We show the possible access to fusion. A large amount of the initial investment for the heating system (NBI or RF) is reduced by using the magnetic surface compression heating. (author)

  2. The Roles and Developments needed for Diagnostics in the ITER Fusion Device

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Michael [ITER Organization, Route de Vinon-sur-Verdon - CS 90046, 13067 St Paul-lez-Durance Cedex (France)

    2015-07-01

    Harnessing the power from Fusion on earth is an important and challenging task. Excellent work has been carried out in this area over the years with several demonstrations of the ability to produce power. Now, a new large device is being constructed in the south of France. This is called ITER. ITER is a large-scale scientific experiment that aims to demonstrate a possibility to produce commercial energy from fusion. This project is now well underway with the many teams working on the construction and completing various aspects of the design. This device will carry up to 15 MA of plasma current and produce about 500 MW of power, 400 MW approximately in high energy neutrons. The typical temperatures of the electrons inside this device are in the region of a few hundred million Kelvin. It is maintained using a magnetic field. This device is pushing several boundaries from those currently existing. As a result of this, several technologies need to be developed or extended. This is especially true for the systems or diagnostics that measure the performance and provide the control signals for this device. A diagnostic set will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include amongst others, measurements of the plasma shape, temperature, density, impurity concentration, and particle and energy confinement times. The system will comprise about 45 individual measuring systems drawn from the full range of modern plasma diagnostic techniques, including magnetics, lasers, X-rays, neutron cameras, impurity monitors, particle spectrometers, radiation bolometers, pressure and gas analysis, and optical fibres. These devices will have to be made to work in the new and challenging environment inside the vacuum vessel. These systems will have to cope with a range of phenomena that extend the current knowledge in the Fusion field. One

  3. Magnetic fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The efforts of the Chemical Technology Division in the area of fusion energy include fuel handling, processing, and containment. These studies are closely coordinated with the ORNL Fusion Energy Division. Current experimental studies are concerned with the development of vacuum pumps for fusion reactors, the evaluation and development of techniques for recovering tritium (fuel) from either solid or liquid lithium containing blankets, and the use of deep beds of sorbents as roughing pumps and/or transfer operations. In addition, a small effort is devoted to the support of the ORNL design of The Next Step (TNS) in tokamak reactor development. The more applied studies--vacuum pump development and TNS design--are funded by the DOE/Magnetic Fusion Energy, and the more fundamental studies--blanket recovery and sorption in deep beds--are funded by the DOE/Basic Energy Sciences

  4. Inertial fusion reactors and magnetic fields

    International Nuclear Information System (INIS)

    Cornwell, J.B.; Pendergrass, J.H.

    1985-01-01

    The application of magnetic fields of simple configurations and modest strengths to direct target debris ions out of cavities can alleviate recognized shortcomings of several classes of inertial confinement fusion (ICF) reactors. Complex fringes of the strong magnetic fields of heavy-ion fusion (HIF) focusing magnets may intrude into reactor cavities and significantly affect the trajectories of target debris ions. The results of an assessment of potential benefits from the use of magnetic fields in ICF reactors and of potential problems with focusing-magnet fields in HIF reactors conducted to set priorities for continuing studies are reported. Computational tools are described and some preliminary results are presented

  5. Magnetized Target Fusion At General Fusion: An Overview

    Science.gov (United States)

    Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General

    2017-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.

  6. The international magnetic fusion energy program

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T.K.

    1988-10-06

    In May of 1988, the long tradition of international cooperation in magnetic fusion energy research culminated in the initiation of design work on the International Thermonuclear Experimental Reactor (ITER). If eventually constructed in the 1990s, ITER would be the world's first magnetic fusion reactor. This paper discusses the background events that led to ITER and the present status of the ITER activity. This paper presents a brief summary of the technical, political, and organizational activities that have led to the creation of the ITER design activity. The ITER activity is now the main focus of international cooperation in magnetic fusion research and one of the largest international cooperative efforts in all of science. 2 refs., 12 figs.

  7. The present role of superconductivity in fusion

    International Nuclear Information System (INIS)

    Shimamoto, S.

    1986-01-01

    After completion of large fusion devices in the world, such as JT-60, JET and TFTR, high temperature plasma is proceeding to critical condition for fusion. The devices up to now use mainly conventional magnet. However, for the next generation machine which demonstrates fusion reaction, deuterium-tritium burning, superconducting magnet system is indispensable from view point of both net energy extraction and capacity limitation of power supply. In order to realize such a large and complicated system, a lot of development works is being carried out. This paper describes required parameters of superconducting magnet and helium refrigerator, the state of plasma condition and superconducting magnet. It is shown that the present technology of superconducting magnet is not so far from realization of fusion experimental reactor

  8. Economic potential of magnetic fusion energy

    International Nuclear Information System (INIS)

    Henning, C.D.

    1981-01-01

    Scientific feasibility of magnetic fusion is no longer seriously in doubt. Rapid advances have been made in both tokamak and mirror research, leading to a demonstration in the TFTR tokamak at Princeton in 1982 and the tandem mirror MFTF-B at Livermore in 1985. Accordingly, the basis is established for an aggressive engineering thrust to develop a reactor within this century. However, care must be taken to guide the fusion program towards an economically and environmentally viable goal. While the fusion fuels are essentially free, capital costs of reactors appear to be at least as large as current power plants. Accordingly, the price of electricity will not decline, and capital availability for reactor constructions will be important. Details of reactor cost projections are discussed and mechanisms suggested for fusion power implementation. Also discussed are some environmental and safety aspects of magnetic fusion

  9. Radiation resistant organic composites for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.

    1993-01-01

    Organic composite materials (usually reinforced by glas fibers: GFRP) are to be used in fusion superconducting magnets as insulating and/or structural materials. The fusion superconducting magnets are operated under radiation environments and hence the radiation induced degradation of magnet components is ought to be estimated. Among the components the organic composite materials were evaluated to be the most radiation sensitive. Consequently the development of radiation resistant organic composite materials is thought one of the 'key' technologies for fusion superconducting magnets. The mechanism of radiation-induced degradation was studied and the degradation of interlaminar shear strength (ILSS) was found to be the intrinsic phenomenon which controlled the overall degradation of organic composite materials. The degradation of ILSS was studied changing matrix resin, reinforcement and type of fabrics. The possible combination of the organic composites for the fusion superconducting magnet will be discussed. (orig.)

  10. Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility

    International Nuclear Information System (INIS)

    Tanaka, M.; Uda, T.; Wang, J.; Fujiwara, O.

    2012-01-01

    For safety management at a magnetic confinement fusion-test facility, protection from not only ionising radiation, but also non-ionising radiation such as the leakage of static magnetic and electromagnetic fields is an important issue. Accordingly, the use of a commercially available personal RF monitor for multipoint area monitoring is proposed. In this study, the performance of both fast- and slow-type personal RF monitors was investigated by using a transverse electromagnetic cell system. The range of target frequencies was between 10 and 300 MHz, corresponding to the ion cyclotron range of frequency in a fusion device. The personal RF monitor was found to have good linearity, frequency dependence and isotropic response. However, the time constant for the electric field sensor of the slow-type monitor was much longer than that for the fast-type monitor. Considering the time-varying field at the facility, it is found that the fast-type monitor is suitable for multipoint monitoring at magnetic confinement fusion test facilities. (authors)

  11. Safety issues for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Reich, M.; Powell, J.R.

    1978-01-01

    Safety issues for future superconducting fusion magnet systems are examined. It is found that safety and failure experience with existing superconducting magnets is not very applicable to predictions as to the safety and reliability of fusion magnets. Such predictions will have to depend on analysis and judgement for many years to come, rather than on accumulated experience. A number of generic potential structural, thermal-hydraulic, and electrical safety problems are identified and analyzed. Prevention of quenches and non-uniform temperature distributions, if quenches should occur, is of great importance, since such events can trigger processes which lead to magnet damage or failure. Engineered safety features will be necessary for fusion magnets. Two of these, an energy dispersion system and external coil containment, appear capable of reducing the probability of coil disruption to very low levels. However, they do not prevent loss of function accidents which are of economic concern. Elaborate detector, temperature equalization, and energy removal systems will be required to minimize the chances of loss of function accidents

  12. West European magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Hogan, J.T.; Porkolab, M.; Thomassen, K.I.

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995

  13. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  14. The role of alpha particles in magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Lisak, M.; Wilhelmsson, H.

    1986-01-01

    Recent progress in the confinement of hot plasmas in magnetic fusion experiments throughout the world has intensified interest and research in the physics of D-T burning plasmas especially in the wide range of unresolved theoretical as well as experimental questions associated with the role of alpha particles in such devices. In order to review the state-of-the- art in this field, and to identify new issues and problems for further research, the Symposium on the Role of Alpha Particles in Magnetically Confined Fusion Plasmas was held from 24 to 26 June 1986 at Aspenaesgaarden near Goeteborg, Sweden. About 25 leading experts from nine countries attended the Symposium and gave invited talks. The major part of the programme was devoted to alpha-particle effects in tokamaks but some aspects of open systems were also discussed. The possibilities of obtaining ignition in JET and TFTR as well as physics issues for the compact ignition experiments were considered in particular. A special session was devoted to the diagnostics of alpha particles and other fusion products. In this report are summarised some of the highlights of the symposium. (authors)

  15. Steady-state operation of magnetic fusion devices: Plasma control and plasma facing components. Report on the IAEA technical committee meeting held at Fukuoka, 25-29 October 1999

    International Nuclear Information System (INIS)

    Engelmann, F.

    2000-01-01

    An IAEA Technical Committee Meeting on Steady-State Operation of Magnetic Fusion Devices - Plasma Control and Plasma Facing Components was held at Fukuoka, Japan, from 25 to 29 October 1999. The meeting was the second IAEA Techical Committee Meeting on the subject, following the one held at Hefei, China, a year earlier. The meeting was attended by over 150 researchers from 10 countries

  16. Failure modes and effects analysis of fusion magnet systems

    International Nuclear Information System (INIS)

    Zimmermann, M.; Kazimi, M.S.; Siu, N.O.; Thome, R.J.

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs

  17. Superconducting magnets for fusion applications

    International Nuclear Information System (INIS)

    Henning, C.D.

    1987-01-01

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10 19 neutrons/cm 2 in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size

  18. Magnetic fusion energy

    International Nuclear Information System (INIS)

    McNamara, B.

    1977-01-01

    A brief review of fusion research during the last 20 years is given. Some highlights of theoretical plasma physics are presented. The role that computational plasma physics is playing in analyzing and understanding the experiments of today is discussed. The magnetic mirror program is reviewed

  19. The measurement of potential distribution of plasma in MM-4 fusion device

    International Nuclear Information System (INIS)

    Tian Zhongyu; Ming Linzhou; Feng Xiaozhen; Feng Chuntang; Yi Youjun; Wang Jihai; Liu Yihua

    1988-11-01

    Some experimental results of the potential distribution in MM-4 fusion device are presented by measuring the floating potential of probe. The results showed that the distribution of axial potential is asymmetrical, but the radial potential is symmetrical. There are double ion potential wells in the plasma. The depth of the deepest potential well become deeper is the strength of the magnetic field and injection current are increasing. The location of the deepest well is moved towards the device center along with the increasing of injection energy. This is different from others results. The mechanism of causing this distribution in also discussed

  20. Magnetic fusion research in developing countries

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1990-01-01

    This article is a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme. 6 figs, 1 tab

  1. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  2. Comments on open-ended magnetic systems for fusion

    International Nuclear Information System (INIS)

    Post, R.F.

    1990-01-01

    Differentiating characteristics of magnetic confinement systems having externally generated magnetic fields that are ''open'' are listed and discussed in the light of their several potential advantages for fusion power systems. It is pointed out that at this stage of fusion research ''high-Q'' (as deduced from long energy confinement times) is not necessarily the most relevant criterion by which to judge the potential of alternate fusion approaches for the economic generation of fusion power. An example is given of a hypothetical open-geometry fusion power system where low-Q operation is essential to meeting one of its main objectives (low neutron power flux)

  3. Fusion Engineering Device. Volume VI. Complementary development plan for engineering development

    International Nuclear Information System (INIS)

    1981-10-01

    The basic approach followed in this volume is to define key technical issues for several fusion reactor technologies and to device program strategies to resolve each of these issues. Particular attention has been paid to elucidating the role of FED vis-a-vis complementary (non-FED) facilities in this process. The remainder of this chapter consists of summaries of the major conclusions of the technology plans in each of the areas studied, i.e., plasma heating, magnetics, nuclear, and systems considerations

  4. Magnetic fusion 1985: what next

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1985-03-01

    Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion

  5. Effects of magnetization on fusion product trapping and secondary neutron spectra

    International Nuclear Information System (INIS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.

    2015-01-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux

  6. Safety of magnetic fusion facilities: Requirements

    International Nuclear Information System (INIS)

    1996-05-01

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved

  7. Open-ended fusion devices and reactors

    International Nuclear Information System (INIS)

    Kawabe, T.; Nariai, H.

    1983-01-01

    Conceptual design studies on fusion reactors based upon open-ended confinement schemes, such as the tandem mirror and rf plugged cusp, have been carried out in Japan. These studies may be classified into two categories: near-term devices (Fusion Engineering Test Facility), and long-term fusion power recators. In the first category, a two-component cusp neutron source was proposed. In the second category, the GAMMA-R, a tandem-mirror power reactor, and the RFC-R, an axisymetric mirror and cusp, reactor studies are being conducted at the University of Tsukuba and the Institute of Plasma Physics. Mirror Fusion Engineering Facility parameters and a schematic are shown. The GAMMA-R central-cell design schematic is also shown

  8. A supplemental device to return escaping particles to a magnetic mirror reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Mitsuaki [Nippon Electronic Engineering College, Noboribetsu-shi, Hokkaido (Japan); Sawada, Keiichi [Soft Creator Company, Kyoto (Japan)

    2018-12-15

    Cyclotron resonance is now applied as one of the important means for heating plasma in a fusion reactor. We examined this phenomenon from the viewpoint of electron gyration orbits through a solution of the linearized relativistic equation of motion. We found a powerful term that accelerates a relativistic charged particle largely at a resonance point when a magnetic field strength is very large. In this study, aiming an effect of this term, we consider applying a resonance phenomenon to reducing the number of charged particles that escape from a magnetic mirror reactor. We install a long supplemental device at the exit of a main magnetic bottle and make a cyclotron resonance space within the device, as shown in Fig. 7. If velocities (perpendicular to a magnetic field) of charged particles are accelerated largely within the cyclotron resonance space, the reflection efficiency of a magnetic mirror behind the resonance space ought to be improved. Based on this idea, we discuss such a supplemental device for recovering the maximum number of escaping charged particles. (orig.)

  9. Helical-type device and laser fusion. Rivals for tokamak-type device at n-fusion development in Japan

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Under the current policy on the research and development of nuclear fusion in Japan, as enunciated by the Atomic Energy Commission of Japan, the type of a prototype fusion reactor will be chosen after 2020 from tokamak, helical or some other type including the inertial confinement fusion using lasers. A prototype fusion reactor is the next step following the tokamak type International Thermonuclear Experimental Reactor (ITER). With the prototype reactor, the feasibility as a power plant will be examined. At present the main research and development of nuclear fusion in Japan are on tokamak type, which have been promoted by Japan Atomic Energy Research Institute (JAERI). As for the other types of nuclear fusion, researches have been carried out on the helical type in Kyoto University and National Institute for Fusion Science (NIFS), the mirror type in Tsukuba University, the tokamak type using superconductive coils in Kyushu University, and the laser fusion in Osaka University. The features and the present state of research and development of the Large Helical Device and the laser fusion which is one step away from the break-even condition are reported. (K.I.)

  10. Studies on advanced superconductors for fusion device. Pt. 1. Present status of Nb3Sn conductors

    International Nuclear Information System (INIS)

    Tachikawa, Kyoji; Yamamoto, Junya

    1996-03-01

    Nb 3 Sn conductors have been developed with great expectation as an advanced high-field superconductor to be used in fusion devices of next generation. Furthermore, Nb 3 Sn conductors are being developed for NMR magnet and superconducting generator as well as for cryogen-free superconducting magnet. A variety of fabrication procedures, such as bronze process, internal tin process and Nb tube method, have been developed based on the diffusion reaction. Recently, Nb 3 Sn conductors with ultra-thin filaments have been fabricated for AC use. Both high-field and AC performances of Nb 3 Sn conductors have been significantly improved by alloying addition. The Ti-doped Nb 3 Sn conductor has generated 21.5T at 1.8K operation. This report summarizes manufacturing procedures, superconducting performances and applications of Nb 3 Sn conductors fabricated through different processes in different countries. More detailed subjects included in this report are high-field properties, AC properties, conductors for fusion with large current capacities, stress-strain effect and irradiation effect as well as standardization of critical current measurement method regarding to Nb 3 Sn conductors. Comprehensive grasp on the present status of Nb 3 Sn conductors provided by this report will act as a useful data base for the future planning of fusion devices. (author). 172 refs

  11. Institute for Fusion Research and Large Helical Device program

    International Nuclear Information System (INIS)

    Iiyoshi, Atsuo

    1989-01-01

    In the research on nuclear fusion, the final objective is to materialize nuclear fusion reactors, and for the purpose, it is necessary to cause nuclear combustion by making the plasma of higher than 100 million deg and confine it for a certain time. So far in various universities, the researches on diversified fusion processes have been advanced, but in February, 1986, the Science Council issued the report 'Nuclear fusion research in universities hereafter'. As the next large scale device, an external conductor system helical device was decided, and it is desirable to found the organization for joint utilization by national universities to promote the project. The researches on the other processes are continued by utilizing the existing facilitie. The reason of selecting a helical device is the data base of the researches carried out so far can be utilized sufficiently, it is sufficiently novel even after 10 years from now, and many researchers can be collected. The place of the research is Toki City, Gifu Prefecture, where the Institute of Plasma Physics, Nagoya University, is to be moved. The basic concept of the superconducting helical device project, the trend of nuclear fusion development in the world, the physical research using a helical system and so on are reported. (Kako, I.)

  12. Fusion power and its prospects

    International Nuclear Information System (INIS)

    Kammash, T.

    1981-01-01

    Recent progress in research towards the development of fusion power is reviewed. In the magnetic approach, the impressive advances made in Tokamak research in the past few years have bolstered the confidence that experimental Tokamak devices currently under construction will demonstrate the break-even condition or scientific feasibility of fusion power. Exciting and innovative ideas in mirror magnetic confinement are expected to culminate in high-Q devices which will make open-ended confinement a serious contender for fusion reactors. In the inertial confinement approach, conflicting pellet temperature requirements have placed severe constraints on useful laser intensities and wavelengths for laser-driven fusion. Relativistic electron beam fusion must solve critical focusing and pellet coupling problems, and the newly proposed heavy ion beam fusion, though feasible and attractive in principle, requires very high energy particles for which the accelerator technology may not be available for some time to come

  13. Conceptual radiation shielding design of superconducting tokamak fusion device by PHITS

    International Nuclear Information System (INIS)

    Sukegawa, Atsuhiko M.; Kawasaki, Hiromitsu; Okuno, Koichi

    2010-01-01

    A complete 3D neutron and photon transport analysis by Monte Carlo transport code system PHITS (Particle and Heavy Ion Transport code System) have been performed for superconducting tokamak fusion device such as JT-60 Super Advanced (JT-60SA). It is possible to make use of PHITS in the port streaming analysis around the devices for the tokamak fusion device, the duct streaming analysis in the building where the device is installed, and the sky shine analysis for the site boundary. The neutron transport analysis by PHITS makes it clear that the shielding performance of the superconducting tokamak fusion device with the cryostat is improved by the graphical results. From the standpoint of the port streaming and the duct streaming, it is necessary to calculate by 3D Monte Carlo code such as PHITS for the neutronics analysis of superconducting tokamak fusion device. (author)

  14. Determination of atomic data pertinent to the Magnetic Fusion Program: Technical progress report, 15 May 1986-30 September 1987

    International Nuclear Information System (INIS)

    Wiese, W.L.

    1987-01-01

    Dielectronic recombination and excitation rates, electron-impact excitation and ionization cross sections, and wavelengths and energy levels of prominent spectral lines are experimentally and theoretically determined. Wavelengths for both electric and magnetic dipole transitions and atomic energy level data are also critically evaluated, compiled, and tabulated. Theoretical methods use both relativistic and nonrelativistic formulations. The work concentrated on ions of materials commonly used in current fusion devices, such as titanium, iron, and nickel, as well as heavier elements expected to be introduced into next-generation fusion devices for diagnostic purposes, such as krypton and xenon. The range of ions is extended to include very highly charged species in anticipation of needs in very high-temperature fusion devices such as TFTR and its successors. Work described also represents collaboration with major fusion laboratories such as Oak Ridge National Laboratory, Princeton Plasma Physics Laboratory, and GA Technologies

  15. Canada's Fusion Program

    International Nuclear Information System (INIS)

    Jackson, D. P.

    1990-01-01

    Canada's fusion strategy is based on developing specialized technologies in well-defined areas and supplying these technologies to international fusion projects. Two areas are specially emphasized in Canada: engineered fusion system technologies, and specific magnetic confinement and materials studies. The Canadian Fusion Fuels Technology Project focuses on the first of these areas. It tritium and fusion reactor fuel systems, remote maintenance and related safety studies. In the second area, the Centre Canadian de fusion magnetique operates the Tokamak de Varennes, the main magnetic fusion device in Canada. Both projects are partnerships linking the Government of Canada, represented by Atomic Energy of Canada Limited, and provincial governments, electrical utilities, universities and industry. Canada's program has extensive international links, through which it collaborates with the major world fusion programs, including participation in the International Thermonuclear Experimental Reactor project

  16. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  17. LLL magnetic fusion energy program: an overview

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Over the last 12 months, significant progress has been made in the LLL magnetic fusion energy program. In the 2XIIB experiment, a tenfold improvement was achieved in the plasma confinement factor (the product of plasma density and confinement time), pushed plasma temperature and pressure to values never before reached in a magnetic fusion experiment, and demonstrated--for the first time--plasma startup by neutral beam injection. A new laser-pellet startup technique for Baseball IIT has been successfully tested and is now being incorporated in the experiment. Technological improvements have been realized, such as a breakthrough in fabricating niobium-tin conductors for superconducting magnets. These successes, together with complementary progress in theory and reactor design, have led to a proposal to build the MX facility, which could be on the threshold of a mirror fusion reactor

  18. The Broader Spectrum of Magnetic Configurations for Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prager, S C [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Ryutov, D D [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-09-15

    Over the decades, a large array of magnetic configurations has been studied, producing a huge amount of fusion plasma science. As configurations are developed, information and techniques learned through one configuration influence the development of other configurations. In this way, configurations evolve unexpectedly in response to new information. Configurations that were at a pause can become unstuck by new discoveries, and configurations that appeared promising for fusion energy can become unattractive as new limits are uncovered. The plasma science of fusion energy is sufficiently complex that, as we approach ever closer to practical fusion power, the need for potential contributions of broad research of multiple magnetic configurations remains strong. (author)

  19. LiWall Fusion - The New Concept of Magnetic Fusion

    International Nuclear Information System (INIS)

    Zakharov, L.E.

    2011-01-01

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  20. The first operation of the superconducting optimized stellarator fusion device Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, Thomas [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Ernst-Moritz-Arndt Universitaet, Greifswald (Germany)

    2016-07-01

    The confinement of a high-temperature plasma by a suitable magnetic field is the most promising path to master nuclear fusion of Deuterium and Tritium on the scale of a reasonable power station. The two leading confinement concepts are the tokamak and the stellarator. Different from a tokamak, the stellarator does not require a strong current in the plasma but generates the magnetic field by external coils only. This has significant advantages, e.g. better stability properties and inherent steady-state capability. But stellarators need optimization, since ad hoc chosen magnetic field geometries lead to insufficient confinement properties, unfavourable plasma equilibria, and loss of fast particles. Wendelstein 7-X is a large (plasma volume 30 m{sup 3}) stellarator device with shaped superconducting coils that were determined via pure physics optimization criteria. After 19 years of construction, Wendelstein 7-X has now started operation. This talk introduces into the stellarator concept as a candidate for a future fusion power plant, summarizes the optimization principles, and presents the first experimental results with Helium and Hydrogen high temperature plasmas. An outlook on the physics program and the main goals of the project is given, too.

  1. Controllers for high-performance nuclear fusion plasmas

    NARCIS (Netherlands)

    Baar, de M.R.

    2012-01-01

    A succesful nuclear fusion reactor will confine plasma at hig temperatures and densities, with low thermal losses. The workhorse of the nuclear fusion community is the tokamak, a toroidal device in which plasmas are confined by poloidal and toroidal magnetic fields. Ideally, the confirming magnetic

  2. Integrated Approach to Dense Magnetized Plasmas Applications in Nuclear Fusion Technology. Report of a Coordinated Research Project 2007-2011

    International Nuclear Information System (INIS)

    2013-04-01

    Through its coordinated research activities, the IAEA promotes the development and application of nuclear technologies in Member States. The scientific and technical knowledge required for the construction and operation of large nuclear fusion research facilities, including ITER and the Laser Megajoule in France, and the Z machine and the National Ignition Facility in the United States of America, necessitates several accompanying research and development programmes in physics and technology. This is particularly true in the areas of materials science and fusion technology. Hence, the long standing IAEA effort to conduct coordinated research projects (CRPs) in these areas is aimed at: (i) the development of appropriate technical tools to investigate the issue of materials damage and degradation in a fusion plasma environment; and (ii) the emergence of a knowledge based understanding of the various processes underlying materials damage and degradation, thereby leading to the identification of suitable candidate materials fulfilling the stringent requirements of a fusion environment in any next step facility. Dense magnetized plasma (DMP) devices serve as a first test bench for testing of fusion relevant plasma facing materials, diagnostic development and calibration, technologies and scaling to conceptual principles of larger devices while sophisticated testing facilities such as the International Fusion Materials Irradiation Facility (IFMIF) are being designed. The CRP on Integrated Approach to Dense Magnetized Plasmas Applications in Nuclear Fusion Technology described herein was initiated in 2007 with the participation of 12 research institutions in 8 Member States and was concluded in 2011. It was designed with specific research objectives falling into two main categories: support to mainstream fusion research and development of DMP technology. This publication is a compilation of the individual reports submitted by the 12 CRP participants. These reports discuss

  3. Compact magnetic confinement fusion: Spherical torus and compact torus

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2016-05-01

    Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.

  4. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  5. Fusion Engineering Device. Volume II. Design description

    International Nuclear Information System (INIS)

    1981-10-01

    This volume summarizes the design of the FED. It includes a description of the major systems and subsystems, the supporting plasma design analysis, a projected device cost and associated construction schedule, and a description of the facilities to house and support the device. This effort represents the culmination of the FY81 studies conducted at the Fusion Engineering Design Center (FEDC). Unique in these design activities has been the collaborative involvement of the Design Center personnel and numerous resource physicists from the fusion community who have made significant contributions in the physics design analysis as well as the physics support of the engineering design of the major FED systems and components

  6. FIRE, A Next Step Option for Magnetic Fusion

    International Nuclear Information System (INIS)

    Meade, D.M.

    2002-01-01

    The next major frontier in magnetic fusion physics is to explore and understand the strong nonlinear coupling among confinement, MHD stability, self-heating, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. The Fusion Ignition Research Experiment (FIRE) Design Study has been undertaken to define the lowest cost facility to attain, explore, understand, and optimize magnetically confined fusion-dominated plasmas. The FIRE is envisioned as an extension of the existing Advanced Tokamak Program that could lead to an attractive magnetic fusion reactor. The FIRE activities have focused on the physics and engineering assessment of a compact, high-field tokamak with the capability of achieving Q approximately equal to 10 in the ELMy H-mode for a duration of about 1.5 plasma current redistribution times (skin times) during an initial burning-plasma science phase, and the flexibility to add Advanced Tokamak hardware (e.g., lower-hybrid current drive) later. The configuration chosen for FIRE is similar to that of ARIES-RS, the U.S. Fusion Power Plant study utilizing an Advanced Tokamak reactor. The key ''Advanced Tokamak'' features are: strong plasma shaping, double-null pumping divertors, low toroidal field ripple ( 5) for a duration of 1 to 3 current redistribution times

  7. Assessment of liquid hydrogen cooled MgB2 conductors for magnetically confined fusion

    International Nuclear Information System (INIS)

    Glowacki, B A; Nuttall, W J

    2008-01-01

    Importantly environmental factors are not the only policy-driver for the hydrogen economy. Over the timescale of the development of fusion energy systems, energy security issues are likely to motivate a shift towards both hydrogen production and fusion as an energy source. These technologies combine local control of the system with the collaborative research interests of the major energy users in the global economy. A concept Fusion Island Reactor that might be used to generate H 2 (rather than electricity) is presented. Exploitation of produced hydrogen as a coolant and as a fuel is proposed in conjunction with MgB 2 conductors for the tokomak magnets windings, and electrotechnical devices for Fusion Island's infrastructure. The benefits of using MgB 2 over the Nb-based conductors during construction, operation and decommissioning of the Fusion Island Reactor are presented. The comparison of Nb 3 Sn strands for ITER fusion magnet with newly developed high field composite MgB 2 PIT conductors has shown that at 14 Tesla MgB 2 possesses better properties than any of the Nb 3 Sn conductors produced. In this paper the potential of MgB 2 conductors is examined for tokamaks of both the conventional ITER type and a Spherical Tokamak geometry. In each case MgB 2 is considered as a conductor for a range of field coil applications and the potential for operation at both liquid helium and liquid hydrogen temperatures is considered. Further research plans concerning the application of MgB 2 conductors for Fusion Island are also considered

  8. Feasibility study of a magnetic fusion production reactor

    Science.gov (United States)

    Moir, R. W.

    1986-12-01

    A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells

  9. Magnetic Fusion Energy Technology Fellowship Program: Summary of program activities for calendar year 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This report summarizes the activities of the US Department of Energy (DOE) Magnetic Fusion Energy Technology Fellowship program (MFETF) for the 1985 calendar year. The MFETF program has continued to support the mission of the Office of Fusion Energy (OFE) and its Division of Development and Technology (DDT) by ensuring the availability of appropriately trained engineering manpower needed to implement the OFE/DDT magnetic fusion energy agenda. This program provides training and research opportunities to highly qualified students at DOE-designated academic, private sector, and government magnetic fusion energy institutions. The objectives of the Magnetic Fusion Energy Technology Fellowship program are: (1) to provide support for graduate study, training, and research in magnetic fusion energy technology; (2) to ensure an adequate supply of appropriately trained manpower to implement the nation's magnetic fusion energy agenda; (3) to raise the visibility of careers in magnetic fusion energy technology and to encourage students to pursue such careers; and (4) to make national magnetic fusion energy facilities available for manpower training

  10. Electromagnetic computations for fusion devices

    International Nuclear Information System (INIS)

    Turner, L.R.

    1989-09-01

    Among the difficulties in making nuclear fusion a useful energy source, two important ones are producing the magnetic fields needed to drive and confine the plasma, and controlling the eddy currents induced in electrically conducting components by changing fields. All over the world, researchers are developing electromagnetic codes and employing them to compute electromagnetic effects. Ferromagnetic components of a fusion reactor introduce field distortions. Eddy currents are induced in the vacuum vessel, blanket and other torus components of a tokamak when the plasma current disrupts. These eddy currents lead to large forces, and 3-D codes are being developed to study the currents and forces. 35 refs., 6 figs

  11. Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion

    Science.gov (United States)

    Qiao, Tiezhu; Chen, Lulu; Pang, Yusong; Yan, Gaowei

    2018-06-01

    Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.

  12. Advanced neutral gas diagnostics for magnetic confinement devices

    International Nuclear Information System (INIS)

    Wenzel, U.; Schlisio, G.; Marquardt, M.; Pedersen, T.S.; Kremeyer, T.; Schmitz, O.; Mackie, B.; Maisano-Brown, J.

    2017-01-01

    For the study of particle exhaust in nuclear fusion devices the neutral pressure must be measured in strong magnetic fields. We describe as an example the neutral pressure gauges in the Wendelstein 7-X stellarator. Two types are used: hot cathode ionization gauges (or ASDEX pressure gauges) and Penning gauges. We show some results from the first experimental campaign. The main problems were runtime effects and the failure of some ASDEX pressure gauges. To improve the reliability we integrated a new LaB 6 electron emitter into the ASDEX pressure gauges. In addition, a special Penning gauge without permanent magnets was developed in order to operate Penning gauges near the plasma edge. These new pressure gauges will be used in the upcoming campaign of Wendelstein 7-X.

  13. Review of alternative concepts for magnetic fusion

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1980-01-01

    Although the Tokamak represents the mainstay of the world's quest for magnetic fusion power, with the tandem mirror serving as a primary backup concept in the US fusion program, a wide range of alternative fusion concepts (AFC's) have been and are being pursued. This review presents a summary of past and present reactor projections of a majority of AFC's. Whenever possible, quantitative results are given

  14. Fusion research at ORNL

    International Nuclear Information System (INIS)

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress

  15. Aspects of safety and reliability for fusion magnet systems first annual report

    International Nuclear Information System (INIS)

    Powell, J.

    1976-01-01

    General systems aspects of fusion magnet safety are examined first, followed by specific detailed analyses covering structural, thermal, electrical, and other aspects of fusion magnet safety. The design examples chosen for analysis are illustrative and are not intended to be definitive, since fusion magnet designs are rapidly evolving. Included is a comprehensive collection of design and operating data relating to the safety of existing superconducting magnet systems. The remainder of the overview lists the main conclusions developed from the work to date. These should be regarded as initial steps. Since this study has concentrated on examining potential safety concerns, it may tend to overemphasize the problems of fusion magnets. In fact, many aspects of fusion magnets are well developed and are consistent with good safety practice. A short summary of the findings of this study is given

  16. Design, construction, and characterization of high-performance membrane fusion devices with target-selectivity.

    Science.gov (United States)

    Kashiwada, Ayumi; Yamane, Iori; Tsuboi, Mana; Ando, Shun; Matsuda, Kiyomi

    2012-01-31

    Membrane fusion proteins such as the hemagglutinin glycoprotein have target recognition and fusion accelerative domains, where some synergistically working elements are essential for target-selective and highly effective native membrane fusion systems. In this work, novel membrane fusion devices bearing such domains were designed and constructed. We selected a phenylboronic acid derivative as a recognition domain for a sugar-like target and a transmembrane-peptide (Leu-Ala sequence) domain interacting with the target membrane, forming a stable hydrophobic α-helix and accelerating the fusion process. Artificial membrane fusion behavior between the synthetic devices in which pilot and target liposomes were incorporated was characterized by lipid-mixing and inner-leaflet lipid-mixing assays. Consequently, the devices bearing both the recognition and transmembrane domains brought about a remarkable increase in the initial rate for the membrane fusion compared with the devices containing the recognition domain alone. In addition, a weakly acidic pH-responsive device was also constructed by replacing three Leu residues in the transmembrane-peptide domain by Glu residues. The presence of Glu residues made the acidic pH-dependent hydrophobic α-helix formation possible as expected. The target-selective liposome-liposome fusion was accelerated in a weakly acidic pH range when the Glu-substituted device was incorporated in pilot liposomes. The use of this pH-responsive device seems to be a potential strategy for novel applications in a liposome-based delivery system. © 2011 American Chemical Society

  17. Compact magnetic fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1983-12-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak/sup 1/ and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics.

  18. Compact magnetic fusion systems

    International Nuclear Information System (INIS)

    Linford, R.K.

    1983-01-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak 1 and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics

  19. Global numerical modeling of magnetized plasma in a linear device

    DEFF Research Database (Denmark)

    Magnussen, Michael Løiten

    Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion dev...... with simulations performed at different ionization levels, using a simple model for plasma interaction with neutrals. It is found that the steady state and the saturated state of the system bifurcates when the neutral interaction dominates the electron-ion collisions.......Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion...... devices, and are easier to diagnose due to lower temperatures and a better access to the plasma. In order to gain greater insight into this complex turbulent behavior, numerical simulations of plasma in a linear device are performed in this thesis. Here, a three-dimensional drift-fluid model is derived...

  20. Magnetic confinement in plasmas in nuclear devices

    International Nuclear Information System (INIS)

    Tull, C.G.

    1979-01-01

    The main emphasis of the magnetic fusion energy research program today lies in the development of two types of confinement schemes: magnetic mirrors and tokamaks. Experimental programs for both of these confinement schemes have shown steady progress toward achieving fusion power breakeven. The scaling of the current machines to a reactor operating regime and newly developed methods for plasma heating will very likely produce power breakeven within the next decade. Predictions are that the efficiency in a fusion power plant should exceed 32%

  1. Superconductivity and fusion energy—the inseparable companions

    Science.gov (United States)

    Bruzzone, Pierluigi

    2015-02-01

    Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.

  2. Magnetic sensor device

    NARCIS (Netherlands)

    2009-01-01

    The present invention provides a sensor device and a method for detg. the presence and/or amt. of target moieties in a sample fluid, the target moieties being labeled with magnetic or magnetizable objects. The sensor device comprises a magnetic field generating means adapted for applying a retention

  3. Lower activation materials and magnetic fusion reactors

    International Nuclear Information System (INIS)

    Conn, R.W.; Bloom, E.E.; Davis, J.W.; Gold, R.E.; Little, R.; Schultz, K.R.; Smith, D.L.; Wiffen, F.W.

    1984-01-01

    Radioactivity in fusion reactors can be effectively controlled by materials selection. The detailed relationship between the use of a material for construction of a magnetic fusion reactor and the material's characteristics important to waste disposal, safety, and system maintainability has been studied. The quantitative levels of radioactivation are presented for many materials and alloys, including the role of impurities, and for various design alternatives. A major outcome has been the development of quantitative definitions to characterize materials based on their radioactivation properties. Another key result is a four-level classification scheme to categorize fusion reactors based on quantitative criteria for waste management, system maintenance, and safety. A recommended minimum goal for fusion reactor development is a reference reactor that (a) meets the requirements for Class C shallow land burial of waste materials, (b) permits limited hands-on maintenance outside the magnet's shield within 2 days of a shutdown, and (c) meets all requirements for engineered safety. The achievement of a fusion reactor with at least the characteristics of the reference reactor is a realistic goal. Therefore, in making design choices or in developing particular materials or alloys for fusion reactor applications, consideration must be given to both the activation characteristics of a material and its engineering practicality for a given application

  4. LLL magnetic fusion research: the first 25 years

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    From its inception, the Laboratory has supported research directed at tapping controlled fusion. Our magnetic fusion energy program--now one of the major elements of the national fusion energy research effort--dates back to the Laboratory's founding in 1952. This article reviews the program's beginnings, progress, and present status in terms of its ultimate goal: to demonstrate a practical and economical means of generating power from controlled fusion reactions

  5. Engineering challenges encountered in the design of the ELMO BUMPY TORUS proof-of-principle fusion device

    International Nuclear Information System (INIS)

    Dillow, C.F.; Imster, H.F.

    1982-01-01

    This paper first provides a summary of the history and current status of the Elmo Bumpy Torus (EBT) fusion concept. A brief description of the EBT-P is then provided in which the many unique features of this fusion device are highlighted. This description will provide the technical background for the following discussions of some of the more challenging mechanical engineering problems encountered to date in the evolution of the EBT-P design. The problems discussed are: optimization of the device primary structure design, optimization of the superconducting magnet x-ray shield design, design of the liquid helium supply and distribution system, and selection of high vacuum seals and pumps and their protection from the high power microwave environment. The common challenge in each of these design issues was to assure adequate performance at minimum cost

  6. Engineering design of a toroidal divertor for the EBT-S fusion device. Final report, Phase II. EBT-S divertor project

    International Nuclear Information System (INIS)

    Mai, L.P.; Malick, F.S.

    1981-01-01

    The mechanical, structural, thermal, electrical, and vacuum design of a magnetic toroidal divertor system for the Elmo Bumpy Torus (EBT-S) is presented. The EBT-S is a toroidal magnetic fusion device located at the ORNL that operates under steady state conditions. The engineering of the divertor was performed during the second of three phases of a program aimed at the selection, design, fabrication, and installation of a magnetic divertor for EBT-S. The magnetic analysis of the toroidal divertor was performed during Phase I of the program and has been reported in a separate document. In addition to the details of the divertor design, the modest modifications that are required to the EBT-S device and facility to accommodate the divertor system are presented

  7. Progress In Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; hide

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  8. Generic structural mechanics aspects of fusion magnet systems

    International Nuclear Information System (INIS)

    Reich, M.; Powell, J.R.

    1980-01-01

    Structural mechanic requirements for future large superconducting fusion magnets are assessed. Current structural analysis methods and standards do not yet appear sufficient for a complete evaluation of such systems, under all potential operating and accident conditions. Recommendations are made for development of needed structural methods and specialized standards for fusion magnets. These include, among others, better composite structural methods with various failure criteria for metallic, as well as non-metallic materials, coupled thermal-electrical-structural codes, incorporating winding and fabrication effects, and use of probabilistic methods for life prediction. In order to help meet program goals for fusion commericialization, it is recommended that such work be initiated relatively soon. (orig.)

  9. Safety of magnetic fusion facilities: Volume 2, Guidance

    International Nuclear Information System (INIS)

    1995-01-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment

  10. Review of compact, alternate concepts for magnetic confinement fusion

    International Nuclear Information System (INIS)

    Nickerson, S.B.; Shmayda, W.T.; Dinner, P.J.; Gierszewski, P.

    1984-06-01

    This report documents a study of compact alternate magnetic confinement fusion experiments and conceptual reactor designs. The purpose of this study is to identify those devices with a potential to burn tritium in the near future. The bulk of the report is made up of a review of the following compact alternates: compact toroids, high power density tokamaks, linear magnetic systems, compact mirrors, reversed field pinches and some miscellaneous concepts. Bumpy toruses and stellarators were initially reviewed but were not pursued since no compact variations were found. Several of the concepts show promise of either burning tritium or evolving into tritium burning devices by the early 1990's: RIGGATRON, Ignitor, OHTE, Frascati Tokamak upgrade, several driven (low or negative net power) mirror experiments and several Reversed Field Pinch experiments that may begin operation around 1990. Of the above only the Frascati Tokamak Upgrade has had funds allocated. Also identified in this report are groups who may have tritium burning experiments in the mid to late 1990's. There is a discussion of the differences between the reviewed devices and the mainline tokamak experiments. This discussion forms the basis of recommendations for R and D aimed at the compact alternates and the applicability of the present CFFTP program to the needs of the compact alternates. These recommendations will be presented in a subsequent report

  11. Centralized supercomputer support for magnetic fusion energy research

    International Nuclear Information System (INIS)

    Fuss, D.; Tull, G.G.

    1984-01-01

    High-speed computers with large memories are vital to magnetic fusion energy research. Magnetohydrodynamic (MHD), transport, equilibrium, Vlasov, particle, and Fokker-Planck codes that model plasma behavior play an important role in designing experimental hardware and interpreting the resulting data, as well as in advancing plasma theory itself. The size, architecture, and software of supercomputers to run these codes are often the crucial constraints on the benefits such computational modeling can provide. Hence, vector computers such as the CRAY-1 offer a valuable research resource. To meet the computational needs of the fusion program, the National Magnetic Fusion Energy Computer Center (NMFECC) was established in 1974 at the Lawrence Livermore National Laboratory. Supercomputers at the central computing facility are linked to smaller computer centers at each of the major fusion laboratories by a satellite communication network. In addition to providing large-scale computing, the NMFECC environment stimulates collaboration and the sharing of computer codes and data among the many fusion researchers in a cost-effective manner

  12. Plasma behavior and plasma-wall interaction in magnetic fusion divices

    International Nuclear Information System (INIS)

    Ohtsuka, Hideo

    1984-10-01

    To study the fundamental behavior of plasma in magnetic field is the main subject in the early stage of the magnetic fusion research. At the next stage, it is necessary to overcome some actual problems in order to attain reactor grade plasmas. One of them is to control impurities in the plasma. In these points of view, we carried out several experiments or theoretical analyses. Firstly, anomalous loss mechanisms in magnetic field were investigated in a toroidal multipole device JFT-1 and the role of motions of charged particles in the magnetic field was exhibited. Various measurements of plasma in the scrape-off layer were made in a divertor tokamak JFT-2a and in an ordinary tokamak JFT-2. The former study demonstrated the first successful divertor operation of the tokamak device and the latter one clarified the mechanism of arcing on the tokamak first wall. As to arcing, a new theory which describes the retrograde motion, the well known strange motion of arcs in a magnetic field, was proposed. Good agreement with the experimental results was shown. Finally, by considering a zero-dimensional sputtering model a self-consistent relation between light and metal impurities in tokamak plasmas was obtained. It was shown that the relation well describes some fundamental aspects of the plasma-wall interaction. As a conclusion, the importance of simple behavior of charged particles in magnetic fields was pointed out not only for the plasma confinement but also for the plasma-wall interaction. (author)

  13. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Use of deuterium-tritium burning fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control, (2) neutron activation of structural materials, fluid streams and reactor hall environment, (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions, (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices, and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power

  14. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  15. Fusion Yield Enhancement in Magnetized Laser-Driven Implosions

    International Nuclear Information System (INIS)

    Chang, P. Y.; Fiksel, G.; Hohenberger, M.; Knauer, J. P.; Marshall, F. J.; Betti, R.; Meyerhofer, D. D.; Seguin, F. H.; Petrasso, R. D.

    2011-01-01

    Enhancement of the ion temperature and fusion yield has been observed in magnetized laser-driven inertial confinement fusion implosions on the OMEGA Laser Facility. A spherical CH target with a 10 atm D 2 gas fill was imploded in a polar-drive configuration. A magnetic field of 80 kG was embedded in the target and was subsequently trapped and compressed by the imploding conductive plasma. As a result of the hot-spot magnetization, the electron radial heat losses were suppressed and the observed ion temperature and neutron yield were enhanced by 15% and 30%, respectively.

  16. Computing for magnetic fusion energy research: The next five years

    International Nuclear Information System (INIS)

    Mann, L.; Glasser, A.; Sauthoff, N.

    1991-01-01

    This report considers computing needs in magnetic fusion for the next five years. It is the result of two and a half years of effort by representatives of all aspects of the magnetic fusion community. The report also factors in the results of a survey that was distributed to the laboratories and universities that support fusion. There are four areas of computing support discussed: theory, experiment, engineering, and systems

  17. Health physics appraisal guidelines for fusion/confinement devices

    International Nuclear Information System (INIS)

    Neeson, P.M.

    1987-01-01

    Several types of fusion/confinement devices have been developed for a variety of research applications. The health physics considerations for these devices can vary, depending on a number of parameters. This paper presents guidelines for health physics appraisal of such devices, which can be tailored to apply to specific systems. The guidelines can also be useful for establishing ongoing health physics programs for safe operation of the devices

  18. Fusion Energy Advisory Committee report on program strategy for US magnetic fusion energy research

    International Nuclear Information System (INIS)

    Conn, R.W.; Berkner, K.H.; Culler, F.L.; Davidson, R.C.; Dreyfus, D.A.; Holdren, J.P.; McCrory, R.L.; Parker, R.R.; Rosenbluth, M.N.; Siemon, R.E.; Staudhammer, P.; Weitzner, H.

    1992-09-01

    The Fusion Energy Advisory Committee (FEAC) was charged by the Department of Energy (DOE) with developing recommendations on how best to pursue the goal of a practical magnetic fusion reactor in the context of several budget scenarios covering the period FY 1994-FY 1998. Four budget scenarios were examined, each anchored to the FY 1993 figure of $337.9 million for fusion energy (less $9 million for inertial fusion energy which is not examined here)

  19. Multilayer mirror based monitors for impurity controls in large fusion reactor type devices

    International Nuclear Information System (INIS)

    Regan, S.P.; May, M.J.; Soukhanovskii, V.; Finkenthal, M.; Moos, H.W.

    1995-01-01

    Multilayer Mirror (MLM) based monitors are compact, high throughput diagnostics capable of extracting XUV emissions (the wavelength range including the soft-x-ray and the extreme ultraviolet, 10 angstrom to 304 angstrom) of impurities from the harsh environment of large fusion reactor type devices. For several years the Plasma Spectroscopy Group at Johns Hopkins University has investigated the application of MLM based XUV spectroscopic diagnostics for magnetically confined fusion plasmas. MLM based monitors have been constructed for and extensively used on DIII-D, Alcator C-mod, TEXT, Phaedrus-T, and CDX-U tokamaks to study the impurity behavior of elements ranging from He to Mo. On ITER MLM based devices would be used to monitor the spectral line emissions from Li I-like to F I-like charge states of Fe, Cr, and Ni, as well as extractors for the bands of emissions from high Z elements such as Mo or W for impurity controls of the fusion plasma. In addition to monitoring the impurity emissions from the main plasma, MLM based devices can also be adapted for radiation measurements of low Z elements in the divertor. The concepts and designs of these MLM based monitors for impurity controls in ITER will be presented. The results of neutron irradiation experiments of the MLMs performed in the Los Alamos Spallation Radiation Effects Facility (LASREF) at the Los Alamos National Laboratory will also be discussed. These preliminary neutron exposure studies show that the dispersive and reflective qualities of the MLMs were not affected in a significant manner

  20. Trends and developments in magnetic confinement fusion reactor concepts

    International Nuclear Information System (INIS)

    Baker, C.C.; Carlson, G.A.; Krakowski, R.A.

    1981-01-01

    An overview is presented of recent design trends and developments in reactor concepts for magnetic confinement fusion. The paper emphasizes the engineering and technology considerations of commercial fusion reactor concepts. Emphasis is placed on reactors that operate on the deuterium/tritium/lithium fuel cycle. Recent developments in tokamak, mirror, and Elmo Bumpy Torus reactor concepts are described, as well as a survey of recent developments on a wide variety of alternate magnetic fusion reactor concepts. The paper emphasizes recent developments of these concepts within the last two to three years

  1. The scientific status of fusion

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1989-01-01

    The development of fusion energy has been a large-scale scientific undertaking of broad interest. The magnetic plasma containment in tokamaks and the laser-drive ignition of microfusion capsules appear to be scientifically feasible sources of energy. These concepts are bounded by questions of required intensity in magnetid field and plasma currents or in drive energy and, for both concepts, by issues of plasma stability and energy transport. The basic concept and the current scientific issues are described for magnetic fusion and for the interesting, but likely infeasible, muon-catalyzed fusion concept. Inertial fusion is mentioned, qualitatively, to complete the context. For magnetic fusion, the required net energy production within the plasma may be accomplished soon, but the more useful goal of self-sustained plasma ignition requires a new device of somewhat uncertain (factor of 2) cost and size. (orig.)

  2. MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES

    Science.gov (United States)

    Post, R.F.

    1963-08-20

    More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)

  3. Cost assessment of a generic magnetic fusion reactor

    International Nuclear Information System (INIS)

    Sheffield, J.; Dory, R.A.; Cohn, S.M.; Delene, J.G.; Parsly, L.F.; Ashby, D.E.T.F.; Reiersen, W.T.

    1986-03-01

    A generic reactor model is used to examine the economic viability of generating electricity by magnetic fusion. The simple model uses components that are representative of those used in previous reactor studies of deuterium-tritium-burning tokamaks, stellarators, bumpy tori, reversed-field pinches (RFPs), and tandem mirrors. Conservative costing assumptions are made. The generic reactor is not a tokamak; rather, it is intended to emphasize what is common to all magnetic fusion rectors. The reactor uses a superconducting toroidal coil set to produce the dominant magnetic field. To this extent, it is not as good an approximation to systems such as the RFP in which the main field is produced by a plasma current. The main output of the study is the cost of electricity as a function of the weight and size of the fusion core - blanket, shield, structure, and coils. The model shows that a 1200-MW(e) power plant with a fusion core weight of about 10,000 tonnes should be competitive in the future with fission and fossil plants. Studies of the sensitivity of the model to variations in the assumptions show that this result is not sensitively dependent on any given assumption. Of particular importance is the result that a fusion reactor of this scale may be realized with only moderate advances in physics and technology capabilities

  4. Studies on advanced superconductors for fusion device. Pt. 2. Metallic superconductors other than Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, K.; Yamamoto, J.; Mito, T. [eds.

    1997-03-01

    A comprehensive report on the present status of the development of Nb{sub 3}Sn superconductors was published as the NIFS-MEMO-20 in March, 1996 (Part 1 of this report series). The second report of this study covers various progress so far achieved in the research and development on advanced metallic superconductors other than Nb{sub 3}Sn. Among different A15 crystal-type compounds, Nb{sub 3}Al has been fabricated into cables with large current-carrying capacity for fusion device referring its smaller sensitivity to mechanical strain than Nb{sub 3}Sn. Other high-field A15 superconductors, e.g. V{sub 3}Ga, Nb{sub 3}Ge and Nb{sub 3}(Al,Ge), have been also fabricated through different novel processes as promising alternatives to Nb{sub 3}Sn conductors. Meanwhile, B1 crystal-type NbN and C15 crystal-type V{sub 2}(Hf,Zr) high-field superconductors are characterized by their excellent tolerance to mechanical strain and neutron irradiation. Chevrel-type PbMo{sub 6}S{sub 8} compound has gained much interests due to its extremely high upper critical field. In addition, this report includes the recent progress in ultra-fine filamentary NbTi wires for AC use, and that in NbTi/Cu magnetic shields necessary in the application of high magnetic field. The data on the decay of radioactivity in a variety of metals relating to fusion superconducting magnet are also attached as appendices. We hope that this report might contribute substantially as a useful reference for the planning of fusion apparatus of next generation as well as that of other future superconducting devices. (author)

  5. Magnetic mirror fusion: status and prospects

    International Nuclear Information System (INIS)

    Post, R.F.

    1980-01-01

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed

  6. Technology of mirror machines: LLL facilities for magnetic mirror fusion experiments

    International Nuclear Information System (INIS)

    Batzer, T.H.

    1977-01-01

    Significant progress in plasma confinement and temperature has been achieved in the 2XIIB facility at Livermore. These encouraging results, and their theoretical corroboration, have provided a firm basis for the design of a new generation of magnetic mirror experiments, adding support to the mirror concept of a fusion reactor. Two new mirror experiments have been proposed to succeed the currently operating 2XIIB facility. The first of these called TMX (Tandem Mirror Experiment) has been approved and is currently under construction. TMX is designed to utilize the intrinsic positive plasma potential of two strong, and relatively small, minimum B mirror cells to enhance the confinement of a much larger, magnetically weaker, centrally-located mirror cell. The second facility, MFTF (Mirror Fusion Test Facility), is currently in preliminary design with line item approval anticipated for FY 78. MFTF is designed primarily to exploit the experimental and theoretical results derived from 2XIIB. Beyond that, MFTF will develop the technology for the transition from the present small mirror experiments to large steady-state devices such as the mirror FERF/FTR. The sheer magnitude of the plasma volume, magnetic field, neutral beam power, and vacuum pumping capacity, particularly in the case of MFTF, has placed new and exciting demands on engineering technology. An engineering overview of MFTF, TMX, and associated MFE activities at Livermore will be presented

  7. Superconducting magnet radiation limit considerations for fusion reactors

    International Nuclear Information System (INIS)

    Sawan, M.E.; Walstrom, P.L.

    1986-01-01

    The radiation limits for fusion reactor magnets have a direct impact on the cost of electricity. For example, reducing the inboard shield by 1 cm saves up to $3 million in the Tokamak Fusion Core Experiment cost. The magnet components most sensitive to radiation damage are the superconductor, stabilizer, and insulators. Nuclear heating in the magnet affects the design and also impacts the economic performance of the reactor through increased refrigeration costs. The radiation effects in the different components of the magnet are related, as all of them are determined by the flux level in the magnet. Hence, in efforts to push radiation limits, these effects should be considered simultaneously. Furthermore, the levels of radiation effects that correspond to the optimum nuclear heating determined from economic trade-off analysis will be useful in specifying the fluence, dose, and stabilization limit goals for the magnet development program. In this paper, we review the available irradiation data and assess the need for achieving higher irradiation levels

  8. Process and device for energy production from thermonuclear fusion reactions

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, Bruno.

    1977-01-01

    An energy generating system is described using a fusion reaction. It includes several contrivances for confining a plasma in an area, a protective device around a significant part of each of these confinement contrivances, an appliance for introducing a fusion reaction fuel in each of the confinements so that the plasma may be formed. Each confinement can be separated from the protective device so that it may be replaced by another. The system is connected to the confinements, to the protective devices or to both. It enables the thermal energy to be extracted and transformed into another form, electric, mechanical or both [fr

  9. Magnetic field considerations in fusion power plant environs

    International Nuclear Information System (INIS)

    Liemohn, H.B.; Lessor, D.L.; Duane, B.H.

    1976-09-01

    A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic fields, and (7) magnetic field transients from tokamak malfunctions

  10. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  11. Impurity studies in fusion devices using laser-fluorescence-spectroscopy

    International Nuclear Information System (INIS)

    Husinsky, W.R.

    1980-08-01

    Resonance fluorescence excitation of neutral atoms using tunable radiation from dye lasers offers a number of unique advantages for impurity studies in fusion devices. Using this technique, it is possible to perform local, time-resolved measurements of the densities and velocity distributions of metallic impurities in fusion devices without disturbing the plasma. Velocities are measured by monitoring the fluorescence intensity while tuning narrow bandwidth laser radiation through the Doppler - broadened absorbtion spectrum of the transition. The knowledge of the velocity distribution of neutral impurities is particularly useful for the determination of impurity introduction mechanisms. The laser fluorescence technique will be described in terms of its application to metallic impurities in fusion devices and related laboratory experiments. Particular attention will be given to recent results from the ISX-B tokamak using pulsed dye lasers where detection sensitivities for neutral Fe of 10 6 atoms/cm 3 with a velocity resolution of 600 m/sec (0.1 eV) have been achieved. Techniques for exciting plasma particles (H,D) will also be discussed

  12. Environmental development plan: magnetic fusion

    International Nuclear Information System (INIS)

    1979-09-01

    This Environmental Development Plan (EDP) identifies the planning and management requirements and schedules needed to evaluate and assess the environmental, health and safety (EH and S) aspects of the Magnetic Fusion Energy Program (MFE). Environment is defined to include the environmental, health (occupational and public), and safety aspects

  13. Exploring liquid metal plasma facing component (PFC) concepts-Liquid metal film flow behavior under fusion relevant magnetic fields

    International Nuclear Information System (INIS)

    Narula, M.; Abdou, M.A.; Ying, A.; Morley, N.B.; Ni, M.; Miraghaie, R.; Burris, J.

    2006-01-01

    The use of fast moving liquid metal streams or 'liquid walls' as a plasma contact surface is a very attractive option and has been looked upon with considerable interest over the past several years, both by the plasma physics and fusion engineering programs. Flowing liquid walls provide an ever replenishing contact surface to the plasma, leading to very effective particle pumping and surface heat flux removal. A key feasibility issue for flowing liquid metal plasma facing component (PFC) systems, pertains to their magnetohydrodynamic (MHD) behavior under the spatially varying magnetic field environment, typical of a fusion device. MHD forces hinder the development of a smooth and controllable liquid metal flow needed for PFC applications. The present study builds up on the ongoing research effort at UCLA, directed towards providing qualitative and quantitative data on liquid metal free surface flow behavior under fusion relevant magnetic fields

  14. Overview of FAR-TECH's magnetic fusion energy research

    Science.gov (United States)

    Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.

    2017-10-01

    FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.

  15. Magnet operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries

  16. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    International Nuclear Information System (INIS)

    Lee, W.W.; Ethier, S.; Kolesnikov, R.; Wang, W.X.; Tang, W.M.

    2007-01-01

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers

  17. Acoustically Driven Magnetized Target Fusion At General Fusion: An Overview

    Science.gov (United States)

    O'Shea, Peter; Laberge, M.; Donaldson, M.; Delage, M.; the Fusion Team, General

    2016-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma of about 1e23 m-3, 100eV, 7 Tesla, 20 cm radius, >100 μsec life with a 1000x volume compression in 100 microseconds. If near adiabatic compression is achieved, the final plasma of 1e26 m-3, 10keV, 700 Tesla, 2 cm radius, confined for 10 μsec would produce interesting fusion energy gain. General Fusion (GF) is developing an acoustic compression system using pneumatic pistons focusing a shock wave on the CT plasma in the center of a 3 m diameter sphere filled with liquid lead-lithium. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although acoustic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated Aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the acoustic driver front.

  18. Use of high temperature superconductors for future fusion magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Fietz, W H [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Celentano, G; Della Corte, A [Superconductivity Division, ENEA - Frascati Research Center, Frascati (Italy); Goldacker, W; Heller, R; Komarek, P; Kotzyba, G; Nast, R; Obst, B; Schlachter, S I; Schmidt, C; Zahn, G [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Karlsruhe (Germany); Pasztor, G; Wesche, R [Centre de Recherches en Physique des Plasmas, Villingen (Switzerland); Salpietro, E; Vostner, A [European Fusion Development Agreement, Close Support Unit, Garching (Germany)

    2005-01-01

    With the construction of ITER the feasibility of a fusion machine will be demonstrated. To commercialize fusion it is essential to keep losses as small as possible in future fusion power plants. One major component where losses can be strongly reduced is the cooling system. For example in ITER where efficiency is not a major goal, a cooling power of 64 kW at 4.4 K is foreseen taking more than 20 MW electric power. Considering the size of future commercial fusion machines this consumption of electric power for cooling will even be higher. With a magnet system working at 20 K a fusion machine would work more efficient by a factor of 5-10 with respect to electric power consumption for cryogenics. Even better than that, would be a machine with a magnet system operating at 65 K to 77 K. In this case liquid nitrogen could be used as coolant saving money for investment and operation costs. Such an increase in the operating temperature of the magnet system can be achieved by the use of High- Temperature Superconductors (HTS). In addition the use of HTS would allow much smaller efforts for thermal shielding and alternative thermal insulation concepts may be possible, e.g. for an HTS bus bar system. This contribution will give an overview about status, promises and challenges of HTS conductors on the way to an HTS fusion magnet system beyond ITER. (author)

  19. Local wall power loading variations in thermonuclear fusion devices

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1989-01-01

    A 2 1/2-dimensional geometric model is presented that allows calculation of power loadings at various points on the first wall of a thermonuclear fusion device. Given average wall power loadings for brems-strahlung, cyclotron radiation charged particles, and neutrons, which are determined from various plasma-physics computation models, local wall heat loads are calculated by partitioning the plasma volume and surface into cells and superimposing the heating effects of the individual cells on selected first-wall differential areas. Heat loads from the entire plasma are thus determined as a function of position on the first-wall surface. Significant differences in local power loadings were found for most fusion designs, and it was therefore concluded that the effect of local power loading variations must be taken into account when calculating temperatures and heat transfer rates in fusion device first walls

  20. Device configuration-management system

    International Nuclear Information System (INIS)

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information

  1. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  2. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management

  3. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    Science.gov (United States)

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  4. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)

    International Nuclear Information System (INIS)

    Smith, Roger J.

    2008-01-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B pol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T e , n e , and B || along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n e B || product and higher n e and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  5. Fusion energy division annual progress report, period ending December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.

  6. Fusion energy division annual progress report, period ending December 31, 1980

    International Nuclear Information System (INIS)

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is the extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities

  7. Magnetized Target Fusion (MTF): A Low-Cost Fusion Development Path

    International Nuclear Information System (INIS)

    Lindemuth, I.R.; Siemon, R.E.; Kirkpatrick, R.C.; Reinovsky, R.E.

    1998-01-01

    Simple transport-based scaling laws are derived to show that a density and time regime intermediate between conventional magnetic confinement and conventional inertial confinement offers attractive reductions in system size and energy when compared to magnetic confinement and attractive reductions in heating power and intensity when compared to inertial confinement. This intermediate parameter space appears to be readily accessible by existing and near term pulsed power technologies. Hence, the technology of the Megagauss conference opens up an attractive path to controlled thermonuclear fusion

  8. Accelerated plan to develop magnetic fusion energy

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1986-01-01

    We have shown that, despite funding delays since the passage of the Magnetic Fusion Engineering Act of 1980, fusion development could still be carried to the point of a demonstration plant by the year 2000 as called for in the Act if funding, now about $365 million per year, were increased to the $1 billion range over the next few years (see Table I). We have also suggested that there may be an economic incentive for the private sector to become in accelerating fusion development on account of the greater stability of energy production costs from fusion. Namely, whereas fossil fuel prices will surely escalate in the course of time, fusion fuel will always be abundantly available at low cost; and fusion technology poses less future risk to the public and the investor compared to conventional nuclear power. In short, once a fusion plant is built, the cost of generating electricity mainly the amortization of the plant capital cost - would be relatively fixed for the life of the plant. In Sec. V, we found that the projected capital cost of fusion plants ($2000 to $4000 per KW/sub e/) would probably be acceptable if fusion plants were available today

  9. Novel Magnetic Devices

    National Research Council Canada - National Science Library

    Schuller, Ivan

    2007-01-01

    ...: ballistic magnetoresistance, magnetic field proximity effect and spin drag. These three phenomena would then be exploited for the design of novel device architectures and to investigate the physical principles behind these devices...

  10. Introduction to magnetic fusion reactor design

    International Nuclear Information System (INIS)

    Watanabe, Kenji

    1988-01-01

    Trend of the tokamak reactor design works so far carried out is reviewed, and method of conceptual design for commercial fusion reactor is critically considered concerning the black-box conpepts. System-framework of the engineering of magnetic fusion (commercial) reactor design is proposed as four steps. Based on it the next design studies are recommended in parallel approaches for making real-overcome of reactor material problem, from the view point of technological realization and not from the economical one. Real trials are involved. (author)

  11. Database for fusion devices and associated fuel systems

    International Nuclear Information System (INIS)

    Woolgar, P.W.

    1983-03-01

    A computerized database storage and retrieval system has been set up for fusion devices and the associated fusion fuel systems which should be a useful tool for the CFFTP program and other users. The features of the Wang 'Alliance' system are discussed for this application, as well as some of the limitations of the system. Recommendations are made on the operation, upkeep and further development that should take place to implement and maintain the system

  12. Personnel Safety for Future Magnetic Fusion Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee Cadwallader

    2009-07-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  13. Personnel Safety for Future Magnetic Fusion Power Plants

    International Nuclear Information System (INIS)

    Cadwallader, Lee

    2009-01-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  14. Flexible magnetic thin films and devices

    Science.gov (United States)

    Sheng, Ping; Wang, Baomin; Li, Runwei

    2018-01-01

    Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).

  15. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  16. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  17. Fusion Energy Division annual progress report, period ending December 31, 1989

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report

  18. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs

  19. Safety of superconducting fusion magnets: twelve problem areas

    International Nuclear Information System (INIS)

    Turner, L.R.

    1979-05-01

    Twelve problem areas of superconducting magnets for fusion reaction are described. These are: Quench Detection and Energy Dump, Stationary Normal Region of Conductor, Current Leads, Electrical Arcing, Electrical Shorts, Conductor Joints, Forces from Unequal Currents, Eddy Current Effects, Cryostat Rupture, Vacuum Failure, Fringing Field and Instrumentation for Safety. Each is described under the five categories: Identification and Definition, Possible Safety Effects, Current Practice, Adequacy of Current Practice for Fusion Magnets and Areas Requiring Further Analytical and Experimental Study. Priorities among these areas are suggested; application is made to the Large Coil Project at Oak Ridge National Laboratory

  20. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  1. Plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L.

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak

  2. Fusion Energy Division annual progress report period ending December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  3. Fusion Energy Division annual progress report period ending December 31, 1983

    International Nuclear Information System (INIS)

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth

  4. Controlled thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10 20 sec m -3 , the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation

  5. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  6. An object-oriented framework for magnetic-fusion modeling and analysis codes

    International Nuclear Information System (INIS)

    Cohen, R H; Yang, T Y Brian.

    1999-01-01

    The magnetic-fusion energy (MFE) program, like many other scientific and engineering activities, has a need to efficiently develop complex modeling codes which combine detailed models of components to make an integrated model of a device, as well as a rich supply of legacy code that could provide the component models. There is also growing recognition in many technical fields of the desirability of steerable software: computer programs whose functionality can be changed by the user as it is run. This project had as its goals the development of two key pieces of infrastructure that are needed to combine existing code modules, written mainly in Fortran, into flexible, steerable, object-oriented integrated modeling codes for magnetic- fusion applications. These two pieces are (1) a set of tools to facilitate the interfacing of Fortran code with a steerable object-oriented framework (which we have chosen to be based on PythonlW3, an object-oriented interpreted language), and (2) a skeleton for the integrated modeling code which defines the relationships between the modules. The first of these activities obviously has immediate applicability to a spectrum of projects; the second is more focussed on the MFE application, but may be of value as an example for other applications

  7. Design of force-cooled conductors for large fusion magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems.

  8. Design of force-cooled conductors for large fusion magnets

    International Nuclear Information System (INIS)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems

  9. Philosophy and physics of predemonstration fusion devices

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1976-01-01

    A PDFD will operate in the 1980's and must provide the plasma and plasma support technology information necessary to warrant design, construction, and operation of succeeding experimental power reactors and then the demonstration plant. The PDFD must be prototypical of economic fusion devices to justify its cost. Therefore, development of the fusion core will be the focus of the PDFD. The physics performance, power production objectives, and characteristics of the PDFD, and their relationship to the research and development needs to achieve them are outlined. The design criteria for a PDFD which satisfied these constraints will be established

  10. Development of superconducting equipment for fusion device

    International Nuclear Information System (INIS)

    Konno, Masayuki; Ueda, Toshio; Hiue, Hisaaki; Ohgushi, Kouzou

    1993-01-01

    At Fuji Electric Co., Ltd., the development of superconductivity was started from 1960, and superconducting equipment for fusion device has been developed for ten years. The superconducting equipment, which is developed for fusion by Fuji Electric Co., Ltd., are able to be grouped in three categories which are current lead, superconducting coil and superconducting bus-line. The current lead is an electrical feeder between a superconducting coil and an electrical power supply. The rated current of developed current lead is 30kA at continuous use and 100kA at short time use respectively. The advanced disk type coil is developed for the toroidal field coil and some coils are developed for critical current measurement. Superconductor is applied to the superconducting bus-line between the superconducting coils and the current leads, and the bus-line is being developed for the Large Helical Device. This report describes an abstract of these equipment. (author)

  11. High-density-plasma diagnostics in magnetic-confinement fusion

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1982-01-01

    The lectures will begin by defining high density in the context of magnetic confinement fusion research and listing some alternative reactor concepts, ranging from n/sub e/ approx. 2 x 10 14 cm -3 to several orders of magnitude greater, that offer potential advantages over the main-line, n/sub e/ approx. 1 x 10 14 cm -3 , Tokamak reactor designs. The high density scalings of several major diagnostic techniques, some favorable and some disadvantageous, will be discussed. Special emphasis will be given to interferometric methods, both electronic and photographic, for which integral n/sub e/dl measurements and associated techniques are accessible with low wavelength lasers. Reactor relevant experience from higher density, smaller dimension devices exists. High density implies high β, which implies economies of scale. The specialized features of high β diagnostics will be discussed

  12. Magnetic fusion energy technology fellowship: Report on survey of institutional coordinators

    International Nuclear Information System (INIS)

    1993-02-01

    In 1980, the Magnetic Fusion Energy Technology (MFET) Fellowship program was established by the US Department of Energy, Office of Fusion Energy, to encourage outstanding students interested in fusion energy technology to continue their education at a qualified graduate school. The basic objective of the MFET Fellowship program is to ensure an adequate supply of scientists in this field by supporting graduate study, training, and research in magnetic fusion energy technology. The program also supports the broader objective of advancing fusion toward the realization of commercially viable energy systems through the research by MFET fellows. The MFET Fellowship program is administered by the Science/Engineering Education Division of Oak Ridge Institute for Science and Education. Guidance for program administration is provided by an academic advisory committee

  13. Three equipment concepts for the Fusion Engineering Device

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Masson, L.S.; Watts, K.D.; Grant, N.R.; Kuban, D.P.

    1982-01-01

    Maintenance equipment which is needed to remotely handle fusion device components is being conceptually developed for the Fusion Engineering Design Center. This will test the assumption that these equipment needs can be satisfied by present technology. In addition, the development of equipment conceptual designs will allow for cost estimates which have a much higher degree of certainty. Accurate equipment costs will be useful for assessments which trade off gains in availability as a function of increased investments in maintenance equipment

  14. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  15. AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion.

    Science.gov (United States)

    Rapp, Steven M; Miller, Larry E; Block, Jon E

    2011-01-01

    Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF) system is a minimally invasive fusion device that accesses the lumbar (L4-S1) intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date.

  16. Summary of the 16th IAEA Technical Meeting on 'Research using Small Fusion Devices'

    International Nuclear Information System (INIS)

    Gribkov, V.; Oost, G. van; Malaquias, A.; Herrera, J.

    2006-01-01

    Common research topics that are being studied in small, medium and large devices such as H-mode like or improved confinement, turbulence and transport are reported. These included modelling and diagnostic developments for edge and core, to characterize plasma density, temperature, electric potential, plasma flows, turbulence scale, etc. Innovative diagnostic methods were designed and implemented which could be used to develop experiments in small devices (in some cases not possible in large devices due to higher power deposition) to allow a better understanding of plasma edge and core properties. Reports are given addressing research in linear devices that can be used to study particular plasma physics topics relevant for other magnetic confinement devices such as the radial transport and the modelling of self-organized plasma jets involved in spheromak-like plasma formation. Some aspects of the work presented are of interest to the astrophysics community since they are believed to shed light on the basis of the physics of stellar jets. On the dense magnetized plasmas (DMP) topic, the present status of research, operation of new devices, plasma dynamics modelling and diagnostic developments is reported. The main devices presented belong to the class of Z-pinches, mostly plasma foci, and several papers were presented under this topic. The physics of DMP is important both for the main-stream fusion investigations as well as for providing the basis for elaboration of new concepts. New high-current technology introduced in the DMP devices design and construction make these devices nowadays more reliably fitted to various applications and give the possibility to widen the energy range used by them in both directions-to the multi-MJ level facilities and down to miniature plasma focus devices with energy of just a few J. (conference report)

  17. Arcing phenomena in fusion devices workshop

    International Nuclear Information System (INIS)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included

  18. A chiral-based magnetic memory device without a permanent magnet.

    Science.gov (United States)

    Ben Dor, Oren; Yochelis, Shira; Mathew, Shinto P; Naaman, Ron; Paltiel, Yossi

    2013-01-01

    Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices.

  19. The fusion-fission hybrid

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    As the history of the development of fusion energy shows, a sustained controlled fusion reaction is much more difficult to produce than rapid uncontrolled release of fusion energy. Currently, the ''magnetic bottle'' technique shows sufficient progress that it might applied for the commercial fuel production of /sup 233/U, suitable for use in fission reactors, by developing a fusion-fission hybrid. Such a device would consist of a fusion chamber core surrounded by a region containing cladded uranium pellets cooled by helium, with lithium salts also present to produce tritium to refuel the fusion process. Successful development of this hybrid might be possible within 10 y, and would provide both experience and funds for further development of controlled fusion energy

  20. Wave heating and the U.S. magnetic fusion energy program

    International Nuclear Information System (INIS)

    Staten, H.S.

    1985-01-01

    The U.S. Government's support of the fusion program is predicated upon the long-term need for the fusion option in our energy future, as well as the near-term benefits associated with developments on the frontier of science and high technology. As a long-term energy option, magnetic fusion energy has the potential to provide an inexpensive, vast, and secure fuel reserve, to be environmentally clean and safe. It has many potential uses, which include production of central station electricity, fuel for fission reactors, synthetic fuels, and process heat for such applications as desalination of sea water. This paper presents an overview of the U.S. Government program for magnetic fusion energy. The goal and objectives of the U.S. program are reviewed followed by a summary of plasma experiments presently under way and the application of wave heating to these experiments

  1. Radiation considerations for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1977-01-01

    Radiation environment for the magnets is characterized for various conditions expected for tokamak power reactor operation. The radiation levels are translated into radiation effects using available experimental data. The impact of the tradeoffs in radiation shielding and the change in the properties of the superconducting magnets on reactor performance and economics is examined. It is shown that (1) superconducting magnets in fusion reactors will operate at much higher radiation level than was previously anticipated; (2) additional data on radiation damage is required to better accuracy than is presently available in order to accurately quantify the change in properties in the superconducting magnet components; and (3) there is a substantial penalty for increasing (or overestimating) the shielding requirements. A perspective of future tokamak power reactors is presented and questions relating to desirable magnetic field strength and selection of materials for superconducting magnets are briefly examined

  2. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices

    NARCIS (Netherlands)

    van Eden, G.G.; Kvon, V.; Van De Sanden, M.C.M.; Morgan, T.W.

    2017-01-01

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically

  3. Tritium Aspects of Fueling and Exhaust Pumping in Magnetic Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, Larry R. [ORNL; Meitner, Steven J. [ORNL

    2017-04-01

    Magnetically confined fusion plasmas generate energy from deuterium-tritium (DT) fusion reactions that produce energetic 3.5 MeV alpha particles and 14 MeV neutrons. Since the DT fusion reaction rate is a strong function of plasma density, an efficient fueling source is needed to maintain high plasma density in such systems. Energetic ions in fusion plasmas are able to escape the confining magnetic fields at a much higher rate than the fusion reactions occur, thus dictating the fueling rate needed. These lost ions become neutralized and need to be pumped away as exhaust gas to be reinjected into the plasma as fuel atoms.The technology to fuel and pump fusion plasmas has to be inherently compatible with the tritium fuel. An ideal holistic solution would couple the pumping and fueling such that the pump exhaust is directly fed back into pellet formation without including impurity gases. This would greatly reduce the processing needs for the exhaust. Concepts to accomplish this are discussed along with the fueling and pumping needs for a DT fusion reactor.

  4. Stored energy in fusion magnet materials irradiated at low temperatures

    International Nuclear Information System (INIS)

    Chaplin, R.L.; Kerchner, H.R.; Klabunde, C.E.; Coltman, R.R.

    1989-08-01

    During the power cycle of a fusion reactor, the radiation reaching the superconducting magnet system will produce an accumulation of immobile defects in the magnet materials. During a subsequent warm-up cycle of the magnet system, the defects will become mobile and interact to produce new defect configurations as well as some mutual defect annihilations which generate heat-the release of stored energy. This report presents a brief qualitative discussion of the mechanisms for the production and release of stored energy in irradiated materials, a theoretical analysis of the thermal response of irradiated materials, theoretical analysis of the thermal response of irradiated materials during warm-up, and a discussion of the possible impact of stored energy release on fusion magnet operation 20 refs

  5. Nuclear fusion power supply device

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: To use a hybrid power supply device, which comprises a thyristor power supply and a diode power supply, to decrease cost of a nuclear fusion power supply device. Structure: The device comprises a thyristor power supply connected through a closing unit and a diode power supply connected in parallel through a breaker, input of each power supply being applied with an output voltage of a flywheel AC generator. When a current transformer is excited, a disconnecting switch is turned on to close the diode power supply and a current of the current transformer is increased by an automatic voltage regulator to a set value within a predetermined period of time. Next, the current is cut off by a breaker, and when the breaker is in on position, the disconnecting switch is opened to turn on the closing unit. Thus, when a plasma electric current reaches a predetermined value, the breaker is turned on, and the current of the current transformer is controlled by the thyristor power supply. (Kamimura, M.)

  6. Influence of the pressure of Fe fundamental amorphous metallic fusions to magnet description

    International Nuclear Information System (INIS)

    Panakhov, T.M; Ahmadov, V.I; Musayev, Z.S

    2011-01-01

    Full tex: Obtaining, exploration and application of amorphous fusions on the basis of iron group magnet metals including amorphous phase non-magnetic additions as silisium and boric playing the role of stabilizer of the amorphous phase is widely used last years. Scientific and technical interest to these objects is connected with their physical property - high mechanical, electric, uncial agreement of corrosion and magnet characteristics. Amorphous alloy Fe58Ni20Si9B13 was selected as the object of research. To set the built-in hysteresis characteristics of magnetic fusion mesh, then the maximum magnetic induction (saturation induction) was appointed to the BS and the residual induction Br. The average distance between the borders as a result of pressure and magnetic characteristics of nano parosities in comparison of the relative change that is to say they are close to each other, with the magnetic characteristics of amorphous fusions nano parosity characteristics indicate that the corellation is between magnetic characteristics and nano parosity characteristics.

  7. Preliminary analysis of patent trends for magnetic fusion technology

    International Nuclear Information System (INIS)

    Levine, L.O.; Ashton, W.B.; Campbell, R.S.

    1984-02-01

    This study presents a preliminary analysis of development trends in magnetic fusion technology based on data from US patents. The research is limited to identification and description of general patent activity and ownership characteristics for 373 patents. The results suggest that more detailed studies of fusion patents could provide useful R and D planning information

  8. Overview of the Magnetic Fusion Energy Devlopment and Technology Program

    International Nuclear Information System (INIS)

    1978-03-01

    This publication gives a comprehensive introduction to controlled fusion research. Topics covered in the discussion include the following: (1) fusion system engineering and advanced design, (2) plasma engineering, (3) magnetic systems, (4) materials, (5) environment and safety, and (6) alternate energy applications

  9. Numerical Experiments Providing New Insights into Plasma Focus Fusion Devices

    Directory of Open Access Journals (Sweden)

    Sing Lee

    2010-04-01

    Full Text Available Recent extensive and systematic numerical experiments have uncovered new insights into plasma focus fusion devices including the following: (1 a plasma current limitation effect, as device static inductance is reduced towards very small values; (2 scaling laws of neutron yield and soft x-ray yield as functions of storage energies and currents; (3 a global scaling law for neutron yield as a function of storage energy combining experimental and numerical data showing that scaling deterioration has probably been interpreted as neutron ‘saturation’; and (4 a fundamental cause of neutron ‘saturation’. The ground-breaking insights thus gained may completely change the directions of plasma focus fusion research.

  10. Gasdynamic Mirror Fusion Propulsion Experiment

    Science.gov (United States)

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  11. Magnetized target fusion: An ultra high energy approach in an unexplored parameter space

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1994-01-01

    Magnetized target fusion is a concept that may lead to practical fusion applications in a variety of settings. However, the crucial first step is to demonstrate that it works as advertised. Among the possibilities for doing this is an ultrahigh energy approach to magnetized target fusion, one powered by explosive pulsed power generators that have become available for application to thermonuclear fusion research. In a collaborative effort between Los Alamos and the All-Russian Scientific Institute for Experimental Physics (VNIIEF) a very powerful helical generator with explosive power switching has been used to produce an energetic magnetized plasma. Several diagnostics have been fielded to ascertain the properties of this plasma. We are intensively studying the results of the experiments and calculationally analyzing the performance of this experiment

  12. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division's activities). Highlights from program activities during 1990 and 1991 are presented

  13. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  14. Prospects of High Temperature Superconductors for fusion magnets and power applications

    International Nuclear Information System (INIS)

    Fietz, Walter H.; Barth, Christian; Drotziger, Sandra; Goldacker, Wilfried; Heller, Reinhard; Schlachter, Sonja I.; Weiss, Klaus-Peter

    2013-01-01

    Highlights: • An overview of HTS application in fusion is given. • BSCCO application for current leads is discussed. • Several approaches to come to a high current HTS cable are shown. • Open issues and benefits of REBCO high current HTS cables are discussed. -- Abstract: During the last few years, progress in the field of second-generation High Temperature Superconductors (HTS) was breathtaking. Industry has taken up production of long length coated REBCO conductors with reduced angular dependency on external magnetic field and excellent critical current density jc. Consequently these REBCO tapes are used more and more in power application. For fusion magnets, high current conductors in the kA range are needed to limit the voltage during fast discharge. Several designs for high current cables using High Temperature Superconductors have been proposed. With the REBCO tape performance at hand, the prospects of fusion magnets based on such high current cables are promising. An operation at 4.5 K offers a comfortable temperature margin, more mechanical stability and the possibility to reach even higher fields compared to existing solutions with Nb 3 Sn which could be interesting with respect to DEMO. After a brief overview of HTS use in power application the paper will give an overview of possible use of HTS material for fusion application. Present high current HTS cable designs are reviewed and the potential using such concepts for future fusion magnets is discussed

  15. Calculational models for the treatment of pulsed/intermittent activation within fusion energy devices

    International Nuclear Information System (INIS)

    Spangler, S.E.; Sisolak, J.E.; Henderson, D.L.

    1993-01-01

    Two calculationally efficient methods have been developed to compute the induced radioactivity due to pulsed/intermittent irradiation histories as encountered in both magnetic and inertial fusion energy devices. The numerical algorithms are based on the linear chain method (Bateman Equations) and employ series reduction and matrix algebra. The first method models the case in which the irradiated materials are present throughout a series of irradiation pulses. The second method treats the case where a fixed amount of radioactive and transmuted material is created during each pulse. Analytical solutions are given for each method for a three nuclide linear chain. Numerical results and comparisons are presented for a select number of linear chains. (orig.)

  16. 7. IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices - Booklet of abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts

  17. AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion

    Directory of Open Access Journals (Sweden)

    Rapp SM

    2011-08-01

    Full Text Available Steven M Rapp1, Larry E Miller2,3, Jon E Block31Michigan Spine Institute, Waterford, MI, USA; 2Miller Scientific Consulting Inc, Biltmore Lake, NC, USA; 3Jon E. Block, Ph.D., Inc., San Francisco, CA, USAAbstract: Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF system is a minimally invasive fusion device that accesses the lumbar (L4–S1 intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date.Keywords: AxiaLIF, fusion, lumbar, minimally invasive, presacral

  18. Technology spin-offs from the magnetic fusion energy program

    International Nuclear Information System (INIS)

    1982-05-01

    A description is given of 138 possible spin-offs from the magnetic fusion program. The spin-offs cover the following areas: (1) superconducting magnets, (2) materials technology, (3) vacuum systems, (4) high frequency and high power rf, (5) electronics, (6) plasma diagnostics, (7) computers, and (8) particle beams

  19. International program activities in magnetic fusion energy

    International Nuclear Information System (INIS)

    1986-03-01

    The following areas of our international activities in magnetic fusion are briefly described: (1) policy; (2) background; (3) strategy; (4) strategic considerations and concerns; (5) domestic program inplications, and (6) implementation. The current US activities are reviewed. Some of our present program needs are outlined

  20. Realizing Technologies for Magnetized Target Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, Glen A. [Los Alamos National Laboratory

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  1. Advanced real-time control systems for magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Goncalves, B.; Sousa, J.; Fernandes, H.; Rodrigues, A.P.; Carvalho, B.B.; Neto, A.; Varandas, C.A.F.

    2008-01-01

    Real-time control of magnetically confined plasmas is a critical issue for the safety, operation and high performance scientific exploitation of the experimental devices on regimes beyond the current operation frontiers. The number of parameters and the data volumes used for the plasma properties identification scale normally not only with the machine size but also with the technology improvements, leading to a great complexity of the plant system. A strong computational power and fast communication infrastructure are needed to handle in real-time this information, allowing just-in-time decisions to achieve the fusion critical plasma conditions. These advanced control systems require a tiered infrastructure including the hardware layer, the signal-processing middleware, real-time timing and data transport, the real-time operating system tools and drivers, the framework for code development, simulation, deployment and experiment parameterization and the human real-time plasma condition monitoring and management. This approach is being implemented at CFN by offering a vertical solution for the forthcoming challenges, including ITER, the first experimental fusion reactor. A given set of tools and systems are described on this paper, namely: (i) an ATCA based hardware multiple-input-multiple-output (MIMO) platform, PCI and PCIe acquisition and control modules; (ii) FPGA and DSP parallelized signal processing algorithms; (iii) a signal data and event distribution system over a 2.5/10Gb optical network with sub-microsecond latencies; (iv) RTAI and Linux drivers; and (v) the FireSignal, FusionTalk, SDAS FireCalc application tools. (author)

  2. Protective coatings for in-vessel fusion devices

    International Nuclear Information System (INIS)

    Brossa, F.

    1984-01-01

    Coatings of Al/Si, SAP (Sintered Aluminium Powder), Al 2 O 3 , TiC (low-Z material) and Ta have been developed for in-vessel component protection. Anodic oxidation, vapor depositions, reactive sputtering, chemical vapor deposition (CVD) and plasma spray have been the coating formation methods studied. AISI 316, 310, 304, Inconel 600 and Mo were adopted as base materials. the coatings were characterized in terms of composition, structure and connection with the supporting material. The behavior of coatings under H + , D + and He + irradiation in the energy range 100 eV-8 keV was tested and compared to the solid massive samples. TiC and Ta coatings were tested with thermal shock under power density pulses of 1 kW/cm 2 generated by an electron beam gun. Temperature-dependence of the erosion of TiC by vacuum arcs in a magnetic field was also studied. TiC coatings have low sputtering values, good resistance to arcing and a high chemical stability. TiC and Ta, CVD and plasma spray coatings are thermal-shock resistant. High thermal loads produce cracks but no spalling. Destruction occurred only after melting of the base material. The plasma spray coating method seems to be most appropriate for developing remote handling applications in fusion devices. (orig.)

  3. The status of the federal magnetic fusion program, or fusion in transition: from science to technology

    International Nuclear Information System (INIS)

    Kane, J.S.

    1983-01-01

    The current status of magnetic fusion is summarized. The science is in place; the application must be made. Government will have to underwrite the risk of the program, but the private sector must manage it. Government officials must be convinced fusion is in the interest of the taxpayer, private sector decision makers that it is commercial. Questions concerning reliability, availability, first cost, safety, environment, and sociology must be asked. Fusion energy is essentially inexhaustible, appears environmentally acceptable, and is one of a very short list of alternatives

  4. Controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Trocheris, M.

    1975-01-01

    An outline is given of the present position of research into controlled fusion. After a brief reminder of the nuclear reactions of fusion and the principle of their use as a source of energy, the results obtained by the method of magnetic confinement are summarized. Among the many solutions that have been imagined and tried out to achieve a magnetic containing vessel capable of holding the thermonuclear plasma, the devices of the Tokamak type have a good lead and that is why they are described in greater detail. An idea is then given of the problems that arise when one intends conceiving the thermonuclear reactor based on the principle of the Tokamaks. The last section deals with fusion by lasers which is a new and most attractive alternative, at least from the viewpoint of basis physics. The report concludes with an indication of the stages to be passed through to reach production of energy on an industrial scale [fr

  5. Plasma Equilibrium Control in Nuclear Fusion Devices 2. Plasma Control in Magnetic Confinement Devices 2.1 Plasma Control in Tokamaks

    Science.gov (United States)

    Fukuda, Takeshi

    The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.

  6. Development of FEMAG. Calculation code of magnetic field generated by ferritic plates in the tokamak devices

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Kazuhiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2003-03-01

    In design of the future fusion devises in which low activation ferritic steel is planned to use as the plasma facing material and/or the inserts for ripple reduction, the appreciation of the error field effect against the plasma as well as the optimization of ferritic plate arrangement to reduce the toroidal field ripple require calculation of magnetic field generated by ferritic steel. However iterative calculations concerning the non-linearity in B-H curve of ferritic steel disturbs high-speed calculation required as the design tool. In the strong toroidal magnetic field that is characteristic in the tokamak fusion devices, fully magnetic saturation of ferritic steel occurs. Hence a distribution of magnetic charges as magnetic field source is determined straightforward and any iteration calculation are unnecessary. Additionally objective ferritic steel geometry is limited to the thin plate and ferritic plates are installed along the toroidal magnetic field. Taking these special conditions into account, high-speed calculation code ''FEMAG'' has been developed. In this report, the formalization of 'FEMAG' code, how to use 'FEMAG', and the validity check of 'FEMAG' in comparison with a 3D FEM code, with the measurements of the magnetic field in JFT-2M are described. The presented examples are numerical results of design studies for JT-60 modification. (author)

  7. Energy balance of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Hashmi, M.; Staudenmaier, G.

    2000-01-01

    It is shown that a discrepancy and incompatibility persist between basic physics and fusion-literature regarding the radiation losses from a thermonuclear plasma. Whereas the fusion-literature neglects the excitation or line radiation completely, according to basic physics it depends upon the prevailing conditions and cannot be neglected in general. Moreover, for a magnetized plasma, while the fusion-literature assumes a self-absorption or reabsorption of cyclotron or synchrotron radiation emitted by the electrons spiraling along the magnetic field, the basic physics does not allow any effective reabsorption of cyclotron or synchrotron radiation. As is demonstrated, fallacious assumptions and notions, which somehow or other crept into the fusion-literature, are responsible for this discrepancy. In the present work, the theory is corrected. On the grounds of basic physics, a complete energy balance of magnetized and non-magnetized plasmas is presented for pulsed, stationary and self-sustaining operations by taking into account the energy release by reactions of light nuclei as well as different kinds of diffusive (conduction) and radiative (bremsstrahlung, cyclotron or synchrotron radiation and excitation radiation) energy losses. Already the energy losses by radiation make the energy balance negative. Hence, a fusion reactor-an energy producing device-seems to be beyond the realms of realization. (orig.)

  8. Overview of the Fusion Engineering Device (FED) design

    International Nuclear Information System (INIS)

    Steiner, D.; Flanagan, C.A.

    1981-01-01

    The device has a major radius of 5.0 m with a plasma minor radius of 1.3 m elongated by 1.6. Capability is provided for operating the toroidal field coils up to 10 T, but the bulk of the operations are designed for 8 T. At 8-T conditions the fusion power is approx. 180 MW (neutron wall loading approx. 0.4 MW/m 2 ) and a plasma Q of approx. 5 is expected. At 10-T conditions, which are expected to be limited to about 10% of the total operations, the fusion power is approx. 450 MW (approx. 1.0 MW/m 2 ) and ignition is expected

  9. Overview of the fusion engineering device (FED) design

    International Nuclear Information System (INIS)

    Steiner, D.; Flanagan, C.A.

    1981-10-01

    The device has a major radius of 5.0 m with a plasma minor radius of 1.3 m elongated by 1.6. Capability is provided for operating the toroidal field coils up to 10 T, but the bulk of the operations are designed for 8 T. At 8-T conditions, the fusion power is approx. 180 MW (neutron wall loading approx. 0.4 MW/m 2 ) and a plasma Q of approx. 5 is expected. At 10-T conditions, which are expected to be limited to about 10% of the total operations, the fusion power is approx. 450 MW (approx. 1.0 MW/m 2 ) and ignition is expected

  10. Development of MW gyrotrons for fusion devices by University of Tsukuba

    International Nuclear Information System (INIS)

    Minami, R.; Kariya, T.; Imai, T.; Numakura, T.; Endo, Y.; Nakabayashi, H.; Eguchi, T.; Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Mutoh, T.; Ito, S.; Idei, H.; Zushi, H.; Yamaguchi, Y.; Sakamoto, Keishi; Mitsunaka, Y.

    2012-11-01

    Over-1 MW power gyrotrons for electron cyclotron heating (ECH) have been developed in the joint program of NIFS and University of Tsukuba. The obtained maximum outputs are 1.9 MW for 0.1 s on the 77 GHz Large Helical Device (LHD) tube and 1.0 MW for 1 ms on the 28 GHz GAMMA 10 one, which are new records in these frequency ranges. In long pulse operation, 300 kW for 40 min at 77 GHz and 540 kW for 2 s at 28 GHz were achieved. A new program of 154 GHz 1 MW development has started for high density plasma heating in LHD and the first tube has been fabricated. These lower frequency tubes like 77 GHz or 28 GHz one are also important for advanced magnetic fusion devices, which use Electron Bernstein Wave (EBW) heating / current drive. As a next activity of 28 GHz gyrotron, we have already started the development of over-1.5 MW gyrotron and a new design study of 28 GHz / 35 GHz dual frequency gyrotron, which indicates the practicability of the multi-purpose gyrotron. (author)

  11. A new approach to the solution of the vacuum magnetic problem in fusion machines

    International Nuclear Information System (INIS)

    Zabeo, L.; Artaserse, G.; Cenedese, A.; Piccolo, F.; Sartori, F.

    2007-01-01

    The magnetic vacuum topology reconstruction using magnetic measurements is essential in controlling and understanding plasmas produced in magnetic confinement fusion devices. In a wide range of cases, the instruments used to approach the problem have been designed for a specific machine and to solve a specific plasma model. Recently, a new approach has been used for developing new magnetic software called FELIX. The adopted solution in the design allows the use of the software not only at JET but also at other machines. In order to reduce the analysis and debugging time the software has been designed with modularity and platform independence in mind. This results in a large portability and in particular it allows using the same code both offline and in real-time. One of the main aspects of the tool is its capability to solve different plasma models of current distribution. Thanks to this feature, in order to improve the plasma magnetic reconstruction in real-time, a set of different models has been run using FELIX. FELIX is presently running at JET in different real-time analysis and control systems that need vacuum magnetic topology

  12. Open-ended magnetic confinement systems for fusion

    International Nuclear Information System (INIS)

    Post, R.F.; Ryutov, D.D.

    1995-05-01

    Magnetic confinement systems that use externally generated magnetic fields can be divided topologically into two classes: ''closed'' and 'open''. The tokamak, the stellarator, and the reversed-field-pinch approaches are representatives of the first category, while mirror-based systems and their variants are of the second category. While the recent thrust of magnetic fusion research, with its emphasis on the tokamak, has been concentrated on closed geometry, there are significant reasons for the continued pursuit of research into open-ended systems. The paper discusses these reasons, reviews the history and the present status of open-ended systems, and suggests some future directions for the research

  13. A semi-analytic model of magnetized liner inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Ryan D.; Slutz, Stephen A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-05-15

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

  14. Rencontre on fusion technology

    International Nuclear Information System (INIS)

    Read, S.F.J.

    1979-02-01

    This report of a rencontre held to consider the technology of magnetic confinement fusion devices gives the agenda for the meeting and lists those topics which were identified as areas of research. These topics included materials, tritium, structures and heat transfer, neutronics and nuclear data, and corrosion problems. (UK)

  15. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    International Nuclear Information System (INIS)

    Parvazian, A.; Javani, A.

    2010-01-01

    Fast ignition is a new method for inertial confinement fusion in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel. More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0.25 and 0.5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. Magnetized target fusion in dual hot spot can be considered as an appropriate substitution for the current inertial confinement fusion techniques.

  16. Costs of magnets for large fusion power reactors: Phase I, cost of superconductors for dc magnets

    International Nuclear Information System (INIS)

    Powell, J.R.

    1972-01-01

    Projections are made for dc magnet conductor costs for large fusion power reactors. A mature fusion economy is assumed sometime after 2000 A. D. in which approximately 90,000 MW(e) of fusion reactors are constructed/year. State of the art critical current vs. field characteristics for superconductors are used in these projections. Present processing techniques are used as a basis for the design of large plants sized to produce approximately one-half of the conductor needed for the fusion magnets. Multifilamentary Nb-Ti, Pb-Bi in glass fiber, GE Nb 3 Sn tape, Linde plasma sprayed Nb 3 Sn tape, and V 3 Ga tape superconductors are investigated, together with high purity aluminum cryoconductor. Conductor costs include processing costs [capital (equipment plus buildings), labor, and operating] and materials costs. Conductor costs are compared for two sets of material costs: current (1971 A. D.) costs, and projected (after 2000 A. D.) costs. (U.S.)

  17. Compact fusion energy based on the spherical tokamak

    Science.gov (United States)

    Sykes, A.; Costley, A. E.; Windsor, C. G.; Asunta, O.; Brittles, G.; Buxton, P.; Chuyanov, V.; Connor, J. W.; Gryaznevich, M. P.; Huang, B.; Hugill, J.; Kukushkin, A.; Kingham, D.; Langtry, A. V.; McNamara, S.; Morgan, J. G.; Noonan, P.; Ross, J. S. H.; Shevchenko, V.; Slade, R.; Smith, G.

    2018-01-01

    Tokamak Energy Ltd, UK, is developing spherical tokamaks using high temperature superconductor magnets as a possible route to fusion power using relatively small devices. We present an overview of the development programme including details of the enabling technologies, the key modelling methods and results, and the remaining challenges on the path to compact fusion.

  18. Assessment of ion-atom collision data for magnetic fusion plasma edge modelling

    International Nuclear Information System (INIS)

    Phaneuf, R.A.

    1990-01-01

    Cross-section data for ion-atom collision processes which play important roles in the edge plasma of magnetically-confined fusion devices are surveyed and reviewed. The species considered include H, He, Li, Be, C, O, Ne, Al, Si, Ar, Ti, Cr, Fe, Ni, Cu, Mo, W and their ions. The most important ion-atom collision processes occurring in the edge plasma are charge-exchange reactions. Excitation and ionization processes are also considered. The scope is limited to atomic species and to collision velocities corresponding to plasma ion temperatures in the 2-200 eV range. Sources of evaluated or recommended data are presented where possible, and deficiencies in the data base are indicated. 42 refs., 1 fig., 4 tabs

  19. Fusion-power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.; Neef, W.S.; Moir, R.W.; Campbell, R.B.; Botwin, R.; Clarkson, I.R.; Carpenter, T.J.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  20. Fusion power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  1. Perspectives on the development of fusion power by magnetic confinement, 1977

    International Nuclear Information System (INIS)

    1977-01-01

    The Committee concludes: that recent progress of the magnetic fusion energy program provides a tangible basis for the belief that the development of fusion power will prove feasible; that the primary near-term objective of the program should now be to demonstrate actual reactor-level conditions; and that the potential long-term benefits of fusion power are sufficiently great to warrant a sustained national effort to advance the fusion power option to the stage of commercial availability at an early time

  2. Toroidal electron beam energy storage for controlled fusion

    International Nuclear Information System (INIS)

    Clark, W.; Korn, P.; Mondelli, A.; Rostoker, N.

    1976-01-01

    In the presence of an external magnetic field stable equilibria exist for an unneutralized electron beam with ν/γ >1. As a result, it is in principle, possible to store very large quantities of energy in relatively small volumes by confining an unneutralized electron beam in a Tokamak-like device. The energy is stored principally in the electrostatic and self-magnetic fields associated with the beam and is available for rapid heating of pellets for controlled fusion. The large electrostatic potential well in such a device would be sufficient to contain energetic alpha particles, thereby reducing reactor wall bombardment. This approach also avoids plasma loss and wall bombardment by charge exchange neutrals. The conceptual design of an electrostatic Tokamak fusion reactor (ETFR) is discussed. A small toroidal device (the STP machine) has been constructed to test the principles involved. Preliminary experiments on this device have produced electron densities approximately 10% of those required in a reactor

  3. High density, high magnetic field concepts for compact fusion reactors

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    One rather discouraging feature of our conventional approaches to fusion energy is that they do not appear to lend themselves to a small reactor for developmental purposes. This is in contrast with the normal evolution of a new technology which typically proceeds to a full scale commercial plant via a set of graduated steps. Accordingly' several concepts concerned with dense plasma fusion systems are being studied theoretically and experimentally. A common aspect is that they employ: (a) high to very high plasma densities (∼10 16 cm -3 to ∼10 26 cm -3 ) and (b) magnetic fields. If they could be shown to be viable at high fusion Q, they could conceivably lead to compact and inexpensive commercial reactors. At least, their compactness suggests that both proof of principle experiments and development costs will be relatively inexpensive compared with the present conventional approaches. In this paper, the following concepts are considered: (1) The staged Z-pinch, (2) Liner implosion of closed-field-line configurations, (3) Magnetic ''fast'' ignition of inertial fusion targets, (4) The continuous flow Z-pinch

  4. Thermonuclear fusion: Current status and future prospects

    International Nuclear Information System (INIS)

    Bruhns, H.; Maisonnier, Ch.

    1992-01-01

    Thermonuclear Fusion holds great promises for becoming an important energy source for the future. Fusion research and development is undertaken in al major countries of the world. The European Community pursues fusion in a large programme which embraces all R and D in the field of magnetic confinement fusion in the Member States, and to which Sweden and Switzerland are fully associated. The long-term objective of the programme is the joint creation of safe, environmentally sound prototype reactors. The main R and D line of the Community Fusion Programme is fusion by toroidal magnetic confinement on the basis of the Tokamak concept. Some related concepts are also studied which possibly could offer advantages for a reactor, and keep-in-touch activities exist for other approaches. Several small and medium sized specialised devices in Associated Laboratories have been built by the Community Fusion Programme as well as the Joint European Torus (JET Joint Undertaking) which is the largest and the most successful fusion device in the world. Recently, fusion power in the megawatt range has been achieved in JET. The long timescale and the large effort needed for the development of fusion as an energy source have been important elements to foster international collaboration. Engineering Design Activities for an International Thermonuclear Experimental Reactor (ITER) are undertaken, under the auspices of the IAEA, by the European Community, Japan, the Russian Federation and the United States of America. The objective of ITER is to achieve self-sustained thermonuclear burn and its control under long-pulse operation and to provide basic data for the engineering of a demonstration fusion reactor. (author)

  5. Conceptual design report for a Fusion Engineering Device sector-handling machine and movable manipulator system

    International Nuclear Information System (INIS)

    Watts, K.D.; Masson, L.S.; McPherson, R.S.

    1982-10-01

    Design requirements, trade studies, design descriptions, conceptual designs, and cost estimates have been completed for the Fusion Engineering Device sector handling machine, movable manipulator system, subcomponent handling machine, and limiter blade handling machine. This information will be used by the Fusion Engineering Design Center to begin to determine the cost and magnitude of the effort required to perform remote maintenance on the Fusion Engineering Device. The designs presented are by no means optimum, and the costs estimates are rough-order-of-magnitude

  6. Role of magnetic resonance urography in pediatric renal fusion anomalies

    International Nuclear Information System (INIS)

    Chan, Sherwin S.; Ntoulia, Aikaterini; Khrichenko, Dmitry; Back, Susan J.; Darge, Kassa; Tasian, Gregory E.; Dillman, Jonathan R.

    2017-01-01

    Renal fusion is on a spectrum of congenital abnormalities that occur due to disruption of the migration process of the embryonic kidneys from the pelvis to the retroperitoneal renal fossae. Clinically, renal fusion anomalies are often found incidentally and associated with increased risk for complications, such as urinary tract obstruction, infection and urolithiasis. These anomalies are most commonly imaged using ultrasound for anatomical definition and less frequently using renal scintigraphy to quantify differential renal function and assess urinary tract drainage. Functional magnetic resonance urography (fMRU) is an advanced imaging technique that combines the excellent soft-tissue contrast of conventional magnetic resonance (MR) images with the quantitative assessment based on contrast medium uptake and excretion kinetics to provide information on renal function and drainage. fMRU has been shown to be clinically useful in evaluating a number of urological conditions. A highly sensitive and radiation-free imaging modality, fMRU can provide detailed morphological and functional information that can facilitate conservative and/or surgical management of children with renal fusion anomalies. This paper reviews the embryological basis of the different types of renal fusion anomalies, their imaging appearances at fMRU, complications associated with fusion anomalies, and the important role of fMRU in diagnosing and managing children with these anomalies. (orig.)

  7. Role of magnetic resonance urography in pediatric renal fusion anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Sherwin S. [Children' s Mercy Hospital, Department of Radiology, Kansas City, MO (United States); Ntoulia, Aikaterini; Khrichenko, Dmitry [The Children' s Hospital of Philadelphia, Division of Body Imaging, Department of Radiology, Philadelphia, PA (United States); Back, Susan J.; Darge, Kassa [The Children' s Hospital of Philadelphia, Division of Body Imaging, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); Tasian, Gregory E. [University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); The Children' s Hospital of Philadelphia, Division of Urology, Department of Surgery, Philadelphia, PA (United States); Dillman, Jonathan R. [Cincinnati Children' s Hospital Medical Center, Division of Thoracoabdominal Imaging, Department of Radiology, Cincinnati, OH (United States)

    2017-12-15

    Renal fusion is on a spectrum of congenital abnormalities that occur due to disruption of the migration process of the embryonic kidneys from the pelvis to the retroperitoneal renal fossae. Clinically, renal fusion anomalies are often found incidentally and associated with increased risk for complications, such as urinary tract obstruction, infection and urolithiasis. These anomalies are most commonly imaged using ultrasound for anatomical definition and less frequently using renal scintigraphy to quantify differential renal function and assess urinary tract drainage. Functional magnetic resonance urography (fMRU) is an advanced imaging technique that combines the excellent soft-tissue contrast of conventional magnetic resonance (MR) images with the quantitative assessment based on contrast medium uptake and excretion kinetics to provide information on renal function and drainage. fMRU has been shown to be clinically useful in evaluating a number of urological conditions. A highly sensitive and radiation-free imaging modality, fMRU can provide detailed morphological and functional information that can facilitate conservative and/or surgical management of children with renal fusion anomalies. This paper reviews the embryological basis of the different types of renal fusion anomalies, their imaging appearances at fMRU, complications associated with fusion anomalies, and the important role of fMRU in diagnosing and managing children with these anomalies. (orig.)

  8. Coherence imaging spectro-polarimetry for magnetic fusion diagnostics

    International Nuclear Information System (INIS)

    Howard, J

    2010-01-01

    This paper presents an overview of developments in imaging spectro-polarimetry for magnetic fusion diagnostics. Using various multiplexing strategies, it is possible to construct optical polarization interferometers that deliver images of underlying physical parameters such as flow speed, temperature (Doppler effect) or magnetic pitch angle (motional Stark and Zeeman effects). This paper also describes and presents first results for a new spatial heterodyne interferometric system used for both Doppler and polarization spectroscopy.

  9. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.

    Science.gov (United States)

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  10. Protector in a nuclear fusion device

    International Nuclear Information System (INIS)

    Furukawa, Masayuki; Yamane, Katsumi; Niwa, Sadahiko; Ogata, Fumio; Masuda, Jun-ichi.

    1975-01-01

    Object: To block an abnormal voltage, which shifts from plasma to coil or power supply by means of action of mutual induction, by a circuit utilizing non-linear impedance elements. Structure: The nuclear fusion device includes a current transformer coil, a vertical field coil and a plasma circuit, with a non-linear impedance element disposed in parallel with at least the current transformer coil, said impedance element being disposed in parallel with a short-circuiting switch, relative to the abnormal voltage moving from the plasma by means of action of mutual induction. (Kamimura, M.)

  11. Managing fusion high-level waste-A strategy for burning the long-lived products in fusion devices

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.

    2006-01-01

    Fusion devices appear to be a viable option for burning their own high-level waste (HLW). We propose a novel strategy to eliminate (or minimize) the HLW generated by fusion systems. The main source of the fusion HLW includes the structural and recycled materials, refractory metals, and liquid breeders. The basic idea involves recycling and reprocessing the waste, separating the long-lived radionuclides from the bulk low-level waste, and irradiating the limited amount of HLW in a specially designed module to transmute the long-lived products into short-lived radioisotopes or preferably, stable elements. The potential performance of the new concept seems promising. Our analysis indicated moderate to excellent transmutation rates could be achieved in advanced fusion designs. Successive irradiation should burn the majority of the HLW. The figures of merit for the concept relate to the HLW burn-up fraction, neutron economy, and impact on tritium breeding. Hopefully, the added design requirements could be accommodated easily in fusion power plants and the cost of the proposed system would be much less than disposal in a deep geological HLW repository. Overall, this innovative approach offers benefits to fusion systems and helps earn public acceptance for fusion as a HLW-free source of clean nuclear energy

  12. Neutral beams for magnetic fusion

    International Nuclear Information System (INIS)

    Hooper, B.

    1977-01-01

    Significant advances in forming energetic beams of neutral hydrogen and deuterium atoms have led to a breakthrough in magnetic fusion: neutral beams are now heating plasmas to thermonuclear temperatures, here at LLL and at other laboratories. For example, in our 2XIIB experiment we have injected a 500-A-equivalent current of neutral deuterium atoms at an average energy of 18 keV, producing a dense plasma (10 14 particles/cm 3 ) at thermonuclear energy (14 keV or 160 million kelvins). Currently, LLL and LBL are developing beam energies in the 80- to 120-keV range for our upcoming MFTF experiment, for the TFTR tokamak experiment at Princeton, and for the Doublet III tokamak experiment at General Atomic. These results increase our long-range prospects of producing high-intensity beams of energies in the hundreds or even thousands of kilo-electron-volts, providing us with optimistic extrapolations for realizing power-producing fusion reactors

  13. Power magnetic devices a multi-objective design approach

    CERN Document Server

    Sudhoff, Scott D

    2014-01-01

    Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for ind

  14. Reactor potential of the magnetically insulated inertial fusion (MICF) system

    International Nuclear Information System (INIS)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    The Magnetically Insulated Inertial Confinement Fusion (MICF) scheme is examined with regard to its potential as a power-producing reactor. This approach combines the favorable aspects of both magnetic and inertial fusions in that physical containment of the plasma is provided by a metallic shell while thermal insulation of its energy is provided by a strong, self-generated magnetic field. The plasma is created at the core of the target as a result of irradiation of the fuel-coated inner surface by a laser beam that enters through a hole in the spherical shell. The instantaneous magnetic field is generated by the current loops formed by the laser-heated, laser-ablated electrons, and preliminary experimental results at Osaka University have confirmed the presence of such a field. These same experiments have also yielded a Lawson parameter of about 5x10 12 cm -3 sec, and because of these unique properties, the plasma lifetimes in MICF have been shown to be about two orders of magnitude longer than conventional, pusher type inertial fusion schemes. In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning MICF system. (author) [pt

  15. Engineering computations at the national magnetic fusion energy computer center

    International Nuclear Information System (INIS)

    Murty, S.

    1983-01-01

    The National Magnetic Fusion Energy Computer Center (NMFECC) was established by the U.S. Department of Energy's Division of Magnetic Fusion Energy (MFE). The NMFECC headquarters is located at Lawrence Livermore National Laboratory. Its purpose is to apply large-scale computational technology and computing techniques to the problems of controlled thermonuclear research. In addition to providing cost effective computing services, the NMFECC also maintains a large collection of computer codes in mathematics, physics, and engineering that is shared by the entire MFE research community. This review provides a broad perspective of the NMFECC, and a list of available codes at the NMFECC for engineering computations is given

  16. Materials program for magnetic fusion energy

    International Nuclear Information System (INIS)

    Zwilsky, K.M.; Cohen, M.M.; Finfgeld, C.R.; Reuther, T.C.

    1978-01-01

    The Magnetic Fusion Reactor Materials Program is currently operating at a level of $7.8M. The program is divided into four technical areas which cover both short and long term problems. These are: Alloy Development for Irradiation Performance, Damage Analysis and Fundamental Studies, Plasma-Materials Interaction, and Special Purpose Materials. A description of the program planning process, the continuing management structure, and the resulting documents is presented

  17. Electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko; Abe, Tetsuya; Murakami, Yoshio

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al 2 O 3 , while Cr 3 C 2 -NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs

  18. Interfacing between concrete and steel construction and fusion research devices

    International Nuclear Information System (INIS)

    Willoughby, E.

    1981-01-01

    In 1976 Giffels Associates, Inc. an architect/engineer organization, was retained by the United States Department of Energy to provide Title I and Title II design services and Title III construction inspection services for the Tokamak Fusion Test Reactor now being installed at the Princeton Plasma Physics Laboratory in Princeton, New Jersey. Construction of the complex required to house and serve the reactor itself, designed by others, now commencing. During building construction several problems occurred with respect to the interface between the building design, construction and the fusion device (reactor). A brief description of some of these problems and related factors is presented, which may be of benefit to those persons active in continuing fusion research and experimental work

  19. Geodesic least squares regression for scaling studies in magnetic confinement fusion

    International Nuclear Information System (INIS)

    Verdoolaege, Geert

    2015-01-01

    In regression analyses for deriving scaling laws that occur in various scientific disciplines, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its application to scaling laws. We here discuss a new regression method that is robust in the presence of significant uncertainty on both the data and the regression model. The method, which we call geodesic least squares regression (GLS), is based on minimization of the Rao geodesic distance on a probabilistic manifold. We demonstrate the superiority of the method using synthetic data and we present an application to the scaling law for the power threshold for the transition to the high confinement regime in magnetic confinement fusion devices

  20. The role of Z-pinches and related configurations in magnetized target fusion

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1997-01-01

    The use of a magnetic field within a fusion target is now known as Magnetized Target Fusion in the US and as MAGO (Magnitnoye Obzhatiye, or magnetic compression) in Russia. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (e.g., ICF), MTF involves two steps: (a) formation of a warm, magnetized, wall-confined plasma of intermediate density within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression and heating of the plasma by imploding the confining wall, or pusher. In many ways, MTF can be considered a marriage between the more mature MFE and ICF approaches, and this marriage potentially eliminates some of the hurdles encountered in the other approaches. When compared to ICF, MTF requires lower implosion velocity, lower initial density, significantly lower radial convergence, and larger targets, all of which lead to substantially reduced driver intensity, power, and symmetry requirements. When compared to MFE, MTF does not require a vacuum separating the plasma from the wall, and, in fact, complete magnetic confinement, even if possible, may not be desirable. The higher density of MTF and much shorter confinement times should make magnetized plasma formation a much less difficult step than in MFE. The substantially lower driver requirements and implosion velocity of MTF make z-pinch magnetically driven liners, magnetically imploded by existing modern pulsed power electrical current sources, a leading candidate for the target pusher of an MTF system

  1. Background information and technical basis for assessment of environmental implications of magnetic fusion energy

    International Nuclear Information System (INIS)

    Cannon, J.B.

    1983-08-01

    This report contains background information for assessing the potential environmental implications of fusion-based central electric power stations. It was developed as part of an environmental review of the Magnetic Fusion Energy Program. Transition of the program from demonstration of purely scientific feasibility (breakeven conditions) to exploration of engineering feasibility suggests that formal program environmental review under the National Environmental Policy Act is timely. This report is the principal reference upon which an environmental impact statement on magnetic fusion will be based

  2. Mirror Fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  3. Mirror fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  4. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sorbom, B.N., E-mail: bsorbom@mit.edu; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; Goh, J.; Sung, C.; Whyte, D.G.

    2015-11-15

    Highlights: • ARC reactor designed to have 500 MW fusion power at 3.3 m major radius. • Compact, simplified design allowed by high magnetic fields and jointed magnets. • ARC has innovative plasma physics solutions such as inboardside RF launch. • High temperature superconductors allow high magnetic fields and jointed magnets. • Liquid immersion blanket and jointed magnets greatly simplify tokamak reactor design. - Abstract: The affordable, robust, compact (ARC) reactor is the product of a conceptual design study aimed at reducing the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a ∼200–250 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q{sub p} ≈ 13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ∼63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ∼23 T peak field on coil achievable with newly available REBCO superconductor technology. External current drive is provided by two innovative inboard RF launchers using 25 MW of lower hybrid and 13.6 MW of ion cyclotron fast wave power. The resulting efficient current drive provides a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing fluorine lithium beryllium (FLiBe) molten salt. The liquid blanket is low-risk technology and provides effective neutron moderation and shielding, excellent

  5. High magnetic field induced otolith fusion in the zebrafish larvae.

    Science.gov (United States)

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-04-11

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish.

  6. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Magnetic resonance diagnostic device. 892.1000 Section 892.1000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance diagnostic...

  7. Summary of existing superconducting magnet experience and its relevance to the safety of fusion magnet

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Allinger, J.; Danby, G.; Keane, J.; Powell, J.; Prodell, A.

    1975-01-01

    A comprehensive summary of experience with over twenty superconducting magnet systems has been collected through visits to and discussions about existing facilities including, for example, the bubble chamber magnets at Brookhaven National Laboratory, Argonne National Laboratory and Fermi National Accelerator Laboratory, and the large superconducting spectrometer at Stanford Linear Accelerator Center. This summary includes data relating to parameters of these magnets, magnet protection methods, and operating experiences. The information received is organized and presented in the context of its relevance to the safe operation of future, very large superconducting magnet systems for fusion power plants

  8. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  9. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  10. Dispersion interferometer for controlled fusion devices

    International Nuclear Information System (INIS)

    Drachev, V.P.; Krasnikov, Yu.I.; Bagryansky, P.A.

    1992-01-01

    A common feature in interferometry is the presence of two independent optical channels. Since wave phase in a medium depends on the geometrical path, polarization and radiation frequency, respectively, one can distinguish three types of interferometric schemes when the channels are geometrically separated, or separation occurs in polarizations or radiation frequencies. We have developed a measurement scheme based on a dispersion interferometer (DI) for plasma diagnostics in the experiments on controlled fusion. DI optical channels have the same geometrical path and are separated in radiation frequency. Use of a common optical path causes the main advantage of the DI technique - low sensitivity to vibrations of optical elements. The use of the DI technique for diagnostics of a laser spark in air and of arc discharges has shown its essential advantages as compared to classical interferometers. Interest in the DI technique from the viewpoint of its application in controlled fusion devices is determined also generated by the possibility of developing a compact multichannel interferometer not requiring a vibration isolation structure. (author) 14 refs., 3 figs

  11. Magnetic fusion program in the United States: an overview and perspective

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1978-01-01

    Continuing technical progress in magnetic fusion energy research and a coherent national program involving national laboratories, industry and universities has won strong support from the new Department of Energy. This review presents recent technical progress and examines fusion in relation to other long term energy supply options. Fusion is seen as a technology which, because of its apparently minimal environmental impacts and promise of reasonable cost, has a good chance of competing successfully with the other inexhaustible energy sources

  12. The development of the high-tension wire for nuclear fusion superconductive magnet measurement

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Morita, Yohsuke; Yamazaki, Takanori; Watanabe, Kiyoshi; Furusawa, Ken-ichi.

    1987-01-01

    Following on tokamak critical plasma testing device JT-60, experimental fusion reactor JT-100 is being developed. The 6 kV high-tension wire has been developed for use in JT-100 under ultra-low temperature and high radiation environment. Used for superconductive magnet measurement, the wire is inserted in the vacuum vessel, being immersed within the liquid helium. As the insulating material of this wire, polyetherimido was found to be most suitable in the respects of radiation resistance and voltage-withstand property. In an electric wire covered with polyetherimido, which was made in trial, its test in voltage-withstand and bending characteristics at ultra-low temperature showed the wire to be usable for the intended purpose. (Mori, K.)

  13. Plated lamination structures for integrated magnetic devices

    Science.gov (United States)

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  14. Energy sweepstakes: fusion gets a chance

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1980-01-01

    Congress plans to speed up the magnetic-fusion program by shifting the emphasis from plasma research to fusion-reactor engineering. The bill doubles the overall fusion budget over the next five years in order to construct a Fusion Engineering Device (FED) by 1990. A review panel of scientists suggested limiting the cost to under $1 billion and holding the increase until late 1983. The panel also suggested waiting until 1990 to set a date for demonstrating a competitive commercial reactor even though progress made in the 1970s could bring a realistic date as close as 2000. The new policy evolves from the debate between tokamak hawks, who want to take the best prospect to commercialization immediately, and the doves, who want to wait to see if the best possible concept turns out to be the magnetic mirror or some other contender. The Engineering Test Facility (ETF) represents a compromise of these positions

  15. Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging and Fusion Guided Targeted Biopsy Evaluated by Transperineal Template Saturation Prostate Biopsy for the Detection and Characterization of Prostate Cancer.

    Science.gov (United States)

    Mortezavi, Ashkan; Märzendorfer, Olivia; Donati, Olivio F; Rizzi, Gianluca; Rupp, Niels J; Wettstein, Marian S; Gross, Oliver; Sulser, Tullio; Hermanns, Thomas; Eberli, Daniel

    2018-02-21

    We evaluated the diagnostic accuracy of multiparametric magnetic resonance imaging and multiparametric magnetic resonance imaging/transrectal ultrasound fusion guided targeted biopsy against that of transperineal template saturation prostate biopsy to detect prostate cancer. We retrospectively analyzed the records of 415 men who consecutively presented for prostate biopsy between November 2014 and September 2016 at our tertiary care center. Multiparametric magnetic resonance imaging was performed using a 3 Tesla device without an endorectal coil, followed by transperineal template saturation prostate biopsy with the BiopSee® fusion system. Additional fusion guided targeted biopsy was done in men with a suspicious lesion on multiparametric magnetic resonance imaging, defined as Likert score 3 to 5. Any Gleason pattern 4 was defined as clinically significant prostate cancer. The detection rates of multiparametric magnetic resonance imaging and fusion guided targeted biopsy were compared with the detection rate of transperineal template saturation prostate biopsy using the McNemar test. We obtained a median of 40 (range 30 to 55) and 3 (range 2 to 4) transperineal template saturation prostate biopsy and fusion guided targeted biopsy cores, respectively. Of the 124 patients (29.9%) without a suspicious lesion on multiparametric magnetic resonance imaging 32 (25.8%) were found to have clinically significant prostate cancer on transperineal template saturation prostate biopsy. Of the 291 patients (70.1%) with a Likert score of 3 to 5 clinically significant prostate cancer was detected in 129 (44.3%) by multiparametric magnetic resonance imaging fusion guided targeted biopsy, in 176 (60.5%) by transperineal template saturation prostate biopsy and in 187 (64.3%) by the combined approach. Overall 58 cases (19.9%) of clinically significant prostate cancer would have been missed if fusion guided targeted biopsy had been performed exclusively. The sensitivity of

  16. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    International Nuclear Information System (INIS)

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.

    1987-01-01

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs

  17. Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices

    International Nuclear Information System (INIS)

    Burrell, K.H.

    1996-11-01

    One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization

  18. Introduction to the controlled nuclear fusion (magnetic containment systems)

    International Nuclear Information System (INIS)

    Cabrera, J.A.; Guasp, J.; Martin, R.

    1975-01-01

    The magnetic containment systems, their more important features, and their potentiality to became thermonuclear reactors is described. The work is based upon the first part of a set of lectures dedicated to Plasma and Fusion Physics. (author)

  19. View of fusion from Capitol Hill

    International Nuclear Information System (INIS)

    Mense, A.T.

    1981-01-01

    On October 7, 1980, the Magnetic Fusion Energy Engineering Act of 1980 (nicknamed the 'McCormack Fusion Bill') was signed into Public Law (P.L. 96-386) by President Carter. This new law if carried through, would result in an accelerated program leading in the near term to: (1) the establishment of a national center for fusion engineering; and (2) the design, construction and operation of a multi-billion dollar fusion reactor called the Fusion Engineering Device (FED). It is the purpose of this paper to briefly outline some of the legislative history that led up to the passage of P.L. 96-386, and finally, to present some thought on the legislative climate with regard to the FY '82 Department of Energy budget

  20. Superconducting magnet and conductor research activities in the US fusion program

    International Nuclear Information System (INIS)

    Michael, P.C.; Schultz, J.H.; Antaya, T.A.; Ballinger, R.; Chiesa, L.; Feng, J.; Gung, C.-Y.; Harris, D.; Kim, J.-H.; Lee, P.; Martovetsky, N.; Minervini, J.V.; Radovinsky, A.; Salvetti, M.; Takayasu, M.; Titus, P.

    2006-01-01

    Fusion research in the United States is sponsored by the Department of Energy's Office of Fusion Energy Sciences (OFES). The OFES sponsors a wide range of programs to advance fusion science, fusion technology, and basic plasma science. Most experimental devices in the US fusion program are constructed using conventional technologies; however, a small portion of the fusion research program is directed towards large scale commercial power generation, which typically relies on superconductor technology to facilitate steady-state operation with high fusion power gain, Q. The superconductor portion of the US fusion research program is limited to a small number of laboratories including the Plasma Science and Fusion Center at MIT, Lawrence Livermore National Laboratory (LLNL), and the Applied Superconductivity Center at University of Wisconsin, Madison. Although Brookhaven National Laboratory (BNL) and Lawrence Berkeley National Laboratory (LBNL) are primarily sponsored by the US's High Energy Physics program, both have made significant contributions to advance the superconductor technology needed for the US fusion program. This paper summarizes recent superconductor activities in the US fusion program

  1. Security on the US Fusion Grid

    Energy Technology Data Exchange (ETDEWEB)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  2. Security on the US Fusion Grid

    International Nuclear Information System (INIS)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-01-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER

  3. Security on the US fusion grid

    International Nuclear Information System (INIS)

    Burruss, J.R.; Fredian, T.W.; Thompson, M.R.

    2006-01-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This has led to the development of the U.S. fusion grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large U.S. fusion research facilities and with users both in the U.S. and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER

  4. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    Science.gov (United States)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  5. Magnetic fusion energy and computers: the role of computing in magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    1979-10-01

    This report examines the role of computing in the Department of Energy magnetic confinement fusion program. The present status of the MFECC and its associated network is described. The third part of this report examines the role of computer models in the main elements of the fusion program and discusses their dependence on the most advanced scientific computers. A review of requirements at the National MFE Computer Center was conducted in the spring of 1976. The results of this review led to the procurement of the CRAY 1, the most advanced scientific computer available, in the spring of 1978. The utilization of this computer in the MFE program has been very successful and is also described in the third part of the report. A new study of computer requirements for the MFE program was conducted during the spring of 1979 and the results of this analysis are presented in the forth part of this report

  6. Review of heat transfer problems associated with magnetically-confined fusion reactor concepts

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Werner, R.W.; Carlson, G.A.; Cornish, D.N.

    1976-01-01

    Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements. Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated

  7. Survey of fusion reactor technology

    International Nuclear Information System (INIS)

    Chung, M.K.; Kang, H.D.; Oh, Y.K.; Lee, K.W.; In, S.Y.; Kim, Y.C.

    1983-01-01

    The present object of the fusion research is to accomplish the scientific break even by the year of 1986. In view of current progress in the field of Fusion reactor development, we decided to carry out the conceptual design of Tokamak-type fusion reactor during the year of 82-86 in order to acquire the principles of the fusion devices, find the engineering problems and establish the basic capabilities to develop the key techniques with originality. In this year the methods for calculating the locations of the poloidal coils and distribution of the magnetic field, which is one of the most essential and complicated task in the fusion reactor design works, were established. Study on the optimization of the design method of toroidal field coil was also done. Through this work, we established the logic for the design of the toroidal field coil in tokamak and utilize this technique to the design of small compact tokamak. Apart from the development work as to the design technology of tokamak, accelerating column and high voltage power supply (200 KVDC, 100 mA) for intense D-T neutron generator were constructed and now beam transport systems are under construction. This device will be used to develop the materials and the components for the tokamak fusion reactor. (Author)

  8. Electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Abe, Tetsuya; Murakami, Yoshio [Japan Atomic Energy Research Inst., Naka (Japan)

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al{sub 2}O{sub 3}, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs.

  9. An active magnetic regenerator device

    DEFF Research Database (Denmark)

    2015-01-01

    A rotating active magnetic regenerator (AMR) device comprising two or more regenerator beds, a magnet arrangement and a valve arrangement. The valve arrangement comprises a plurality of valve elements arranged substantially immovably with respect to the regenerator beds along a rotational direction...

  10. ICRF Traveling Wave launcher for fusion devices

    International Nuclear Information System (INIS)

    Ragona, R

    2017-01-01

    Ion Cyclotron Resonance Heating and Current Drive is a method that has the ability to heat directly the ions in the Deuterium-Tritrium fuel to the high temperature needed for the fusion reaction to works. The capability of efficiently couple the Radio Frequency power to the plasma plays a big role in the overall performance of a fusion device. A Traveling Wave Antenna in a resonant ring configuration is a good candidate for an Ion Cyclotron Resonance Heating and Current Drive system. It has the capability to increase the coupled power with respect to present designs and to have a highly selective power spectrum that can be peaked around the maximally absorbed wave. It is also insensitive to the loading variations due to fluctuation of the plasma edge increasing the reliability and the efficiency of the system. It works as a low power density launcher due to the possible large number of current carrying elements. (paper)

  11. Particle diagnostics for magnetic fusion experiments

    International Nuclear Information System (INIS)

    Post, D.E.

    1983-01-01

    This chapter summarizes the subset of diagnostics that relies primarily on the use of particles, and attempts to show how atomic and molecular data play a role in these diagnostics. Discusses passive charge-exchange ion temperature measurements; hydrogen beams for density, ion temperature, q and ZEFF measurements; impurity diagnostics using charge-exchange recombination; plasma electric and magnetic measurements using beams heavier than hydrogen; and alpha particle diagnostics. Points out that as fusion experiments become larger and hotter, most traditional particle diagnostics become difficult because large plasmas are difficult for neutral atoms to penetrate and the gyro-orbits of charged particles need to be larger than typically obtained with present beams to be comparable with the plasma size. Concludes that not only does the current profile affect the plasma stability, but there is a growing opinion that any serious fusion reactor will have to be steady state

  12. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Daniel [Los Alamos National Laboratory; Hsu, Scott C. [Los Alamos National Laboratory

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  13. Plasma Surface interaction in Controlled fusion devices

    International Nuclear Information System (INIS)

    1990-05-01

    The subjects presented in the 9th conference on plasma surface interaction in controlled fusion devices were: the modifications of power scrape-off-length and power deposition during various configurations in Tore Supra plasmas; the effects observed in ergodic divertor experiments in Tore-Supra; the diffuse connexion induced by the ergodic divertor and the topology of the heat load patterns on the plasma facing components in Tore-Supra; the study of the influence of air exposure on graphite implanted by low energy high density deuterium plasma

  14. Path E alloys: ferritic material development for magnetic fusion energy applications

    International Nuclear Information System (INIS)

    Holmes, J.J.

    1980-09-01

    The application of ferritic materials in irradiation environments has received greatly expanded attention in the last few years, both internationally and in the United States. Ferritic materials are found to be resistant to irradiation damage and have in many cases superior properties to those of AISI 316. It has been shown that for magnetic fusion energy applications the low thermal expansion behavior of the ferritic alloy class will result in lower thermal stresses during reactor operation, leading to significantly longer ETF operating lifetimes. The Magnetic Fusion Energy Program therefore now includes a ferritic alloy option for alloy selection and this option has been designated Path E

  15. Technology-development needs for magnetic fusion

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Baker, C.C.; Conn, R.W.; Krakowski, R.A.; Steiner, D.; Thomassen, K.I.

    1983-03-01

    The technology-development needs for magnetic fusion have been identified from an assessment of the conceptual design studies which have been performed. A summary of worldwide conceptual design effort is presented. The relative maturity of the various confinement concepts and the intensity and continuity of the design efforts are taken into account in identifying technology development needs. A major conclusion of this study is that there is a high degree of commonality among the technology requirements identified for the various confinement concepts

  16. Impaction durability of porous polyether-ether-ketone (PEEK) and titanium-coated PEEK interbody fusion devices.

    Science.gov (United States)

    Torstrick, F Brennan; Klosterhoff, Brett S; Westerlund, L Erik; Foley, Kevin T; Gochuico, Joanna; Lee, Christopher S D; Gall, Ken; Safranski, David L

    2018-05-01

    Various surface modifications, often incorporating roughened or porous surfaces, have recently been introduced to enhance osseointegration of interbody fusion devices. However, these topographical features can be vulnerable to damage during clinical impaction. Despite the potential negative impact of surface damage on clinical outcomes, current testing standards do not replicate clinically relevant impaction loading conditions. The purpose of this study was to compare the impaction durability of conventional smooth polyether-ether-ketone (PEEK) cervical interbody fusion devices with two surface-modified PEEK devices that feature either a porous structure or plasma-sprayed titanium coating. A recently developed biomechanical test method was adapted to simulate clinically relevant impaction loading conditions during cervical interbody fusion procedures. Three cervical interbody fusion devices were used in this study: smooth PEEK, plasma-sprayed titanium-coated PEEK, and porous PEEK (n=6). Following Kienle et al., devices were impacted between two polyurethane blocks mimicking vertebral bodies under a constant 200 N preload. The posterior tip of the device was placed at the entrance between the polyurethane blocks, and a guided 1-lb weight was impacted upon the anterior face with a maximum speed of 2.6 m/s to represent the strike force of a surgical mallet. Impacts were repeated until the device was fully impacted. Porous PEEK durability was assessed using micro-computed tomography (µCT) pre- and postimpaction. Titanium-coating coverage pre- and postimpaction was assessed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy. Changes to the surface roughness of smooth and titanium-coated devices were also evaluated. Porous PEEK and smooth PEEK devices showed minimal macroscopic signs of surface damage, whereas the titanium-coated devices exhibited substantial visible coating loss. Quantification of the porous PEEK deformation

  17. Summary of the International Workshop on Magnetic Fusion Energy (MFE) Roadmapping in the ITER Era; 7–10 September 2011, Princeton, NJ, USA

    International Nuclear Information System (INIS)

    Neilson, G.H.; Federici, G.; Li, J.; Maisonnier, D.; Wolf, R.

    2012-01-01

    With the ITER project now well under way, the countries engaged in fusion research are planning, with renewed intensity, the research and major facilities needed to develop the science and technology for harnessing fusion energy. The Workshop on MFE Roadmapping in the ITER Era was organized to provide a timely forum for an international exchange of technical information and strategic perspectives on how best to tackle the remaining challenges leading to a magnetic fusion DEMO, a nuclear fusion device or devices with a level of physics and technology integration necessary to cover the essential elements of a commercial fusion power plant. Presentations addressed issues under four topics: (1) Perspectives on DEMO and the roadmap to DEMO; (2) Technology; (3) Physics-Technology integration and optimization; and (4) Major facilities on the path to DEMO. Participants identified a set of technical issues of high strategic importance, where the development strategy strongly influences the overall roadmap, and where there are divergent understandings in the world community, namely (1) the assumptions used in fusion design codes, (2) the strategy for fusion materials development, (3) the strategy for blanket development, (4) the strategy for plasma exhaust solution development and (5) the requirements and state of readiness for next-step facility options. It was concluded that there is a need to continue and to focus the international discussion concerning the scientific and technical issues that determine the fusion roadmap, and it was suggested that an international activity be organized under appropriate auspices to foster international cooperation on these issues. (conference report)

  18. Efficient micromagnetics for magnetic storage devices

    Science.gov (United States)

    Escobar Acevedo, Marco Antonio

    Micromagnetics is an important component for advancing the magnetic nanostructures understanding and design. Numerous existing and prospective magnetic devices rely on micromagnetic analysis, these include hard disk drives, magnetic sensors, memories, microwave generators, and magnetic logic. The ability to examine, describe, and predict the magnetic behavior, and macroscopic properties of nanoscale magnetic systems is essential for improving the existing devices, for progressing in their understanding, and for enabling new technologies. This dissertation describes efficient micromagnetic methods as required for magnetic storage analysis. Their performance and accuracy is demonstrated by studying realistic, complex, and relevant micromagnetic system case studies. An efficient methodology for dynamic micromagnetics in large scale simulations is used to study the writing process in a full scale model of a magnetic write head. An efficient scheme, tailored for micromagnetics, to find the minimum energy state on a magnetic system is presented. This scheme can be used to calculate hysteresis loops. An efficient scheme, tailored for micromagnetics, to find the minimum energy path between two stable states on a magnetic system is presented. This minimum energy path is intimately related to the thermal stability.

  19. Atomic and molecular physics of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Joachain, C.J.; Post, D.E.

    1983-01-01

    This book attempts to provide a comprehensive introduction to the atomic and molecular physics of controlled thermonuclear fusion, and also a self-contained source from which to start a systematic study of the field. Presents an overview of fusion energy research, general principles of magnetic confinement, and general principles of inertial confinement. Discusses the calculation and measurement of atomic and molecular processes relevant to fusion, and the atomic and molecular physics of controlled thermonuclear research devices. Topics include recent progress in theoretical methods for atomic collisions; current theoretical techniques for electron-atom and electronion scattering; experimental aspects of electron impact ionization and excitation of positive ions; the theory of charge exchange and ionization by heavy particles; experiments on electron capture and ionization by multiply charged ions; Rydberg states; atomic and molecular processes in high temperature, low-density magnetically confined plasmas; atomic processes in high-density plasmas; the plasma boundary region and the role of atomic and molecular processes; neutral particle beam production and injection; spectroscopic plasma diagnostics; and particle diagnostics for magnetic fusion experiments

  20. The High Field Path to Practical Fusion Energy

    Science.gov (United States)

    Mumgaard, Robert; Whyte, D.; Greenwald, M.; Hartwig, Z.; Brunner, D.; Sorbom, B.; Marmar, E.; Minervini, J.; Bonoli, P.; Irby, J.; Labombard, B.; Terry, J.; Vieira, R.; Wukitch, S.

    2017-10-01

    We propose a faster, lower cost development path for fusion energy enabled by high temperature superconductors, devices at high magnetic field, innovative technologies and modern approaches to technology development. Timeliness, scale, and economic-viability are the drivers for fusion energy to combat climate change and aid economic development. The opportunities provided by high-temperature superconductors, innovative engineering and physics, and new organizational structures identified over the last few years open new possibilities for realizing practical fusion energy that could meet mid-century de-carbonization needs. We discuss re-factoring the fusion energy development path with an emphasis on concrete risk retirement strategies utilizing a modular approach based on the high-field tokamak that leverages the broader tokamak physics understanding of confinement, stability, and operational limits. Elements of this plan include development of high-temperature superconductor magnets, simplified immersion blankets, advanced long-leg divertors, a compact divertor test tokamak, efficient current drive, modular construction, and demountable magnet joints. An R&D plan culminating in the construction of an integrated pilot plant and test facility modeled on the ARC concept is presented.

  1. Advanced materials: The key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural material for the first wail and blanket (FWB), (2) plasma-facing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications

  2. Advanced materials - the key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural materials for the first wall and blanket (FWB), (2) plasmafacing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications. (author)

  3. Magnetic fusion energy materials technology program annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Scott, J.L.

    1977-09-01

    The objectives of the Magnetic Fusion Energy (MFE) Materials Technology Program, which is described in this report, are to continue to solve the materials problems of the Fusion Energy Division of ORNL and to meet needs of the national MFE program, directed by the ERDA Division of Magnetic Fusion Energy (DMFE). This work is a continuation of the program described in previous annual progress reports. The principal areas of work include radiation effects, compatibility studies, materials studies related to the plasma-materials interaction, materials engineering, radiation behavior of superconducting magnet insulation, and mechanical properties of superconducting composites. The level of effort and schedules are consistent with Logic II of the DMFE Program Plan

  4. Fusion at counterstreaming ion beams - ion optic fusion (IOF)

    International Nuclear Information System (INIS)

    Gryzinski, M.

    1981-01-01

    The results of investigation are briefly reviewed in the field of ion optic fusion performed at the Institute of Nuclear Research in Swierk. The ion optic fusion concept is based on the possibility of obtaining fusion energy at highly ordered motion of ions in counterstreaming ion beams. For this purpose TW ion beams must be produced and focused. To produce dense and charge-neutralized ion beams the selective conductivity and ballistic focusing ideas were formulated and used in a series of RPI devices with low-pressure cylindrical discharge between grid-type electrodes. 100 kA, 30 keV deuteron beams were successfully produced and focused into the volume of 1 cm 3 , yielding 10 9 neutrons per 200 ns shot on a heavy ice target. Cylindrically convergent ion beams with magnetic anti-defocusing were proposed in order to reach a positive energy gain at reasonable energy level. (J.U.)

  5. Safety of superconducting fusion magnets: twelve problem areas

    International Nuclear Information System (INIS)

    Turner, L.R.

    1979-01-01

    Twelve problem areas of superconducting magnets for fusion reaction are described. These are: quench detection and energy dump, stationary normal region of conductor, current leads, electrical arcing, electrical shorts, conductor joints, forces from unequal currents, eddy current effects, cryostat rupture, vacuum failure, fringing field and instrumentation for safety. Priorities among these areas are suggested

  6. Safety of superconducting fusion magnets: twelve problem areas

    International Nuclear Information System (INIS)

    Turner, L.R.

    1979-01-01

    Twelve problem areas of superconducting magnets for fusion reaction are described. These are: Quench Detection and Energy Dump, Stationary Normal Region of Conductor, Current Leads, Electrical Arcing, Electrical Shorts, Conductor Joints, Forces from Unequal Currents, Eddy Current Effects, Cryostat Rupture, Vacuum Failure, Fringing Field and Instrumentation for Safety. Priorities among these areas are suggested

  7. Computing for magnetic fusion energy research: An updated vision

    International Nuclear Information System (INIS)

    Henline, P.; Giarrusso, J.; Davis, S.; Casper, T.

    1993-01-01

    This Fusion Computing Council perspective is written to present the primary of the fusion computing community at the time of publication of the report necessarily as a summary of the information contained in the individual sections. These concerns reflect FCC discussions during final review of contributions from the various working groups and portray our latest information. This report itself should be considered as dynamic, requiring periodic updating in an attempt to track rapid evolution of the computer industry relevant to requirements for magnetic fusion research. The most significant common concern among the Fusion Computing Council working groups is networking capability. All groups see an increasing need for network services due to the use of workstations, distributed computing environments, increased use of graphic services, X-window usage, remote experimental collaborations, remote data access for specific projects and other collaborations. Other areas of concern include support for workstations, enhanced infrastructure to support collaborations, the User Service Centers, NERSC and future massively parallel computers, and FCC sponsored workshops

  8. Status of tritium technology development for magnetic-fusion energy

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1983-01-01

    The development of tritium technology for the magnetic fusion energy program has progressed at a rapid rate over the past two years. The focal points for this development in the United States have been the Tritium Systems Test Assembly at Los Alamos and the FED/INTOR studies supported by the Fusion Engineering Design Center at Oak Ridge. In Canada the Canadian Fusion Fuel Technology Project has been initiated and promises to make significant contributions to the tritium technology program in the next few years. The Japanese government has now approved funding for the Tritium Processing Laboratory at the Japan Atomic Energy Research Institute's Tokai Research Establishment. Construction on this new facility is scheduled to begin in April 1983. This facility will be the center for fusion tritium technology development in Japan. The European Community is currently working on the design of the tritium facility for the Joint European Torus. There is considerable interaction between all of these programs, thus accelerating the overall development of this crucial technology

  9. Analysis of plasma behavior in a magnetic nozzle of laser fusion rocket

    International Nuclear Information System (INIS)

    Nagamine, Yoshihiko; Yoshimi, Naofumi; Nakama, Yuji; Muranaka, Takanobu; Mayumi, Takao; Nakashima, Hideki

    1997-01-01

    A magnetic nozzle concept in a laser fusion rocket is suitable for controlling the fusion plasma flow and it has an advantage that thermalization with wall structures in a thrust chamber can be avoided. Rayleigh-Taylor instability would occur at the surface of expanding plasma and it would lead to the degradation of thrust efficiency, due to diffusion of the plasma through ambient decelerating magnetic field. A 3D hybrid particle-in-cell code has been developed to analyze the plasma instability in the magnetic nozzle. The resultant linear growth rate γ of the instability is found to be 2.96 x 10 6 and it is in good agreement with the theoretical value from conventional Rayleigh Taylor instability. (author)

  10. Environmental and economic assessments of magnetic and inertial fusion energy reactors

    Science.gov (United States)

    Yamazaki, K.; Oishi, T.; Mori, K.

    2011-10-01

    Global warming due to rapid greenhouse gas (GHG) emissions is one of the present-day crucial problems, and fusion reactors are expected to be abundant electric power generation systems to reduce human GHG emission amounts. To search for an environmental-friendly and economical fusion reactor system, comparative system studies have been done for several magnetic fusion energy reactors, and have been extended to include inertial fusion energy reactors. We clarify new scaling formulae for the cost of electricity and GHG emission rate with respect to key design parameters, which might be helpful in making a strategy for fusion research development. Comparisons with other conventional electric power generation systems are carried out taking into account the introduction of GHG taxes and the application of the carbon dioxide capture and storage system to fossil power generators.

  11. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    International Nuclear Information System (INIS)

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-01-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world's energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the

  12. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, Jill [General Atomics, San Diego, CA (United States); Corones, James [Krell Inst., Ames, IA (United States); Batchelor, Donald [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bramley, Randall [Indiana Univ., Bloomington, IN (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jardin, Stephen [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Krasheninnikov, Sergei [Univ. of California, San Diego, CA (United States); Laub, Alan [Univ. of California, Davis, CA (United States); Leboeuf, Jean-Noel [Univ. of California, Los Angeles, CA (United States); Lindl, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lokke, William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosenbluth, Marshall [Univ. of California, San Diego, CA (United States); Ross, David [Univ. of Texas, Austin, TX (United States); Schnack, Dalton [Science Applications International Corporation, Oak Ridge, TN (United States)

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  13. Survey of particle codes in the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    1977-12-01

    In the spring of 1976, the Fusion Plasma Theory Branch of the Division of Magnetic Fusion Energy conducted a survey of all the physics computer codes being supported at that time. The purpose of that survey was to allow DMFE to prepare a description of the codes for distribution to the plasma physics community. This document is the first of several planned and covers those types of codes which treat the plasma as a group of particles

  14. Magnet design considerations for Tokamak fusion reactors

    International Nuclear Information System (INIS)

    Purcell, J.R.; Chen, W.; Thomas, R.

    1976-01-01

    Design problems for superconducting ohmic heating and toroidal field coils for large Tokamak fusion reactors are discussed. The necessity for making these coils superconducting is explained, together with the functions of these coils in a Tokamak reactor. Major problem areas include materials related aspects and mechanical design and cryogenic considerations. Projections and comparisons are made based on existing superconducting magnet technology. The mechanical design of large-scale coils, which can contain the severe electromagnetic loading and stress generated in the winding, are emphasized. Additional major tasks include the development of high current conductors for pulsed applications to be used in fabricating the ohmic heating coils. It is important to note, however, that no insurmountable technical barriers are expected in the course of developing superconducting coils for Tokamak fusion reactors. (Auth.)

  15. Generation and compression of a target plasma for magnetized target fusion

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.; Sheehey, P.T.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Magnetized target fusion (MTF) is intermediate between the two very different approaches to fusion: inertial and magnetic confinement fusion (ICF and MCF). Results from collaboration with a Russian MTF team on their MAGO experiments suggest they have a target plasma suitable for compression to provide an MTF proof of principle. This LDRD project had tow main objectives: first, to provide a computational basis for experimental investigation of an alternative MTF plasma, and second to explore the physics and computational needs for a continuing program. Secondary objectives included analytic and computational support for MTF experiments. The first objective was fulfilled. The second main objective has several facets to be described in the body of this report. Finally, the authors have developed tools for analyzing data collected on the MAGO and LDRD experiments, and have tested them on limited MAGO data

  16. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  17. Plasma facing materials and components for future fusion devices - development, characterization and performance under fusion specific loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J. [Forschungszentrum Juelich (Germany). Inst. fuer Plasmaphysik

    2006-04-15

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive RandD. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  18. Plasma facing materials and components for future fusion devices - development, characterization and performance under fusion specific loading conditions

    International Nuclear Information System (INIS)

    Linke, J.

    2006-01-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive RandD. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation

  19. Data security on the national fusion grid

    Energy Technology Data Exchange (ETDEWEB)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  20. Data security on the national fusion grid

    International Nuclear Information System (INIS)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-01-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER

  1. Technology requirements for fusion--fission reactors based on magnetic-mirror confinement

    International Nuclear Information System (INIS)

    Moir, R.W.

    1978-01-01

    Technology requirements for mirror hybrid reactors are discussed. The required 120-keV neutral beams can use positive ions. The magnetic fields are 8 T or under and can use NbTi superconductors. The value of Q (where Q is the ratio of fusion power to injection power) should be in the range of 1 to 2 for economic reasons relating to the cost of recirculating power. The wall loading of 14-MeV neutrons should be in the range of 1 to 2 MW/m 2 for economic reasons. Five-times higher wall loading will likely be needed if fusion reactors are to be economical. The magnetic mirror experiments 2XIIB, TMX, and MFTF are described

  2. An approach to next step device optimisation

    International Nuclear Information System (INIS)

    Salpietro, E.

    2000-01-01

    The requirements for ITER EDA were to achieve ignition with a good safety margin, and controlled long inductive burn. These requirements lead to a big device, which requested a too ambitious step to be undertaken by the world fusion community. More realistic objectives for a next step device shall be to demonstrate the net production of energy with a high energy gain factor (Q) and a high boot strap current fraction (>60%) which is required for a Fusion Power Plant (FPP). The Next Step Device (NSD) shall also allow operation flexibility in order to explore a large range of plasma parameters to find out the optimum concept for the fusion power plant prototype. These requirements could be too demanding for one single device and could probably be better explored in a strongly integrated world programme. The cost of one or more devices is the decisive factor for the choice of the fusion power development programme strategy. The plasma elongation and triangularity have a strong impact in the cost of the device and are limited by the plasma vertical position control issue. The distance between plasma separatrix and the toroidal field conductor does not vary a lot between devices. It is determined by the sum of the distance between first wall-plasma sepratrix and the thickness of the nuclear shield required to protect the toroidal field coil insultation. The thickness of the TF coil is determined by the allowable stresses and superconducting characteristics. The outer radius of the central solenoid is the result of an optimisation to provide the magnetic flux to inductively drive the plasma. Therefore, in order to achieve the objectives for Q and boot-strap current fractions at the minimum cost, the plasma aspect ratio and magnetic field value shall be determined. The paper will present the critical issues for the next device and will make considerations on the optimal way to proceed towards the realisation of the fusion power plant

  3. MHD deceleration of fusion reaction products

    International Nuclear Information System (INIS)

    Chow, S.; Bohachevsky, I.O.

    1979-04-01

    The feasibility of magnetohydrodynamic (MHD) deceleration of fuel pellet debris ions exiting from an inertial confinement fusion (ICF) reactor cavity is investigated using one-dimensional flow equations. For engineering reasons, induction-type devices are emphasized; their performance characteristics are similar to those of electrode-type decelerators. Results of the analysis presented in this report indicate that MHD decelerators can be designed within conventional magnet technology to not only decelerate the high-energy fusion pellet debris ions but also to produce some net electric power in the process

  4. Magnet-assisted device-level alignment for the fabrication of membrane-sandwiched polydimethylsiloxane microfluidic devices

    International Nuclear Information System (INIS)

    Lu, J-C; Liao, W-H; Tung, Y-C

    2012-01-01

    Polydimethylsiloxane (PDMS) microfluidic device is one of the most essential techniques that advance microfluidics research in recent decades. PDMS is broadly exploited to construct microfluidic devices due to its unique and advantageous material properties. To realize more functionalities, PDMS microfluidic devices with multi-layer architectures, especially those with sandwiched membranes, have been developed for various applications. However, existing alignment methods for device fabrication are mainly based on manual observations, which are time consuming, inaccurate and inconsistent. This paper develops a magnet-assisted alignment method to enhance device-level alignment accuracy and precision without complicated fabrication processes. In the developed alignment method, magnets are embedded into PDMS layers at the corners of the device. The paired magnets are arranged in symmetric positions at each PDMS layer, and the magnetic attraction force automatically pulls the PDMS layers into the aligned position during assembly. This paper also applies the method to construct a practical microfluidic device, a tunable chaotic micromixer. The results demonstrate the successful operation of the device without failure, which suggests the accurate alignment and reliable bonding achieved by the method. Consequently, the fabrication method developed in this paper is promising to be exploited to construct various membrane-sandwiched PDMS microfluidic devices with more integrated functionalities to advance microfluidics research. (paper)

  5. Characterization of high flux magnetized helium plasma in SCU-PSI linear device

    Science.gov (United States)

    Xiaochun, MA; Xiaogang, CAO; Lei, HAN; Zhiyan, ZHANG; Jianjun, WEI; Fujun, GOU

    2018-02-01

    A high-flux linear plasma device in Sichuan University plasma-surface interaction (SCU-PSI) based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors. In this paper, the helium plasma has been characterized by a double-pin Langmuir probe. The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T. The core density and ion flux of helium plasma have a strong dependence on the applied current, magnetic field strength and gas flow rate. It could reach an electron density of 1.2 × 1019 m-3 and helium ion flux of 3.2 × 1022 m-2 s-1, with a gas flow rate of 4 standard liter per minute, magnetic field strength of 0.2 T and input power of 11 kW. With the addition of -80 V applied to the target to increase the helium ion energy and the exposure time of 2 h, the flat top temperature reached about 530 °C. The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy. These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.

  6. Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

    Directory of Open Access Journals (Sweden)

    Hyeon K. Park

    2017-10-01

    Full Text Available The role of electromagnetic (EM waves in magnetic fusion plasma—ranging from radio frequency (RF to microwaves—has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV = 10000 K that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

  7. Inertial confinement fusion with direct electric generation by magnetic flux comparession

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1983-01-01

    A high-power-density laser-fusion-reactor concept in investigated in which directed kinetic enery imparted to a large mass of liquid lithium--in which the fusion target is centrally located--is maximized. In turn, this kinetic energy is converted directly to electricity with, potentially, very high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the concept maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall can be many orders of magnitude less than is typical of D-T fusion reactor concepts

  8. Magnetic linear accelerator (MAGLAC) for hypervelocity acceleration in impact fusion (IF)

    International Nuclear Information System (INIS)

    Chen, K.W.

    1980-01-01

    This paper presents considerations on the design of a magnetic linear accelerator suitable as driver for impact fusion. We argue that the proposed approach offers an attractive option to accelerate macroscopic matter to centiluminal velocity suitable for fusion applications. The design goal is to attain a velocity approaching 200 km/sec. Recent results in suitable target design suggest that a velocity in the range of 40-100 km/sec might be sufficient to include fusion. An accelerator in this velocity range can be constructed with current-day technology. We present both design and practical engineering considerations. Future work are outlined and recommended. (orig.)

  9. TOKMINA, Toroidal Magnetic Field Minimization for Tokamak Fusion Reactor. TOKMINA-2, Total Power for Tokamak Fusion Reactor

    International Nuclear Information System (INIS)

    Hatch, A.J.

    1975-01-01

    1 - Description of problem or function: TOKMINA finds the minimum magnetic field, Bm, required at the toroidal coil of a Tokamak type fusion reactor when the input is beta(ratio of plasma pressure to magnetic pressure), q(Kruskal-Shafranov plasma stability factor), and y(ratio of plasma radius to vacuum wall radius: rp/rw) and arrays of PT (total thermal power from both d-t and tritium breeding reactions), Pw (wall loading or power flux) and TB (thickness of blanket), following the method of Golovin, et al. TOKMINA2 finds the total power, PT, of such a fusion reactor, given a specified magnetic field, Bm, at the toroidal coil. 2 - Method of solution: TOKMINA: the aspect ratio(a) is minimized, giving a minimum value for Bm. TOKMINA2: a search is made for PT; the value of PT which minimizes Bm to the required value within 50 Gauss is chosen. 3 - Restrictions on the complexity of the problem: Input arrays presently are dimensioned at 20. This restriction can be overcome by changing a dimension card

  10. Contribution to the study of superconducting magnetic systems in the frame of fusion projects

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Artiguelongue, H.; Bej, Z.; Ciazynski, D.; Cloez, H.; Decool, P.; Hertout, P.; Libeyre, P.; Martinez, A.; Nicollet, S.; Rubino, M.; Schild, T.; Verger, J.M.

    2000-02-01

    This report is a presentation of all the 55 publications made by the Magnet Group of the 'Departement de Recherche sur la Fusion Controlee' during the 94-99 period. These publications have been made mainly in the frame of EURATOM contracts and task for ITER. This collection deals with most of the dimensioning aspects of large superconducting magnets and hence the field interest is wider than the restricted field of magnets for fusion by magnetic confinement. Whenever it is possible, simple expressions and criteria are given for dimensioning superconducting strands, assembling them to build cables and cooling them by an adapted forced flow cooling. This is hence a major for the understanding of the behaviour of large modern superconducting magnets and provides many tools for design and construction. (author)

  11. Contribution to the study of superconducting magnetic systems in the frame of fusion projects

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.L.; Artiguelongue, H.; Bej, Z.; Ciazynski, D.; Cloez, H.; Decool, P.; Hertout, P.; Libeyre, P.; Martinez, A.; Nicollet, S.; Rubino, M.; Schild, T.; Verger, J.M. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee DRFC, 13 - Saint-Paul-lez-Durance (France)

    2000-02-01

    This report is a presentation of all the 55 publications made by the Magnet Group of the 'Departement de Recherche sur la Fusion Controlee' during the 94-99 period. These publications have been made mainly in the frame of EURATOM contracts and task for ITER. This collection deals with most of the dimensioning aspects of large superconducting magnets and hence the field interest is wider than the restricted field of magnets for fusion by magnetic confinement. Whenever it is possible, simple expressions and criteria are given for dimensioning superconducting strands, assembling them to build cables and cooling them by an adapted forced flow cooling. This is hence a major for the understanding of the behaviour of large modern superconducting magnets and provides many tools for design and construction. (author)

  12. Railgun pellet injection system for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, M.; Hasegawa, K.

    1995-01-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s -1 using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s -1 using a 3 m long railgun. (orig.)

  13. Energy transport in cooling device by magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroshi, E-mail: hyamaguc@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyo-tanabe, Kyoto 610-0321 (Japan); Iwamoto, Yuhiro [Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 (Japan)

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering. - Highlights: • Temperature-sensitive magnetic fluid (TSMF) has a great heat transport ability. • Magnetically-driven heat transport device using binary TSMF is proposed. • The basic heat transport characteristics are investigated. • Boiling of the organic mixture effectively enhances the heat transfer. • A long-distance heat transport of 5 m is experimentally confirmed.

  14. Energy transport in cooling device by magnetic fluid

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-01-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering. - Highlights: • Temperature-sensitive magnetic fluid (TSMF) has a great heat transport ability. • Magnetically-driven heat transport device using binary TSMF is proposed. • The basic heat transport characteristics are investigated. • Boiling of the organic mixture effectively enhances the heat transfer. • A long-distance heat transport of 5 m is experimentally confirmed.

  15. Compression of magnetized target in the magneto-inertial fusion

    Science.gov (United States)

    Kuzenov, V. V.

    2017-12-01

    This paper presents a mathematical model, numerical method and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion. The computer simulation of the compression process of magnetized cylindrical target by high-power laser pulse is presented.

  16. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  17. Fusion technology 1998

    International Nuclear Information System (INIS)

    Beaumont, B.; Libeyre, P.; Gentile, B. de; Tonon, G.

    1998-01-01

    The Symposium On Fusion Technology (SOFT) is held every two years with the objective to set the stage for the exchange of information on the design, construction and operation of fusion experiments and on the technology which is being developed for the next step devices and fusion reactors. By decision of the International Organizing Committee, the 20. SOFT includes invited talks, and oral and poster contributions in the following topics: plasma facing components, plasma heating and current drive, plasma engineering and control, experimental systems and diagnostics, magnets and power supplies, fuel technologies, remote operation, blanket and shield technologies, safety and environment, and system engineering and future devices. This symposium differs from the previous ones of this series by the way the present proceedings are produced. In order to have the written material available to the participants and the community at the nearest to the conference event, the papers have been collected 2 months in advance and printed in the present books. The goal was to deliver them to each participant upon arrival to the conference centre. These books contain all the papers corresponding to poster presentation, and the abstracts of the oral contributions and invited papers. The papers corresponding to these presentations, both oral and invited, will be published in 1999, after a standard review process, in a supplement of Fusion Engineering and Design. (author)

  18. First-wall design limitations for linear magnetic fusion (LMF) reactors

    International Nuclear Information System (INIS)

    Gryczkowski, G.E.; Krakowski, R.A.; Steinhauer, L.C.; Zumdieck, J.

    1978-01-01

    One approach to the endloss problem in linear magnetic fusion (LMF) uses high magnetic field to reduce the required confinement time. This approach is limited by magnet stresses and bremsstrahlung heating of the first wall; the first-wall thermal-pulsing issue is addressed. Pertinent thermophysical parameters are developed in the context of high-field LMF to identify promising first-wall materials, and thermal fatigue experiments relevant to LMF first walls are reviewed. High-flux first-wall concepts are described which include both solid and evaporating first-wall configurations

  19. History and status of magnetic fusion research; Evolution et statut des recherches sur la fusion controlee

    Energy Technology Data Exchange (ETDEWEB)

    Jacquinot, J. [CEA Saclay, Cabinet du Haut Commissaire, 91 - Gif-sur-Yvette (France)

    2008-02-15

    Ever since the understanding of the basic process which powers the stars has been elucidated, humanity has been dreaming to master controlled fusion for peaceful purposes. Controlled fusion in a steady state regime must use magnetic confinement of a gas (plasma) heated up to 150 millions degrees. Physics and technology involved in such a state are extremely complex and went through many up and down phases. Nevertheless, the overall progress has been spectacular and a significant amount of energy could be produced in a well controlled manner. On this basis, an international organisation of unprecedented magnitude involving 34 countries has started working in Cadarache for the construction of the ITER project. It aims at the scientific demonstration of controlled fusion at the level of 500 MW and a power gain of 10. (author)

  20. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    International Nuclear Information System (INIS)

    Tuccillo, Angelo A.; Ceccuzzi, Silvio; Phillips, Cynthia K.

    2014-01-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion “burn” may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to “demo” and “fusion power plant.” A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of

  1. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    Science.gov (United States)

    Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio

    2014-06-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the

  2. A GDT-based fusion neutron source for academic and industrial applications

    Science.gov (United States)

    Anderson, J. K.; Forest, C. B.; Mirnov, V. V.; Peterson, E. E.; Waleffe, R.; Wallace, J.; Harvey, R. W.

    2017-10-01

    The design of a fusion neutron source based on the gas dynamic trap (GDT) configuration is underway. The motivation is both the ends and the means. There are immediate applications for neutrons including medical isotope production and actinide burners. Taking the next step in the magnetic mirror path will leverage advances in high-temperature superconducting magnets and additive manufacturing in confining a fusion plasma, and both the technological and physics bases exist. Recent breakthrough results at the GDT facility in Russia demonstrate stable confinement of a beta 60% mirror plasma at high Te ( 1 keV). These scale readily to a fusion neutron source with an increase in magnetic field, mirror ratio, and ion energy. Studies of a next-step compact device focus on calculations of MHD equilibrium and stability, and Fokker-Planck modeling to optimize the heating scenario. The conceptualized device uses off-the-shelf MRI magnets for a 1 T central field, REBCO superconducting mirror coils (which can currently produce fields in excess of 30T), and existing 75 keV NBI and 140 GHz ECRH. High harmonic fast wave injection is damped on beam ions, dramatically increasing the fusion reactivity for an incremental bump in input power. MHD stability is achieved with the vortex confinement scheme, where a biasing profile imposes optimal ExB rotation of the plasma. Liquid metal divertors are being considered in the end cells. Work supported by the Wisconsin Alumni Research Foundation.

  3. Final report on the Magnetized Target Fusion Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    John Slough

    2009-09-08

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking to be described in this proposal is to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The timescale for testing and development can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T&ion ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than

  4. Quantitative Characterization of Phosphor Detector for Fusion Plasmas; Caracterizacion Cuantitativa de Detectores Luminiscentes para Plasmas de Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Baciero, A; Zurro, B; McCarthy, K J

    2004-07-01

    Experiments made to characterize phosphor screens with application as broadband radiation detectors, are described. Several radiation sources, covering the spectral range between the ultraviolet and X ray, were used. In addition, details are given of three original phosphor-screen-based detectors that were designed for use as broadband detectors in magnetically confined fusion devices. The first measurements obtained with these detectors in plasmas created in the TJ-II stellarator device are presented together with the analysis performed. (Author)

  5. Magnetic fusion reactor economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission → fusion. The present projections of the latter indicate that capital costs of the fusion ''burner'' far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ''implementation-by-default'' plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant

  6. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia.

    Science.gov (United States)

    Wu, Zuhe; Zhuo, Zihang; Cai, Dongyang; Wu, Jian'an; Wang, Jie; Tang, Jintian

    2015-01-01

    Induction heating devices using the induction coil and magnetic nanoparticles (MNPs) are the way that the magnetic hyperthermia is heading. To facilitate the induction heating of in vivo magnetic nanoparticles in hyperthermia experiments on large animals. An induction heating device using a planar coil was designed with a magnetic field frequency of 328 kHz. The coil's magnetic field distribution and the device's induction heating performance on different concentrations of magnetic nanoparticles were measured. The alternating magnetic field produced in the axis position 165 mm away from the coil center is 40 Gs in amplitude; magnetic nanoparticles with a concentration higher than 80 mg. mL-1 can be heated up rapidly. Our results demonstrate that the device can be applied not only to in vitro and in small animal experiments of magnetic hyperthermia using MNPs, but also in large animal experiments.

  7. Liquid metal technology in fusion

    International Nuclear Information System (INIS)

    Torre Cabezas, M. de la; Martin Espigares, M.; Lapena, J.

    1985-01-01

    Lithium (or Li-Pb) is one of the several possible coolants being considered for the blanket of magnetic toroidal fusion reactor, not only because of its good thermal and neutron properties, but also because the tritium required to fuel the reactor can be produced by neutron reactions in the lithium. In this paper two main technology tasks to be proposed in our fusion programme have been identified: 1) the development of impurity monitoring devices for use in lithium and Li-Pb environments; 2) effects of Li and Li-Pb environments on the low cycle fatigue properties of different steels. (author)

  8. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2010-12-01

    Full Text Available Fast ignition is a new method for inertial confinement fusion (ICF in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel . More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion (MTF. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0. 25 and 0. 5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. MTF in dual hot spot can be considered as an appropriate substitution for the current ICF techniques.

  9. Energy transport in cooling device by magnetic fluid

    Science.gov (United States)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.

  10. Neutral-beam systems for magnetic-fusion reactors

    International Nuclear Information System (INIS)

    Fink, J.H.

    1981-01-01

    Neutral beams for magnetic fusion reactors are at an early stage of development, and require considerable effort to make them into the large, reliable, and efficient systems needed for future power plants. To optimize their performance to establish specific goals for component development, systematic analysis of the beamlines is essential. Three ion source characteristics are discussed: arc-cathode life, gas efficiency, and beam divergence, and their significance in a high-energy neutral-beam system is evaluated

  11. Coil supporting device in a nuclear fusion device

    International Nuclear Information System (INIS)

    Takano, Hirohisa; Sasaki, Katsutoki.

    1976-01-01

    Object: To slide a vacuum vessel in the nuclear fusion device and a coil within the vacuum vessel and to mount the coil within the vacuum vessel in a manner that it may not be moved by an electromagnetic force, thereby preventing stress from being produced in the coil. Structure: A coil supporting plate mounted at upper and lower parts prevents damage to an insulation of the coil, said coil being held in a U-shaped groove, and can be moved integral with the coil by the action of a roller bearing with a plurality of needle-like rollers arranged in parallel. The coil supporting plate has a plurality of projections disposed on the lower surface thereof, and flat springs are placed in the projections one over another so that the spring action exerted in the lower plate causes the coil to be resiliently bias in a direction of an electromagnetic force applied thereto and to support the coil. (Yoshino, Y.)

  12. Comparative assessment of world research efforts on magnetic confinement fusion

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Rutherford, P.H.

    1990-02-01

    This report presents a comparative assessment of the world's four major research efforts on magnetic confinement fusion, including a comparison of the capabilities in the Soviet Union, the European Community (Western Europe), Japan, and the United States. A comparative evaluation is provided in six areas: tokamak confinement; alternate confinement approaches; plasma technology and engineering; and fusion computations. The panel members are involved actively in fusion-related research, and have extensive experience in previous assessments and reviews of the world's four major fusion programs. Although the world's four major fusion efforts are roughly comparable in overall capabilities, two conclusions of this report are inescapable. First, the Soviet fusion effort is presently the weakest of the four programs in most areas of the assessment. Second, if present trends continue, the United States, once unambiguously the world leader in fusion research, will soon lose its position of leadership to the West European and Japanese fusion programs. Indeed, before the middle 1990s, the upgraded large-tokamak facilities, JT-60U (Japan) and JET (Western Europe), are likely to explore plasma conditions and operating regimes well beyond the capabilities of the TFTR tokamak (United States). In addition, if present trends continue in the areas of fusion nuclear technology and materials, and plasma technology and materials, and plasma technology development, the capabilities of Japan and Western Europe in these areas (both with regard to test facilities and fusion-specific industrial capabilities) will surpass those of the United States by a substantial margin before the middle 1990s

  13. Demountable low stress high field toroidal field magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Suenaga, M.

    1977-01-01

    A new type of superconducting magnet system for large fusion reactors is described in this report. Instead of winding large planar or multi-axis coils, as has been proposed in previous fusion reactor designs, the superconducting coils are made by joining together several prefabricated conductor sections. The joints can be unmade and sections removed if they fail. Conductor sections can be made at a factory and shipped to the reactor site for assembly. The conductor stress level in the assembled coil can be kept small by external support of the coil at a number of points along its perimeter, so that the magnetic forces are transmitted to an external warm reinforcement structure. This warm reinforcement structure can also be the primary containment for the fusion reactor, constructed similar to a PCRV (Prestressed Concrete Reactor Vessel) used in fission reactors. Low thermal conductivity, high strength supports are used to transfer the magnetic forces to the external reinforcement through a hydraulic system. The hydraulic supports are movable and can be programmed to accommodate thermal contraction and to minimize stress in the superconducting coil

  14. Demountable low stress high field toroidal field magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Suenaga, M.

    1978-01-01

    A new type of superconducting magnet system for large fusion reactors is described. Instead of winding large planar or multi-axis coils, as has been proposed in previous fusion reactor designs, the superconducting coils are made by joining together several prefabricated conductor sections. The joints can be unmade and sections removed if they fail. Conductor sections can be made at a factory and shipped to the reactor site for assembly. The conductor stress level in the assembled coil can be kept small by external support of the coil at a number of points along its perimeter, so that the magnetic forces are transmitted to an external warm reinforcement structure. This warm reinforcement structure can also be the primary containment for the fusion reactor, constructed similar to a PCRV (Prestressed Concrete Reactor Vessel) used in fission reactors. Low thermal conductivity, high strength supports are used to transfer the magnetic forces to the external reinforcement through a hydraulic system. The hydraulic supports are movable and can be programmed to accommodate thermal contraction and to minimize stress in the superconducting coil. (author)

  15. Effects of Lumbar Fusion Surgery with ISOBAR Devices Versus Posterior Lumbar Interbody Fusion Surgery on Pain and Disability in Patients with Lumbar Degenerative Diseases: A Meta-Analysis.

    Science.gov (United States)

    Su, Shu-Fen; Wu, Meng-Shan; Yeh, Wen-Ting; Liao, Ying-Chin

    2018-06-01

    Purpose/Aim: Lumbar degenerative diseases (LDDs) cause pain and disability and are treated with lumbar fusion surgery. The aim of this study was to evaluate the efficacy of lumbar fusion surgery with ISOBAR devices versus posterior lumbar interbody fusion (PLIF) surgery for alleviating LDD-associated pain and disability. We performed a literature review and meta-analysis conducted in accordance with Cochrane methodology. The analysis included Group Reading Assessment and Diagnostic Evaluation assessments, Jadad Quality Score evaluations, and Risk of Bias in Non-randomized Studies of Interventions assessments. We searched PubMed, MEDLINE, the Cumulative Index to Nursing and Allied Health Literature, the Cochrane Library, ProQuest, the Airiti Library, and the China Academic Journals Full-text Database for relevant randomized controlled trials and cohort studies published in English or Chinese between 1997 and 2017. Outcome measures of interest included general pain, lower back pain, and disability. Of the 18 studies that met the inclusion criteria, 16 examined general pain (802 patients), 5 examined lower back pain (274 patients), and 15 examined disability (734 patients). General pain, lower back pain, and disability scores were significantly lower after lumbar fusion surgery with ISOBAR devices compared to presurgery. Moreover, lumbar fusion surgery with ISOBAR devices was more effective than PLIF for decreasing postoperative disability, although it did not provide any benefit in terms of general pain or lower back pain. Lumbar fusion surgery with ISOBAR devices alleviates general pain, lower back pain, and disability in LDD patients and is superior to PLIF for reducing postoperative disability. Given possible publication bias, we recommend further large-scale studies.

  16. Railgun pellet injection system for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Oda, Y. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Azuma, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Satake, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Kasai, S. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan); Hasegawa, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan)

    1995-11-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s{sup -1} using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s{sup -1} using a 3 m long railgun. (orig.).

  17. Development of electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Tsujimura, S. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Toyoda, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Inoue, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Abe, T. [Japan Atomic Energy Research Inst., Naka (Japan); Murakami, Y. [Japan Atomic Energy Research Inst., Naka (Japan)

    1995-12-31

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al{sub 2}O{sub 3} has been selected as an insulation material, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.).

  18. Development of electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, M.; Tsujimura, S.; Toyoda, M.; Inoue, M.; Abe, T.; Murakami, Y.

    1995-01-01

    Development of electrical insulation and conduction methods that can be applied for large components have been investigated for future large fusion experimental devices. A thermal spraying method is employed to coat the insulation or conduction materials on the structural components. Al 2 O 3 has been selected as an insulation material, while Cr 3 C 2 -NiCr and WC-NiCr have been chosen as conduction materials. These materials were coated on stainless steel base plates to examine the basic characteristics of the coated layers, such as their adhesive strength to the base plate and electrical resistance. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed sufficient frictional properties. The applicability of the spraying method was examined on a 100mm x 1000mm surface and found to be applicable for large surfaces in fusion experimental devices. (orig.)

  19. Tokamak Fusion Test Reactor. Final conceptual design report

    International Nuclear Information System (INIS)

    1976-02-01

    The TFTR is the first U.S. magnetic confinement device planned to demonstrate the fusion of D-T at reactor power levels. This report addresses the physics objectives and the engineering goals of the TFTR project. Technical, cost, and schedule aspects of the project are included

  20. Hybrid superconducting-magnetic memory device using competing order parameters.

    Science.gov (United States)

    Baek, Burm; Rippard, William H; Benz, Samuel P; Russek, Stephen E; Dresselhaus, Paul D

    2014-05-28

    In a hybrid superconducting-magnetic device, two order parameters compete, with one type of order suppressing the other. Recent interest in ultra-low-power, high-density cryogenic memories has spurred new efforts to simultaneously exploit superconducting and magnetic properties so as to create novel switching elements having these two competing orders. Here we describe a reconfigurable two-layer magnetic spin valve integrated within a Josephson junction. Our measurements separate the suppression in the superconducting coupling due to the exchange field in the magnetic layers, which causes depairing of the supercurrent, from the suppression due to the stray magnetic field. The exchange field suppression of the superconducting order parameter is a tunable and switchable behaviour that is also scalable to nanometer device dimensions. These devices demonstrate non-volatile, size-independent switching of Josephson coupling, in magnitude as well as phase, and they may enable practical nanoscale superconducting memory devices.

  1. Magnetic-bubble devices

    International Nuclear Information System (INIS)

    Fairholme, R.J.

    1978-01-01

    Magnetic bubbles were first described only ten years ago when research workers were discussing orthoferrites containing μm diameter bubbles. However, problems of material fabrication limit crystals to a few mm across which severely curtailed device development. Since then materials have changed and rare-earth-iron garnet films can be grown up 3 inches in diameter with bubble diameters down to sizes below 1 μm. The first commercial products have device capacities in the range 64 000 to 100 000 bits with bubble diameters between 4 and 6 μm. Chip capacities of 1 Mbit are presently under development in the laboratory, as are new techniques to use submicrometre bubbles. The operation and fabrication of a bubble device is described using the serial loop devices currently being manufactured at Plessey as models. Chip organization is one important variable which directly affects the access time. A range of access times and capacities is available which offers a wide range of market opportunities, ranging from consumer products to fixed head disc replacements. some of the application areas are described. (author)

  2. DD fusion neutron production at UW-Madison using IEC devices

    Science.gov (United States)

    Fancher, Aaron; Michalak, Matt; Kulcinski, Gerald; Santarius, John; Bonomo, Richard

    2017-10-01

    An inertial electrostatic confinement (IEC) device using spherical, gridded electrodes at high voltage accelerates deuterium ions, allowing for neutrons to be produced within the device from DD fusion reactions. The effects of the device cathode voltage (30-170 kV), current (30-100 mA), and pressure (0.15-1.25 mTorr) on the neutron production rate have been measured. New high voltage capabilities have resulted in the achievement of a steady state neutron production rate of 3.3x108 n/s at 175 kV, 100 mA, and 1.0 mTorr of deuterium. Applications of IEC devices include the production of DD neutrons to detect chemical explosives and special nuclear materials using active interrogation methods. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-AR1095 and the Grainger Foundation.

  3. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  4. Beam dancer fusion device

    International Nuclear Information System (INIS)

    Maier, H.B.

    1984-01-01

    To accomplish fusion of two or more fusion fuel elements numerous minute spots of energy or laser light are directed to a micro target area, there to be moved or danced about by a precision mechanical controlling apparatus at the source of the laser light or electromagnetic energy beams, so that merging and coinciding patterns of light or energy beams can occur around the area of the fuel atoms or ions. The projecting of these merging patterns may be considered as target searching techniques to locate responsive clusters of fuel elements and to compress such elements into a condition in which fusion may occur. Computerized programming may be used

  5. Axial magnetic field injection in magnetized liner inertial fusion

    Science.gov (United States)

    Gourdain, P.-A.; Adams, M. B.; Davies, J. R.; Seyler, C. E.

    2017-10-01

    MagLIF is a fusion concept using a Z-pinch implosion to reach thermonuclear fusion. In current experiments, the implosion is driven by the Z-machine using 19 MA of electrical current with a rise time of 100 ns. MagLIF requires an initial axial magnetic field of 30 T to reduce heat losses to the liner wall during compression and to confine alpha particles during fusion burn. This field is generated well before the current ramp starts and needs to penetrate the transmission lines of the pulsed-power generator, as well as the liner itself. Consequently, the axial field rise time must exceed hundreds of microseconds. Any coil capable of being submitted to such a field for that length of time is inevitably bulky. The space required to fit the coil near the liner, increases the inductance of the load. In turn, the total current delivered to the load decreases since the voltage is limited by driver design. Yet, the large amount of current provided by the Z-machine can be used to produce the required 30 T field by tilting the return current posts surrounding the liner, eliminating the need for a separate coil. However, the problem now is the field penetration time, across the liner wall. This paper discusses why skin effect arguments do not hold in the presence of resistivity gradients. Numerical simulations show that fields larger than 30 T can diffuse across the liner wall in less than 60 ns, demonstrating that external coils can be replaced by return current posts with optimal helicity.

  6. Implications of fusion results for a reactor: a proposed next step device-JIT

    International Nuclear Information System (INIS)

    Rebut, P.H.

    1989-01-01

    Simulations with a critical-temperature model have been made of proposed future devices (NET, ITER, JIT, etc.). These show that only machines with a current capability of ∼ 30MA have a sufficient ignition domain to cope with more realistic operating conditions (i.e. taking into account sawteeth effects, impurity dilution and semi-continuous operation). The importance of dilution and Bremsstrahlung radiation are clearly demonstrated; a mean temperature > 7keV is required for ignition. This prevents higher field, lower current devices from reaching ignition. Transient operations with monster sawteeth or H-mode allow such devices (>30MA) to reach ignition at lower density without additional heating. To investigate the problems of a controlled burning plasma for days in semi-continuous operation, the plasma of the next-step tokamak should be similar in size and performance to an energy producing reactor. The scientific and technical aims of such a machine should be to study burning plasma, test wall technology, provide a test-bed for breeding blankets and most importantly to demonstrate the potential and viability of fusion as an energy source. The main design characteristics of a Thermonuclear Furnace-JIT-dedicated to these objectives are presented. Watercooled copper magnets are used to benefit from proven technology. A single-null divertor configuration ensures helium exhaust and possibly benefits from an H-mode to reach the ignition domain. The X-point position relative to the dump plates would be swept to limit wall loading

  7. Applications of intelligent-measurement systems in controlled-fusion research

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Lindquist, W.B.; Peterson, R.L.; Wyman, R.H.

    1981-01-01

    The paper describes the control and instrumentation for the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory, California, USA. This large-scale scientific experiment in controlled thermonuclear fusion, which is currently being expanded, originally had 3000 devices to control and 7000 sensors to monitor. A hierarchical computer control system, is used with nine minicomputers forming the supervisory system. There are approximately 55 local control and instrumentation microcomputers. In addition, each device has its own monitoring equipment, which in some cases consists of a small computer. After describing the overall system a more detailed account is given of the control and instrumentation for two large superconducting magnets

  8. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  9. Cost Accounting System for fusion studies

    International Nuclear Information System (INIS)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program

  10. Cost Accounting System for fusion studies

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program.

  11. Conceptual design of DC power supplies for FFHR superconducting magnet

    International Nuclear Information System (INIS)

    Chikaraishi, Hirotaka

    2012-01-01

    The force-free helical reactor (FFHR) is a helical-type fusion reactor whose design is being studied at the National Institute for Fusion Science. The FFHR will use three sets of superconducting coils to confine the plasma. It is not a fusion plasma experimental device, and the magnetic field configuration will be optimized for burning plasma. This paper introduces a conceptual design for a dc power system to excite the superconducting coils of the FFHR. In this design, the poloidal coils are divided into a main part, which generates a magnetic field for steady-state burning, and a control part, which is used in the ignition process to control the magnetic axis. The feasibility of this configuration was studied using the Large Helical Device coil parameters, and the coil voltages required to sweep the magnetic axis were calculated. It was confirmed that the axis sweep could be performed without a high output voltage from the main power supply. Finally, the power supply ratings for the FFHR were estimated from the stored magnetic energy. (author)

  12. High-speed repetitive pellet injector prototype for magnetic confinement fusion devices

    International Nuclear Information System (INIS)

    Frattolillo, A.; Gasparotto, M.; Migliori, S.; Angelone, G.; Baldarelli, M.; Scaramuzzi, F.; Ronci, G.; Reggiori, A.; Riva, G.; Carlevaro, R.; Daminelli, G.B.

    1992-01-01

    The design of a test facility aimed at demonstrating the feasibility of high-speed repetitive acceleration of solid D 2 pellets for fusion applications, developed in a collaboration between Oak Ridge National Laboratory and ENEA Frascati, is presented. The results of tests performed at the CNPM/CNR on the piston wear in a repetitively operating two-stage gun are also reported

  13. Fusion through the NET

    International Nuclear Information System (INIS)

    Spears, B.

    1987-01-01

    The paper concerns the next generation of fusion machines which are intended to demonstrate the technical viability of fusion. In Europe, the device that will follow on from JET is known as NET - the Next European Torus. If the design programme for NET proceeds, Europe could start to build the machine in 1994. The present JET programme hopes to achieve breakeven in the early 1990's. NET hopes to reach ignition in the next century, and so lay the foundation for a demonstration reactor. A description is given of the technical specifications of the components of NET, including: the first wall, the divertors to protect the wall, the array of magnets that provide the fields containing the plasma, the superconducting magnets, and the shield of the machine. NET's research programme is briefly outlined, including the testing programme to optimise conditions in the machine to achieve ignition, and its safety work. (U.K.)

  14. IAEA technical committee meeting on research using small fusion devices (abstracts)

    International Nuclear Information System (INIS)

    1999-12-01

    The thirteenth IAEA technical committee meeting on research using small fusion devices are held in Chengdu, P. R. China on 18-20 Oct. , 1999. 41 articles are received and the content includes toroidal systems, helical systems, plasma focus, diagnostic systems, theory and modeling, improving confinement, numerical simulation, innovative concepts and others

  15. Some not such wonderful magnetic fusion facts; and their solution

    Science.gov (United States)

    Manheimer, Wallace

    2017-10-01

    The first not such wonderful fusion fact (NSWFF) is that if ITER is successful, it is nowhere near ready to develop into a DEMO. The design Q=10, along with electricity generating efficiency of 1/3 prevents this. Making it smaller and cheaper, increasing the gain by 3 or 4, and the wall loading by an order of magnitude is not a minor detail, it is not at all clear the success with ITER will lead to a similar, pure fusion DEMO. The second NSWFF is that tokamaks are unlikely to improve to the point where they can be effective fusion reactors because their performance is limited by conservative design rules. The third NSWFF is that developing large fusion devices like ITER takes an enormous amount of time and dollars, there are no second chances. The fourth NSWFF is that it is unlikely that alternative confinement configurations will succeed either, at least in this century; they are simply too far behind. There is only a single solution for fusion to become a sustainable, carbon free power source by midcentury or shortly thereafter. This is to develop ITER (assuming it is successful) into a fusion breeder. This work was not supported by any organization, private or public.

  16. Scientific and Computational Challenges of the Fusion Simulation Program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  17. Scientific and computational challenges of the fusion simulation program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) - a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  18. Congress turns cold on fusion

    International Nuclear Information System (INIS)

    Marshall, E.

    1984-01-01

    A 5% cut in fusion research budgets will force some programs to be dropped in order to keep the large machinery running unless US and European scientists collaborate instead of competing. Legislators became uneasy about the escalating costs of the new devices. The 1984 budget of $470 million for magnetic fusion research is only half the projected cost of the Tokomak Fusion Core Experiment (TFCX) planned to ignite, for the first time, a self-sustaining burn. Planning for the TCFX continued despite the message from Congress. Work at the large institutions at Princeton, MIT, etc. may survive at the expense of other programs, some of which will lose academic programs as well. Scientists point to the loss of new ideas and approaches when projects are cancelled. Enthusiasm is growing for international collaboration

  19. Medical devices; neurological devices; classification of the transcranial magnetic stimulator for headache. Final order.

    Science.gov (United States)

    2014-07-08

    The Food and Drug Administration (FDA) is classifying the transcranial magnetic stimulator for headache into class II (special controls). The special controls that will apply to the device are identified in this order, and will be part of the codified language for the transcranial magnetic stimulator for headache classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  20. Multi-pole magnetization of NdFeB magnets for magnetic micro-actuators and its characterization with a magnetic field mapping device

    International Nuclear Information System (INIS)

    Toepfer, J.; Pawlowski, B.; Beer, H.; Ploetner, K.; Hofmann, P.; Herrfurth, J.

    2004-01-01

    Multi-pole magnetization of NdFeB plate magnets of thickness between 0.25 and 2 mm with a stripe pattern and a pole pitch of 2 or 1 mm was performed by pulse magnetization. The experimental conditions of the magnetization process were optimized to give a maximum surface flux density at the poles. The magnetic field distribution above the magnets was measured with a field mapping device that automatically scans the surface of the magnet with a Hall probe. It is demonstrated for different magnet geometries that the field mapping system is a useful device to study the magnetic surface pole structure. The characterization of the pole flux density of multi-pole NdFeB flat magnets is an important prerequisite for the application of these magnets in miniature actuators

  1. Three-dimensional simulation study of compact toroid injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Yoshio Suzuki; Tomohiko Watanabe; Tetsuya Sato; Takaya Hayashi

    1999-01-01

    Three-dimensional dynamics of a compact toroid (CT), which is injected into a magnetized target plasma modeling a part of a fusion device is investigated by using magnetohydrodynamic numerical simulations. It is found that the injected CT penetrates into the device region, suffering from a tilting instability. In this process, magnetic reconnection between the CT magnetic field and the device magnetic field takes place, which disrupts the magnetic configuration of the CT. As a result, the high density plasma confined in the CT magnetic field is locally supplied in the device region. Furthermore, the authors examine the penetration depth of the CT high density plasma. And it is revealed that the CT high density plasma is decelerated by the device magnetic field through the compressional heating

  2. Dust in fusion devices-a multi-faceted problem connecting high- and low-temperature plasma physics

    International Nuclear Information System (INIS)

    Winter, J

    2004-01-01

    Small particles with sizes between a few nanometers and a few 10 μm (dust) are formed in fusion devices by plasma-surface interaction processes. Though it is not a major problem today, dust is considered a problem that could arise in future long pulse fusion devices. This is primarily due to its radioactivity and due to its very high chemical reactivity. Dust formation is particularly pronounced when carbonaceous wall materials are used. Dust particles can be transported in the tokamak over significant distances. Radioactivity leads to electrical charging of dust and to its interaction with plasmas and electric fields. This may cause interference with the discharge but may also result in options for particle removal. This paper discusses some of the multi-faceted problems using information both from fusion research and from low-temperature dusty plasma work

  3. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  4. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    International Nuclear Information System (INIS)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems

  5. Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Part 1. Magnetic-gradient and electrostatic accelerators

    International Nuclear Information System (INIS)

    Brittingham, J.N.

    1979-01-01

    The feasibility of using magnetic-gradient and electrostatic accelerators to launch a 0.1-g projectile to hypervelocities (150 km/s or more) is studied. Such hypervelocity projectiles could be used to ignite deuterium-tritium fuel pellets in a fusion reactor. For the magnetic-gradient accelerator, several types of projectile were studied: shielded and unshielded copper, ferromagnetic, and superconducting. The calculations revealed the superconducting projectile to be the best of those materials. It would require a 3.2-km-long magnetic-gradient accelerator and achieve a 92% efficiency. This accelerator-projectile combination would be the one most likely to launch a 0.1-g projectile to 150 km/s or more. Its components would cost $58.9 million. The electrostatic accelerator was found to be impractical because of its excessive length of 23 km

  6. A study to compare the efficacy of polyether ether ketone rod device with titanium devices in posterior spinal fusion in a canine model.

    Science.gov (United States)

    Wang, Nanxiang; Xie, Huanxin; Xi, Chunyang; Zhang, Han; Yan, Jinglong

    2017-03-09

    The benefits of posterior lumbar fusion surgery with orthotopic paraspinal muscle-pediculated bone flaps are well established. However, the problem of non-union due to mechanical support is not completely resolved. The aim of the study was to compare the efficacy of polyether ether ketone (PEEK) rod device with conventional titanium devices in the posterior lumbar fusion surgery with orthotopic paraspinal muscle-pediculated bone flaps. This was a randomized controlled study with an experimental animal model. Thirty-two mongrel dogs were randomly divided into two groups-control group (n = 16), which received the titanium device and the treatment group (n = 16), which received PEEK rods. The animals were sacrificed 8 or 16 weeks after surgery. Lumbar spines of dogs in both groups were removed, harvested, and assessed for radiographic, biomechanical, and histological changes. Results in the current study indicated that there was no significant difference in the lumbar spine of the control and treatment groups in terms of radiographic, manual palpation, and gross examination. However, certain parameters of biomechanical testing showed significant differences (p < 0.05) in stiffness and displacement, revealing a better fusion (treatment group showed decreased stiffness with decreased displacement) of the bone graft. Similarly, the histological analysis also revealed a significant fusion mass in both treatment and control groups (p < 0.05). These findings revealed that fixation using PEEK connecting rod could improve the union of the bone graft in the posterior lumbar spine fusion surgery compared with that of the titanium rod fixation.

  7. Design of magnetic analysis system for magnetic proton recoil spectrometer

    International Nuclear Information System (INIS)

    Qi Jianmin; Jiang Shilun; Zhou Lin; Peng Taiping

    2010-01-01

    Magnetic proton recoil (MPR) spectrometer is a novel diagnostic instrument with high performance for measurements of the neutron spectra from inertial confinement fusion (ICF) experiments and high power fusion devices. The design of the magnetic analysis system, which is a key part of the compact MPR-type spectrometer, has been completed through two-dimensional beam transport simulations and three-dimensional particle transport simulation. The analysis of the system's parameters and performances was performed, as well as system designs based on preferential principles of energy resolution, detection efficiency, and count rate, respectively. The results indicate that the magnetic analysis system can achieve a detection efficiency of 10 -5 ∼ 10 -4 level at the resolution range of 1.5% to 3.0% and fulfill the design goals of the compact MPR spectrometer. (authors)

  8. Fusion Simulation Program

    International Nuclear Information System (INIS)

    Greenwald, Martin

    2011-01-01

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. (1). Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  9. Magnetic sensor for thermonuclear device

    International Nuclear Information System (INIS)

    Honda, Takuro; Abe, Mitsushi; Okazaki, Takashi.

    1996-01-01

    A magnetic sensor is constituted by using an element having a nernst effect. As the nernst element, a compound of metals such as silver and antimony, and compounds such as mercury telluride, mercury selenide and indium antimonide are used. Thermocouples for measuring the temperature of the surface of the nernst element are connected to both ends of the nernst element in one direction (x direction). A heating or cooling device is disposed for applying a predetermined temperature gradient in one direction of the element. The sensitivity of the element is controlled by changing the temperature gradient corresponding to the intensity of the magnetic fields. A signal line is connected in the direction (y direction) perpendicular to the x direction of the element for measuring potential difference. The signal line is connected to a signal processing device together with the signal line for measuring temperature. With such a constitution, magnetic fields under strong radiation rays and high thermal load can be measured for a long period of time. (I.N.)

  10. Massachusetts Institute of Technology Plasma Fusion Center 1987--1988 report to the President

    International Nuclear Information System (INIS)

    1988-06-01

    During the past year, technical progress has been made in all Plasma Fusion Center (PFC) research programs. The Plasma Fusion Center is recognized as one of the leading university research laboratories in the physics and engineering aspects of magnetic confinement fusion. Its research programs have produced significant results on several fronts: the basic physics of high-temperature plasmas (plasmas theory, RF heating, free electron lasers, development of advanced diagnostics, and intermediate-scale experiments on the Versator tokamak and Constance mirror devices), major confinement results on the Alcator C tokamak, including pioneering investigations of the stability, heating, and confinement properties of plasmas at high densities, temperatures and magnetic fields, experiments on the medium-scale TARA tandem mirror, including the development of novel MHD stabilization techniques in axisymmetric geometry, and a broad program of fusion technology and engineering development that addresses problems in several critical subsystem areas (e.g., magnet systems, superconducting materials development, environmental and safety studies, advanced millimeter-wave source development, and system studies of fusion reactor design, operation, and technology requirements

  11. Particle-Based Microfluidic Device for Providing High Magnetic Field Gradients

    Science.gov (United States)

    Lin, Adam Y. (Inventor); Wong, Tak S. (Inventor)

    2013-01-01

    A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation. A microfluidic particle-manipulation system has a microfluidic particle-manipulation device and a magnet disposed proximate the microfluidic particle-manipulation device.

  12. A comparison of hydrogen vs. helium glow discharge effects on fusion device first-wall conditioning

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1989-09-01

    Hydrogen- and deuterium-fueled glow discharges are used for the initial conditioning of magnetic fusion device vacuum vessels following evacuation from atmospheric pressure. Hydrogenic glow discharge conditioning (GDC) significantly reduces the near-surface concentration of simple adsorbates, such as H 2 O, CO, and CH 4 , and lowers ion-induced desorption coefficients by typically three orders of magnitude. The time evolution of the residual gas production observed during hydrogen-glow discharge conditioning of the carbon first-wall structure of the TFTR device is similar to the time evolution observed during hydrogen GDC of the initial first-wall configuration in TFTR, which was primarily stainless steel. Recently, helium GDC has been investigated for several wall-conditioning tasks on a number of tokamaks including TFTR. Helium GDC shows negligible impurity removal with stainless steel walls. For impurity conditioning with carbon walls, helium GDC shows significant desorption of H 2 O, CO, and CO 2 ; however, the total desorption yield is limited to the monolayer range. In addition, helium GDC can be used to displace hydrogen isotopes from the near-surface region of carbon first-walls in order to lower hydrogenic retention and recycling. 38 refs., 6 figs

  13. Magnetic fusion energy. Progress report, January--June 1976

    International Nuclear Information System (INIS)

    Doran, D.G.; Yoshikawa, H.H.

    1976-01-01

    Brief descriptions are given of progress in the Irradiation Effects Analysis and Mechanical Performance of Magnetic Fusion Energy (MFE) Materials programs and in related programs. The objective of the Irradiation Effects Analysis program is the correlation of effects produced in neutron and charged particle irradiations in order to apply them to fusion reactor environments. Low energy displacement cascades--of intrinsic interest and the least understood component of high energy cascades--are being simulated by computer codes of the dynamical (D), quasi-dynamical (Q-D), and binary collision (BC) types. Fair agreement has been found between D and Q-D for low index focused replacement sequences; substantial differences appeared for a 250 eV high index event. The objective of the Mechanical Performance of MFE Materials program is to establish the effects of fusion reactor irradiation environments on the mechanical properties of candidate first wall materials. A Precision Torsional Creep Apparatus is being developed to permit accelerator studies of irradiation creep and behavior under cyclic conditions. This apparatus has demonstrated the required strain sensitivity, stress control, and thermal stability for long term thermal testing, and that it can be used for cyclic testing

  14. Magnetic fusion energy plasma interactive and high heat flux components. Volume II. Technical assessment of the critical issues and problem areas in high heat flux materials and component development

    International Nuclear Information System (INIS)

    Abdou, M.A.; Boyd, R.D.; Easor, J.R.

    1984-06-01

    A technical assessment of the critical issues and problem areas for high heat flux materials and components (HHFMC) in magnetic fusion devices shows these problems to be of critical importance for the successful operation of near-term fusion experiments and for the feasibility and attractiveness of long-term fusion reactors. A number of subgroups were formed to assess the critical HHFMC issues along the following major lines: (1) source conditions, (2) systems integration, (3) materials and processes, (4) thermal hydraulics, (5) thermomechanical response, (6) electromagnetic response, (7) instrumentation and control, and (8) test facilities. The details of the technical assessment are presented in eight chapters. The primary technical issues and needs for each area are highlighted

  15. Magnetic fusion energy plasma interactive and high heat flux components. Volume II. Technical assessment of the critical issues and problem areas in high heat flux materials and component development

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.A.; Boyd, R.D.; Easor, J.R.; Gauster, W.B.; Gordon, J.D.; Mattas, R.F.; Morgan, G.D.; Ulrickson, M.A,; Watson, R.D.; Wolfer, W.G,

    1984-06-01

    A technical assessment of the critical issues and problem areas for high heat flux materials and components (HHFMC) in magnetic fusion devices shows these problems to be of critical importance for the successful operation of near-term fusion experiments and for the feasibility and attractiveness of long-term fusion reactors. A number of subgroups were formed to assess the critical HHFMC issues along the following major lines: (1) source conditions, (2) systems integration, (3) materials and processes, (4) thermal hydraulics, (5) thermomechanical response, (6) electromagnetic response, (7) instrumentation and control, and (8) test facilities. The details of the technical assessment are presented in eight chapters. The primary technical issues and needs for each area are highlighted.

  16. Vacuum vessel for a nuclear fusion device

    International Nuclear Information System (INIS)

    Watanabe, Takashi; Sato, Hiroshi; Owada, Koro.

    1976-01-01

    Object: To provide a reinforcing member on a bellows portion to reduce a stress at the bellows portion thereby increasing the strength of a vessel. Structure: A vacuum vessel for a nuclear fusion device has a bellows portion and a wall thick portion. A support extended toward the bellows portion is secured inside of a toroidal section in order to reduce the stress at the bellows portion. An insulator is interposed between the support and the bellows portion and is retained on the support by a bolt. Since the stress may be reduced by the support, the wall thick of the bellows portion may be decreased to sufficiently secure the low electric resistance value. (Yoshihara, H.)

  17. Tritium management in fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II

  18. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  19. Device for investigation of magnetic flux jumps in ribbon superconductors

    International Nuclear Information System (INIS)

    Andrianov, A.V.; Bashkirov, Yu.A.; Kremlev, M.G.

    1986-01-01

    A device for simulation of magnetic flux jumps in superconductors of conducting magnet sandwich-type windings super-applyed of a ribbon conductor is described. A superconducting magnet with a measuring cassetter are the main elements of the device. An external magnetic field is generated by a two-sectional superconducting magnet permitting to simulate the shape of the magnetic field characteristic for sandwich-type windings. Maximum radial component of the magnetic field is 2 T. Jumps of the magnetic flux are recorded by induction transducers and the magnetic field-by Hall trasducer. The effect of coating of standard metal on magnetic flux jumps in Nb 3 Sn base superconducting ribbon is considered

  20. Magnetic fusion: Environmental Readiness Document

    International Nuclear Information System (INIS)

    1981-03-01

    Environmental Readiness Documents are prepared periodically to review and evaluate the environmental status of an energy technology during the several phases of development of that technology. Through these documents, the Office of Environment within the Department of Energy provides an independent and objective assessment of the environmental risks and potential impacts associated with the progression of the technology to the next stage of development and with future extensive use of the technology. This Environmental Readiness Document was prepared to assist the Department of Energy in evaluating the readiness of magnetic fusion technology with respect to environmental issues. An effort has been made to identify potential environmental problems that may be encountered based upon current knowledge, proposed and possible new environmental regulations, and the uncertainties inherent in planned environmental research

  1. Closed-loop model: An optimization of integrated thin-film magnetic devices

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, Amal, E-mail: amale@stanford.edu [Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Sato, Noriyuki [Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); White, Robert M. [Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Wang, Shan X. [Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States)

    2017-06-15

    Highlights: • An analytical model for inductance of thin-film magnetic devices was developed. • Different device topologies and magnetic permeabilities were addressed. • Inductance of various topologies were calculated and compared with simulation. • The model predicts simulated values with excellent accuracy. - Abstract: A generic analytical model has been developed to fully describe the flux closure through magnetic inductors. The model was applied to multiple device topologies including solenoidal single return path and dual return path inductors as well as spiral magnetic inductors for a variety of permeabilities and dimensions. The calculated inductance values from the analytical model were compared with simulated results for each of the analyzed device topologies and found to agree within 0.1 nH for the range of typical thin-film magnetic permeabilities (∼10{sup 2} to 10{sup 3}). Furthermore, the model can be used to evaluate behavior in other integrated or discrete magnetic devices with either non-isotropic or isotropic permeability and used to produce more efficient device designs in the future.

  2. Nuclear fusion - Inexhaustible source of energy for tomorrow

    International Nuclear Information System (INIS)

    Leiser, M.; Demchenko, V.

    1989-09-01

    The purpose of this paper is to provide a general description of nuclear fusion as an energy option for the future and to clarify to some extent the various issues - scientific, technological, economic and environmental - which are likely to be relevant to controlled thermonuclear fusion. Section 1 describes the world energy problem and some advantages of nuclear fusion compared to other energy options. Sections 2 and 3 describe the fundamentals of fusion energy, plasma confinement, heating and technological aspects of fusion researches. Some plasma confinement schemes (tokamak, stellarator, inertial confinement fusion) are described. The main experimental results and parameter devices are cited to illustrate the state of the art as of 1989. Various engineering problems associated with reactor design, magnetic systems, materials, plasma purity, fueling, blankets, environment, economics and safety are discussed. A description of both bilateral and multilateral efforts in fusion research under the auspices of the IAEA is presented in Section 4. (author). 11 refs, 4 figs, 1 tab

  3. Nuclear fusion (a bibliography with abstracts). Report for 1971-Sep 77

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1977-10-01

    The bibliography cites research on the initiation of thermonuclear reactions by the control of high temperature plasmas. Studies are included on MHD and various fusion devices; e.g., Stellarators, Tokamaks, Elmax, and magnetic mirrors. Studies sponsored solely by ERDA are excluded

  4. Consideration on nuclear fusion in plasma by the magnetic confinement as a heat engine

    International Nuclear Information System (INIS)

    Tsuji, Yoshio

    1990-01-01

    In comparing nuclear fusion in plasma by the magnetic confinement with nuclear fission and chemical reactions, the power density and the function of a heat engine are discussed using a new parameter G introduced as an eigenvalue of a reaction and the value of q introduced to estimate the thermal efficiency of a heat engine. It is shown that the fusion reactor by the magnetic confinement is very difficult to be a modern heat engine because of the lack of some indispensable functions as a modern heat engine. The value of G and q have the important role in the consideration. (author)

  5. Microwave generation for magnetic fusion energy applications, Task A

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Mayergoyz, I.D.; Singh, A.

    1990-05-01

    This report details progress over the past year in the research program ''Free Electron Lasers with Short Period Wigglers.'' The work is performed jointly by the laboratory for Plasma Research and the Electrical Engineering Department of the University of Maryland and is funded by the US Department of Energy Office of Fusion Energy. The goal of the work is the development of an electron cyclotron resonance heating (ECRH) scheme for magnetic fusion plasmas such as the Compact Ignition Tokamak (CIT). Our approach is the development of a free electron laser using a sheet electron beam and a short period wiggler magnet. The specific requirements for the heating method include 10 to 30 MW of average power with pulse durations of several seconds to CW at a frequency near 300 GHz (∼600 GHz) in the case of second harmonic (ECRH). Compatible with the experimental nature of the program, radiation frequency flexibility of 30% total bandwidth and 5% rapid dynamic (approx-lt 10 ms) bandwidth is desirable. As the source will eventually be applied to a reactor, priority is placed upon high system efficiency and reliability. Use of established technologies is encouraged where possible

  6. Quantitative Characterization of Phosphor Detector for Fusion Plasmas

    International Nuclear Information System (INIS)

    Baciero, A.; Zurro, B.; McCarthy, K. J.

    2004-01-01

    Experiments made to characterize phosphor screens with application as broadband radiation detectors, are described. Several radiation sources, covering the spectral range between the ultraviolet and X ray, were used. In addition, details are given of three original phosphor-screen-based detectors that were designed for use as broadband detectors in magnetically confined fusion devices. The first measurements obtained with these detectors in plasmas created in the TJ-II stellarator device are presented together with the analysis performed. (Author)

  7. Laser-start-up system for magnetic mirror fusion

    International Nuclear Information System (INIS)

    Frank, A.M.; Thomas, S.R.; Denhoy, B.S.; Chargin, A.K.

    1976-01-01

    A CO 2 laser system has been developed at LLL to provide hot start-up plasmas for magnetic mirror fusion experiments. A frozen ammonia pellet is irradiated with a laser power density in excess of 10 13 W/cm 2 in a 50-ns pulse. This system uses commercially available laser systems. Optical components were fabricated both by direct machining and standard techniques. The technologies used in this system are directly applicable to reactor scale systems

  8. Status and development plan of nuclear fusion research in the US

    International Nuclear Information System (INIS)

    Kang Weihong

    2012-01-01

    This paper presents the background of nuclear fusion research and current status of major devices with accomplishments in the US, as well as the national fusion plans and budgets for fusion energy development by the US government. As a fusion power in the world, the US has made significant contributions to the development of international fusion research. The strategy of fusion research developments and the accomplishments may exert a subtle influence on international fusion development situation. Withdrawing from the ITER partnership for 2 times, the US rejoined it subsequently. This paper gives a brief introduction of changes in the US fusion research policy, summarizes the implementation of ITER procurement packages undertaken by the US, and the overview of the US inertial confinement fusion re- search. The US future energy development plan is the development of magnetic confinement fusion approach in parallel with inertial confinement fusion approach. (author)

  9. Application of magnetic devices in otiatria

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Anatoly A. E-mail: akuz@sky.chph.ras.ru; Yunin, Alexander M.; Savichev, Alexander A.; Kuznetsov, Oleg A. E-mail: oleg@louisiana.edu; Dmitriev, Nikolai S.; Palchun, Victor T

    2001-07-01

    Several implantable prostheses and other devices based on permanent magnets and using magneto-mechanical forces for their operation were developed for treating middle ear diseases and hearing rehabilitation. Methods of surgical application of the devices were developed and in clinical trials more than 85% of 127 patients with different degrees of middle ear system degradation have shown stable improvement.

  10. Application of magnetic devices in otiatria

    International Nuclear Information System (INIS)

    Kuznetsov, Anatoly A.; Yunin, Alexander M.; Savichev, Alexander A.; Kuznetsov, Oleg A.; Dmitriev, Nikolai S.; Palchun, Victor T.

    2001-01-01

    Several implantable prostheses and other devices based on permanent magnets and using magneto-mechanical forces for their operation were developed for treating middle ear diseases and hearing rehabilitation. Methods of surgical application of the devices were developed and in clinical trials more than 85% of 127 patients with different degrees of middle ear system degradation have shown stable improvement

  11. Neutron irradiation effects on superconducting and stabilizing materials for fusion magnets

    International Nuclear Information System (INIS)

    Maurer, W.

    1984-05-01

    Available low-temperature neutron irradiation data for the superconductors NbTi and Nb 3 Sn and the stabilization materials Cu and Al are collected and maximum tolerable doses for these materials are defined. A neutron flux in a reactor of about 10 9 n/cm 2 s at the magnet position is expected. However, in fusion experiments the flux can be higher by an order of magnitude or more. The energy spectrum is similar to a fission reactor. A fluence of about 10 18 n/cm 2 results during the lifetime of a fusion magnet (about 20 full power years). At this fluence and energy spectrum no severe degradation of the superconducting properties of NbTi and Nb 3 Sn will occur. But the radiation-induced resistivity is for Cu about a twentieth of the room temperature resistivity and a tenth for Al. (orig.) [de

  12. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    International Nuclear Information System (INIS)

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  13. Magnetic field transfer device and method

    Science.gov (United States)

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  14. Unusual magnetic behavior in a chiral-based magnetic memory device

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dor, Oren; Yochelis, Shira [Department of Applied Physics, Center of Nanoscience and Nanotechnology, Hebrew University, Jerusalem 91904 (Israel); Felner, Israel, E-mail: Israel.felner@mail.huij.ac.il [“Racah” Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Paltiel, Yossi [Department of Applied Physics, Center of Nanoscience and Nanotechnology, Hebrew University, Jerusalem 91904 (Israel)

    2016-01-15

    In recent years chiral molecules were found to act as efficient spin filters. Using a multilayer structure with chiral molecules magnetic memory was realized. Observed rare magnetic phenomena in a chiral-based magnetic memory device was reported by O-Ben Dor et. al in Nature Commun, 4, 2256 (2013). This multi-layered device is built from α-helix L-polyalanine (AHPA-L) adsorbed on gold, Al{sub 2}O{sub 3} (7 nm) and Ni (30 nm) layers. It was shown that certain temperature range the FC branch crosses the magnetic peak (at 55 K) observed in the ZFC curve thus ZFC>FC. We show here that in another similar multi-layered material, at low applied field, the ZFC curve lies above the FC one up to 70 K. The two features have the same origin and the crucial necessary components to exhibit them are: AHPA-L and 30 nm Ni layered thick. Similar effects were also reported in sulfur doped amorphous carbon. A comparison between the two systems and the ingredients for these peculiar observations is discussed. - Highlights: • The highlights of the present manuscript is the peculiar magnetic behavior observed in a multilayer structure with chiral molecules, magnetic memory. • It is shown that certain temperature range the FC branch crosses the magnetic peak (at 55 K) observed in the ZFC curve thus ZFC>FC. • Similar effects were also reported in sulfur doped amorphous carbon.

  15. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Leach Martin O

    2004-10-01

    Full Text Available Abstract Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation.

  16. Fusion performance analysis of plasmas with reversed magnetic shear in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Ruskov, E.; Bell, M.; Budny, R.V.; McCune, D.C.; Medley, S.S.; Nazikian, R.; Synakowski, E.J.; Goeler, S. von; White, R.B.; Zweben, S.J.

    1999-01-01

    A case for substantial loss of fast ions degrading the performance of tokamak fusion test reactor plasmas [Phys. Plasmas 2, 2176 (1995)] with reversed magnetic shear (RS) is presented. The principal evidence is obtained from an experiment with short (40 - 70 ms) tritium beam pulses injected into deuterium beam heated RS plasmas [Phys. Rev. Lett. 82, 924 (1999)]. Modeling of this experiment indicates that up to 40% beam power is lost on a time scale much shorter than the beam - ion slowing down time. Critical parameters which connect modeling and experiment are: The total 14 MeV neutron emission, its radial profile, and the transverse stored energy. The fusion performance of some plasmas with internal transport barriers is further deteriorated by impurity accumulation in the plasma core. copyright 1999 American Institute of Physics

  17. Panel discussion: Future directions in magnetic fusion--comments of John Sheffield, Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Sheffield, J.

    1992-01-01

    I will discuss two important issues for the US magnetic fusion program: the role of alternate magnetic configurations to the tokamak, and factors which need to be considered in planning the evolution of the US program

  18. Production of muons for fusion catalysis in a magnetic mirror configuration. Revision 1

    International Nuclear Information System (INIS)

    Moir, R.W.; Chapline, G.F. Jr.

    1986-01-01

    For muon-catalyzed fusion to be of practical interest, a very efficient means of producing muons must be found. We describe a scheme for producing muons that may be more energy efficient than any heretofore proposed. There are, in particular, some potential advantages of creating muons from collisions of high energy tritons confined in a magnetic mirror configuration. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of 10, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%. One possible near term application of a muon-producing magnetic-mirror scheme would be to build a high-flux neutron source for radiation damage studies. The careful arrangement of triton orbits will result in many of the π - 's being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few-cm-diameter) reactor chamber producing approximately 1-MW/m 2 neutron flux on the chamber walls, using a laboratory accelerator and magnetic mirror. The costs of construction and operation of the triton injection accelerator probably introduces most of the uncertainty in the viability of this scheme. If a 10-μA, 600 MeV neutral triton accelerator could be built for less than $100 million and operated cheaply enough, one might well bring muon-catalyzed fusion into practical use

  19. Direct energy conversion for IEC fusion for space applications

    International Nuclear Information System (INIS)

    Momota, Hiromu; Nadler, Jon; Miley, George H.

    2000-08-01

    The paper describes a concept of extracting fusion power from D- 3 He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E- 3 He IEC cores, is estimated as high as 60%. (author)

  20. Direct energy conversion for IEC fusion for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Momota, Hiromu; Nadler, Jon [National Inst. for Fusion Science, Toki, Gifu (Japan); Miley, George H. [Fusion Studies Laboratory, Urbana, IL (United States)

    2000-08-01

    The paper describes a concept of extracting fusion power from D-{sup 3}He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E-{sup 3}He IEC cores, is estimated as high as 60%. (author)

  1. 76 FR 44489 - Medical Devices; Neurological Devices; Classification of Repetitive Transcranial Magnetic...

    Science.gov (United States)

    2011-07-26

    ... is an external device that delivers transcranial repetitive pulsed magnetic fields of sufficient... premarket notification, prior to marketing the device, which contains information about the rTMS system they... significant effect on the human environment. Thus, neither an environmental assessment nor an environmental...

  2. Role of inert gases in first wall phenomena in fusion devices

    International Nuclear Information System (INIS)

    Das, S.K.

    1979-01-01

    The first wall surfaces of fusion devices will be exposed to bombardment by inert gaseous projectiles such as helium. The flux, energy and angular distribution of the helium radiation will depend not only on the type of device but also on its design parameters. For near term tokamak devices, the first wall surface phenomena caused by helium bombardment that appear to be quite important are physical sputtering and radiation blistering. Examples of these processes for a number of first wall candidate materials are discussed. While the physical sputtering phenomen is well understood, the mechanism of blister formation is still not fully understood. The various models proposed for radiation blistering of metal during helium bombardment is critically reviewed in the light of most recent experimental results

  3. A Fusion Neutron Source for Materials and Subcomponent Development and Qualification

    Science.gov (United States)

    Simonen, Thomas

    2010-11-01

    The magnetic-mirror based Gas Dynamic Trap (GDT) device in Novosibirsk Russia is developing the physics basis for a compact DT Neutron Source (DTNS) for fusion materials and subcomponent development as well as a driver for a fusion-fission driver for nuclear waste burn-up. The efficiency of this concept depends on electron temperature. This paper describes past experimental results as well as methods and prospects to further increase the electron temperature.

  4. Exploratory studies of flowing liquid metal divertor options for fusion-relevant magnetic fields in the MTOR facility

    International Nuclear Information System (INIS)

    Ying, A.Y.; Abdou, M.A.; Morley, N.; Sketchley, T.; Woolley, R.; Burris, J.; Kaita, R.; Fogarty, P.; Huang, H.; Lao, X.; Narula, M.; Smolentsev, S.; Ulrickson, M.

    2004-01-01

    This paper reports on experimental findings on liquid metal (LM) free surface flows crossing complex magnetic fields. The experiments involve jet and film flows using GaInSn and are conducted at the UCLA MTOR facility. The goal of this study is to understand the magnetohydrodynamics (MHD) features associated with such a free surface flow in a fusion-relevant magnetic field environment, and determine what LM free surface flow option is most suitable for lithium divertor particle pumping and surface heat removal applications in a near-term experimental plasma device, such as NSTX. Experimental findings indicate that a steady transverse magnetic field, even with gradients typical of NSTX outer divertor conditions, stabilizes a LM jet flow--reducing turbulent disturbances and delaying jet breakup. Important insights into the MHD behavior of liquid metal films under NSTX-like environments are also presented. It is possible to establish an uphill liquid metal film flow on a conducting substrate, although the MHD drag experienced by the flow could be strong and cause the flow to pile-up under simulated NSTX magnetic field conditions. The magnetic field changes the turbulent film flow so that wave structures range from 2D column-type surface disturbances at regions of high magnetic field, to ordinary hydrodynamic turbulence wave structures at regions of low field strength at the outboard. Plans for future work are also presented

  5. Nuclear fusion (a bibliography with abstracts). Report for 1971--Sep 1975

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1975-12-01

    The bibliography cites research on the initiation of thermonuclear reactions by the control of high temperature plasmas. Included are studies on MHD and various fusion devices; e.g., Stellarators, Tokamaks, Elmax, and magnetic mirrors. Excludes studies sponsored solely by ERDA. (Contains 139 abstracts)

  6. Fusion energy 2000. Fusion energy 1998 (2001 Edition). Proceedings

    International Nuclear Information System (INIS)

    2001-01-01

    This CD-ROM contains the Proceedings of 18th International Conference on Fusion Energy. It also contains an updated version of the Fusion Energy Conference 1998 Proceedings (38 additional papers included) as well as information on how to use this CD-ROM. The 18th International Atomic Energy Agency Fusion Energy Conference (FEC-2000) was held in Sorrento, Italy, 4-10 October 2000. 573 participants from over thirty countries and three international organizations took part in this Conference. The Conference was organized by the IAEA in co-operation with the Italian National Agency for New Technology, Energy and Environment (ENEA). Around 400 papers were presented in 22 oral and 8 poster sessions on magnetic confinement experiments, inertial fusion energy, plasma heating and current drive, ITER engineering design activities, magnetic confinement theory, innovative concepts, fusion technology, and safety and environment aspects. The 17th International Atomic Energy Agency (IAEA) Fusion Energy Conference was held in Yokohama, Japan, 19-24 October 1999. This 6-day conference, which was attended by 835 participants from over 30 countries and two international organizations, was organized by the IAEA in co-operation with the Japan Atomic Energy Research Institute (JAERI). More than 360 papers plus 5 summary talks were presented in 23 oral and 8 poster sessions on magnetic confinement and experiments, inertial fusion energy, plasma heating and current drive, ITER engineering design activities, magnetic confinement theory, innovative concepts and fusion technology

  7. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  8. Structural analysis of magnetic fusion energy systems in a combined interactive/batch computer environment

    International Nuclear Information System (INIS)

    Johnson, N.E.; Singhal, M.K.; Walls, J.C.; Gray, W.H.

    1979-01-01

    A system of computer programs has been developed to aid in the preparation of input data for and the evaluation of output data from finite element structural analyses of magnetic fusion energy devices. The system utilizes the NASTRAN structural analysis computer program and a special set of interactive pre- and post-processor computer programs, and has been designed for use in an environment wherein a time-share computer system is linked to a batch computer system. In such an environment, the analyst must only enter, review and/or manipulate data through interactive terminals linked to the time-share computer system. The primary pre-processor programs include NASDAT, NASERR and TORMAC. NASDAT and TORMAC are used to generate NASTRAN input data. NASERR performs routine error checks on this data. The NASTRAN program is run on a batch computer system using data generated by NASDAT and TORMAC. The primary post-processing programs include NASCMP and NASPOP. NASCMP is used to compress the data initially stored on magnetic tape by NASTRAN so as to facilitate interactive use of the data. NASPOP reads the data stored by NASCMP and reproduces NASTRAN output for selected grid points, elements and/or data types

  9. Nonlinear physics of twisted magnetic field lines

    International Nuclear Information System (INIS)

    Yoshida, Zensho

    1998-01-01

    Twisted magnetic field lines appear commonly in many different plasma systems, such as magnetic ropes created through interactions between the magnetosphere and the solar wind, magnetic clouds in the solar wind, solar corona, galactic jets, accretion discs, as well as fusion plasma devices. In this paper, we study the topological characterization of twisted magnetic fields, nonlinear effect induced by the Lorentz back reaction, length-scale bounds, and statistical distributions. (author)

  10. Dynamic identification of plasma magnetic contour in fusion machines

    International Nuclear Information System (INIS)

    Bettini, P.; Trevisan, F.; Cavinato, M.

    2005-01-01

    The paper presents a method to identify the plasma magnetic contour in fusion machines, when eddy currents are present in the conducting structures surrounding the plasma. The approach presented is based on the integration of an electromagnetic model of the plasma with a lumped parameters model of the conducting structures around the plasma. This approach has been validated against experimental data from RFX, a reversed field pinch machine. (author)

  11. Experimental demonstration of ion extraction from magnetic thrust chamber for laser fusion rocket

    Science.gov (United States)

    Saito, Naoya; Yamamoto, Naoji; Morita, Taichi; Edamoto, Masafumi; Nakashima, Hideki; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki; Sunahara, Atsushi; Mori, Yoshitaka; Johzaki, Tomoyuki

    2018-05-01

    A magnetic thrust chamber is an important system of a laser fusion rocket, in which the plasma kinetic energy is converted into vehicle thrust by a magnetic field. To investigate the plasma extraction from the system, the ions in a plasma are diagnosed outside the system by charge collectors. The results clearly show that the ion extraction does not strongly depend on the magnetic field strength when the energy ratio of magnetic field to plasma is greater than 4.3, and the magnetic field pushes back the plasma to generate a thrust, as previously suggested by numerical simulation and experiments.

  12. Organic insulators and the copper stabilizer for fusion-reactor magnets

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.

    1981-11-01

    The materials which compose the large composite superconducting fusion reactor magnets are subjected to mechanical stress, neutron and gamma-ray radiation with broad energy spectra, high magnetic fields, and thermal cycling from 4 to 300 K. Of the materials now considered for use in the magnets, results show that the organic insulators and the Cu stabilizer are the most sensitive to this environment. In response to the need for stabilizer data, magnetoresistivity changes were studied in eight variously prepared specimens of Cu throughout five cycles of an alternate neutron irradiation (4.0 K) and annealing (14 h at 307 K) program. The results were combined with those on the radiation behavior of epoxy and polyimide organic insulators to provide a preliminary assessment of their comparative radiation resistance in a typical magnet location of the Experimental Power Reactor

  13. Vent rate of superconducting magnets during quench in the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.

    1979-01-01

    When a superconducting magnet goes normal, resistive heating in the conductor evaporates surrounding LHe, which must be vented. The nature and speed at which the magnet goes normal and He is vented are not subject to rigorous analysis. This paper presents vent data from an existing magnet. An approximate mathematical model is derived and fitted to the data to permit scaling of vent requirements to larger size magnets. The worst case models of the vent employed in Mirror Fusion Test Facility (MFTF) cryogenic system design are also presented

  14. Conceptual design of fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-02-01

    This report describes the engineering conceptual design of Fusion Experimental Reactor (FER) which is to be built as a next generation tokamak machine. This design covers overall reactor systems including MHD equilibrium analysis, mechanical configuration of reactor, divertor, pumped limiter, first wall/breeding blanket/shield, toroidal field magnet, poloidal field magnet, cryostat, electromagnetic analysis, vacuum system, power handling and conversion, NBI, RF heating device, tritium system, neutronics, maintenance, cooling system and layout of facilities. The engineering comparison of a divertor with pumped limiters and safety analysis of reactor systems are also conducted. (author)

  15. OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE.

    Science.gov (United States)

    Batistoni, P; Villari, R; Obryk, B; Packer, L W; Stamatelatos, I E; Popovichev, S; Colangeli, A; Colling, B; Fonnesu, N; Loreti, S; Klix, A; Klosowski, M; Malik, K; Naish, J; Pillon, M; Vasilopoulou, T; De Felice, P; Pimpinella, M; Quintieri, L

    2017-10-05

    The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Irradiation capsule for testing magnetic fusion reactor first-wall materials at 60 and 2000C

    International Nuclear Information System (INIS)

    Conlin, J.A.

    1985-08-01

    A new type of irradiation capsule has been designed, and a prototype has been tested in the Oak Ridge Research Reactor (ORR) for low-temperature irradiation of Magnetic Fusion Reactor first-wall materials. The capsule meets the requirements of the joint US/Japanese collaborative fusion reactor materials irradiation program for the irradiation of first-wall fusion reactor materials at 60 and 200 0 C. The design description and results of the prototype capsule performance are presented

  17. Design and cost evaluation of generic magnetic fusion reactor using the D-D fuel cycle

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1988-01-01

    A fusion reactor systems code has been developed to evaluate the economic potential of power generation from a toroidal magnetic fusion reactor using deuterium-deuterium (D-D) fuel. A method similar to that developed by J. Sheffield, of the Oak Ridge National Laboratory, for deuterium-tritium (D-T) fuel was used to model the generic aspects of magnetic fusion reactors. The results of the systems study and cost evaluation show that the cost of electricity produced by a D-D reactor is two times higher than that produced by an equivalent D-T reactor design. The significant finding of the study is that the cost ratio between the D-D and D-T systems can potentially be reduced to 1.5 by improved engineering design and even lower by better physics performance. The absolute costs for both systems at this level are close to the costs for nuclear fission and fossil fuel plants. A design for a magnet reinforced with advanced composite materials is presented as an example of an engineering improvement that could reduce the cost of electricity produced by both reactors. However, since the magnets in the D-D reactor are much larger than in the K-T reactor, the cost ratio of the two systems is significantly reduced

  18. Experiments on a modular magnetic refrigeration device

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Jensen, Jesper Buch; Bahl, Christian

    2012-01-01

    of different experiments. The test device is of the reciprocating type, and the magnetic field source is provided by a permanent Halbach magnet assembly with an average flux density of 1.03 Tesla. This work presents experimental results for flat plate regenerators made of gadolinium and sintered compounds...

  19. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    International Nuclear Information System (INIS)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion

  20. Massachusetts Institute of Technology, Plasma Fusion Center, 1984-1985. Report to the President

    International Nuclear Information System (INIS)

    1985-07-01

    During the past year, technical progress has been made in all Plasma Fusion Center (PFC) research programs. The Plasma Fusion Center is recognized as one of the leading university research laboratories in the physics and engineering aspects of magnetic confinement fusion. Its research programs have produced significant results on four fronts: (1) the basic physics of high-temperature plasmas (plasma theory, rf heating, free electron lasers, development of advanced diagnostics and small-scale experiments on the Versator tokamak and Constance mirror devices); (2) major confinement results on the Alcator C tokamak, including pioneering investigations of the stability, heating, and confinement properties of plasmas at high densities, temperatures and magnetic fields; (3) development of an innovative design for axisymmetric tandem mirrors with inboard thermal barriers, with initial operation of the TARA tandem mirror experiment beginning in 1984; and (4) a broad program of fusion technology and engineering development that addresses problems in several critical subsystem areas (e.g., magnet systems, superconducting materials development, environmental and safety studies, advanced millimeter wave source development, and system studies of fusion reactor design, operation, and technology requirements). A review of these programs is given

  1. Characterization of Size, Composition and Origins of Dust in Fusion Devices. Summary Report of the Second Research Coordination Meeting

    International Nuclear Information System (INIS)

    Braams, B.J.; Skinner, C.H.

    2010-11-01

    Eleven experts on processes of dust in fusion experiments met for the 2nd Research Coordination Meeting (RCM) of the Coordinated Research Project (CRP) on 'Characterization of size, composition and origins of dust in fusion devices' held at IAEA Headquarters 21-23 June 2010. Participants summarized their studies on dust in fusion experiments and reviewed progress made since the first RCM. Gaps in knowledge were identified and a plan of work for the remainder of the CRP was developed. Presentations, discussions and recommendations of the RCM are summarized in this report. Eleven experts on processes of dust in fusion experiments met for the 2nd Research Coordination Meeting (RCM) of the Coordinated Research Project (CRP) on 'Characterization of size, composition and origins of dust in fusion devices' held at IAEA Headquarters 21-23 June 2010. Participants summarized their studies on dust in fusion experiments and reviewed progress made since the first RCM. Gaps in knowledge were identified and a plan of work for the remainder of the CRP was developed. Presentations, discussions and recommendations of the RCM are summarized in this report. (author)

  2. Design and fabrication of the superconducting-magnet system for the Mirror Fusion Test Facility (MFTF-B)

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Kozman, T.A.

    1982-01-01

    The superconducting magnet system for the Mirror Fusion Test Facility (MFTF-B) consists of 24 magnets; i.e. two pairs of C-shaped Yin-Yang coils, four C-shaped transition coils, four solenoidal axicell coils, and a 12-solenoid central cell. General Dynamics Convair Division has designed all the coils and is responsible for fabricating 20 coils. The two Yin-Yang pairs (four coils) are being fabricated by the Lawrence Livermore National Laboratory. Since MFTF-B is not a magnet development program, but rather a major physics experiment critical to the mirror fusion program, the basic philosophy has been to use proven materials and analytical techniques wherever possible. The transition and axicell coils are currently being analyzed and designed, while fabrication is under way on the solenoid magnets

  3. STAR Power, an Interactive Educational Fusion CD with a Dynamic, Shaped Tokamak Power Plant Simulator

    Science.gov (United States)

    Leuer, J. A.; Lee, R. L.; Kellman, A. G.; Chapman Nutt, G. C., Jr.; Holley, G.; Larsen, T. A.

    2000-10-01

    We describe an interactive, educational fusion adventure game developed within our fusion education program. The theme of the adventure is start-up of a state-of-the-art fusion power plant. To gain access to the power plant control room, the student must complete several education modules, including topics on building an atom, fusion reactions, charged particle motion in electric and magnetic fields, and building a power plant. Review questions, a fusion video, library material and glossary provide additional resources. In the control room the student must start-up a complex, dynamic fusion power plant. The simulation model contains primary elements of a tokamak based device, including a magnetic shaper capable of producing limited and diverted elongated plasmas. A zero dimensional plasma model based on ITER scaling and containing rate based conservation equations provides dynamic feedback through major control parameters such as toroidal field, fueling rate and heating. The game is available for use on PC and Mac. computers. Copies will be available at the conference.

  4. From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices

    Directory of Open Access Journals (Sweden)

    Ivan Miguel Pires

    2016-02-01

    Full Text Available This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs.

  5. From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices

    Science.gov (United States)

    Pires, Ivan Miguel; Garcia, Nuno M.; Pombo, Nuno; Flórez-Revuelta, Francisco

    2016-01-01

    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs). PMID:26848664

  6. General principles of magnetic fusion confinement

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1980-01-01

    A few of the areas are described in which there is close interaction between atomic/molecular (A and M) and magnetic fusion physics. The comparisons between predictions of neoclassical transport theory and experiment depend on knowledge of ionization and recombination rate coefficients. Modeling of divertor/scrapeoff plasmas requires better low energy charge exchange cross sections for H + A/sup n+/ collisions. The range of validity of neutral beam trapping cross sections must be broadened, both to encompass the energies typical of present injection experiments and to deal with the problem of prompt trapping of highly excited beam atoms at high energy. Plasma fueling models present certain anomalies that could be resolved by calculation and measurement of low energy (<1 keV) charge exchange cross sections

  7. First-wall and blanket engineering development for magnetic-fusion reactors

    International Nuclear Information System (INIS)

    Baker, C.; Herman, H.; Maroni, V.; Turner, L.; Clemmer, R.; Finn, P.; Johnson, C.; Abdou, M.

    1981-01-01

    A number of programs in the USA concerned with materials and engineering development of the first wall and breeder blanket systems for magnetic-fusion power reactors are described. Argonne National Laboratory has the lead or coordinating role, with many major elements of the research and engineering tests carried out by a number of organizations including industry and other national laboratories

  8. The restructured fusion program and the role of alternative fusion concepts

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    This testimony to the subcommittee on Energy and the Environment of the U.S. House of Representatives's Committee on Science pushes for about 25% of the fusion budget to go to alternative fusion concepts. These concepts are: low density magnetic confinement, inertial confinement fusion, high density magnetic confinement, and non- thermonuclear and miscellaneous programs. Various aspects of each of these concepts are outlined

  9. Tritium inventory and recovery in next-step fusion devices

    International Nuclear Information System (INIS)

    Causey, R.A.; Brooks, J.N.; Federici, G.

    2002-01-01

    Future fusion devices will use tritium and deuterium fuel. Because tritium is both radioactive and expensive, it is absolutely necessary that there be an understanding of the tritium retention characteristics of the materials used in these devices as well as how to recover the tritium. There are three materials that are strong candidates for plasma-facing-material use in next-step fusion devices. These are beryllium, tungsten, and carbon. While beryllium has the disadvantage of high sputtering and low melting point (which limits its power handling capabilities in divertor areas), it has the advantages of being a low-Z material with a good thermal conductivity and the ability to get oxygen from the plasma. Due to beryllium's very low solubility for hydrogen, implantation of beryllium with deuterium and tritium results in a saturated layer in the very near-surface with limited inventory (J. Nucl. Mater. 273 (1999) 1). Unfortunately, there are nuclear reactions generated by neutrons that will breed tritium and helium in the material bulk (J. Nucl. Mater. 179 (1991) 329). This process will lead to a substantial tritium inventory in the bulk of the beryllium after long-term neutron exposure (i.e. well beyond the operation life time of a next-step reactor like ITER). Tungsten is a high-Z material that will be used in the divertor region of next-step devices (e.g. ITER) and possibly as a first wall material in later devices. The divertor is the preferred location for tungsten use because net erosion is very low there due to low sputtering and high redeposition. While experiments are still continuing on tritium retention in tungsten, present data suggest that relatively low tritium inventories will result with this material (J. Nucl. Mater. 290-293 (2001) 505). For tritium inventories, carbon is the problem material. Neutron damage to the graphite can result in substantial bulk tritium retention (J. Nucl. Mater. 191-194 (1992) 368), and codeposition of the sputtered carbon

  10. Static devices with new permanent magnets

    International Nuclear Information System (INIS)

    Chavanne, J.; Laforest, J.; Pauthenet, R.

    1987-01-01

    The high remanence and coercivity of the new permanent magnet materials are of special interest in the static applications. High ordering temperature and are uniaxial anisotropy at the origin of their good permanent magnet properties are obtained in rare earth-transition metal compounds. Binary SmCo/sub 5/ and Sm/sub 2/Co/sub 17/ and ternary Nd/sub 2/Fe/sub 14/B compounds are the basis materials of the best permanent magnets. new concepts of calculations of static devices with these magnets can be applied: the magnetization can be considered as ridig, the density of the surface Amperian current is constant, the relative permeability is approximately 1 and the induction calculations are linear. Examples of hexapoles with Sm-Co and NdFeB magnets are described and the performances are compared. The problems of temperature behavior and corrosion resistance are underlined

  11. Exploitation of a Breakthrough in Magnetic Confinement Fusion to Improve Transuranic Incineration

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Erich [Nuclear and Radiation Engineering Program, The University of Texas at Austin, Austin, TX 78712 (United States); Kotschenreuther, Mike; Mahajan, Swadesh; Valanju, Prashant [Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States)

    2009-06-15

    A fusion-assisted transmutation system for the destruction of transuranic nuclear waste is developed by combining a subcritical fusion-fission hybrid assembly uniquely equipped to burn the worst thermal non-fissile transuranic isotopes with a new fuel cycle that uses cheaper light water reactors for most of the transmutation. The centerpiece of this fuel cycle, the high power density compact fusion neutron source (CFNS, 100 MW, outer radius <3 m), is made possible by a new divertor with a heat-handling capacity five times that of the standard alternative. The number of hybrids needed to destroy a given amount of waste is about an order of magnitude below the corresponding number of critical fast spectrum reactors (FR) as the latter cannot fully exploit the new fuel cycle. Also, the time needed for 99% transuranic waste destruction reduces from centuries (with FR) to decades. The generic Hybrid, combining neutron-rich fusion with energy-rich fission, was first conceptualized several decades ago. However, it is only now that accumulated advances in fusion science and technology allow designing a neutron source like CFNS that is simultaneously compact and high power density, offering a neutron source an order of magnitude stronger than that obtained from accelerator driven systems. The former is essential for efficient coupling to the fission blanket, and the latter is key to efficient neutron production necessary to yield high neutron fluxes needed for effective transmutation. The recent invention of the SuperX-Divertor (SXD)1, a new magnetic configuration that allows the system to safely exhaust large heat and particle fluxes peculiar to CFNS-like devices, is a crucial addition to the underlying knowledge base. The subcritical FFTS acquires a definite advantage over the critical FR approach because of its ability to support an innovative fuel cycle that makes the cheaper LWR do the bulk (75%) of the transuranic transmutation via deep burn in an inert matrix fuel

  12. Development of new low activation aluminum alloys for fusion devices

    International Nuclear Information System (INIS)

    Kamada, Kohji; Kakihana, Hidetake.

    1985-01-01

    As the materials for the R facility (a tokamak nuclear fusion device in the R project intended for D-T burning) in the Institute of Plasma Physics, Nagoya University, Al-4 % Mg-0.2 % Bi (5083 improved type) and Al-4 % Mg-1 % Li, aimed at low radioactivability, high electric resistance and high strength, have been developed. The results of the nuclear properties evaluation with 14 MeV neutrons and of the measurements of electric resistance and mechanical properties were satisfactory. The possibility of producing large Al-4 % Mg-1 % Li plate (1 m x 2 m x 25 mm) in the existing factory was confirmed, with the properties retained. The electric resistances were higher than those in the conventional aluminum alloys, and still with feasibility for the further improvement. General properties of the fusion aluminum alloys and the 26 Al formation in (n, 2n) reaction were studied. (Mori, K.)

  13. Fusion Simulation Program Execution Plan

    International Nuclear Information System (INIS)

    Brooks, Jeffrey

    2011-01-01

    The overall science goal of the FSP is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in research related to the International Thermonuclear Experimental Reactor (ITER) and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical areas: 1) the plasma edge and 2) whole device modeling including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model (WDM) will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP. The FSP plan targets the needed modeling capabilities by developing Integrated Science Applications (ISAs) specific to their needs. The Pedestal-Boundary model will include boundary magnetic topology, cross-field transport of multi-species plasmas, parallel plasma transport, neutral transport, atomic physics and interactions with the plasma wall

  14. Laser fusion overview

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1976-01-01

    Because of recent breakthroughs in the target area, and in the glass laser area, the scientific feasibility of laser fusion--and of inertial fusion--may be demonstrated in the early 1980's. Then the development in that time period of a suitable laser (or storage ring or other driving source) would make possible an operational inertial fusion reactor in this century. These are roughly the same time scales as projected by the Tokamak magnetic confinement approach. It thus appears that the 15-20 year earlier start by magnetic confinement fusion may be overcome. Because inertial confinement has been demonstrated, and inertial fusion reactors may operate on smaller scales than Tokamaks, laser fusion may have important technical and economic advantages

  15. Developing Boundary/PMI Solutions for Next-Step Fusion Devices

    Science.gov (United States)

    Guo, H. Y.; Leonard, A. W.; Thomas, D. M.; Allen, S. L.; Hill, D. N.; Unterberg, Z.

    2014-10-01

    The path towards next-step fusion development requires increased emphasis on the boundary/plasma-material interface. The new DIII-D Boundary/Plasma-Material Interactions (PMI) Center has been established to address these critical issues on a timescale relevant to the design of FNSF, adopting the following transformational approaches: (1) Develop and test advanced divertor configurations on DIII-D compatible with core plasma high performance operational scenarios in FNSF; (2) Validate candidate reactor PFC materials at reactor-relevant temperatures in DIII-D high-performance plasmas, in collaboration with the broad material research/development community; (3) Integrate validated boundary-materials interface with high performance plasmas to provide viable boundary/PMI solutions for next-step fusion devices. This program leverages unique DIII-D capabilities, promotes synergistic programs within the broad PMI community, including linear material research facilities. It will also enable us to build a compelling bridge for the US research on long-pulse facilities. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344, DE-AC05-00OR2725.

  16. Characterization of size, composition and origins of dust in fusion devices. Summary report of the 1. research coordination meeting

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2009-03-01

    Nine experts on dust formation and their physical and behavioural characteristics attended the first Research Coordination Meeting (RCM) on Characterization of Size, Composition and Origins of Dust in Fusion Devices held at IAEA Headquarters on 10-12 December 2008. Participants summarized recent relevant developments related to dust in fusion devices. The specific objectives of the CRP and a detailed work plan were formulated. Discussions, conclusions and recommendations of the RCM are briefly described in this report. (author)

  17. Development and application of charcoal sorbents for cryopumping fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Sedgley, D.W. (Grumman Corp., Bethpage, NY (USA). Space Systems Div.)

    1989-06-01

    Progress has been made in defining the capabilities of charcoal as the most promising absorbent to be used in cryopumps for fusion power application. The capabilities of alternative methods of cryopumping helium have been examined in a literature survey and by test, and the results are described here. Considerations include pumping speed, capacity to accumulate pumped gas, ease of reconditioning, use of alternative materials and tolerance to the fusion environment. Vacuum pumps for future fusion devices must handle large quantities of helium/hydrogen isotopes and other impurities. Cryopumps or turbomolecular pumps have demonstrated the capability on a small scale, and each has an important advantage: TMPs do not accumulate gases; cryopumps can separate helium from other effluents. This paper includes a review of a method for selecting charcoals for helium cryopumping, testing of a continuously operating cryopump system, and definition of a design that is based on the requirements of the Next European Torus. Tritium limits are satisfied. The pump design incorporates the charcoal sorbent system that has been recently developed and is based on a reasonable extrapolation of current state-of-the-art. Evaluation of alternative methods of separating helium and other gases led to selection of a movable barrier as the preferred solution. (orig.).

  18. Fusion of magnetic resonance angiography and magnetic resonance imaging for surgical planning for meningioma. Technical note

    International Nuclear Information System (INIS)

    Kashimura, Hiroshi; Ogasawara, Kuniaki; Arai, Hiroshi

    2008-01-01

    A fusion technique for magnetic resonance (MR) angiography and MR imaging was developed to help assess the peritumoral angioarchitecture during surgical planning for meningioma. Three-dimensional time-of-flight (3D-TOF) and 3D-spoiled gradient recalled (SPGR) datasets were obtained from 10 patients with intracranial meningioma, and fused using newly developed volume registration and visualization software. Maximum intensity projection (MIP) images from 3D-TOF MR angiography and axial SPGR MR imaging were displayed at the same time on the monitor. Selecting a vessel on the real-time MIP image indicated the corresponding points on the axial image automatically. Fusion images showed displacement of the anterior cerebral or middle cerebral artery in 7 patients and encasement of the anterior cerebral arteries in I patient, with no relationship between the main arterial trunk and tumor in 2 patients. Fusion of MR angiography and MR imaging can clarify relationships between the intracranial vasculature and meningioma, and may be helpful for surgical planning for meningioma. (author)

  19. Alternative lines with magnetic plasma confinement

    International Nuclear Information System (INIS)

    Wobig, H.

    1981-01-01

    Plasma confinement with the aid of a magnetic field is the most common and also the most frequently investigated principle on the way to controlled nuclear fusion. Apart from the Tokamak principle, which is the most advanced principle as far as fusion-relevant plasma parameters are concerned, also other approaches are being investigated, e.g. the mirror device, the bumpy tons, and the stellarator. In principle, all three concepts permit 'stationary' plasma confinement in a stationary fusion reactor. Compared with the pulsed Tokamak reactor, this is a considerable advantage. (orig./GG) [de

  20. Cable-in-conduit conductor optimization for fusion magnet applications

    International Nuclear Information System (INIS)

    Miller, J.R.; Kerns, J.A.

    1987-01-01

    Careful design of the toroidal-field (TF) and poloidal-field (PF) coils in a tokamak machine using cable-in-conduit conductors (CICC) can result in quite high overall winding-pack current densities - even with the high nuclear heat loads that may be imposed in operating a fusion reactor - and thereby help reduce the overall machine size. In our design process, we systematically examined the operational environment of a magnet, e.g., mechanical stresses, current, field, heat load, coolant temperature, and cooldown stresses, to determine the optimum amounts of copper, superconductor, helium, and sheath material for the CICC. This process is being used to design the superconducting magnet systems that comprise the Tokamak Ignition/Burn Experimental Reactor (TIBER II). 13 refs., 2 figs

  1. The Swedish fusion research programme on magnetic confinement 1978

    International Nuclear Information System (INIS)

    Lehnert, B.

    1978-02-01

    A review is given on the activities and plans for research on plasma physics and controlled fusion at the Royal Institute of Technology in Stockholm, with descriptions and motivations of the research lines being conducted. These activities include investigations on plasma-neutral gas interaction, development of special principles for plasma stabilization, magnetic confinement schemes being based mainly on poloidal fields, as well as the generation, heating, and diagnostics of plasmas being ''impermeable'' to neutral gas. (author)

  2. Properties of the ion-ion hybrid resonator in fusion plasmas

    International Nuclear Information System (INIS)

    Morales, George J.

    2015-01-01

    The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvn resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts between experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.

  3. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1988-01-01

    A method for recovering energy in an inertial confinement fusion reactor having a reactor chamber and a sphere forming means positioned above an opening in the reactor chamber is described, comprising: embedding a fusion target fuel capsule having a predetermined yield in the center of a hollow solid lithium tube and subsequently embedding the hollow solid lithium tube in a liquid lithium medium; using the sphere forming means for forming the liquid lithium into a spherical shaped liquid lithium mass having a diameter smaller than the length of the hollow solid lithium tube with the hollow solid lithium tube being positioned along a diameter of the spherical shaped mass, providing the spherical shaped liquid lithium mass with the fusion fuel target capsule and hollow solid lithium tube therein as a freestanding liquid lithium shaped spherical shaped mass without any external means for maintaining the spherical shape by dropping the liquid lithium spherical shaped mass from the sphere forming means into the reactor chamber; producing a magnetic field in the reactor chamber; imploding the target capsule in the reactor chamber to produce fusion energy; absorbing fusion energy in the liquid lithium spherical shaped mass to convert substantially all the fusion energy to shock induced kinetic energy of the liquid lithium spherical shaped mass which expands the liquid lithium spherical shaped mass; and compressing the magnetic field by expansion of the liquid lithium spherical shaped mass and recovering useful energy

  4. Low-Z coating as a first wall of nuclear fusion devices

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Okada, Masatoshi

    1984-01-01

    The tokamak nuclear fusion devices of the largest scale in the world, TFTR in USA and JET in Europe, started the operation from the end of 1982 to 1983. Also in Japan, the tokamak JT-60 is scheduled to begin the operation in 1985. One of the technological obstacles is the problem of first walls facing directly to plasma and subjected to high particle loading and thermal loading. Moreover, first walls achieve the active role of controlling impurities in plasma and recycling hydrogen isotopes. It is impossible to find a single material which satisfies all these requirements. The compounding of materials can create a material having new function, but also has the meaning of expanding the range of material selection. One of the material compounding methods is surface coating. In this paper, as the materials for first walls, the characteristics of low Z materials are discussed from the design examples of actual takamak nuclear fusion devices. The outline of first walls is explained. High priority is given to the impurity control in plasma, and in view of plasma energy emissivity and the rate of self sputtering, low Z material coating seems to be the solution. The merits and the problems of such low Z material coating are discussed. (Kako, I.)

  5. Safety concerns for superconducting magnets of upcoming fusion experiments

    International Nuclear Information System (INIS)

    Turner, L.R.

    1983-01-01

    -Several fusion experiments being constructed (Tore Supra) or contemplated (DCT 8, Alcator DCT) feature superconducting coils. These coils introduce the following safety concerns: 1. Internally Cooled Conductor (ICC). ICC's are found to be highly stable against short heat pulses, even when the coolant is stagnant or moving at low steady-state velocity. However, a large heat pulse is certain to quench the conductor. Thus, determining the stability limits is vital. 2. Helium II Cooling. Helium II has both unique advantages as a coolant and unique safety problems. 3. Shorted Turns. In magnets with shorts from operational accidents, the current can switch back and forth between the short and the shorted turns, as those alternatively go normal and superconducting. 4. Hybrid Superconducting-Normal Conducting Coil System. The possibility of unequal currents in the different magnets and thus of unexpected forces on the superconducting magnets is much greater than for an all-superconducting system. Analysis of these problems are presented

  6. Safety considerations in the design of the fusion engineering device

    International Nuclear Information System (INIS)

    Barrett, R.J.

    1983-01-01

    Safety considerations play a significant role in the design of a near-term Fusion Engineering Device (FED). For the safety of the general public and the plant workers, the radiation environment caused by the reacting plasma and the potential release of tritium fuel are the dominant considerations. The U.S. Department of Energy (DOE) regulations and guidelines for radiation protection have been reviewed and are being applied to the device design. Direct radiation protection is provided by the device shield and the reactor building walls. Radiation from the activated device components and the tritium fuel is to be controlled with shielding, contamination control, and ventilation. The potential release of tritium from the plant has influenced the selection of reactor building and plant designs and specifications. The safety of the plant workers is affected primarily by the radiation from the activated device components and from plasma chamber debris. The highly activated device components make it necessary to design many of the maintenance activities in the reactor building for totally remote operation. The hot cell facility has evolved as a totally remote maintenance facility due to the high radiation levels of the device components. Safety considerations have had substantial impacts on the design of FED. Several examples of safety-related design impacts are discussed in the paper. Feasible solutions have been identified for all outstanding safety-related items, and additional optimization of these solutions is anticipated in future design studies

  7. Construction and testing of the Mirror Fusion Test Facility magnets

    International Nuclear Information System (INIS)

    Kozman, T.; Shimer, D.; VanSant, J.; Zbasnik, J.

    1986-08-01

    This paper describes the construction and testing of the Mirror Fusion Test Facility superconducting magnet set. Construction of the first Yin Yang magnet was started in 1978. And although this particular magnet was later modified, the final construction of these magnets was not completed until 1985. When completed these 42 magnets weighed over 1200 tonnes and had a maximum stored energy of approximately 1200 MJ at full field. Together with power supplies, controls and liquid nitrogen radiation shields the cost of the fabrication of this system was over $100M. General Dynamics/Convair Division was responsible for the system design and the fabrication of 20 of the magnets. This contract was the largest single procurement action at the Lawrence Livermore National Laboratory. During the PACE acceptance tests, the 26 major magnets were operated at full field for more than 24 hours while other MFTF subsystems were tested. From all of the data, the magnets operated to the performance specifications. For physics operation in the future, additional helium and nitrogen leak checking and repair will be necessary. In this report we will discuss the operation and testing of the MFTF Magnet System, the world's largest superconducting magnet set built to date. The topics covered include a schedule of the major events, summary of the fabrication work, summary of the installation work, summary of testing and test results, and lessons learned

  8. Contributions to the 7th International Conference on plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains three papers presented in the 7th International Conference on plasma surface interactions in controlled fusion devices held in Princeton (USA) 5-9 May 1986, all referred to the FT Tokamak

  9. Development of a magnetic measurement device for thin ribbon samples

    International Nuclear Information System (INIS)

    Sato, Yuta; Todaka, Takashi; Enokizono, Masato

    2008-01-01

    This paper presents a magnetic measurement device for thin ribbon samples, which are produced by rapid cooling technique. This device enables us to measure magnetic properties easily by only inserting a ribbon sample into a sample holder. The sample holder was made by bakelite to fix any width sample. A long solenoid coil was used to generate a uniform magnetic field and the sample holder was placed at the mid part of the solenoid. The magnetic field strength was measured using a shunt resistor and the magnetic flux density and magnetization in sample ribbons were evaluated by using search coils. The accuracy of measurement was verified with an amorphous metal ribbon sample. Next, we have measured magnetic properties of some magnetic shape memory alloys, which have different compositions. The measured results are compared and we clarified the effect of Sm contents on the magnetic properties

  10. Antimatter Driven P-B11 Fusion Propulsion System

    Science.gov (United States)

    Kammash, Terry; Martin, James; Godfroy, Thomas

    2002-01-01

    One of the major advantages of using P-B11 fusion fuel is that the reaction produces only charged particles in the form of three alpha particles and no neutrons. A fusion concept that lends itself to this fuel cycle is the Magnetically Insulated Inertial Confinement Fusion (MICF) reactor whose distinct advantage lies in the very strong magnetic field that is created when an incident particle (or laser) beam strikes the inner wall of the target pellet. This field serves to thermally insulate the hot plasma from the metal wall thereby allowing thc plasma to burn for a long time and produce a large energy magnification. If used as a propulsion device, we propose using antiprotons to drive the system which we show to be capable of producing very large specific impulse and thrust. By way of validating the confinement propenies of MICF we will address a proposed experiment in which pellets coated with P-B11 fuel at the appropriate ratio will be zapped by a beam of antiprotons that enter the target through a hole. Calculations showing the density and temperature of the generated plasma along with the strength of the magnetic field and other properties of the system will be presented and discussed.

  11. Method for making an improved magnetic encoding device

    Science.gov (United States)

    Fox, Richard J.

    1981-01-01

    A magnetic encoding device and method for making the same are provided for use as magnetic storage mediums in identification control applications which give output signals from a reader that are of shorter duration and substantially greater magnitude than those of the prior art. Magnetic encoding elements are produced by uniformly bending wire or strip stock of a magnetic material longitudinally about a common radius to exceed the elastic limit of the material and subsequently mounting the material so that it is restrained in an unbent position on a substrate of nonmagnetic material. The elements are spot weld attached to a substrate to form a binary coded array of elements according to a desired binary code. The coded substrate may be enclosed in a plastic laminate structure. Such devices may be used for security badges, key cards, and the like and may have many other applications.

  12. Calculation of magnetic fields for engineering devices

    International Nuclear Information System (INIS)

    Colonias, J.S.

    1976-06-01

    The methodology of magnet technology and its application to various engineering devices are discussed. Magnet technology has experienced a rigid growth in the past few years as a result of the advances made in superconductivity, numerical methods and computational techniques. Included are discussions on: (1) mathematical models for solving magnetic field problems; (2) the applicability, usefulness, and limitations of computer programs that utilize these models; (3) examples of application in various engineering disciplines; and (4) areas where further contributions are needed

  13. Computational challenges in magnetic-confinement fusion physics

    Science.gov (United States)

    Fasoli, A.; Brunner, S.; Cooper, W. A.; Graves, J. P.; Ricci, P.; Sauter, O.; Villard, L.

    2016-05-01

    Magnetic-fusion plasmas are complex self-organized systems with an extremely wide range of spatial and temporal scales, from the electron-orbit scales (~10-11 s, ~ 10-5 m) to the diffusion time of electrical current through the plasma (~102 s) and the distance along the magnetic field between two solid surfaces in the region that determines the plasma-wall interactions (~100 m). The description of the individual phenomena and of the nonlinear coupling between them involves a hierarchy of models, which, when applied to realistic configurations, require the most advanced numerical techniques and algorithms and the use of state-of-the-art high-performance computers. The common thread of such models resides in the fact that the plasma components are at the same time sources of electromagnetic fields, via the charge and current densities that they generate, and subject to the action of electromagnetic fields. This leads to a wide variety of plasma modes of oscillations that resonate with the particle or fluid motion and makes the plasma dynamics much richer than that of conventional, neutral fluids.

  14. [Magnetic helicity and current drive in fusion devices]. Final technical report

    International Nuclear Information System (INIS)

    1998-01-01

    The research program focused on two main themes: (i) magnetic helicity and (ii) current drive by low-frequency waves. At first these themes seemed unrelated, but as time progressed, they became interwoven, and ultimately closely connected. A sub-theme is that while the MHD model of a plasma stimulates many intriguing counter-intuitive ideas for creating and sustaining magnetic confinement configurations, usually the crux of these schemes involves some sort of breakdown of MHD, i.e., involves physics which transcends MHD

  15. Magnetic field effects in hybrid perovskite devices

    Science.gov (United States)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  16. Massachusetts Institute of Technology, Plasma Fusion Center, technical research programs

    International Nuclear Information System (INIS)

    1982-02-01

    Research programs have produced significant results on four fronts: (1) the basic physics of high-temperature fusion plasmas (plasma theory, RF heating, development of advanced diagnostics and small-scale experiments on the Versator tokamak and Constance mirror devices); (2) major confinement results on the Alcator A and C tokamaks, including pioneering investigations of the equilibrium, stability, transport and radiation properties of fusion plasmas at high densities, temperatures and magnetic fields; (3) development of a new and innovative design for axisymmetric tandem mirrors with inboard thermal barriers, with initial operation of the TARA tandem mirror experimental facility scheduled for 1983; and (4) a broadly based program of fusion technology and engineering development that addresses problems in several critical subsystem areas

  17. Assessment of the critical engineering data needs for the commercialization of magnetic confinement fusion

    International Nuclear Information System (INIS)

    Waganer, L.M.; Zuckerman, D.S.

    1983-01-01

    A survey of twenty-two recent conceptual fusion reactor designs was conducted to ascertain both generic and specific engineering data needs critical for the commercialization of magnetic confinement fusion (MCF). Design experts or advocates for each concept were queried as to the more critical engineering issues and data needs affecting the achievement of commercialization. For each concept, the technical issues were identified and the data needs quantified. Issues and data needs were then ranked based upon the experts' perceptions of the relative importance of each to the concept. The issues encompassed all aspects of the fusion reactor plant design including materials, performance, maintainability, operability, cost, safety and resources

  18. Superconducting magnets for model ship propulsion and for material tests of a nuclear fusion reactor

    International Nuclear Information System (INIS)

    Horiuchi, T.; Matsumoto, K.; Monju, Y.; Tatara, I.; Hamada, M.

    1982-01-01

    Nuclear fusion reactors, magnetically levitated trains, and MHD generators, etc., all need a very high magnetic field; which in order to be attained a means the application of superconductors is inevitable. This paper describes the development of ''CRYOZITT'', a superconductor featuring high current density and high mechanical strength. CRYOZITT has already been used in the manufacture of two race-track shaped superconducting magnets, and delivered to highly satisfied customers. (author)

  19. Fusion Reactor Safety Research Program annual report, FY-79

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1980-08-01

    The objective of the program is the development, coordination, and execution of activities related to magnetic fusion devices and reactors that will: (a) identify and evaluate potential hazards, (b) assess and disclose potential environmental impacts, and (c) develop design standards and criteria that eliminate, mitigate, or reduce those hazards and impacts. The program will provide a sound basis for licensing fusion reactors. Included in this report are portions of four reports from two outside contractors, discussions of the several areas in which EG and G Idaho is conducting research activities, a discussion of proposed program plan development, mention of special tasks, a review of fusion technology program coordination by EG and G with other laboratories, and a brief view of proposed FY-80 activities

  20. EURATOM strategy towards fusion energy

    International Nuclear Information System (INIS)

    Varandas, C.

    2007-01-01

    Research and development (Research and Development) activities in controlled thermonuclear fusion have been carried out since the 60's of the last century aiming at providing a new clean, powerful, practically inexhaustive, safe, environmentally friend and economically attractive energy source for the sustainable development of our society.The EURATOM Fusion Programme (EFP) has the leadership of the magnetic confinement Research and Development activities due to the excellent results obtained on JET and other specialized devices, such as ASDEX-Upgrade, TORE SUPRA, FTU, TCV, TEXTOR, CASTOR, ISTTOK, MAST, TJ-II, W7-X, RFX and EXTRAP. JET is the largest tokamak in operation and the single device that can use deuterium and tritium mixes. It has produced 16 MW of fusion power, during 3 seconds, with an energy amplification of 0.6. The next steps of the EFP strategy towards fusion energy are ITER complemented by a vigorous Accompanying Programme, DEMO and a prototype of a fusion power plant. ITER, the first experimental fusion reactor, is a large-scale project (35-year duration, 10000 MEuros budget), developed in the frame of a very broad international collaboration, involving EURATOM, Japan, Russia Federation, United States of America, Korea, China and India. ITER has two main objectives: (i) to prove the scientific and technical viability of fusion energy by producing 500 MW, during 300 seconds and a energy amplification between 10 and 20; and (ii) to test the simultaneous and integrated operation of the technologies needed for a fusion reactor. The Accompanying Programme aims to prepare the ITER scientific exploitation and the DEMO design, including the development of the International Fusion Materials Irradiation Facility (IFMIF). A substantial part of this programme will be carried out in the frame of the Broader Approach, an agreement signed by EURATOM and Japan. The main goal of DEMO is to produce electricity, during a long time, from nuclear fusion reactions. The