WorldWideScience

Sample records for magnetic confinement systems

  1. Open-ended magnetic confinement systems for fusion

    International Nuclear Information System (INIS)

    Post, R.F.; Ryutov, D.D.

    1995-05-01

    Magnetic confinement systems that use externally generated magnetic fields can be divided topologically into two classes: ''closed'' and 'open''. The tokamak, the stellarator, and the reversed-field-pinch approaches are representatives of the first category, while mirror-based systems and their variants are of the second category. While the recent thrust of magnetic fusion research, with its emphasis on the tokamak, has been concentrated on closed geometry, there are significant reasons for the continued pursuit of research into open-ended systems. The paper discusses these reasons, reviews the history and the present status of open-ended systems, and suggests some future directions for the research

  2. Fusion, magnetic confinement

    International Nuclear Information System (INIS)

    Berk, H.L.

    1992-01-01

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or 3 He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied

  3. A paramagnetic nearly isodynamic compact magnetic confinement system

    International Nuclear Information System (INIS)

    Cooper, W.A.; Antonietti, J.M.; Todd, T.N.

    2001-01-01

    A coreless compact magnetic confinement system that consists of sets of helical windings and vertical magnetic field coils is investigated. The helical coils produce a small toroidal translation of the magnetic field lines and seed paramagnetism. The force-free component of the toroidal current strongly enhances the paramagnetism such that isodynamic conditions near the plasma centre can be approached. At β 5%, the configuration is stable to local MHD modes. Global MHD modes limit the toroidal current 2πJ to about 60kA for peaked J. Bootstrap-like hollow current profiles generate quasiaxisymmetric systems that require a close fitting conducting shell to satisfy external kink stability. (author)

  4. System and method of operating toroidal magnetic confinement devices

    Science.gov (United States)

    Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.

    1984-08-30

    This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.

  5. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    International Nuclear Information System (INIS)

    Tsventoukh, M. M.

    2010-01-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  6. Magnetic properties of confined electron gas

    International Nuclear Information System (INIS)

    Felicio, J.R.D. de.

    1977-04-01

    The effects of confinement by a two or three-dimensional harmonic potential on the magnetic properties of a free electron gas are investigated using the grand-canonical ensemble framework. At high temperatures an extension of Darwin's, Felderhof and Raval's works is made taking into account spin effects at low temperature. A comprehensive description of the magnetic properties of a free electron gas is given. The system is regarded as finite, but the boundary condition psi=0 is not introduced. The limits of weak and strong confinement are also analysed [pt

  7. Apparatus for magnetic and electrostatic confinement of plasma

    Science.gov (United States)

    Rostoker, Norman; Binderbauer, Michl

    2013-06-11

    An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  8. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    Science.gov (United States)

    Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA; Qerushi, Artan [Irvine, CA; Tahsiri, Hooshang [Irvine, CA

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  9. On a magnet configuration for confining ultracold neutrons

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Vasil'ev, V.V.; Vladimirskij, V.V.; Krupchitskij, P.A.; Rissukhin, V.K.

    1977-01-01

    A magnetic system for experiments on the ultracold neutron confinement is described. The magnetic field calculation results are given. They make it possible to select the geometric places of points in which the neutron depolarization may appear and to suggest the way for diminishing the depolarization

  10. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    Directory of Open Access Journals (Sweden)

    Jaeyoung Park

    2015-06-01

    Full Text Available We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad’s work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β. This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  11. Ignition and burn in inertially confined magnetized fuel

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.

    1991-01-01

    At the third International Conference on Emerging Nuclear Energy Systems, we presented computational results which suggested that ''breakeven'' experiments in inertial confinement fusion (ICF) may be possible with existing driver technology. We recently used the ICF simulation code LASNEX to calculate the performance of an idealized magnetized fuel target. The parameter space in which magnetized fuel operates is remote from that of both ''conventional'' ICF and magnetic confinement fusion devices. In particular, the plasma has a very high β and is wall confined, not magnetically confined. The role of the field is to reduce the electron thermal conductivity and to partially trap the DT alphas. The plasma is contained in a pusher which is imploded to compress and adiabatically heat the plasma from an initial condition of preheat and pre-magnetization to the conditions necessary for fusion ignition. The initial density must be quite low by ICF standards in order to insure that the electron thermal conductivity is suppressed and to minimize the generation of radiation from the plasma. Because the energy loss terms are effectively suppressed, the implosion may proceed at a relatively slow rate of about 1 to 3 cm/μs. Also, the need for low density fuel dictates a much larger target, so that magnetized fuel can use drivers with much lower power and power density. Therefore, magnetized fuel allows the use of efficient drivers that are not suitable for laser or particle beam fusion due to insufficient focus or too long pulse length. The ignition and burn of magnetized fuel involves very different dominant physical processes than does ''conventional'' ICF. The fusion time scale becomes comparable to the hydrodynamic time scale, but other processes that limit the burn in unmagnetized fuel are of no consequence. The idealized low gain magnetized fuel target presented here is large and requires a very low implosion velocity. 11 refs

  12. A remote monitoring system of environmental electromagnetic field in magnetic confinement fusion test facilities

    International Nuclear Information System (INIS)

    Tanaka, Masahiro; Uda, Tatsuhiko; Takami, Shigeyuki; Wang, Jianqing; Fujiwara, Osamu

    2010-01-01

    A remote, continuous environmental electromagnetic field monitoring system for use in magnetic confinement fusion test facilities is developed. Using this system, both the static magnetic field and the high frequency electromagnetic field could be measured. The required frequency range of the measurement system is from 25 to 100 MHz for the ICRF (Ion Cyclotron Range of Frequencies) heating system. The outputs from the measurement instruments are measured simultaneously by custom-built software using a laptop-type personal computer connected to a local area network. In this way, the electromagnetic field strength could be monitored from a control room located about 200 m from the fusion device building. Examples of measurement data from the vicinity of a high-frequency generator and amplifier and the leakage static magnetic field from a fusion test device are presented. (author)

  13. Direct conversion of fusion energy into the electric one in the 'Dragon' magnetic confinement system

    International Nuclear Information System (INIS)

    Glagolev, V.M.; Timofeev, A.V.

    1993-01-01

    It is shown that recuperator in which the thermal energy of particles is transformed into electric oue under drift in crossed fields is naturally coupled with dragontype magnetic confinement system, so the recuperation process can be initiated in the dragon magnetic field. A number of questions occuring under analysis of recuperator-dragon system is considered, including the dynamics of particle transfer to the recuperator, the share of particles entering the recuperator, the effect of rotational transform and the recuperation efficiency

  14. Theory of plasma confinement in non-axisymmetric magnetic fields.

    Science.gov (United States)

    Helander, Per

    2014-08-01

    The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.

  15. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    Science.gov (United States)

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  16. Simulation and experimental study on transportation of dual-beam guided by confining magnetic-field

    International Nuclear Information System (INIS)

    Bai Xianchen; Zhang Jiande; Yang Jianhua

    2008-01-01

    Using external longitudinal magnetic-field to guide dual-beam out of the dual-shift tubes is a key step for the practicality of synchronizing dual-beam produced by a single accelerator. On the basis of the simulation of the confining magnetic-field for the solid dual-beam, the experiment of magnetic-field guiding annular dual-beam was presented. When the diode voltage was 380 kV, dual-beam currents of 5.10 kA and 4.92 kA were obtained. The experimental results indicate that the designed magnetic-field system could confine the annular dual-beam effectively, and the critical confining magnetic-field is about 0.5 T. (authors)

  17. Combined confinement system applied to tokamaks

    International Nuclear Information System (INIS)

    Ohkawa, Tihiro

    1986-01-01

    From particle orbit point of view, a tokamak is a combined confinement configuration where a closed toroidal volume is surrounded by an open confinement system like a magnetic mirror. By eliminating a cold halo plasma, the energy loss from the plasma becomes convective. The H-mode in diverted tokamaks is an example. Because of the favorable scaling of the energy confinement time with temperature, the performance of the tokamak may be significantly improved by taking advantage of this effect. (author)

  18. SOLAR MULTIPLE ERUPTIONS FROM A CONFINED MAGNETIC STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongwoo; Chae, Jongchul [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Liu, Chang; Jing, Ju [Space Weather Research Laboratory, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2016-09-20

    How eruption can recur from a confined magnetic structure is discussed based on the Solar Dynamics Observatory observations of the NOAA active region 11444, which produced three eruptions within 1.5 hr on 2012 March 27. The active region (AR) had the positive-polarity magnetic fields in the center surrounded by the negative-polarity fields around. Since such a distribution of magnetic polarity tends to form a dome-like magnetic fan structure confined over the AR, the multiple eruptions were puzzling. Our investigation reveals that this event exhibits several properties distinct from other eruptions associated with magnetic fan structures: (i) a long filament encircling the AR was present before the eruptions; (ii) expansion of the open–closed boundary (OCB) of the field lines after each eruption was suggestive of the growing fan-dome structure, and (iii) the ribbons inside the closed magnetic polarity inversion line evolved in response to the expanding OCB. It thus appears that in spite of multiple eruptions the fan-dome structure remained undamaged, and the closing back field lines after each eruption rather reinforced the fan-dome structure. We argue that the multiple eruptions could occur in this AR in spite of its confined magnetic structure because the filament encircling the AR was adequate for slipping through the magnetic separatrix to minimize the damage to its overlying fan-dome structure. The result of this study provides a new insight into the productivity of eruptions from a confined magnetic structure.

  19. SOLAR MULTIPLE ERUPTIONS FROM A CONFINED MAGNETIC STRUCTURE

    International Nuclear Information System (INIS)

    Lee, Jeongwoo; Chae, Jongchul; Liu, Chang; Jing, Ju

    2016-01-01

    How eruption can recur from a confined magnetic structure is discussed based on the Solar Dynamics Observatory observations of the NOAA active region 11444, which produced three eruptions within 1.5 hr on 2012 March 27. The active region (AR) had the positive-polarity magnetic fields in the center surrounded by the negative-polarity fields around. Since such a distribution of magnetic polarity tends to form a dome-like magnetic fan structure confined over the AR, the multiple eruptions were puzzling. Our investigation reveals that this event exhibits several properties distinct from other eruptions associated with magnetic fan structures: (i) a long filament encircling the AR was present before the eruptions; (ii) expansion of the open–closed boundary (OCB) of the field lines after each eruption was suggestive of the growing fan-dome structure, and (iii) the ribbons inside the closed magnetic polarity inversion line evolved in response to the expanding OCB. It thus appears that in spite of multiple eruptions the fan-dome structure remained undamaged, and the closing back field lines after each eruption rather reinforced the fan-dome structure. We argue that the multiple eruptions could occur in this AR in spite of its confined magnetic structure because the filament encircling the AR was adequate for slipping through the magnetic separatrix to minimize the damage to its overlying fan-dome structure. The result of this study provides a new insight into the productivity of eruptions from a confined magnetic structure.

  20. Plasma confinement in a magnetic field of the internal ring current

    International Nuclear Information System (INIS)

    Shafranov, Vitaly; Popovich, Paul; Samitov, Marat

    2000-01-01

    Plasma confinement in compact region surrounding an internal ring current is considered. As the limiting case of large aspect ratio system the cylindrical plasma is considered initially. Analysis of the cylindrical tubular plasma equilibrium and stability against the most dangerous flute (m=0) and kink (m=1) modes revealed the possibility of the MHD stable plasma confined by magnetic field of the internal rod current, with rather peaked plasma pressure and maximal local beta β(γ)=0.4. In case of the toroidal internal ring system an additional external magnetic field creates the boundary separatrix witch limits the plasma volume. The dependence of the plasma pressure profiles, marginally stable with respect to the flute modes, from the shape of the external plasma boundary (separatrix) in such kind closed toroidal systems is investigated. The internal ring system with circular poloidal magnetic mirror, where the ring supports could be placed, is proposed. (author)

  1. Axisymmetric magnetic mirrors for plasma confinement. Recent development and perspectives

    International Nuclear Information System (INIS)

    Kruglyakov, E.P.; Dimov, G.I.; Ivanov, A.A.; Koidan, V.S.

    2003-01-01

    Mirrors are the only one class of fusion systems which completely differs topologically from the systems with closed magnetic configurations. At present, three modern types of different mirror machines for plasma confinement and heating exist in Novosibirsk (Gas Dynamic Trap,- GDT, Multi-mirror,- GOL-3, and Tandem Mirror,- AMBAL-M). All these systems are attractive from the engineering point of view because of very simple axisymmetric geometry of magnetic configurations. In the present paper, the status of different confinement systems is presented. The experiments most crucial for the mirror concept are described such as a demonstration of different principles of suppression of electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of plasma confinement in axisymmetric geometry of magnetic field (GDT, AMBAL-M), an effective heating of a dense plasma by relativistic electron beam (GOL-3), observation of radial diffusion of quiescent plasma with practically classical diffusion coefficient (AMBAL-M), etc. It should be mentioned that on the basis of the GDT it is possible to make a very important intermediate step. Using 'warm' plasma and oblique injection of fast atoms of D and T one can create a powerful 14 MeV neutron source with a moderate irradiation area (about 1 square meter) and, accordingly, with low tritium consumption. The main plasma parameters achieved are presented and the future perspectives of different mirror machines are outlined. (author)

  2. Proceedings of JSPS-CAS Core University Program seminar on production and steady state confinement of high performance plasmas in magnetic confinement systems

    International Nuclear Information System (INIS)

    Wan Baonian; Toi, Kazuo

    2005-09-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and steady-state confinement of high performance plasmas in magnetic confinement systems' was held from 27 July to 29 July 2005 in Institute of Plasma Physics, the Chinese Academy of Sciences, Hefei, China. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. About 50 persons including 20 Japanese attendees attended this seminar. Long time sustainment of high confinement and high beta plasmas is crucial for realization of an advanced nuclear fusion reactor. This seminar was motivated to summarize the results of CUP obtained in four years activities of CUP, and to extract crucial issues to be resolved near future, which must drive near and mid- term collaborations in the framework of CUP. The 32 of presented papers are indexed individually. (J.P.N.)

  3. Magnetic confinement of laser produced LiH plasma in LITE

    International Nuclear Information System (INIS)

    Ard, W.B.; Stufflebeam, J.H.; Tomlinson, R.G.

    1976-01-01

    In the LITE experiment, a hot, dense plasma produced by laser heating of an approximately 100 μ dia LiH particle is used to fill a minimum-B baseball coil mirror magnetic containment field. The confined laser produced plasma subsequently serves as the target for an energetic neutral hydrogen beam in experiments to investigate the target plasma buildup approach for creating and sustaining an equilibrium, steady state mirror fusion plasma. In the experiments, the LiH particle is positioned in vacuum at the laser beam focus by a feedback particle suspension system and heated by two sided irradiation with the focused dual beam, 50 j, 7 nsec output of a Q-switched Nd-glass laser. The energy density of the laser produced plasma is initially much greater than that of the surrounding magnetic field and the plasma expands, converting its internal energy into expansion kinetic energy and displacement of the magnetic field. As the energy density falls below that of the magnetic field, the expansion is stopped and the plasma becomes trapped, making the transition to a low beta, mirror confined plasma. This report is concerned with the properties and behavior of the plasma in the confinement stage

  4. Magnetic well for plasma confinement

    International Nuclear Information System (INIS)

    Valfells, A.; Chiu, Y.C.

    1977-01-01

    A multipole magnetic well for plasma confinement includes a plurality of current-carrying coils placed on planes corresponding to the facets of a regular polyhedron that can be symmetrically circumscribed about a sphere. The direction of current in the coils is such as to minimize the flux density at the center of the polyhedron, thereby providing a confinement well with three-dimensional symmetry having an increasing flux density in all directions from the center. 16 claims, 18 figures

  5. Electromagnetic Calculation and Plasma Leakage Rate Analysis of the Magnetically Confined Plasma Rocket

    International Nuclear Information System (INIS)

    Ni Zhipeng; Wang Liangbin; Li Jiangang; Chen Zhiyou; Zhang Yong; Wang Futang

    2008-01-01

    An electromagnetic calculation and the parameters of the magnet system of the magnetically confined plasma rocket were established. By using ANSYS code, it was found that the leakage rate depends on the current intensity of the magnet and the change of the magnet position.

  6. Magnetic confinement in plasmas in nuclear devices

    International Nuclear Information System (INIS)

    Tull, C.G.

    1979-01-01

    The main emphasis of the magnetic fusion energy research program today lies in the development of two types of confinement schemes: magnetic mirrors and tokamaks. Experimental programs for both of these confinement schemes have shown steady progress toward achieving fusion power breakeven. The scaling of the current machines to a reactor operating regime and newly developed methods for plasma heating will very likely produce power breakeven within the next decade. Predictions are that the efficiency in a fusion power plant should exceed 32%

  7. Effects of a vertical magnetic field on particle confinement in a magnetized plasma torus.

    Science.gov (United States)

    Müller, S H; Fasoli, A; Labit, B; McGrath, M; Podestà, M; Poli, F M

    2004-10-15

    The particle confinement in a magnetized plasma torus with superimposed vertical magnetic field is modeled and measured experimentally. The formation of an equilibrium characterized by a parallel plasma current canceling out the grad B and curvature drifts is described using a two-fluid model. Characteristic response frequencies and relaxation rates are calculated. The predictions for the particle confinement time as a function of the vertical magnetic field are verified in a systematic experimental study on the TORPEX device, including the existence of an optimal vertical field and the anticorrelation between confinement time and density.

  8. Modular tokamak magnetic system

    International Nuclear Information System (INIS)

    Yang, T.F.

    1988-01-01

    This patent describes a tokamak reactor including a vacuum vessel, toroidal confining magnetic field coils disposed concentrically around the minor radius of the vacuum vessel, and poloidal confining magnetic field coils, an ohmic heating coil system comprising at least one magnetic coil disposed concentrically around a toroidal field coil, wherein the magnetic coil is wound around the toroidal field coil such that the ohmic heating coil enclosed the toroidal field coil

  9. Classical impurity ion confinement in a toroidal magnetized fusion plasma.

    Science.gov (United States)

    Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S

    2012-03-23

    High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.

  10. System and method of operating toroidal magnetic confinement devices

    Science.gov (United States)

    Chance, Morrell S.; Jardin, Stephen C.; Stix, Thomas H.; Grimm, deceased, Ray C.; Manickam, Janardhan; Okabayashi, Michio

    1987-01-01

    For toroidal magnetic confinement devices the second region of stability against ballooning modes can be accessed with controlled operation. Under certain modes of operation, the first and second stability regions may be joined together. Accessing the second region of stability is accomplished by forming a bean-shaped plasma and increasing the indentation until a critical value of indentation is reached. A pusher coil, located at the inner-major-radius side of the device, is engaged to form a bean-shaped poloidal cross-section in the plasma.

  11. Enhanced Plasma Confinement in a Magnetic Well by Whistler Waves

    DEFF Research Database (Denmark)

    Balmashnov, A. A.; Juul Rasmussen, Jens

    1981-01-01

    The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well.......The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well....

  12. Equilibrium and stability MHD in the magnetic confinement for thermonuclear fusion

    International Nuclear Information System (INIS)

    Otero, Dino; Proto, A.N.

    1979-08-01

    A survey of the mayor systems for magnetic confinement of plasmas is made. The basic concepts are reviewed briefly. The equilibrium and stability conditions for open systems (mirrors, magnetic wells, Z and Theta-pinches), for toroidal axisymmetric (Z-Pinch, Screw-Pinch, Belt-Pinch and Tokamak) and toroidal non-axisymmetric systems (High-β Stellarator and low-β Theta-Pinch) are discussed. A comparative analysis between the diferent systems is made. In the conclusions, the author's opinions about future developments in the field are included. (author) [es

  13. Confinement of ultra-cold neutron in a multiple cusp magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Nobumichi; Inoue, Nobuyuki; Nihei, Hitoshi; Kinosita, Ken-ichi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-08-01

    A new confinement system of ultra-cold neutrons is proposed. The neutron bottle is made of a rectangular vacuum chamber with the size of 40 cm x 40 cm x 30 cm covered with arrays of bar type permanent magnets. The operation of bottle requires neither cooling system nor high electric power supply, and thereby the bottle is appropriate to use in the room which is located in controlled area. The maximum kinetic energy of neutrons confined is 20 neV. Experimental scheme to test the performance of the bottle is described. (author)

  14. Particle-confinement criteria for axisymmetric field-reversed magnetic configurations

    International Nuclear Information System (INIS)

    Hsiao, M.Y.; Miley, G.H.

    1984-01-01

    Based on two constants of motion, H and Psub(theta), where H is the total energy of a particle and Psub(theta) is its canonical angular momentum, particle confinement criteria are derived which impose constraints on H and Psub(theta). With no electric field at the ends of field-reversed magnetic configurations, confinement criteria for closed-field and absolute confinements are obtained explicitly, including both lower and upper bounds of Psub(theta)/q, where q is the charge of the species considered, for a class of Hill's vortex field-reversed magnetic configurations. The commonly used criterion for the Hamiltonian, H 0 Psub(theta), where ω 0 is identical to qB 0 /mc, is deduced from a more general form as a special case. In this special case, it is found necessary to impose a new criterion, -B 0 R 2 sub(w)/2c 0 is the vacuum field, which reduces the confinement region in (H,Psub(theta)) space. With the presence of electric fields at the ends of field-reversed magnetic configurations, confinement criteria are obtained for two interesting cases. In addition to lower and upper bounds of H, both lower and upper bounds of Psub(theta)/q are found. For axially confined particles, the lower bound of Psub(theta)/q reduces the confinement region in (H,Psub(theta)) space and represents a new criterion. These results can be applied to calculations for field-reversed mirrors and field-reversed theta pinches. (author)

  15. Roles of electric field on toroidal magnetic confinement

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Sanuki, Heiji; Fukuyama, Atsushi.

    1992-11-01

    Theoretical research on the influence of the electric field on the toroidal magnetic confinement is surveyed. The static electric field is first described. Physics pictures on the generation of the radial electric field and the influence on the confinement are shown. Neoclassical effects as well as the nonclassical processes are discussed. Emphasis is made on the connection with the improved confinement. Convective cell, i.e. the nonuniform potential on the magnetic surface is also discussed. The roles of the fluctuating electric field are then reviewed. The progress in the recent theories on the anomalous transport is addressed. Through these surveys, the impact of the experiments using the heavy ion beam probes on the modern plasma physics is illustrated. (author) 66 refs

  16. Runaway electrons and magnetic island confinement

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2016-01-01

    The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativistic energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. The physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.

  17. Runaway electrons and magnetic island confinement

    Energy Technology Data Exchange (ETDEWEB)

    Boozer, Allen H., E-mail: ahb17@columbia.edu [Columbia University, New York, New York 10027 (United States)

    2016-08-15

    The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativistic energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. The physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.

  18. Magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)

    2005-07-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n {approx}1.5X10{sup 20}m{sup -3}). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO{sub 2} interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 {mu}s) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong

  19. Magnetic confinement

    International Nuclear Information System (INIS)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo

    2005-01-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n ∼1.5X10 20 m -3 ). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO 2 interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 μs) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong energetic particle

  20. Experimental studies of plasma confinement in toroidal systems

    International Nuclear Information System (INIS)

    Bodin, H.A.B.; Keen, B.E.

    1977-01-01

    In this article the closed-line magnetic field approach to the plasma isolation and confinement problem in toroidal systems is reviewed. The theoretical aspects of closed-line magnetic field systems, indicating that topologically such systems are toroidal, are surveyed under the headings; topology of closed-line systems, equilibrium in different configurations and classification of toroidal devices, MHD stability, non-ideal effects in MHD stability, microscopic stability, and plasma energy loss. A section covering the experimental results of plasma confinement in toroidal geometry considers Stellerators, Tokamaks, toroidal pinch -the reversed-field pinch, screw pinches and high-β Tokamaks, Levitrons and multipoles (internal-ring devices), and miscellaneous toroidal containment devices. Recent achievements and the present position are discussed with reference to the status of Tokamak research, low-β stellerator research and high-β research. It is concluded from the continuing progress made in this research that the criteria for the magnetic containment of plasmas can be met. Further, it is concluded that the construction of a successful and economic fusion reactor is within the scope of advancing science and technology. 250 references. (U.K.)

  1. Experimental studies of plasma confinement in toroidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, H A.B.; Keen, B E [UKAEA, Abingdon. Culham Lab.

    1977-12-01

    In this article the closed-line magnetic field approach to the plasma isolation and confinement problem in toroidal systems is reviewed. The theoretical aspects of closed-line magnetic field systems, indicating that topologically such systems are toroidal, are surveyed under the headings; topology of closed-line systems, equilibrium in different configurations and classification of toroidal devices, MHD stability, non-ideal effects in MHD stability, microscopic stability, and plasma energy loss. A section covering the experimental results of plasma confinement in toroidal geometry considers Stellerators, Tokamaks, toroidal pinch -the reversed-field pinch, screw pinches and high-..beta.. Tokamaks, Levitrons and multipoles (internal-ring devices), and miscellaneous toroidal containment devices. Recent achievements and the present position are discussed with reference to the status of Tokamak research, low-..beta.. stellerator research and high-..beta.. research. It is concluded from the continuing progress made in this research that the criteria for the magnetic containment of plasmas can be met. Further, it is concluded that the construction of a successful and economic fusion reactor is within the scope of advancing science and technology. 250 references.

  2. Ion beam neutralization using three-dimensional electron confinement by surface modification of magnetic poles

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaescu, Dan, E-mail: Dan.Nicolaescu@kt2.ecs.kyoto-u.ac.jp [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Sakai, Shigeki [Nissin Ion Equipment Co., Ltd., 575 Kuze Tonoshiro-cho, Minami-ku, Kyoto 601-8205 (Japan); Gotoh, Yasuhito [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ishikawa, Junzo [Department of Electronics and Information Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan)

    2011-07-21

    Advanced implantation systems used for semiconductor processing require transportation of quasi-parallel ion beams, which have low energy ({sup 11}B{sup +}, {sup 31}P{sup +},{sup 75}As{sup +}, E{sub ion}=200-1000 eV). Divergence of the ion beam due to space charge effects can be compensated through injection of electrons into different regions of the ion beam. The present study shows that electron confinement takes place in regions of strong magnetic field such as collimator magnet provided with surface mirror magnetic fields and that divergence of the ion beam passing through such regions is largely reduced. Modeling results have been obtained using Opera3D/Tosca/Scala. Electrons may be provided by collision between ions and residual gas molecules or may be injected by field emitter arrays. The size of surface magnets is chosen such as not to disturb ion beam collimation, making the approach compatible with ion beam systems. Surface magnets may form thin magnetic layers with thickness h=0.5 mm or less. Conditions for spacing of surface magnet arrays for optimal electron confinement are outlined.

  3. Alternative lines with magnetic plasma confinement

    International Nuclear Information System (INIS)

    Wobig, H.

    1981-01-01

    Plasma confinement with the aid of a magnetic field is the most common and also the most frequently investigated principle on the way to controlled nuclear fusion. Apart from the Tokamak principle, which is the most advanced principle as far as fusion-relevant plasma parameters are concerned, also other approaches are being investigated, e.g. the mirror device, the bumpy tons, and the stellarator. In principle, all three concepts permit 'stationary' plasma confinement in a stationary fusion reactor. Compared with the pulsed Tokamak reactor, this is a considerable advantage. (orig./GG) [de

  4. Confining gauge theories and holographic entanglement entropy with a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dudal, David [KU Leuven Campus Kortrijk - KULAK, Department of Physics,Etienne Sabbelaan 51 bus 7800, Kortrijk, 8500 (Belgium); Ghent University, Department of Physics and Astronomy,Krijgslaan 281-S9, Gent, 9000 (Belgium); Mahapatra, Subhash [KU Leuven Campus Kortrijk - KULAK, Department of Physics,Etienne Sabbelaan 51 bus 7800, Kortrijk, 8500 (Belgium)

    2017-04-06

    We consider the soft wall model for a heuristic holographical modelling of a confining gauge theory and discuss how the introduction of a (constant) magnetic field influences the (de)confinement phase structure. We use the entanglement entropy as a diagnostic tool in terms of the length of an entangling strip geometry. Due to the anisotropy introduced by the magnetic field, we find that the results depend on the orientation of the strip relative to the field. This allows to identify a richer, anisotropic, interplay between confinement and a magnetic field than possibly can be extracted from a more standard order parameter as, for example, the Polyakov loop expectation value.

  5. Spin waves propagation and confinement in magnetic microstructures

    International Nuclear Information System (INIS)

    Bailleul, Matthieu

    2002-01-01

    In this thesis, ferromagnetic thin film elements have been studied on a small scale (μm) and at high frequencies (GHz). For those studies, a microwave spectrometer based on the use of micro-antennae has been developed. It had been applied to two different systems. In a first time, we have launched and detected spin waves in continuous films. This allowed us to describe both the transduction process and the relaxation law for long wavelength spin waves. In a second time, we have studied micrometer-wide stripe for which the magnetic ground state is inhomogeneous. The obtained microwave response has been interpreted in terms of micro-magnetic phase transitions and in terms of spin waves confinement. (author)

  6. On the scaling of magnetic plasma confinement under classical conditions

    International Nuclear Information System (INIS)

    Lehnert, B.

    1979-04-01

    Present magnetic confinement schemes based on tokamaks and similar devices are characterized by relatively large losses and low beta values. As a consequence, thermonuclear conditions can only be reached in such devices at large linear dimensions or by means of very strong magnetic fields, in combination with large heating powers. This does not rule out the possibility of realizing the same conditions on a smaller scale, i.e. by finding alternative schemes which provide classical and stable confinement of a pure plasma in a closed magnetic bottle. (author)

  7. Progress toward the creation of magnetically confined pair plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Haruhiko [Max-Planck-Institut fuer Plasmaphysik (Germany); The University of Tokyo (Japan); Hergenhahn, Uwe; Paschkowski, Norbert; Stanja, Juliane; Stenson, Eve V. [Max-Planck-Institut fuer Plasmaphysik (Germany); Niemann, Holger; Sunn Pedersen, Thomas [Max-Planck-Institut fuer Plasmaphysik (Germany); Ernst-Moritz-Arndt-Universitaet Greifswald (Germany); Stoneking, Matthew R. [Max-Planck-Institut fuer Plasmaphysik (Germany); Lawrence University (United States); Hugenschmidt, Christoph; Piochacz, Christian; Vohburger, Sebastian [Technische Universitaet Muenchen (Germany); Schweikhard, Lutz [Ernst-Moritz-Arndt-Universitaet Greifswald (Germany); Danielson, James R.; Surko, Clifford M. [University of California, San Diego (United States)

    2016-07-01

    The PAX (Positron Accumulation eXperiment) and APEX (A Positron Electron eXperiment) projects aim to experimentally study the unique wave propagation and stability properties of pair plasmas. We plan to accumulate a large number of positrons in a multicell-type trap system (PAX) and to confine them with electrons in APEX, a levitated dipole or stellarator configuration, operated at the NEPOMUC facility, the world's most intense positron source. In this contribution, we report on recent results from PAX and APEX. We have conducted electron experiments with a 2.3 T Penning-Malmberg trap; confinement for more than 1 hour and observation of a collective mode were demonstrated. At NEPOMUC, we have characterized the positron beam for a wide energy range. In a prototype permanent-magnet dipole trap, efficient (38%) injection of the remoderated 5 eV positron beam was realized using E x B drifts. Based on these results, design studies on the confinement of pair-plasmas in a levitated dipole trap are ongoing.

  8. West European magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Hogan, J.T.; Porkolab, M.; Thomassen, K.I.

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995

  9. Advanced real-time control systems for magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Goncalves, B.; Sousa, J.; Fernandes, H.; Rodrigues, A.P.; Carvalho, B.B.; Neto, A.; Varandas, C.A.F.

    2008-01-01

    Real-time control of magnetically confined plasmas is a critical issue for the safety, operation and high performance scientific exploitation of the experimental devices on regimes beyond the current operation frontiers. The number of parameters and the data volumes used for the plasma properties identification scale normally not only with the machine size but also with the technology improvements, leading to a great complexity of the plant system. A strong computational power and fast communication infrastructure are needed to handle in real-time this information, allowing just-in-time decisions to achieve the fusion critical plasma conditions. These advanced control systems require a tiered infrastructure including the hardware layer, the signal-processing middleware, real-time timing and data transport, the real-time operating system tools and drivers, the framework for code development, simulation, deployment and experiment parameterization and the human real-time plasma condition monitoring and management. This approach is being implemented at CFN by offering a vertical solution for the forthcoming challenges, including ITER, the first experimental fusion reactor. A given set of tools and systems are described on this paper, namely: (i) an ATCA based hardware multiple-input-multiple-output (MIMO) platform, PCI and PCIe acquisition and control modules; (ii) FPGA and DSP parallelized signal processing algorithms; (iii) a signal data and event distribution system over a 2.5/10Gb optical network with sub-microsecond latencies; (iv) RTAI and Linux drivers; and (v) the FireSignal, FusionTalk, SDAS FireCalc application tools. (author)

  10. Magnetic properties of confined holographic QCD

    Science.gov (United States)

    Bergman, Oren; Lifschytz, Gilad; Lippert, Matthew

    2013-12-01

    We investigate the Sakai-Sugimoto model at nonzero baryon chemical potential in a background magnetic field in the confined phase where chiral symmetry is broken. The D8-brane Chern-Simons term holographically encodes the axial anomaly and generates a gradient of the η' meson, which carries a non-vanishing baryon charge. Above a critical value of the chemical potential, there is a second-order phase transition to a mixed phase which includes also ordinary baryonic matter. However, at fixed baryon charge density, the matter is purely η'-gradient above a critical magnetic field.

  11. Role of magnetic flux perturbations in confinement bifurcations in TUMAN-3M

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andreiko, M.V.; Askinazi, L.G.

    2003-01-01

    Poloidal magnetic flux variations in the small tokamak TUMAN-3M allowed observation of transitions between different confinement modes. The possibility of switching on/off the ohmic H-mode by edge poloidal magnetic flux perturbations has been found. The flux perturbations were created by fast current ramp up/down or by magnetic compression/decompression produced by fast increase/decrease in the toroidal magnetic field. It was found that positive flux perturbations (current ramp-up and magnetic compression scenarios) are useful means of H-mode triggering. If a negative flux perturbation (current ramp-down or magnetic decompression) is applied, the H-mode terminated. Various mechanisms involved in the L-H and H-L transition physics in the flux perturbation experiments were analyzed. The experimental observations of the transitions between confinement modes might be understood in terms of the model of a sheared radial electric field generation, which takes into account the electron Ware drift in a perturbed longitudinal electric field. Another scenario of improved confinement was observed in the initial phase of an ohmic discharge, when change in the poloidal flux is associated with current ramp-up. Variation of the rates of current ramp-up and working gas puffing in the beginning of a discharge resulted in a fast increase in the electron temperature near the axis. The increase correlates with low m/n MHD mode growth. The observed core electron confinement improvement is apparently connected with the rate of current ramp. Deviation from the optimal rate results in disappearance of the improvement. The role of magnetic shear profile and rational magnetic surfaces in the core electron confinement improvement in the initial phase of ohmic discharges is discussed. (author)

  12. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    Energy Technology Data Exchange (ETDEWEB)

    Hedditch, John, E-mail: john.hedditch@sydney.edu.au; Bowden-Reid, Richard, E-mail: rbow3948@physics.usyd.edu.au; Khachan, Joe, E-mail: joe.khachan@sydney.edu.au [School of Physics, The University of Sydney, Sydney, New South Whales 2006 (Australia)

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  13. Dust confinement and dust acoustic waves in a magnetized plasma

    Science.gov (United States)

    Piel, A.

    2005-10-01

    Systematic laboratory experiments on dust acoustic waves require the confinement of dust particles. Here we report on new experiments in a magnetized plasma region in front of an additional positively biased disk electrode in a background plasma which is generated in argon at 27MHz between a disk and grid electrode. The plasma diffuses through the grid along the magnetic field. The three-dimensional dust distribution is measured with a horizontal sheet of laser light and a CCD camera, which are mounted on a vertical translation stage. Depending on magnetic field and discharge current, cigar or donut-shaped dust clouds are generated, which tend to rotate about the magnetic field direction. Measurements with emissive probes show that the axial confinement of dust particles with diameters between 0.7-2 μm is achieved by a balance of ion-drag force and electric field force. Dust levitation and radial confinement is due to a strong radial electric field. Dust acoustic waves are destabilized by the ion flow or can be stimulated by a periodic bias on the disk electrode. The observed wave dispersion is compared with fluid and kinetic models of the dust acoustic wave.

  14. Large vacuum system for experiences in magnetic confined plasmas

    International Nuclear Information System (INIS)

    Honda, R.Y.; Kayama, M.E.; Boeckelmann, H.K.; Aihara, S.

    1984-01-01

    It is presented the operation method of a theta-pinch system capable of generating and confine plasmas with high densities and temperatures. Some characteristics of Tupa theta-pinch, which is operating at UNICAMP, emphasizing the cleaning mode of the vacuum chamber, are also presented. (M.C.K.) [pt

  15. Benefits and drawbacks of low magnetic shears on the confinement in magnetic fusion toroidal devices

    Science.gov (United States)

    Firpo, Marie-Christine; Constantinescu, Dana

    2012-10-01

    The issue of confinement in magnetic fusion devices is addressed within a purely magnetic approach. As it is well known, the magnetic field being divergence-free, the equations of its field lines can be cast in Hamiltonian form. Using then some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is demonstrated. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and turbulence reduction. However, when low-shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be much lower than the ones obtained for strong shear profiles. The approach can be applied to assess the robustness versus magnetic perturbations of general almost-integrable magnetic steady states, including non-axisymmetric ones such as the important single helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  16. Metastability in Magnetically Confined Plasmas

    International Nuclear Information System (INIS)

    Fong, B.H.; Cowley, S.C.; Hurricane, O.A.

    1999-01-01

    The parameter space of magnetically confined plasmas near marginal instability for interchange-type modes is divided into three regions according to qualitative stability properties. Region I is linearly stable though nonlinearly unstable to large excitations. Region II is linearly unstable, nonlinearly stable to small excitations, and nonlinearly unstable to large excitations. Region III is linearly and nonlinearly unstable. For an equilibrium evolving through marginal stability, region III and therefore explosive instability are inevitably encountered. copyright 1999 The American Physical Society

  17. Advancements of microwave diagnostics in magnetically confined plasmas

    NARCIS (Netherlands)

    Mase, A.; Kogi, Y.; Ito, N.; Yokota, Y.; Akaki, K.; Kawahata, K.; Nagayama, Y.; Tokuzawa, T.; Yamaguchi, S.; Hojo, H.; Oyama, N.; N C Luhmann Jr.,; Park, H. K.; Donne, A. J. H.

    2009-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Recent advances in electronic devices and components together with computer technology have enabled the

  18. A planar conducting microstructure to guide and confine magnetic beads to a sensing zone

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2011-08-01

    A novel planar conducting microstructure is proposed to transport and confine magnetic micro/nano beads to a sensing zone. Manipulation and concentration of magnetic beads are achieved by employing square-shaped conducting micro-loops, with a few hundred nano-meters in thickness, arranged in a unique fashion. These microstructures are designed to produce high magnetic field gradients which are directly proportional to the force applied to manipulate the magnetic beads. Furthermore, the size of the microstructures allows greater maneuverability and control of magnetic beads than what could be achieved by permanent magnets. The aim of the microstructures is to guide magnetic beads from a large area and confine them to a smaller area where for example quantification would take place. Experiments were performed with different concentrations of 2 μm diameter magnetic beads. Experimental results showed that magnetic beads could be successfully guided and confined to the sensing zone. © 2011 Elsevier B.V. All rights reserved.

  19. Reactor potential of the Magnetically Insulated Inertial Confinement Fusion (MICF) system

    International Nuclear Information System (INIS)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning Magnetically Insulated Inertial Confinement Fusion (MICF) system. A reference reactor consisting of an initial plasma with density of 10 21 cm -3 , temperature of keV, a radius of 0.25 cm is shown to ignite and yield an energy multiplication factor ''Q'' of about 60 when the plasma is allowed to burn for 2 microseconds. When the burntime is extended to 9 microseconds for the same initial conditions our calculations show that Q almost doubles just before the final radius becomes equal to the inner radius of the shell. These preliminary results seem to indicate that MICF does indeed have the potential for a reactor although some relevant physics issues need to be addressed first. 42 refs., 6 figs

  20. On the axially symmetric equilibrium of a magnetically confined plasma

    International Nuclear Information System (INIS)

    Lehnert, B.

    1975-01-01

    The axially symmetric equilibrium of a magnetically confined plasma is reconsidered, with the special purpose of studying high-beta schemes with a purely poloidal magnetic field. A number of special solutions of the pressure and magnetic flux functions are shown to exist, the obtained results may form starting-points in a further analysis of physically relevant configurations. (Auth.)

  1. Electrostatic ion confinement in a magnetic mirror field

    International Nuclear Information System (INIS)

    Nishida, Y.; Kawamata, S.; Ishii, K.

    1976-08-01

    The electrostatic ion stoppering at the mirror point is demonstrated experimentally in a magnetic mirror field. The ion losses from the mirror throat are decreased to about 15% of the initial losses in a rather high plasma density (10 10 0 13 cm -3 ). It is discussed as a confinement mechanism of ions that particles are reflected back adiabatically at the throat of the magnetic mirror field supplemented by DC electric field. (auth.)

  2. The role of alpha particles in magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Lisak, M.; Wilhelmsson, H.

    1986-01-01

    Recent progress in the confinement of hot plasmas in magnetic fusion experiments throughout the world has intensified interest and research in the physics of D-T burning plasmas especially in the wide range of unresolved theoretical as well as experimental questions associated with the role of alpha particles in such devices. In order to review the state-of-the- art in this field, and to identify new issues and problems for further research, the Symposium on the Role of Alpha Particles in Magnetically Confined Fusion Plasmas was held from 24 to 26 June 1986 at Aspenaesgaarden near Goeteborg, Sweden. About 25 leading experts from nine countries attended the Symposium and gave invited talks. The major part of the programme was devoted to alpha-particle effects in tokamaks but some aspects of open systems were also discussed. The possibilities of obtaining ignition in JET and TFTR as well as physics issues for the compact ignition experiments were considered in particular. A special session was devoted to the diagnostics of alpha particles and other fusion products. In this report are summarised some of the highlights of the symposium. (authors)

  3. Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility

    International Nuclear Information System (INIS)

    Tanaka, M.; Uda, T.; Wang, J.; Fujiwara, O.

    2012-01-01

    For safety management at a magnetic confinement fusion-test facility, protection from not only ionising radiation, but also non-ionising radiation such as the leakage of static magnetic and electromagnetic fields is an important issue. Accordingly, the use of a commercially available personal RF monitor for multipoint area monitoring is proposed. In this study, the performance of both fast- and slow-type personal RF monitors was investigated by using a transverse electromagnetic cell system. The range of target frequencies was between 10 and 300 MHz, corresponding to the ion cyclotron range of frequency in a fusion device. The personal RF monitor was found to have good linearity, frequency dependence and isotropic response. However, the time constant for the electric field sensor of the slow-type monitor was much longer than that for the fast-type monitor. Considering the time-varying field at the facility, it is found that the fast-type monitor is suitable for multipoint monitoring at magnetic confinement fusion test facilities. (authors)

  4. Progress in application of hybrid numerical simulation methods to magnetic confinement systems. Annual report

    International Nuclear Information System (INIS)

    Morse, R.L.

    1979-06-01

    Hybrid codes have been developed to simulate high density, high β confined plasmas. The major areas of application have been end plugging and heating of linear confinement systems. In particular, significant progress has been made in understanding the role of line and recombination radiation in recent experiments which showed large increases in energy confinement times from the use of solid end plugs. Another accomplishment is the conception and theoretical analysis of an efficient, low frequency, axial heating method which we believe could significantly increase the attractiveness of linear systems as reactors

  5. The magnet system of the Tokamak T-15 upgrade

    International Nuclear Information System (INIS)

    Khvostenko, P.P.; Azizov, E.A.; Alfimov, D.E.; Belyakov, V.A.; Bondarchuk, E.N.; Chudnovsky, A.N.; Dokuka, V.N.; Kavin, A.A.; Khayrutdinov, R.R.; Khokhlov, M.V.; Kitaev, B.A.; Krasnov, S.V.; Maximova, I.I.; Labusov, A.N.; Lukash, V.E.; Mineev, A.B.; Muratov, V.P.

    2015-01-01

    Highlights: • T-15U project is the initial technical base for creating fusion neutron sources. • Magnet system of T-15U will confine the hot plasma in the divertor configuration. • Toroidal magnetic field at the plasma axis is 2 T. • T-15U should begin operations in 2016. - Abstract: Presently, the Tokamak T-15 is being upgraded. The magnet system of the Tokamak T-15 upgrade will obtain and confine the hot plasma in the divertor configuration. Plasma parameters are a major radius of 1.48 m, a minor radius of 0.67 m, an elongation of 1.7–1.9 and a triangularity of 0.3–0.4. The magnet system includes the toroidal winding and the poloidal magnet system. The poloidal magnet system generates the divertor with single null and double null magnetic configurations. The power supply system provides the necessary current scenarios in the windings of the magnet system. All elements of the magnet system will be manufactured by the end of 2015. The Tokamak T-15 upgrade should begin operations in 2016.

  6. The magnet system of the Tokamak T-15 upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, P.P., E-mail: ppkhvost@rambler.ru [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Azizov, E.A.; Alfimov, D.E. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Belyakov, V.A.; Bondarchuk, E.N. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); Chudnovsky, A.N.; Dokuka, V.N. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Kavin, A.A. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); Khayrutdinov, R.R. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Khokhlov, M.V.; Kitaev, B.A.; Krasnov, S.V.; Maximova, I.I.; Labusov, A.N. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); Lukash, V.E. [National Research Centre ‘Kurchatov Institute’, Institute of Tokamak Physics, Kurchatov sq. 1, 123182 Moscow (Russian Federation); Mineev, A.B.; Muratov, V.P. [Joint Stock Company “D.V. Efremov Institute of Electrophysical Apparatus”, Metallostroy, 196641 St. Petersburg (Russian Federation); and others

    2015-10-15

    Highlights: • T-15U project is the initial technical base for creating fusion neutron sources. • Magnet system of T-15U will confine the hot plasma in the divertor configuration. • Toroidal magnetic field at the plasma axis is 2 T. • T-15U should begin operations in 2016. - Abstract: Presently, the Tokamak T-15 is being upgraded. The magnet system of the Tokamak T-15 upgrade will obtain and confine the hot plasma in the divertor configuration. Plasma parameters are a major radius of 1.48 m, a minor radius of 0.67 m, an elongation of 1.7–1.9 and a triangularity of 0.3–0.4. The magnet system includes the toroidal winding and the poloidal magnet system. The poloidal magnet system generates the divertor with single null and double null magnetic configurations. The power supply system provides the necessary current scenarios in the windings of the magnet system. All elements of the magnet system will be manufactured by the end of 2015. The Tokamak T-15 upgrade should begin operations in 2016.

  7. Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices

    International Nuclear Information System (INIS)

    Burrell, K.H.

    1996-11-01

    One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization

  8. Impact of magnetic shear modification on confinement and turbulent fluctuations in LHD plasmas

    International Nuclear Information System (INIS)

    Fukuda, T.; Tamura, N.; Ida, K.

    2008-10-01

    For the comprehensive understandings of transport phenomena in toroidal confinement systems and improvement of the predictive capability of burning plasmas in ITER, the impact of magnetic shear has been extensively investigated in the Large Helical Device (LHD) for comparison with tokamaks. Consequently, it was heuristically documented that the pronounced effect of magnetic shear, which has been hitherto considered to be ubiquitous and strongly impacts the core transport in the tokamak experiments, is not quite obvious. Namely, the kinetic profiles respond little under extensive modification of the magnetic shear in the core, although the local transport analysis indicates the sign of improvement in confinement transiently when the magnetic shear is reduced. It was thereby concluded that the magnetic shear in the core strongly influences the MHD activity, but it may only be one of the necessary conditions for the transport reduction, and some other crucial knobs, such as the density gradient or T e /T i ratio, would have to be simultaneously controlled. The low wavenumber turbulence seems to be suppressed under the weak shear, and the turbulent fluctuation intensity behaves in a consistent manner as a whole, following the conventional paradigm accumulated in the negative shear experiments in tokamaks. However, vigorous dynamics of turbulent fluctuations have occasionally been observed under the magnetic shear modification, which respond in much faster time scale than the characteristic time scale for either the magnetic diffusion or the profile evolution. (author)

  9. Classical trajectory Monte Carlo simulations of particle confinement using dual levitated coils

    Directory of Open Access Journals (Sweden)

    R. A. Lane

    2014-07-01

    Full Text Available The particle confinement properties of plasma confinement systems that employ dual levitated magnetic coils are investigated using classical trajectory Monte Carlo simulations. Two model systems are examined. In one, two identical current-carrying loops are coaxial and separated axially. In the second, two concentric and coplanar loops have different radii and carry equal currents. In both systems, a magnetic null circle is present between the current loops. Simulations are carried out for seven current loop separations for each system and at numerous values of magnetic field strength. Particle confinement is investigated at three locations between the loops at different distances from the magnetic null circle. Each simulated particle that did not escape the system exhibited one of four modes of confinement. Reduced results are given for both systems as the lowest magnetic field strength that exhibits complete confinement of all simulated particles for a particular loop separation.

  10. Improved confinement and related physics study in Compact Helical System

    International Nuclear Information System (INIS)

    Okamura, S.; Akiyama, T.; Fujisawa, A.; Ida, K.; Iguchi, H.; Isobe, M.; Minami, T.; Nagaoka, K.; Nakamura, K.; Nishimura, S.; Matsuoka, K.; Matsushita, H.; Nakano, H.; Ohshima, S.; Shimizu, A.; Suzuki, C.; Takahashi, C.; Toi, K.; Yoshimura, Y.; Yoshinuma, M.; Oishi, T.; Kado, S.

    2005-01-01

    Recent experimental results in Compact Helical System (CHS) will be presented focusing on the improved confinement and physics study of electric field and turbulence in helical plasmas. Among various improved confinement modes found in CHS experiments, the edge transport barrier (ETB) formation is an important topic, which we have been studying intensively for these years. The discharges of CHS with ETB have characteristics very similar to H-mode discharges in tokamaks and W7-AS stellarator. We observe a sharp drop of Hα emission signal, increase of plasma density together with an increase of local density gradient at the plasma edge, so we call our ETB discharges as H-mode. The power threshold for the transition is clearly observed which is again similar to standard H-mode discharges, i.e., the threshold increases with the density and magnetic field. Unique feature of CHS H-mode is the dependence on the magnetic field configuration. We examined H-mode discharges for the configurations with magnetic axis shift and the magnetic quadrupole control. The transition appeared for a wide range of configurations with the rotational transform at the plasma edge (iota(a)) below and above unity. There is a general dependence of power threshold: higher power needed for the inward shifted configuration (with lower value of iota(a)) and lower power for outward shift. The absolute power threshold of CHS H-mode for the outward shifted configuration is very close to the tokamak H-mode with a divertor configuration. Other topics of confinement studies in CHS will be also presented. We have a unique diagnostic system of two heavy ion beam probes. It is unique in stellarator research and also for all toroidal confinement research including many tokamaks in the world. As well as fruitful result of electric field measurements, that is one of key elements for stellarator physics, this diagnostic measures turbulence in the plasma, which gives essential information for the study of

  11. Magnetic field generation by circularly polarized laser light and inertial plasma confinement in a miniature 'Magnetic Bottle' induced by circularly polarized laser light

    International Nuclear Information System (INIS)

    Kolka, E.

    1993-07-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested in this work. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss. In this configuration the circularly polarized laser light is used to get confinement of a plasma contained in a good conductor vessel. The poloidal magnetic field induced by the circularly polarized laser and the efficiency of laser absorption by the plasma are calculated in this work. The confinement in this scheme is supported by the magnetic forces and the Lawson criterion for a DT plasma might be achieved for number density n=5*10 21 cm -3 and confinement time τ= 20 nsec. The laser and the plasma parameters required to get an energetic gain are calculated. (authors)

  12. Comments on open-ended magnetic systems for fusion

    International Nuclear Information System (INIS)

    Post, R.F.

    1990-01-01

    Differentiating characteristics of magnetic confinement systems having externally generated magnetic fields that are ''open'' are listed and discussed in the light of their several potential advantages for fusion power systems. It is pointed out that at this stage of fusion research ''high-Q'' (as deduced from long energy confinement times) is not necessarily the most relevant criterion by which to judge the potential of alternate fusion approaches for the economic generation of fusion power. An example is given of a hypothetical open-geometry fusion power system where low-Q operation is essential to meeting one of its main objectives (low neutron power flux)

  13. Fusion plasma theory grant: Task 1, Magnetic confinement fusion plasma theory

    International Nuclear Information System (INIS)

    Callen, J.D.

    1989-07-01

    The research performed under this grant during the current year has concentrated on key tokamak plasma confinement and heating theory issues: further development of neoclassical MHD; development of a new fluid/kinetic hybrid model; energy confinement degradation due to macroscopic phenomena in tokamaks; and some other topics (magnetics analysis, coherent structures, presheath structure). Progress and publications in these areas are briefly summarized in this report. 20 refs

  14. Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement

    International Nuclear Information System (INIS)

    Furth, H.P.

    1985-05-01

    The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved

  15. Anomalous behavior of a confined two-dimensional electron within an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, R; Riera R; Marin, J. L. [Universidad de Sonora, Hermosillo, Sonora (Mexico); Leon, H. [Instituto Superior Jose Antonio Echeverria, La Habana (Cuba)

    2001-10-01

    An anomalous diamagnetic behavior of a confined two-dimensional electron within an external magnetic field (perpendicular to the confining plane) is discussed in this letter. Although this finding is consistent with the pioneering work of Robnik, it has not been previously reported. When this effect occurs, the ratio between the typical length of spatial and magnetic confinement is an integer number. This property leads also to a quantization of the magnetic flux across the confining circle. The possible consequences of the peculiar behavior of the electron within such a structure are discussed. [Spanish] Se estudia una posible anomalia en las propiedades diamagneticas de un electron bidimensional confinado en presencia de un campo magnetico externo perpendicular al plano de confinamiento. Aunque los resultados obtenidos son consistentes con el trabajo pionero de Robnik, no han sido reportados anteriormente, a pesar de sus posibles aplicaciones, ya que cuando ocurre, el cociente entre la longitud magnetica y el tamano de la region de confinamiento es un numero entero, propiedad que establece una cuantizacion del flujo magnetico que atraviesa el circulo confinante. Se discuten las posibles consecuencias del comportamiento peculiar del electron en este tipo de estructura.

  16. Magnetic force micropiston: An integrated force/microfluidic device for the application of compressive forces in a confined environment

    Science.gov (United States)

    Fisher, J. K.; Kleckner, N.

    2014-02-01

    Cellular biology takes place inside confining spaces. For example, bacteria grow in crevices, red blood cells squeeze through capillaries, and chromosomes replicate inside the nucleus. Frequently, the extent of this confinement varies. Bacteria grow longer and divide, red blood cells move through smaller and smaller passages as they travel to capillary beds, and replication doubles the amount of DNA inside the nucleus. This increase in confinement, either due to a decrease in the available space or an increase in the amount of material contained in a constant volume, has the potential to squeeze and stress objects in ways that may lead to changes in morphology, dynamics, and ultimately biological function. Here, we describe a device developed to probe the interplay between confinement and the mechanical properties of cells and cellular structures, and forces that arise due to changes in a structure's state. In this system, the manipulation of a magnetic bead exerts a compressive force upon a target contained in the confining space of a microfluidic channel. This magnetic force microfluidic piston is constructed in such a way that we can measure (a) target compliance and changes in compliance as induced by changes in buffer, extract, or biochemical composition, (b) target expansion force generated by changes in the same parameters, and (c) the effects of compression stress on a target's structure and function. Beyond these issues, our system has general applicability to a variety of questions requiring the combination of mechanical forces, confinement, and optical imaging.

  17. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon.

    Science.gov (United States)

    Huang, Liang Feng; Zhang, Guo Ren; Zheng, Xiao Hong; Gong, Peng Lai; Cao, Teng Fei; Zeng, Zhi

    2013-02-06

    The electronic structure of zigzag graphene nanoribbon (ZGNR) is studied using density functional theory. The mechanisms underlying the quantum-confinement effect and edge magnetism in ZGNR are systematically investigated by combining the simulated results and some useful analytic models. The quantum-confinement effect and the inter-edge superexchange interaction can be tuned by varying the ribbon width, and the spin polarization and direct exchange splitting of the edge states can be tuned by varying their electronic occupations. The two edges of ZGNR can be equally or unequally tuned by charge doping or Li adsorption, respectively. The Li adatom has a site-selective adsorption on ZGNR, and it is a nondestructive and memorable approach to effectively modify the edge states in ZGNR. These systematic understanding and effective tuning of ZGNR electronics presented in this work are helpful for further investigation and application of ZGNR and other magnetic graphene systems.

  18. Fueling of magnetic-confinement devices

    International Nuclear Information System (INIS)

    Milora, S.L.

    1981-01-01

    A general overview of the fueling of magnetic confinement devices is presented, with particular emphasis on recent experimental results. Various practical fueling mechanisms are considered, such as cold gas inlet (or plasma edge fueling), neutral beam injection, and injection of high speed cryogenic hydrogen pellets. The central role played by charged particle transport and recycle of plasma particles from material surfaces in contact with the plasma is discussed briefly. The various aspects of hydrogen pellet injection are treated in detail, including applications to the production of high purity startup plasmas for stellarators and other devices, refueling of tokamak plasmas, pellet ablation theory, and the technology and performance characteristics of low and high speed pellet injectors

  19. A new class of magnetic confinement device in the shape of a knot

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, S. R., E-mail: shudson@pppl.gov; Startsev, E.; Feibush, E. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2014-01-15

    We describe a new class of magnetic confinement device, with the magnetic axis in the shape of a knot. We call such devices “knotatrons.” An example is given that has a large volume filled with magnetic surfaces, with significant rotational-transform, and with the magnetic field produced entirely by external circular coils.

  20. Injection, compression and confinement of electrons in a magnetic mirror

    International Nuclear Information System (INIS)

    Fisher, A.

    1975-01-01

    A Helmholtz coil configuration has been constructed where the magnetic field can be increased to about 10 kGauss in 20 μsec. Electrons are injected from a hot tantalum filament between two plates across which a potential of about 5 keV is applied. The electric field E is perpendicular to the magnetic field B so that the direction of the E x B drift is radial--into the magnetic mirror. About 10 14 electrons were injected and about 10 13 electrons were trapped. The initial electron energy was about 5 keV and after compression 500 keV x-rays were observed. The confinement time is very sensitive to vacuum. Confinement times of milliseconds and good compression were observed at vacuum of 5.10 -5 torr or less. Above 5.10 -5 torr there was no trapping or compression. After a compressed ring of electrons was formed, it was released by a pulse applied to one of the Helmholtz coils that reduced the field. Ejection of the electron ring was observed by x-ray measurements

  1. Effects of magnetic geometry, fluctuations, and electric fields on confinement in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Isler, R.C.; Aceto, S.; Baylor, L.R.; Bigelow, T.S.; Bell, G.L.; Bell, J.D.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dory, R.A.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Gandy, R.F.; Glowienka, J.C.; Hanson, G.R.; Harris, J.H.; Hiroe, S.; Horton, L.D.; Jernigan, T.C.; Ji, H.; Langley, R.A.; Lee, D.K.; Likin, K.M.; Lyon, J.F.; Ma, C.H.; Morimoto, S.; Murakami, M.; Okada, H.; Qualls, A.L.; Rasmussen, D.A.; Rome, J.A.; Sato, M.; Schwelberger, J.G.; Shats, M.G.; Simpkins, J.E.; Thomas, C.E.; Uckan, T.; Wade, M.R.; Wilgen, J.B.; Wing, W.R.; Yamada, H.; Zielinski, J.J.

    1992-01-01

    Recent experiments in the Advanced Toroidal Facility (ATF) [Fusion Technol. 10, 179 (1986)] have been directed toward investigations of the basic physics mechanisms that control confinement in this device. Measurements of the density fluctuations throughout the plasma volume have provided indications for the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications are supported by results of dynamic configuration scans of the magnetic fields during which the magnetic well volume, shear, and fraction of confined trapped particles are changed continuously. The influence of magnetic islands on the global confinement has been studied by deliberately applying error fields which strongly perturb the nested flux-surface geometry, and the effects of electric fields have been investigated by means of biased limiter experiments

  2. Confinement in W7-AS and the role of radial electric field and magnetic shear

    International Nuclear Information System (INIS)

    Brakel, R.; Anton, M.; Baldzuhn, J.; Burhenn, R.; Erckmann, V.; Fiedler, S.; Geiger, J.; Hartfuss, H.J.; Heinrich, O.; Hirsch, M.; Jaenicke, R.; Kick, M.; Kuehner, G.; Maassberg, H.; Stroth, U.; Wagner, F.; Weller, A.

    1997-01-01

    Improved neoclassical electron confinement in the centre of low-density ECRH plasmas has been observed in the presence of a strong positive radial electric field, which resembles the electron root solution of the neoclassical ambipolarity condition but is obviously driven by the loss of ECRH-generated suprathermal electrons. At higher densities and with NBI heating, a high confinement regime substantially above the ISS95-scaling and different from the H-mode is established with a strongly sheared negative radial electric field at the boundary. The application of plasma-current induced magnetic shear reveals that confinement in W7-AS is essentially determined by perturbations at high-order rational surfaces. For optimum confinement, these resonances have either to be avoided in the boundary region or magnetic shear must be sufficiently large. Independent of its sign, magnetic shear can reduce electron energy transport which is enhanced in the presence of such resonances to the neoclassical level. (author)

  3. Control of ITBs in Magnetically Confined Burning Plasmas

    Science.gov (United States)

    Panta, S. R.; Newman, D. E.; Terry, P. W.; Sanchez, R.

    2017-10-01

    In the magnetically confined burning plasma devices (in this case Tokamaks), internal transport barriers (ITBs) are those regimes in which the turbulence is suppressed by the E X B velocity shear, reducing the turbulent transport. This often occurs at a critical gradient in the profiles. The change in the transport then modifies the density and temperature profiles feeding back on the system. These transport barriers have to be controlled both to form them for improved confinement and remove them to both prevent global instabilities and to remove the ash and unnecessary impurities in the device. In this work we focus on pellet injection and modulated RF heating as a way to trigger and control the ITBs. These have an immediate consequence on density and temperature and hence pressure profiles acting as a control knob. For example, depending upon pellet size and its radial position of injection, it either helps to form or strengthen the barrier or to get rid of ITBs in the different transport channels of the burning plasmas. This transport model is then used to investigate the control and dynamics of the transport barriers in burning plasmas using pellets and RF addition to the NBI power and alpha power.

  4. Expansion of dense particle clouds in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Lengyel, L.L.

    1988-01-01

    A single-cell Lagrangian model has been developed for calculating the ionization and expansion dynamics of high-density clouds in magnetic fields or in magnetically confined plasmas. The model was tested by means of data from magnetospheric barium cloud experiments and approximately reproduced such global characteristics as expansion rate, stopping radius, stopping time, and magnetic cavity lifetime. Detailed calculations were performed for hydrogen clouds associated with the injection of frozen hydrogen pellets into tokamak plasmas. The dynamic characteristics of the cloud expansion, such as ionization radius, stopping time, lifetime, oscillation frequencies, and amplitudes, etc., are computed as functions of the magnetic field strength, the background plasma temperature, and the cloud mass. The results are analyzed and compared with experimental observations

  5. Magnetic confinement fusion plasma theory, Task 1

    International Nuclear Information System (INIS)

    Callen, J.D.

    1991-07-01

    The research performed under this grant during the current year has concentrated on a few key tokamak plasma confinement and heating theory issues: extensive development of a new Chapman-Enskog-like fluid/kinetic hybrid approach to deriving rigorously valid fluid moment equations; applications (neoclassical viscous force, instabilities in the banana-plateau collisionality regime, nonlinear gyroviscous force, unified plasma microinstability equations and their implications, semi-collisional presheath modeling, etc.) of this new formalism; interactions of fluctuating bootstrap-current-driven magnetic islands; determination of net transport processes and equations for a tokamak; and some other topics (extracting more information from heat-pulse-propagation data, modeling of BES fluctuation data, exploring sawtooth effects on energy confinement in DIII-D, divertor X-point modeling). Recent progress and publications in these areas, and in the management of the local NERSC node and fusion theory DECstation 5000 at UW-Madison are summarized briefly in this report

  6. Compact magnetic fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1983-12-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak/sup 1/ and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics.

  7. Compact magnetic fusion systems

    International Nuclear Information System (INIS)

    Linford, R.K.

    1983-01-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak 1 and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics

  8. Relation between parameters of self-sustaining magnetically confined electron cloud and external conditions

    International Nuclear Information System (INIS)

    Yu Qingchang

    1991-01-01

    On the basis of the fluid theory of the axisymmetrical self-sustaining magnetically confined electron clouds an approximate analytical method is developed. By means of this method the relations between the parameters of this type of electron cloud and external conditions are studied. The parameters include electron density, electron temperature, drift angular frequency of electrons, radius of the electron cloud and electric potential at the centre of the electron cloud. They depend on the voltage, magnetic induction, pressure, electromagnetic field distribution in the confinement device and parameters of electron-atom collisions

  9. Plasma heating and confinement in toroidal magnetic bottle by means of microwave slowing-down structure

    International Nuclear Information System (INIS)

    Datlov, J.; Klima, R.; Kopecky, V.; Musil, J.; Zacek, F.

    1977-01-01

    An invention is described concerning high-frequency plasma heating and confinement in toroidal magnetic vessels. Microwave energy is applied to the plasma via one or more slowing-down structures exciting low phase velocity waves whose energy may be efficiently absorbed by plasma electrons. The wave momentum transfer results in a toroidal electrical current whose magnetic field together with an external magnetic field ensure plasma confinement. The low-frequency modulation of microwave energy may also be used for heating the ion plasma component. (J.U.)

  10. Magnetorotational and Parker instabilities in magnetized plasma Dean flow as applied to centrifugally confined plasmas

    International Nuclear Information System (INIS)

    Huang Yimin; Hassam, A.B.

    2003-01-01

    The ideal magnetohydrodynamics stability of a Dean flow plasma supported against centrifugal forces by an axial magnetic field is studied. Only axisymmetric perturbations are allowed for simplicity. Two distinct but coupled destabilization mechanisms are present: flow shear (magnetorotational instability) and magnetic buoyancy (Parker instability). It is shown that the flow shear alone is likely insufficient to destabilize the plasma, but the magnetic buoyancy instability could occur. For a high Mach number (M S ), high Alfven Mach number (M A ) system with M S M A > or approx. πR/a (R/a is the aspect ratio), the Parker instability is unstable for long axial wavelength modes. Implications for the centrifugal confinement approach to magnetic fusion are also discussed

  11. Trends and developments in magnetic confinement fusion reactor concepts

    International Nuclear Information System (INIS)

    Baker, C.C.; Carlson, G.A.; Krakowski, R.A.

    1981-01-01

    An overview is presented of recent design trends and developments in reactor concepts for magnetic confinement fusion. The paper emphasizes the engineering and technology considerations of commercial fusion reactor concepts. Emphasis is placed on reactors that operate on the deuterium/tritium/lithium fuel cycle. Recent developments in tokamak, mirror, and Elmo Bumpy Torus reactor concepts are described, as well as a survey of recent developments on a wide variety of alternate magnetic fusion reactor concepts. The paper emphasizes recent developments of these concepts within the last two to three years

  12. Compact magnetic confinement fusion: Spherical torus and compact torus

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2016-05-01

    Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.

  13. Alternate fusion -- continuous inertial confinement

    International Nuclear Information System (INIS)

    Barnes, D.C.; Turner, L.; Nebel, R.A.

    1993-01-01

    The authors argue that alternate approaches to large tokamak confinement are appropriate for fusion applications if: (1) They do not require magnetic confinement of a much higher quality than demonstrated in tokamaks; (2) Their physics basis may be succinctly stated and experimentally tested; (3) They offer near-term applications to important technical problems; and (4) Their cost to proof-of-principle is low enough to be consistent with current budget realities. An approach satisfying all of these criteria is presented. Fusion systems based on continuous inertial confinement are described. In these approaches, the inertia of a nonequilibrium plasma is used to produce local concentrations of plasma density in space and/or time. One implementation (inertial electrostatic confinement) which has been investigated both experimentally and theoretically uses a system of electrostatic grids to accelerate plasma ions toward a spherical focus. This system produced a steady 2 x 10 10 D-T neutrons/second with an overall fusion gain of 10 -5 in a sphere of about 9 cm radius. Recent theoretical developments show how to raise the fusion gain to order unity or greater by replacing the internal grids by a combination of applied magnetic and electrostatic fields. In these approaches, useful thermonuclear conditions may be produced in a system as small as a few mm radius. Confinement is that of a nonneutralized plasma. A pure electron plasma with a radial beam velocity distribution is absolutely confined by an applied Penning trap field. Spherical convergence of the confined electrons forms a deep virtual cathode near r = 0, in which thermonuclear ions are absolutely confined at useful densities. The authors have examined the equilibrium, stability, and classical relaxation of such systems, and obtained many positive physics results. Equilibria exist for both pure electron and partially charge-neutralized systems with arbitrarily high core-plasma densities

  14. Magnetohydrodynamic stability of a plasma confined in a convex poloidal magnetic field

    International Nuclear Information System (INIS)

    Hellsten, T.

    1976-11-01

    A plasma confined in a purely poloidal magnetic field with a finite pressure at the boundary and surrounded by a conducting wall can be stabilized against magnetohydrodynamic perturbations even in absence of shear and minimum-average-B properties. To achieve large pressure gradients the average magnetic field has to decrease rapidly outwards. The theory is applied to a 'Spherator' configuration with a purely poloidal magnetic field. (Auth.)

  15. Evolution of particle clouds around ablating pellets in magnetically confined hot plasmas

    International Nuclear Information System (INIS)

    Lengyel, L.L.

    1991-08-01

    Cryogenic hydrogen isotope pellets are being currently used for introducing fuel particles into the palsma interior in magnetic confinement fusion experiments. The spatial and time evolution of the initially low-temperature high-density particle clouds forming around such pellets are considered here, with particular attention being given to such physical processes as heating of the cloud by the energy fluxes carried by incident plasma particles, gasdynamic expansion with j vectorxB vector - produced deceleration in the transverse direction, finite-rate ionization and recombination processes, and magnetic field convection and diffusion. While the dynamic processes associated with the ionization and radial confinement processes are characterized by the relatively short Alfven time scale (μs range), the subsequent phase of axial expansion is associated with a notably larger hadrodynamic time scale defined by the heat input and gasdynamic expansion rates (ms range). Data stemming from experimental measurements in toroidal confinement machines are compared with results of model calculations. Some similarities with space plasmas are briefly discussed. (orig.)

  16. The physics of magnetic confinement configurations : Tokamak theory and experiment

    International Nuclear Information System (INIS)

    Robinson, D.C.

    1982-01-01

    Several aspects, both theoretical and experimental, in plasma physics are discussed. The problem of magnetic confinement in Tokamak devices is treated. A discussion on the history of the development and on the future problems to be solved in Tokamaks is made. (L.C.) [pt

  17. Progress toward magnetic confinement of a positron-electron plasma: nearly 100% positron injection efficiency into a dipole trap

    Science.gov (United States)

    Stoneking, Matthew

    2017-10-01

    The hydrogen atom provides the simplest system and in some cases the most precise one for comparing theory and experiment in atomics physics. The field of plasma physics lacks an experimental counterpart, but there are efforts underway to produce a magnetically confined positron-electron plasma that promises to represent the simplest plasma system. The mass symmetry of positron-electron plasma makes it particularly tractable from a theoretical standpoint and many theory papers have been published predicting modified wave and stability properties in these systems. Our approach is to utilize techniques from the non-neutral plasma community to trap and accumulate electrons and positrons prior to mixing in a magnetic trap with good confinement properties. Ultimately we aim to use a levitated superconducting dipole configuration fueled by positrons from a reactor-based positron source and buffer-gas trap. To date we have conducted experiments to characterize and optimize the positron beam and test strategies for injecting positrons into the field of a supported permanent magnet by use of ExB drifts and tailored static and dynamic potentials applied to boundary electrodes and to the magnet itself. Nearly 100% injection efficiency has been achieved under certain conditions and some fraction of the injected positrons are confined for as long as 400 ms. These results are promising for the next step in the project which is to use an inductively energized high Tc superconducting coil to produce the dipole field, initially in a supported configuration, but ultimately levitated using feedback stabilization. Work performed with the support of the German Research Foundation (DFG), JSPS KAKENHI, NIFS Collaboration Research Program, and the UCSD Foundation.

  18. Magnetic confinement fusion energy research

    International Nuclear Information System (INIS)

    Grad, H.

    1977-03-01

    Controlled Thermonuclear Fusion offers probably the only relatively clean energy solution with completely inexhaustible fuel and unlimited power capacity. The scientific and technological problem consists in magnetically confining a hot, dense plasma (pressure several to hundreds of atmospheres, temperature 10 8 degrees or more) for an appreciable fraction of a second. The scientific and mathematical problem is to describe the behavior, such as confinement, stability, flow, compression, heating, energy transfer and diffusion of this medium in the presence of electromagnetic fields just as we now can for air or steam. Some of the extant theory consists of applications, routine or ingenious, of known mathematical structures in the theory of differential equations and in traditional analysis. Other applications of known mathematical structures offer surprises and new insights: the coordination between sub-supersonic and elliptic-hyperbolic is fractured; supersonic propagation goes upstream; etc. Other completely nonstandard mathematical structures with significant theory are being rapidly uncovered (and somewhat less rapidly understood) such as non-elliptic variational equations and new types of weak solutions. It is these new mathematical structures which one should expect to supply the foundation for the next generation's pure mathematics, if history is a guide. Despite the substantial effort over a period of some twenty years, there are still basic and important scintific and mathematical discoveries to be made, lying just beneath the surface

  19. Magnetic stochasticity in magnetically confined fusion plasmas chaos of field lines and charged particle dynamics

    CERN Document Server

    Abdullaev, Sadrilla

    2014-01-01

    This is the first book to systematically consider the modern aspects of chaotic dynamics of magnetic field lines and charged particles in magnetically confined fusion plasmas.  The analytical models describing the generic features of equilibrium magnetic fields and  magnetic perturbations in modern fusion devices are presented. It describes mathematical and physical aspects of onset of chaos, generic properties of the structure of stochastic magnetic fields, transport of charged particles in tokamaks induced by magnetic perturbations, new aspects of particle turbulent transport, etc. The presentation is based on the classical and new unique mathematical tools of Hamiltonian dynamics, like the action--angle formalism, classical perturbation theory, canonical transformations of variables, symplectic mappings, the Poincaré-Melnikov integrals. They are extensively used for analytical studies as well as for numerical simulations of magnetic field lines, particle dynamics, their spatial structures and  statisti...

  20. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2014-12-01

    Full Text Available Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding the size of the quantum dots: resulting into a blue (red shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower magneto-optical transitions survive even in the extreme instances. However, the intra

  1. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Manvir S. [Department of Physics and Astronomy, Rice University, P.O. Box 1892, Houston, TX 77251 (United States)

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  2. Kinetic transport in a magnetically confined and flux-constrained fusion plasma

    International Nuclear Information System (INIS)

    Darmet, G.

    2007-11-01

    This work deals with the kinetic transport in a fusion plasma magnetically confined and flux-constrained. The author proposes a new interpretation of the dynamics of zonal flows. The model that has been studied is a gyrokinetic model reduced to the transport of trapped ions. The inter-change stability that is generated allows the study of the kinetic transport of trapped ions. This model has a threshold instability and can be simulated over a few tens confining time for either thermal bath constraint or flux constraint. For thermal baths constraint, the simulation shows a metastable state where zonal flows are prevailing while turbulence is non-existent. In the case of a flux-constraint, zonal flows appear and relax by exchanging energy with system's kinetic energy and turbulence energy. The competition between zonal flows and turbulence can be then simulated by a predator-prey model. 2 regimes can be featured out: an improved confining regime where zonal flows dominate transport and a turbulent regime where zonal flows and turbulent transport are of the same magnitude order. We show that flux as well as the Reynolds tensor play an important role in the dynamics of the zonal flows and that the gyrokinetic description is relevant for all plasma regions. (A.C.)

  3. Optimal laser heating of plasmas confined in strong solenoidal magnetic fields

    International Nuclear Information System (INIS)

    Vitela, J.; Akcasu, A.Z.

    1987-01-01

    Optimal Control Theory is used to analyze the laser-heating of plasmas confined in strong solenoidal magnetic fields. Heating strategies that minimize a linear combination of heating time and total energy spent by the laser system are found. A numerical example is used to illustrate the theory. Results of this example show that by an appropriate modulation of the laser intensity, significant savings in the laser energy are possible with only slight increases in the heating time. However, results may depend strongly on the initial state of the plasma and on the final ion temperature. (orig.)

  4. Proposal of experimental study on particle diffusion in superficially confined plasma by magnetic multi-dipole fields

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Ferreira, J.G.; Sandonato, G.M.; Damasio, W.C.; Montes, A.; Ludwig, G.O.

    1989-08-01

    The anomalous particle diffusion in regions near to magnetic confinement walls due to ion acoustic turbulence in superficially confined quiescent plasma is studied comparing the measured diffusion coefficient with the Bohm diffusion coefficient. The plasma diagnostics are carried out using Langmuir probe, electron and ion energy analyzers, emission probes for measuring plasma potential and, mass spectrometer, the purchase of data acquisition system composed by storage unit and signal register interfaced with IBM PC computer is proposed for simultaneous measurements with several diagnostics in the quiescent plasma machine of LAP-INPE operating in pulsed regime. (M.C.K.)

  5. Formation of compact toroidal configurations for magnetic confinement of high temperature plasmas

    International Nuclear Information System (INIS)

    Fuentes, N.O.; Rodrigo, A.B.

    1986-01-01

    The formation stage of inverted magnetic field toroidal configurations (FRC) for hot plasmas confinement using a low energy linear theta pinch is studied. The diagnostic techniques used are based on optical spectroscopy, ultrarapid photography, magnetic probes and excluded flux compensated bonds. The generalities of the present research program, the used diagnostic techniques and the results obtained are discussed. (Author)

  6. Topics on the formation and stability of magnetic-mirror-confined plasmas

    International Nuclear Information System (INIS)

    Wickham, M.G.

    1981-01-01

    We have investigated two methods of creating a magnetic mirror confined plasma. The first method used the direct cross-field injection of a potassium plasma into a magnetic mirror, and the second applied ion-cyclotron-resonance heating (ICRH) to a barium Q-machine plasma in a simple axisymmetric mirror field. The latter procedure provided a plasma which was particularly suitable for the investigation of MHD stability and kinetic microstability

  7. Confinement of a self-stabilized tokamak under average magnetic well conditions

    International Nuclear Information System (INIS)

    Demchenko, V.V.; Fu, G.Y.; Van Dam, J.W.

    1987-05-01

    It is well known that the average favorable magnetic curvature of a tokamak is stabilizing with respect to pressure-driven magnetohydrodynamic instabilities at low beta and that self-stabilization occurs at finite beta in the so-called second stability regime. Here we self-consistently investigate how these two effects, viz., the mean magnetic well and the self-stabilization, influence the energy confinement time in a tokamak, using the ballooning mode transport model

  8. Production and study of high-beta plasma confined by a superconducting dipole magnet

    International Nuclear Information System (INIS)

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-01-01

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large

  9. Numerical modeling of the transition from low to high confinement in magnetically confined plasma

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Nielsen, Anders Henry; Madsen, Jens

    2016-01-01

    The transition dynamics from low (L) to high (H) mode confinement in magnetically confined plasmas is investigated using a four-field drift fluid model—HESEL (Hot Edge-Sol-Electrostatic). The model includes profile evolution and is solved in a 2D domain at the out-board mid-plane of a tokamak......–I–H transition with an intermediate I-phase displaying limit-cycle oscillations (LCO). The model recovers the power threshold for the L–H transition, the scaling of the threshold with the density and with the loss-rate in the SOL, indicating a decrease in power threshold when switching from single to double null...... including both open and closed field lines. The results reveal different types of L–H-like transitions in response to ramping up the input power by increasing the ion temperature in the edge region. For a fast rising input power we obtain an abrupt transition, and for a slow rising power we obtain a L...

  10. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Bers, A.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma

  11. Design of magnetic analysis system for magnetic proton recoil spectrometer

    International Nuclear Information System (INIS)

    Qi Jianmin; Jiang Shilun; Zhou Lin; Peng Taiping

    2010-01-01

    Magnetic proton recoil (MPR) spectrometer is a novel diagnostic instrument with high performance for measurements of the neutron spectra from inertial confinement fusion (ICF) experiments and high power fusion devices. The design of the magnetic analysis system, which is a key part of the compact MPR-type spectrometer, has been completed through two-dimensional beam transport simulations and three-dimensional particle transport simulation. The analysis of the system's parameters and performances was performed, as well as system designs based on preferential principles of energy resolution, detection efficiency, and count rate, respectively. The results indicate that the magnetic analysis system can achieve a detection efficiency of 10 -5 ∼ 10 -4 level at the resolution range of 1.5% to 3.0% and fulfill the design goals of the compact MPR spectrometer. (authors)

  12. Consideration on nuclear fusion in plasma by the magnetic confinement as a heat engine

    International Nuclear Information System (INIS)

    Tsuji, Yoshio

    1990-01-01

    In comparing nuclear fusion in plasma by the magnetic confinement with nuclear fission and chemical reactions, the power density and the function of a heat engine are discussed using a new parameter G introduced as an eigenvalue of a reaction and the value of q introduced to estimate the thermal efficiency of a heat engine. It is shown that the fusion reactor by the magnetic confinement is very difficult to be a modern heat engine because of the lack of some indispensable functions as a modern heat engine. The value of G and q have the important role in the consideration. (author)

  13. Confinement of quasi-particles in a condensed matter system: an inelastic neutron scattering study

    International Nuclear Information System (INIS)

    Bera, A.K.

    2016-01-01

    The confinement of quasi particles, a well-known phenomenon in particle physics, can also be realized in a condensed matter system. In particle physics, baryons and mesons are produced by the confinement of quarks, where quarks are bound together by a strong interaction (gauge field) that grows stronger with increasing distance and, therefore, the quarks never exist as individual particles. The condensed matter analogue, confinement of magnetic quasiparticles (spinons) can be illustrated in quasi-one-dimensional spin-1/2 chains. We demonstrate experimentally such spinon confinement in the weakly coupled spin-1/2 XXZ antiferromagnetic chain compound SrCo_2V_2O_8 by single crystal inelastic neutron scattering. The compound SrCo_2V_2O_8 belongs to the general family SrM_2V_2O_8 (M = Ni, Co and Mn), having four-fold screw chains of edge sharing MO_6 octahedra along the crystallographic c axis. In the pure 1D magnetic state of SrCo_2V_2O_8 (above the 3D magnetic ordering temperature T_N =5 K) two spinons (excitations of individual chains) are created by a spin flip, and those spinons propagate independently by subsequent spin flips without any cost of energy. However, below the T_N, two spinons are bound together by weak interchain interactions since the separation between them frustrates the interchain interactions. The interchain interactions play the role of an attractive potential (equivalent to the gauge field), proportional to the distance between spinons, and result in confinement of spinons into bound pairs. (author)

  14. Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas

    International Nuclear Information System (INIS)

    Jardin, S.C.

    2010-01-01

    Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today's magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today's computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.

  15. Neoclassical theory of transport processes in toroidal magnetic confinement systems, with emphasis on non-axisymmetric configurations

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.

    1984-01-01

    The paper constitutes a review of the neoclassical theory of transport processes in the different types of toroidal magnetic configuration now being used to study the possibility of producing a controlled thermonuclear reaction. Owing to the abundance of the material that has accumulated in recent years and the large number of parameters involved in the problem, it has not been possible to present all the mathematical calculations in detail while confining the results to a few definitive expressions. The general approach to a solution of the problem and its key aspects have been discussed as fully as possible, and a number of definitive results are presented. In the review, a history of the subject and an account of its present status are given, the problem itself is formulated, the basic equations are discussed and analytical solution methods are described. Definitive expressions are given for cross-field particle and energy fluxes, the bootstrap current and conductivity, all of which are required to solve the particle and heat balance equations in magnetic confinement devices. The results are presented in a relatively simple form which is convenient for analysis of the experimental data and are accompanied by tables containing numerical values for the universal coefficients in the definitive expressions. The review is aimed at both theoreticians and experimenters working in high-temperature plasma physics and controlled thermonuclear fusion. (author)

  16. Confinement properties of tokamak plasmas with extended regions of low magnetic shear

    Science.gov (United States)

    Graves, J. P.; Cooper, W. A.; Kleiner, A.; Raghunathan, M.; Neto, E.; Nicolas, T.; Lanthaler, S.; Patten, H.; Pfefferle, D.; Brunetti, D.; Lutjens, H.

    2017-10-01

    Extended regions of low magnetic shear can be advantageous to tokamak plasmas. But the core and edge can be susceptible to non-resonant ideal fluctuations due to the weakened restoring force associated with magnetic field line bending. This contribution shows how saturated non-linear phenomenology, such as 1 / 1 Long Lived Modes, and Edge Harmonic Oscillations associated with QH-modes, can be modelled accurately using the non-linear stability code XTOR, the free boundary 3D equilibrium code VMEC, and non-linear analytic theory. That the equilibrium approach is valid is particularly valuable because it enables advanced particle confinement studies to be undertaken in the ordinarily difficult environment of strongly 3D magnetic fields. The VENUS-LEVIS code exploits the Fourier description of the VMEC equilibrium fields, such that full Lorenzian and guiding centre approximated differential operators in curvilinear angular coordinates can be evaluated analytically. Consequently, the confinement properties of minority ions such as energetic particles and high Z impurities can be calculated accurately over slowing down timescales in experimentally relevant 3D plasmas.

  17. Magnetic tunable confinement of the superconducting condensate in superconductor/ferromagnet hybrids

    International Nuclear Information System (INIS)

    Aladyshkin, A.Yu.; Gillijns, W.; Silhanek, A.V.; Moshchalkov, V.V.

    2008-01-01

    The effect of a nonuniform magnetic field induced by a ferromagnet on the magnetoresistance of thin-film superconductor/ferromagnet hybrid structures was investigated experimentally. Two different magnetic textures with out-of-plane magnetization were considered: a plain ferromagnetic film with bubble domains and a regular array of ferromagnetic dots. The stray fields of the structures are able to affect the spatial profile of the superconducting condensate, leading to a modification of the dependence of the critical temperature T c on an external magnetic field H. We showed how the standard linear T c (H) dependence with a single maximum at H=0 can be continuously transformed into so-called reentrant phase boundary with two T c peaks. We demonstrated that both domain-wall superconductivity and field-induced superconductivity are different manifestations of the magnetic confinement effect in various magnetic patterns

  18. Dependence of the confinement time of an electron plasma on the magnetic field in a quadrupole Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Dyavappa, B.M.; Datar, Durgesh; Prakash; Ananthamurthy, Sharath [Bangalore University, Department of Physics, Bangalore (India)

    2017-12-15

    A quadrupole Penning trap is used to confine electrons in weak magnetic fields. Perturbations due to space charge and imperfections in the trap geometry, as well as collisions with the background gas molecules, lead to loss of the electrons from the trap. We present in this work the results on measurements of the electron confinement time and its dependence on the magnetic field in a quadrupolar Penning trap. We describe a method to measure the confinement time of an electron cloud under weak magnetic fields (0.01 T - 0.1 T). This time is found to scale as τ ∝ B{sup 1.41} in variance with the theoretically expected confinement time that scales as τ ∝ B{sup 2} for trapped electrons that are lost through collisions with the neutrals present in the trap. A measurement of the expansion rate of the electron plasma in the trap through controlled variation of the trap voltage, yields expansion times that depend on the energy of escaping electrons. This is found to vary in our case in the scaling range B{sup 0.32} to B{sup 0.43}. Distorting the geometry of the trap, results in a marked change in the confinement time's dependence on the magnetic field. The results indicate that the confinement time of the electron cloud in the trap is limited by both, effects of collisions and perturbations that result in the plasma loss through expansion in the trap. (orig.)

  19. Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, S C

    2010-09-28

    Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.

  20. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma

  1. Dynamics and relaxation in confined medium. Application to 129Xe magnetic relaxation in Vycor

    International Nuclear Information System (INIS)

    Pasquier, Virginie

    1995-01-01

    Porous media morphology and topology drive the exploration of pore space by fluid. So, analysis of transport process, associated with relaxation mechanism, allows indirect study of pore geometry. The purpose of this work is to understand better the relation between geometry and transport. This study involves two parts: a modelization and prediction step is followed by an experimental application of magnetic relaxation. Numerical simulations and analytical models allow to quantify the influence on the solid interface of the dynamical behavior of confined gas in disordered porous media (granular structure and porous network) or in common geometry (cylindrical and lamellar interfaces). The formalism of diffusion propagator is a powerful tool to quantify the influence of the pore geometry on the diffusion of confined gas. The propagator holds all dynamical information on the system; it also predicts the temporal evolution of the autocorrelation functions of the Hamiltonian describing local coupling. In an intermediate time scale, magnetic relaxation shows complex diffusional regime: the autocorrelation functions decrease in a power law with a exponent smaller than d/2 (where d is the Euclidian dimension of the system). This behavior is analogous to dynamic in low-dimensional space, but here arises from surface correlations of the porous media. The long-time behavior of the autocorrelation functions retrieves the asymptotic decrease t -d/2 . Moreover, atypical behavior is observed for the Knudsen diffusion between infinite planes. It turns out that 129 Xe NMR is a appropriate technique to characterize organization and diffusion of gas confined in Vycor. Systematic studies of temperature and pressure effect on the 129 Xe chemical shift allow to specify the Xe/solid interaction. The analysis of the relaxation measurements, thanks to the numerical development, confirms conclusions arising from the study of diffusion propagator. (author) [fr

  2. Experiments on the injection, confinement, and ejection of electron clouds in a magnetic mirror

    International Nuclear Information System (INIS)

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1978-01-01

    A cloud of (5 to 10 keV) electrons is injected into a magnetic mirror field. The magnetic field rises in 40--120 μsec to a maximum of 10 kG. Two methods of injection were tried: In the first, the injector is located at the mirror midplane and electrons are injected perpendicular to the magnetic field lines. In the second scheme, the injector is located near the mirror maximum. Up to about 10 11 electrons were trapped in both schemes with a mean kinetic energy of 0.3 MeV. Measured confinement time is limited only by the magnetic field decay time. The compressed electron cloud executes electrostatic oscillations. The frequency of the oscillation is proportional to the number of electrons trapped, and it is independent of the value of the magnetic field and the initial electron energy. The electron cloud was ejected along the mirror axis and properties of the ejected electron cloud were measured by x-ray pulses from bremstrahlung of electrons on the vacuum system wall and by collecting electrons on a Faraday cup

  3. Plasma transport simulation modeling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)

  4. Elmo bumpy square plasma confinement device

    Science.gov (United States)

    Owen, L.W.

    1985-01-01

    The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.

  5. The Swedish fusion research programme on magnetic confinement 1978

    International Nuclear Information System (INIS)

    Lehnert, B.

    1978-02-01

    A review is given on the activities and plans for research on plasma physics and controlled fusion at the Royal Institute of Technology in Stockholm, with descriptions and motivations of the research lines being conducted. These activities include investigations on plasma-neutral gas interaction, development of special principles for plasma stabilization, magnetic confinement schemes being based mainly on poloidal fields, as well as the generation, heating, and diagnostics of plasmas being ''impermeable'' to neutral gas. (author)

  6. Advanced energy systems: 2XIIB: heating and containing magnetically confined plasmas

    International Nuclear Information System (INIS)

    Coensgen, F.H.

    1975-01-01

    Recent experiments on the 2XIIB mirror machine have produced encouraging results: a buildup of hot ion densities to 4 x 10 13 cm -3 , ion temperatures of 13 keV (the highest ever observed in a major fusion experiment), and a confinement time exceeding 5 ms. Two major factors in these achievements were the injection of twelve 20-keV neutral beams to increase plasma temperature and the introduction of warm streaming plasma to suppress microinstabilities. With them, near-classical confinement of a hot plasma was demonstrated. We are now doubling the injected neutral beam energy to see if plasma stability and energy scaling of plasma confinement persist at higher ion temperatures

  7. Fusion and technology: An introduction to the physics and technology of magnetic confinment fusion

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1984-01-01

    This book is an introduction covering all aspects of magnetic fusion and magnetic fusion technology. Physical property data relevant to fusion technology and a summary of fusion reactor design parameters are provided. Topics covered include: basic properties; equilibrium and transport confinement concepts; plasma heating; plasma wall interaction; magnetics; energy storage and transfer; interaction of radiation with matter; primary energy conversion and tritium breeding blanket; tritium and vacuum; and Fusion Reactor Design

  8. Electrostatically confined quantum rings in bilayer graphene.

    Science.gov (United States)

    Zarenia, M; Pereira, J M; Peeters, F M; Farias, G A

    2009-12-01

    We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B(0)) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B(0) --> -B(0) transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.

  9. Pressure profiles of plasmas confined in the field of a magnetic dipole

    International Nuclear Information System (INIS)

    Davis, Matthew S; Mauel, M E; Garnier, Darren T; Kesner, Jay

    2014-01-01

    Equilibrium pressure profiles of plasmas confined in the field of a dipole magnet are reconstructed using magnetic and x-ray measurements on the levitated dipole experiment (LDX). LDX operates in two distinct modes: with the dipole mechanically supported and with the dipole magnetically levitated. When the dipole is mechanically supported, thermal particles are lost along the field to the supports, and the plasma pressure is highly peaked and consists of energetic, mirror-trapped electrons that are created by electron cyclotron resonance heating. By contrast, when the dipole is magnetically levitated losses to the supports are eliminated and particles are lost via slower cross-field transport that results in broader, but still peaked, plasma pressure profiles. (paper)

  10. Confinement of a high current proton beam in a linear induction accelerator

    International Nuclear Information System (INIS)

    Kerslick, G.S.; Roth, I.S.; Golkowski, C.; Ivers, J.D.; Nation, J.A.

    1987-01-01

    A 1 MeV, 6 kA, 50 ns annular proton beam has been generated in a two stage induction linac. Several confinement systems designed to allow propagation through multiple acceleration stages have been studied. In the first, the beam is injected through a half cusp into a 1.4 T solenoidal magnetic field. In the second system the beam is generated in a full cusp diode. The third system discussed relies on collective confinement of the protons by the space charge of the neutralizing electrons. This is in contrast to the previously described systems which rely on magnetic confinement. A comparison between the three methods of transport is made

  11. Bifurcated equilibria in centrifugally confined plasma

    International Nuclear Information System (INIS)

    Shamim, I.; Teodorescu, C.; Guzdar, P. N.; Hassam, A. B.; Clary, R.; Ellis, R.; Lunsford, R.

    2008-01-01

    A bifurcation theory and associated computational model are developed to account for abrupt transitions observed recently on the Maryland Centrifugal eXperiment (MCX) [R. F. Ellis et al. Phys. Plasmas 8, 2057 (2001)], a supersonically rotating magnetized plasma that relies on centrifugal forces to prevent thermal expansion of plasma along the magnetic field. The observed transitions are from a well-confined, high-rotation state (HR-mode) to a lower-rotation, lesser-confined state (O-mode). A two-dimensional time-dependent magnetohydrodynamics code is used to simulate the dynamical equilibrium states of the MCX configuration. In addition to the expected viscous drag on the core plasma rotation, a momentum loss term is added that models the friction of plasma on the enhanced level of neutrals expected in the vicinity of the insulators at the throats of the magnetic mirror geometry. At small values of the external rotation drive, the plasma is not well-centrifugally confined and hence experiences the drag from near the insulators. Beyond a critical value of the external drive, the system makes an abrupt transition to a well-centrifugally confined state in which the plasma has pulled away from the end insulator plates; more effective centrifugal confinement lowers the plasma mass near the insulators allowing runaway increases in the rotation speed. The well-confined steady state is reached when the external drive is balanced by only the viscosity of the core plasma. A clear hysteresis phenomenon is shown.

  12. The technology and science of steady-state operation in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Becoulet, A; Hoang, G T

    2008-01-01

    The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a

  13. Assessment of technical risks and R and D requirements for a magnetic confinement fusion fuel system. Final report

    International Nuclear Information System (INIS)

    DeFreece, D.A.

    1983-11-01

    This report documents a specific use and results of a novel technique for assessing the technical risks associated with the hardware development of a possible future commercial fusion power plant fuel system. Technical risk is defined as the risk that a particular technology or component which is currently under development will not achieve a set of required technical specifications. A technical risk assessment is the quantification of this risk. This Technical Risk Assessment (TRA) methodology was applied to a deuterium-tritium fuel system for a magnetic-confinement fusion power plant. The fuel system is defined to support a generic commercial reactor with at least two viable options for each critical subsystem. Each subsystem option is defined in detail including nominal performance requirements and subsystem interfaces. Subsystem experts were canvassed to obtain values for past, present and future technical performance parameters for each of the subsystem options. These forecasts are presented as probabilities of achieving given levels of performance in specific time periods for assumed funding scenarios. Several funding scenarios were examined to discern whether performance limitations are caused by funding or technology. A computerized Fuel System simulation is described which uses these subsystem performance parameter forecasts as inputs

  14. Plasma confinement system and methods for use

    Science.gov (United States)

    Jarboe, Thomas R.; Sutherland, Derek

    2017-09-05

    A plasma confinement system is provided that includes a confinement chamber that includes one or more enclosures of respective helicity injectors. The one or more enclosures are coupled to ports at an outer radius of the confinement chamber. The system further includes one or more conductive coils aligned substantially parallel to the one or more enclosures and a further set of one or more conductive coils respectively surrounding portions of the one or more enclosures. Currents may be provided to the sets of conductive coils to energize a gas within the confinement chamber into a plasma. Further, a heat-exchange system is provided that includes an inner wall, an intermediate wall, an outer wall, and pipe sections configured to carry coolant through cavities formed by the walls.

  15. Alpha Channeling in Open-System Magnetic Devices

    International Nuclear Information System (INIS)

    Fisch, Nathaniel

    2016-01-01

    The Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, is a continuation of the Grant DE-FG02-06ER54851, Alpha Channeling in Mirror Machines. In publications funded by DE-SC0000736, the grant DE-FG02-06ER54851 was actually credited. The key results obtained under Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, appear in a series of publications. The earlier effort under DE-FG02- 06ER54851 was the subject of a previous Final Report. The theme of this later effort has been unusual confinement effects, or de-confinement effects, in open-field magnetic confinement devices. First, the possibilities in losing axisymmetry were explored. Then a number of issues in rotating plasma were addressed. Most importantly, a spinoff application to plasma separations was recognized, which also resulted in a provisional patent application. (That provisional patent application, however, was not pursued further.) Alpha channeling entails injecting waves into magnetically confined plasma to release energy from one particular ion while ejecting that ion. The ejection of the ion is actually a concomitant effect in releasing energy from the ion to the wave. In rotating plasma, there is the opportunity to store the energy in a radial electric field rather than in waves. In other words, the ejected alpha particle loses its energy to the radial potential, which in turn produces plasma rotation. This is a very useful effect, since producing radial electric fields by other means are technologically more difficult. In fact, one can heat ions, and then eject them, to produce the desired radial field. In each case, there is a separation effect of different ions, which generalizes the original alpha-channeling concept of separating alpha ash from hydrogen. In a further generalization of the separation concept, a double-well filter represents a new way to produce high-throughput separations of ions, potentially useful for nuclear waste remediation.

  16. Numerical modeling of the transition from low to high confinement in magnetically confined plasma

    International Nuclear Information System (INIS)

    Rasmussen, J Juul; Nielsen, A H; Madsen, J; Naulin, V; Xu, G S

    2016-01-01

    The transition dynamics from low (L) to high (H) mode confinement in magnetically confined plasmas is investigated using a four-field drift fluid model—HESEL (Hot Edge-Sol-Electrostatic). The model includes profile evolution and is solved in a 2D domain at the out-board mid-plane of a tokamak including both open and closed field lines. The results reveal different types of L–H-like transitions in response to ramping up the input power by increasing the ion temperature in the edge region. For a fast rising input power we obtain an abrupt transition, and for a slow rising power we obtain a L–I–H transition with an intermediate I-phase displaying limit-cycle oscillations (LCO). The model recovers the power threshold for the L–H transition, the scaling of the threshold with the density and with the loss-rate in the SOL, indicating a decrease in power threshold when switching from single to double null configuration. The results hold promises for developing full predictive modeling of the L–H transition, which is an essential step in understanding and optimizing fusion devices. (paper)

  17. Seiberg-Witten and 'Polyakov-like' Magnetic Bion Confinements are Continuously Connected

    Energy Technology Data Exchange (ETDEWEB)

    Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.

    2012-06-01

    We study four-dimensional N = 2 supersymmetric pure-gauge (Seiberg-Witten) theory and its N = 1 mass perturbation by using compactification on S{sup 1} x R{sup 3}. It is well known that on R{sup 4} (or at large S{sup 1} size L) the perturbed theory realizes confinement through monopole or dyon condensation. At small S{sup 1}, we demonstrate that confinement is induced by a generalization of Polyakov's three-dimensional instanton mechanism to a locally four-dimensional theory - the magnetic bion mechanism - which also applies to a large class of nonsupersymmetric theories. Using a large- vs. small-L Poisson duality, we show that the two mechanisms of confinement, previously thought to be distinct, are in fact continuously connected.

  18. System Description for the Double Shell Tank (DST) Confinement System

    International Nuclear Information System (INIS)

    ROSSI, H.

    2000-01-01

    This document provides a description of the Double-Shell Tank (DST) Confinement System. This description will provide a basis for developing functional, performance and test requirements (i.e., subsystem specification), as necessary, for the DST Confinement System

  19. Magnetic monopoles, center vortices, confinement and topology of gauge fields

    International Nuclear Information System (INIS)

    Reinhardt, H.; Engelhardt, M.; Langfeld, K.; Quandt, M.; Schaefke, A.

    2000-01-01

    The vortex picture of confinement is studied. The deconfinement phase transition is explained as a transition from a phase in which vortices percolate to a phase of small vortices. Lattice results are presented in support of this scenario. Furthermore the topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills-theory. For this purpose the continuum analog of the maximum center gauge is constructed

  20. Magnetic Monopoles, Center Vortices, Confinement and Topology of Gauge Fields

    OpenAIRE

    Reinhardt, H.; Engelhardt, M.; Langfeld, K.; Quandt, M.; Sch"afke, A.

    1999-01-01

    The vortex picture of confinement is studied. The deconfinement phase transition is explained as a transition from a phase in which vortices percolate to a phase of small vortices. Lattice results are presented in support of this scenario. Furthermore the topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills-theory. For this purpose the continuum analog of the maximum center gauge is constructed.

  1. Evidence for the Confinement of Magnetic Monopoles in Quantum Spin Ice.

    Science.gov (United States)

    Sarte, Paul Maximo; Aczel, Adam; Ehlers, Georg; Stock, Christopher; Gaulin, Bruce D; Mauws, Cole; Stone, Matthew B; Calder, Stuart; Nagler, Stephen; Hollett, Joshua; Zhou, Haidong; Gardner, Jason S; Attfield, J Paul; Wiebe, Christopher R

    2017-09-25

    Magnetic monopoles are hypothesised elementary particles connected by Dirac strings that behave like infinitely thin solenoids [Dirac 1931 Proc. Roy. Soc. A 133 60]. Despite decades of searches, free magnetic monopoles and their Dirac strings have eluded experimental detection, although there is substantial evidence for deconfined magnetic monopole quasiparticles in spin ice materials [Castelnovo, Moessner & Sondhi 2008 Nature 326 411]. Here we report the detection of a hierarchy of unequally-spaced magnetic excitations via high resolution inelastic neutron spectroscopic measurements on the quantum spin ice candidate Pr2Sn2O7. These excitations are well-described by a simple model of monopole pairs bound by a linear potential [Coldea et al. Science 327 177] with an effective tension of 0.7(1) K/Angstrom. The success of the linear potential model suggests that these low energy magnetic excitations are direct spectroscopic evidence for the confinement of magnetic monopole quasiparticles in the quantum spin ice candidate Pr2Sn2O7. © 2017 IOP Publishing Ltd.

  2. Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary.

    Science.gov (United States)

    Evans, T E; Moyer, R A; Thomas, P R; Watkins, J G; Osborne, T H; Boedo, J A; Doyle, E J; Fenstermacher, M E; Finken, K H; Groebner, R J; Groth, M; Harris, J H; La Haye, R J; Lasnier, C J; Masuzaki, S; Ohyabu, N; Pretty, D G; Rhodes, T L; Reimerdes, H; Rudakov, D L; Schaffer, M J; Wang, G; Zeng, L

    2004-06-11

    A stochastic magnetic boundary, produced by an applied edge resonant magnetic perturbation, is used to suppress most large edge-localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H mode transport barrier and core confinement are unaffected by the stochastic boundary, despite a threefold drop in the toroidal rotation. These results demonstrate that stochastic boundaries are compatible with H modes and may be attractive for ELM control in next-step fusion tokamaks.

  3. A table top experiment to investigate production and properties of a plasma confined by a dipole magnet.

    Science.gov (United States)

    Baitha, Anuj Ram; Kumar, Ashwani; Bhattacharjee, Sudeep

    2018-02-01

    We report a table top experiment to investigate production and properties of a plasma confined by a dipole magnet. A water cooled, strong, cylindrical permanent magnet (NdFeB) magnetized along the axial direction and having a surface magnetic field of ∼0.5 T is employed to create a dipole magnetic field. The plasma is created by electron cyclotron resonance heating. Visual observations of the plasma indicate that radiation belts appear due to trapped particles, similar to the earth's magnetosphere. The electron temperature lies in the range 2-13 eV and is hotter near the magnets and in a downstream region. It is found that the plasma (ion) density reaches a value close to 2 × 10 11 cm -3 and peaks at a radial distance about 3 cm from the magnet. The plasma beta β (β = plasma pressure/magnetic pressure) increases radially outward, and the maximum β for the present experimental system is ∼2%. It is also found that the singly charged ions are dominant in the discharge.

  4. A table top experiment to investigate production and properties of a plasma confined by a dipole magnet

    Science.gov (United States)

    Baitha, Anuj Ram; Kumar, Ashwani; Bhattacharjee, Sudeep

    2018-02-01

    We report a table top experiment to investigate production and properties of a plasma confined by a dipole magnet. A water cooled, strong, cylindrical permanent magnet (NdFeB) magnetized along the axial direction and having a surface magnetic field of ˜0.5 T is employed to create a dipole magnetic field. The plasma is created by electron cyclotron resonance heating. Visual observations of the plasma indicate that radiation belts appear due to trapped particles, similar to the earth's magnetosphere. The electron temperature lies in the range 2-13 eV and is hotter near the magnets and in a downstream region. It is found that the plasma (ion) density reaches a value close to 2 × 1011 cm-3 and peaks at a radial distance about 3 cm from the magnet. The plasma beta β (β = plasma pressure/magnetic pressure) increases radially outward, and the maximum β for the present experimental system is ˜2%. It is also found that the singly charged ions are dominant in the discharge.

  5. Plasma transport simulation modelling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1992-01-01

    New empirical and theoretical transport models for helical confinement systems are developed on the basis of the neoclassical transport theory, including the effect of the radial electric field and of multi-helicity magnetic components as well as the drift wave turbulence transport for electrostatic and electromagnetic modes or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with experimental data from the Compact Helical System which indicate that the central transport coefficient of a plasma with electron cyclotron heating agrees with neoclassical axisymmetric value and the transport outside the half-radius is anomalous. On the other hand, the transport of plasmas with neutral beam injection heating is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these discharges with flat density profiles. For a detailed prediction of the plasma parameters in the Large Helical Device (LHD), 3-D equilibrium/1-D transport simulations including empirical or drift wave turbulence models are performed which suggest that the global confinement time of the LHD is determined mainly by the electron anomalous transport in the plasma edge region rather than by the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase in global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to half of the value used in the present scaling, as is the case in the H-mode of tokamak discharges, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius improves the plasma confinement and increases the fusion product by more than 50% by reducing the neoclassical asymmetric ion transport loss and increasing the plasma radius (10%). (author). 32 refs, 7 figs

  6. Review of compact, alternate concepts for magnetic confinement fusion

    International Nuclear Information System (INIS)

    Nickerson, S.B.; Shmayda, W.T.; Dinner, P.J.; Gierszewski, P.

    1984-06-01

    This report documents a study of compact alternate magnetic confinement fusion experiments and conceptual reactor designs. The purpose of this study is to identify those devices with a potential to burn tritium in the near future. The bulk of the report is made up of a review of the following compact alternates: compact toroids, high power density tokamaks, linear magnetic systems, compact mirrors, reversed field pinches and some miscellaneous concepts. Bumpy toruses and stellarators were initially reviewed but were not pursued since no compact variations were found. Several of the concepts show promise of either burning tritium or evolving into tritium burning devices by the early 1990's: RIGGATRON, Ignitor, OHTE, Frascati Tokamak upgrade, several driven (low or negative net power) mirror experiments and several Reversed Field Pinch experiments that may begin operation around 1990. Of the above only the Frascati Tokamak Upgrade has had funds allocated. Also identified in this report are groups who may have tritium burning experiments in the mid to late 1990's. There is a discussion of the differences between the reviewed devices and the mainline tokamak experiments. This discussion forms the basis of recommendations for R and D aimed at the compact alternates and the applicability of the present CFFTP program to the needs of the compact alternates. These recommendations will be presented in a subsequent report

  7. Nanoantennas for enhancing and confining the magnetic optical field

    Science.gov (United States)

    Grosjean, Thierry; Mivelle, Mathieu; Baida, Fadi I.; Burr, Geoffrey W.; Fischer, Ulrich C.

    2011-05-01

    We propose different optical antenna structures for enhancing and confining the magnetic optical field. A common feature of these structures are concave corners in thin metal films as locations of the enhanced magnetic field. This proposal is inspired by Babinet's principle as the concave edges are the complementary structures to convex metal corners, which are known to be locations of a strongly enhanced electric field. Bowtie antennas and the bowtie apertures of appropriate size were shown to exhibit resonances in the infrared frequency range with an especially strong enhancement of the electrical field in the gap between 2 convex metal corners. We show by numerical calculations, that the complementary structures, the complementary bowtie aperture - the diabolo antenna - and the complementary bow tie antenna - two closely spaced triangular apertures in a metal film with a narrow gap between two opposing concave corners - exhibit resonances with a strongly enhanced magnetic field at the narrow metal constriction between the concave corners. We suggest sub-wavelength circuits of concave and convex corners as building blocks of planar metamaterials.

  8. Design of a magnetic field alignment diagnostic for the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Deadrick, F.J.; House, P.A.; Frye, R.W.

    1985-01-01

    Magnet alignment in tandem mirror fusion machines plays a crucial role in achieving and maintaining plasma confinement. Various visual alignment tools have been described by Post et al. to align the Tara magnet system. We have designed and installed a remotely operated magnetic field alignment (MFA) diagnostic system as a part of the Mirror Fusion Test Facility (MFTF-B). It measures critical magnetic field alignment parameters of the MFTF-B coil set while under full-field operating conditions. The MFA diagnostic employs a pair of low-energy, electron beam guns on a remotely positionable probe to trace and map selected magnetic field lines. An array of precision electrical detector paddles locates the position of the electron beam, and thus the magnetic field line, at several critical points. The measurements provide a means to compute proper compensating currents to correct for mechanical misalignments of the magnets with auxiliary trim coils if necessary. This paper describes both the mechanical and electrical design of the MFA diagnostic hardware

  9. Geodesic least squares regression for scaling studies in magnetic confinement fusion

    International Nuclear Information System (INIS)

    Verdoolaege, Geert

    2015-01-01

    In regression analyses for deriving scaling laws that occur in various scientific disciplines, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its application to scaling laws. We here discuss a new regression method that is robust in the presence of significant uncertainty on both the data and the regression model. The method, which we call geodesic least squares regression (GLS), is based on minimization of the Rao geodesic distance on a probabilistic manifold. We demonstrate the superiority of the method using synthetic data and we present an application to the scaling law for the power threshold for the transition to the high confinement regime in magnetic confinement fusion devices

  10. Critical quench dynamics in confined systems.

    Science.gov (United States)

    Collura, Mario; Karevski, Dragi

    2010-05-21

    We analyze the coherent quantum evolution of a many-particle system after slowly sweeping a power-law confining potential. The amplitude of the confining potential is varied in time along a power-law ramp such that the many-particle system finally reaches or crosses a critical point. Under this protocol we derive general scaling laws for the density of excitations created during the nonadiabatic sweep of the confining potential. It is found that the mean excitation density follows an algebraic law as a function of the sweeping rate with an exponent that depends on the space-time properties of the potential. We confirm our scaling laws by first order adiabatic calculation and exact results on the Ising quantum chain with a varying transverse field.

  11. Some aspects on alternative lines of magnetic confinement

    International Nuclear Information System (INIS)

    Lehnert, B.

    1991-02-01

    Facing the year 2000, some proposals for a balanced strategy of fusion research are given in this paper. Fusion research by the world community has made substantial progress, and it is now possible to build an experimental test reactor based on the tokamak confinement principle, in the form of a global commitment such as the ITER/NET project. Nevertheless further investigations are needed before the practical use of fusion energy becomes a reality. With regard to this, and to the time gap formed by the planning and construction period of ITER/NET, continued activities have to take place at the national laboratories, to preserve the quality of plasma physical research and the competence of fusion scientists and engineers, as well as to guarantee research on alternative lines aiming at an improved reactor concept. Some aspects are given in this context on the desired properties of an optimal fusion reactor, including a high plasma beta value, a minimized imposed toroidal magnetic field, controlled or non-existent disruptions, steady-state operation, minimized plasma-wall interaction, and the absence both of a stabilizing conducting wall and of active feedback systems. (au)

  12. Miniature magnetic bottle confined by circularly polarized laser light and measurements of the inverse Faraday effect in plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Paiss, Y.; Horovitz, Y.; Henis, Z.

    1997-01-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss, depending on the laser intensity. In this configuration the circularly polarized light is used to obtain confinement of a plasma contained in a good conductor vessel. The confinement in this scheme is supported by the magnetic forces. The Lawson criterion for a DT plasma might be achieved for number density n = 5*10 21 cm -3 and confinement time τ= 20 ns. The laser and plasma parameters required to obtain an energetic gain are calculated. Experiments and preliminary calculations were performed to study the feasibility of the above scheme. Measurements of the axial magnetic field induced by circularly polarized laser light, the so called inverse Faraday effect, and of the absorption of circularly polarized laser light in plasma, are reported. The experiments were performed with a circularly polarized Nd:YAG laser, having a wavelength of 1.06 τm and a pulse duration of 7 ns, in a range of irradiances from 10 9 to 10 14 W/cm 2 . Axial magnetic fields from 500 Gauss to 2 megagauss were measured. Up to 5*10 13 W/cm 3 the results are in agreement with a nonlinear model of the inverse Faraday effect dominated by the ponderomotive force. For the laser irradiance studied here, 9*10 13 - 2.5*10 14 W/cm 2 , the absorption of circularly polarized light was 14% higher relative to the absorption of linear polarized light

  13. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  14. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    1999-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  15. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    2001-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  16. SUPPESSION OF LARGE EDGE LOCALIZED MODES IN HIGH CONFINEMENT DIII-D PLASMAS WITH A STOCHASTIC MAGNETIC BOUNDARY

    International Nuclear Information System (INIS)

    EVANS, TE; MOYER, RA; THOMAS, PR; WATKINS, JG; OSBORNE, TH; BOEDO, JA; FENSTERMACHER, ME; FINKEN, KH; GROEBNER, RJ; GROTH, M; HARRIS, JH; LAHAYE, RJ; LASNIER, CJ; MASUZAKI, S; OHYABU, N; PRETTY, D; RHODES, TL; REIMERDES, H; RUDAKOV, DL; SCHAFFER, MJ; WANG, G; ZENG, L.

    2003-01-01

    OAK-B135 A stochastic magnetic boundary, produced by an externally applied edge resonant magnetic perturbation, is used to suppress large edge localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H-mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H-mode transport barrier is unaffected by the stochastic boundary. The core confinement of these discharges is unaffected, despite a three-fold drop in the toroidal rotation in the plasma core. These results demonstrate that stochastic boundaries are compatible with H-modes and may be attractive for ELM control in next-step burning fusion tokamaks

  17. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  18. Neutron Assay System for Confinement Vessel Disposition

    International Nuclear Information System (INIS)

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Valdez, Jose I.; Vigil, Georgiana M.

    2012-01-01

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the CVs. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of special nuclear material (SNM) in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of (le)100-g 239 Pu equivalent in a vessel for safeguards termination. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements.

  19. Thermal instabilities in magnetically confined plasmas: Solar coronal loops

    International Nuclear Information System (INIS)

    Habbal, S.R.; Rosner, R.

    1979-01-01

    The thermal stability of confined solar coronal structures (''loops'') is investigated, following both normal mode and a new, global instability analysis. We demonstrate that: (a) normal mode analysis shows modes with size scales comparable to that of loops to be unstable, but to be strongly affected by the loop boundary conditions; (b) a global analysis, based upon variation of the total loop energy losses and gains, yields loop stability conditions for global modes dependent upon the coronal loop heating process, with magnetically coupled heating processes giving marginal stability. The connection between the present analysis and the minimum flux corona of Hearn is also discussed

  20. Inequalities for magnetic-flux free energies and confinement in lattice gauge theories

    International Nuclear Information System (INIS)

    Yoneya, T.

    1982-01-01

    Rigorous inequalities among magnetic-flux free energies of tori with varying diameters are derived in lattice gauge theories. From the inequalities, it follows that if the magnetic-flux free energy vanishes in the limit of large uniform dilatation of a torus, the free energy must always decrease exponentially with the area of the cross section of the torus. The latter property is known to be sufficient for permanent confinement of static quarks. As a consequence of this property, a lower bound V(R) >= const x R for the static quark-antiquark potential is obtained in three-dimensional U(n) lattice gauge theory for sufficiently large R. (orig.)

  1. Feasibility of alpha particle measurement in a magnetically confined plasma by CO2 laser Thomson scattering

    International Nuclear Information System (INIS)

    Richards, R.K.; Vander Sluis, K.L.; Hutchinson, D.P.

    1987-08-01

    Fusion-product alpha particles will dominate the behavior of the next generation of ignited D-T fusion reactors. Advanced diagnostics will be required to characterize the energy deposition of these fast alpha particles in the magnetically confined plasma. For small-angle coherent Thomson scattering of a CO 2 laser beam from such a plasma, a resonance in the scattered power occurs near 90 0 with respect to the magnetic field direction. This spatial concentration permits a simplified detection of the scattered laser power from the plasma using a heterodyne system. The signal produced by the presence of fusion-product alpha particles in an ignited plasma is calculated to be well above the noise level, which results from statistical variations of the background signal produced by scattering from free electrons. 7 refs

  2. Probing the extreme wind confinement of the most magnetic O star with COS spectroscopy

    Science.gov (United States)

    Petit, Veronique

    2014-10-01

    We propose to obtain phase-resolved UV spectroscopy of the recently discovered magnetic O star NGC 1624-2, which has the strongest magnetic field ever detected in a O-star, by an order of magnitude. We will use the strength and variability of the UV resonance line profiles to diagnose the density, velocity, and ionization structure of NGC 1624-2's enormous magnetosphere that results from entrapment of its stellar wind by its strong, nearly dipolar magnetic field. With this gigantic magnetosphere, NGC 1624-2 represents a new regime of extreme wind confinement that will constrain models of magnetized winds and their surface mass flux properties. A detailed understanding of such winds is necessary to study the rotational braking history of magnetic O-stars, which can shed new light on the fundamental origin of magnetism in massive, hot stars.

  3. SCR-1: Design and construction of a small modular stellarator for magnetic confinement of plasma

    International Nuclear Information System (INIS)

    Barillas, L; Vargas, V I; Alpizar, A; Asenjo, J; Carranza, J M; Cerdas, F; Gutiérrez, R; Monge, J I; Mora, J; Morera, J; Peraza, H; Rojas, C; Rozen, D; Saenz, F; Sánchez, G; Sandoval, M; Trimiño, H; Umaña, J; Villegas, L F; Queral, V

    2014-01-01

    This paper describes briefly the design and construction of a small modular stellarator for magnetic confinement of plasma, called Stellarator of Costa Rica 1, or SCR-1; developed by the Plasma Physics Group of the Instituto Tecnológico de Costa Rica, PlasmaTEC. The SCR-1 is based on the small Spanish stellarator UST 1 , created by the engineer Vicente Queral. The SCR-1 will employ stainless steel torus-shaped vacuum vessel with a major radius of 460.33 mm and a cross section radius of 110.25 mm. A typical SCR-1 plasma will have an average radius 42.2 mm and a volume of 8 liters (0.01 m 3 ), and an aspect ratio of 5.7. The magnetic resonant field will be 0.0878 T, and a period of 2 (m=2) with a rotational transform of 0.3. The magnetic field will be provided by 12 modular coils, with 8 turns each, with an electrical current of 8704 A per coil (1088 A per turn of each coil). This current will be fed by a bank of cell batteries. The plasma will be heated by ECRH with magnetrons of a total power of 5 kW, in the first harmonic at 2.45 GHz. The expected electron temperature and density are 15 eV and 10 17 m −3 respectively with an estimated confinement time of 7.30 x 10 −4 ms. The initial diagnostics on the SCR-1 will consist of a Langmuir probe, a heterodyne microwave interferometer, and a field mapping system. The first plasma of the SCR-1 is expected at the end of 2011.

  4. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    Science.gov (United States)

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  5. First Observation of the High Field Side Sawtooth Crash and Heat Transfer during Driven Reconnection Processes in Magnetically Confined Plasmas

    International Nuclear Information System (INIS)

    Park, HK; Luhmann, NC; Donne, AJH; Classen, IGJ; Domier, CW; Mazzucato, E; Munsat, T; van de Pol, MJ; Xia, Z

    2005-01-01

    High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study driven reconnection processes in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to an 'X-point' reconnection process that is localized in the toroidal and poloidal planes. The reconnection is not always confined to the magnetic surfaces with minimum energy. The heat transport process from the core is demonstrated to be highly collective rather than stochastic

  6. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. II. PARTICLE ENERGIZATION INSIDE MAGNETICALLY CONFINED CAVITIES

    International Nuclear Information System (INIS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Le Roux, Jakobus A.; Webb, Gary M.; Malandraki, Olga E.

    2016-01-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  7. The Maryland Centrifugal Experiment (MCX): Centrifugal Confinement and Velocity Shear Stabilization of Plasmas in Shaped Open Magnetic Systems

    International Nuclear Information System (INIS)

    Hassam, Adil; Ellis, Richard F.

    2012-01-01

    The Maryland Centrifugal Experiment (MCX) Project has investigated the concepts of centrifugal plasma confinement and stabilization of instabilities by velocity shear. The basic requirement is supersonic plasma rotation about a shaped, open magnetic field. Overall, the MCX Project attained three primary goals that were set out at the start of the project. First, supersonic rotation at Mach number up to 2.5 was obtained. Second, turbulence from flute interchange modes was found considerably reduced from conventional. Third, plasma pressure was contained along the field, as evidenced by density drops of x10 from the center to the mirror throats.

  8. Fractional diffusion models of transport in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del; Carreras, B. A.; Lynch, V. E.

    2005-01-01

    Experimental and theoretical evidence suggests that transport in magnetically confined fusion plasmas deviates from the standard diffusion paradigm. Some examples include the confinement time scaling in L-mode plasmas, rapid pulse propagation phenomena, and inward transport in off-axis fueling experiments. The limitations of the diffusion paradigm can be traced back to the restrictive assumptions in which it is based. In particular, Fick's law, one of the cornerstones of diffusive transport, assumes that the fluxes only depend on local quantities, i. e. the spatial gradient of the field (s). another key issue is the Markovian assumption that neglects memory effects. Also, at a microscopic level, standard diffusion assumes and underlying Gaussian, uncorrelated stochastic process (i. e. a Brownian random walk) with well defined characteristic spatio-temporal scales. Motivated by the need to develop models of non-diffusive transport, we discuss here a class of transport models base on the use of fractional derivative operators. The models incorporates in a unified way non-Fickian transport, non-Markovian processes or memory effects, and non-diffusive scaling. At a microscopic level, the models describe an underlying stochastic process without characteristic spatio-temporal scales that generalizes the Brownian random walk. As a concrete case study to motivate and test the model, we consider transport of tracers in three-dimensional, pressure-gradient-driven turbulence. We show that in this system transport is non-diffusive and cannot be described in the context of the standard diffusion parading. In particular, the probability density function (pdf) of the radial displacements of tracers is strongly non-Gaussian with algebraic decaying tails, and the moments of the tracer displacements exhibit super-diffusive scaling. there is quantitative agreement between the turbulence transport calculations and the proposed fractional diffusion model. In particular, the model

  9. Theory of self-sustained turbulence in confined plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Fukuyama, A.; Yagi, M.

    1996-01-01

    This article reviews some aspects of recent theoretical activities in Japan on the problem of turbulent transport in confined plasmas. The method of self-sustained turbulence is discussed. The process of the renormalization is shown and the turbulent Prandtl number is introduced. Nonlinear destabilization by the electron momentum diffusion is explained. The nonlinear eigenmode equation is derived for the dressed-test-mode for the inhomogeneous plasma in the shear magnetic field. The eigenvalue equation is solved, and the least stable mode determines the anomalous transport coefficient. The formula of the thermal conductivity is presented for the system of bad average magnetic curvature (current diffusive interchange mode (CDIM) turbulence) and that for the average good magnetic curvature (current diffusive ballooning mode (CDBM) turbulence). The transport coefficient, scale length of fluctuations and fluctuation level are shown to be an increasing function of the pressure gradient. Verification by use of the nonlinear simulation is shown. The bifurcation of the electric field and improved confinement are addressed, in order to explain the H-mode physics. The improved confinement and dynamics such as ELMs are explained. Application to the transport analysis of tokamaks is also presented, including explanations of the L-mode confinement, internal transport barrier, and the role of the current profile control

  10. Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1994-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2 * 10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  11. Two-stream instability for a light ion beam-plasma system with external magnetic field

    International Nuclear Information System (INIS)

    Okada, T.; Tazawa, H.

    1992-12-01

    For inertial confinement fusion, a focused light ion beam (LIB) is required to propagate stably through a chamber to a target. We have pointed out that the applied external magnetic field is important for LIB propagation. To investigate the influence of the external magnetic field on the LIB propagation, we analysed the electrostatic dispersion relation of magnetized light ion beam-plasma system. The particle in-cell (PIC) simulation results are presented for a light ion beam-plasma system with external magnetic field. (author)

  12. Confinement and Tritium Stripping Systems for APT Tritium Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Heung, L.K.

    1997-10-20

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented.

  13. Confinement and Tritium Stripping Systems for APT Tritium Processing

    International Nuclear Information System (INIS)

    Hsu, R.H.; Heung, L.K.

    1997-01-01

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented

  14. Transport processes in magnetically confined plasmas in the nonlinear regime.

    Science.gov (United States)

    Sonnino, Giorgio

    2006-06-01

    A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schluter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schluter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.

  15. Effect of low transverse magnetic field on the confinement strength in a quasi-1D wire

    International Nuclear Information System (INIS)

    Kumar, Sanjeev; Thomas, K. J.; Smith, L. W.; Farrer, I.; Ritchie, D. A.; Jones, G. A. C.; Griffiths, J.; Pepper, M.

    2013-01-01

    Transport measurements in a quasi-one dimensional (1D) quantum wire are reported in the presence of low transverse magnetic field. Differential conductance shows weak quantised plateaus when the 2D electrons are squeezed electrostatically. Application of a small transverse magnetic field (0.2T) enhances the overall degree of quantisation due to the formation of magneto-electric subbands. The results show the role of magnetic field to fine tune the confinement strength in low density wires when interaction gives rise to double row formation

  16. Confinement Physics Research Facility/ZTH: A progress report

    International Nuclear Information System (INIS)

    Hammer, C.F.; Thullen, P.

    1989-01-01

    In October 1985 the Los Alamos National Laboratory's Controlled Thermonuclear Research (CTR) Division began the design and construction of the Confinement Physics Research Facility (CPRF) and the ZTH toroidal, reversed-field-pinch (RFP), plasma physics experiment. The CPRF is a facility which will provide the buildings, utilities, pulsed power system, control system and diagnostics needed to operate a magnetically confined fusion experiment, and ZTH will be the first experiment operated in the facility. The construction of CPRF/ZTH is scheduled for completion in the first quarter of 1993. 5 figs

  17. Special issue containing papers presented at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (7-11 September 2011) Special issue containing papers presented at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (7-11 September 2011)

    Science.gov (United States)

    Berk, H. L.

    2012-09-01

    The topic of the behaviour of energetic alpha particles in magnetic fusion confined plasmas is perhaps the ultimate frontier plasma physics issue that needs to be understood in the quest to achieve controlled power from the fusion reaction in magnetically confined plasmas. The partial pressure of alpha particles in a burning plasma will be ~5-10% of the total pressure and under these conditions the alpha particles may be prone to develop instability through Alfvénic interaction. This may lead, even with moderate alpha particle loss, to a burn quench or severe wall damage. Alternatively, benign Alfvénic signals may allow the vital information to control a fusion burn. The significance of this issue has led to extensive international investigations and a biannual meeting that began in Kyiv in 1989, followed by subsequent meetings in Aspenäs (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007) and Kyiv (2009). The meeting was initially entitled 'Alpha Particles in Fusion Research' and then was changed during the 1997 meeting to 'Energetic Particles in Magnetic Confinement Systems' in appreciation of the need to study the significance of the electron runaway, which can lead to the production of energetic electrons with energies that can even exceed the energy produced by fusion products. This special issue presents some of the mature interesting work that was reported at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was held in Austin, Texas, USA (7-11 September 2011). This meeting immediately followed a related meeting, the 5th IAEA Technical Meeting on Theory of Plasma Wave Instabilities (5-7 September 2011). The meetings shared one day (7 September 2011) with presentations relevant to both groups. The presentations from most of the participants, as well as some preliminary versions of papers, are available at the

  18. Comparison of confinement in resistive-shell reversed-field pinch devices with two different magnetic shell penetration times

    International Nuclear Information System (INIS)

    Gravestijn, R M; Drake, J R; Hedqvist, A; Rachlew, E

    2004-01-01

    A loop voltage is required to sustain the reversed-field pinch (RFP) equilibrium. The configuration is characterized by redistribution of magnetic helicity but with the condition that the total helicity is maintained constant. The magnetic field shell penetration time, τ s , has a critical role in the stability and performance of the RFP. Confinement in the EXTRAP device has been studied with two values of τ s , first (EXTRAP-T2) with tau s of the order of the typical relaxation cycle timescale and then (EXTRAP-T2R) with τ s much longer than the relaxation cycle timescale, but still much shorter than the pulse length. Plasma parameters show significant improvements in confinement in EXTRAP-T2R. The typical loop voltage required to sustain comparable electron poloidal beta values is a factor of 3 lower in the EXTRAP-T2R device. The improvement is attributed to reduced magnetic turbulence

  19. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    Science.gov (United States)

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  20. High-density-plasma diagnostics in magnetic-confinement fusion

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1982-01-01

    The lectures will begin by defining high density in the context of magnetic confinement fusion research and listing some alternative reactor concepts, ranging from n/sub e/ approx. 2 x 10 14 cm -3 to several orders of magnitude greater, that offer potential advantages over the main-line, n/sub e/ approx. 1 x 10 14 cm -3 , Tokamak reactor designs. The high density scalings of several major diagnostic techniques, some favorable and some disadvantageous, will be discussed. Special emphasis will be given to interferometric methods, both electronic and photographic, for which integral n/sub e/dl measurements and associated techniques are accessible with low wavelength lasers. Reactor relevant experience from higher density, smaller dimension devices exists. High density implies high β, which implies economies of scale. The specialized features of high β diagnostics will be discussed

  1. Perspectives on confinement in helical systems

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae

    1989-01-01

    A review on recent experimental results and theoretical models on anomalous transport and density limit in toroidal helical devices is presented. Importance of transport problems is discussed. Experiments on Heliotron-E, Wendelstein-VIIA and new devices, i.e., ATF, Wendelstein-VIIAS and CHS, are reviewed and an overview on confinement property is given. From recent experimental results one sees that there are anomalous transport, which increases with temperature, and density limit, and that they limit the energy confinement time as well as the attainable beta value. The confinement characteristics of the scrape off layer plasma and loss cone loss are discussed, and perspectives on the high temperature plasma are given. These anomalous transport and density limit will be difficult obstacles in realizing a reactor grade plasma in helical systems. It is an urgent task to draw a realistic picture of the confinement based on the present data base. The relevant knowledge now would be critically essential for the successful development of the research in 1990's. (author) 102 refs

  2. Comparative assessment of world research efforts on magnetic confinement fusion

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Rutherford, P.H.

    1990-02-01

    This report presents a comparative assessment of the world's four major research efforts on magnetic confinement fusion, including a comparison of the capabilities in the Soviet Union, the European Community (Western Europe), Japan, and the United States. A comparative evaluation is provided in six areas: tokamak confinement; alternate confinement approaches; plasma technology and engineering; and fusion computations. The panel members are involved actively in fusion-related research, and have extensive experience in previous assessments and reviews of the world's four major fusion programs. Although the world's four major fusion efforts are roughly comparable in overall capabilities, two conclusions of this report are inescapable. First, the Soviet fusion effort is presently the weakest of the four programs in most areas of the assessment. Second, if present trends continue, the United States, once unambiguously the world leader in fusion research, will soon lose its position of leadership to the West European and Japanese fusion programs. Indeed, before the middle 1990s, the upgraded large-tokamak facilities, JT-60U (Japan) and JET (Western Europe), are likely to explore plasma conditions and operating regimes well beyond the capabilities of the TFTR tokamak (United States). In addition, if present trends continue in the areas of fusion nuclear technology and materials, and plasma technology and materials, and plasma technology development, the capabilities of Japan and Western Europe in these areas (both with regard to test facilities and fusion-specific industrial capabilities) will surpass those of the United States by a substantial margin before the middle 1990s

  3. Natural organic matter removal by adsorption onto magnetic permanently confined micelle arrays

    International Nuclear Information System (INIS)

    Wang, Hongtao; Keller, Arturo A.; Clark, Kristin K.

    2011-01-01

    Highlights: → New nanostructured material for removing pollutants from water. → Confined surfactant micelle array allows for reuse of surfactant and reduces loss. → Magnetic core allows easy removal from solution with lower separation costs. → High removal efficiency of natural organic matter. → Low energy use for regeneration of adsorbent. - Abstract: To remove natural organic matter (NOM) from water, magnetic permanently confined micelle arrays (Mag-PCMAs) were synthesized by coating the surface of Fe 3 O 4 particles with a silica/surfactant mesostructured hybrid layer. An environmental scanning electron microscope (ESEM) was used to characterize the particle size and surface morphology of the Mag-PCMAs. The zeta potential was used to assess the surface charge. Batch experiments were performed to investigate the adsorption of NOM by Mag-PCMAs. It was determined that NOM removal efficiency by Mag-PCMAs could be as high as 80% at a wide range of initial pH values (∼6.0-10.0). The adsorption isotherm was fitted well by a Langmuir model. Although Fe 3 O 4 had a high positive charge and Mag-PCMAs a small negative charge, Mag-PCMAs had a higher removal efficiency of NOM than uncoated Fe 3 O 4 particles (which are also magnetic), which indicated that the adsorption of NOM onto Mag-PCMAs was not dominated by electrostatic interactions. Possible mechanisms of the adsorption of NOM onto Mag-PCMAs were hydrophobic interactions and hydrogen bonding. It was feasible to reuse Mag-PCMAs after regeneration. These results indicate that Mag-PCMAs can be very attractive for the removal of NOM from aqueous matrices.

  4. RF-heating and plasma confinement studies in HANBIT mirror device

    International Nuclear Information System (INIS)

    Kwon, M.; Bak, J.G.; Choh, K.K.

    2003-01-01

    HANBIT is a magnetic mirror confinement device. Recently, with almost finishing the first campaign for the basic system development, it started the second campaign for the high-temperature plasma confinement physics study in mirror configuration. Here, we introduce briefly the HANBIT device and report initial physics experiments results on RF-plasma heating and confinement in the simple mirror configuration. It appears that the discharge characteristics of HANBIT are quite different from those in other mirror devices, and an explanation is presented to clarify the difference. (author)

  5. EVIDENCE OF CONFINEMENT OF SOLAR-ENERGETIC PARTICLES TO INTERPLANETARY MAGNETIC FIELD LINES

    International Nuclear Information System (INIS)

    Chollet, E. E.; Giacalone, J.

    2011-01-01

    We present new observations of solar-energetic particles (SEPs) associated with impulsive solar flares that show evidence for their confinement to interplanetary magnetic field lines. Some SEP events exhibit intermittent intensity dropouts because magnetic field lines filled with and empty of particle flux mix together. The edges of these dropouts are observed to be very sharp, suggesting that particles cannot easily move from a filled to an empty field line in the time available during their transport from the Sun. In this paper, we perform high time-resolution observations of intensity fall-off at the edges of observed SEP dropouts in order to look for signatures of particle motion off field lines. However, the statistical study is dominated by one particularly intense event. The inferred length scale of the intensity decay is comparable to the gyroradii of the particles, suggesting that particles only rarely scatter off magnetic field lines during interplanetary transport.

  6. Transitions to improved core electron heat confinement triggered by low order rational magnetic surfaces in the stellarator TJ-II

    International Nuclear Information System (INIS)

    Estrada, T.; Medina, F.; Lopez-Bruna, D.; AscasIbar, E.; BalbIn, R.; Cappa, A.; Castejon, F.; Eguilior, S.; Fernandez, A.; Guasp, J.; Hidalgo, C.; Petrov, S.

    2007-01-01

    Transitions to improved core electron heat confinement are triggered by low order rational magnetic surfaces in TJ-II electron cyclotron heated (ECH) plasmas. Experiments are performed changing the magnetic shear around the rational surface n = 3/m = 2 to study its influence on the transition; ECH power modulation is used to look at transport properties. The improvement in the electron heat confinement shows no obvious dependence on the magnetic shear. Transitions triggered by the rational surface n = 4/m = 2 show, in addition, an increase in the ion temperature synchronized with the increase in the electron temperature. Ion temperature changes had not been previously observed either in TJ-II or in any other helical device. SXR measurements demonstrate that, under certain circumstances, the rational surface positioned inside the plasma core region precedes and provides a trigger for the transition

  7. 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Herbert L.; Breizman, Boris N.

    2014-02-21

    The 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems took place in Austin, Texas (7–11 September 2011). This meeting was organized jointly with the 5th IAEA Technical Meeting on Theory of Plasma Instabilities (5–7 September 2011). The two meetings shared one day (7 September 2011) with presentations relevant to both groups. Some of the work reported at these meetings was then published in a special issue of Nuclear Fusion [Nucl. Fusion 52 (2012)]. Summaries of the Energetic Particle Conference presentations were given by Kazuo Toi and Boris Breizman. They respectively discussed the experimental and theoretical progress presented at the meeting. Highlights of this meeting include the tremendous progress that has been achieved in the development of diagnostics that enables the ‘viewing’ of internal fluctuations and allows comparison with theoretical predictions, as demonstrated, for example, in the talks of P. Lauber and M. Osakabe. The need and development of hardened diagnostics in the severe radiation environment, such as those that will exist in ITER, was discussed in the talks of V. Kiptily and V.A. Kazakhov. In theoretical studies, much of the effort is focused on nonlinear phenomena. For example, detailed comparison of theory and experiment on D-III-D on the n = 0 geodesic mode was reported in separate papers by R. Nazikian and G. Fu. A large number of theoretical papers were presented on wave chirping including a paper by B.N. Breizman, which notes that wave chirping from a single frequency may emanate continuously once marginal stability conditions have been established. Another area of wide interest was the detailed study of alpha orbits in a burning plasma, where losses can come from symmetry breaking due to finite coil number or magnetic field imperfections introduced by diagnostic or test modules. An important area of development, covered by M.A. Hole and D.A. Spong, is concerned with the self

  8. Nature of ordering in confined crystalline ionic systems

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1995-01-01

    Simulations continued studying the properties of systems of ions confined in ion traps or storage rings and cooled to very low temperatures, forming a strongly correlated non-neutral plasma. In particular the computer simulation of a large system of 20000 ions in isotropic confinement was continued to investigate whether a transition to the body-centered cubic order that is characteristic of infinite systems might occur. The simulations so far have not provided a conclusive answer. The systems show a characteristic shell structure, 18 spherical shells, very similar to what was seen in smaller simulations. Simulations were also done with the same number of ions in anisotropic confinement. Here a surprising result is seen -- instead of forming a series of spheroidal shells, the anisotropy causes the outer shell to be spheroidal -- but the inner ones are formed at a fixed distance from the outermost shell -- giving shapes that are not spheroids and exhibit discontinuous edges. The relevance of these phenomena to ion traps needs to be investigated

  9. Nonlocality of plasma fluctuations and transport in magnetically confined plasmas nonlocal plasma transport and radial structural formation

    International Nuclear Information System (INIS)

    Toi, Kazuo

    2002-01-01

    Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)

  10. The ''Kinetic Stabilizer'': A Simpler Tandem Mirror Confinement?

    International Nuclear Information System (INIS)

    Post, R.F.

    2000-01-01

    In the search for better approaches to magnetic fusion it is important to keep in mind the lessons learned in the 50 years that fusion plasma confinement has been studied. One of the lessons learned is that ''closed'' and ''open'' fusion devices differ fundamentally with respect to an important property of their confinement, as follows: Without known exception closed systems such as the tokamak, the stellarator, or the reversed-field pinch, have been found to have their confinement times limited by non-classical, i.e., turbulence-related, processes, leading to the requirement that such systems must be scaled-up in dimensions to sizes much larger than would be the case in the absence of turbulence. By contrast, from the earliest days of fusion research, it has been demonstrated that open magnetic systems of the mirror variety can achieve confinement times close to that associated with classical, i.e., collisional, processes. While these good results have been obtained in both axially symmetric fields and in non-axisymmetric fields, the clearest cases have been those in which the confining fields are solenoidal and axially symmetric. These observations, i.e., of confinement not enhanced by turbulence, can be traced theoretically to such factors as the absence of parallel currents in the plasma, and to the constraints on particle drifts imposed by the adiabatic invariants governing particle confinement in axisymmetric open systems. In the past the MHD instability of axially symmetric open systems has been seen as a barrier to their use. However, theory predicts MHD-stable confinement is achievable if sufficient plasma is present in the ''good curvature'' regions outside the mirrors. This theory has been confirmed by experiments on the Gas Dynamic Trap mirror-based experiment at Novosibirsk, In this paper a new way of exploiting this stabilizing principle, involving creating a localized ''stabilizer plasma'' outside a mirror, will be discussed. To create this plasma

  11. Magnetic discharge accelerating diode for the gas-filled pulsed neutron generators based on inertial confinement of ions

    International Nuclear Information System (INIS)

    Kozlovskij, K I; Shikanov, A E; Vovchenko, E D; Shatokhin, V L; Isaev, A A; Martynenko, A S

    2016-01-01

    The paper deals with magnetic discharge diode module with inertial electrostatic ions confinement for the gas-filled pulsed neutron generators. The basis of the design is geometry with the central hollow cathode surrounded by the outer cylindrical anode and electrodes made of permanent magnets. The induction magnitude about 0.1-0.4 T in the central region of the discharge volume ensures the confinement of electrons in the space of hollow (virtual) cathode and leads to space charge compensation of accelerated ions in the centre. The research results of different excitation modes in pulsed high-voltage discharge are presented. The stable form of the volume discharge preserveing the shape and amplitude of the pulse current in the pressure range of 10 -3 -10 -1 Torr and at the accelerating voltage up to 200 kV was observed. (paper)

  12. Helical Confinement Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C; Brakel, R; Burhenn, R; Dinklage, A; Erckmann, V; Feng, Y; Geiger, J; Hartmann, D; Hirsch, M; Jaenicke, R; Koenig, R; Laqua, H P; Maassberg, H; Wagner, F; Weller, A; Wobig, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany)

    2012-09-15

    Stellarators, conceived 1951 by Lyman Spitzer in Princeton, are toroidal devices that confine a plasma in a magnetic field which originates from currents in coils outside the plasma. A plasma current driven by external means, for example by an ohmic transformer, is not required for confinement. Supplying the desired poloidal field component by external coils leads to a helically structured plasma topology. Thus stellarators - or helical confinement devices - are fully three-dimensional in contrast to the toroidal (rotational) symmetry of tokamaks. As stellarators can be free of an inductive current, whose radial distribution depends on the plasma parameters, their equilibrium must not be established via the evolving plasma itself, but to a first order already given by the vacuum magnetic field. They do not need an active control (like positional feedback) and therefore cannot suffer from its failure. The outstanding conceptual advantage of stellarators is the potential of steady state plasma operation without current drive. As there is no need for current drive, the recirculating power is expected to be smaller than in equivalent tokamaks. The lack of a net current avoids current driven instabilities; specifically, no disruptions, no resistive wall modes and no conventional or neoclassical tearing modes appear. Second order pressure-driven currents (Pfirsch-Schlueter, bootstrap) exist but they can be modified and even minimized by the magnetic design. The magnetic configuration of helical devices naturally possesses a separatrix, which allows the implementation of a helically structured divertor for exhaust and impurity control. (author)

  13. Neutral beam systems for the magnetic fusion program

    International Nuclear Information System (INIS)

    Beal, J.W.; Staten, H.S.

    1977-01-01

    The attainment of economic, safe fusion power has been described as the most sophisticated scientific problem ever attacked by mankind. The presently established goal of the magnetic fusion program is to develop and demonstrate pure fusion central electric power stations for commercial applications. Neutral beam heating systems are a basic component of the tokamak and mirror experimental fusion plasma confinement devices. The requirements placed upon neutral beam heating systems are reviewed. The neutral beam systems in use or being developed are presented. Finally, the needs of the future are discussed

  14. Influence of error fields on the plasma confining field and the plasma confinement in tokamak

    International Nuclear Information System (INIS)

    Matsuda, Shinzaburo

    1977-05-01

    Influence of error fields on the plasma confining field and the plasma confinement is treated in the standpoint of design. In the initial breakdown phase before formation of the closed magnetic surfaces, the vertical field properly applied is the most important. Once the magnetic surfaces are formed, the non-axisymmetric error field is important. Effect of the shell gap associated with iron core and with pulsed vertical coils is thus studied. The formation of magnetic islands due to the external non-axisymmetric error field is studied with a simple model. A method of suppressing the islands by choosing the minor periodicity is proposed. (auth.)

  15. IAEA technical committee on advances in inertial confinement systems

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1980-01-01

    In the United Kingdom there is no national inertial confinement programme directed towards civil reactor use. The programme for Controlled Fusion Research, which forms part of the UKAEA Research Group activities, is located at the Culham Laboratory. At this centre, fusion research is devoted entirely to magnetic confinement systems. A fraction of the total effort involves the development and use of powerful lasers for diagnostic purposes, for toroidal plasma refuelling schemes, for basic studies of laser-plasma interactions, highly-ionised atoms and XUV light gain experiments, and for certain commercial applications. Within the universities there is a widespread interest in laser systems and laser-plasma interactions. The substantial research facilities in the Laser Division of the Rutherford Laboratory (SRC) provides a focus for these activities. These lasers are operated as a university users' facility. A two beam, neodymium in phosphate, glass laser (operating at 0.6 TW/beam, but presently being upgraded) is the Rutherford Laboratory's major laser system for implosion and compression studies. Sophisticated radiation diagnostics are a feature of this work. In a single-beam mode, the glass laser has been used for a great deal of laser-plasma interaction physics e.g. non-linear absorption, inhibited heat conduction and harmonic self-generation. Atomic structure of highly-ionised atoms, plasma line broadening and XUV light gain experiments are also active research topics. Concurrent with upgrading the glass laser facility to 6 x 1 TW beams, experiments on harmonic conversion of the output to 2ω 0 , 4ω 0 are being pursued. Electron beam-pumped, rare-gas halide, eximer systems operating in the blue region of the spectrum are also being investigated. The universities provide a considerable back-up for the work at the Rutherford Laser Division. (J.P.N.)

  16. Properties of highly electronegative plasmas produced in a multipolar magnetic-confined device with a transversal magnetic filter

    DEFF Research Database (Denmark)

    Draghici, Mihai; Stamate, Eugen

    2010-01-01

    Highly electronegative plasmas were produced in Ar/SF6 gas mixtures in a dc discharge with multipolar magnetic confinement and transversal magnetic filter. Langmuir probe and mass spectrometry were used for plasma diagnostics. Plasma potential drift, the influence of small or large area biased...... electrodes on plasma parameters, the formation of the negative ion sheath and etching rates by positive and negative ions have been investigated for different experimental conditions. When the electron temperature was reduced below 1 eV the density ratio of negative ion to electron exceeded 100 even for very...... low amounts of SF6 gas. The plasma potential drift could be controlled by proper wall conditioning. A large electrode biased positively had no effect on plasma potential for density ratios of negative ions to electrons larger than 50. For similar electronegativities or higher a negative ion sheath...

  17. Electromagnetic confinement and movement of thin sheets of molten metal

    Science.gov (United States)

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1990-01-01

    An apparatus capable of producing a combination of magnetic fields that can retain a metal in liquid form in a region having a smooth vertical boundary including a levitation magnet that produces low frequency magnetic field traveling waves to retain the metal and a stabilization magnet that produces a high frequency magnetic field to produce a smooth vertical boundary. As particularly adapted to the casting of solid metal sheets, a metal in liquid form can be continuously fed into one end of the confinement region produced by the levitation and stabilization magnets and removed in solid form from the other end of confinement region. An additional magnet may be included for support at the edges of the confinement region where eddy currents loop.

  18. Method for confining the magnetic field of the cross-tail current inside the magnetopause

    Science.gov (United States)

    Sotirelis, T.; Tsyganenko, N. A.; Stern, D. P.

    1994-01-01

    A method is presented for analytically representing the magnetic field due to the cross-tail current and its closure on the magnetopause. It is an extension of a method used by Tsyganenko (1989b) to confine the dipole field inside an ellipsoidal magnetopause using a scalar potential. Given a model of the cross-tail current, the implied net magnetic field is obtained by adding to the cross-tail current field a potential field B = - del gamma, which makes all field lines divide into two disjoint groups, separated by the magnetopause (i.e., the combined field is made to have zero normal component with the magnetopause). The magnetopause is assumed to be an ellipsoid of revolution (a prolate spheroid) as an approximation to observations (Sibeck et al., 1991). This assumption permits the potential gamma to be expressed in spheroidal coordinates, expanded in spheroidal harmonics and its terms evaluated by performing inversion integrals. Finally, the field outside the magnetopause is replaced by zero, resulting in a consistent current closure along the magnetopause. This procedure can also be used to confine the modeled field of any other interior magnetic source, though the model current must always flow in closed circuits. The method is demonstrated on the T87 cross-tail current, examples illustrate the effect of changing the size and shape of the prescribed magnetopause and a comparison is made to an independent numerical scheme based on the Biot-Savart equation.

  19. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    International Nuclear Information System (INIS)

    Stratton, B.C.; Bitter, M.; Hill, K.W.; Hillis, D.L.; Hogan, J.T.

    2007-01-01

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  20. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  1. High beta capture and mirror confinement of laser produced plasmas. Semiannual report, July 1, 1975--January 31, 1976

    International Nuclear Information System (INIS)

    Haught, A.F.; Polk, D.H.; Fader, W.J.; Tomlinson, R.G.; Jong, R.A.; Ard, W.B.; Mensing, A.E.; Churchill, T.L.; Stufflebeam, J.H.; Bresnock, F.J.

    1976-01-01

    The Laser Initiated Target Experiment (LITE) at the United Technologies Research Center is designed to address the target plasma buildup approach to a steady state mirror fusion device. A dense, mirror confined, target plasma is produced by high power laser irradiation of a solid lithium hydride particle, electrically suspended in a vacuum at the center of an established minimum-B magnetic field. Following expansion in and capture by the magnetic field, this target plasma is irradiated by an energetic neutral hydrogen beam. Charge exchange collisions with energetic beam particles serve to heat the confined plasma while ionization of the neutral beam atoms and trapping in the mirror magnetic field add particles to the confined plasma. For sufficiently high beam intensities, confined plasmas losses will be offset so that buildup of the plasma density occurs, thus demonstrating sustenance and fueling as well as the heating by neutral beam injection of a steady state mirror fusion device. Investigations of the decay of the magnetically confined target plasmas and initial studies of energetic neutral beam injection into confined target plasmas, conducted during this report period, are presented. Additional development of the LITE experimental systems including improvements in the laser plasma production facility, the energetic neutral beam line, and the heavy ion probe diagnostic is reported. A series of calculations on enhanced scattering and classical decay for plasma mirror confined in a LITE type system are discussed

  2. Upper Basalt-Confined Aquifer System in the Southern Hanford Site

    International Nuclear Information System (INIS)

    Thorne, P.

    1999-01-01

    The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995)

  3. Dynamics of harmonically-confined systems: Some rigorous results

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang, E-mail: zwu@physics.queensu.ca; Zaremba, Eugene, E-mail: zaremba@sparky.phy.queensu.ca

    2014-03-15

    In this paper we consider the dynamics of harmonically-confined atomic gases. We present various general results which are independent of particle statistics, interatomic interactions and dimensionality. Of particular interest is the response of the system to external perturbations which can be either static or dynamic in nature. We prove an extended Harmonic Potential Theorem which is useful in determining the damping of the centre of mass motion when the system is prepared initially in a highly nonequilibrium state. We also study the response of the gas to a dynamic external potential whose position is made to oscillate sinusoidally in a given direction. We show in this case that either the energy absorption rate or the centre of mass dynamics can serve as a probe of the optical conductivity of the system. -- Highlights: •We derive various rigorous results on the dynamics of harmonically-confined atomic gases. •We derive an extension of the Harmonic Potential Theorem. •We demonstrate the link between the energy absorption rate in a harmonically-confined system and the optical conductivity.

  4. Multiple-mirror plasma confinement

    International Nuclear Information System (INIS)

    Lichtenberg, A.J.; Lieberman, M.A.; Logan, B.G.

    1975-01-01

    A large enhancement of the confinement time can be achieved in a straight system of multiple mirrors over an equal length uniform magnetic field. The scaling is diffusive rather than that of flow, thereby scaling the square of the system length rather than linear with system length. Probably the most economic mode of operation for a reactor occurs when lambda/M is approximately l/sub c/, where lambda is the mean free path, M the mirror ratio, and l/sub c/ the length between mirrors; but where the scale length of the mirror field l/sub m/ is much less than lambda. The axial confinement time has been calculated theoretically and numerically for all important parameter regimes, and confirmed experimentally. A typical reactor calculation gives Q/sub E/ = 2 for a 400 meter system with 3000 MW(e) output. The main concern of a multiple-mirror system is stability. Linked quadrupoles can achieve average minimum-B stabilization of flute modes, and experiments have demonstrated this stabilization. Localized instabilities at finite β and enhanced diffusion resulting from the distorted flux surfaces and possibly from turbulent higher order modes still remain to be investigated

  5. Monte Carlo simulations of confined polymer systems

    NARCIS (Netherlands)

    Vliet, Johannes Henricus van

    1991-01-01

    This thesis considers confined polymer systems. These systems are of considerable interest, e.g., thin polymer films, chromotography of polymer solutions, drag reduction, enhanced oil recovery, stabilization of colloidal dispersions, lubrication and biolubrication. The method used to study these

  6. THE CONFINED X-CLASS FLARES OF SOLAR ACTIVE REGION 2192

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, J. K.; Su, Y.; Temmer, M.; Veronig, A. M., E-mail: julia.thalmann@uni-graz.at [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5/II, 8010 Graz (Austria)

    2015-03-10

    The unusually large active region (AR) NOAA 2192, observed in 2014 October, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north–south oriented magnetic system of arcade fields served as a strong top and lateral confinement for a series of large two-ribbon flares originating from the core of the AR. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this AR was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power-law spectrum, but that only a small fraction was accelerated to high energies. The total non-thermal energy in electrons derived (on the order of 10{sup 25} J) is considerably higher than that in eruptive flares of class X1, and corresponds to about 10% of the excess magnetic energy present in the active-region corona.

  7. Observation of transverse and longitudinal modes in non-neutral electron clouds confined in a magnetic mirror

    International Nuclear Information System (INIS)

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1979-01-01

    Electrostatic modes on non-neutral electron clouds confined in a magnetic mirror field have been investigated. The cloud contains 2 x 10 11 electrons at an average kinetic energy of 0.3 MeV for a magnetic field with a peak intensity of 9 kG at the midplane. It was found that the cloud is moving azimuthally as well as longitudinally. The azimuthal motion has an m=1 spatial nature. The longitudinal modes have a more complicated nature, but their frequency equals that of the azimuthal mode

  8. Inertial electrostatic confinement I(IEC) neutron sources

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Caramana, E.J.; Janssen, R.D.; Nystrom, W.D.; Tiouririne, T.N.; Trent, B.C.; Miley, G.H.; Javedani, J.

    1995-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P.T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 [10]. neutrons/sec in steady state. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. This paper discusses the IEC concept and how it can be adapted to a steady-state assaying source and an intense pulsed neutron source. Theoretical modeling and experimental results are presented

  9. Magnetic order and confinement improvement in high-current regimes of RFX-mod with MHD feedback control

    International Nuclear Information System (INIS)

    Piovesan, P.; Zuin, M.; Alfier, A.; Bonfiglio, D.; Bonomo, F.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Fassina, A.; Gobbin, M.; Lorenzini, R.; Marrelli, L.; Martin, P.; Martines, E.; Pasqualotto, R.; Puiatti, M.E.; Spolaore, M.; Valisa, M.; Escande, D.F.

    2009-01-01

    The RFX-mod machine (Sonato et al 2003 Fusion Eng. Des. 66 161) recently achieved, for the first time in a reversed-field pinch, high plasma current up to 1.6 MA with good confinement. Magnetic feedback control of magnetohydrodynamic instabilities was essential to reach the goal. As the current is raised, the plasma spontaneously accesses a new helical state, starting from turbulent multi-helical conditions. Together with this raise, the ratio between the dominant and the secondary mode amplitudes increases in a continuous way. This brings a significant improvement in the magnetic field topology, with the formation of helical flux surfaces in the core. As a consequence, strong helical transport barriers with maximum electron temperature around 1 keV develop in this region. The energy confinement time increases by a factor of 4 with respect to the lower-current, multi-helical conditions. The properties of the new helical state scale favourably with the current, thus opening promising perspectives for the higher current experiments planned for the near future.

  10. Fourth annual progress report on special-purpose materials for magnetically confined fusion reactors

    International Nuclear Information System (INIS)

    1982-08-01

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. The Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  11. Radiofrequency Waves, Heating and Current Drive in Magnetically Confined Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M; Bonoli, P T; Temkin, R J [Plasma Science and Fusion Center, MIT, Cambridge, MA (United States); Pinsker, R I; Prater, R [General Atomics, San Diego, California (United States); Wilson, J R [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2012-09-15

    The need for supplementary heating of magnetically confined plasmas to fusion relevant temperatures ({approx}20 keV) has been recognized from the beginning of modern fusion plasma research. Although in tokamaks the plasmas are formed initially by ohmic heating (P{Omega}{approx}{eta}{sub R}j, where j is the current density and {eta}{sub R} is the resistivity) its effectiveness deteriorates with increasing temperature since the resistivity decreases as T{sub e}{sup -3/2}, and losses due to bremsstrahlung radiation increase as Z{sub eff}{sup 3} T{sub e}{sup 1/2} (where Z{sub eff} is the effective ion charge), and the plasma current cannot be raised to arbitrarily large values because of MHD stability limits. In addition, energy losses due to thermal conduction P{sub loss} are typically anomalously large compared to neoclassical predictions and the dependence on temperature is not well understood. Thus, the simplest form of steady state power balance indicates that losses due to radiation and heat conduction must be balanced by auxiliary heating of some form, P{sub aux}, which may simply be stated as P{sub {Omega}} + P{sub {alpha}} - P{sub loss} P{sub aux} where P{sub {alpha}} is the power input provided by alpha particles, which does not become significant until the temperature exceeds some tens of keV, depending on confinement and density. (author)

  12. Mirror Confinement Systems: project summaries

    International Nuclear Information System (INIS)

    1980-07-01

    This report contains descriptions of the projects supported by the Mirror Confinement Systems (MCS) Division of the Office of Fusion Energy. The individual project summaries were prepared by the principal investigators, in collaboration with MCS staff office, and include objectives and milestones for each project. In addition to project summaries, statements of Division objectives and budget summaries are also provided

  13. New Modular Heliotron system compatible with closed helical divertor and good plasma confinement

    International Nuclear Information System (INIS)

    Yamazaki, K.; Watanabe, K.Y.

    1994-04-01

    A new helical system ('Modular Heliotron') with improved modular coils compatible with efficient closed helical divertor and good plasma confinement property is proposed based on a Heliotron system with continuous helical coils and one pair of poloidal coils. The physics optimization of this system as a function of the gap angle between adjacent modular coils has been carried out by means of vacuum magnetic surface calculations and finite-beta plasma analyses, and a new improved coil system is invented by combining sectored helical field coils with sectored returning poloidal field coils. The Modular Heliotron with standard coil winding law (reference Modular Heliotron) was previously proposed, but it is found that this is not appropriate to keep clean helical divertor and high beta configuration when the coil gap becomes large. By modulating the modular coil winding with outside-plus and inside-minus pitch modulation, almost the same good magnetic configuration as that of a conventional Heliotron can be produced. The optimal gap angle is determined as a function of the modulation parameter. This improved Modular Heliotron permits larger gap angle between adjacent modules and produces more clean helical divertor configuration than the reference Modular Heliotron. All these helical system are created by only modular coils without poloidal coils. (author)

  14. First results on dense plasma confinement at the multimirror open trap GOL-3-II

    International Nuclear Information System (INIS)

    Koidan, V.S.; Arzhannikov, A.V.; Astrelin, V.T.

    2001-01-01

    First results of experiments on plasma confinement in multimirror open trap GOL-3-II are presented. This facility is an open trap with total length of 17 m intended for confinement of a relatively dense (10 15 -10 17 cm -3 ) plasma in axially-symmetrical magnetic system. The plasma heating is provided by a high-power electron beam (1 MeV, 30 kA, 8 ms, 200 kJ). New phase of the experiments is aimed to confinement of high-β thermalized plasma. Two essential modifications of the facility have been done. First, plasma column was separated by vacuum sections from the beam accelerator and exit beam receiver. Second, the magnetic field on part of the solenoid was reconfigured into multimirror system with H max /H min ∼1.5 and 22 cm cell length. Results of the experiments at modified configuration of the device indicate that the confinement time of the plasma with n e ∼(0, 5/5)·10 15 cm -3 and T e ∼1 keV increases more than order of magnitude. (author)

  15. Special-purpose materials for magnetically confined fusion reactors. Third annual progress report

    International Nuclear Information System (INIS)

    1981-11-01

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. It is recognized that there will be numerous materials problems that will arise during the design and construction of large magnetic-fusion energy devices such as the Engineering Test Facility (ETF) and Demonstration Reactor (DEMO). Most of these problems will be specific to a particular design or project and are the responsibility of the project, not the Materials and Radiation Effects Branch. Consequently, the Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  16. On the balance of a linear plasma column confined in a transverse magnetic field

    International Nuclear Information System (INIS)

    Lehnert, B.

    1978-08-01

    The equilibrium features are investigated of a straight plasma column being confined in a purely transverse magnetic field, part of which is being generated by external conductors. Provided that stability can be secured at high beta values, the reduced transport of particles and heat in the axial direction should allow for large axial temperature gradients. It is then expected that temperatures even leading to ignition can be achieved in a pure plasma, at technically realistic column lengths. (author)

  17. An experiment to test centrifugal confinement for fusion

    International Nuclear Information System (INIS)

    Ellis, R.F.; Hassam, A.B.; Messer, S.; Osborn, B.R.

    2001-01-01

    The basic idea of centrifugal confinement is to use centrifugal forces from supersonic rotation to augment conventional magnetic confinement. Optimizing this 'knob' results in a fusion device that features four advantages: steady state, no disruptions, superior cross-field confinement, and a simpler coil configuration. The idea rests on two prongs: first, centrifugal forces can confine plasmas to desired regions of shaped magnetic fields; second, the accompanying large velocity shear can stabilize even magnetohydrodynamic (MHD) instabilities. A third feature is that the velocity shear also viscously heats the plasma; no auxiliary heating is necessary to reach fusion temperatures. Regarding transport, the velocity shear can also quell microturbulence, leading to fully classical confinement, as there are no neoclassical effects. Classical parallel electron transport then sets the confinement time. These losses are minimized by a large Pastukhov factor resulting from the deep centrifugal potential well: at Mach 4-5, the Lawson criterion is accessible. One key issue is whether velocity shear will be sufficient by itself to stabilize MHD interchanges. Numerical simulations indicate that laminar equilibria can be obtained at Mach numbers of 4-5 but that the progression toward laminarity with increasing Mach number is accompanied by residual convection from the interchanges. The central goal of the Maryland Centrifugal Torus (MCT) [R. F. Ellis et al., Bull. Am. Phys. Soc. 44, 48 (1998)] is to obtain MHD stability from velocity shear. As an assist to accessing laminarity, MCT will incorporate two unique features: plasma elongation and toroidal magnetic field. The former raises velocity shear efficiency, and modest magnetic shear should suppress residual convection

  18. Turbulence, transport and confinement: from tokamaks to star magnetism

    International Nuclear Information System (INIS)

    Strugarek, Antoine

    2012-01-01

    This thesis is part of the general study of self-organization in hot and magnetized plasmas. We focus our work on two specific objects: stars and tokamaks. We use first principle numerical simulations to study turbulence, transport and confinement in these plasmas. The first part of this thesis introduces the main characteristics of stellar and tokamak plasmas. The reasons for studying them together are properly detailed. The second part is focused on stellar aspects. We study the interactions between the 3D turbulent motions in the solar convection zone with an internal magnetic field in the tachocline (the transition region between the instable and stable zones in the Sun). The tachocline is a very thin layer (less than five percent of the solar radius) that acts as a transport barrier of angular momentum. We show that such an internal magnetic field is not likely to explain the observed thickness of the tachocline and we give some insights on how to find alternative mechanisms to constrain it. We also explore the effect of the environment of star on its structure. We develop a methodology to study the influence of stellar wind and of the magnetic coupling of a star with its orbiting planets. We use the same methodology to analyse the magnetic interaction between a stellar wind and a planetary magnetosphere that acts as a transport barrier of matter. Then, the third part is dedicated to fusion oriented research. We present a numerical investigation on the experimental mechanisms that lead to the development of transport barriers in the plasma. These barriers are particularly important for the design of high performance fusion devices. The creation of transport barriers is obtained in turbulent first principle simulations for the very first time. The collaboration between the two scientific teams lead to the results presented in the fourth part of this thesis. An original spectral method is developed to analyse the saturation of stellar convective dynamos and of

  19. Modifying locally the safety profile to improve the confinement of magnetic field lines in tokamak plasmas

    International Nuclear Information System (INIS)

    Constantinescu, D.; Firpo, M.-C.

    2012-01-01

    Using Hamiltonian models for the magnetic field lines, we propose a methodology to improve their confinement through the creation of transport barriers. A local modification of the safety profile creating a low-shear zone is shown to be sufficient to locally enhance drastically the regularity of the magnetic field lines without requesting a reversed shear. The optimal benefits of low-shear are obtained when the value q 0 of the safety profile in the low-shear zone is sufficiently far from the main resonance values m/n with low m and n, in the case of large enough values of those (m, n) mode amplitudes. A practical implementation in tokamak plasmas should involve electron cyclotron current drive to locally modify the magnetic shear. (paper)

  20. Energy confinement in Doublet III with high-Z limiters

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.; Adcock, S.J.; Baker, D.R.; Blau, F.P.; Brooks, N.H.; Chase, R.P.; DeBoo, J.C.; Ejima, S.; Fairbanks, E.S.; Fisher, R.K.

    1980-02-01

    This report describes the experimental measurements and data analysis techniques used to evaluate the energy confinement in noncircular plasmas produced in Doublet III. Major aspects of the confinement measurements and analysis techniques are summarized. Machine parameters, diagnostic systems and discharge parameters relavent to the confinement measurements are given. Magnetic analysis techniques used to determine the plasma shape are reviewed. Scaling of the on-axis values of electron temperature, confinement time and Z/sub eff/ with plasma density is presented. Comparison with scaling results from other circular tokamaks is discussed. Numerical and analytic techniques developed for calculating the plasma energy confinement time and self-consistent profiles of density, temperature, current, and flux in non-circular geometries are described. These techniques are applied to the data and used to determine the central and global electron energy confinement time for a typical doublet plasma. Additional aspects of the confinement such as the radial dependence of the electron thermal conductivity and the estimated ion temperature are explored with the aid of a non-circular transport simulation code. The results of the confinement measurements are summarized and discussed. A brief summary of the theoretically expected effects of noncircularity on plasma confinement is included for reference as Appendix I.

  1. Suppression of large edge localized modes with a stochastic magnetic boundary in high confinement DIII-D plasmas

    International Nuclear Information System (INIS)

    Evans, T.E.; Moyer, R.A.; Watkins, J.G.

    2005-01-01

    Large sub-millisecond heat pulses due to Type-I ELMs have been eliminated reproducibly in DIII.D for periods approaching 7 energy confinement times with small dc currents driven in a simple magnetic perturbation coil. The current required to eliminate all but a few isolated Type-I ELM impulses during a coil pulse is less than 0.4% of plasma current. Based on vacuum magnetic field line modeling, the perturbation fields resonate strongly with plasma flux surfaces across most of the pedestal region (0.9 ≤ Ψ N ≤ 1.0) when q 95 = 3.7±0.2 creating small remnant magnetic islands surrounded by weakly stochastic field lines. The stored energy, β N , H-mode quality factor and global energy confinement time are unaltered. Although some isolated ELM-like events typically occur, long periods free of large Type-I ELMs (Δt > 4-6 τ E ) have been reproduced numerous times, on multiple experimental run days including cases matching the ITER scenario 2 flux surface shape. Since large Type-I ELM impulses represent a severe constraint on the survivability of the divertor target plates in future fusion devices such as ITER, a proven method of eliminating these impulses is critical for the development of tokamak reactors. Results presented in this paper indicate that non-axisymmetric edge magnetic perturbations could be a promising option for controlling ELMs in future tokamaks such as ITER. (author)

  2. Confinement of an electron in a non-homogeneous magnetic field: Integrable vs superintegrable quantum systems

    International Nuclear Information System (INIS)

    Contreras-Astorga, A.; Negro, J.; Tristao, S.

    2016-01-01

    This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.

  3. Confinement of an electron in a non-homogeneous magnetic field: Integrable vs superintegrable quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Astorga, A., E-mail: alonso.contreras.astorga@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Tristao, S., E-mail: hetsudoyaguiu@gmail.com [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2016-01-08

    This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.

  4. Atomic processes in Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1993-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  5. Confinement Vessel Assay System: Design and Implementation Report

    International Nuclear Information System (INIS)

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Mayo, Douglas R.; Gomez, Cipriano D.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-01-01

    Los Alamos National Laboratory has a number of spherical confinement vessels remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1- to 2-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. We have developed a neutron assay system for the purposes of Materials Control and Accountability (MC and A) measurements of the vessel prior to and after cleanout. We present our approach to confronting the challenges in designing, building, and testing such a system. The system was designed to meet a set of functional and operational requirements. A Monte Carlo model was developed to aid in optimizing the detector design as well as to predict the systematic uncertainty associated with confinement vessel measurements. Initial testing was performed to optimize and determine various measurement parameters, and then the system was characterized using 252 Cf placed a various locations throughout the measurement system. Measurements were also performed with a 252 Cf source placed inside of small steel and HDPE shells to study the effect of moderation. These measurements compare favorably with their MCNPX model equivalent, making us confident that we can rely on the Monte Carlo simulation to predict the systematic uncertainty due to variations in response to material that may be localized at different points within a vessel.

  6. Electron correlation energy in confined two-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.L. [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Montgomery, H.E., E-mail: ed.montgomery@centre.ed [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Sen, K.D. [School of Chemistry, University of Hyderabad, Hyderabad 500 046 (India); Thompson, D.C. [Chemistry Systems and High Performance Computing, Boehringer Ingelheim Pharamaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877 (United States)

    2010-09-27

    Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05-10a{sub 0}. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z{>=}1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy.

  7. Confinement and Isotropization of Galactic Cosmic Rays by Molecular-Cloud Magnetic Mirrors When Turbulent Scattering Is Weak

    International Nuclear Information System (INIS)

    Chandran, Benjamin D. G.

    2000-01-01

    Theoretical studies of magnetohydrodynamic (MHD) turbulence and observations of solar wind fluctuations suggest that MHD turbulence in the interstellar medium is anisotropic at small scales, with smooth variations along the background magnetic field and sharp variations perpendicular to the background field. Turbulence with this anisotropy is inefficient at scattering cosmic rays, and thus the scattering rate ν may be smaller than has been traditionally assumed in diffusion models of Galactic cosmic-ray propagation, at least for cosmic-ray energies E above 1011-1012 eV at which self-confinement is not possible. In this paper, it is shown that Galactic cosmic rays can be effectively confined through magnetic reflection by molecular clouds, even when turbulent scattering is weak. Elmegreen's quasi-fractal model of molecular-cloud structure is used to argue that a typical magnetic field line passes through a molecular cloud complex once every ∼300 pc. Once inside the complex, the field line will in most cases be focused into one or more dense clumps in which the magnetic field can be much stronger than the average field in the intercloud medium (ICM). Cosmic rays following field lines into cloud complexes are most often magnetically reflected back into the ICM, since strong-field regions act as magnetic mirrors. For a broad range of cosmic-ray energies, a cosmic ray initially following some particular field line separates from that field line sufficiently slowly that the cosmic ray can be trapped between neighboring cloud complexes for long periods of time. The suppression of cosmic-ray diffusion due to magnetic trapping is calculated in this paper with the use of phenomenological arguments, asymptotic analysis, and Monte Carlo particle simulations. Formulas for the coefficient of diffusion perpendicular to the Galactic disk are derived for several different parameter regimes within the E-ν plane. In one of these parameter regimes in which scattering is weak, it

  8. Self-organized criticality as a paradigm for transport in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Carreras, B.A.; Newman, D.; Lynch, V.E.; Diamond, P.H.

    1996-01-01

    Many models of natural phenomena manifest the basic hypothesis of self-organized criticality (SOC) [P. Bak, C. Tang, and K. Weisenfeld, Phys. Rev. Lett., 1987, vol. 59, p. 381]. The SOC concept brings together the self-similarity on space and time scales that are common to many of these phenomena. The application of the SOC modeling concept to the plasma dynamics near marginal stability opens new possibilities of understanding issues such as Bohm scaling, profile consistency, broad-band fluctuation spectra with universal characteristics, and fast time scales. In this paper, we review the SOC concept and its possible applications to the study of transport in magnetically confined plasmas

  9. Impact of production systems on swine confinement buildings bioaerosols.

    Science.gov (United States)

    Létourneau, Valérie; Nehmé, Benjamin; Mériaux, Anne; Massé, Daniel; Duchaine, Caroline

    2010-02-01

    Hog production has been substantially intensified in Eastern Canada. Hogs are now fattened in swine confinement buildings with controlled ventilation systems and high animal densities. Newly designed buildings are equipped with conventional manure handling and management systems, shallow or deep litter systems, or source separation systems to manage the large volumes of waste. However, the impacts of those alternative production systems on bioaerosol concentrations within the barns have never been evaluated. Bioaerosols were characterized in 18 modern swine confinement buildings, and the differences in bioaerosol composition in the three different production systems were evaluated. Total dust, endotoxins, culturable actinomycetes, fungi, and bacteria were collected with various apparatuses. The total DNA of the air samples was extracted, and quantitative polymerase chain reaction (PCR) was used to assess the total number of bacterial genomes, as a total (culturable and nonculturable) bacterial assessment. The measured total dust and endotoxin concentrations were not statistically different in the three studied production systems. In buildings with sawdust beds, actinomycetes and molds were found in higher concentrations than in the conventional barns. Aspergillus, Cladosporium, Penicillium, and Scopulariopsis species were identified in all the studied swine confinement buildings. A. flavus, A. terreus, and A. versicolor were abundantly present in the facilities with sawdust beds. Thermotolerant A. fumigatus and Mucor were usually found in all the buildings. The culturable bacteria concentrations were higher in the barns with litters than in the conventional buildings, while real-time PCR revealed nonstatistically different concentrations of total bacteria in all the studied swine confinement buildings. In terms of workers' respiratory health, barns equipped with a solid/liquid separation system may offer better air quality than conventional buildings or barns with

  10. Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause.

    Science.gov (United States)

    Korth, Haje; Tsyganenko, Nikolai A; Johnson, Catherine L; Philpott, Lydia C; Anderson, Brian J; Al Asad, Manar M; Solomon, Sean C; McNutt, Ralph L

    2015-06-01

    Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT R M 3 , where R M is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross-tail current sheet. The cross-tail current is described by a disk-shaped current near the planet and a sheet current at larger (≳ 5  R M ) antisunward distances. The tail currents are constrained by minimizing the root-mean-square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause.

  11. Magnetized Target Fusion (MTF): A Low-Cost Fusion Development Path

    International Nuclear Information System (INIS)

    Lindemuth, I.R.; Siemon, R.E.; Kirkpatrick, R.C.; Reinovsky, R.E.

    1998-01-01

    Simple transport-based scaling laws are derived to show that a density and time regime intermediate between conventional magnetic confinement and conventional inertial confinement offers attractive reductions in system size and energy when compared to magnetic confinement and attractive reductions in heating power and intensity when compared to inertial confinement. This intermediate parameter space appears to be readily accessible by existing and near term pulsed power technologies. Hence, the technology of the Megagauss conference opens up an attractive path to controlled thermonuclear fusion

  12. Fluctuations and confinement in ATF

    International Nuclear Information System (INIS)

    Isler, R.C.; Harris, J.H.; Murakami, M.

    1993-01-01

    In the period immediately prior to the suspension of ATF operation in November, 1991, a great deal of emphasis was palced on investigations of the fundamental mechanisms controlling confinement in this device. At that time, measurements of the density fluctuations throughout the plasma volume indicated the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications were supported by results of dynamic configuration scans of the magnetic fields during which the extent of the magnetic well, shear, and fraction of confined trapped particles were changed continuously. Interpretation of the data from these experiments has been an ongoing exercise. Most recently, analysis of discharges employing strong gas puffing to change density gradients and fluctuation levels have strengthened the view that dissipative trapped electron modes may be present but do not play a significant direct role in energy transport. The present paper summarizes the current understanding concerning the identification of instabilities and their relationship to confinement in ATF

  13. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  14. Progress on axicell MFTF-B superconducting magnet systems

    International Nuclear Information System (INIS)

    Wang, S.T.; Kozman, T.A.; Hanson, C.L.; Shimer, D.W.; VanSant, J.H.; Zbasnik, J.

    1983-01-01

    Since the entire Mirror Fusion Test Facility (MFTF-B) Magnet System was reconfigured from the original A-cell to an axicell design, much progress has been made on the design, fabrication, and installation planning. The axicell MFTF-B magnet array consists of a total of 26 large superconducting main coils. This paper provides an engineering overview of the progress of these coils. Recent studies on the effects of field errors on the plasma at the recircularizing region (transition coils) show that small field errors will generate large displacements of the field lines. These field errors might enhance radial electron heat transport and deteriorate the plasma confinement. Therefore, 16 superconducting trim coils have been designed to correct the coil misalignments. Progress of the trim coils are reported also

  15. Identification of S VIII through S XIV emission lines between 17.5 and 50 nm in a magnetically confined plasma

    Science.gov (United States)

    McCarthy, K. J.; Tamura, N.; Combs, S. K.; García, R.; Hernández Sánchez, J.; Navarro, M.; Panadero, N.; Pastor, I.; Soleto, A.; the TJ-II Team

    2018-03-01

    43 spectral emission lines from F-like to Li-like sulphur ions have been identified in the wavelength range from 17.5 to 50 nm in spectra obtained following tracer injection into plasmas created in a magnetically confined plasma device, the stellarator TJ-II. Plasmas created and maintained in this heliac device with electron cyclotron resonance heating achieve central electron temperatures and densities up to 1.5 keV and 8 × 1018 m-3, respectively. Tracer injections were performed with ≤6 × 1016 atoms of sulphur contained within ˜300 μm diameter polystyrene capsules, termed tracer encapsulated solid pellets, using a gas propulsion system to achieve velocities between 250 and 450 m s-1. Once ablation of the exterior polystyrene shell by plasma particles is completed, the sulphur is deposited in the plasma core where it is ionized up to S+13 and transported about the plasma. In order to aid line identification, which is made using a number of atomic line emission databases, spectra are collected before and after injection using a 1 m focal length normal incidence spectrometer equipped with a CCD camera. This work is motivated by the need to clearly identify sulphur emission lines in the vacuum ultraviolet range of magnetically confined plasmas, as sulphur x-ray emission lines are regularly observed in both tokamak and stellarator plasmas.

  16. New modular heliotron system compatible with closed helical divertor and good plasma confinement

    International Nuclear Information System (INIS)

    Yamazaki, K.; Watanabe, K.Y.

    1995-01-01

    A new helical system ('modular heliotron') with improved modular coils compatible with an efficient closed helical divertor and a good plasma confinement property is proposed, based on a heliotron system with continuous helical coils and one pair of poloidal coils. The physics optimization of this system as a function of the gap angle between adjacent modular coils has been carried out by means of vacuum magnetic surface calculations and finite-beta plasma analyses, and a new improved coil system is invented by combining sectored helical field coils with sectored returning poloidal field coils. A modular heliotron with standard coil winding law (the reference modular heliotron) was previously proposed, but it is found that this was not appropriate to keep a clean helical divertor and high beta configuration when the coil gap becomes large. By modulating the modular coil winding with outside-plus and inside-minus pitch modulation, almost the same good magnetic configuration as that of a conventional heliotron can be produced. The optimal gap angle is determined as a function of the modulation parameter. This improved modular heliotron permits a larger gap angle between adjacent modules and produces a cleaner helical divertor configuration than the reference modular heliotron. All these helical systems are created by only modular coils without poloidal coils. (author). Letter-to-the-editor. 11 refs, 7 figs

  17. Confinement Vessel Assay System: Calibration and Certification Report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Gomez, Cipriano [Retired CMR-OPS: OPERATIONS; Mayo, Douglas R. [Los Alamos National Laboratory; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

    2012-07-17

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le} 100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  18. Confinement Vessel Assay System: Calibration and Certification Report

    International Nuclear Information System (INIS)

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Gomez, Cipriano; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-01-01

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of (le) 100-g 239 Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  19. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.

    Science.gov (United States)

    Dechana, A; Thamboon, P; Boonyawan, D

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.

  20. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dechana, A. [Program of Physics and General Science, Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla 90000 (Thailand); Thamboon, P. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-10-15

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  1. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Science.gov (United States)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  2. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    International Nuclear Information System (INIS)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-01-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al 2 O 3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al 2 O 3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed

  3. Electrostatic-Dipole (ED) Fusion Confinement Studies

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert

    2004-11-01

    The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH

  4. Internal plasma diagnostic with a multichannel magnetic probe system using automatic data acquisition

    International Nuclear Information System (INIS)

    Korten, M.; Carolan, P.G.; Sand, F.; Waelbroeck, F.

    1975-04-01

    A 20-channel magnetic probe system inserted into the plasma is used to measure spatial distributions of poloidal and toroidal magnetic fields in the pulsed toroidal high β-experiment TEE. Plasma parameters, e.g. the β-value, toroidal current density and radial pressure distribution were derived applying static equilibrium theory and can be calculated from the measurements. A data acquisition system used in conjuction with a process computer was operated to obtain the experimental data automatically and to perform the multiple computational tasks. The program system described was built to serve as a first stage of a more common software system applicable for computational data handling for different diagnostics of a plasma physics confinement experiment. (orig.) [de

  5. Plasma confinement apparatus using solenoidal and mirror coils

    Science.gov (United States)

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  6. Confinement improvement with magnetic levitation of a superconducting dipole

    International Nuclear Information System (INIS)

    Garnier, D.T.; Mauel, M.E.; Boxer, A.C.; Ellsworth, J.L.; Kesner, J.

    2009-01-01

    We report the first production of high beta plasma confined in a fully levitated laboratory dipole using neutral gas fuelling and electron cyclotron resonance heating. As compared with previous studies in which the internal coil was supported, levitation results in improved confinement that allows higher-density, higher-beta discharges to be maintained at significantly reduced gas fuelling. Contrary to previous supported dipole plasma results which had the stored energy consisting in a hot electron population, a significant plasma stored energy is shown to reside in the bulk plasma. By eliminating supports used in previous studies, cross-field transport becomes the main loss channel for both the hot and the background species. This leads to a significant improvement in bulk plasma confinement and a dramatic peaking of the density profile. Improved particle confinement assures stability of the hot electron component at reduced neutral pressure.

  7. Maxima of the scattering cross section, the wave vector being quasi orthogonal to the confining magnetic field

    International Nuclear Information System (INIS)

    Meyer, R.-L.

    1975-01-01

    The evolution of the scattering cross section maximas of an electromagnetic wave by a magnetoplasma, the angle between the wave vector and the confining magnetic field approaching π/2 were computed. It is shown that the maximas are shifted toward the roots of the electrostatic dispersion relation in perpendicular propagation. These roots are not exactly the electron cyclotron harmonics [fr

  8. New schemes for confinement of fusion products in stellarators

    International Nuclear Information System (INIS)

    Cooper, W.A.; Isaev, M.Yu.; Heyn, M.F.

    2003-01-01

    Improved energetic-particle confinement is found in new stellarator and toroidal mirror field configurations. The possibility of fulfilling the condition of poloidal closure of the contours of the second adiabatic invariant for all reflected particles is studied for stellarators with poloidally closed contours of the magnetic field B on the magnetic surfaces through computational stellarator optimization. It is shown that by adjusting the geometry this is possible in a major fraction of the plasma volume. The most salient characteristic (as compared to previous quasi-iso dynamic configurations) is a magnetic axis whose curvature vanishes in all cross-sections with an extremum of B on the magnetic axis and renders possible a 3D structure of B with unprecedently high collisionless α-particle confinement. Sectionally isometric vacuum magnetic field toroidal mirror traps are analytically constructed with the help of the paraxial (or 'thin tube') approximation. Application of standard computational stellarator tools to this type of ι = 0 stellarator shows excellent alignment of second adiabatic invariant contours and equilibrium surfaces as well as directly calculated collisionless confinement of energetic particles. (author)

  9. Plasma confinement apparatus using solenoidal and mirror coils

    International Nuclear Information System (INIS)

    Fowler, T.K.; Condit, W.C.

    1979-01-01

    A plasma confinement apparatus is described, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed

  10. The origin of fluctuations and cross-field transport in idealized magnetic confinement systems

    International Nuclear Information System (INIS)

    Riviere, A.C.; Ashby, D.E.T.F.; Cordey, J.G.; Edlington, T.; Rusbridge, M.G.

    1981-01-01

    The study of plasma fluctuations and confinement in idealized systems such as octupoles and levitrons has contributed to the understanding of cross-field transport processes. The linear theory of plasma instabilities that cause fluctuations can predict growth rates and wavelengths around lines of force. However, the theoretical prediction of cross-field transport coefficient is restricted to quasilinear estimates which usually far exceed the measured values. A general view of the results from octupole and levitron experiments shows that under collisional conditions the diffusion coefficient scales in the same way as classical collisional diffusion. Agreement is closely approached in many cases, sometimes even in the presence of fluctuations. Under collisionless conditions, Bohm diffusion scaling is found in the few cases where the scaling law has been determined. There is also experimental and theoretical evidence that long-wavelength low-frequency electric fields (convection cells) can be generated nonlinearly from high-frequency fluctuations and can contribute to cross-field transport. (author)

  11. Symmetries in confined classical Coulomb systems

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1991-01-01

    The properties of charged particles confined in a harmonic oscillator potential have become of increased interest lately in view of the development of techniques in ion traps and storage rings. The symmetries in such systems intrigued the imagination of Ted Hecht in connection with the storage ring at Heidelberg, and so perhaps it is an appropriate subject for this symposium

  12. Analysis of the Plasma Properties Affected by Magnetic Confinement with Special Emphasis on Helicon Discharges

    International Nuclear Information System (INIS)

    Cheng Yuguo; Cheng Mousen; Wang Moge; Yang Xiong; Li Xiaokang

    2014-01-01

    A one-dimensional radial non-uniform fluid model is employed to study plasma behaviors with special emphasis laid on helicon discharges. The plasma density n e , electron temperature T e , electron azimuthal and radial drift velocities are investigated in terms of the plasma radius r p , magnetic field intensity B 0 and gas pressure p 0 , by assuming radial ambipolar diffusion and negligible ion cyclotron movement. The results show that the magnetic confinement plays an important role in the discharge equilibrium, especially at low pressure, which significantly reduces T e compared with the case of a negligible magnetic field effect, and higher B 0 leads to a greater average plasma density. T e shows little variations in the plasma density range of 10 11 cm −3 –10 13 cm −3 for p 0 < 3.0 mTorr. Comparison of the simulation results with experiments suggests that the model can make reasonable predictions of T e in low pressure helicon discharges. (low temperature plasma)

  13. Energy Confinement of both Ohmic and LHW Plasma on EAST

    International Nuclear Information System (INIS)

    Yang Yao; Gao Xiang

    2011-01-01

    Study on the characters of energy confinement in both Ohmic and lower hybrid wave (LHW) discharges on EAST is conducted and the linear Ohmic confinement (LOC), saturated ohmic confinement (SOC) and improved Ohmic confinement (IOC) regimes are investigated in this paper. It is observed that an improved confinement mode characterized by both a drop of D α line intensity and an increase in line average density can be triggered by a gas puffing pulse. (magnetically confined plasma)

  14. Ion accumulation in an electron plasma confined on magnetic surfaces

    International Nuclear Information System (INIS)

    Berkery, John W.; Marksteiner, Quinn R.; Pedersen, Thomas Sunn; Kremer, Jason P.

    2007-01-01

    Accumulation of ions can alter and may destabilize the equilibrium of an electron plasma confined on magnetic surfaces. An analysis of ion sources and ion content in the Columbia Non-neutral Torus (CNT) [T.S. Pedersen, J.P. Kremer, R.G. Lefrancois, Q. Marksteiner, N. Pomphrey, W. Reiersen, F. Dahlgreen, and X. Sarasola, Fusion Sci. Technol. 50, 372 (2006)] is presented. In CNT ions are created preferentially at locations of high electron temperature, near the outer magnetic surfaces. A volumetric integral of n e ν iz gives an ion creation rate of 2.8x10 11 ions/s. This rate of accumulation would cause neutralization of a plasma with 10 11 electrons in about half a second. This is not observed experimentally, however, because currently in CNT ions are lost through recombination on insulated rods. From a steady-state balance between the calculated ion creation and loss rates, the equilibrium ion density in a 2x10 -8 Torr neutral pressure, 7.5x10 11 m -3 electron density plasma in CNT is calculated to be n i =6.2x10 9 m -3 , or 0.8%. The ion density is experimentally measured through the measurement of the ion saturation current on a large area probe to be about 6.0x10 9 m -3 for these plasmas, which is in good agreement with the predicted value

  15. Application of modern mathematical concepts to plasma confinement: Progress report

    International Nuclear Information System (INIS)

    Cary, J.R.

    1989-06-01

    Progress in four research areas has been achieved. A second-order symplectic integration algorithm has been developed and tested. Use of this algorithm allows integration of systems of Hamiltonian equations of motion to be carried out with much less computation. Vacuum field optimization techniques have been improved. One result of this work is a simple method for calculating magnetic island widths. Studies of alpha particle transport in toroidal confinement systems were initiated. This has been used as a test bed for studies of symplectic integrators. Quantum modifications of separatrix crossing theory were calculated. In addition the principal investigator is organizing a US-Japan conference concerning the use of modern techniques for the study of plasma confinement. 14 refs

  16. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    International Nuclear Information System (INIS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-01-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10 −4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains

  17. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  18. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Science.gov (United States)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  19. The Physics Basis of ITER Confinement

    International Nuclear Information System (INIS)

    Wagner, F.

    2009-01-01

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode--the preferred confinement regime of ITER.

  20. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    International Nuclear Information System (INIS)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc; Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia; Matei Ghimbeu, Camelia

    2016-01-01

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  1. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    Science.gov (United States)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc; Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia; Matei Ghimbeu, Camelia

    2016-12-01

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  2. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc [Université de Strasbourg, Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse, CNRS UMR (France); Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia [Institut de Chimie et des Matériaux Paris Est, UMR 7182, CNRS-UPEC (France); Matei Ghimbeu, Camelia, E-mail: camelia.ghimbeu@uha.fr [Université de Strasbourg, Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse, CNRS UMR (France)

    2016-12-15

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  3. Atoms confined in a penetrable potential: effect of the atom position on the electric and magnetic responses

    International Nuclear Information System (INIS)

    Acosta Coden, Diego S; Gomez, Sergio S; Romero, Rodolfo H

    2011-01-01

    We report results of the calculation of polarizability and the nuclear magnetic shielding tensors of two-electron atoms confined within an attractive Gaussian potential well. The electric and magnetic responses are obtained within the random phase approximation (RPA) of the polarization propagator. The influence of the depth and range of the potential on the electronic structure is also studied. The dependence of the parallel (along the displacement) and perpendicular components of the polarizability and shielding tensors on the distance of the atom to the centre of the well is calculated and rationalized as a dissociation-type process of the artificial diatomic molecule formed between the Coulomb and the well potentials.

  4. Atoms confined in a penetrable potential: effect of the atom position on the electric and magnetic responses

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Coden, Diego S; Gomez, Sergio S; Romero, Rodolfo H, E-mail: rhromero@exa.unne.edu.ar [Instituto de Modelado e Innovacion Tecnologica, CONICET and Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400) Corrientes (Argentina)

    2011-02-14

    We report results of the calculation of polarizability and the nuclear magnetic shielding tensors of two-electron atoms confined within an attractive Gaussian potential well. The electric and magnetic responses are obtained within the random phase approximation (RPA) of the polarization propagator. The influence of the depth and range of the potential on the electronic structure is also studied. The dependence of the parallel (along the displacement) and perpendicular components of the polarizability and shielding tensors on the distance of the atom to the centre of the well is calculated and rationalized as a dissociation-type process of the artificial diatomic molecule formed between the Coulomb and the well potentials.

  5. Are Complex Magnetic Field Structures Responsible for the Confined X-class Flares in Super Active Region 12192?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun; Li, Ting; Chen, Huadong, E-mail: zjun@nao.cas.cn, E-mail: hdchen@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-08-10

    From 2014 October 19 to 27, six X-class flares occurred in super active region (AR) 12192. They were all confined flares and were not followed by coronal mass ejections. To examine the structures of the four flares close to the solar disk center from October 22 to 26, we firstly employ composite triple-time images in each flare process to display the stratified structure of these flare loops. The loop structures of each flare in both the lower (171 Å) and higher (131 Å) temperature channels are complex, e.g., the flare loops rooting at flare ribbons are sheared or twisted (enwound) together, and the complex structures were not destroyed during the flares. For the first flare, although the flare loop system appears as a spindle shape, we can estimate its structures from observations, with lengths ranging from 130 to 300 Mm, heights from 65 to 150 Mm, widths at the middle part of the spindle from 40 to 100 Mm, and shear angles from 16° to 90°. Moreover, the flare ribbons display irregular movements, such as the left ribbon fragments of the flare on October 22 sweeping a small region repeatedly, and both ribbons of the flare on October 26 moved along the same direction instead of separating from each other. These irregular movements also imply that the corresponding flare loops are complex, e.g., several sets of flare loops are twisted together. Although previous studies have suggested that the background magnetic fields prevent confined flares from erupting,based on these observations, we suggest that complex flare loop structures may be responsible for these confined flares.

  6. Confined electron assemblies in intense electric and magnetic fields and a generalization of Emden's equation

    International Nuclear Information System (INIS)

    March, N.H.

    2003-09-01

    The Feynman propagator, and its parallel in statistical mechanics, namely the canonical density matrix, are first used to treat both homogeneous and confined electron assemblies in the presence of a static electric field of arbitrary strength. The models are relevant to plasmas having variable electron density and degeneracy. The second topic concerns atomic ions in intense magnetic fields. Semiclassical theory is here applied, non-relativistic and relativistic approximations being invoked. Both treatments are shown to be embraced by a generalization of Emden's equation. (author)

  7. Techniques for measuring the alpha-particle distribution in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Post, D.E.; Mikkelsen, D.R.; Hulse, R.A.; Stewart, L.D.; Weisheit, J.C.

    1979-10-01

    Methods are proposed for measuring the alpha-particle distribution in magnetically confined fusion plasmas using neutral-atom doping beams, ultraviolet spectroscopy, and neutral particle detectors. In the first method single charge exchange reactions, A 0 + He ++ - > A + (He + )*, are used to populate the n=2 and n=3 levels of He + . The ultraviolet photons from the decaying excited states are Doppler shifted by 5 to 10 Angstroms from those produced by the thermalized alpha-particle ash. In the second method double charge exchange reactions, A 0 + He ++ - > A ++ + He 0 , enable fast neutralized alpha-particles to escape from the plasma and be detected by neutral particle analysers. Detector configurations are analyzed, count rates are estimated and their detectability is discussed. A preliminary analysis of the feasibility of the required neutral beams is presented, and exploratory experiments on existing devices are suggested

  8. Duality of two-point functions for confined non-relativistic quark-antiquark systems

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Gasiorowicz, S.G.; Kaus, P.

    1985-01-01

    An analog to the scattering matrix describes the spectrum and high-energy behavior of confined systems. We show that for non-relativistic systems this S-matrix is identical to a two-point function which transparently describes the bound states for all angular momenta. Confined systems can thus be described in a dual fashion. This result makes it possible to study the modification of linear trajectories (originating in a long-range confining potential) due to short range forces which are unknown except for the way in which they modify the asymptotic behavior of the two point function. A type of effective range expansion is one way to calculate the energy shifts. 9 refs

  9. Threshold bubble chamber for measurement of knock-on DT neutron tails from magnetic and inertial confinement experiments

    International Nuclear Information System (INIS)

    Fisher, R.K.; Zaveryaev, V.S.; Trusillo, S.V.

    1996-07-01

    We propose a new open-quotes thresholdclose quotes bubble chamber detector for measurement of knock-on neutron tails. These energetic neutrons result from fusion reactions involving energetic fuel ions created by alpha knock-on collisions in tokamak and other magnetic confinement experiments, and by both alpha and neutron knock-on collisions in inertial confinement fusion (ICF) experiments. The energy spectrum of these neutrons will yield information on the alpha population and energy distribution in tokamaks, and on alpha target physics and ρR measurements in ICF experiments. The bubble chamber should only detect neutrons with energies above a selectable threshold energy controlled by the bubble chamber pressure. The bubble chamber threshold mechanism, detection efficiency, and proposed applications to the International Thermonuclear Experimental Reactor (ITER) and National Ignition Facility (NIF) experiments will be discussed

  10. The effect of hexapole and vertical fields on α-particle confinement in heliotron configurations

    International Nuclear Information System (INIS)

    Isaev, M.Yu.; Watanabe, K.Y.; Yokoyama, M.; Yamazaki, K.

    2003-03-01

    Collisionless mono-energetic α-particle confinement in three-dimensional magnetic fields obtained from the magnetic coils of the Large Helical Device (LHD) is calculated. It is found that the inward shift of magnetic axis due to the vertical field improves the α-particle confinement. In contrast to the vertical field, both large positive and negative hexapole fields do not improve the confinement. The study of the β effect and Mercier criterion calculations for different hexapole fields are also presented. (author)

  11. Universality classes and critical phenomena in confined liquid systems

    Directory of Open Access Journals (Sweden)

    A.V. Chalyi

    2013-06-01

    Full Text Available It is well known that the similar universal behavior of infinite-size (bulk systems of different nature requires the same basic conditions: space dimensionality; number components of order parameter; the type (short- or long-range of the intermolecular interaction; symmetry of the fluctuation part of thermodynamical potential. Basic conditions of similar universal behavior of confined systems needs the same supplementary conditions such as the number of monolayers for a system confinement; low crossover dimensionality, i.e., geometric form of restricted volume; boundary conditions on limiting surfaces; physical properties under consideration. This review paper is aimed at studying all these conditions of similar universal behavior for diffusion processes in confined liquid systems. Special attention was paid to the effects of spatial dispersion and low crossover dimensionality. This allowed us to receive receiving correct nonzero expressions for the diffusion coefficient at the critical point and to take into account the specific geometric form of the confined liquid volume. The problem of 3D⇔2D dimensional crossover was analyzed. To receive a smooth crossover for critical exponents, the Kawasaki-like approach from the theory of mode coupling in critical dynamics was proposed. This ensured a good agreement between data of computer experiment and theoretical calculations of the size dependence of the critical temperature Tc(H of water in slitlike pores. The width of the quasi-elastic scattering peak of slow neutrons near the structural phase transition in the aquatic suspensions of plasmatic membranes (mesostructures with the typical thickness up to 10 nm was studied. It was shown that the width of quasi-elastic peak of neutron scattering decreases due to the process of cell proliferation, i.e., with an increase of the membrane size (including the membrane thickness. Thus, neutron studies could serve as an additional diagnostic test for the

  12. Overview of stoppering of open magnetic containment systems for controlled fusion

    International Nuclear Information System (INIS)

    Hinrichs, C.K.; Lichtenberg, A.J.; Dolan, T.J.

    1977-06-01

    Magnetic confinement systems with the field lines leading out of the system are subject to end loss. The rate of end loss must be reduced to a sufficiently small value in a reactor such that fusion energy is generated more rapidly than energy is lost. The basic open ended systems either have too high an end loss to satisfy the reactor criterion (single mirrors and cusps), or are too long to be considered practical (long solenoids). Various end stoppering schemes have been proposed to reduce the end loss of open ended systems, and thus make the energy balance more favorable. The end stoppering techniques reviewed in this paper are electrostatic, r.f., magnetic, material walls, and hybrid systems. We summarize here the more important characteristics and the potentialities of the first three methods of end stoppering. End stoppering with material walls has been insufficiently explored for further comment and hybrid systems, being mainly beyond the scope of this report, have been summarized in the main text

  13. Quark propagators and correlators in a confining vacuum

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1987-01-01

    Quark propagators, quark-antiquark Green functions and photon selfenergy operator Π (2) (k) are considered in the background (anti)selfdual field. The cases of a homogeneous selfdual field in d=4 and magnetic field in d=2 are studied in detail. Isolated quarks and quark-antiquark pairs are shown to be confined in those cases with the quadratic form of confining potential. In the space filled with domains of the homogeneous field with random directions the confining potential is of linear form, and the colorless qq-bar pair is not confined

  14. Kinetic transport in a magnetically confined and flux-constrained fusion plasma; Transport cinetique dans un plasma de fusion magnetique a flux force

    Energy Technology Data Exchange (ETDEWEB)

    Darmet, G

    2007-11-15

    This work deals with the kinetic transport in a fusion plasma magnetically confined and flux-constrained. The author proposes a new interpretation of the dynamics of zonal flows. The model that has been studied is a gyrokinetic model reduced to the transport of trapped ions. The inter-change stability that is generated allows the study of the kinetic transport of trapped ions. This model has a threshold instability and can be simulated over a few tens confining time for either thermal bath constraint or flux constraint. For thermal baths constraint, the simulation shows a metastable state where zonal flows are prevailing while turbulence is non-existent. In the case of a flux-constraint, zonal flows appear and relax by exchanging energy with system's kinetic energy and turbulence energy. The competition between zonal flows and turbulence can be then simulated by a predator-prey model. 2 regimes can be featured out: an improved confining regime where zonal flows dominate transport and a turbulent regime where zonal flows and turbulent transport are of the same magnitude order. We show that flux as well as the Reynolds tensor play an important role in the dynamics of the zonal flows and that the gyrokinetic description is relevant for all plasma regions. (A.C.)

  15. Quantum confinement effects in low-dimensional systems

    Indian Academy of Sciences (India)

    2015-06-03

    Jun 3, 2015 ... Quantum confinement effects in low-dimensional systems. Figure 5. (a) Various cuts of the three-dimensional data showing energy vs. momen- tum dispersion relations for Ag film of 17 ML thickness on Ge(111). (b) Photo- emission intensity maps along ¯M– ¯ – ¯K direction. (c) Substrate bands replotted ...

  16. Development of compact tritium confinement system using gas separation membrane

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Okuno, Kenji

    1994-01-01

    In order to develop more compact and cost-effective tritium confinement system for fusion reactor, a new system using gas separation membranes has been studied at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute. The preliminary result showed that the gas separation membrane system could reduce processing volume of tritium contaminated gas to more than one order of magnitude compared with the conventional system, and that most of tritiated water vapor (humidity) could be directly recovered by water condenser before passing through dryer such as molecular sieves. More detail investigations of gas separation characteristics of membrane were started to design ITER Atmospheric Detritiation System (ADS). Furthermore, a scaled polyimide membrane module (hollow-filament type) loop was just installed to investigate the actual tritium confinement performance under various ITER-ADS conditions. (author)

  17. On improved confinement in mirror plasmas by a radial electric field

    Science.gov (United States)

    Ågren, O.; Moiseenko, V. E.

    2017-11-01

    A weak radial electric field can suppress radial excursions of a guiding center from its mean magnetic surface. The physical origin of this effect is the smearing action by a poloidal E × B rotation, which tend to cancel out the inward and outward radial drifts. A use of this phenomenon may provide larger margins for magnetic field shaping with radial confinement of particles maintained in the collision free idealization. Mirror fields, stabilized by a quadrupolar field component, are of particular interest for their MHD stability and the possibility to control the quasi neutral radial electric field by biased potential plates outside the confinement region. Flux surface footprints on the end tank wall have to be traced to avoid short-circuiting between biased plates. Assuming a robust biasing procedure, moderate voltage demands for the biased plates seems adequate to cure even the radial excursions of Yushmanov ions which could be locally trapped near the mirrors. Analytical expressions are obtained for a magnetic quadrupolar mirror configuration which possesses minimal radial magnetic drifts in the central confinement region. By adding a weak controlled radial quasi-neutral electric field, the majority of gyro centers are predicted to be forced to move even closer to their respective mean magnetic surface. The gyro center radial coordinate is in such a case an accurate approximation for a constant of motion. By using this constant of motion, the analysis is in a Vlasov description extended to finite β. A correspondence between that Vlasov system and a fluid description with a scalar pressure and an electric potential is verified. The minimum B criterion is considered and implications for flute mode stability in the considered magnetic field is analyzed. By carrying out a long-thin expansion to a higher order, the validity of the calculations are extended to shorter and more compact device designs.

  18. Topological superconductivity, topological confinement, and the vortex quantum Hall effect

    International Nuclear Information System (INIS)

    Diamantini, M. Cristina; Trugenberger, Carlo A.

    2011-01-01

    Topological matter is characterized by the presence of a topological BF term in its long-distance effective action. Topological defects due to the compactness of the U(1) gauge fields induce quantum phase transitions between topological insulators, topological superconductors, and topological confinement. In conventional superconductivity, because of spontaneous symmetry breaking, the photon acquires a mass due to the Anderson-Higgs mechanism. In this paper we derive the corresponding effective actions for the electromagnetic field in topological superconductors and topological confinement phases. In topological superconductors magnetic flux is confined and the photon acquires a topological mass through the BF mechanism: no symmetry breaking is involved, the ground state has topological order, and the transition is induced by quantum fluctuations. In topological confinement, instead, electric charge is linearly confined and the photon becomes a massive antisymmetric tensor via the Stueckelberg mechanism. Oblique confinement phases arise when the string condensate carries both magnetic and electric flux (dyonic strings). Such phases are characterized by a vortex quantum Hall effect potentially relevant for the dissipationless transport of information stored on vortices.

  19. Magnetic moments of confined quarks and baryons in an independent-quark model based on Dirac equation with power-law potential

    International Nuclear Information System (INIS)

    Barik, N.; Das, M.

    1983-01-01

    The effect of confinement on the magnetic moment of a quark has been studied in a simple independent-quark model based on the Dirac equation with a power-law potential. The magnetic moments so obtained for the constituent quarks, which are found to be significantly different from their corresponding Dirac moments, are used in predicting the magnetic moments of baryons in the nucleon octet as well as those in the charmed and b-flavored sectors. We not only get an improved result for the proton magnetic moment, but the calculation for the rest of the nucleon octet also turns out to be in reasonable agreement with experiment. The overall predictions for the charmed and b-flavored baryons are also comparable with other model predictions

  20. Are low-dimensional dynamics typical in magnetically confined plasmas?

    International Nuclear Information System (INIS)

    Ball, R.; Dewar, R.L.

    2000-01-01

    Full text: Since 1988 there have been many serious attempts to construct low-dimensional dynamical systems that model L-H transitions and associated oscillatory phenomena in magnetically confined plasmas. Such models usually consist of coupled ordinary differential equations in a few dynamical state variables and several parameters that represent physical properties or external controls. The advantages of a unified, low-dimensional approach to modelling plasma behaviour are multifold. Most importantly, the qualitative analysis of nonlinear ODE and algebraic systems is supported by a substantial body of theory. The toolkits of singularity and stability theory are well-developed and accessible, and contain the right tools for the job of charting the state and parameter space. One of the driving forces behind the development of low-dimensional dynamical models is the predictive potential of a parameter map. For example, a model that talks of the shape and extent of hysteresis in the L-H transition would help engineers who are interested in controlling access to H-mode. We can express this problem another way: given the enormous number of variables and parameters that could be varied around a hysteretic regime, it would be cheaper to know in advance which ones actually do influence the quality and quantity of the hysteresis. The quest for a low-dimensional state space that contains the qualitative dynamics of L-H transitions also introduces other problems. We need to identify the essential (few) dynamical variables and the essential (few) independent parameter groups, clarify the mechanisms for the feedback that is modelled by nonlinear terms, and identify symmetries in the physics. Before jumping the gun on these questions the fundamental issue should be addressed of whether a confined plasma, having many important length and time scales, steep gradients, strong anisotropy, and an uncountable multiplicity of states, can indeed exhibit low-dimensional dynamics. In this

  1. Nonradiative recombination onto shallow bound states in confined systems in electric field

    International Nuclear Information System (INIS)

    Sinyavskij, Eh.P.; Rusanov, A.M.

    1999-01-01

    A study has been made of the one-phonon recombination of carriers onto shallow impurity states in parabolic quantum wells in the longitudinal electric field. It has been found that processes of the one-phonon recombination in confined systems occur in a more active way the in a bulk material.The possibility of electrically induced one-quantum transitions in confined systems is being discussed

  2. Threshold bubble chamber for measurement of knock-on DT neutron tails from magnetic and inertial confinement experiments

    International Nuclear Information System (INIS)

    Fisher, R.K.; Zaveryaev, V.S.; Trusillo, S.V.

    1997-01-01

    We propose a new open-quotes thresholdclose quotes bubble chamber detector for measurement of knock-on neutron tails. These energetic neutrons result from fusion reactions involving energetic fuel ions created by alpha knock-on collisions in tokamak and other magnetic confinement experiments, and by both alpha and neutron knock-on collisions in inertial confinement fusion (ICF) experiments. The energy spectrum of these neutrons will yield information on the alpha population and energy distribution in tokamaks, and on alpha target physics and ρR measurements in ICF experiments. The bubble chamber should only detect neutrons with energies above a selectable threshold energy controlled by the bubble chamber pressure. The bubble chamber threshold mechanism, detection efficiency, and proposed applications to the International Thermonuclear Experimental Reactor and National Ignition Facility experiments will be discussed. copyright 1997 American Institute of Physics

  3. Absence of effects of an in-plane magnetic field in a quasi-two-dimensional electron system

    Science.gov (United States)

    Brandt, F. T.; Sánchez-Monroy, J. A.

    2018-03-01

    The dynamics of a quasi-two-dimensional electron system (q2DES) in the presence of a tilted magnetic field is reconsidered employing the thin-layer method. We derive the effective equations for relativistic and nonrelativistic q2DESs. Through a perturbative expansion, we show that while the magnetic length is much greater than the confinement width, the in-plane magnetic field only affects the particle dynamics through the spin. Therefore, effects due to an in-plane magnetic vector potential reported previously in the literature for 2D quantum rings, 2D quantum dots and graphene are fictitious. In particular, the so-called pseudo chiral magnetic effect recently proposed in graphene is not realistic.

  4. Magnetic-Field Control Of Tunnel-Coupling In Strongly Confined One-Dimensional Electron Systems

    Science.gov (United States)

    Fischer, S. F.; Apetrii, G.; Kunze, U.; Schuh, D.; Abstreiter, G.

    2007-04-01

    One-dimensional (1D) ballistic electron transport is studied through stacked 1D quantum conductors separated by a thin tunneling barrier. The 1D electron systems of large 1D subband spacings (more than 10 meV) allow single mode operation. Degeneracies of 1D subbands of equal lateral mode index are lifted by the formation of symmetric and antisymmetric states and are depicted by anti-crossings of transconductance maxima. We observe a mode-dependent turnover from level anti-crossings to crossings in longitudinal magnetic fields.

  5. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Grierson, B. A., E-mail: bgriers@pppl.gov; Nazikian, R. M.; Solomon, W. M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Burrell, K. H.; Garofalo, A. M.; Belli, E. A.; Staebler, G. M.; Evans, T. E.; Smith, S. P.; Chrobak, C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Fenstermacher, M. E. [Lawerence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); McKee, G. R. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53796 (United States); Orlov, D. M. [Center for Energy Research, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Chrystal, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States)

    2015-05-15

    Impurity transport in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP), ELM-suppression, and QH-mode, the confinement time of fluorine (Z = 9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection, the impurity particle confinement time compared to the energy confinement time is in the range of τ{sub p}/τ{sub e}≈2−3. In QH-mode operation, the impurity confinement time is shown to be smaller for intense, coherent magnetic, and density fluctuations of the edge harmonic oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma, the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius, the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2–3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient is higher inside of ρ=0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.

  6. Formation of Magnetic Flux Ropes during a Confined Flaring Well before the Onset of a Pair of Major Coronal Mass Ejections

    Science.gov (United States)

    Chintzoglou, Georgios; Patsourakos, Spiros; Vourlidas, Angelos

    2015-08-01

    NOAA active region (AR) 11429 was the source of twin super-fast coronal mass ejections (CMEs). The CMEs took place within an hour from each other, with the onset of the first taking place in the beginning of 2012 March 7. This AR fulfills all the requirements for a “super active region” namely, Hale's law incompatibility and a δ-spot magnetic configuration. One of the biggest storms of Solar Cycle 24 to date ({D}{st}=-143 nT) was associated with one of these events. Magnetic flux ropes (MFRs) are twisted magnetic structures in the corona, best seen in ˜10 MK hot plasma emission and are often considered the core of erupting structures. However, their “dormant” existence in the solar atmosphere (i.e., prior to eruptions), is an open question. Aided by multi-wavelength observations by the Solar Dynamics Observatory (SDO) and by the Solar Terrestrial Relations Observatory (STEREO) and a nonlinear force-free model for the coronal magnetic field, our work uncovers two separate, weakly twisted magnetic flux systems which suggest the existence of pre-eruption MFRs that eventually became the seeds of the two CMEs. The MFRs could have been formed during confined (i.e., not leading to major CMEs) flaring and sub-flaring events which took place the day before the two CMEs in the host AR 11429.

  7. Assessment of the critical engineering data needs for the commercialization of magnetic confinement fusion

    International Nuclear Information System (INIS)

    Waganer, L.M.; Zuckerman, D.S.

    1983-01-01

    A survey of twenty-two recent conceptual fusion reactor designs was conducted to ascertain both generic and specific engineering data needs critical for the commercialization of magnetic confinement fusion (MCF). Design experts or advocates for each concept were queried as to the more critical engineering issues and data needs affecting the achievement of commercialization. For each concept, the technical issues were identified and the data needs quantified. Issues and data needs were then ranked based upon the experts' perceptions of the relative importance of each to the concept. The issues encompassed all aspects of the fusion reactor plant design including materials, performance, maintainability, operability, cost, safety and resources

  8. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, A., E-mail: Atefeh.Fathi115@gmail.com [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Feghhi, S.A.H.; Sadati, S.M. [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Ebrahimibasabi, E. [Department of Physics, Shahrood University of Technology, 3619995161, Shahrood (Iran, Islamic Republic of)

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  9. Possible in-lattice confinement fusion (LCF). Dynamic application of atomic and nuclear data

    International Nuclear Information System (INIS)

    Kawarasaki, Yuuki

    1995-01-01

    New scheme of a nuclear fusion reactor system is proposed, the basic concept of which comes from ingenious combination of hitherto developed techniques and verified facts; 1) so-called cold fusion (CF), 2) plasma of both magnetic confinement fusion (MCF) and inertial confinement fusion (ICF), and 3) accelerator-based D-T(D) neutron source. Details of the LCF reactor physics require dynamics of atomic data as well as nuclear data; interaction of ions with matters in solid and the problems of radiation damage. (author)

  10. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    Science.gov (United States)

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  11. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Izotov, I. V.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Bagryansky, P. A.; Beklemishev, A. D.; Prikhodko, V. V.

    2012-01-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap (''vortex'' confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of ''vortex'' confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  12. Confinement sensitivity in quantum dot singlet-triplet relaxation

    Science.gov (United States)

    Wesslén, C. J.; Lindroth, E.

    2017-11-01

    Spin-orbit mediated phonon relaxation in a two-dimensional quantum dot is investigated using different confining potentials. Elliptical harmonic oscillator and cylindrical well results are compared to each other in the case of a two-electron GaAs quantum dot subjected to a tilted magnetic field. The lowest energy set of two-body singlet and triplet states are calculated including spin-orbit and magnetic effects. These are used to calculate the phonon induced transition rate from the excited triplet to the ground state singlet for magnetic fields up to where the states cross. The roll of the cubic Dresselhaus effect, which is found to be much more important than previously assumed, and the positioning of ‘spin hot-spots’ are discussed and relaxation rates for a few different systems are exhibited.

  13. Effect of Neoclassical Transport Optimization on Energetic Ion Confinement in LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamada, H.; Sasao, M.

    2004-01-01

    Confinement of energetic ions from neutral beam injection heating is investigated by changing the magnetic field configuration of the Large Helical Device from a classical heliotron configuration to an optimized neoclassical transport configuration to a level typical of ''advanced stellarators.'' The experimental results show the highest count rate of fast neutral particles not in the optimized configuration but in the inward-shifted one. The GNET simulation results show a relatively good agreement with the experimental results, and they also show a lower energy loss rate in the optimized configuration. This contradiction can be explained by the radial profile of the energetic ions. The relatively good agreement between experimental and simulation results suggest that ripple transport (neoclassical) dominates the energetic ion confinement and that the optimization process is effective in improving confinement in helical systems

  14. Feedback control for magnetic island suppression in tokamaks

    NARCIS (Netherlands)

    Hennen, B.A.

    2011-01-01

    A real-time feedback control system has been developed that finds, tracks, suppresses and/or stabilizes resistive magnetic instabilities in a nuclear fusion plasma. In a tokamak, magnetic fields confine a fusion plasma in a topology of toroidally nested magnetic surfaces. The power produced by the

  15. Stable confinement of toroidal electron plasma in an internal conductor device Prototype-Ring Trap

    International Nuclear Information System (INIS)

    Saitoh, H.; Yoshida, Z.; Watanabe, S.

    2005-01-01

    A pure electron plasma has been produced in an internal conductor device Prototype-Ring Trap (Proto-RT). The temporal evolution of the electron plasma was investigated by the measurement of electrostatic fluctuations. Stable confinement was realized when the potential profile adjusted to match the magnetic surfaces. The confinement time varies as a function of the magnetic field strength and the neutral gas pressure, and is comparable to the diffusion time of electrons determined by the classical collisions with neutral gas. Although the addition of a toroidal magnetic field stabilized the electrostatic fluctuation of the plasma, the effects of the magnetic shear shortened the stable confinement time, possibly because of the obstacles of coil support structures

  16. Confinement of electron beams by mesh arrays in a relativistic klystron amplifier

    International Nuclear Information System (INIS)

    Wang Pingshan; Gu Binlin

    1998-01-01

    Theoretical and experimental results of intense beam confinement by conducting meshes in a relativistic klystron amplifier (RKA) are presented. Electron motions in a steady intense electron beam confined by conducting meshes are analyzed with an approximate space charge field distribution. And the conditions for steady beam transportation are discussed. Experimental results of a long distance (60 cm) transportation of an intense beam (400 kV, 2.5 kA) generated by a linear induction accelerator are presented. Experimental results of modulated beam transportation confined by the mesh array are presented also. The results show that the focusing ability of the conducting meshes is not very sensitive to the beam energy. And the meshes can be used effectively in a RKA to replace the magnetic field system

  17. Enhanced confinement phenomenology in magnetic fusion plasmas: Is it unique in physics?

    International Nuclear Information System (INIS)

    Dendy, R.O.

    2002-01-01

    There is substantial experimental evidence that simple diffusive models for turbulent transport are insufficient to produce all the confinement phenomena observed in tokamaks. This paper reports on the emerging linkage between rapid, nonlocal, nondiffusive transport and overall confinement phenomenology including edge pedestals, enhanced confinement, ELMs, and internal transport barriers. Modern statistical physics techniques are used to construct simple models that generate many of the distinctive elements of global tokamak confinement phenomenology. The similarities are deep and are quantified. These results imply that current observations of avalanching transport in tokamaks may be deeply linked to the fundamental global features of tokamak plasma confinement. (author)

  18. Sheared-flow induced confinement transition in a linear magnetized plasma

    Science.gov (United States)

    Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.

    2012-01-01

    A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.

  19. Sheared-flow induced confinement transition in a linear magnetized plasma

    International Nuclear Information System (INIS)

    Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.

    2012-01-01

    A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn/n∼eδφ/kT e ∼0.5) are observed at the plasma edge, accompanied by a large density gradient (L n =∇lnn -1 ∼2cm) and shearing rate (γ∼300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (V bias ) on the obstacle and the axial magnetic field (B z ) strength. In cases with low V bias and large B z , improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by ExB drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller B z , large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m=1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.

  20. Mechanics of magnetic fluid column in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Polunin, V.M.; Ryapolov, P.A., E-mail: r-piter@yandex.ru; Platonov, V.B.

    2017-06-01

    Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.

  1. Simulation of transition dynamics to high confinement in fusion plasmas

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Xu, G. S.; Madsen, Jens

    2015-01-01

    The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST...

  2. Tokamak-like confinement at high beta and low field in the reversed field pinch

    International Nuclear Information System (INIS)

    Sarff, J S; Anderson, J K; Biewer, T M; Brower, D L; Chapman, B E; Chattopadhyay, P K; Craig, D; Deng, B; Hartog, D J Den; Ding, W X; Fiksel, G; Forest, C B; Goetz, J A; O'Connell, R; Prager, S C; Thomas, M A

    2003-01-01

    For several reasons, improved-confinement achieved in the reversed field pinch (RFP) during the last few years can be characterized as 'tokamak-like'. Historically, RFP plasmas have had relatively poor confinement due to tearing instability which causes magnetic stochasticity and enhanced transport. Tearing reduction is achieved through modification of the inductive current drive, which dramatically improves confinement. The electron temperature increases to >1 keV and the electron heat diffusivity decreases to approx. 5 m 2 s -1 , comparable with the transport level expected in a tokamak plasma of the same size and current. This corresponds to a 10-fold increase in global energy confinement. Runaway electrons are confined, and Fokker-Planck modelling of the electron distribution reveals that the diffusion at high energy is independent of the parallel velocity, uncharacteristic of stochastic transport. Improved-confinement occurs simultaneously with increased beta approx. 15%, while maintaining a magnetic field strength ten times weaker than a comparable tokamak. Measurements of the current, magnetic, and electric field profiles show that a simple Ohm's Law applies to this RFP sustained without dynamo relaxation

  3. Non-unique monopole oscillations of harmonically confined Yukawa systems

    Science.gov (United States)

    Ducatman, Samuel; Henning, Christian; Kaehlert, Hanno; Bonitz, Michael

    2008-11-01

    Recently it was shown that the Breathing Mode (BM), the mode of uniform radial expansion and contraction, which is well known from harmonically confined Coulomb systems [1], does not exist in general for other systems [2]. As a consequence the monopole oscillation (MO), the radial collective excitation, is not unique, but there are several MO with different frequencies. Within this work we show simulation results of those monopole oscillations of 2-dimensional harmonically confined Yukawa systems, which are known from, e.g., dusty plasma crystals [3,4]. We present the corresponding spectrum of the particle motion, including analysis of the frequencies found, and compare with theoretical investigations.[1] D.H.E. Dubin and J.P. Schiffer, Phys. Rev. E 53, 5249 (1996)[2] C. Henning at al., accepted for publication in Phys. Rev. Lett. (2008)[3] A. Melzer et al., Phys. Rev. Lett. 87, 115002 (2001)[4] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)

  4. Radiation control in fusion plasmas by magnetic confinement

    International Nuclear Information System (INIS)

    Dachicourt, R.

    2012-10-01

    The present work addresses two important issues for the industrial use of fusion: plasma radiation control, as a part of the more general power handling issue, and high density tokamak operation. These two issues will be most critical in the demonstration reactor, called DEMO, intermediate step between ITER and a future commercial reactor. For DEMO, the need to radiate a large fraction of the power so as to limit the peak power load on the divertor will be a key constraint. High confinement will have to be combined with high radiated power fraction, and the required level of plasma purity. The main achievement of this thesis is to have shown experimental evidence of the existence of a stable plasma regime meeting the most critical requirements of a DEMO scenario: an electron density up to 40% above the Greenwald value, together with a fraction of radiated power close to 80%, with a good energy confinement and limited dilution. The plasma is additionally heated with ion cyclotron waves in a central electron heating scenario, featuring alpha particle heating. The original observations reported in this work bring highly valuable new pieces of information both to the physics of the tokamak edge layer and to the construction of an 'integrated operational scenario' required to successfully operate fusion devices. In the way for getting high density plasmas, the new observations involve the following topics. First, the formation of a poloidal asymmetry in the edge electron density profile, with a maximum density located close to toroidal pumped limiter. This asymmetry occurs inside the separatrix, with a constant plasma pressure on magnetic surfaces. Secondly, a correlative decrease of the electron temperature in the same edge region. Thirdly, the excellent coupling capabilities of the ICRH waves, up to a central line averaged electron density of 1.4 times the Greenwald density. Fourthly, a poloidally asymmetric edge radiation region, providing the dissipation of 80% of

  5. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  6. Runaway electrons dynamics and confinement in Tore-Supra

    International Nuclear Information System (INIS)

    Chatelier, M.; Geraud, A.; Joyer, P.; Martin, G.; Rax, J.M.

    1989-01-01

    The lack of energy of runaway electrons, confined in Tore Supra tokamak, is studied. Ohmic discharges, obtained with helium gas, exhibit a small amount of runaway electrons on both hard X-ray monitors and neutron sensors. The observations show an important lack of energy for runaway electrons confined in Tore Supra. It is assumed to be dued to a small pitch-angle scattering (a few degrees), and many candidates for this are compared: the strongest known one collisions seems not to be enough by an order of magnitude. Density and magnetic scans on Tore Supra are needed to discriminate between enhanced collisional scattering processes and purely magnetic phenomena

  7. Confinement/deconfinement transition from symmetry breaking in gauge/gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Čubrović, Mihailo [Institute for Theoretical Physics, University of Cologne,Zülpicher Strasse 77, D-50937, Cologne (Germany)

    2016-10-19

    We study the confinement/deconfinement transition in a strongly coupled system triggered by an independent symmetry-breaking quantum phase transition in gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS near-boundary behavior and soft wall interior at zero scalar condensate. We study the cases of neutral and charged condensate separately. In the former case the condensation breaks the discrete ℤ{sub 2} symmetry while a charged condensate breaks the continuous U(1) symmetry. After the condensation of the order parameter, the non-zero vacuum expectation value of the scalar couples to the dilaton, changing the soft wall geometry into a non-confining and anisotropically scale-invariant infrared metric. In other words, the formation of long-range order is immediately followed by the deconfinement transition and the two critical points coincide. The confined phase has a scale — the confinement scale (energy gap) which vanishes in the deconfined case. Therefore, the breaking of the symmetry of the scalar (ℤ{sub 2} or U(1)) in turn restores the scaling symmetry in the system and neither phase has a higher overall symmetry than the other. When the scalar is charged the phase transition is continuous which goes against the Ginzburg-Landau theory where such transitions generically only occur discontinuously. This phenomenon has some commonalities with the scenario of deconfined criticality. The mechanism we have found has applications mainly in effective field theories such as quantum magnetic systems. We briefly discuss these applications and the relation to real-world systems.

  8. Measurement of magnetic properties of confined compact toroid plasma (spheromak)

    International Nuclear Information System (INIS)

    Hwang, Fu-Kwun.

    1991-01-01

    The theoretical aspect of the spheromak is described in this paper. The MS machine hardware will be explored along with the formation scheme and diagnostic systems. The magnetic pickup probes, their calibration procedures and the data analysis methods will be discussed. Observations from the probe measurements and magnetic properties of the MS spheromak are considered. The axisymmetric Grad-Shafranov equilibrium code calculations are presented and compared with the measurements. Magnetic helicity and its correlation with the experimental observations is described

  9. On the Aharonov-Casher system and the Landau-Aharonov-Casher system confined to a two-dimensional quantum ring

    International Nuclear Information System (INIS)

    Bakke, K.; Furtado, C.

    2012-01-01

    We study the quantum dynamics of a neutral particle in the Aharonov-Casher system and in the Landau-Aharonov-Casher system confined to a two-dimensional quantum ring, a quantum dot, and a quantum anti-dot potentials described by the Tan-Inkson model [W.-C. Tan and J. C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)]. We show, in the Aharonov-Casher system, that bound states can be achieved when the neutral particle is confined to the two-dimensional quantum ring and the quantum dot and discuss the appearance of persistent currents. In the Landau-Aharonov-Casher system, we show that bound states can be achieved when the neutral particle is confined to the quantum anti-dot, quantum dot, and the two-dimensional quantum ring, but there are no persistent currents.

  10. Gate-defined Quantum Confinement in Suspended Bilayer Graphene

    Science.gov (United States)

    Allen, Monica

    2013-03-01

    Quantum confined devices in carbon-based materials offer unique possibilities for applications ranging from quantum computation to sensing. In particular, nanostructured carbon is a promising candidate for spin-based quantum computation due to the ability to suppress hyperfine coupling to nuclear spins, a dominant source of spin decoherence. Yet graphene lacks an intrinsic bandgap, which poses a serious challenge for the creation of such devices. We present a novel approach to quantum confinement utilizing tunnel barriers defined by local electric fields that break sublattice symmetry in suspended bilayer graphene. This technique electrostatically confines charges via band structure control, thereby eliminating the edge and substrate disorder that hinders on-chip etched nanostructures to date. We report clean single electron tunneling through gate-defined quantum dots in two regimes: at zero magnetic field using the energy gap induced by a perpendicular electric field and at finite magnetic fields using Landau level confinement. The observed Coulomb blockade periodicity agrees with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates quantum confinement with pristine device quality and access to vibrational modes, enabling wide applications from electromechanical sensors to quantum bits. More broadly, the ability to externally tailor the graphene bandgap over nanometer scales opens a new unexplored avenue for creating quantum devices.

  11. Aspects of collisionless magnetic reconnection in asymmetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha [Heliophysics Science Division, Code 670, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Zenitani, Seiji [National Astronomical Observatory of Japan, Tokyo (Japan); Birn, Joachim [Space Science Institute, Boulder, Colorado 80301 (United States)

    2013-06-15

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.

  12. Aspects of collisionless magnetic reconnection in asymmetric systems

    International Nuclear Information System (INIS)

    Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha; Zenitani, Seiji; Birn, Joachim

    2013-01-01

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide

  13. Aspects of Collisionless Magnetic Reconnection in Asymmetric Systems

    Science.gov (United States)

    Hesse, Michael; Aunai, Nicolas; Zeitani, Seiji; Kuznetsova, Masha; Birn, Joachim

    2013-01-01

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with non-vanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.

  14. Methane Hydrate in Confined Spaces: An Alternative Storage System.

    Science.gov (United States)

    Borchardt, Lars; Casco, Mirian Elizabeth; Silvestre-Albero, Joaquin

    2018-03-14

    Methane hydrate inheres the great potential to be a nature-inspired alternative for chemical energy storage, as it allows to store large amounts of methane in a dense solid phase. The embedment of methane hydrate in the confined environment of porous materials can be capitalized for potential applications as its physicochemical properties, such as the formation kinetics or pressure and temperature stability, are significantly changed compared to the bulk system. We review this topic from a materials scientific perspective by considering porous carbons, silica, clays, zeolites, and polymers as host structures for methane hydrate formation. We discuss the contribution of advanced characterization techniques and theoretical simulations towards the elucidation of the methane hydrate formation and dissociation process within the confined space. We outline the scientific challenges this system is currently facing and look on possible future applications for this technology. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Skyrmion states in thin confined polygonal nanostructures

    Science.gov (United States)

    Pepper, Ryan Alexander; Beg, Marijan; Cortés-Ortuño, David; Kluyver, Thomas; Bisotti, Marc-Antonio; Carey, Rebecca; Vousden, Mark; Albert, Maximilian; Wang, Weiwei; Hovorka, Ondrej; Fangohr, Hans

    2018-03-01

    Recent studies have demonstrated that skyrmionic states can be the ground state in thin-film FeGe disk nanostructures in the absence of a stabilising applied magnetic field. In this work, we advance this understanding by investigating to what extent this stabilisation of skyrmionic structures through confinement exists in geometries that do not match the cylindrical symmetry of the skyrmion—such as squares and triangles. Using simulation, we show that skyrmionic states can form the ground state for a range of system sizes in both triangular and square-shaped FeGe nanostructures of 10 nm thickness in the absence of an applied field. We further provide data to assist in the experimental verification of our prediction; to imitate an experiment where the system is saturated with a strong applied field before the field is removed, we compute the time evolution and show the final equilibrium configuration of magnetization fields, starting from a uniform alignment.

  16. ExB flow shear and enhanced confinement in the Madison Symmetric Torus reversed-field pinch

    International Nuclear Information System (INIS)

    Chapman, B.E.; Almagri, A.F.; Anderson, J.K.; Chiang, C.; Craig, D.; Fiksel, G.; Lanier, N.E.; Prager, S.C.; Sarff, J.S.; Stoneking, M.R.; Terry, P.W.

    1998-01-01

    Strong ExB flow shear occurs in the edge of three types of enhanced confinement discharge in the Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch. Measurements in standard (low confinement) discharges indicate that global magnetic fluctuations drive particle and energy transport in the plasma core, while electrostatic fluctuations drive particle transport in the plasma edge. This paper explores possible contributions of ExB flow shear to the reduction of both the magnetic and electrostatic fluctuations and, thus, the improved confinement. In one case, shear in the ExB flow occurs when the edge plasma is biased. Biased discharges exhibit changes in the edge electrostatic fluctuations and improved particle confinement. In two other cases, the flow shear emerges (1) when auxiliary current is driven in the edge and (2) spontaneously, following sawtooth crashes. Both edge electrostatic and global magnetic fluctuations are reduced in these discharges, and both particle and energy confinement improve. copyright 1998 American Institute of Physics

  17. Detailed Structural Analysis of Critical Wendelstein 7-X Magnet System Components

    International Nuclear Information System (INIS)

    Egorov, K.

    2006-01-01

    The Wendelstein 7-X (W7-X) stellarator experiment is presently under construction and assembly in Greifswald, Germany. The goal of the experiment is to verify that the stellarator magnetic confinement concept is a viable option for a fusion reactor. The complex W7-X magnet system requires a multi-level approach to structural analysis for which two types of finite element models are used: Firstly, global models having reasonably coarse meshes with a number of simplifications and assumptions, and secondly, local models with detailed meshes of critical regions and elements. Widely known sub-modelling technique with boundary conditions extracted from the global models is one of the approaches for local analysis with high assessment efficiency. In particular, the winding pack (WP) of the magnet coils is simulated in the global model as a homogeneous orthotropic material with effective mechanical characteristic representing its real composite structure. This assumption allows assessing the whole magnet system in terms of general structural factors like forces and moments on the support elements, displacements of the main components, deformation and stress in the coil casings, etc. In a second step local models with a detailed description of more critical WP zones are considered in order to analyze their internal components like conductor jackets, turn insulation, etc. This paper provides an overview of local analyses of several critical W7-X magnet system components with particular attention on the coil winding packs. (author)

  18. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Quebec J3X 1S2 (Canada); Beard, J.; Billette, J.; Portugall, O. [LNCMI, UPR 3228, CNRS-UFJ-UPS-INSA, 31400 Toulouse (France); Ciardi, A. [LERMA, Observatoire de Paris, Ecole Normale Superieure, Universite Pierre et Marie Curie, CNRS UMR 8112, Paris (France); Vinci, T.; Albrecht, J.; Chen, S. N.; Da Silva, D.; Hirardin, B.; Nakatsutsumi, M.; Romagnagni, L.; Simond, S.; Veuillot, E.; Fuchs, J. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Burris-Mog, T.; Dittrich, S.; Herrmannsdoerfer, T.; Kroll, F.; Nitsche, S. [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); and others

    2013-04-15

    The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given.

  19. Project for qualification of the Kozloduy confinement system

    International Nuclear Information System (INIS)

    Montes Rodriguez, J.L.

    1993-01-01

    One of the projects awarded to Empresarios Agrupados within the Six-Month WANO Programme for Kozloduy NPP, financed through the European Community's PHARE Programme, relates to the first tasks of plant confinement system qualification. Development of this project - the results of which will serve as a reference for other power plants with VVER-440/230 models - aroused considerable interest in the Bulgarian nuclear community as well as in international entities which render assistance to Eastern power plants. In fact, this is one of the few projects in the programme which takes into account hardware-oriented activities to be carried out urgently in the plant. The VVER-440/230 confinement system performs functions parallel to the containment system of Western PWR reactors. However, it differs significantly in its criteria and operation details. These important differences form the basis for a rational and prudent application of the essence of Western codes and standards relating to the qualification of these systems. The criteria which are developed to make this application viable constitute the most challenging and, at the same time, most risky part of this job. The project will be in its final stages when the 18th Annual Meeting of the Spanish Nuclear Society is held; it is therefore likely that this paper will advance the results and conclusions expected. (author)

  20. Plasma confinement of Nagoya high-beta toroidal-pinch experiments

    International Nuclear Information System (INIS)

    Hirano, K.; Kitagawa, S.; Wakatani, M.; Kita, Y.; Yamada, S.; Yamaguchi, S.; Sato, K.; Aizawa, T.; Osanai, Y.; Noda, N.

    1977-01-01

    Two different types of high-β toroidal pinch experiments, STP [1] and CCT [2,3], have been done to study the confinement of the plasma produced by a theta-pinch. The STP is an axisymmetric toroidal pinch of high-β tokamak type, while the CCT consists of multiply connected periodic toroidal traps. Internal current-carrying copper rings are essential to the CCT. Since both apparatuses use the same fast capacitor bank system, they produce rather similar plasma temperatures and densities. The observed laser scattering temperature and density is about 50 eV and 4x10 15 cm -3 , respectively, when the filling pressure is 5 mtorr. In the STP experiment, strong correlations are found between the βsub(p) value and the amplitude of m=2 mode. It has a minimum around the value of βsub(p) of 0.8. The disruptive instability is observed to expand the pinched plasma column without lowering the plasma temperature. Just before the disruption begins, the q value around the magnetic axis becomes far less than 1 and an increase of the amplitude of m=2 mode is seen. The CCT also shows rapid plasma expansion just before the magnetic field reaches its maximum. Then the trap is filled up with the plasma by this irreversible expansion and stable plasma confinement is achieved. The energy confinement time of the CCT is found to be about 35 μs. (author)

  1. Turbulent transport in magnetized plasmas

    CERN Document Server

    Horton, Wendell

    2012-01-01

    This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.

  2. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    Science.gov (United States)

    Woolley, Robert D.

    2002-01-01

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  3. Isodynamical (omnigenous) equilibrium in symmetrically confined plasma configurations

    International Nuclear Information System (INIS)

    Bernardin, M.P.; Moses, R.W.; Tataronis, J.A.

    1986-01-01

    Isodynamical or omnigenous equilibrium has the property that the magnitude of the magnetic field is constant on magnetic surfaces. It is shown that in plasma confinement configurations with one ignorable coordinate there are three possible classes of solutions, characterized by the properties of the curvature of the magnetic axis, the magnitude of the magnetic field on axis, and the closure of magnetic surfaces about the magnetic axis. Solutions belonging to class (i) have a straight magnetic axis, a finite field on axis, and closed magnetic surfaces. Solutions in class (ii) have a curved magnetic axis, closed magnetic surfaces, and a magnetic field that vanishes on axis. Finally, solutions in class (iii) have a curved magnetic axis, a finite magnetic field on axis, and open magnetic surfaces

  4. Progress in toroidal confinement and fusion research

    International Nuclear Information System (INIS)

    Furth, H.P.

    1987-10-01

    During the past 30 years, the characteristic T/sub i/n tau/sub E/-value of toroidal-confinement experiments has advanced by more than seven orders of magnitude. Part of this advance has been due to an increase of gross machine parameters. Most of this advance has been due to an increase of gross machine parameters. Most of the advance is associated with improvements in the ''quality of plasma confinement.'' The combined evidence of spherator and tokamak research clarifies the role of magnetic-field geometry in determining confinement and points to the importance of shielding out plasma edge effects. A true physical understanding of anomalous transport remains to be achieved. 39 refs., 11 figs., 1 tab

  5. Hydrochemistry and hydrogeologic conditions within the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Webber, W.D.

    1995-09-01

    As part of the Hanford Site Ground-Water Surveillance Project, Flow System Characterization Task. Pacific Northwest Laboratory examines the potential for offsite migration of contamination within the upper basalt confined aquifer system for the US Department of Energy (DOE). As part of this activity, groundwater samples were collected over the past 2 years from selected wells completed in the upper Saddle Mountains Basalt. The hydrochemical and isotopic information obtained from these groundwater samples provides hydrologic information concerning the aquifer-flow system. Ideally, when combined with other hydrologic property information, hydrochemical and isotopic data can be used to evaluate the origin and source of groundwater, areal groundwater-flow patterns, residence and groundwater travel time, rock/groundwater reactions, and aquifer intercommunication for the upper basalt confined aquifer system. This report presents the first comprehensive Hanford Site-wide summary of hydrochemical properties for the upper basalt confined aquifer system. This report provides the hydrogeologic characteristics (Section 2.0) and hydrochemical properties (Section 3.0) for groundwater within this system. A detailed description of the range of the identified hydrochemical parameter subgroups for groundwater in the upper basalt confined aquifer system is also presented in Section 3.0. Evidence that is indicative of aquifer contamination/aquifer intercommunication and an assessment of the potential for offsite migration of contaminants in groundwater within the upper basalt aquifer is provided in Section 4.0. The references cited throughout the report are given in Section 5.0. Tables that summarize groundwater sample analysis results for individual test interval/well sites are included in the Appendix

  6. Calculations of spin-polarized Goos-Hänchen displacement in magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit couplings

    Science.gov (United States)

    Lu, Mao-Wang; Chen, Sai-Yan; Zhang, Gui-Lian; Huang, Xin-Hong

    2018-04-01

    We theoretically investigate Goos-Hänchen (GH) displacement by modelling the spin transport in an archetypal device structure—a magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit coupling (SOC). Both Rashba and Dresselhaus SOCs are taken into account. The degree of spin-polarized GH displacement can be tuned by Rashba or Dresselhaus SOC, i.e. interfacial confining electric field or strain engineering. Based on such a semiconductor nanostructure, a controllable spatial spin splitter can be proposed for spintronics applications.

  7. Calculations of spin-polarized Goos-Hänchen displacement in magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit couplings.

    Science.gov (United States)

    Lu, Mao-Wang; Chen, Sai-Yan; Zhang, Gui-Lian; Huang, Xin-Hong

    2018-04-11

    We theoretically investigate Goos-Hänchen (GH) displacement by modelling the spin transport in an archetypal device structure-a magnetically confined GaAs/Al x Ga 1-x As nanostructure modulated by spin-orbit coupling (SOC). Both Rashba and Dresselhaus SOCs are taken into account. The degree of spin-polarized GH displacement can be tuned by Rashba or Dresselhaus SOC, i.e. interfacial confining electric field or strain engineering. Based on such a semiconductor nanostructure, a controllable spatial spin splitter can be proposed for spintronics applications.

  8. Ferromagnetic rollers in a harmonic confinement

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    We present the emergence of flocking and global rotation in a system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field confined in a harmonic potential. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clock / counterclockwise particle rotation, collisional alignment of particle velocities, and random particle re-orientations due to shape imperfections. We also emphasize a subtle role of rotational noise: While the low-frequency flocking appears to be noise-insensitive, the reentrant flocking happens to be noise-activated. Moreover, we uncover a new relation between collective motion and synchronisation.

  9. US superconducting magnet data base assessment for INTOR

    International Nuclear Information System (INIS)

    Schultz, J.H.; Montgomery, D.B.

    1984-01-01

    Because of its size, performance requirements and exposure to neutron and gamma irradiation, the superconducting magnet system for INTOR would represent a significant advance in superconducting magnet technology. US programs such as LCP, MFTF-B and others provide a significant data base for the INTOR application. The assessment of the adequacy of the US data base for the INTOR magnets is largely generic, and applies to the superconducting magnet systems for other magnetic confinement fusion reactors. Assessments of the data base generated by other national magnet technology programs are being prepared by the other INTOR participants

  10. Study of plasma convection and wall interactions in magnetic confinement systems. Final report, December 1, 1984-February 28, 1986

    International Nuclear Information System (INIS)

    York, T.M.

    1986-01-01

    The subject contract research effort was initiated in September 1976 with two specific tasks: (1) to study the fundamental physics of confinement of an alternate concept (i.e., theta pinch based) devices; and (2) to study and to develop new diagnostic systems for use on major experiments at other locations in the country. There has been active collaboration with Los Alamos National Laboratory and Lawrence Livermore National Laboratory; there has been proposed collaboration with Princeton Plasma Physics Laboratory, Fusion Research Center at the University of Texas, and General Atomics

  11. Quark confinement

    International Nuclear Information System (INIS)

    Joos, H.

    1976-07-01

    The main topics of these lectures are: phenomenological approach to quark confinement, standard Lagrangian of hadrondynamics, Lagrangian field theory and quark confinement, classical soliton solutions in a simple model, quantization of extended systems, colour charge screening and quantization on a lattice and remarks on applications. A survey of the scientific publications listed according to the topics until 26 March 1976 is supplemented. (BJ) [de

  12. Inertial confinement fusion target

    International Nuclear Information System (INIS)

    Bourdier, A.

    2001-12-01

    A simple, zero-dimensional model describing the temporal behaviour of an imploding-shell, magnetized fuel inertial confinement fusion target is formulated. The addition of a magnetic field to the fuel reduces thermal conduction losses. As a consequence, it might lead to high gains and reduce the driver requirements. This beneficial effect of the magnetic field on thermonuclear gains is confirmed qualitatively by the zero-dimensional model results. Still, the extent of the initial-condition space for which significant gains can occur is not, by far, as large as previously reported. One-dimensional CEA code simulations which confirm this results are also presented. Finally, we suggest to study the approach proposed by Hasegawa. In this scheme, the laser target is not imploded, and the life-time of the plasma can be very much increased. (author)

  13. Confinement of a non cylindrical z discharge by a cusp geometry

    International Nuclear Information System (INIS)

    Watteau, J.H.

    1968-03-01

    The plasma of a non-cylindrical z discharge is accumulated in the centre of a cusp geometry and then captured and confined by the rising cusp magnetic field. The cusp geometry is produced by two identical coaxial coils the currents of which are equal but in opposite directions. Stability and confinement properties of this zero minimum B geometry are recalled; in particular it is shown (the coils cross section being supposed punctual) that the magnetic well depth of the configuration without plasma is maximum for an optimum coils distance. Two modes of confinement are observed experimentally : - a collisional mode for which the plasma confinement is limited to 10 μsec (temperature 5 eV, density 7 x 10 16 cm -3 ) as a result of the gradual interpenetration of the plasma and of the magnetic field. - a collisionless mode (temperature 40 eV) where the radial leak thickness is of the order of the ion cyclotron radius. Plasma accumulation occurs even without confinement and is due to the non-cylindrical shape of the discharge chamber. The two-dimensional snow-plough model gives good account of the discharge dynamics. A comparison is made with plasma focus experiments: in particular experimental conditions (deuterium, pressure 1 torr,energy 3 kJ, current 100 kA) a 10 7 neutron yield is detected which appears to be connected with the unstable behavior of the discharge. (authors) [fr

  14. Heat transfer in inertial confinement fusion reactor systems

    International Nuclear Information System (INIS)

    Hovingh, J.

    1979-01-01

    The transfer of energy produced by the interaction of the intense pulses of short-ranged fusion microexplosion products with materials is one of the most difficult problems in inertially-confined fusion (ICF) reactor design. The short time and deposition distance for the energy results in local peak power densities on the order of 10 18 watts/m 3 . High local power densities may cause change of state or spall in the reactor materials. This will limit the structure lifetimes for ICF reactors of economic physical sizes, increasing operating costs including structure replacement and radioactive waste management. Four basic first wall protection methods have evolved: a dry-wall, a wet-wall, a magnetically shielded wall, and a fluid wall. These approaches are distinguished by the way the reactor wall interfaces with fusion debris as well as the way the ambient cavity conditions modify the fusion energy forms and spectra at the first wall. Each of these approaches requires different heat transfer considerations

  15. Effects of Non-Maxwellian Plasma Species on ICRF Propagation and Absorption in Toroidal Magnetic Confinement Devices

    International Nuclear Information System (INIS)

    Dumont, R.J.; Phillips, C.K.; Smithe, D.N.

    2003-01-01

    Auxiliary heating supplied by externally launched electromagnetic waves is commonly used in toroidal magnetically confined fusion experiments for profile control via localized heating, current drive and perhaps flow shear. In these experiments, the confined plasma is often characterized by the presence of a significant population of non-thermal species arising from neutral beam injection, from acceleration of the particles by the applied waves, or from copious fusion reactions in future devices. Such non-thermal species may alter the wave propagation as well as the wave absorption dynamics in the plasma. Previous studies have treated the corresponding velocity distributions as either equivalent Maxwellians, or else have included realistic distributions only in the finite Larmor radius limit. In this work, the hot plasma dielectric response of the plasma has been generalized to treat arbitrary distribution functions in the non-relativistic limit. The generalized dielectric tensor has been incorporated into a one-dimensional full wave all-orders kinetic field code. Initial comparative studies of ion cyclotron range of frequency wave propagation and heating in plasmas with nonthermal species, represented by realistic distribution functions or by appropriately defined equivalent Maxwellians, have been completed for some specific experiments and are presented

  16. Computational challenges in magnetic-confinement fusion physics

    Science.gov (United States)

    Fasoli, A.; Brunner, S.; Cooper, W. A.; Graves, J. P.; Ricci, P.; Sauter, O.; Villard, L.

    2016-05-01

    Magnetic-fusion plasmas are complex self-organized systems with an extremely wide range of spatial and temporal scales, from the electron-orbit scales (~10-11 s, ~ 10-5 m) to the diffusion time of electrical current through the plasma (~102 s) and the distance along the magnetic field between two solid surfaces in the region that determines the plasma-wall interactions (~100 m). The description of the individual phenomena and of the nonlinear coupling between them involves a hierarchy of models, which, when applied to realistic configurations, require the most advanced numerical techniques and algorithms and the use of state-of-the-art high-performance computers. The common thread of such models resides in the fact that the plasma components are at the same time sources of electromagnetic fields, via the charge and current densities that they generate, and subject to the action of electromagnetic fields. This leads to a wide variety of plasma modes of oscillations that resonate with the particle or fluid motion and makes the plasma dynamics much richer than that of conventional, neutral fluids.

  17. Toroidal confinement of non-neutral plasma - A new approach to high-beta equilibrium

    International Nuclear Information System (INIS)

    Yoshida, Z.; Ogawa, Y.; Morikawa, J.

    2001-01-01

    Departure from the quasi-neutral condition allows us to apply significant two-fluid effects that impart a new freedom to the design of high-performance fusion plasma. The self-electric field in a non-neutralized plasma induces a strong ExB-drift flow. A fast flow produces a large hydrodynamic pressure that can balance with the thermal pressure of the plasma. Basic concepts to produce a toroidal non-neutral plasma have been examined on the internal-conductor toroidal confinement device Proto-RT. A magnetic separatrix determines the boundary of the confinement region. Electrons describe chaotic orbits in the neighborhood of the magnetic null point on the separatrix. The chaos yields collisionless diffusion of electrons from the particle source (electron gun) towards the confinement region. Collisionless heating also occurs in the magnetic null region, which can be applied to produce a plasma. (author)

  18. On a Neutral Particle with a Magnetic Quadrupole Moment in a Uniform Effective Magnetic Field

    International Nuclear Information System (INIS)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Quantum effects on a Landau-type system associated with a moving atom with a magnetic quadrupole moment subject to confining potentials are analysed. It is shown that the spectrum of energy of the Landau-type system can be modified, where the degeneracy of the energy levels can be broken. In three particular cases, it is shown that the analogue of the cyclotron frequency is modified, and the possible values of this angular frequency of the system are determined by the quantum numbers associated with the radial modes and the angular momentum and by the parameters associated with confining potentials in order that bound states solutions can be achieved.

  19. Trapped particle confinement studies in L = 2 torsatrons for additional helical coils, radial electric field and finite beta effect

    International Nuclear Information System (INIS)

    Kato, A.; Nakamura, Y.; Wakatani, M.

    1990-07-01

    L = 2 torsatrons are studied to improve the high energy trapped particle confinement with additional l = 1 and/or l = 3 helical coils. The winding laws are selected in two ways. One is to realize 'σ - optimization' by the additional helical coils, but this approach loses magnetic well region. The other selection is to produce or deepen the magnetic well by the additional helical coils. L=3 helical coils are usable to this end. In this case the improvement of the trapped particle confinement depends on magnetic axis position. Radial electric field producing sheared rotational motion is also considered to improve the trapped particle confinement in a standard l = 2 torsatron. By excluding cancellation between E x B and ΔB drift motion occurred for the parabolic potential profiles, all deeply trapped particles can be confined in the central region. Degradation of the trapped particle confinement by the Shafranov shift is mitigated by shifting the magnetic axis inside in the vacuum configuration. (author)

  20. Status analysis for the confinement monitoring technology of PWR spent nuclear fuel dry storage system

    Energy Technology Data Exchange (ETDEWEB)

    Baeg, Chang Yeal; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-03-15

    Leading national R and D project to design a PWR spent nuclear fuel interim dry storage system that has been under development since mid-2009, which consists of a dual purpose metal cask and concrete storage cask. To ensure the safe operation of dry storage systems in foreign countries, major confinement monitoring techniques currently consist of pressure and temperature measurement. In the case of a dual purpose metal cask, a pressure sensor is installed in the interspace of bolted double lid(primary and secondary lid) in order to measure pressure. A concrete storage cask is a canister based system made of double/redundant welded lid to ensure confinement integrity. For this reason, confinement monitoring method is real time temperature measurement by thermocouple placed in the air flow(air intake and exit) of the concrete structure(over pack and module). The use of various monitoring technologies and operating experiences for the interim dry storage system over the last decades in foreign countries were analyzed. On the basis of the analysis above, development of the confinement monitoring technology that can be used optimally in our system will be available in the near future.

  1. Fluctuation reduction and enhanced confinement in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Chapman, B.E.

    1997-10-01

    Plasmas with a factor of ≥3 improvement in energy confinement have been achieved in the MST reversed-field pinch (RFP). These plasmas occur spontaneously, following sawtooth crashes, subject to constraints on, eg, toroidal magnetic field reversal and wall conditioning. Possible contributors to the improved confinement include a reduction of core-resonant, global magnetic fluctuations and a reduction of electrostatic fluctuations over the entire plasma edge. One feature of these plasmas is a region of strong ExB flow shear in the edge. Never before observed in conjunction with enhanced confinement in the RFP, such shear is common in enhanced confinement discharges in tokamaks and stellarators. Another feature of these plasmas is a new type of discrete dynamo event. Like sawtooth crashes, a common form of discrete dynamo, these events correspond to bursts of edge parallel current. The reduction of electrostatic fluctuations in these plasmas occurs within and beyond the region of strong ExB flow shear, similar to what is observed in tokamaks and stellarators. However, the reductions in the MST include fluctuations whose correlation lengths are larger than the width of the shear region. The reduction of the global magnetic fluctuations is most likely due to flattening of the μ=μ 0 rvec J· rvec B/B 2 profile. Flattening can occur, eg, due to the new type of discrete dynamo event and reduced edge resistivity. Enhanced confinement plasmas are also achieved in the MST when auxiliary current is applied to flatten the μ profile and reduce magnetic fluctuations. Unexpectedly, these plasmas also exhibit a region (broader than in the case above) of strong ExB flow shear in the edge, an edge-wide reduction of electrostatic fluctuations, and the new type of discrete dynamo event. Auxiliary current drive has historically been viewed as the principal route to fusion reactor viability for the RFP

  2. Confinement of monopole field lines in a superconductor at T ≠ 0

    International Nuclear Information System (INIS)

    Cardoso, Marco; Bicudo, Pedro; Sacramento, Pedro D.

    2008-01-01

    We apply the Bogoliubov-de Gennes equations to the confinement of a monopole-antimonopole pair in a superconductor. This is related to the problem of a quark-antiquark pair bound by a confining string, consisting of a colour-electric flux tube, dual to the magnetic vortex of type-II superconductors. We study the confinement of the field lines due to the superconducting state and calculate the effective potential between the two monopoles. The monopoles can be simulated in a real experiment inserting two long and thin magnetic rods. At short distances the potential is Coulombic and at large distances the potential is linear, as previously determined solving the Ginzburg-Landau equations. The magnetic field lines and the string tension are also studied as a function of the temperature T. Because we take into account the explicit fermionic degrees of freedom, this work may open new perspectives to the breaking of chiral symmetry or to colour superconductivity

  3. Production and Magnetic Field Confinement of Laser-Irradiated Solid Particle Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Haught, A. F.; Polk, D. H.; Fader, W. J. [United Aircraft Research Laboratories East Hartford, CT (United States)

    1969-01-15

    The focused high-intensity beam from a Q-spoiled laser has been used to form a high-temperature, high-density plasma from a single 10-20 micron radius solid particle of lithium hydride which is electrically suspended in a vacuum environment free of all material supports. Time-resolved charge collection measurements of the freely expanding plasma have shown that a high degree of ionization of the 10{sup 15} atoms in the lithium hydride particle can be achieved and that the plasma produced is essentially spherically symmetric in density over the full 4 {pi} solid angle. Time-of-flight studies of the plasma expansion have shown that average electron and ion energies exceeding 200 electron volts are obtained and that the plasma expansion rate, like the plasma density, is spherically symmetric. No charge separation or separation of the lithium and hydrogen ions is observed in the expanding plasma. Numerical calculations of the plasma formation and expansion have been made using a one-dimensional spherical hydrodynamic model and, on the basis of the results obtained, an integrated similarity model has been developed for calculations of the plasma time history and energy over the range of conditions employed in the experiments. These calculations, which include the effects of laser pulse time history, fraction of the incident beam occupied by the expanding plasma, radial density and velocity gradients within the plasma, and spatial distribution of the incident laser energy, give results for the plasma radial density distribution, velocity profile, and plasma energy in good agreement with those determined experimentally over the full range of the present measurements. Measurements have been carried out to examine the interaction of these laser -produced plasmas with mirror, cusp, and minimum-B magnetic fields. Experiments with mirror and minimum-B magnetic fields up to 8 kC show that plasmas with densities of 10{sup 12} -10{sup 13} cm{sup -3} are confined for times of 5

  4. Particle confinement and fueling effects on the Maryland spheromak

    International Nuclear Information System (INIS)

    Filuk, A.B.

    1991-01-01

    The spheromak plasma confinement concept provides the opportunity to study the evolution of a nearly force-free magnetic field configuration. The plasma currents and magnetic fields are produced self-consistently, making this type of device attractive as a possible fusion reactor. At present, spheromaks are observed to have poorer particle and magnetic confinement than expected from simple theory. The purpose of this study is to examine the role of plasma density in the decay of spheromaks produced in the Maryland Spheromak experiment. Density measurements are made with an interferometer and Langmuir probe, and results are correlated with those of other plasma diagnostics to understand the sources of plasma, the spheromak formation effects on the density, and the magnitude of particle loss during the spheromak decay. A power and particle balance computer model is constructed and applied to the spheromaks studied in order to assess the impact of high density and particle loss rate on the spheromak decay. The observations and model indicate that the decay of the spheromaks is at present dominated by impurity radiation loss. The model also predicts that high density and short particle confinement time play a critical role in the spheromak power balance when the impurity levels are reduced

  5. Physics of tokamak scrape-off layer confinement

    International Nuclear Information System (INIS)

    Cohen, R.H.

    1993-01-01

    Confinement in the scrape-off layer (SOL) of a tokamak is believed to be governed by classical flows along magnetic field lines terminated by sheaths, and turbulent transport across field lines. In this paper we review how these two effects conspire to establish the width of the SOL, and survey recent and ongoing work on mechanisms for turbulence in SOL's. The beneficial relationship between scrape-off layer turbulence in mitigating the heat flux density on divertors is noted, and tactics for actively altering SOL confinement so as to reduce the heat flux density are discussed

  6. Confinement properties of the RFP [Reversed Field Pinch

    International Nuclear Information System (INIS)

    Weber, P.G.; Schoenberg, K.F.; Ingraham, J.C.; Miller, G.; Munson, C.P.; Pickrell, M.M.; Wurden; Tsui, H.Y.W.; Ritz, Ch.P.

    1990-01-01

    Research in ZT-40M has been focused on elucidating the confinement properties of the Reversed Field Pinch (RFP). Recent improvements in diagnostic capability have permitted measurement of radial profiles, as well as a detailed study of the edge plasma. The emerging confinement picture for ZT-40M has several ingredients: Typically 0.3 of the Ohmic input power to ZT-40M is available to drive fluctuations. Evidence points to this fluctuational power heating the ions. Approximately one quarter of the input power is lost through radiation, with metal impurities playing a key role. Magnetic fluctations in ZT-40M are at the percent level, as measured in the edge plasma. Extrapolating these data to small radii shows stochasticity in the core plasma. Suprathermal electrons are measured in the edge plasma. These electrons originate in the core, and transport to the edge along the fluctuating magnetic field lines. Under typical conditions, these electrons constitute the major electron energy loss channel in ZT-40M. Electrostatic fluctuations dominate the edge electron particle flux, but not the electron thermal flux. The major ion loss process is charge exchange, with smaller contributions from conduction and convection. In examining these observations, and the parametric dependences of confinement, a working model for RFP confinement emerges. An overview of this model, together with implications for the multi-mega-ampere ZTH experiment will be presented

  7. Plasma transport in the Scrape-off-Layer of magnetically confined plasma and the plasma exhaust

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Naulin, Volker; Nielsen, Anders Henry

    An overview of the plasma dynamics in the Scrape-off-Layer (SOL) of magnetically confined plasma is presented. The SOL is the exhaust channel of the warm plasma from the core, and the understanding of the SOL plasma dynamics is one of the key issues in contemporary fusion research. It is essential...... for operation of fusion experiments and ultimately fusion power plants. Recent results clearly demonstrate that the plasma transport through the SOL is dominated by turbulent intermittent fluctuations organized into filamentary structures convecting particles, energy, and momentum through the SOL region. Thus......, the transport cannot be described and parametrized by simple diffusive type models. The transport leads to strong localized power loads on the first wall and the plasma facing components, which have serious lasting influence....

  8. The sensitivity theory for inertial confinement pellet fusion system

    International Nuclear Information System (INIS)

    Cai, Shaohui; Zhang, Yuquan.

    1986-01-01

    A sensitivity theory for inertial confinement pellet fusion system is developed based on a physical model similar to that embodied in the laser fusion code MEDUSA. The theory presented here can be an efficient tool for estimating the effects of many alternations in the data field. Our result is different from Greenspan's work in 1980. (author)

  9. Manufacturing the MFTF magnet

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Hinkle, R.E.; Hodges, A.J.

    1980-01-01

    The Mirror Fusion Test Facility (MFTF) is a large mirror program experiment for magnetic fusion energy. It will combine and extend the near-classical plasma confinement achieved in 2XIIB with advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime

  10. LDRD final report on confinement of cluster fusion plasmas with magnetic fields.

    Energy Technology Data Exchange (ETDEWEB)

    Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio; Stoltzfus, Brian Scott; Waugh, Caleb J.; Lewis, Sean M.; Porter, John Larry, Jr.; Wisher, Matthew; Struve, Kenneth William; Savage, Mark Edward; Quevedo, Hernan J.; Bengtson, Roger

    2011-11-01

    Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must be brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the

  11. Economic and environmental issues associated with confinement and pasture-based dairy systems

    Science.gov (United States)

    Milk is produced in a continuum of dairy systems from full confinement to full pasture grazing. Climate, available feeds, and milk price: feed cost ratio influence the preferred system. All dairy systems have an environmental impact and inputs to maximise profit may lead to pollution levels unacce...

  12. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Via Graziella, I-89100 Reggio Calabria (Italy); Sorbello, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica, Viale Andrea Doria 6, 95125 Catania (Italy)

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  13. Charged particle confinement in magnetic mirror

    International Nuclear Information System (INIS)

    Bora, D.; John, P.I.; Saxena, Y.C.; Varma, R.K.

    1982-01-01

    The behaviour of single charged particle trapped in a magnetic mirror has been investigated experimentally. The particle injected off axis and trapped in a magnetic mirror, leak out of the mirror with the leakage characterized by multiple decay times. The observed decay times are in good agreement with predictions of a ''wave mechanical like'' model by Varma, over a large range of relevant parameters. (author)

  14. The role of Z-pinches and related configurations in magnetized target fusion

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1997-01-01

    The use of a magnetic field within a fusion target is now known as Magnetized Target Fusion in the US and as MAGO (Magnitnoye Obzhatiye, or magnetic compression) in Russia. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (e.g., ICF), MTF involves two steps: (a) formation of a warm, magnetized, wall-confined plasma of intermediate density within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression and heating of the plasma by imploding the confining wall, or pusher. In many ways, MTF can be considered a marriage between the more mature MFE and ICF approaches, and this marriage potentially eliminates some of the hurdles encountered in the other approaches. When compared to ICF, MTF requires lower implosion velocity, lower initial density, significantly lower radial convergence, and larger targets, all of which lead to substantially reduced driver intensity, power, and symmetry requirements. When compared to MFE, MTF does not require a vacuum separating the plasma from the wall, and, in fact, complete magnetic confinement, even if possible, may not be desirable. The higher density of MTF and much shorter confinement times should make magnetized plasma formation a much less difficult step than in MFE. The substantially lower driver requirements and implosion velocity of MTF make z-pinch magnetically driven liners, magnetically imploded by existing modern pulsed power electrical current sources, a leading candidate for the target pusher of an MTF system

  15. Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas

    International Nuclear Information System (INIS)

    Thomas, P.R.; Becoulet, M.; Evans, T.E.; Osborne, T.H.; Groebner, R.J.; Jackson, G.L.; Haye, R.J. La; Schaffer, M.J.; West, W.P.; Moyer, R.A.; Rhodes, T.L.; Rudakov, D.L.; Watkins, J.G.; Boedo, J.A.; Doyle, E.J.; Wang, G.; Zeng, L.; Fenstermacher, M.E.; Groth, M.; Lasnier, C.J.; Finken, K.H.; Harris, J.H.; Pretty, D.G.; Masuzaki, S.; Ohyabu, N.; Reimerdes, H.; Wade, M.R.

    2005-01-01

    Large divertor heat pulses due to Type-I edge localized modes (ELMs) have been eliminated reproducibly in DIII-D with small dc currents driven in a simple magnetic perturbation coil. The current required to eliminate all but a few isolated Type-I ELMs, during a coil pulse, is less than 0.4% of plasma current. Modelling shows that the perturbation fields resonate with plasma flux surfaces across most of the pedestal region (0.9 ≤ N ≤ 1.0), when q95 = 3.7±0.2 creating small remnant magnetic islands surrounded by weakly stochastic field lines. The stored energy, N , H-mode quality factor and global energy confinement time are unaltered by the magnetic perturbation. At high collisionality (ν* ∼0.5-1), there is no obvious effect of the perturbation on the edge profiles and yet ELMs are suppressed, nearly completely, for up to 9τ E . At low collisionality (ν* <0.1), there is a density pump-out and complete ELM suppression, reminiscent of the DIIID QH- mode. Other differences, specifically in the resonance condition and the magnetic fluctuations, suggest that different mechanisms are at play in the different collisionality regimes. In addition to a description and interpretation of the DIIID data, the application of this method to ELM control on other machines, such as JET and ITER will be discussed. (author)

  16. Report of particle diffusion experimental study project in superficial confined plasma by magnetic multi dipole fields

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Damasio, W.C.; Ferreira, J.C.; Sandonato, G.M.; Alves, M.V.; Montes, A.; Ludwig, G.O.

    1990-01-01

    This work reports the activities of the experimental study group on plasma confinement. It discusses the study of diffusion coefficient, data acquisition systems and the use of electrostatic probes. (A.C.A.S.)

  17. Fueling of magnetically confined plasmas by single- and two-stage repeating pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Foust, C.R.; Milora, S.L.

    1990-01-01

    Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1--2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3--5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2--3 km/s

  18. Transport and confinement studies in the RFX-mod reversed-field pinch experiment

    International Nuclear Information System (INIS)

    Innocente, P.; Alfier, A.; Carraro, L.; Lorenzini, R.; Pasqualotto, R.; Terranova, D.

    2007-01-01

    In the modified RFX experiment (RFX-mod) external magnetic field coils and a close fitting thin conductive shell control radial magnetic fields. In the so-called virtual shell (VS) operation, radial field zeroing at the thin shell radius is stationary provided by the feedback-controlled coils. First experiments on RFX-mod proved the capability of the active scheme to steadily reduce the radial magnetic field. Furthermore it has been found that such edge magnetic field control extends its beneficial effects to the whole plasma. With respect to the old RFX, where magnetohydrodynamic modes amplitude was controlled by the use of a passive thick conductive shell, a stationary 2- to 3-fold reduction of the B r field amplitude in the core is obtained. The reduction of field fluctuations positively reflects on confinement. In fact, a strong reduction of the loop voltage is observed and correspondingly a 3-fold increase in pulse length is achieved by using the same poloidal flux swing. Temperature and particle measurements confirm the improved confinement properties of the VS operation. With a lower ohmic input power, higher electron temperature and lower particle influx are measured. Particle and heat transport have been studied by means of a 1D code. Local power balance was used to compute the heat conductivity profile: for the VS discharges a lower conductivity over a significant region of the plasma is found. The improved properties of RFX-mod VS operation provide a better confinement scaling in terms of plasma current. The results show that compared with the thick shell configuration, a significant confinement improvement can be obtained under stationary conditions by actively controlling the plasma magnetic boundary

  19. Scaling of the Inertial Electrostatic Confinement (IEC) for near-term thrusters and future fusion propulsion

    International Nuclear Information System (INIS)

    Miley, G.; Bromley, B.; Jurczyk, B.; Stubbers, R.; DeMora, J.; Chacon, L.; Gu, Y.

    1998-01-01

    Inertial Electrostatic Confinement (IEC) is a unique approach to fusion and plasma energy systems that was conceptualized in the 1960s (Hirsch 1967) and has been the focus of recent development in the 1990s (Miley et al. 1995a). In the interests of space power and propulsion systems, conceptual rocket design studies (Bussard and Jameson 1994, Miley et al. 1995b) using the IEC have predicted excellent performance for a variety of space missions, since the power unit avoids the use of magnets and heavy drives resulting in a very high, specific impulse compared to other fusion systems. In their recent survey of prior conceptual design studies of fusion rockets, Williams and Borowski (1997) found that the Bussard IEC conceptual study (the ''QED'' engine) offered a thrust-to-weight ratio of 10 milli-g's, a factor of five higher than conventional magnetic confinement concepts and even slightly above anti-proton micro fission/fusion designs. Thus there is considerable motivation to study IEC concepts for eventual space applications. However, the physics feasibility of the IEC still requires experimental demonstration, and an expanded data base is needed to insure that a power unit can in fact be built

  20. Magnetic Coordinate Systems

    Science.gov (United States)

    Laundal, K. M.; Richmond, A. D.

    2017-03-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

  1. TPC magnet cryogenic system

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system

  2. Crystallization features of normal alkanes in confined geometry.

    Science.gov (United States)

    Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin

    2014-01-21

    ) confining environment. We have studied multiple parameters of these microencapsulated n-alkanes, including surface freezing, metastability of the rotator phase, and the phase separation behaviors of n-alkane mixtures using differential scanning calorimetry (DSC), temperature-dependent X-ray diffraction (XRD), and variable-temperature solid-state nuclear magnetic resonance (NMR). Our investigations revealed new direct evidence for the existence of surface freezing in microencapsulated n-alkanes. By examining the differences among chain packing and nucleation kinetics between bulk alkane solid solutions and their microencapsulated counterparts, we also discovered a mechanism responsible for the formation of a new metastable bulk phase. In addition, we found that confinement suppresses lamellar ordering and longitudinal diffusion, which play an important role in stabilizing the binary n-alkane solid solution in microcapsules. Our work also provided new insights into the phase separation of other mixed system, such as waxes, lipids, and polymer blends in confined geometry. These works provide a profound understanding of the relationship between molecular structure and material properties in the context of crystallization and therefore advance our ability to improve applications incorporating polymeric and molecular materials.

  3. EDITORIAL: Special issue containing papers presented at the 11th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems Special issue containing papers presented at the 11th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems

    Science.gov (United States)

    Kolesnichenko, Ya.

    2010-08-01

    subsequent meetings (Aspenäs (1991), Trieste (1993), Princeton (1995), and JET/Abingdon (1997)) were entitled `Alpha Particles in Fusion Research'. During the JET/Abingdon meeting in 1997 it was decided to extend the topic by including other suprathermal particles, in particular accelerated electrons, and rename the meetings accordingly. The subsequent meetings with the current name `Energetic Particles in Magnetic Confinement Systems' were held in Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005) and Kloster Seeon (2007). The most recent meeting in this series was held in Kyiv, Ukraine, in September 2009. This was an anniversary meeting, 20 years after the first meeting. Like the first meeting, it was hosted by the Institute for Nuclear Research, National Academy of Sciences of Ukraine. It was attended by about 80 researchers from 18 countries, ITER, and EC. The program of the meeting consisted of 78 presentations, including 12 invited talks, 16 oral contributed talks, and 50 posters, which were selected by the International Advisory Committee (IAC). The IAC consisted of 11 people representing EC (L.-G. Eriksson), Germany (S. Günter), Italy (F. Zonca), Japan (K. Shinohara and K. Toi), Switzerland (A. Fasoli), UK (S. Sharapov), Ukraine (Ya. Kolesnichenko—IAC Chair), USA (H. Berk, W. Heidbrink, and R. Nazikian). The meeting program covered a wide range of physics issues concerning energetic ions in toroidal fusion facilities—tokamaks, stellarators, and spherical tori. Many new interesting and practically important results of both experimental and theoretical studies were reported. The research presented covered topics such as instabilities driven by energetic ions, transport of energetic ions caused by plasma microturbulence and destabilized eigenmodes, non-linear phenomena induced by the instabilities, classical transport processes, effects of runaway electrons, diagnostics of energetic ions and plasmas, and aspects of ITER physics. In addition to these

  4. A model for transient analysis of a multiple-medium confinement filter system

    International Nuclear Information System (INIS)

    Hyder, M.L.; Ellison, P.G.; Leonard, M.T.; Louie, D.L.Y.; Donbroski, E.L.; Wagner, K.C.

    1990-01-01

    A computational model is described that calculates the transient behavior of aerosol and vapor (adsorption) filter compartments such as those used in the Savannah River Site (SRS) production reactor confinement system. The principal application of the model is in the analysis of confinement response to hypothetical severe (core melt) accidents. Under these conditions, aerosol and radio-iodine deposition on filter compartments may be substantial. Attendant filter degradation mechanisms are modeled. Sample calculations are included to illustrate model performance. 6 refs., 14 figs., 1 tab

  5. Magnetic confinement, Alfven wave reflection, and the origins of X-ray and mass-loss 'dividing lines' for late-type giants and supergiants

    Science.gov (United States)

    Rosner, R.; An, C.-H.; Musielak, Z. E.; Moore, R. L.; Suess, S. T.

    1991-01-01

    A simple qualitative model for the origin of the coronal and mass-loss dividing lines separating late-type giants and supergiants with and without hot, X-ray-emitting corona, and with and without significant mass loss is discussed. The basic physical effects considered are the necessity of magnetic confinement for hot coronal material on the surface of such stars and the large reflection efficiency for Alfven waves in cool exponential atmospheres. The model assumes that the magnetic field geometry of these stars changes across the observed 'dividing lines' from being mostly closed on the high effective temperature side to being mostly open on the low effective temperature side.

  6. Magnetic confinement system using charged ammonia targets

    International Nuclear Information System (INIS)

    Porter, G.D.; Bogdanoff, A.

    1979-01-01

    A system is described for guiding charged laser targets to a predetermined focal spot of a laser along generally arbitrary, and especially horizontal, directions which comprises a series of electrostatic sensors which provide inputs to a computer for real time calculation of position, velocity, and direction of the target along an initial injection trajectory

  7. Investigation of energy confinement during ICRF heating on EAST

    Science.gov (United States)

    Yang, Y. Q.; Zhang, X. J.; Zhao, Y. P.; Qin, C. M.; Cheng, Y.; Mao, Y. Z.; Yang, H.; Yuan, S.; Wang, L.; Ju, S. Q.; Chen, G.; Zhang, J. H.; Wang, J. H.; Chen, Z.; Wan, B. N.; Gong, X. Z.; Qian, J. P.; Zhang, T.; Li, J. G.; Song, Y. T.; Lin, Y.; Taylor, G.; Hosea, J. C.; Perkins, R. J.; Wukitch, S.; Noterdaeme, J. M.; Kumazawa, R.; Seki, T.; Saito, K.; Kasahara, H.

    2017-09-01

    A summary is given on recent experiments in L-mode with ion cyclotron resonance heating (ICRH) of hydrogen minority in deuterium plasmas on EAST. Experiments show a degradation of confinement with increasing power. Furthermore, the energy confinement time increases with plasma current and magnetic field, whereas it is insensitive to line averaged density. Minority heating has been found to be efficient, and parameters were optimized to maximize its efficiency. ICRH in lower hybrid waves heated plasma was also investigated.

  8. Experimental studies of confinement in the EXTRAP T2 and T2R reversed field pinches

    International Nuclear Information System (INIS)

    Cecconello, Marco

    2003-01-01

    The confinement properties of fusion plasmas are affected by magnetic and electrostatic fluctuations. The determination of the plasma confinement properties requires the measurement of several global and local quantities such as the ion and electron temperatures, the electron and neutral density profiles, the radiation emissivity profiles, the ohmic input power and the particle and heat diffusivities. The focus of this thesis is the study of the plasma confinement properties based on measurements of these quantities under different experimental conditions. The studies have been carried out on the reversed field pinch experiments EXTRAP T2 and T2R at the Alfven Laboratory, Royal Institute of Technology in Stockholm. Studies carried out in EXTRAP T2 were focused on dynamo activity and on the effect of phase alignment and locking to the wall of magnetic instabilities. These were observed with a dedicated imaging system. The experimental studies in EXTRAP T2R were focused on the measurement of the confinement properties of different configurations. To this aim, a set of diagnostics were used some of which were upgraded, such as the interferometer, while others were newly installed, such as a neutral particle energy analyser and a bolometer array. The dynamo, which is responsible for the plasma sustainment, involves resistive magnetohydrodynamic instabilities that enhance stochastic transport. Furthermore, the plasma confinement properties are in general improved in the presence of mode rotation. The possibility of reducing the stochastic transport and thereby further improving the confinement has been demonstrated in a current profile control experiment. These results indicate that long pulse operations with a resistive shell and current profile control are indeed feasible

  9. Stability of Coulomb crystals in a linear Paul trap with storage-ring-like confinement

    DEFF Research Database (Denmark)

    Kjærgaard, Niels; Mølhave, Kristian; Drewsen, Michael

    2002-01-01

    We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...... confinement. The experimentally observed stability conditions for stationary crystals comply remarkably well with current theory of crystalline plasmas and beams.......We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...

  10. Results from deuterium-tritium tokamak confinement experiments

    International Nuclear Information System (INIS)

    Hawryluk, R.J.

    1997-02-01

    Recent scientific and technical progress in magnetic fusion experiments has resulted in the achievement of plasma parameters (density and temperature) which enabled the production of significant bursts of fusion power from deuterium-tritium fuels and the first studies of the physics of burning plasmas. The key scientific issues in the reacting plasma core are plasma confinement, magnetohydrodynamic (MHD) stability, and the confinement and loss of energetic fusion products from the reacting fuel ions. Progress in the development of regimes of operation which have both good confinement and are MHD stable have enabled a broad study of burning plasma physics issues. A review of the technical and scientific results from the deuterium-tritium experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) is given with particular emphasis on alpha-particle physics issues

  11. Confinement and related transport in Extrap geometry

    International Nuclear Information System (INIS)

    Tendler, M.

    1983-01-01

    The properties of the plasma dynamic equilibrium are investigated for the Extrap magnetic confinement geometry. The temperatures achieved so far in the high-#betta# pinches are much lower than the predicted values. Here, it is shown that the particle containment in Extrap may be improved as compared to the other pinches due to the electrostatic confinement. An analytic solution for the profiles of the plasma parameters are found under the assumption that the energy is lost primarily in the radial direction by heat conduction and convection. An estimate of the radial particle confinement time is given, showing favourable scaling with plasma density and temperature. The conventional assumption of a uniform current density is shown to be unjustified in the case of an inhomogeneous electron temperature. An analytical expression is found for the pinch radius at different mechanisms of the heat transport. (orig.)

  12. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    Science.gov (United States)

    Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team

    2017-01-01

    The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m  =  qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.

  13. An engineering approach to the design and construction of a small modular stellarator for magnetic confinement of plasma. SCR-1

    International Nuclear Information System (INIS)

    Barillas, Laura; Vargas, V. Iván; Alpízar, Asdrúval

    2011-01-01

    This paper briefly describes the design and construction of Stellarator of Costa Rica 1 (SCR-1) from an engineering perspective. SCR-1 is a small modular Stellarator for magnetic confinement of plasma developed by the Plasma Physics Group of the Instituto Tecnológico de Costa Rica (ITCR). The SCR-1 is based on the small Spanish Stellarator UST 1 (Ultra Small Torus 1), created by engineer Vicente Queral. Some of the characteristics of the SCR-1 are the following: it will be a 2-field period modular stellarator with an aspect ratio ≈ 6; low shear configuration with core and edge rotational transform equal to 0.32 and 0.28; it will employ stainless steel torus-shaped vacuum vessel which will hold a plasma with an average radius a ≈ 42.2 mm, a volume of 8 liters (0.008 m 3 ), and major radius R = 238 mm. This plasma will be confined by a magnetic field (B ≈ 90 mT) given by 12 modular coils with 12 turns each, carrying a current of 725 A per turn providing a total toroidal field (TF) current of 8.7 kA-turn per coil. The coils will be supplied by a bank of cell batteries of 120 V. Typical length of the plasma pulse will be between 4 s to 10 s. The plasma heating will be achieved by electron cyclotron radio-frequency (ECH) from two magnetrons providing a total power of 5 kW, at a frequency of 2.45 GHz corresponding to the first harmonic (B 0 = 87.8 mT). The expected electron temperature and density are 15 eV and 7x10 16 m -3 respectively. The initial diagnostics on the SCR-1 will consist of a Langmuir probe with a displacement system, a heterodyne microwave interferometer (frequency of 28 GHz, corresponding to a wavelength of λ = 10.71 mm). The first plasma of the SCR-1 is expected at the beginning of 2012. (author)

  14. Inertial Confinement Fusion R and D and Nuclear Proliferation

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R and D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  15. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-06-01

    ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using the results based on Monte Carlo simulations. The global energy confinement time including energetic ion effect can be expressed in terms of ICRF heating power, plasma density, and magnetic field strength in heliotrons. Our results in the CHS plasma show the systematic decrement of the global energy confinement time due to the energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. Also we apply our model to the ICRF minority heating in the LHD plasma in two cases of typical magnetic configurations. The clear increment of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while the decrement is observed in the 'standard' configuration. (author)

  16. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-01-01

    The ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated, including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using results based on Monte Carlo simulations (Murakami, S., et al., Fusion Eng. Des. 26 (1995) 209). The global energy confinement time including the energetic ion effect can be expressed in heliotrons in terms of ICRF heating power, plasma density and magnetic field strength. Results in plasmas at CHS show a systematic decrease of the global energy confinement time due to energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. The model is also applied to ICRF minority heating in LHD plasmas in two cases of typical magnetic configurations. A clear increase of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while a decrease is observed in the 'standard' configuration. (author)

  17. Modeling of a confinement bypass accident with CONSEN, a fast-running code for safety analyses in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Gianfranco, E-mail: gianfranco.caruso@uniroma1.it [Sapienza University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Roma (Italy); Giannetti, Fabio [Sapienza University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Roma (Italy); Porfiri, Maria Teresa [ENEA FUS C.R. Frascati, Via Enrico Fermi, 45, 00044 Frascati, Roma (Italy)

    2013-12-15

    Highlights: • The CONSEN code for thermal-hydraulic transients in fusion plants is introduced. • A magnet induced confinement bypass accident in ITER has been simulated. • A comparison with previous MELCOR results for the accident is presented. -- Abstract: The CONSEN (CONServation of ENergy) code is a fast running code to simulate thermal-hydraulic transients, specifically developed for fusion reactors. In order to demonstrate CONSEN capabilities, the paper deals with the accident analysis of the magnet induced confinement bypass for ITER design 1996. During a plasma pulse, a poloidal field magnet experiences an over-voltage condition or an electrical insulation fault that results in two intense electrical arcs. It is assumed that this event produces two one square meters ruptures, resulting in a pathway that connects the interior of the vacuum vessel to the cryostat air space room. The rupture results also in a break of a single cooling channel within the wall of the vacuum vessel and a breach of the magnet cooling line, causing the blow down of a steam/water mixture in the vacuum vessel and in the cryostat and the release of 4 K helium into the cryostat. In the meantime, all the magnet coils are discharged through the magnet protection system actuation. This postulated event creates the simultaneous failure of two radioactive confinement barrier and it envelopes all type of smaller LOCAs into the cryostat. Ice formation on the cryogenic walls is also involved. The accident has been simulated with the CONSEN code up to 32 h. The accident evolution and the phenomena involved are discussed in the paper and the results are compared with available results obtained using the MELCOR code.

  18. Confinement of a non cylindrical z discharge by a cusp geometry; Confinement d'une decharge lineaire non-cylindrique par une geometrie magnetique cuspidee

    Energy Technology Data Exchange (ETDEWEB)

    Watteau, J H [Commissariat a l' Energie Atomique, Limeil-Brevannes (France). Centre d' Etudes

    1968-03-01

    The plasma of a non-cylindrical z discharge is accumulated in the centre of a cusp geometry and then captured and confined by the rising cusp magnetic field. The cusp geometry is produced by two identical coaxial coils the currents of which are equal but in opposite directions. Stability and confinement properties of this zero minimum B geometry are recalled; in particular it is shown (the coils cross section being supposed punctual) that the magnetic well depth of the configuration without plasma is maximum for an optimum coils distance. Two modes of confinement are observed experimentally : - a collisional mode for which the plasma confinement is limited to 10 {mu}sec (temperature 5 eV, density 7 x 10{sup 16} cm{sup -3}) as a result of the gradual interpenetration of the plasma and of the magnetic field. - a collisionless mode (temperature 40 eV) where the radial leak thickness is of the order of the ion cyclotron radius. Plasma accumulation occurs even without confinement and is due to the non-cylindrical shape of the discharge chamber. The two-dimensional snow-plough model gives good account of the discharge dynamics. A comparison is made with plasma focus experiments: in particular experimental conditions (deuterium, pressure 1 torr,energy 3 kJ, current 100 kA) a 10{sup 7} neutron yield is detected which appears to be connected with the unstable behavior of the discharge. (authors) [French] Le plasma d'une decharge lineaire non-cylindrique s'accumule au centre d'une geometrie magnetique cuspidee ou il est capture et confine par l'induction croissante de la geometrie. On rappelle les proprietes de stabilite et de confinement de la geometrie cuspidee, geometrie a champ minimum nul produite par deux spires identiques, coaxiales et parcourues par des courants egaux et opposes; on montre en particulier que pour des spires de section ponctuelle la profondeur du puits magnetique de la geometrie sans plasma est maximum pour une distance optimum des spires. Deux

  19. Confinement studies of ohmically heated plasmas in TFTR

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Bretz, N.L.; Bell, M.G.

    1985-03-01

    Systematic scans of density in large deuterium plasmas (a = 0.83 m) at several values of plasma current and toroidal magnetic field strength indicate that the total energy confinement time, tau/sub E/, is proportional to the line-average density anti n/sub e/ and the limiter q. Confinement times of approx. 0.3 s have been observed for anti n/sub e/ = 2.8 x 10 19 m -3 . Plasma size scaling experiments with plasmas of minor radii a = 0.83, 0.69, 0.55, and 0.41 m at constant limiter q reveal a confinement dependence on minor radius. The major-radius dependence of tau/sub E/, based on a comparison between TFTR and PLT results, is consistent with R 2 scaling. From the power balance, the thermal diffusivity chi/sub e/ is found to be significantly less than the INTOR value. In the a = 0.41 m plasmas, saturation of confinement is due to neoclassical ion conduction (chi/sub i/ neoclassical >> chi/sub e/)

  20. Core electron-root confinement (CERC) in helical plasmas

    International Nuclear Information System (INIS)

    Yokoyama, M.; Ida, K.; Maassbcrg, H.

    2006-10-01

    The improvement of core electron heat confinement has been realized in a wide range of helical devices such as CHS, LHD, TJ-II and W7-AS. Strongly peaked electron temperature profiles and large positive radial electric field, E r , in the core region are common fractures for this improved confinement. Such observations are consistent with a transition to the electron-root' solution of the ambipolarity condition for E r in the context of the neoclassical transport, which is unique to non-axisymmetric configurations. Based on this background, this improved confinement has been collectively dubbed 'core electron-root confinement' (CERC). The electron heat diffusivity is much reduced due to the electron-root E r compared to that with E r =0 assumed, which clearly demonstrates that 1/v ripple diffusion (ν being the collision frequency) in low-collisional helical plasmas could be overcome. The magnetic configuration properties play important roles in this transition, and thresholds are found for the collisionality and electron cyclotron heating (ECH) power. (author)

  1. High β experiment and confinement regimes in a compact helical system

    International Nuclear Information System (INIS)

    Matsuoka, K.; Okamura, S.; Nishimura, K.; Tsumori, K.; Akiyama, R.; Yamada, H.; Sakakibara, S.; Lazaros, A.; Xu, J.; Ida, K.; Tanaka, K.; Morisaki, T.; Morita, S.; Arimoto, H.; Fujiwara, M.; Idei, H.; Iguchi, H.; Kaneko, O.; Kawamoto, T.; Kubo, S.; Kuroda, T.; Motojima, O.; Ozaki, T.; Pustovitov, V.D.; Sagara, A.; Takahashi, C.; Toi, K.; Watari, T.; Yamada, I.

    1995-01-01

    A volume-averaged equilibrium β value left angle β eq right angle of 2.14% is achieved in a compact helical system using two neutral beam lines with balanced injection and intense wall conditioning with Ti gettering. This value is the highest β value realized so far in helical systems. Reheat mode, where the stored energy increases after turn-off of a strong gas puff, is employed in the experiment. Discharge conditions are as follows: B t =0.61T; beam power through the port, 1.1MW (coinjection) and 0.8MW (counterinjection); line-averaged electron density n e =6.5x10 13 cm -3 . Amplitudes of magnetic fluctuations integrated over the frequency range from 3kHz to 100kHz become saturated at left angle β eq right angle higher than 1%. Dominant coherent modes are m/n=2/1 and 1/1 when left angle β eq right angle is lower and higher respectively than 1%. Dependence of the energy confinement time τ E on n e (up to 8x10 13 cm -3 ) and B t (from 0.6 to 1.8T) is also studied in this high β experiment. When the density increases τ E degrades compared with the LHD scaling; the density dependence exhibits Bohm-like behaviour. On the contrary, τ E scales as B ∼0.75 t , which is rather close to the LHD scaling (gyro-Bohm-like behaviour). ((orig.))

  2. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    International Nuclear Information System (INIS)

    Pareg, W.F.

    1990-01-01

    This patent describes an apparatus for confining molten metal. It comprises: containment means having an open side; a magnet capable of generating a mainly horizontal alternating magnetic field. The the magnet is located adjacent to the open side of the containment means whereby the field generated by the magnet is capable of inducing eddy currents in a thin layer at the surface of the molten metal which interact with the magnetic field producing a force that can contain the molten metal within the containment means; wherein the magnet includes: magnetic poles located adjacent to the open side of the confinement means; a core connecting the poles; a coil encircling the core, the coil capable of being responsive to a current source; whereby an alternating magnetic field can be generated between the poles and parallel to the open side of the containment means so that a molten metal can be confined within the confinement means

  3. Entropic noises-induced resonance in a geometrically confined system

    International Nuclear Information System (INIS)

    Zeng, Chunhua; Gong, Ailing; Wang, Hua

    2012-01-01

    We consider the motion of Brownian particles through a narrow tube of varying cross-section in a geometrically confined system subjected to a sinusoidal oscillating force. The varying cross-section of the confinement results in an effective purely entropic potential in reduced dimension. Besides an additive Langevin force, one external additive and another multiplicative noise are acting along the x-direction. We demonstrate that the presence of a periodic input may give rise to a maximum and a minimum of the spectral amplification at corresponding optimal values of the noise strength, and therefore to the appearance of the purely entropic stochastic resonance and reverse-resonance phenomena. Furthermore, we show that the cross-correlation between two noises leads to a decrease of the spectral amplification, i.e., we observe the cross-correlation between two noises weakening the resonance. Mechanisms for the cross-correlation weakening the resonance are explained from the point of view of the effective purely entropic potential. (paper)

  4. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  5. GPUbased, Microsecond Latency, HectoChannel MIMO Feedback Control of Magnetically Confined Plasmas

    Science.gov (United States)

    Rath, Nikolaus

    Feedback control has become a crucial tool in the research on magnetic confinement of plasmas for achieving controlled nuclear fusion. This thesis presents a novel plasma feedback control system that, for the first time, employs a Graphics Processing Unit (GPU) for microsecond-latency, real-time control computations. This novel application area for GPU computing is opened up by a new system architecture that is optimized for low-latency computations on less than kilobyte sized data samples as they occur in typical plasma control algorithms. In contrast to traditional GPU computing approaches that target complex, high-throughput computations with massive amounts of data, the architecture presented in this thesis uses the GPU as the primary processing unit rather than as an auxiliary of the CPU, and data is transferred from A-D/D-A converters directly into GPU memory using peer-to-peer PCI Express transfers. The described design has been implemented in a new, GPU-based control system for the High-Beta Tokamak - Extended Pulse (HBT-EP) device. The system is built from commodity hardware and uses an NVIDIA GeForce GPU and D-TACQ A-D/D-A converters providing a total of 96 input and 64 output channels. The system is able to run with sampling periods down to 4 μs and latencies down to 8 μs. The GPU provides a total processing power of 1.5 x 1012 floating point operations per second. To illustrate the performance and versatility of both the general architecture and concrete implementation, a new control algorithm has been developed. The algorithm is designed for the control of multiple rotating magnetic perturbations in situations where the plasma equilibrium is not known exactly and features an adaptive system model: instead of requiring the rotation frequencies and growth rates embedded in the system model to be set a priori, the adaptive algorithm derives these parameters from the evolution of the perturbation amplitudes themselves. This results in non-linear control

  6. Magnetic properties of the Kagome staircase mixed system (CoxNi1-x)3V2O8

    International Nuclear Information System (INIS)

    Qureshi, Navid

    2008-01-01

    The orthooxovanadates of the 3d transition metals M 3 V 2 O 8 , known as Kagome staircase systems, reveal interesting magnetic properties due to their crystal structure. Although these compounds are isostructural for M=Co,Ni,Mn,Cu, they differ considerably with respect to their magnetic phase transitions and magnetic structures. As the magnetic ions are situated on corners of cornersharing triangles, geometric frustration plays an important role in this system. This is not only confined to the fact, that the antiferromagnetic structures exhibit reduced magnetic moments, but apparently also to the ferromagnetic structure of Co 3 V 2 O 8 , which exhibits a strongly reduced Co moment of 1.54 Bohr magnetons. Within this work precisely this ferromagnetic structure has been investigated in detail and it could be shown that the relatively weak magnetic moment does not result from frustration, but is a consequence of the strong hybridization effects between the cobalt and oxygen orbitals. The pronounced covalent character of this Co ion leads to the fact that due to the charge transfer the oxygen ions significantly contribute to the bulk magnetization when applying an external magnetic field. The second part of the presented work deals with the systematic investigation of the mixed system (Co x Ni 1-x )3V 2 O 8 . A detailed magnetic phase diagram could be drawn, in which the temperature and composition dependent magnetic phase transitions have been pinpointed. Furthermore, an interesting magnetic structure of a chosen composition of x=0.5 has been observed, which differs considerably from those of the end members. (orig.)

  7. Molecular modeling in confined polymer and biomembrane systems

    Directory of Open Access Journals (Sweden)

    Jayeeta Ghosh

    2009-07-01

    Full Text Available The computational study of soft materials under confinement for bio- and nanotechnology still poses significantchallenges but has come a long way in the last decade. It is possible to realistically model and understand the fundamentalmechanisms which are at play if soft materials are confined to nanometer dimensions. Here, we present several recentexamples of such studies. Thin polymer films are abundantly used as friction modifiers or steric stabilizers. We show howsystematic modeling can shed light on the interplay between entropic and energetic interactions. Thin glassy films arecritical for the success of nanolithography. For that we have to understand the effect of confinement on the glass transitionbehavior in order to guarantee the stability and integrity of the lithographic masks. Simulations aim to understand the fundamental differences in the densities of states of glass formers in bulk and under confinement. With the advent of bionanotechnology the structure and phase behavior of lipid membranes as models for cellular membranes at the nano scale length is of importance due to implications in understanding the role of the lipids in biochemical membrane processes.

  8. Reactor potential of the magnetically insulated inertial fusion (MICF) system

    International Nuclear Information System (INIS)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    The Magnetically Insulated Inertial Confinement Fusion (MICF) scheme is examined with regard to its potential as a power-producing reactor. This approach combines the favorable aspects of both magnetic and inertial fusions in that physical containment of the plasma is provided by a metallic shell while thermal insulation of its energy is provided by a strong, self-generated magnetic field. The plasma is created at the core of the target as a result of irradiation of the fuel-coated inner surface by a laser beam that enters through a hole in the spherical shell. The instantaneous magnetic field is generated by the current loops formed by the laser-heated, laser-ablated electrons, and preliminary experimental results at Osaka University have confirmed the presence of such a field. These same experiments have also yielded a Lawson parameter of about 5x10 12 cm -3 sec, and because of these unique properties, the plasma lifetimes in MICF have been shown to be about two orders of magnitude longer than conventional, pusher type inertial fusion schemes. In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning MICF system. (author) [pt

  9. ITER and research works on magnetic confinement fusion

    International Nuclear Information System (INIS)

    Jacquinot, J.

    2013-01-01

    This article presents the main features of the ITER tokamak and its implications in terms of research concerning plasma instabilities, confinement and materials. It also shows how the financial and technological responsibilities have been shared between the 7 partners (European Union, China, South-Korea, Russia, Japan, India and United-States) and also gives a progress update of the fabrication of the components at the date of September 2012

  10. Mirror Fusion Test Facility magnet

    International Nuclear Information System (INIS)

    Henning, C.H.; Hodges, A.J.; Van Sant, J.H.; Hinkle, R.E.; Horvath, J.A.; Hintz, R.E.; Dalder, E.; Baldi, R.; Tatro, R.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given

  11. Symposium: new trends in unconventional approaches to magnetic fusion

    International Nuclear Information System (INIS)

    Post, R.F.

    1983-01-01

    An extensive review of the meeting is given. The concepts discussed included reverse-field pinches, compact tori, advanced stellarators, multipoles, surface magnetic confinement systems, the bumpy torus, and a collection of mirror-based approaches

  12. Experimental investigation of magnetically confined plasma loops

    International Nuclear Information System (INIS)

    Tenfelde, Jan

    2012-01-01

    Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion

  13. Experimental investigation of magnetically confined plasma loops

    Energy Technology Data Exchange (ETDEWEB)

    Tenfelde, Jan

    2012-12-11

    Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion

  14. Impact of high temperature superconductors on the possibility of radio-frequency confinement

    International Nuclear Information System (INIS)

    Dean, S.O.

    1989-01-01

    Recent discoveries of superconducting materials that operate at high temperatures may have both technical and economic consequences for magnetic confinement fusion. In addition, they could also open up the possibility of plasma confinement by radio-frequency fields. The new, high temperature superconductors may impact the feasibility of rf confinement in two important ways: (1) higher temperature superconductors should have higher critical B fields and consequently may allow higher critical electric fields to be sustained in the cavity, thus allowing the necessary confining pressure to be achieved; and (2) the higher temperature superconductors lower the refrigeration power necessary to maintain the superconducting cavity, thus allowing a favorable energy balance

  15. Rapid Fourier space solution of linear partial integro-differential equations in toroidal magnetic confinement geometries

    International Nuclear Information System (INIS)

    McMillan, B.F.; Jolliet, S.; Tran, T.M.; Villard, L.; Bottino, A.; Angelino, P.

    2010-01-01

    Fluctuating quantities in magnetic confinement geometries often inherit a strong anisotropy along the field lines. One technique for describing these structures is the use of a certain set of Fourier components on the tori of nested flux surfaces. We describe an implementation of this approach for solving partial differential equations, like Poisson's equation, where a different set of Fourier components may be chosen on each surface according to the changing safety factor profile. Allowing the resolved components to change to follow the anisotropy significantly reduces the total number of degrees of freedom in the description. This can permit large gains in computational performance. We describe, in particular, how this approach can be applied to rapidly solve the gyrokinetic Poisson equation in a particle code, ORB5 (Jolliet et al. (2007) [5]), with a regular (non-field-aligned) mesh. (authors)

  16. Definition and means of maintaining the ventilation system confinement portion of the PFP safety envelope

    Energy Technology Data Exchange (ETDEWEB)

    Dick, J.D.; Grover, G.A.; O`Brien, P.M., Fluor Daniel Hanford

    1997-03-05

    The Plutonium Finishing Plant Heating Ventilation and Cooling system provides for the confinement of radioactive releases to the environment and provides for the confinement of radioactive contamination within designated zones inside the facility. This document identifies the components and procedures necessary to ensure the HVAC system provides these functions. Appendices E through J provide a snapshot of non-safety class HVAC equipment and need not be updated when the remainder of the document and Appendices A through D are updated.

  17. Simulations of Coulomb systems confined by polarizable surfaces using periodic Green functions.

    Science.gov (United States)

    Dos Santos, Alexandre P; Girotto, Matheus; Levin, Yan

    2017-11-14

    We present an efficient approach for simulating Coulomb systems confined by planar polarizable surfaces. The method is based on the solution of the Poisson equation using periodic Green functions. It is shown that the electrostatic energy arising from the surface polarization can be decoupled from the energy due to the direct Coulomb interaction between the ions. This allows us to combine an efficient Ewald summation method, or any other fast method for summing over the replicas, with the polarization contribution calculated using Green function techniques. We apply the method to calculate density profiles of ions confined between the charged dielectric and metal surfaces.

  18. SAFIRE: A systems analysis code for ICF [inertial confinement fusion] reactor economics

    International Nuclear Information System (INIS)

    McCarville, T.J.; Meier, W.R.; Carson, C.F.; Glasgow, B.B.

    1987-01-01

    The SAFIRE (Systems Analysis for ICF Reactor Economics) code incorporates analytical models for scaling the cost and performance of several inertial confinement fusion reactor concepts for electric power. The code allows us to vary design parameters (e.g., driver energy, chamber pulse rate, net electric power) and evaluate the resulting change in capital cost of power plant and the busbar cost of electricity. The SAFIRE code can be used to identify the most attractive operating space and to identify those design parameters with the greatest leverage for improving the economics of inertial confinement fusion electric power plants

  19. Preliminary study of energy confinement data with a statistical analysis system in HL-2A tokamak

    International Nuclear Information System (INIS)

    Xu Yuan; Cui Zhengying; Ji Xiaoquan; Dong Chunfeng; Yang Qingwei; O J W F Kardaun

    2010-01-01

    Taking advantage of the HL-2A experimental data,an energy confinement database facing ITERL DB2.0 version has been originally established. As for this database,a world widely used statistical analysis system (SAS) has been adopted for the first time to analyze and evaluate the confinement data from HL-2A and the research on scaling laws of energy confinement time corresponding to plasma density is developed, some preliminary results having been achieved. Finally, through comparing with both ITER scaling law and previous ASDEX database, the investigation about L-mode confinement quality on HL-2A and influence of temperature on Spitzer resistivity will be discussed. (authors)

  20. Experimental studies on the surface confined quiescent plasma at INPE

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Ferreira, J.G.; Sandonato, G.M.; Alves, M.V.; Ludwig, G.O.; Montes, A.

    1988-01-01

    The quiescent plasma machines used in several experiments at the Associated Plasma Laboratory in INPE are presented. The research activities comprise particle simulation studies on ion acoustic double layers, and studies on the plasma production and loss in surface confined magnetic multidipole thermionic discharges. Recent results from these studies have shown a non-maxwellian plasma formed in most of the discharge conditions. The plasma leakage through the multidipole fields shows an anomalous diffusion process driven by ion acoustic turbulence in the magnetic sheath. The information derived from these studies are being used in the construction and characterization of ion sources for shallow ion implantation in semiconductors, in ion thruster for space propulsion and in the development of powerful ion sources for future use in neutral beam injection systems. (author) [pt

  1. Experimental studies on the surface confined quiescent plasma at INPE

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Ferreira, J.G.; Sandonato, G.M.; Alves, M.V.; Ludwig, G.O.; Montes, A.

    1988-06-01

    Quiescent plasma machines are being used in several experiments at the Associated Plasma Laboratory in INPE. The research activities comprises particle simulation studies on ion acoustic double Layers, and studies on the plasma production and loss in surface confined magnetic multidipole thermionic discharges. Recent results from these studies have shown a non-maxwellian plasma formed in most of the discharge conditions. The plasma leakage through the multidipole fields shows an anomalous diffusion process driven by ion acoustic turbulence in the magnetic sheath. The information derived from these studies are being used in the construction and characterization of ion sources for shallow ion implantation in semiconductors, in ion thruster for space propulsion and in the development of powerful ion sources for future use in neutral beam injection systems. (author) [pt

  2. Progress with energy confinement time in the CTX spheromak

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Fernandez, J.C.; Wysocki, F.J.; Barnes, C.W.; Henins, I.; Knox, S.O.; Marklin, G.J.

    1990-01-01

    The 0.67 m radius mesh flux conserver (MFC) in CTX was replaced by a solid flux conserver (SFC), resulting in greatly reduced field errors. Decreased spheromak open flux led to vastly improved decaying discharged, including increased global energy confinement times, τ E (from 20 to 180 μs), and corresponding magnetic energy decay times, τ B 2 (from 0.7 to 2 ms). Improved confinement allowed the observation of the pressure-driven instability (predicted by Mercier) which ejects plasma from the spheromak interior to the wall

  3. Scaling of the Inertial Electrostatic Confinement (IEC) for near-term thrusters and future fusion propulsion

    International Nuclear Information System (INIS)

    Miley, G.; Bromley, B.; Jurczyk, B.; Stubbers, R.; DeMora, J.; Chacon, L.; Gu, Y.

    1998-01-01

    Inertial Electrostatic Confinement (IEC) is a unique approach to fusion and plasma energy systems that was conceptualized in the 1960s (Hirsch 1967) and has been the focus of recent development in the 1990s (Miley et al. 1995a). In the interests of space power and propulsion systems, conceptual rocket design studies (Bussard and Jameson 1994, Miley et al. 1995b) using the IEC have predicted excellent performance for a variety of space missions, since the power unit avoids the use of magnets and heavy drives resulting in a very high, specific impulse compared to other fusion systems. In their recent survey of prior conceptual design studies of fusion rockets, Williams and Borowski (1997) found that the Bussard IEC conceptual study (the open-quotes QEDclose quotes engine) offered a thrust-to-weight ratio of 10 milli-g close-quote s, a factor of five higher than conventional magnetic confinement concepts and even slightly above anti-proton micro fission/fusion designs. Thus there is considerable motivation to study IEC concepts for eventual space applications. However, the physics feasibility of the IEC still requires experimental demonstration, and an expanded data base is needed to insure that a power unit can in fact be built. copyright 1998 American Institute of Physics

  4. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization.

    Science.gov (United States)

    Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey

    2016-08-04

    High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

  5. Evaluation of the confinement option for LMRs

    International Nuclear Information System (INIS)

    Himes, D.A.; Stepnewski, D.D.; Franz, G.R.

    1985-12-01

    The coolant in liquid metal cooled reactors operates at low pressures and therefore contains relatively little stored energy compared to LWR systems. This presents the possibility of using a more conventional building for containment coupled with a confinement system which vents the internal volume of the building through a filter/scrubber. The confinement system would be designed to keep the internal pressure in the containment near atmospheric thereby minimizing unfiltered leakage. The principal benefits of such an arrangement would be lower capital cost and less stringent leaktightness requirements permitting simpler and less disruptive testing. In conclusion, the confinement system assumed here would reduce consequences to the public of an LMR HCDA to acceptable levels. However control room doses are unacceptable due to the noble gas concentration inside the control room. A confinement system is therefore a viable design option for LMR's provided means are included for keeping noble gases out of the control room. Such means are readily available including, for example, selectable remote air intakes, an exhaust stack, or a noble gas filter. Probably the most satisfactory alternative would be a large cryogenic filter on the confinement system exhaust

  6. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskikh, Sergey V.; Furo, Istvan (Industrial NMR Centre and Div. of Physical Chemistry, Dept. of Chemistry, Royal Institute of Technology, Stockholm (Sweden))

    2009-09-15

    This report summarizes results from a set of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) experiments performed on Ca and Na montmorillonite samples interacting with water. The primary goal with these studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during and after different physical processes such as swelling and sedimentation and on the time scale from minutes to years. Additionally, we also studied the distribution of foreign particles (such as native minerals as well as magnetic model particles) within bentonite systems and performed some diffusion NMR experiments with the aim of characterizing the state of colloids that form after clay dissolution. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Bulk samples confined in a vertical tube and in a horizontal channel were investigated. A critical issue for the stability of clay buffer layer in deep underground repository is to prevent or minimize the release of clay particles into the water phase. In our experiments, the most significant particle losses were found for Na-MX80 clay exposed to water with low ionic strength. With increasing the concentration of CaCl{sub 2} in the water phase both swelling and particle release are slowed down but not completely eliminated due probably to gradual change of water ion content via ion exchange with the clay itself. For natural MX80 samples, in spite of significant swelling expansion, no clay particle release above the sensitivity limit of 0.001 volume% was observed. Ca-MX80 exhibited the smallest expansion and no trace of clay particle released into the aqueous phase

  7. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems

    International Nuclear Information System (INIS)

    Dvinskikh, Sergey V.; Furo, Istvan

    2009-09-01

    This report summarizes results from a set of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) experiments performed on Ca and Na montmorillonite samples interacting with water. The primary goal with these studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during and after different physical processes such as swelling and sedimentation and on the time scale from minutes to years. Additionally, we also studied the distribution of foreign particles (such as native minerals as well as magnetic model particles) within bentonite systems and performed some diffusion NMR experiments with the aim of characterizing the state of colloids that form after clay dissolution. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Bulk samples confined in a vertical tube and in a horizontal channel were investigated. A critical issue for the stability of clay buffer layer in deep underground repository is to prevent or minimize the release of clay particles into the water phase. In our experiments, the most significant particle losses were found for Na-MX80 clay exposed to water with low ionic strength. With increasing the concentration of CaCl 2 in the water phase both swelling and particle release are slowed down but not completely eliminated due probably to gradual change of water ion content via ion exchange with the clay itself. For natural MX80 samples, in spite of significant swelling expansion, no clay particle release above the sensitivity limit of 0.001 volume% was observed. Ca-MX80 exhibited the smallest expansion and no trace of clay particle released into the aqueous phase

  8. Transport of runaway and thermal electrons due to magnetic microturbulence

    International Nuclear Information System (INIS)

    Mynick, H.E.; Strachan, J.D.

    1981-01-01

    The ratio of the runaway electron confinement to thermal electron energy confinement is derived for tokamaks where both processes are determined by free streaming along stochastic magnetic field lines. The runaway electron confinement is enhanced at high runaway electron energies due to phase averaging over the magnetic perturbations when the runaway electron drift surfaces are displaced from the magnetic surfaces. Comparison with experimental data from LT-3, Ormak, PLT, ST, and TM-3 indicates that magnetic stochasticity may explain the relative transport rates of runaways and thermal electron energy

  9. Experimental scaling of fluctuations and confinement with Lundquist number in the RFP

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Chapman, J.T.; Prager, S.C.; Sarff, J.S.

    1997-09-01

    The scaling of the magnetic and velocity fluctuations with Lundquist number (S) is examined experimentally over a range of values from 7 x 10 4 to 10 6 in a reversed field pinch (RFP) plasma. Magnetic fluctuations do not scale uniquely with the Lundquist number. At high (relative) density, fluctuations scale as b∝S -0.18 , and fluctuations are almost independent of S at low relative density, b∝S -0.07 ; however both exponents fall in the range of theoretical and numerical predictions. At high relative density, the scaling of the energy confinement time follows expectations for transport in a stochastic magnetic field. A confinement scaling law (nτ E ∝β 4/5 T -7/10 A -3/5 I φ 2 ) is derived assuming the persistent dominance of stochastic magnetic diffusion in the RFP and on the measured scaling of magnetic fluctuations. The peak velocity fluctuations during a sawtooth cycle scale marginally stronger than magnetic fluctuations but weaker than a simple Ohm's law prediction. The sawtooth period is determined by a resistive-Alfvenic hybrid time (T saw ∝√(τ R τ Alf )) rather than a purely resistive time

  10. The magnetic centrifugal mass filter

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages.

  11. The magnetic centrifugal mass filter

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-09-15

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages.

  12. TMX magnet control system

    International Nuclear Information System (INIS)

    Goerz, D.A.

    1978-01-01

    A control system utilizing a microcomputer has been developed that controls the power supplies driving the Tandem Mirror Experiment (TMX) magnet set and monitors magnet coil operation. The magnet set consists of 18 magnet coils that are driven by 26 dc power supplies. There are two possible modes of operation with this system: a pulse mode where the coils are pulsed on for several seconds with a dc power consumption of 16 MW; and a continuous mode where the coils can run steady state at 10 percent of maximum current ratings. The processor has been given an active control role and serves as an interface between the operator and electronic circuitry that controls the magnet power supplies. This microcomputer also collects and processes data from many analog singal monitors in the coil circuits and numerous status signals from the supplies. Placing the microcomputer in an active control role has yielded a compact, cost effective system that simplifies the magnet system operation and has proven to be very reliable. This paper will describe the TMX magnet control sytem and discuss its development

  13. Nonlinear quenches of power-law confining traps in quantum critical systems

    International Nuclear Information System (INIS)

    Collura, Mario; Karevski, Dragi

    2011-01-01

    We describe the coherent quantum evolution of a quantum many-body system with a time-dependent power-law confining potential. The amplitude of the inhomogeneous potential is driven in time along a nonlinear ramp which crosses a critical point. Using Kibble-Zurek-like scaling arguments we derive general scaling laws for the density of excitations and energy excess generated during the nonlinear sweep of the confining potential. It is shown that, with respect to the sweeping rate, the densities follow algebraic laws with exponents that depend on the space-time properties of the potential and on the scaling dimensions of the densities. We support our scaling predictions with both analytical and numerical results on the Ising quantum chain with an inhomogeneous transverse field varying in time.

  14. CCSD(T) calculations of stabilities and properties of confined systems

    Energy Technology Data Exchange (ETDEWEB)

    Holka, F.; Urban, M. [Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Bottova 25, SK-917 24 Trnava (Slovakia); Melicherčík, M.; Neogrády, P. [Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava (Slovakia); Paldus, J. [Department of Applied Mathematics, University of Waterloo, N2L 3G1, Ontario (Canada)

    2015-01-22

    We analyze energies, electron affinities and polarizabilities of small anions exposed to an external confinement. The second electron in free O{sup 2−} and S{sup 2−} anions is unbound. We investigate the stabilizing effect of the spherical harmonic-oscillator confining potential ω. on these anions employing the Hartree-Fock stability analysis as introduced by Čížek and Paldus. With increasing strength of the external harmonic-oscillator confinement potential ω the broken symmetry (BS) solutions are systematically eliminated. For ω larger than 0.1 all BS solutions for O{sup 2−} disappear. For ω larger than 0.13 the CCSD(T) energy of O{sup 2−} becomes more negative than the energy of the singly charged O{sup −} anion. We relate the harmonic-oscillator confining potential to a crystalline environment in which the O{sup 2−} and S{sup 2−} anions are stable. We also present a model allowing calculations of the in-crystal polarizabilities of anions. The model is based on CCSD(T) calculations of static polarizabilities of selected anions exposed to the spherical harmonic-oscillator confining potential ω This artificial confinement potential ω is then related to the ionic radii of the cation in representative crystal lattices. We investigate the polarizability of O{sup 2−} and S{sup 2−} anions in MgO, MgS, CaO, CaS, SrO, SrS, BaO and BaS crystals. We compare our results with alternative models for in-crystal polarizabilities. External confinement also stabilizes the uracil anion U{sup −}, as is shown by calculations with a stepwise micro-hydration of U{sup −}. Upon hydration is the CCSD(T) adiabatic electron affinity (AEA) of uracil enhanced by about 250 up to 570 meV in comparison with AEA of the isolated molecule, depending on the geometry of the hydrated uracil anion complex. We tried to find an analogy of the stabilization effect of the external confinement on the otherwise unstable anions. In uracil and its anion is the external

  15. The Quasi-Toroidal Stellarator: An Innovative Confinement Experiment

    International Nuclear Information System (INIS)

    Knowlton, S. F.

    2001-01-01

    To develop a new class of stellarators that exhibit improved confinement compared to conventional stellarators. This approach generally makes use of a designed symmetry of the magnetic field strength along a particular coordinate axis in the toroidal geometry of the stellarator, and is referred to as quasi-symmetry

  16. Analysis of a global energy confinement database for JET ohmic plasmas

    International Nuclear Information System (INIS)

    Bracco, G.; Thomsen, K.

    1997-01-01

    A database containing global energy confinement data for JET ohmic plasmas in the campaigns from 1984 to 1992 has been established. An analysis is presented of this database and the results are compared with data from other tokamaks, such as the Axially Symmetric Divertor Experiment (ASDEX), Frascati Tokamak Upgrade (FTU) and Tore Supra. The trends of JET ohmic confinement appear to be similar to those observed on other tokamaks: a linear dependence of the global energy confinement time on density is observed up to a density value where a saturation is attained; this density value defines the border between the linear and the saturated ohmic confinement regimes; this border is shifted towards higher density values if the q value of the discharge is decreased; the global confinement time in the saturated ohmic regime increases less than linearly with the value of the magnetic field. (author). 20 refs, 13 figs, 4 tabs

  17. Confinement-induced resonances in anharmonic waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Peng Shiguo [Department of Physics, Tsinghua University, Beijing 100084 (China); Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Hu Hui; Liu Xiaji; Drummond, Peter D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)

    2011-10-15

    We develop the theory of anharmonic confinement-induced resonances (ACIRs). These are caused by anharmonic excitation of the transverse motion of the center of mass (c.m.) of two bound atoms in a waveguide. As the transverse confinement becomes anisotropic, we find that the c.m. resonant solutions split for a quasi-one-dimensional (1D) system, in agreement with recent experiments. This is not found in harmonic confinement theories. A new resonance appears for repulsive couplings (a{sub 3D}>0) for a quasi-two-dimensional (2D) system, which is also not seen with harmonic confinement. After inclusion of anharmonic energy corrections within perturbation theory, we find that these ACIRs agree extremely well with anomalous 1D and 2D confinement-induced resonance positions observed in recent experiments. Multiple even- and odd-order transverse ACIRs are identified in experimental data, including up to N=4 transverse c.m. quantum numbers.

  18. Electron Raman scattering in semiconductor quantum wire in an external magnetic field

    International Nuclear Information System (INIS)

    Betancourt-Riera, Ri; Nieto Jalil, J M; Riera, R; Betancourt-Riera, Re; Rosas, R

    2008-01-01

    The differential cross-section for an electron Raman scattering process in a semiconductor quantum wire in the presence of an external magnetic field perpendicular to the plane of confinement is calculated. We assume a single parabolic conduction band. The emission spectra for different scattering configurations and the selection rules for the processes are studied. Singularities in the spectra are found and interpreted. The electron Raman scattering studied here can be used to provide direct information about the electron band and subband structure of these confinement systems. The magnetic field distribution is considered constant with value B 0 inside the wire and zero outside

  19. Plasma and neutral gas jet interactions in the exhaust of a magnetic confinement system

    International Nuclear Information System (INIS)

    Krueger, W.A.

    1990-06-01

    A general purpose 2-1/2 dimensional, multifluid, time dependent computer code has been developed. This flexible tool models the dynamic behavior of plasma/neutral gas interactions in the presence of a magnetic field. The simulation has been used to examine the formation of smoke ring structure in the plasma rocket exhaust by injection of an axial jet of neutral gas. Specifically, the code was applied to the special case of attempting to couple the neutral gas momentum to the plasma in such a manner that plasma smoke rings would form, disconnecting the plasma from the magnetic field. For this scenario several cases where run scanning a wide range of neutral gas input parameters. In all the cases it was found that after an initial transient phase, the plasma eroded the neutral gas and after that followed the original magnetic field. From these findings it is concluded that smoke rings do not form with axial injection of neutral gas. Several suggestions for alternative injection schemes are presented

  20. Reproduction, mastitis, and body condition of seasonally calved Holstein and Jersey cows in confinement or pasture systems.

    Science.gov (United States)

    Washburn, S P; White, S L; Green, J T; Benson, G A

    2002-01-01

    Dairy cows in confinement and pasture-based feeding systems were compared across four spring-calving and three fall-calving replicates for differences in reproduction, mastitis, body weights, and body condition scores. Feeding systems and replicates included both Jersey and Holstein cows. Cows in confinement were fed a total mixed ration, and cows on pasture were supplemented with concentrates and provided baled hay or haylage when pasture supply was limiting. Breeding periods were for 75 d in spring or fall. Reproductive performance did not differ significantly due to feeding system or season. Jerseys had higher conception rates (59.6 vs. 49.5 +/- 3.3%) and higher percentages of cows pregnant in 75 d (78.1 vs. 57.9 +/- 3.9%) than Holsteins. Cows in confinement had 1.8 times more clinical mastitis and eight times the rate of culling for mastitis than did cows on pasture. Jerseys had half as many clinical cases of mastitis per cow as Holsteins. Only 41 +/- 5% of confinement Holsteins remained for a subsequent lactation, starting within the defined calving season compared with 51 +/- 5% of pastured Holsteins and 71 and 72 +/- 5% of Jerseys, respectively. Body weights and condition scores were generally higher for confinement cows than pastured cows, and Jerseys had higher condition scores and lower body weights than Holsteins. In summary, pastured cows had fewer clinical cases of mastitis, lower body condition scores, and lower body weights than confinement cows. Holsteins were less likely to rebreed, had more mastitis, higher culling rates, and lower body condition scores than Jerseys.

  1. Monopole current dynamics and color confinement

    International Nuclear Information System (INIS)

    Ichie, H.; Suganuma, H.; Tanaka, A.

    1998-01-01

    Color confinement can be understood by the dual Higgs theory, where monopole condensation leads to the exclusion of the electric flux from the QCD vacuum. We study the role of the monopole for color confinement by investigating the monopole current system. When the self-energy of the monopole current is small enough, long and complicated monopole world-lines appear, which is a signal of monopole condensation. In the dense monopole system, the Wilson loop obeys the area-law, and the string tension and the monopole density have similar behavior as the function of the self-energy, which seems that monopole condensation leads to color confinement. On the long-distance physics, the monopole current system almost reproduces essential features of confinement properties in lattice QCD. In the short-distance physics, however, the monopole-current theory would become nonlocal and complicated due to the monopole size effect. This monopole size would provide a critical scale of QCD in terms of the dual Higgs mechanism. (orig.)

  2. Maximum thermal energy density in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Coppi, B.

    1977-01-01

    The consequences of the limiting value of β that follows from analyzing the onset of high temperature ballooning modes is examined in high temperature regimes where the ideal MHD approximation is not strictly valid and for finite-β configurations exhibiting the main features of those that are obtained by magnetic flux conservation. These modes are localized over periodically space intervals of a given magnetic field line and are driven by the combined effects of finite plasma pressure and the locally unfavorable magnetic curvature. The effects of finite β, insofar as they shorten the effective connection length, steepen the pressure gradient, and influence the magnetic well dug by the plasma, are studied using a model dispersion relation. 14 references

  3. Scattering resonances of ultracold atoms in confined geometries

    International Nuclear Information System (INIS)

    Saeidian, Shahpoor

    2008-01-01

    Subject of this thesis is the investigation of the quantum dynamics of ultracold atoms in confined geometries. We discuss the behavior of ground state atoms inside a 3D magnetic quadrupole field. Such atoms in enough weak magnetic fields can be approximately treated as neutral point-like particles. Complementary to the well-known positive energy resonances, we point out the existence of short-lived negative energy resonances. The latter originate from a fundamental symmetry of the underlying Hamiltonian. We drive a mapping of the two branches of the spectrum. Moreover, we analyze atomic hyperfine resonances in a magnetic quadrupole field. This corresponds to the case for which both the hyperfine and Zeeman interaction, are comparable, and should be taken into account. Finally, we develop a general grid method for multichannel scattering of two atoms in a two-dimensional harmonic confinement. With our approach we analyze transverse excitations/deexcitations in the course of the collisional process (distinguishable or identical atoms) including all important partial waves and their couplings due to the broken spherical symmetry. Special attention is paid to suggest a non-trivial extension of the CIRs theory developed so far only for the single-mode regime and zero-energy limit. (orig.)

  4. Scattering resonances of ultracold atoms in confined geometries

    Energy Technology Data Exchange (ETDEWEB)

    Saeidian, Shahpoor

    2008-06-18

    Subject of this thesis is the investigation of the quantum dynamics of ultracold atoms in confined geometries. We discuss the behavior of ground state atoms inside a 3D magnetic quadrupole field. Such atoms in enough weak magnetic fields can be approximately treated as neutral point-like particles. Complementary to the well-known positive energy resonances, we point out the existence of short-lived negative energy resonances. The latter originate from a fundamental symmetry of the underlying Hamiltonian. We drive a mapping of the two branches of the spectrum. Moreover, we analyze atomic hyperfine resonances in a magnetic quadrupole field. This corresponds to the case for which both the hyperfine and Zeeman interaction, are comparable, and should be taken into account. Finally, we develop a general grid method for multichannel scattering of two atoms in a two-dimensional harmonic confinement. With our approach we analyze transverse excitations/deexcitations in the course of the collisional process (distinguishable or identical atoms) including all important partial waves and their couplings due to the broken spherical symmetry. Special attention is paid to suggest a non-trivial extension of the CIRs theory developed so far only for the single-mode regime and zero-energy limit. (orig.)

  5. Confinement improvement in H-mode-like plasmas in helical systems

    International Nuclear Information System (INIS)

    Itoh, K.; Sanuki, H.; Itoh, S.; Fukuyama, A.; Yagi, M.

    1993-06-01

    The reduction of the anomalous transport due to the inhomogeneous radial electric field is theoretically studied for toroidal helical plasmas. The self-sustained interchange-mode turbulence is analysed for the system with magnetic shear and magnetic hill. For the system with magnetic well like conventional stellarators, the ballooning mode turbulence is studied. Influence of the radial electric field inhomogeneity on the transport coefficients and fluctuations are quantitatively shown. Unified theory of the transport coefficients in the L-mode and H-mode-like plasmas are presented. (author)

  6. Virtual cathode in a spherical inertial electrostatic confinement

    International Nuclear Information System (INIS)

    Momota, Hiromu; Miley, G.H.

    1999-01-01

    Spherical inertial electrostatic confinement (SIEC) was proposed as a fusion device. Its best feature is that confinement scheme does not need any magnetic field. Ion orbits pass through the center of the device, and thus the resulting ion density profile shows strong peaking. On the other hand, electron orbits are sensitive to the electrostatic self-field. Complete solution of particle orbits and of self-field is difficult to obtain. In the present paper steady-state solutions are obtained for two extreme cases. The first case assumes no electron collision, and the second case frequent electron collisions, and thus electrons are described by the Boltzmann law. (M. Tanaka)

  7. SU(5) monopoles, magnetic symmetry and confinement

    International Nuclear Information System (INIS)

    Daniel, M.; Lazarides, G.; Shafi, Q.

    1980-01-01

    The monopoles of the unified SU(5) gauge theory broken down to Hsub(E) = SU(3)sub(c) x U(1)sub(EM) [or to Ksub(E) = SU(3)sub(c) x SU(2) x U(1)sub(γ)], are classified. They belong to representations of a magnetic group Hsub(M)(Ksub(M)), which is found to be isomorphic to Hsub(E)(Ksub(E)). For SU(5) broken down to Hsub(E), there exists a regular and stable monopole which is a colour magnetic triplet, and carries a non-zero abelian magnetic charge. It is suggested that composite operators made out of this monopole and its antiparticle fields develop a non-zero vacuum expectation value, and so lead to a squeezing of the colour electric flux. Finally, we comment on the cosmological production of SU(5) monopoles. (orig.)

  8. Scalings of energy confinement and density limit in stellarator/heliotron

    International Nuclear Information System (INIS)

    Sudo, S.; Takeiri, Y.; Zushi, H.; Sano, F.; Itoh, K.; Kondo, K.; Iiyoshi, A.

    1989-04-01

    Empirical scaling of energy confinement observed experimentally in stellarator/heliotron (Heliotron E, Wendelstein 7A, L2, Heliotron DR) under the condition that plasmas are heated by ECH and/or NbI is proposed. Empirical scaling of density limit obtainable under the optimum condition is proposed. These scalings are compared with those of tokamaks. The energy confinement scaling has similar power dependence as 'L mode scaling' of tokamaks. The density limit scaling seems also to indicate the upper limit of achievable density in many tokamaks. Combining the energy confinement time and the density limit scaling a transport-limited beta value is also deduced. Thus, from the viewpoint of designing a machine, there should be some compromise in determing magnetic field strength on plasma axis, average minor radius and major radius, because their dependence on confinement time and transport-limited beta value is contradicting. (J.P.N.)

  9. Increasing the magnetic-field capability of the magneto-inertial fusion electrical discharge system using an inductively coupled coil

    Science.gov (United States)

    Barnak, D. H.; Davies, J. R.; Fiksel, G.; Chang, P.-Y.; Zabir, E.; Betti, R.

    2018-03-01

    Magnetized high energy density physics (HEDP) is a very active and relatively unexplored field that has applications in inertial confinement fusion, astrophysical plasma science, and basic plasma physics. A self-contained device, the Magneto-Inertial Fusion Electrical Discharge System, MIFEDS [G. Fiksel et al., Rev. Sci. Instrum. 86, 016105 (2015)], was developed at the Laboratory for Laser Energetics to conduct magnetized HEDP experiments on both the OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495-506 (1997)] and OMEGA EP [J. H. Kelly et al., J. Phys. IV France 133, 75 (2006) and L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)] laser systems. Extremely high magnetic fields are a necessity for magnetized HEDP, and the need for stronger magnetic fields continues to drive the redevelopment of the MIFEDS device. It is proposed in this paper that a magnetic coil that is inductively coupled rather than directly connecting to the MIFEDS device can increase the overall strength of the magnetic field for HEDP experiments by increasing the efficiency of energy transfer while decreasing the effective magnetized volume. A brief explanation of the energy delivery of the MIFEDS device illustrates the benefit of inductive coupling and is compared to that of direct connection for varying coil size and geometry. A prototype was then constructed to demonstrate a 7-fold increase in energy delivery using inductive coupling.

  10. Magnetic separation in microfluidic systems

    DEFF Research Database (Denmark)

    Smistrup, Kristian

    2007-01-01

    to facilitate real-time monitoring of the experiments. The set-up and experimental protocol are described in detail. Results are presented for ’active’ magnetic bead separators, where on-chip microfabricated electromagnets supply the magnetic field and field gradients necessary for magnetic bead separation....... It is shown conceptually how such a system can be applied for parallel biochemical processing in a microfluidic system. ’Passive’ magnetic separators are presented, where on-chip soft magnetic elements are magnetized by an external magnetic field and create strong magnetic fields and gradients inside...

  11. Variational Monte Carlo Method with Dirichlet Boundary Conditions: Application to the Study of Confined Systems by Impenetrable Surfaces with Different Symmetries.

    Science.gov (United States)

    Sarsa, Antonio; Le Sech, Claude

    2011-09-13

    Variational Monte Carlo method is a powerful tool to determine approximate wave functions of atoms, molecules, and solids up to relatively large systems. In the present work, we extend the variational Monte Carlo approach to study confined systems. Important properties of the atoms, such as the spatial distribution of the electronic charge, the energy levels, or the filling of electronic shells, are modified under confinement. An expression of the energy very similar to the estimator used for free systems is derived. This opens the possibility to study confined systems with little changes in the solution of the corresponding free systems. This is illustrated by the study of helium atom in its ground state (1)S and the first (3)S excited state confined by spherical, cylindrical, and plane impenetrable surfaces. The average interelectronic distances are also calculated. They decrease in general when the confinement is stronger; however, it is seen that they present a minimum for excited states under confinement by open surfaces (cylindrical, planes) around the radii values corresponding to ionization. The ground (2)S and the first (2)P and (2)D excited states of the lithium atom are calculated under spherical constraints for different confinement radii. A crossing between the (2)S and (2)P states is observed around rc = 3 atomic units, illustrating the modification of the atomic energy level under confinement. Finally the carbon atom is studied in the spherical symmetry by using both variational and diffusion Monte Carlo methods. It is shown that the hybridized state sp(3) becomes lower in energy than the ground state (3)P due to a modification and a mixing of the atomic orbitals s, p under strong confinement. This result suggests a model, at least of pedagogical interest, to interpret the basic properties of carbon atom in chemistry.

  12. Confinement of pure electron plasmas in the Columbia Non-neutral Torus

    International Nuclear Information System (INIS)

    Berkery, John W.; Pedersen, Thomas Sunn; Kremer, Jason P.; Marksteiner, Quinn R.; Lefrancois, Remi G.; Hahn, Michael S.; Brenner, Paul W.

    2007-01-01

    The Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois, Q. Marksteiner, N. Pomphrey, W. Reiersen, F. Dahlgreen, and X. Sarasola, Fusion Sci. Technol. 50, 372 (2006)] is a stellarator used to study non-neutral plasmas confined on magnetic surfaces. A detailed experimental study of confinement of pure electron plasmas in CNT is described here. Electrons are introduced into the magnetic surfaces by placing a biased thermionic emitter on the magnetic axis. As reported previously, the insulated rods holding this and other emitter filaments contribute to the radial transport by charging up negatively and creating ExB convective transport cells. A model for the rod-driven transport is presented and compared to the measured transport rates under a number of different conditions, finding good agreement. Neutrals also drive transport, and by varying the neutral pressure in the experiment, the effects of rod-driven and neutral-driven transport are separated. The neutral-driven electron loss rate scales linearly with neutral pressure. The neutral driven transport, presumably caused by electron-neutral collisions, is much greater than theoretical estimates for neoclassical diffusion in a classical stellarator with strong radial electric fields. In fact the confinement time is on the order of the electron-neutral collision time. Ion accumulation, electron attachment, and other effects are considered, but do not explain the observed transport rates

  13. Fusion an introduction to the physics and technology of magnetic confinement fusion

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    This second edition of a popular textbook is thoroughly revised with around 25% new and updated content.It provides an introduction to both plasma physics and fusion technology at a level that can be understood by advanced undergraduates and graduate students in the physical sciences and related engineering disciplines.As such, the contents cover various plasma confinement concepts, the support technologies needed to confine the plasma, and the designs of ITER as well as future fusion reactors.With end of chapter problems for use in courses.

  14. Hybrid magnets at Tohoku University

    International Nuclear Information System (INIS)

    Muto, Yoshio; Nakagawa, Yasuaki; Noto, Koshichi; Hoshi, Akira; Miura, Shigeto; Watanabe, Kazuo; Kido, Giyuu

    1984-01-01

    The High Field Laboratory for Superconducting Materials was established in April 1981 at Tohoku University in order to provide research facilities for the development of superconducting materials suitable for superconducting magnets for the plasma confinement in fusion reactors. Main facilities of this laboratory are three hybrid magnets up to 30 Tesla dc magnetic fields with inner bores from 32 to 52mm in diameter. The magnets consist of superconducting outer solenoids and water-cooled inner ones with a maximum steady power dissipation of 8 MW. The design and construction of these three hybrid magnets have finished in last three years, and two of them (HM-3;20T, 32 mm bore and HM-2; 23T, 52 mm bore) have already opened to scientists and engineers in the superconductivity and other fields. The rated field of the third hybrid magnet (HM-1) is 31 (or 29) Tesla in a bore of 32 (or 52) mm in diameter. By this hybrid system we have succeeded to produce 29.3 Tesla on April 21, 1984. Detailed descriptions are presented on the superconducting magnets, power supplies and cooling systems for them, water-cooled magnets, dc-high power source and water-cooled system for them, the monitoring and control system for the hybrid magnets including a super-minicomputer system, a hard-wired interlock system for the safety of human beings and machines, and so on. The fourth hybrid magnet system which aims at 35 Tesla as the next phase is also discussed. (author)

  15. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    Science.gov (United States)

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  16. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    Science.gov (United States)

    Pareg, Walter F.

    1990-01-01

    An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.

  17. A Review of Quantum Confinement

    Science.gov (United States)

    Connerade, Jean-Patrick

    2009-12-01

    A succinct history of the Confined Atom problem is presented. The hydrogen atom confined to the centre of an impenetrable sphere counts amongst the exactly soluble problems of physics, alongside much more noted exact solutions such as Black Body Radiation and the free Hydrogen atom in absence of any radiation field. It shares with them the disadvantage of being an idealisation, while at the same time encapsulating in a simple way particular aspects of physical reality. The problem was first formulated by Sommerfeld and Welker [1]—henceforth cited as SW—in connection with the behaviour of atoms at very high pressures, and the solution was published on the occasion of Pauli's 60th birthday celebration. At the time, it seemed that there was not much other connection with physical reality beyond a few simple aspects connected to the properties of atoms in solids, for which more appropriate models were soon developed. Thus, confined atoms attracted little attention until the advent of the metallofullerene, which provided the first example of a confined atom with properties quite closely related to those originally considered by SW. Since then, the problem has received much more attention, and many more new features of quantum confinement, quantum compression, the quantum Faraday cage, electronic reorganisation, cavity resonances, etc have been described, which are relevant to real systems. Also, a number of other situations have been uncovered experimentally to which quantum confinement is relevant. Thus, studies of the confined atom are now more numerous, and have been extended both in terms of the models used and the systems to which they can be applied. Connections to thermodynamics are explored through the properties of a confined two-level atom adapted from Einstein's celebrated model, and issues of dynamical screening of electromagnetic radiation by the confining shell are discussed in connection with the Faraday cage produced by a confining conducting shell

  18. A Review of Quantum Confinement

    International Nuclear Information System (INIS)

    Connerade, Jean-Patrick

    2009-01-01

    A succinct history of the Confined Atom problem is presented. The hydrogen atom confined to the centre of an impenetrable sphere counts amongst the exactly soluble problems of physics, alongside much more noted exact solutions such as Black Body Radiation and the free Hydrogen atom in absence of any radiation field. It shares with them the disadvantage of being an idealisation, while at the same time encapsulating in a simple way particular aspects of physical reality. The problem was first formulated by Sommerfeld and Welker - henceforth cited as SW - in connection with the behaviour of atoms at very high pressures, and the solution was published on the occasion of Pauli's 60th birthday celebration. At the time, it seemed that there was not much other connection with physical reality beyond a few simple aspects connected to the properties of atoms in solids, for which more appropriate models were soon developed. Thus, confined atoms attracted little attention until the advent of the metallofullerene, which provided the first example of a confined atom with properties quite closely related to those originally considered by SW. Since then, the problem has received much more attention, and many more new features of quantum confinement, quantum compression, the quantum Faraday cage, electronic reorganisation, cavity resonances, etc have been described, which are relevant to real systems. Also, a number of other situations have been uncovered experimentally to which quantum confinement is relevant. Thus, studies of the confined atom are now more numerous, and have been extended both in terms of the models used and the systems to which they can be applied. Connections to thermodynamics are explored through the properties of a confined two-level atom adapted from Einstein's celebrated model, and issues of dynamical screening of electromagnetic radiation by the confining shell are discussed in connection with the Faraday cage produced by a confining conducting shell. The

  19. Neutron spectroscopy for confinement studies

    International Nuclear Information System (INIS)

    Zorn, R.

    2010-01-01

    Neutron spectroscopy is an important method for the study of microscopic dynamics because it captures the spatial as well as the temporal aspects of the atomic or molecular motion. In this article techniques will be presented which are of special importance for the study of confined systems. Many of these are based on the fact that neutron scattering is isotope-dependent. Possible sources of systematic errors in measurements of confined systems will be pointed out. (author)

  20. Introduction to Gyrokinetic Theory with Applications in Magnetic Confinement Research in Plasma Physics

    International Nuclear Information System (INIS)

    Tang, W.M.

    2005-01-01

    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources

  1. Physics issues in mirror and tandem mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1984-01-01

    Over the years the study of the confinement of high temperature plasma in magnetic mirror systems has presented researchers with many unusual physics problems. Many of these issues are by now understood theoretically and documented experimentally. With the advent of the tandem mirror idea, some new issues have emerged and are now under intensive study. These include: (1) the generation and control of ambipolar confining potentials and their effect on axial confinement and, (2) the combined influence of nonaxisymmetric magnetic fields (used to ensure MHD stability) and electric magnetic particle drifts on radial transport. Physics considerations associated with these two categories of issues will be reviewed, including concepts for the control of radial transport, under study or proposed

  2. Control of first-wall surface conditions in the 2XIIB Magnetic Mirror Plasma Confinement experiment

    International Nuclear Information System (INIS)

    Simonen, T.C.; Bulmer, R.H.; Coensgen, F.H.

    1976-01-01

    The control of first-wall surface conditions in the 2XIIB Magnetic Mirror Plasma Confinement experiment is described. Before each plasma shot, the first wall is covered with a freshly gettered titanium surface. Up to 5 MW of neutral beam power has been injected into 2XIIB, resulting in first-wall bombardment fluxes of 10 17 atoms . cm -2 . s -1 of 13-keV mean energy deuterium atoms for several ms. The background gas flux is measured with a calibrated, 11-channel, fast-atom detector. Background gas levels are found to depend on surface conditions, injected beam current, and beam pulse duration. For our best operating conditions, an efective reflex coefficient of 0.3 can be inferred from the measurements. Experiments with long-duration and high-current beam injection are limited by charge exchange; however, experiments with shorter beam duration are not limited by first-wall surface conditions. It is concluded that surface effects will be reduced further with smoother walls. (Auth.)

  3. The BF formalism for QCD and quark confinement

    International Nuclear Information System (INIS)

    Fucito, F.; Zeni, M.

    1997-01-01

    Using the BF version of pure Yang-Mills, it is possible to find a covariant representation of the 't Hooft magnetic flux operator. In this framework, 't Hooft's pioneering work on confinement finds an explicit realization in the continuum. Employing the Abelian projection gauge we compute the expectation value of the magnetic variable and find the expected perimeter law. We also check the area law behavior for the Wilson loop average and compute the string tension which turns out to be of the right order of magnitude. (orig.)

  4. An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems

    DEFF Research Database (Denmark)

    Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.

    2016-01-01

    beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...

  5. Confinement and stability in JET: recent results

    International Nuclear Information System (INIS)

    Campbell, D.J.

    1990-01-01

    The versatility of the JET device allows a wide range of tokamak operating regimes to be explored and plasmas bounded both by material limiters and by a magnetic separatrix have been investigated extensively. This has permitted the confinement and mhd stability properties of plasmas heated to temperatures above 10keV by neutral beam injection or ion cyclotron resonance heating to be studied in detail. The results of recent analyses of transport and confinement in the L- and H-mode regimes in JET are discussed and the properties of H-mode plasmas produced by both major forms of heating are compared. Several aspects of the mhd stability of such plasmas, particularly at high toroidal beta, β θ , and at the density limit, are reviewed. (author)

  6. Hot electron confinement in a microwave heated spindle cusp

    International Nuclear Information System (INIS)

    Prelas, M.A.

    1991-08-01

    The Plasma Research Laboratory at the University of Missouri-Columbia was established with awards from the McDonnel Douglas Foundation, ARMCO, Union Electric, Black and Vetch, Kansas City Power and Light, the National Science Foundation, and DOE. The Plasma Research Lab's major effort is the Missouri Magnetic Mirror (MMM or M 3 ) Project. The technical goals of MMM have been (1) Diagnostic Development, (2) Plasma Physics in the Cusp geometry, (3) plasma-wall interactions, (4) impurity effects in a steady-state plasma, and (5) Development of Diagnostics for use in harsh plasma processing environments. The other major goal of MMM has remained providing a facility for hands-on training in experimental plasma physics. The major experimental facility of MMM is the MMM Modified Experiment (M4X). Other research efforts in the Plasma Research Laboratory include small efforts in cold fusion, toroidal magnetic confinement, and inertial confinement and a potentially major effort in direct conversion of nuclear energy

  7. Enhanced visible-light activity of titania via confinement inside carbon nanotubes

    KAUST Repository

    Chen, Wei

    2011-09-28

    Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO 2 in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO 2 from the UV to the visible-light region. The CNT-confined TiO 2 exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO 2 induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis. © 2011 American Chemical Society.

  8. Population inversion and gain measurements for soft x-ray-laser development in a magnetically confined plasma column

    International Nuclear Information System (INIS)

    Suckewer, S.; Skinner, C.H.; Voorhees, D.; Milchberg, H.; Keane, C.; Semet, A.

    1983-06-01

    We present population inversion and gain measurements from an experimental investigation of possibilities to obtain high gain and lasing action in the soft x-ray region. Our approach to soft x-ray-laser development is based on rapid plasma cooling after the laser pulse by radiation losses, leading to fast recombination and collisional cascade into upper excited levels of CVI, for example, while the lower excited levels depopulate rapidly by radiative transitions, thus creating population inversions and gain. A approx. = 0.5 kJ CO 2 laser was focused onto a target of solid carbon or teflon; or CO 2 , O 2 , Ne gas, and the resulting plasma confined in a 50 to 90 kG magnetic field. Spectroscopic diagnostics with absolute intensity calibration were used to measure level populations

  9. Multi-Quanta Spin-Locking Nuclear Magnetic Resonance Relaxation Measurements: An Analysis of the Long-Time Dynamical Properties of Ions and Water Molecules Confined within Dense Clay Sediments

    Directory of Open Access Journals (Sweden)

    Patrice Porion

    2017-11-01

    Full Text Available Solid/liquid interfaces are exploited in various industrial applications because confinement strongly modifies the physico-chemical properties of bulk fluids. In that context, investigating the dynamical properties of confined fluids is crucial to identify and better understand the key factors responsible for their behavior and to optimize their structural and dynamical properties. For that purpose, we have developed multi-quanta spin-locking nuclear magnetic resonance relaxometry of quadrupolar nuclei in order to fill the gap between the time-scales accessible by classical procedures (like dielectric relaxation, inelastic and quasi-elastic neutron scattering and obtain otherwise unattainable dynamical information. This work focuses on the use of quadrupolar nuclei (like 2H, 7Li and 133Cs, because quadrupolar isotopes are the most abundant NMR probes in the periodic table. Clay sediments are the confining media selected for this study because they are ubiquitous materials implied in numerous industrial applications (ionic exchange, pollutant absorption, drilling, waste storing, cracking and heterogeneous catalysis.

  10. Characteristics of confining ohm-heated plasma in TRIAM-IM

    International Nuclear Information System (INIS)

    Hatae, Takaki; Yamagajyo, Takashi; Kawasaki, Shoji; Jotaki, Eriko; Fujita, Takaaki; Nakamura, Kazuo; Nakamura, Yukio; Ito, Satoshi

    1994-01-01

    In the initial experiment after the increase of the power of ohm heating power source for the superconducting strong magnetic field tokamak, TRIAM-IM, the measurement of the electron temperature distribution, ion temperature distribution and beam average electron density of ohm-heated plasma was carried out. By analyzing the experimental results, the dependence of the accumulated energy obtained from the temperature distribution and the time of energy confinement of beam average electron density became clear. Especially the time of energy confinement increased in proportion to the increase of beam average electron density when it is 6.5 x 10 12 /m 2 , and it was found that the time of energy confinement conforms to the Neo-Alcator proportional law. Moreover, by solving the heat transport equation for ions, the radial distribution of thermal diffusion coefficient for ions was calculated, and compared with that obtained by the new classic theory. As the result, it was found that the TRIAM-IM has ion confinement characteristics equivalent to those of other medium tokamaks. The experiment of producing ohm-heated plasma, the fitting of electron temperature and ion temperature, the density dependence of temperature, accumulated energy and the time of energy confinement, the time of energy confinement and the Neo-Alcator proportional law, the energy balance of ions and so on are reported. (K.I.)

  11. Electronic confinement in graphene quantum rings due to substrate-induced mass radial kink.

    Science.gov (United States)

    Xavier, L J P; da Costa, D R; Chaves, A; Pereira, J M; Farias, G A

    2016-12-21

    We investigate localized states of a quantum ring confinement in monolayer graphene defined by a circular mass-related potential, which can be induced e.g. by interaction with a substrate that breaks the sublattice symmetry, where a circular line defect provides a change in the sign of the induced mass term along the radial direction. Electronic properties are calculated analytically within the Dirac-Weyl approximation in the presence of an external magnetic field. Analytical results are also compared with those obtained by the tight-binding approach. Regardless of its sign, a mass term [Formula: see text] is expected to open a gap for low-energy electrons in Dirac cones in graphene. Both approaches confirm the existence of confined states with energies inside the gap, even when the width of the kink modelling the mass sign transition is infinitely thin. We observe that such energy levels are inversely proportional to the defect line ring radius and independent on the mass kink height. An external magnetic field is demonstrated to lift the valley degeneracy in this system and easily tune the valley index of the ground state in this system, which can be polarized on either K or [Formula: see text] valleys of the Brillouin zone, depending on the magnetic field intensity. Geometrical changes in the defect line shape are considered by assuming an elliptic line with different eccentricities. Our results suggest that any defect line that is closed in a loop, with any geometry, would produce the same qualitative results as the circular ones, as a manifestation of the topologically protected nature of the ring-like states investigated here.

  12. Decoherence of spin states induced by Rashba coupling for an electron confined to a semiconductor quantum dot in the presence of a magnetic field

    Science.gov (United States)

    Poszwa, A.

    2018-05-01

    We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.

  13. Design of a magnetic braking system

    International Nuclear Information System (INIS)

    Jou, M.; Shiau, J.-K.; Sun, C.-C.

    2006-01-01

    A non-contact method, using magnetic drag force principle, was proposed to design the braking systems to improve the shortcomings of the conventional braking systems. The extensive literature detailing all aspects of the magnetic braking is briefly reviewed, however little of this refers specifically to upright magnetic braking system, which is useful for industries. One of the major issues to design upright magnetic system is to find out the magnetic flux. The changing magnetic flux induces eddy currents in the conductor. These currents dissipate energy in the conductor and generate drag force to slow down the motion. Therefore, a finite element model is developed to analyze the phenomena of magnetic flux density when air gap and materials of track are varied. The verification shows the predicted magnetic flux is within acceptable range with the measured value. The results will facilitate the design of magnetic braking systems

  14. Progress of magnetic-suspension systems and magnetic bearings in the USSR

    International Nuclear Information System (INIS)

    Kuzin, A.V.

    1992-01-01

    This paper traces the development and progress of magnetic suspension systems and magnetic bearings in the USSR. The paper describes magnetic bearings for turbomachines, magnetic suspension systems for vibration isolation, some special measuring devices, wind tunnels, and other applications. The design, principles of operation, and dynamic characteristics of the system are presented

  15. Effects of magnetization on fusion product trapping and secondary neutron spectra

    International Nuclear Information System (INIS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.

    2015-01-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux

  16. Study of the interplay between magnetic shear and resonances using Hamiltonian models for the magnetic field lines

    Science.gov (United States)

    Firpo, M.-C.; Constantinescu, D.

    2011-03-01

    The issue of magnetic confinement in magnetic fusion devices is addressed within a purely magnetic approach. Using some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is shown in a unified way. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and stochastic transport reduction. When low shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be quite low. The approach can be applied to assess the robustness versus magnetic perturbations of general (almost) integrable magnetic steady states, including nonaxisymmetric ones such as the important single-helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  17. Collisional diffusion in a torus with imperfect magnetic surfaces

    International Nuclear Information System (INIS)

    White, R.B.

    1983-03-01

    A Hamiltonian forumlation of the guiding-center drift equations is used to investigate the modification of neoclassical diffusion for low collisonality in a toroidal magnetic field with partially destroyed magnetic surfaces. The magnetic field is assumed to be given by the small perturbation of an axisymmetric system. The results are applicable to particle diffusion in realistic confinement systems, midway between axisymmetric and purely stochastic ones. Significant enhancement of electron diffusion over neoclassical rates is found. This increase can be accounted for by the contributions due to the first few island chains in the Fibonacci sequence generated by the zero-order islands, and by associated stochastic domains

  18. Theoretical treatment of high-frequency, large-amplitude ac voltammetry applied to ideal surface-confined redox systems

    International Nuclear Information System (INIS)

    Bell, Christopher G.; Anastassiou, Costas A.; O’Hare, Danny; Parker, Kim H.; Siggers, Jennifer H.

    2012-01-01

    Highlights: ► Theory of ac voltammetry on ideal surface-confined redox systems. ► Analytical description of the harmonics and transient of the current response. ► Solution valid for high frequency, large-amplitude sinusoidal input voltage. ► Protocol for determining system parameters from experimental current responses. - Abstract: Large-amplitude ac voltammetry, where the applied voltage is a large-amplitude sinusoidal waveform superimposed onto a dc ramp, is a powerful method for investigating the reaction kinetics of surface-confined redox species. Here we consider the large-amplitude ac voltammetric current response of a quasi-reversible, ideal, surface-confined redox system, for which the redox reaction is described by Butler–Volmer theory. We derive an approximate analytical solution, which is valid whenever the angular frequency of the sine-wave is much larger than the rate of the dc ramp and the standard kinetic rate constant of the redox reaction. We demonstrate how the third harmonic and the initial transient of the current response can be used to estimate parameters of the electrochemical system, namely the kinetic rate constant, the electron transfer coefficient, the adsorption formal potential, the initial proportion of oxidised molecules and the linear double-layer capacitance.

  19. Domain wall oscillation in magnetic nanowire with a geometrically confined region

    Science.gov (United States)

    Sbiaa, R.; Bahri, M. Al; Piramanayagam, S. N.

    2018-06-01

    In conventional magnetic devices such as magnetic tunnel junctions, a steady oscillation of a soft layer magnetization could find its application in various electronic systems. However, these devices suffer from their low output signal and large spectral linewidth. A more elegant scheme based on domain wall oscillation could be a solution to these issues if DW dynamics could be controlled precisely in space and time. In fact, in DW devices, the magnetic configuration of domain wall and its position are strongly dependent on the device geometry and material properties. Here we show that in a constricted device with judiciously adjusted dimensions, a DW can be trapped within the central part and keep oscillating with a single frequency f. For 200 nm by 40 nm nanowire, f was found to vary from 2 GHz to 3 GHz for a current density between 4.8 × 1012 A/m2 and 5.6 × 1012 A/m2. More interestingly, the device fabrication is simply based on two long nanowires connected by adjusting the offset in both x and y directions. This new type of devices enables the conversion of dc-current to an ac-voltage in a controllable manner opening thus the possibility of a new nano-oscillators with better performance.

  20. Passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  1. Chirality-Assisted Electronic Cloaking of Confined States in Bilayer Graphene

    Science.gov (United States)

    Gu, Nan; Rudner, Mark; Levitov, Leonid

    2011-10-01

    We show that the strong coupling of pseudospin orientation and charge carrier motion in bilayer graphene has a drastic effect on transport properties of ballistic p-n-p junctions. Electronic states with zero momentum parallel to the barrier are confined under it for one pseudospin orientation, whereas states with the opposite pseudospin tunnel through the junction totally uninfluenced by the presence of confined states. We demonstrate that the junction acts as a cloak for confined states, making them nearly invisible to electrons in the outer regions over a range of incidence angles. This behavior is manifested in the two-terminal conductance as transmission resonances with non-Lorentzian, singular peak shapes. The response of these phenomena to a weak magnetic field or electric-field-induced interlayer gap can serve as an experimental fingerprint of electronic cloaking.

  2. 2XIIB plasma confinement experiments

    International Nuclear Information System (INIS)

    Coensgen, F.H.; Clauser, J.F.; Correll, D.L.

    1976-01-01

    This paper reports results of 2XIIB neutral-beam injection experiments with plasma-stream stabilization. The plasma stream is provided either by a pulsed plasma generator located on the field lines outside the plasma region or by ionization of neutral gas introduced at the mirror throat. In the latter case, the gas is ionized by the normal particle flux through the magnetic mirror. A method of plasma startup and sustenance in a steady-state magnetic field is reported in which the plasma stream from the pulsed plasma generator serves as the initial target for the neutral beams. After an energetic plasma of sufficient density is established, the plasma generator stream is replaced by the gas-fed stream. Lifetimes of the stabilized plasma increase with plasma temperature in agreement with the plasma stabilization of the drift-cyclotron loss-cone mode. The following plasma parameters are attained using the pulsed plasma generator for stabilization: n approximately 5 x 10 13 cm -3 , anti W/sub i/ approximately 13 keV, T/sub e/ = 140 eV, and ntau/sub p/ approximately 7 x 10 10 cm -3 .s. With the gas feed, the mean deuterium ion energy is 9 keV and the peak density n approximately 10 14 cm -3 . In the latter case, the energy confinement parameter reaches ntau/sub E/ = 7 x 10 10 cm -3 .s, and the particle confinement parameter reaches ntau/sub p/ = 1 x 10 11 cm -3 .s

  3. On the ionization and burnout processes of a magnetically confined plasma

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-10-01

    The particle and heat balance during plasma start-up are investigates, to specify the conditions for reaching various ion density ranges and high plasma temperatures in cases of a limited heating power. Particular attention is paid to the permeable-impermeable transition regime of plasmas being subject to Ohmic heating and confined in closed or open bottles with a main poloidal field. The ionization and burnout conditions are found to depend critically on the confinement and the filling density. They become optimal in closed bottles under symmetric and stable conditions, where the transition into a fully ionized state should be reached even at moderately large ionization rates, burnout powers and currents. Start-up methods based on constant as well as on variable filling densities are discussed as means of ion density control.(author)

  4. The VISTA spacecraft: Advantages of ICF [Inertial Confinement Fusion] for interplanetary fusion propulsion applications

    International Nuclear Information System (INIS)

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted

  5. An alcator-like confinement time scaling law derived from buckingham's PI theorem

    International Nuclear Information System (INIS)

    Roth, J.R.

    1983-01-01

    The unsatisfactory state of understanding of particle transport and confinement in tokamaks is well known. The best available theory, neoclassical transport, predicts a confinement time which scales as the square of the magnetic field, and inversely as the number density. Until recently, the best available phenomenological scaling law was the Alcator scaling law. This scaling law has recently been supplanted by the neoAlcator scaling law. Both of these expressions are unsatisfactory, because they not only are unsupported by any physical theory, but also their numerical constants are dimensional, suggesting that additional physical parameters need to be accounted for. A more firmly based scaling law can be derived from Buckingham's pi theorem. We adopt the particle confinement time as the dependent variable (derived dimension), and as independent variables (fundamental dimensions) we use the plasma volume, the average ion charge density, the ion current on the limiter, and the magnetic induction. From Buckingham's pi theorem, we obtain an equation which correctly predicts the absence of magnetic induction dependence, and the direct dependence on the ion density. The dependence on the product of the major radius and the plasma radius is intermediate between the original and neoAlcator scaling laws, and may be consistent with the data if the ion kinetic temperature and limiter area were accounted for

  6. Controlling the flux dynamics in superconductors by nanostructured magnetic arrays

    Science.gov (United States)

    Kapra, Andrey

    In this thesis we investigate theoretically how the critical current jc of nano-engineered mesoscopic superconducting film can be improved and how one can control the dynamics of the magnetic flux, e.g., the transition from flux-pinned to flux-flow regime, using arrays of magnetic nanostructures. In particularly we investigate: (1) Vortex transport phenomena in superconductors with deposited ferromagnetic structures on top, and the influence of the sample geometry on the critical parameters and on the vortex configurations. Changing geometry of the magnetic bars and magnetization of the bars will affect the critical current jc of the superconducting film. Such nanostructured ferromagnets strongly alter the vortex structure in its neighborhood. The influence of geometry, position and magnetization of the ferromagnet (single bar or regular lattice of the bars) on the critical parameters of the superconductor is investigated. (2) Effect of flux confinement in narrow superconducting channels with zigzag-shaped banks: the flux motion is confined in the transverse (perpendicular) direction of a diamond-cell-shape channel. The matching effect for the magnetic flux is found in the system relevantless of boundary condition. We discuss the dynamics of vortices in the samples and vortex pattern formation in the channel. We show how the inclusion of higher-Tc superconductor into the sample can lead to enhanced properties of the system. By adding an external driving force, we study the vortex dynamics. The different dynamic regimes are discussed. They allowed an effective control of magnetic flux in superconductors.

  7. Helical magnetic axis configuration combined with l = 1 and weak l = -1 torsatron fields

    International Nuclear Information System (INIS)

    Kikuchi, Hitoshi; Saito, Katsunori; Gesso, Hirokazu; Shiina, Shoichi

    1989-01-01

    The superposition of a relatively weak l = -1 torsatron field on a main l = 1 torsatron field leads to the improvement of the confinement properties due to the formation of a local magnetic well, which results from the local curvature of the helical magnetic axis with a larger excursion in the major radius direction. This l±1 helical magnetic axis system has a comparatively simple, compact coil structure. Here the vacuum configuration properties of l = ±1 system are described. (author)

  8. Magnetic traps with a sperical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1979-11-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphesis on Tornado spiral coil configurations. The confinement and heating of static plasmas in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In additio, the mode of rotating plasma operation by crossed electric and magnetic fields is being described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps for the creation and containment of hot plasmas. (author)

  9. Magnetic traps with a spherical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1981-01-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphasis on Tornado spiral coil configurations. The confinement and heating of static plasms in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In addition, the mode of rotating plasma operation by crossed electric and magnetic fields is described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps in the creation and containment of hot plasmas. (orig.)

  10. Reconnection Fluxes in Eruptive and Confined Flares and Implications for Superflares on the Sun

    Science.gov (United States)

    Tschernitz, Johannes; Veronig, Astrid M.; Thalmann, Julia K.; Hinterreiter, Jürgen; Pötzi, Werner

    2018-01-01

    We study the energy release process of a set of 51 flares (32 confined, 19 eruptive) ranging from GOES class B3 to X17. We use Hα filtergrams from Kanzelhöhe Observatory together with Solar Dynamics Observatory HMI and Solar and Heliospheric Observatory MDI magnetograms to derive magnetic reconnection fluxes and rates. The flare reconnection flux is strongly correlated with the peak of the GOES 1–8 Å soft X-ray flux (c = 0.92, in log–log space) for both confined and eruptive flares. Confined flares of a certain GOES class exhibit smaller ribbon areas but larger magnetic flux densities in the flare ribbons (by a factor of 2). In the largest events, up to ≈50% of the magnetic flux of the active region (AR) causing the flare is involved in the flare magnetic reconnection. These findings allow us to extrapolate toward the largest solar flares possible. A complex solar AR hosting a magnetic flux of 2 × 1023 Mx, which is in line with the largest AR fluxes directly measured, is capable of producing an X80 flare, which corresponds to a bolometric energy of about 7 × 1032 erg. Using a magnetic flux estimate of 6 × 1023 Mx for the largest solar AR observed, we find that flares of GOES class ≈X500 could be produced (E bol ≈ 3 × 1033 erg). These estimates suggest that the present day’s Sun is capable of producing flares and related space weather events that may be more than an order of magnitude stronger than have been observed to date.

  11. Spin wave spectrum of magnetic nanotubes

    International Nuclear Information System (INIS)

    Gonzalez, A.L.; Landeros, P.; Nunez, Alvaro S.

    2010-01-01

    We investigate the spin wave spectra associated to a vortex domain wall confined within a ferromagnetic nanotube. Basing our study upon a simple model for the energy functional we obtain the dispersion relation, the density of states and dissipation induced life-times of the spin wave excitations in presence of a magnetic domain wall. Our aim is to capture the basics spin wave physics behind the geometrical confinement of nobel magnetic textures.

  12. Generation and confinement of hot ions and electrons in a reversed-field pinch plasma

    International Nuclear Information System (INIS)

    Chapman, B E; Almagri, A F; Anderson, J K; Caspary, K J; Clayton, D J; Den Hartog, D J; Ennis, D A; Fiksel, G; Gangadhara, S; Kumar, S; Magee, R M; O'Connell, R; Parke, E; Prager, S C; Reusch, J A; Sarff, J S; Stephens, H D; Brower, D L; Ding, W X; Craig, D

    2010-01-01

    By manipulating magnetic reconnection in Madison Symmetric Torus (MST) discharges, we have generated and confined for the first time a reversed-field pinch (RFP) plasma with an ion temperature >1 keV and an electron temperature of 2 keV. This is achieved at a toroidal plasma current of about 0.5 MA, approaching MST's present maximum. The manipulation begins with intensification of discrete magnetic reconnection events, causing the ion temperature to increase to several kiloelectronvolts. The reconnection is then quickly suppressed with inductive current profile control, leading to capture of a portion of the added ion heat with improved ion energy confinement. Electron energy confinement is simultaneously improved, leading to a rapid ohmically driven increase in the electron temperature. A steep electron temperature gradient emerges in the outer region of the plasma, with a local thermal diffusivity of about 2 m 2 s -1 . The global energy confinement time reaches 12 ms, the largest value yet achieved in the RFP and which is roughly comparable to the H-mode scaling prediction for a tokamak with the same plasma current, density, heating power, size and shape.

  13. Tornado type closed magnetic trap for an ECR source

    CERN Document Server

    Abramova, K B; Voronin, A V; Zorin, V G

    1999-01-01

    We propose to use a Tornado type closed magnetic trap for creation of a source of mul-ticharged ions with plasma heating by microwave radiation. Plasma loss in closed traps is deter-mined by diffusion across the magnetic field, which increases substantially plasma confinement time as compared to the classical mirror trap [1]. We propose to extract ions with the aid of additional coils which partially destroy the closed structure of the magnetic lines in the trap, but don not influence the total confinement time. This allows for producing a controlled plasma flux that depends on the magnetic field of the additional coil. The Tornado trap also possesses merits such as an opportunity to produce high magnetic fields up to 3 T, which makes possible heating and confinement of plasma with a high density of electrons; plasma stability to magneto-hydrodynamic perturbations because the magnetic field structure corresponds to the "min B" configuration; and relatively low costs. All estimates and calculations were carrie...

  14. Summary and evaluation of hydraulic property data available for the Hanford Site upper basalt confined aquifer system

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Vermeul, V.R.

    1994-09-01

    Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated using recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10 0 to 10 2 m 2 /d, with 65% of the calculated estimate values occurring between 10 1 to 10 2 m 2 d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt

  15. Electron transport and improved confinement on Tore Supra

    International Nuclear Information System (INIS)

    Hoang, G.T.; Bourdelle, C.; Garbet, X.; Aniel, T.; Giruzzi, G.; Ottaviani, M.; Horton, W.; Zhu, P.; Budny, R.V.

    2001-01-01

    Magnetic shear is found to play an important role for triggering various improved confinement regimes through the electron channel. A wide database of hot electron plasmas (T e >2T i ) heated by fast wave electron heating (FWEH) is analyzed for electron thermal transport. A critical gradient is clearly observed. It is found that the critical gradient linearly increases with the ratio between local magnetic shear (s) and safety factor (q). The Horton model, based on the electromagnetic turbulence driven by the electron temperature gradient (ETG) mode, is found to be a good candidate for electron transport modeling. (author)

  16. Effects from magnetic boundary conditions in superconducting-magnetic proximity systems

    Directory of Open Access Journals (Sweden)

    Thomas E. Baker

    2016-05-01

    Full Text Available A superconductor-magnetic proximity system displays singlet-triplet pair correlations in the magnetization as a function of inhomogeneities of the magnetic profile. We discuss how the magnetic boundary conditions affects differently the curvature and winding number of rotating magnetizations in the three commonly used structures to generate long range triplet components: an exchange spring, a helical structure and a misaligned magnetic multilayer. We conclude that the choice of the system is dictated by the goal one wishes to achieve in designing a spintronic device but note that only the exchange spring presently offers an experimentally realizable magnetic profile that is tunable.

  17. Magnetic cusp and electric nested- or single-well configurations for high density antihydrogen and fusion nonneutral plasma applications

    International Nuclear Information System (INIS)

    Ordonez, C. A.

    1999-01-01

    Malmberg-Penning traps have had limited uses for applications that require high density nonneutral plasma confinement. For such traps, the density is severely limited because a magnetic field is used to provide a radially inward force to balance both self-electric and centrifugal radially outward forces. A possible way to confine higher density nonneutral plasmas is to use a magnetic cusp configuration. An annular nonneutral plasma would be confined in the radial magnetic field of a magnetic cusp such that radial confinement is provided by an externally produced electric potential well while axial confinement is provided by the magnetic field. In addition, a radial electric potential profile having a nested-well configuration can be used to simultaneously confine two oppositely signed plasma species (e.g., positrons and antiprotons) that overlap. In the work reported, various aspects of using magnetic cusp configurations and electric nested-well configurations are considered. Plasma confinement with these configurations may be useful for obtaining fast antihydrogen recombination and trapping rates and for achieving practical fusion power production

  18. Magnetic Cusp and Electric Nested- or Single-Well Configurations for High Density Antihydrogen and Fusion Nonneutral Plasma Applications

    International Nuclear Information System (INIS)

    C.A. Ordonez

    1999-01-01

    Malmberg-Penning traps have had limited uses for applications that require high density nonneutral plasma confinement. For such traps, the density is severely limited because a magnetic field is used to provide a radially inward force to balance both self-electric and centrifugal radially outward forces. A possible way to confine higher density nonneutral plasmas is to use a magnetic cusp configuration. An annular nonneutral plasma would be confined in the radial magnetic field of a magnetic cusp such that radial confinement is provided by an externally produced electric potential well while axial confinement is provided by the magnetic field. In addition, a radial electric potential profile having a nested-well configuration can be used to simultaneously confine two oppositely signed plasma species (e.g., positrons and antiprotons) that overlap. In the work reported, various aspects of using magnetic cusp configurations and electric nested-well configurations are considered. Plasma confinement with these configurations may be useful for obtaining fast antihydrogen recombination and trapping rates and for achieving practical fusion power production

  19. Quark confinement in a constituent quark model

    International Nuclear Information System (INIS)

    Langfeld, K.; Rho, M.

    1995-01-01

    On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model's phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density

  20. Magnetic configuration and transport interplay in TJ-II flexible heliac

    International Nuclear Information System (INIS)

    Alejaldre, C.; Alonso, J.; Almoguera, L.

    2003-01-01

    This paper presents an overview of experimental results and progress in the investigation of the role of the magnetic configuration on stability and transport in the TJ-II stellarator. Significant improvement in the characterization of confinement and stability properties of TJ-II stellarator plasmas has been recently achieved. Global confinement studies have shown a positive dependence of energy confinement on rotational transform, reinforcing the dependence found with the ISS95 database. Spontaneous transitions in particle and energy confinement have been observed which resemble some characteristics of previously reported H-mode regimes in other stellarator devices. Magnetic configuration scan experiments have shown the interplay between magnetic topology (e.g. rationals), transport and electric fields. Cold pulse as well as the transport events provoked by decreasing magnetic well generates non-diffusive propagation. First measurements of radial electric fields and plasma potential show values that are comparable with those expected from neoclassical calculations. Active biasing experiments have shown an impact both in edge and global plasma parameters. In low magnetic well configurations sheared edge poloidal and parallel flows are linked near marginal stability. (author)

  1. Report on the high magnetic field tokamak TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T; Kawai, Y; Toi, K; Hiraki, N; Nakamure, K [Kyushu Univ., Fukuoke (Japan). Research Inst. for Applied Mechanics

    1981-02-01

    A high magnetic field tokamak has been constructed at Kyushu University to study the confinement of high magnetic field tokamak plasma and turbulent heating. The tokamak device consists of toroidal field coils, vertical field coils, horizontal field coils, primary windings, a transformer iron core, turbulent heating coils, and a vacuum chamber. For the observation of plasma, plasma monitors, a micro-wave interferometer, a laser scattering system, a neutral particle energy analyzer, a soft X-ray detector, and a visible spectrometer were installed on the vacuum chamber. The experimental results showed that the central electron temperature was about 640 eV, the central ion temperature 280 eV and mean electron density 2.2 x 10/sup 14//cm/sup 3/. It was found that the proportionality law of electron density and confinement time was valid for this small plasma system. By the turbulent heating, the central ion temperature increased from 170 eV to 580 eV.

  2. Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Bekir, E-mail: bcakir@selcuk.edu.tr [Physics Department, Faculty of Science, Selcuk University, Campus, 42075 Konya (Turkey); Yakar, Yusuf, E-mail: yuyakar@yahoo.com [Physics Department, Faculty of Arts and Science, Aksaray University, Campus, 68100 Aksaray (Turkey); Özmen, Ayhan [Physics Department, Faculty of Science, Selcuk University, Campus, 42075 Konya (Turkey)

    2017-04-01

    We have calculated the wavefunctions and energy eigenvalues of spherical quantum dot with infinite potential barrier inside uniform magnetic field. In addition, we have investigated the magnetic field effect on optical transitions between Zeeman energy states. The results are expressed as a function of dot radius, incident photon energy and magnetic field strength. The results present that, in large dot radii, the external magnetic field affects strongly the optical transitions between Zeeman states. In the strong spatial confinement case, energy level is relatively insensitive to the magnetic field, and electron spatial confinement prevails over magnetic confinement. Also, while m varies from −1 to +1, the peak positions of the optical transitions shift toward higher energy (blueshift).

  3. Theory of the optimal design of straight-axis minimum-B mirror confinement configurations

    International Nuclear Information System (INIS)

    Hall, L.S.

    1982-01-01

    The design of modern straight-axis linked-mirror plasma-confinement configurations involves a balance between many competing requirements. The dipole and quadrupole components of magnetic induction required in one confinement region often do not match onto the fields of an adjacent region without complications that seriously affect particle drifts or confinement stability. Here, the relevant factors are set down together with the techniques for analytical optimization of the design of a general configuration. A general sufficient condition for the stability of an arbitrary guiding-center MHD equilibrium is derived. This condition makes explicit the stabilizing qualities of good normal curvature and diamagnetic axial current. The instability drive depends on two terms: one carries the sign of normal curvature and the other relates to the relative signs of geodeics curvature and geodesic torsion. The theory is applied to low-beta, large-aspect-ratio equilibria for which analytic expressions for the confining magnetic fields are known. Two optimizations are required to specify the arbitrary features of the quadrupole and dipole fields. One optimization is nonlinear and can be performed by the ordinary calculus of variations; the second optimization is linear and subject to the rules of game theory. Appropriate quality factors are obtained, thus giving the designer quantitative measures with which to balance design trade-offs

  4. Combined effects of external electric and magnetic fields on electromagnetically induced transparency of a two-dimensional quantum dot

    International Nuclear Information System (INIS)

    Rezaei, Gh.; Shojaeian Kish, S.; Avazpour, A.

    2012-01-01

    In this article effects of external electric and magnetic fields on the electromagnetically induced transparency of a hydrogenic impurity confined in a two-dimensional quantum dot are investigated. To do this the probe absorption, group velocity and refractive index of the medium in the presence of external electric and magnetic fields are discussed. It is found that, electromagnetically induced transparency occurs in the system and its frequency, transparency window and group velocity of the probe field strongly depend on the external fields. In comparison with atomic system, one may control the electromagnetically induced transparency and the group velocity of light in nano structures with the dot size and confinement potential.

  5. Numerical study and modeling of hydrodynamic instabilities in the context of inertial confinement fusion in the presence of self-generated magnetic fields

    International Nuclear Information System (INIS)

    Levy, Y.

    2012-01-01

    In the context of inertial confinement fusion we investigate effects of magnetic fields on the development in the linear regime of two hydrodynamic instabilities: Richtmyer-Meshkov instability using ideal magnetohydrodynamics and ablative Rayleigh-Taylor instability in both acceleration and deceleration stages. Direct numerical simulations with a linear perturbation code enable us to confirm the stabilizing effect of the component of the magnetic field along the perturbations wave vector. The amplitude doesn't grow linearly in time but experiences oscillations instead. The compressibility taken into account in the code does not affect predictions given by an already existing impulsive and incompressible model. As far as Rayleigh-Taylor instability is concerned we study the effects of self-generated magnetic fields that arise from the development of the instability itself. In the acceleration stage we perform two dimensional simulations in planar geometry. We show that magnetic fields of about 1 T can be generated and that the instability growth transits more rapidly into nonlinear growth with the enhancement of the development of the third harmonic. We also propose an adaptation of an existing model that aims at studying thermal conductivity anisotropy effects, to take into account the effects of the self-generated magnetic fields on the Rayleigh-Taylor instability growth rate. Finally, in the deceleration stage, we perform two dimensional simulations in cylindrical geometry that take into account self-generation of magnetic fields due to the instability development. It reveals magnetic fields of about several thousands of Teslas that are not strong enough though to affect the instability behavior. (author) [fr

  6. Aurora multikilojoule KrF laser system prototype for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Hanlon, J.A.; Mc Leod, J.; Kang, M.; Kortegaard, B.L.; Burrows, M.D.; Bowling, P.S.

    1987-01-01

    Aurora is the Los Alamos National Laboratory short-pulse, high-power, KrF laser system. It serves as an end-to-end technology demonstration for large-scale ultraviolet laser systems of interest for short wavelength, inertial confinement fusion (ICF) investigations. The systems is a prototype for using optical angular multiplexing and serial amplification by large electron-beam-driven KrF laser amplifiers to deliver stacked, 248-nm, 5-ns duration multikilojoule laser pulses to ICF targets using an --1-km-long optical beam path. The entire Aurora KrF laser system is described and the design features of the following major system components are summarized: front-end lasers, amplifier train, multiplexer, optical relay train, demultiplexer, target irradiation apparatus, and alignment and controls systems

  7. Report on the combined meeting of the core confinement and internal transport barrier expert group, confinement database and modeling expert group and edge pedestal expert group, 12-16 April 1999, Garching

    International Nuclear Information System (INIS)

    Janeschitz, G.; Connor, J.W.; Cordey, G.; Kardaun, O.; Mukhovatov, V.; Stambaugh, R.; Ryter, F.; Wakatani, M.

    1999-01-01

    This contribution to the ITER EDA Newsletter reports on the combined meeting of the core confinement and internal transport barrier expert group, confinement database and modeling expert group and edge pedestal expert group in Garching, Germany. This is the first workshop of its kind after the re-organisation of the expert groups. The new scheme of the meetings, namely to permit more interaction between groups by arranging them at the same time and location turned out to be very successful. The main issues discussed were for the Confinement Database: merging of edge pedestal and confinement data, improvement of the density- and magnetic shape parameters, addition of new dedicated threshold data, the effect of different divertors in JET; for the H-Mode Power Threshold Database: assembly of a new version of the database with about 650 time points from 10 tokamaks; for the 1-D Modelling Workshop: management of the database after the re-organisation of the Joint Central Team an ongoing efforts in plasma transport modelling; for the newly formed pedestal group: issues of the H-mode shear layer at the plasma edge. There was also an executive summary given of a recent USA workshop on internal transport barriers and regimes with weak or negative magnetic shear

  8. Field Mapping System for Solenoid Magnet

    Science.gov (United States)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  9. On the theory of stochastic dynamics of magnetically confined plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharif, R.N.; El-Atoy, N.S. [Plasma and Nuclear Fusion Dept., N.R.C, Atomic Energy Authority, Cairo (Egypt)]|[Physics Dept., Girls Colleges, KSA (Saudi Arabia)

    2004-07-01

    This work is devoted to a study of the motion of plasma electrons in a system of two fields, a magnetic field along z-axis and wave-packet field, which propagates in the x-z plane. The strongest interaction between plasma electrons and both fields is due to their resonance with these fields. The motion of plasma electrons become stochastic when a set of resonance overlapping. Conditions for stochasticity are obtained. (orig.)

  10. On the theory of stochastic dynamics of magnetically confined plasma

    International Nuclear Information System (INIS)

    El-Sharif, R.N.; El-Atoy, N.S.

    2004-01-01

    This work is devoted to a study of the motion of plasma electrons in a system of two fields, a magnetic field along z-axis and wave-packet field, which propagates in the x-z plane. The strongest interaction between plasma electrons and both fields is due to their resonance with these fields. The motion of plasma electrons become stochastic when a set of resonance overlapping. Conditions for stochasticity are obtained. (orig.)

  11. Electronic and magnetic properties of SnS2 monolayer doped with non-magnetic elements

    Science.gov (United States)

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Wang, Ling-Ling

    2018-05-01

    We performed a systematic study of the electronic structures and magnetic properties of SnS2 monolayer doped with non-magnetic elements in groups IA, IIA and IIIA based on the first-principles methods. The doped systems exhibit half-metallic and metallic natures depending on the doping elements. The formation of magnetic moment is attributable to the cooperative effect of the Hund's rule coupling and hole concentration. The spin polarization can be stabilized and enhanced through confining the delocalized impurity states by biaxial tensile strain in hole-doped SnS2 monolayer. Both the double-exchange and p-p exchange mechanisms are simultaneously responsible for the ferromagnetic ground state in those hole-doped materials. Our results demonstrate that spin polarization can be induced and controlled in SnS2 monolayers by non-magnetic doping and tensile strain.

  12. Experiments on Confinement of a Plasma in a Circular Magnetic Well: Deca II B; Experiences de Confinement d'un Plasma dans un Puits Magnetique Circularise: Deca II B

    Energy Technology Data Exchange (ETDEWEB)

    Launois, D.; Lecoustey, P.; Nicolas, M.; Tachon, J.; Kesner, J. [Association EURATOM-CEA, CEN, Fontenay-aux-Roses (France)

    1971-11-15

    The quadrupolar magnetic well used in the DECA experiment was modified to reduce the plasma-wall interaction. Two quadrupolar windings, situated on both sides of the well, focus the magnetic lines. The tube of flux contained in the chamber (diameter 40 cm) has a radius of 4 cm in the median plane. The magnetic configuration is static: B{sub 0} = 3.5 kG, mirror ratio 1.84, transverse depth of well 1.05 to r = 20 cm. The inlet mirror of the configuration is cancelled by a pulsed field to permit injection of the plasma produced by an induction gun. After the transitory capture phase, ia the case of the regime studied most intensively, the plasma has a density of 3 x 10{sup 11} cm{sup -3} at the centre of the well. The half-height width of the density profile is 6 cm. The mean ion energy is 500 - 700 eV and the half-height width of the spectrum is 400 eV. For a base pressure of 2 x 10{sup -7} torr, with no titanium evaporation on the walls, the time constant for density decrease ({tau}) is 400 {mu}s; this value is maintained during the observation time of 3 ms. For a base pressure of 10{sup -8} ton, with titanium evaporation on the walls, {tau} = 400 {mu}s during the first 800 {mu}s of confinement, after which the time constant increases to r 2 = 1.5 ms during the final phase of confinement (from t = 2.5 ms to t = 7 ms). The angular distribution of the ions f({theta}), (with {theta} = arc tan V{sub Up-Tack }/v{sub II} ), changes in the course of time. At the beginning of confinement f (6) has a minimum for 9 = 90 Degree-Sign ; at 600 {mu}s, f ({theta}) is a maximum at {theta} = 90 Degree-Sign and its half-height width is of the order of 20 Degree-Sign . This width is then maintained throughout the evolution of the plasma. When of {partial_derivative}f({theta})/{partial_derivative}{theta} < 0, there is a strong emission at {omega}{sub ci} and at the harmonics. The time constant {tau}{sub 1} of the measured density at the median plane could be explained by a spatial

  13. Computer simulation of confined liquid crystal dynamics

    International Nuclear Information System (INIS)

    Webster, R.E.

    2001-11-01

    Results are presented from a series of simulations undertaken to determine whether dynamic processes observed in device-scale liquid crystal cells confined between aligning substrates can be simulated in a molecular system using parallel molecular dynamics of the Gay-Berne model. In a nematic cell, on removal of an aligning field, initial near-surface director relaxation can induce flow, termed 'backflow' in the liquid. This, in turn, can cause director rotation, termed 'orientational kickback', in the centre of the cell. Simulations are performed of the relaxation in nematic systems confined between substrates with a common alignment on removal of an aligning field. Results show /that relaxation timescales of medium sized systems are accessible. Following this, simulations are performed of relaxation in hybrid aligned nematic systems, where each surface induces a different alignment. Flow patterns associated with director reorientation are observed. The damped oscillatory nature of the relaxation process suggests that the behaviour of these systems is dominated by orientational elastic forces and that the observed director motion and flow do not correspond to the macroscopic processes of backflow and kickback. Chevron structures can occur in confined smectic cells which develop two domains of equal and opposite layer tilt on cooling. Layer lilting is thought to be caused by a need to reconcile a mismatch between bulk and surface smectic layer spacing. Here, simulations are performed of the formation of structures in confined smectic systems where layer tilt is induced by an imposed surface pretilt. Results show that bookshelf, chevron and tilled layer structures are observable in a confined Gay-Berne system. The formation and stability of the chevron structure are shown to be influenced by surface slip. (author)

  14. ATLAS Magnet System Nearing Completion

    CERN Document Server

    ten Kate, H H J

    2008-01-01

    The ATLAS Detector at the Large Hadron Collider at CERN is equipped with a superconducting magnet system that consists of a Barrel Toroid, two End-Cap Toroids and a Central Solenoid. The four magnets generate the magnetic field for the muon- and inner tracking detectors, respectively. After 10 years of construction in industry, integration and on-surface tests at CERN, the magnets are now in the underground cavern where they undergo the ultimate test before data taking in the detector can start during the course of next year. The system with outer dimensions of 25 m length and 22 m diameter is based on using conduction cooled aluminum stabilized NbTi conductors operating at 4.6 K and 20.5 kA maximum coil current with peak magnetic fields in the windings of 4.1 T and a system stored magnetic energy of 1.6 GJ. The Barrel Toroid and Central Solenoid were already successfully charged after installation to full current in autumn 2006. This year the system is completed with two End Cap Toroids. The ultimate test of...

  15. Progress In Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; hide

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  16. Contribution to the study of superconducting magnetic systems in the frame of fusion projects

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Artiguelongue, H.; Bej, Z.; Ciazynski, D.; Cloez, H.; Decool, P.; Hertout, P.; Libeyre, P.; Martinez, A.; Nicollet, S.; Rubino, M.; Schild, T.; Verger, J.M.

    2000-02-01

    This report is a presentation of all the 55 publications made by the Magnet Group of the 'Departement de Recherche sur la Fusion Controlee' during the 94-99 period. These publications have been made mainly in the frame of EURATOM contracts and task for ITER. This collection deals with most of the dimensioning aspects of large superconducting magnets and hence the field interest is wider than the restricted field of magnets for fusion by magnetic confinement. Whenever it is possible, simple expressions and criteria are given for dimensioning superconducting strands, assembling them to build cables and cooling them by an adapted forced flow cooling. This is hence a major for the understanding of the behaviour of large modern superconducting magnets and provides many tools for design and construction. (author)

  17. Contribution to the study of superconducting magnetic systems in the frame of fusion projects

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.L.; Artiguelongue, H.; Bej, Z.; Ciazynski, D.; Cloez, H.; Decool, P.; Hertout, P.; Libeyre, P.; Martinez, A.; Nicollet, S.; Rubino, M.; Schild, T.; Verger, J.M. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee DRFC, 13 - Saint-Paul-lez-Durance (France)

    2000-02-01

    This report is a presentation of all the 55 publications made by the Magnet Group of the 'Departement de Recherche sur la Fusion Controlee' during the 94-99 period. These publications have been made mainly in the frame of EURATOM contracts and task for ITER. This collection deals with most of the dimensioning aspects of large superconducting magnets and hence the field interest is wider than the restricted field of magnets for fusion by magnetic confinement. Whenever it is possible, simple expressions and criteria are given for dimensioning superconducting strands, assembling them to build cables and cooling them by an adapted forced flow cooling. This is hence a major for the understanding of the behaviour of large modern superconducting magnets and provides many tools for design and construction. (author)

  18. Investigation of impurity confinement in lower hybrid wave heated plasma on EAST tokamak

    Science.gov (United States)

    Xu, Z.; Wu, Z. W.; Zhang, L.; Gao, W.; Ye, Y.; Chen, K. Y.; Yuan, Y.; Zhang, W.; Yang, X. D.; Chen, Y. J.; Zhang, P. F.; Huang, J.; Wu, C. R.; Morita, S.; Oishi, T.; Zhang, J. Z.; Duan, Y. M.; Zang, Q.; Ding, S. Y.; Liu, H. Q.; Chen, J. L.; Hu, L. Q.; Xu, G. S.; Guo, H. Y.; the EAST Team

    2018-01-01

    The transient perturbation method with metallic impurities such as iron (Fe, Z  =  26) and copper (Cu, Z  =  29) induced in plasma-material interaction (PMI) procedure is used to investigate the impurity confinement characters in lower hybrid wave (LHW) heated EAST sawtooth-free plasma. The dependence of metallic impurities confinement time on plasma parameters (e.g. plasma current, toroidal magnetic field, electron density and heating power) are investigated in ohmic and LHW heated plasma. It is shown that LHW heating plays an important role in the reduction of the impurity confinement time in L-mode discharges on EAST. The impurity confinement time scaling is given as 42IP0.32Bt0.2\\overline{n}e0.43Ptotal-0.4~ on EAST, which is close to the observed scaling on Tore Supra and JET. Furthermore, the LHW heated high-enhanced-recycling (HER) H-mode discharges with ~25 kHz edge coherent modes (ECM), which have lower impurity confinement time and higher energy confinement time, provide promising candidates for high performance and steady state operation on EAST.

  19. Bistability in a self-assembling system confined by elastic walls: Exact results in a one-dimensional lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Pȩkalski, J.; Ciach, A. [Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland); Almarza, N. G. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid (Spain)

    2015-01-07

    The impact of confinement on self-assembly of particles interacting with short-range attraction and long-range repulsion potential is studied for thermodynamic states corresponding to local ordering of clusters or layers in the bulk. Exact and asymptotic expressions for the local density and for the effective potential between the confining surfaces are obtained for a one-dimensional lattice model introduced by J. Pȩkalski et al. [J. Chem. Phys. 138, 144903 (2013)]. The simple asymptotic formulas are shown to be in good quantitative agreement with exact results for slits containing at least 5 layers. We observe that the incommensurability of the system size and the average distance between the clusters or layers in the bulk leads to structural deformations that are different for different values of the chemical potential μ. The change of the type of defects is reflected in the dependence of density on μ that has a shape characteristic for phase transitions. Our results may help to avoid misinterpretation of the change of the type of defects as a phase transition in simulations of inhomogeneous systems. Finally, we show that a system confined by soft elastic walls may exhibit bistability such that two system sizes that differ approximately by the average distance between the clusters or layers are almost equally probable. This may happen when the equilibrium separation between the soft boundaries of an empty slit corresponds to the largest stress in the confined self-assembling system.

  20. Nanoparticulated magnetic drug delivery systems: Preparation and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Morais, P C, E-mail: pcmor@unb.b [Universidade de BrasIlia, Instituto de Fisica, Nucleo de Fisica Aplicada, Brasilia DF 70910-900 (Brazil)

    2010-03-01

    This paper describes how magnetic resonance can be successfully used as a tool to help customize and quantify nanosized magnetic particles while labeling cells and administered in animals for targeting different biological sites. Customization of magnetic nanoparticles is addressed here in terms of production of complex magnetic drug delivery systems whereas quantification of magnetic nanoparticle in different biological compartments emerges as a key experimental information to assess time-dependent magnetic nanoparticle biodistribution profiles. Examples of using magnetic resonance in unfolding information regarding the pharmacokinetics of intravenously-injected surface-functionalized magnetic nanoparticles in animals are included in the paper.