WorldWideScience

Sample records for magnet system design

  1. Design of a magnetic braking system

    International Nuclear Information System (INIS)

    Jou, M.; Shiau, J.-K.; Sun, C.-C.

    2006-01-01

    A non-contact method, using magnetic drag force principle, was proposed to design the braking systems to improve the shortcomings of the conventional braking systems. The extensive literature detailing all aspects of the magnetic braking is briefly reviewed, however little of this refers specifically to upright magnetic braking system, which is useful for industries. One of the major issues to design upright magnetic system is to find out the magnetic flux. The changing magnetic flux induces eddy currents in the conductor. These currents dissipate energy in the conductor and generate drag force to slow down the motion. Therefore, a finite element model is developed to analyze the phenomena of magnetic flux density when air gap and materials of track are varied. The verification shows the predicted magnetic flux is within acceptable range with the measured value. The results will facilitate the design of magnetic braking systems

  2. Superconducting magnet systems in EPR designs

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1976-10-01

    Tokamak experiments have reached a stage where large scale application of superconductors can be envisaged for machines becoming operational within the next decade. Existing designs for future devices already indicate some of the tasks and problems associated with large superconducting magnet systems. Using this information the coming magnet system requirements are summarized, some design considerations given and in conclusion a brief survey describes already existing Tokamak magnet development programs. (orig.) [de

  3. Design considerations for ITER magnet systems

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The authors present here preliminary ITER magnet systems design parameters taken from trade studies, design, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit

  4. Design of magnetic analysis system for magnetic proton recoil spectrometer

    International Nuclear Information System (INIS)

    Qi Jianmin; Jiang Shilun; Zhou Lin; Peng Taiping

    2010-01-01

    Magnetic proton recoil (MPR) spectrometer is a novel diagnostic instrument with high performance for measurements of the neutron spectra from inertial confinement fusion (ICF) experiments and high power fusion devices. The design of the magnetic analysis system, which is a key part of the compact MPR-type spectrometer, has been completed through two-dimensional beam transport simulations and three-dimensional particle transport simulation. The analysis of the system's parameters and performances was performed, as well as system designs based on preferential principles of energy resolution, detection efficiency, and count rate, respectively. The results indicate that the magnetic analysis system can achieve a detection efficiency of 10 -5 ∼ 10 -4 level at the resolution range of 1.5% to 3.0% and fulfill the design goals of the compact MPR spectrometer. (authors)

  5. Conceptual design Alcator C-MOD magnetic systems

    International Nuclear Information System (INIS)

    Schultz, J.H.; Becker, H.; Fertl, K.; Gwinn, D.; Montgomery, D.B.; Pierce, N.T.; Pillsbury, R.D. Jr.; Thome, R.J.

    1986-01-01

    The conceptual designs of the magnetic systems for Alcator C-MOD, a proposed tokamak at M.I.T., are described, including the toroidal magnet, the poloidal field coils and the cryogenic system. The toroidal magnet is constructed from rectangular plates, connected by sliding joints. Toroidal magnet forces are contained by a steel superstructure. Poloidal coil system options are largely or wholly inside the TF magnet, in order to control plasmas with high current, strong shaping, and expanded boundaries. All magnets are cryocooled by the natural circulation of boiling liquid nitrogen. 3 refs., 5 figs

  6. Design and fabrication of the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Tatro, R.E.; Kozman, T.A.

    1985-09-01

    The MFTF-B superconducting magnet system consists of 40 NbTi magnets and two Nb 3 Sn magnets. General Dynamics (GD) designed all magnets except for the small trim coils. GD then fabricated 20 NbTi magnets, while LLNL fabricated 20 NbTi magnets and two Nb 3 Sn magnets. The design phase was completed in February 1984 and included the competitive procurement of magnet structural fabrication, superconductor, G-10CR insulation, support struts and bearings, vapor-cooled leads, and thermal shields for all magnets. Fabrication of all magnets was completed in March 1985. At GD, dual assembly lines were necessary during fabrication in order to meet the aggressive LLNL schedule. The entire magnet system has been installed and aligned at LLNL, and Tech Demo tests will be performed during September-November 1985

  7. Conceptual design study of the K-DEMO magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keeman, E-mail: kkeeman@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Oh, Sangjun; Park, Jong Sung; Lee, Chulhee; Im, Kihak; Kim, Hyung Chan; Lee, Gyung-Su [National Fusion Research Institute, 169-148 Gwahak-ro, Daejeon 305-806 (Korea, Republic of); Neilson, George; Brown, Thomas; Kessel, Charles; Titus, Peter; Zhai, Yuhu [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-10-15

    Highlights: • Perform a preliminary conceptual study for a steady-state Korean DEMO reactor. • Present a preliminary design of TF (toroidal field) magnet. • Present a preliminary design of CS (central solenoid) magnet. • Present a preliminary design of PF (toroidal field) magnet. - Abstract: As the ITER is being constructed, there is a growing anticipation for an earlier realization of fusion energy. A major design philosophy for the initiated conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) is engineering feasibility. A two-staged development plan is envisaged. K-DEMO is designed not only to demonstrate a net electricity generation and a self-sustained tritium cycle, but also to be used, in its initial stage, as a component test facility. Then, in its second stage, a major upgrade is carried out by replacing in-vessel components in order to show a net electricity generation on the order of 500 MWe. After a thorough 0-D system analysis, the major radius and minor radius are chosen to be 6.8 m and 2.1 m, respectively. In order to minimize wave deflection, a top-launch high frequency (>200 GHz) electron cyclotron current drive (ECCD) system will be the key system for the current profile control. For matching the high frequency ECCD, a high toroidal field (TF) is required and can be achieved by using high current density Nb{sub 3}Sn superconducting conductor. The peak magnetic field reaches to 16 T with the magnetic field at the plasma center above 7 T. Key features of the K-DEMO magnet system include the use of two TF coil winding packs, each of a different conductor design, to reduce the construction cost and save the space for the magnet structure material.

  8. Conceptual design study of the K-DEMO magnet system

    International Nuclear Information System (INIS)

    Kim, Keeman; Oh, Sangjun; Park, Jong Sung; Lee, Chulhee; Im, Kihak; Kim, Hyung Chan; Lee, Gyung-Su; Neilson, George; Brown, Thomas; Kessel, Charles; Titus, Peter; Zhai, Yuhu

    2015-01-01

    Highlights: • Perform a preliminary conceptual study for a steady-state Korean DEMO reactor. • Present a preliminary design of TF (toroidal field) magnet. • Present a preliminary design of CS (central solenoid) magnet. • Present a preliminary design of PF (toroidal field) magnet. - Abstract: As the ITER is being constructed, there is a growing anticipation for an earlier realization of fusion energy. A major design philosophy for the initiated conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) is engineering feasibility. A two-staged development plan is envisaged. K-DEMO is designed not only to demonstrate a net electricity generation and a self-sustained tritium cycle, but also to be used, in its initial stage, as a component test facility. Then, in its second stage, a major upgrade is carried out by replacing in-vessel components in order to show a net electricity generation on the order of 500 MWe. After a thorough 0-D system analysis, the major radius and minor radius are chosen to be 6.8 m and 2.1 m, respectively. In order to minimize wave deflection, a top-launch high frequency (>200 GHz) electron cyclotron current drive (ECCD) system will be the key system for the current profile control. For matching the high frequency ECCD, a high toroidal field (TF) is required and can be achieved by using high current density Nb_3Sn superconducting conductor. The peak magnetic field reaches to 16 T with the magnetic field at the plasma center above 7 T. Key features of the K-DEMO magnet system include the use of two TF coil winding packs, each of a different conductor design, to reduce the construction cost and save the space for the magnet structure material.

  9. Permanent Magnetic System Design for the Wall-Climbing Robot

    Directory of Open Access Journals (Sweden)

    W. Shen

    2006-01-01

    Full Text Available This paper presents the design and analysis of the permanent magnetic system for a wall-climbing robot with permanent magnetic tracks. Based on the behaviour of gecko lizards, the architecture of the robot was designed and built, including the structure of the adhesion mechanism, the mechanical architecture and the anti-toppling mechanism. The permanent magnetic adhesion mechanism and the tracked locomotion mechanism were employed in this kind of wall-climbing robot. Through static and dynamic force analysis of the robot under different situations, design requirements for the adhesion mechanism were derived. Two different types of structures were put forward for the permanent magnetic units and are further discussed in this paper. These two types of structures are also analysed in detail. In addition, a finite-element method was used to verify the results of magnetic units. Finally, two wall-climbing robots, equipped with different magnetic systems described previously, are explained and their applications are discussed in this paper.

  10. Energy-Based Controller Design of Stochastic Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    Weiwei Sun

    2017-01-01

    Full Text Available This paper investigates the control problem of magnetic levitation system, in which velocity feedback signal is influenced by stochastic disturbance. Firstly, single-degree-freedom magnetic levitation is regarded as an energy-transform action device. From the view of energy-balance relation, the magnetic levitation system is transformed into port-controlled Hamiltonian system model. Next, based on the Hamiltonian structure, the control law of magnetic levitation system is designed by applying Lyapunov theory. Finally, the simulation verifies the correctness of the proposed results.

  11. Conceptual design of SC magnet system for ITER, (5)

    International Nuclear Information System (INIS)

    Nakajima, Hideo; Nishi, Masataka; Yoshida, Kiyoshi; Tsuji, Hiroshi; Egusa, Shigenori; Seguchi, Tadao; Hagiwara, Miyuki; Kirk, M.A.; Birtcher, R.C.

    1991-08-01

    Japan Atomic Energy Research Institute (JAERI) has been developing a superconducting magnet system for a fusion reactor. One of the key items in developing the superconducting magnets is material development and evaluation. The data of superconducting materials, structural alloys, and non-metallic materials are generated to establish a material data base at JAERI. This report is prepared to provide available data generated by JAERI to designers of superconducting magnets throughout the world. The following review papers written for the International Thermonuclear Experimental Reactor (ITER) report on conceptual design of magnet system are combined here. I. Superconducting Material Data II. Mechanical Properties of the Japanese Cryogenic Steels (JCS) at Cryogenic Temperature III. Review of Radiation Degradation Studies at JAERI on Composite Organic Insulators Used in Fusion Magnets (author)

  12. Study on optimization design of superconducting magnet for magnetic force assisted drug delivery system

    International Nuclear Information System (INIS)

    Fukui, S.; Abe, R.; Ogawa, J.; Oka, T.; Yamaguchi, M.; Sato, T.; Imaizumi, H.

    2007-01-01

    Analytical study on the design of the superconducting magnet for the magnetic force assisted drug delivery system is presented in this paper. The necessary magnetic field condition to reside the magnetic drug particle in the blood vessels is determined by analyzing the particle motion in the blood vessel. The design procedure of the superconducting magnet for the M-DDS is presented and some case studies are conducted. The analytical results show that the superconducting magnet to satisfy the magnetic field conduction for the M-DDS is practically feasible

  13. Design of a magnetic field alignment diagnostic for the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Deadrick, F.J.; House, P.A.; Frye, R.W.

    1985-01-01

    Magnet alignment in tandem mirror fusion machines plays a crucial role in achieving and maintaining plasma confinement. Various visual alignment tools have been described by Post et al. to align the Tara magnet system. We have designed and installed a remotely operated magnetic field alignment (MFA) diagnostic system as a part of the Mirror Fusion Test Facility (MFTF-B). It measures critical magnetic field alignment parameters of the MFTF-B coil set while under full-field operating conditions. The MFA diagnostic employs a pair of low-energy, electron beam guns on a remotely positionable probe to trace and map selected magnetic field lines. An array of precision electrical detector paddles locates the position of the electron beam, and thus the magnetic field line, at several critical points. The measurements provide a means to compute proper compensating currents to correct for mechanical misalignments of the magnets with auxiliary trim coils if necessary. This paper describes both the mechanical and electrical design of the MFA diagnostic hardware

  14. The integrated design of the ITER magnets and their auxiliary systems

    International Nuclear Information System (INIS)

    Huget, M.

    1999-01-01

    The magnet system design for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration to meet performance and operation requirements, including reliability and maintainability, in a cost effective manner. This paper identifies the requirements of long inductive burn time, large number of tokamak pulses, operational flexibility for the poloidal field (PF) system, magnet reliability and the cost constraints as the main design drivers. Key features of the magnet system which stem from these design drivers are described, together with interfaces and integration aspects of certain auxiliary systems. (author)

  15. The integrated design of the ITER magnets and their auxiliary systems

    International Nuclear Information System (INIS)

    Huguet, M.

    2001-01-01

    The magnet system design for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration to meet performance and operation requirements, including reliability and maintainability, in a cost effective manner. This paper identifies the requirements of long inductive burn time, large number of tokamak pulses, operational flexibility for the poloidal field (PF) system, magnet reliability and the cost constraints as the main design drivers. Key features of the magnet system which stem from these design drivers are described, together with interfaces and integration aspects of certain auxiliary systems. (author)

  16. Concept design of CFETR superconducting magnet system based on different maintenance ports

    International Nuclear Information System (INIS)

    Zheng, Jinxing; Liu, Xufeng; Song, Yuntao; Wan, Yuanxi; Li, Jiangang; Wu, Sontao; Wan, Baonian; Ye, Minyou; Wei, Jianghua; Xu, Weiwei; Liu, Sumei; Weng, Peide; Lu, Kun; Luo, Zhengping

    2013-01-01

    Highlights: • This article discussed the concept design of the magnet system of CFETR based on different maintenance port cases. • The major and minor radius of plasma is 5.7 m and 1.6 m, and the central magnetic field was designed as 4.5/5.0 T. • The different maintenance ports design have little impact on the design of TF and CS coils’ design, but have certain impact on the PF coils’ design. -- Abstract: CFETR which stands for “China Fusion Engineering Test Reactor” is a new tokamak device. Its magnet system includes the Toroidal Field (TF) winding, Center solenoid winding (CS) and Poloidal Field (PF) winding. The main goal of the project is to build a fusion engineering Tokamak reactor with its fusion power is 50–200 MW and should be self-sufficiency by blanket. In order to ensure the maintenance ports design and maintenance method, this article discussed the concept design of the magnet system based on different maintenance port cases. The paper detailed studied the magnet system of CFETR including the electromagnetic analysis and parameters for TF (CS)PF. Besides, the volt-seconds of ohmic field are presented as detailed as possible in this paper. In addition, the calculations and optimizations of equilibrium field which should guarantee the plasma discharge of single null shape is carried out. The design work reported here illustrates that the present maintenance ports will not have a great impact on the design of the magnet system. The concept design of the magnet system can meet the requirement of the physical target

  17. Design and simulation of permanent magnet synchronous motor control system

    Science.gov (United States)

    Li, Li; Liu, Yongqiu

    2018-06-01

    In recent years, with the development of power electronics, microelectronics, new motor control theory and rare earth permanent magnet materials, permanent magnet synchronous motors have been rapidly applied. Permanent magnet synchronous motors have the advantages of small size, low loss and high efficiency. Today, energy conservation and environmental protection are increasingly valued. It is very necessary to study them. Permanent magnet synchronous motor control system has a wide range of application prospects in the fields of electric vehicles, ships and other transportation. Using the simulation function of MATLAB/SIMULINK, a modular design structure was used to simulate the whole system model of speed loop adjustment, current PI modulation, SVPWM (Space Vector Pulse Width Module) wave generation and double closed loop. The results show that this control method has good robustness, and this method can improve the design efficiency and shorten the system design time. In this article, the analysis of the control principle of modern permanent magnet synchronous motor and the various processes of MATLAB simulation application will be analyzed in detail. The basic theory, basic method and application technology of the permanent magnet synchronous motor control system are systematically introduced.

  18. Design of combined magnetic field system for magnetic-bottle time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Wang Chao; Tian Jinshou; Zhang Meizhi; Kang Yifan

    2011-01-01

    Based on the primary requirement for the magnetic field system in magnetic-bottle time-of-flight spectrometer, an appropriate combined inhomogeneous magnetic field system is designed. The inhomogeneous higher magnetic field part, with the highest field of 1.2 T, is produced by the combination of a permanent magnet and a pole piece with optimized shape. The magnet,known as NdFeB magnet,is one of rare earth permanent magnets in N52. The guiding uniform magnetic field of 1.0 x 10 -3 T is provided by solenoid, with length of 3 m and radius of 3 cm. The pitch between the pole piece and the near end of used solenoid is determined to be 5 cm, which can satisfy the actual engineering needs. (authors)

  19. Conceptual design of SC magnet system for ITER, (2)

    International Nuclear Information System (INIS)

    Koizumi, Koichi; Hasegawa, Mitsuru; Yoshida, Kiyoshi

    1991-08-01

    The International Thermonuclear Experimental Reactor (ITER) is an experimental tokamak machine testing the basic plasma performance and technologies required for future tokamak reactor. The design proposals for the Superconducting (SC) Magnet System from Japan were summarized by the Fusion Experimental Reactor (FER) Design Team and the Superconducting Magnet Laboratory of the Japan Atomic Energy Research Institute (JAERI). This report is one of the series reports on 'Conceptual design of superconducting magnet system for ITER', and describes the major results of the stress analysis regarding the Toroidal Field (TF) coil, the Center Solenoid (CS) coil and the Equilibrium Field (EF) coil and their support structures. Among the design issues, the mechanical design of the coil system was one of the most critical items, not only because of the huge electromagnetic loads due to large size and high magnetic field, but also because of the demand of high reliability under neutron irradiation. In order to satisfy both the coil performance and the mechanical reliability, different types of conductors were employed for each coils. The mechanical behaviors and the safety margin of each coil were analyzed by using finite element method (FEM) of MSC/NASTRAN. The procedure to obtain the equivalent winding stiffness employed for the each FEM analysis is also described in this report. The details on the coil specifications, conductor design and mechanical design for each coils are described in other report of the series reports. (J.P.N.)

  20. Design and analysis of the SSC [Superconducting Super Collider] dipole magnet suspension system

    International Nuclear Information System (INIS)

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1989-03-01

    The design of the suspension system for Superconducting Super Collider (SSC) dipole magnets has been driven by rigorous thermal and structural requirements. The current system, designed to meet those requirements, represents a significant departure from previous superconducting magnet suspension system designs. This paper will present a summary of the design and analysis of the vertical and lateral suspension as well as the axial anchor system employed in SSC dipole magnets. 5 refs., 9 figs., 4 tabs

  1. DESIGN AND TESTING OF A DIGITAL REGULATOR FOR FERMILAB MAGNET POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Li Vigni, Vincenzo [Palermo U.

    2012-01-01

    In this thesis, the design of a digitally controlled DC power system for testing conventional and superconducting magnets is proposed. The designed PID controller performances have been tested by the 30kA test stand for superconducting magnets, Vertical Magnet Test Facility (VMTF), which is hosted at the Fermilab Magnet Test Facility (MTF). The system is implemented on a National Instruments CompactRIO and both real-time and FPGA targets are programmed. A full 24-bit PID algorithm is coded and successfully tested by a manual tuning approach. An automated tuning algorithm is then introduced. As it will be shown by simulation and experimental results, the proposed system meets all design specifications. The current loop stability is up to 14 times better than the existing regulator and a control accuracy less than 4 ppm is achieved. Shorted-bus tests of the PID regulator have been successfully performed on the VMTF power system. In order to test the generalization capability of the designed system towards different types of magnets, the system has been easily adapted to and tested on the 10kA conventional magnet test stand (Stand C at Fermilab). As shown by experimental results, the designed PID controller features really high performancesin terms of steady-state accuracy and effectiveness of the tuning algorithm.

  2. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high......-vacuumed cryostat. A two-stage GM cryocooler with a cooling power of 1.5 W at 4.2 K in the second stage is used to cool the system from room temperature to 4.2 K. In this paper, the detailed design, fabrication, thermal analysis and tests of the system are presented....

  3. Three-Dimensional Design of a Non-Axisymmetric Periodic Permanent Magnet Focusing System

    CERN Document Server

    Chen Chi Ping; Radovinsky, Alexey; Zhou, Jing

    2005-01-01

    A three-dimensional (3D) design is presented of a non-axisymmetric periodic permanent magnet focusing system which will be used to focus a large-aspect-ratio, ellipse-shaped, space-charge-dominated electron beam. In this design, an analytic theory is used to specify the magnetic profile for beam transport. The OPERA3D code is used to compute and optimize a realizable magnet system. Results of the magnetic design are verified by two-dimensional particle-in-cell and three-dimensional trajectory simulations of beam propagation using PFB2D and OMNITRAK, respectively. Results of fabrication tolerance studies are discussed.

  4. A design approach for systems based on magnetic pulse compression

    International Nuclear Information System (INIS)

    Praveen Kumar, D. Durga; Mitra, S.; Senthil, K.; Sharma, D. K.; Rajan, Rehim N.; Sharma, Archana; Nagesh, K. V.; Chakravarthy, D. P.

    2008-01-01

    A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results

  5. Review and comparison of magnet designs for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    One of the key issues in magnetic refrigeration is generating the magnetic field that the magnetocaloric material must be subjected to. The magnet constitutes a major part of the expense of a complete magnetic refrigeration system and a large effort should therefore be invested in improving...... the magnet design. A detailed analysis of the efficiency of different published permanent magnet designs used in magnetic refrigeration applications is presented in this paper. Each design is analyzed based on the generated magnetic flux density, the volume of the region where this flux is generated...... and the amount of magnet material used. This is done by characterizing each design by a figure of merit magnet design efficiency parameter, Λcool. The designs are then compared and the best design found. Finally recommendations for designing the ideal magnet design are presented based on the analysis...

  6. Design, Development & Functional Validation of Magnets system in support of 42 GHz Gyrotron in India

    Directory of Open Access Journals (Sweden)

    Pradhan S.

    2017-01-01

    Full Text Available A multi institutional initiative is underway towards the development of 42 GHz, 200 kW gyrotron system in India under the frame work of Department of Science and Technology, Government of India. Indigenous realization comprising of design, fabrication, prototypes and functional validations of an appropriate Magnet System is one of the primary technological objective of these initiatives. The 42 GHz gyrotron magnet system comprises of a warm gun magnet, a NbTi/Cu based high homogenous superconducting cavity magnet and three warm collector magnets. The superconducting cavity magnet has been housed inside a low loss cryostat. The magnet system has been designed in accordance with gyrotron physics and engineering considerations respecting highly homogenous spatial field profile as well as maintaining steep gradient as per the compression and velocity ratios between the emission and resonator regions. The designed magnet system further ensures the co-linearity of the magnetic axis with that of the beam axis with custom winding techniques apart from a smooth collection of beam with the collector magnet profiles. The designed magnets have been wound after several R & D validations. The superconducting magnet has been housed inside a low loss designed cryostat with in-built radial and axial alignment flexibilities to certain extent. The cryostat further houses liquid helium port, liquid nitrogen ports, current communication ports, ports for monitoring helium level and other instrumentations apart from over-pressure safety intensive burst disks etc. The entire magnet system comprising of warm and superconducting magnets has been installed and integrated in the Gyrotron test set-up. The magnet system has been aligned in both warm and when the superconducting cavity magnet is cold. The integrated geometric axes have been experimentally ensured as well as the field profiles have been measured with the magnets being charged. Under experimental conditions

  7. TMX magnets: mechanical design

    International Nuclear Information System (INIS)

    Hinkle, R.E.; Harvey, A.R.; Calderon, M.O.; Chargin, A.K.; Chen, F.F.K.; Denhoy, B.S.; Horvath, J.A.; Reed, J.R.; Waugh, A.F.

    1977-01-01

    The Tandem Mirror Experiment (TMX) system, part of the Lawrence Livermore Laboratory magnetic mirror program incorporates in its design various types of coils or magnets. This paper describes the physical construction of each coil within the system as well as the structural design required for their support and installation

  8. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Varmora, P., E-mail: pvamora@ipr.res.in; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-11-15

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  9. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    International Nuclear Information System (INIS)

    Varmora, P.; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-01-01

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  10. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 15, System design description. Volume 1

    International Nuclear Information System (INIS)

    1995-01-01

    This System Design Description, prepared in accordance with the TPX Project Management Plan provides a summary or TF Magnet System design features at the conclusion of Phase I, Preliminary Design and Manufacturing Research. The document includes the analytical and experimental bases for the design, and plans for implementation in final design, manufacturing, test, and magnet integration into the tokamak. Requirements for operation and maintenance are outlined, and references to sources of additional information are provided

  11. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 15, System design description. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-22

    This System Design Description, prepared in accordance with the TPX Project Management Plan provides a summary or TF Magnet System design features at the conclusion of Phase I, Preliminary Design and Manufacturing Research. The document includes the analytical and experimental bases for the design, and plans for implementation in final design, manufacturing, test, and magnet integration into the tokamak. Requirements for operation and maintenance are outlined, and references to sources of additional information are provided.

  12. Design considerations for ITER [International Thermonuclear Experimental Reactor] magnet systems

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnetic systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs

  13. Superconducting magnet systems for the ANL EPR design

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Kim, S.H.; Huang, Y.C.; Smith, R.P.

    1978-01-01

    The magnet systems for the current Argonne experimental power reactor (EPR) design build on the earlier designs but incorporate a number of improvements. The toroidal field (TF) coil system consists of 16 coils of the constant tension shape, with NbTi, copper, and stainless steel as superconductor, stabilizer, and support material respectively. They are designed for 10 T operation at 3.7 K or 9 T operation at 4.2 K. Two changes from earlier designs permit a saving in material requirements. The coils are wound with the conductor in precompression and the support material in pretension so that when the coils are energized, the stainless steel experiences a stress of 60,000 psi while the copper stress does not exceed 15,000 psi. Both the copper and NbTi are graded, with higher current densities where magnetic and radiation effects are smaller. The ohmic heating (OH) coil system consists of a central solenoid plus ten other coils, all located outside the TF coils for ease of maintenance. The NbTi-copper coils are cryostable and operate at 4.2 K. The solenoid is segmented, with rings of insulation between segments to transfer the centering force from the TF coils to an insulating cylinder inside the OH solenoid. Locating the OH solenoid inside the support cylinder plus raising the central field to 8 T, enables the OH system to develop more volt-seconds than the earlier designs, even though the plasma major radius is smaller. The superconducting equilibrium field coils, also outside the TF coils, provide the field pattern required for a D-shaped plasma

  14. Feasibility of low-cost magnetic rail designs by integrating ferrite magnets and NdFeB magnets for HTS Maglev systems

    Science.gov (United States)

    Sun, R. X.; Deng, Z. G.; Gou, Y. F.; Li, Y. J.; Zheng, J.; Wang, S. Y.; Wang, J. S.

    2015-09-01

    Permanent magnet guideway (PMG) is an indispensable part of high temperature superconducting (HTS) Maglev systems. Present PMGs are made of NdFeB magnets with excellent performance and cost much. As another permanent magnet material, the ferrite magnet is weak at magnetic energy product and coercive force, but inexpensive. So, it is a possible way to integrate the ferrite and NdFeB magnets for cutting down the cost of present PMGs. In the paper, the equivalent on magnetic field intensity between ferrite magnets and NdFeB magnets was evaluated by finite element simulation. According to the calculation results, the magnetic field of the PMG integrating ferrite magnets and NdFeB magnets can be increased remarkably comparing with the pure ferrite PMG. It indicates that low-cost PMG designs by integrating the two permanent magnet materials are feasible for the practical HTS Maglev system.

  15. Design and construction of a superconducting magnet system for the absolute ampere experiment

    International Nuclear Information System (INIS)

    Chen, W.Y.; Olsen, P.T.; Phillips, W.D.; Purcell, J.R.; Williams, E.R.

    1982-01-01

    A complete superconducting magnet system designed by General Atomic Company for the National Bureau of Standards is described. It is to be utilized in the absolute ampere experiment. Key features of the magnet system are high precision, low LHe consumption, low eddy current effects, and modular construction. The system requirements are specified and the set-up illustrated schematically. Design description includes superconducting coils, (illustrated), coil dewar, field analysis, and three stages of fabrication

  16. Design of the magnetic system of an ECR type ion source

    International Nuclear Information System (INIS)

    Camps C, E.; Munoz C, A.

    1990-05-01

    A computer program written with the purpose of studying the magnetic field produced by a linear system of n coils is shown. Based on this a four coils system is designed that was used in an ion source of Resonance Electron-cyclotron type (REC) that is sought to build. In turn, structure characteristics of the magnetic field proper for such purpose are discussed. (Author)

  17. Large Coil Program magnetic system design study

    International Nuclear Information System (INIS)

    Moses, S.D.; Johnson, N.E.

    1977-01-01

    The primary objective of the Large Coil Program (LCP) is to demonstrate the reliable operation of large superconducting coils to provide a basis for the design principles, materials, and fabrication techniques proposed for the toroidal magnets for the THE NEXT STEP (TNS) and other future tokamak devices. This paper documents a design study of the Large Coil Test Facility (LCTF) in which the structural response of the Toroidal Field (TF) Coils and the supporting structure was evaluated under simulated reactor conditions. The LCP test facility structural system consists of six TF Coils, twelve coil-to-coil torsional restraining beams (torque rings), a central bucking post with base, and a Pulse Coil system. The NASTRAN Finite Element Structural Analysis computer Code was utilized to determine the distribution of deflections, forces, and stresses for each of the TF Coils, torque rings, and the central bucking post. Eleven load conditions were selected to represent probable test operations. Pulse Coils suspended in the bore of the test coil were energized to simulate the pulsed field environment characteristic of the TNS reactor system. The TORMAC Computer Code was utilized to develop the magnetic forces in the TF Coils for each of the eleven loading conditions examined, with or without the Pulse Coils energized. The TORMAC computer program output forces were used directly as input load conditions for the NASTRAN analyses. Results are presented which demonstrate the reliability of the LCTF under simulated reactor operating conditions

  18. Design of electron beam bending magnet system using three sector magnets for electron and photon therapy: a simulation approach

    International Nuclear Information System (INIS)

    Shahzad, A.A.; Bhoraskar, V.N.; Dhole, S.D.

    2013-01-01

    The 270 degree doubly achromatic beam bending magnet system using three sector magnets has been designed mainly for treating cancer and skin diseases. The main requirements of the design of three magnet system is to focus an electron beam having a spot size less than 3mm x 3mm, energy spread within 3% and divergence angle ≤ 3 mrad at the target. To achieve these parameters the simulation was carried out using Lorentz-3EM software. The beam spot, divergence angle and energy spread were observed with respect to the variation in angles of sector magnets and drift distances. From the simulated results, it has been optimized that all the three sector magnets has an angle of 62 degree and the drift distance 68 mm. It is also observed that at the 1637, 2425, 3278, 4165 and 5690 Amp-turn, the optimized design produces 3851, 5754, 7434, 9356 and 11425 Gauss of magnetic field at median plane require to bend 6, 9, 12, 15 and 18 MeV energy of electron respectively for electron therapy. The output parameters of the optimized design are energy spread 3%, divergence angle ∼ 3 mrad and spot size 2.8 mm. Moreover, for 6 MV and 15 MV photon therapy application, an electron beam of energy 6.5 MeV and 15.5 MeV extracted from magnet system and focussed on the Bremsstrahlung target. For the photon therapy the 1780, and 4456 amp-turn, an optimized design produces 4148 and 9682 Gauss of magnetic field at median plane require to bend 6.5 and 15.5 MeV energy of electron respectively, which further produces Bremsstrahlung in Tungsten target. (author)

  19. Conceptual design of the superconducting magnet system for the helical fusion reactor

    International Nuclear Information System (INIS)

    Yanagi, Nagato; Hamaguchi, Shinji; Takahata, Kazuya; Natsume, Kyohei

    2013-01-01

    Current status of conceptual design of superconducting magnet system and low temperature system for the helical fusion reactor are introduced. There are three kinds of candidates of superconducting magnets such as Cable-in-conduit (CIC), Low-Temperature Superconductor (LTS) and High-Temperature Superconductor (HTS). Their characteristic properties, coil designs and cooling systems are stated. The freezer and low temperature distribution system, bus line and current lead, and excitation power source for superconducting coil are reported. The various elements of superconducting magnet system of FFHR-d1, partial cross section of FFHR helical coil using CIC, conceptual diagram of helical coil winding method of FFHR using CIC, relation among mass flow of supercritical helium supplied into CIC conductor and temperature increasing and pressure loss, cross section structure of LTS indirect-cooling conductor at 100 kA, cross section of 100-kA HTS conductor, connection method of helical coil segment and YBCO conductor are illustrated. (S.Y.)

  20. Design and construction of the SSCL magnet test laboratory cryogenic systems

    International Nuclear Information System (INIS)

    Freeman, M.A.; Kobel, T.A.

    1992-01-01

    The intent of this document is to provide a brief summary of the execution, by Process Systems International, Inc. (PSI), of the Design and Construction of the SSCL Magnet Test Laboratory Cryogenic Systems. This $30 million project requires the expenditure of over 200,000 manhours and the procurement of $17 million in materials within a two year period. SSC magnets will be performance tested at the Magnet Test Laboratory (MTL) and the Accelerator System String Test (ASST) facility under conditions simulating the environment of the SSC main ring. The cryogenic system consists of test stands (five for MTL, one for ASST) and the associated equipment including cryogenic storage, purification, thermal conditioning, and helium refrigeration necessary to support the test program

  1. Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST

    Science.gov (United States)

    Manman, XU; Yuntao, SONG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Guang, LIU; Zhen, PENG

    2017-11-01

    Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in the EAST. However, the antenna load will fluctuate with the change of plasma parameters in the ICRF heating process. To ensure the steady operation of the ICRF heating system in the EAST, fast ferrite tuner (FFT) has been carried out to achieve real-time impedance matching. For the requirements of the FFT impedance matching system, the magnet system of the ferrite tuner (FT) was designed by numerical simulations and experimental analysis, where the biasing magnetic circuit and alternating magnetic circuit were the key researched parts of the ferrite magnet. The integral design goal of the FT magnetic circuit is that DC bias magnetic field is 2000 Gs and alternating magnetic field is ±400 Gs. In the FTT, E-type magnetic circuit was adopted. Ferrite material is NdFeB with a thickness of 30 mm by setting the working point of NdFeB, and the ampere turn of excitation coil is 25 through the theoretical calculation and simulation analysis. The coil inductance to generate alternating magnetic field is about 7 mH. Eddy-current effect has been analyzed, while the magnetic field distribution has been measured by a Hall probe in the medium plane of the biasing magnet. Finally, the test results show the good performance of the biasing magnet satisfying the design and operating requirements of the FFT.

  2. Conceptual design of SC magnet system for ITER, (6)

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Sugimoto, Makoto; Tsuji, Hiroshi

    1991-08-01

    The International Thermonuclear Experimental Reactor (ITER) is an experimental thermonuclear tokamak reactor in order to test the basic physics performance and technologies. The conceptual design activity (CDA) of ITER required the joint work at a technical site at the Max Plank Institute for Plasma Physics in the Garching, Germany from 1988 to 1990. The technical proposals from Japan were summarized by the Fusion Experimental Reactor (FER) Team and the Superconducting Magnet Laboratory of the Japan Atomic Energy Research Institute (JAERI). This paper describes the Japanese contributions of the R and D proposals to the magnet system for the ITER. These proposals were discussed in ITER CDA design team and summarized in ITER Technical report No. 20. The development program of Toroidal Field Coil is basically proposed from Japan with the design and analysis reports. The Japanese proposals are almost adopted in the ITER Long-Term R and D program. (author)

  3. Enhancing the design of a superconducting coil for magnetic energy storage systems

    International Nuclear Information System (INIS)

    Indira, Gomathinayagam; UmaMaheswaraRao, Theru; Chandramohan, Sankaralingam

    2015-01-01

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done

  4. Enhancing the design of a superconducting coil for magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Indira, Gomathinayagam, E-mail: gindu80@gmail.com [EEE Department, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai (India); UmaMaheswaraRao, Theru, E-mail: umesh.theru@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India); Chandramohan, Sankaralingam, E-mail: cdramo@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India)

    2015-01-15

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  5. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER) supplement. Magnet system special investigations

    Science.gov (United States)

    1981-01-01

    The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.

  6. Designing a magnet for magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk, R

    2010-03-15

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other published magnet designs used in magnetic refrigeration devices are also evaluated, using a figure of merit based on the properties of the investigated magnetocaloric materials, to learn the properties of the best magnet designs to date. Following this investigation the Halbach cylinder, which is a hollow permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder of infinite length, are presented. Once it has been determined which properties are desirable for a magnet used in magnetic refrigeration the design of a new magnet is described. This is

  7. Structural design of DEALS magnet

    International Nuclear Information System (INIS)

    Bezler, P.; Hsieh, S.Y.; Balderes, T.; Brown, T.; Bundy, J.

    1979-01-01

    A design for the extraneous magnet structure to support all the magnet loads was developed. The structure consists of two demountable structural systems designed to support the in-plane and out-of-plane loads, respectively. The in-plane loads are resisted by a cold central bucking cylinder and pin connected, plate-beam structural members following the outer periphery of each coil. The out-of-plane, torsional loads are resisted by the concerted action of the central bucking column and a continuous plate structure interconnecting all the coils. The adequacy of the structures were assessed by application of finite element analysis methods. The design study proved the feasibility of resisting the magnetic loadings with a demountable support structure extraneous to the superconducting coil. The resulting magnet system, although estimated to be higher in cost than a continuous coil, incorporates a means for complete coil replacement in a time scale commensurate with conventional nuclear power plant repairs and without the dismantling of the toroidal blanket and plasma shell systems

  8. Design considerations for ITER [International Thermonuclear Experimental Reactor] magnet systems: Revision 1

    International Nuclear Information System (INIS)

    Henning, C.D.; Miller, J.R.

    1988-01-01

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnet systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs

  9. Permanent Magnet Brushless DC Motor and Mechanical Structure Design for the Electric Impact Wrench System

    Directory of Open Access Journals (Sweden)

    Chengyuan He

    2018-05-01

    Full Text Available This paper presents an analytical method to design an interior permanent magnet brushless DC electric motor (IPMBLDC motor for a kind of electric impact wrench used for loading and unloading car bolts. It takes into account magnet assembly gap, rotor saturation webs, and bridges. Assumed flux leakage coefficient and selected working point of a permanent magnet were used in the initial design. An advanced equivalent magnetic circuit was developed to verify the total flux leakage and the quiescent operating point based on initial design parameters. Key design method points are considered and analyzed. Thermal analysis is given to simulate the temperature rise of all parts of the motor. The new impact wrench mechanical structure is designed, and its working principle analyzed. An electromagnetic field analysis based on MATLAB and the MAXWELL 2D finite element method (FEM were used in the design to verify the equivalent magnetic circuit and optimize the IPMBLDC motor parameters. Experimental results are obtained to verify the design. The electrical and mechanical designs are combined and an analytical IPMBLDC motor design method is provided. We also show an innovative and reasonable mechanical dynamical calculation method for the impact wrench system, which can be used in whole system design of other functional electric tools.

  10. The Design of High Reliability Magnetic Bearing Systems for Helium Cooled Reactor Machinery

    International Nuclear Information System (INIS)

    Swann, M.; Davies, N.; Jayawant, R.; Leung, R.; Shultz, R.; Gao, R.; Guo, Z.

    2014-01-01

    The requirements for magnetic bearing equipped machinery used in high temperature, helium cooled, graphite moderated reactor applications present a set of design considerations that are unlike most other applications of magnetic bearing technology in large industrial rotating equipment, for example as used in the oil and gas or other power generation applications. In particular, the bearings are typically immersed directly in the process gas in order to take advantage of the design simplicity that comes about from the elimination of ancillary lubrication and cooling systems for bearings and seals. Such duty means that the bearings will usually see high temperatures and pressures in service and will also typically be subject to graphite particulate and attendant radioactive contamination over time. In addition, unlike most industrial applications, seismic loading events become of paramount importance for the magnetic bearings system, both for actuators and controls. The auxiliary bearing design requirements, in particular, become especially demanding when one considers that the whole mechanical structure of the magnetic bearing system is located inside an inaccessible pressure vessel that should be rarely, if ever, disassembled over the service life of the power plant. Lastly, many machinery designs for gas cooled nuclear power plants utilize vertical orientation. This circumstance presents its own unique requirements for the machinery dynamics and bearing loads. Based on the authors’ experience with machine design and supply on several helium cooled reactor projects including Ft. St. Vrain (US), GT-MHR (Russia), PBMR (South Africa), GTHTR (Japan), and most recently HTR-PM (China), this paper addresses many of the design considerations for such machinery and how the application of magnetic bearings directly affects machinery reliability and availability, operability, and maintainability. Remote inspection and diagnostics are a key focus of this paper. (author)

  11. Designing magnets with prescribed magnetic fields

    International Nuclear Information System (INIS)

    Liu Liping

    2011-01-01

    We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

  12. Reliability of large superconducting magnets through design

    International Nuclear Information System (INIS)

    Henning, C.D.

    1980-01-01

    As superconducting magnet systems grow larger and become the central component of major systems involving fusion, magnetohydrodynamics, and high-energy physics, their reliability must be commensurate with the enormous capital investment in the projects. Although the magnet may represent only 15% of the cost of a large system such as the Mirror Fusion Test Facility, its failure would be catastrophic to the entire investment. Effective quality control during construction is one method of ensuring success. However, if the design is unforgiving, even an inordinate amount of effort expended on quality control may be inadequate. Creative design is the most effective way of ensuring magnet reliability and providing a reasonable limit on the amount of quality control needed. For example, by subjecting the last drawing operation is superconductor manufacture to a stress larger than the magnet design stress, a 100% proof test is achieved; cabled conductors offer mechanical redundancy, as do some methods of conductor joining; ground-plane insulation should be multilayered to prevent arcs, and interturn and interlayer insulation spaced to be compatible with the self-extinguishing of arcs during quench voltages; electrical leads should be thermally protected; and guard vacuum spaces can be incorporated to control helium leaks. Many reliable design options are known to magnet designers. These options need to be documented and organized to produce a design guide. Eventually, standard procedures, safety factors, and design codes can lead to reliability in magnets comparable to that obtained in pressure vessels and other structures. Wihout such reliability, large-scale applications in major systems employing magnetic fusion energy, magnetohydrodynamics, or high-energy physics would present unacceptable economic risks

  13. A high pulsed power supply system designed for pulsed high magnetic field

    International Nuclear Information System (INIS)

    Liu Kefu; Wang Shaorong; Zhong Heqing; Xu Yan; Pan Yuan

    2008-01-01

    This paper introduces the design of high pulsed power supply system for producing pulsed high magnetic field up to 70 T. This system consists of 58 sets of 55 μF of capacitor bank which provides 1.0 MJ energy storage. A set of vacuum closing switch is chosen as main switch for energy discharge into magnetic coil. A crowbar circuit with high power diodes in series with resistor is used to absorb the redundant energy and adjust pulse width. The resistance of magnetic coil changing with current is deduced by energy balance equations. A capacitor-charging power supply using a series-resonant, constant on-time variable frequency control, and zero-current switching charges the capacitor bank in one minute time with high efficiency. The pulsed power supply provides adjustable current and pulse width with 30 kA peak and 30 ms maximum. The primary experiments demonstrate the system reliability. This work provides an engineering guidance for future development of pulsed high magnetic field. (authors)

  14. TPX superconducting Tokamak magnet system: 1995 design and status overview

    International Nuclear Information System (INIS)

    Deis, G.; Bulmer, R.; Carpenter, R.

    1995-01-01

    The TPX magnet preliminary design effort is summarized. Key results and accomplishments during preliminary design and supporting R and D are discussed, including conductor development, quench detection, TF and PF magnet design, conductor bending and forming, reaction heat treating, helium stubs, and winding pack insulation

  15. Mirror power reactor magnet coil system: a technically and economically feasible design

    International Nuclear Information System (INIS)

    Peterson, M.A.

    1977-01-01

    The design and preliminary engineering analysis of a ''Yin Yang'' coil system utilizing several original design concepts to achieve technical and economic feasibility will be presented. The design analysis is begun with a general description of the constraints and prerequisites which define the problem of designing a satisfactory coil system for a mirror power reactor. This description includes a discussion of the coil conductor geometry required by plasma physics considerations, and also a description of the magnitude and direction of the magnetic force system distributed over the conductor geometry. In addition, the important design constraints which all mirror coil system designs must satisfy if they are to successfully interface with the other reactor components are reviewed. After considering the basic constraints that Yin Yong coil systems must be developed around, a survey of the various design concepts that were developed and explored in search of a satisfactory coil system design is discussed. From this extensive preliminary investigation of potential coil system configurations, a coil system design was developed which appears to offer by far the best combination of technical and economic feasibility of any other coil system design developed thus far

  16. Magnet design technical report---ITER definition phase

    International Nuclear Information System (INIS)

    Henning, C.

    1989-01-01

    This report contains papers on the following topics: conceptual design; radiation damage of ITER magnet systems; insulation system of the magnets; critical current density and strain sensitivity; toroidal field coil structural analysis; stress analysis for the ITER central solenoid; and volt-second capabilities and PF magnet configurations

  17. Design and analysis of a wiggler magnet system for the PEP-II B-Factory LER

    International Nuclear Information System (INIS)

    Heim, J.; Kendall, M.; Bertolini, L.; Fackler, O.; O'Connor, T.; Swan, T.; Zholents, A.

    1996-01-01

    The Low Energy Ring (LER) of the PEP-II B-Factory will use a wiggler magnet system for emittance control and additional damping. The wiggler magnet system is a set of 11 individual iron core, water cooled, dipole magnets designed to operate at 1.6 T and generate 400 kW of synchrotron radiation. Space has been provided to add a second wiggler with an additional 400 kW of synchrotron radiation if more damping is needed in the future. A copper vacuum chamber is used with continuous antechambers connected to both sides of the beam chamber via slots. Synchrotron radiation dump surfaces and distributed vacuum pumping are located in both antechambers. The authors describe the design and analysis of the wiggler magnets and the salient features of the vacuum chamber and dumps

  18. Conceptual design of 30 MeV magnet system used for BNCT epithermal neutron source

    International Nuclear Information System (INIS)

    Slamet Santosa; Taufik

    2015-01-01

    Conceptual design of 30 MeV Magnet System Used for BNCT Epithermal Neutron Source has been done based on methods of empirical model of basic equation, experiences of 13 MeV cyclotron magnet design and personal communications. In the field of health, cyclotron can be used as an epithermal neutron source for Boron Neutron Capture Therapy (BNCT). The development of cyclotron producing epithermal neutrons for BNCT has been performed at Kyoto University, of which it produces a proton beam current of 1.1 mA with energy of 30 MeV. With some experiences on 13 MeV cyclotron magnet design, to support BNCT research and development we performed the design studies of 30 MeV cyclotron magnet system, which is one of the main components of the cyclotron for deflecting proton beam into circular trajectory and serves as beam focusing. Results of this study are expected to define the parameters of particular cyclotron magnet. The scope of this study includes the study of the parameters component of the 30 MeV cyclotron and magnet initial parameters. The empirical method of basic equation model is then corroborated by a simulation using Superfish software. Based on the results, a 30 MeV cyclotron magnet for BNCT neutron source enables to be realized with the parameters of B 0 = 1.06 T, frequency RF = 64.733938 ≈ 65 MHz, the external radius of 0.73 m, the radius of the polar = 0.85 m, BH = 1.95 T and a gap hill of 4 cm. Because proton beam current that be needed for BNCT application is very large, then in the calculation it is chosen a great focusing axial νz = 0.630361 which can generate B V = 0.44 T. (author)

  19. SYNTHESIS OF ACTIVE SCREENING SYSTEM OF MAGNETIC FIELD OF HIGH VOLTAGE POWER LINES OF DIFFERENT DESIGN TAKING INTO ACCOUNT SPATIAL AND TEMPORAL DISTRIBUTION OF MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2017-04-01

    Full Text Available Purpose. Analyze the spatial and temporal distribution of the magnetic field of high voltage power lines with different design allowing and development of recommendations for the design of active screening systems by magnetic field of high voltage power lines. Methodology. Analysis of the spatial and temporal distribution of the magnetic field of high voltage power lines of different design allowing is made on the basis of Maxwell's equations solutions in the quasi-stationary approximation. Determination of the number, configuration, spatial arrangement and the compensation coil currents is formulated in the form of multiobjective optimization problem that is solved by multi-agent multiswarm stochastic optimization based on Pareto optimal solutions. Results of active screening system for the synthesis of various types of transmission lines with different numbers of windings controlled. The possibility of a significant reduction in the level of the flux density of the magnetic field source within a given region of space. Originality. For the first time an analysis of the spatial and temporal distribution of the magnetic field of power lines with different types and based on findings developed recommendations for the design of active screening system by magnetic field of high voltage power lines. Practical value. Practical recommendations on reasonable choice of the number and spatial arrangement of compensating windings of active screening system by magnetic field of high voltage power lines of different design allowing for the spatial and temporal distribution of the magnetic field. Results of active screening system synthesis of the magnetic field of industrial frequency generated by single-circuit 110 kV high voltage power lines with the supports have 330 - 1T «triangle» rotating magnetic field with full polarization in a residential five-storey building, located near the power lines. The system contains three compensating coil and reduces

  20. Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements

    Science.gov (United States)

    2017-12-01

    This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...

  1. Design and Implementation of the Permanent- Magnet Synchronous Generator Drive in Wind Generation Systems

    Directory of Open Access Journals (Sweden)

    Yuan-Chih Chang

    2018-06-01

    Full Text Available The design and implementation of the permanent-magnet synchronous generator drive in wind generation systems is presented in this paper. The permanent-magnet synchronous generator (PMSG can converse the alternating current (AC power of the wind turbine to direct current (DC power. In this paper, the dynamic model of a PMSG is first introduced. The current controller is designed based on T-S fuzzy models of the PMSG. The stability of the proposed PMSG drive system is analyzed and proved. The proposed T-S fuzzy current control possesses a disturbance suppression ability. Compared with the traditional fuzzy logic system, its stability can be proved and verified. Finally, the control performance of the PMSG drive is verified by experimental results.

  2. Design and analysis of permanent magnet moving coil type generator used in a micro-CHP generation system

    Science.gov (United States)

    Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan

    2015-12-01

    This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.

  3. Design and implementation of quench detection instrumentation for TF magnet system of SST-1

    International Nuclear Information System (INIS)

    Khristi, Y.; Sharma, A.N.; Doshi, K.; Banaudha, M.; Prasad, U.; Varmora, P.; Patel, D.; Pradhan, S.

    2014-01-01

    Steady State Superconducting Tokamak-1 (SST-1) at Institute for Plasma Research (IPR), India is now in engineering validation phase. The assembled Toroidal Field (TF) magnet system of SST-1 will be operated at 10 kA of nominal current at helium cooled condition of 4.5 K. A reliable and fail proof quench detection (QD) system is essential for the safety and the investment protection requirements of the magnets. This QD system needs to continuously monitor all the superconducting coils, which include 16 TF magnets, return-loop, bus bars and current leads. In case of any event initiating the normal resistive zone and reaching thermal run-away, the QD system needs to trigger the magnet protection circuits. Precision instrumentation and control system with 204 signal channels had been developed for detection of quench anywhere in the entire TF magnet system. In the present configuration of quench detection scheme, the voltage drop across each double pancake (DP) of each TF coil are compared with its two adjacent DPs for the detection of normal zone and cancelation of inductive couples. Two identical redundant systems with one out of two configurations are successfully commissioned and tested at IPR. This paper describes the design and implementation of the QD system, Installation experience, validation test and initial results from the recent SST-1 magnet system charging

  4. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Rogers, J.D.

    1979-01-01

    A point reference design has been completed for a 1-GWh Superconducting Magnetic Energy Storage system. The system is for electric utility dirunal load leveling; however, such a device will function to meet much faster power demands including dynamic stabilization. The study has explored several concepts of design not previously considered in the same detail as treated here. Because the study is for a point design, optimization in all respects is not complete. The study examines aspects of the coil design; superconductor supported off of the dewar shell; the dewar shell, its configuration and stresses; the underground excavation and related construction for holding the superconducting coil and its dewar; the helium refrigeration system; the electrical converter system; the vacuum system; the guard coil; and the costs. The report is a condensation of the more comprehensive study which is in the process of being printed

  5. DESIGN AND APPLICATION OF MAGNETIC BEARING SUSPENSION SYSTEM IN A THREE PHASE INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    Osman GÜRDAL

    1998-03-01

    Full Text Available The current popularity of suspension and levitation stems no doubt the possibilities in high-speed ground transportation schemes. Although these are both challenging and exciting, there is considerable scope for application of suspension techniques to achieving frictionless bearing. The requirement in this case is often for close tolerances, low power consumption, small airgaps and ingeneral, compactness. Thus, magnetic suspension using DC electromagnets schemes have received more attention than the other techniques of repulsion levitation. Proposed prototype system consists of a conventional stator and its rotor without iron core, set of electromagnets for suspension of rotor shaft and set of compensation circuits feedbacked by optical-transducers. Prototyped system is aimed as a laboratory demonstration tool so there is no challenging to exceed the speeds of 1500 rev/min that is the speed of motor with mechanical bearings. Magnetic bearing suspension system provides a high impact visual demonstration of many principles in undergraduate educational programs in electrical education, e.g., electromagnetic design, PD controlled compensation of a unstable control system and power amplifier design. The system is capable of giving a good comparison between mechanical and magnetic bearing up to speeds 350 rev/min. Power losses without load show about 15% reduction with magnetic bearing. The noise of the motor is also decreased to a low level.

  6. Magnetic superelevation design of Halbach permanent magnet guideway for high-temperature superconducting maglev

    Science.gov (United States)

    Lei, Wuyang; Qian, Nan; Zheng, Jun; Huang, Huan; Zhang, Ya; Deng, Zigang

    2017-07-01

    To improve the curve negotiating ability of high-temperature superconducting (HTS) maglev system, a special structure of magnetic superelevation for double-pole Halbach permanent magnet guideway (PMG) was designed. The most significant feature of this design is the asymmetrical PMG that forms a slanting magnetic field without affecting the smoothness of the PMG surface. When HTS maglev vehicle runs through curves with magnetic superelevation, the vehicle will slant due to asymmetry in magnetic field and the flux-pinning effect of onboard HTS bulks. At the same time, one component of the levitation force provides a part of the centripetal force that reduces lateral acceleration of the vehicle and thus enhances its curve negotiating ability. Furthermore, the slant angle of magnetic superelevation can be adjusted by changing the materials and the thickness of the added permanent magnets. This magnetic superelevation method, together with orographic uplift, can be applied to different requirements of PMG designs. Besides, the applicability of this method would benefit future development of high-speed HTS maglev system.

  7. Design and optimization of superconducting magnet system for energy storage application

    International Nuclear Information System (INIS)

    Bhunia, Uttam

    2015-01-01

    In view of developing superconducting magnetic energy storage system (SMES) technology that will mitigate voltage sag/dip in the utility line, VEC centre has taken up a leading role in the country. In the first phase a solenoid-type 0.6 MJ SMES system using cryo-stable NbTi superconductor has been designed, developed and tested successfully with resistive load to mitigate power line voltage dips. The cryogenic test results of 0.6 MJ SMES coil will be highlighted. Further, effort is underway to develop a 4.5 MJ/1 MW SMES system with toroidal coil configuration. The lecture will also cover the superconducting coil development for SMES application with special emphasis on design aspects and the optimization issue of the toroidal system using NbTi based Rutherford-type cable. (author)

  8. Cryogenic system for the 45 Tesla hybrid magnet

    International Nuclear Information System (INIS)

    Van Sciver, S.W.; Miller, J.R.; Welton, S.; Schneider-Muntau, H.J.; McIntosh, G.E.

    1994-01-01

    The 45 Tesla hybrid magnet system will consist of a 14 Tesla superconducting outsert magnet and a 31 Tesla water cooled insert. The magnet is planned for operation in early 1995 at the National High Magnetic Field Laboratory. Its purpose is to provide the highest DC magnetic fields for the materials research community. The present paper discusses the overall design of the cryogenic system for the superconducting magnet. Unique features of this system include static 1.8 K pressurized He II as a coolant for the magnet and a refrigerated structural support system for load transfer during fault conditions. The system will consist of two connected cryostats. The magnet is contained within one cryostat which has a clear warm bore of 616 mm and is designed to be free of system interfaces and therefore minimize interference with the magnet user. A second supply cryostat provides the connections to the refrigeration system and magnet power supply. The magnet and supply cryostats are connected to each other through a horizontal services duct section. Issues to be discussed in the present paper include design and thermal analysis of the magnet system during cooldown and in steady state operation and overall cryogenic system design

  9. Design and investigations of the superconducting magnet system for the multipurpose superconducting electron cyclotron resonance ion source.

    Science.gov (United States)

    Tinschert, K; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Komorowski, P; Meyer-Reumers, M; Krischel, D; Fischer, B; Ciavola, G; Gammino, S; Celona, L

    2012-02-01

    The production of intense beams of heavy ions with electron cyclotron resonance ion sources (ECRIS) is an important request at many accelerators. According to the ECR condition and considering semi-empirical scaling laws, it is essential to increase the microwave frequency together with the magnetic flux density of the ECRIS magnet system. A useful frequency of 28 GHz, therefore, requires magnetic flux densities above 2.2 T implying the use of superconducting magnets. A cooperation of European institutions initiated a project to build a multipurpose superconducting ECRIS (MS-ECRIS) in order to achieve an increase of the performances in the order of a factor of ten. After a first design of the superconducting magnet system for the MS-ECRIS, the respective cold testing of the built magnet system reveals a lack of mechanical performance due to the strong interaction of the magnetic field of the three solenoids with the sextupole field and the magnetization of the magnetic iron collar. Comprehensive structural analysis, magnetic field calculations, and calculations of the force pattern confirm thereafter these strong interactions, especially of the iron collar with the solenoidal fields. The investigations on the structural analysis as well as suggestions for a possible mechanical design solution are given.

  10. Design constraints on magnet systems of future tokamaks based on experiences of present s.c. magnet development

    International Nuclear Information System (INIS)

    Heinz, W.; Jeske, U.; Komarek, P.; Krauth, H.

    1983-01-01

    In view of the urgent need for superconductivity in the next generation of big fusion devices and the identified gap between aimed data and the state of the art, impressive development programs are running world-wide, e.g. the IEA-Large Coil Task (LCT) and magnets for near term experiments (T15, Tore Supra). During the development work for all these magnet systems and simultaneously running design studies, especially the INTOR-study, some critical problem areas, e.g. concerning NbTi-conductor design and manufacturing and coil fabrication could be solved, others like the limitations by fatigue stresses for coil case and support structure turned out to be more stringent than anticipated. This paper tries to show which plasma physics parameters place especially severe constraints to magnet design, like PF-pulse number and amplitude at the TF-coils, so that they should be chosen with strongest care. It further points out which technologies under these circumstances are still missing or unproven with respect to the INTOR-like generation of fusion experiments. Further effort is mainly required for fatigue load behaviour of materials and components, high field windings and poloidal field coils. (author)

  11. Designing a magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal...... magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated...... as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other...

  12. Design and test of a novel magnetic lead screw for active suspension system in a vehicle

    DEFF Research Database (Denmark)

    Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand

    2014-01-01

    . Furthermore the Magnetic Lead Screw is introduced and its benefits when used with an active suspension system are discussed. Based on a model of a quarter car, the design specifications for the MLS active suspension system are found, which leads to a design study. The design study investigates the relation...

  13. Progress of magnetic-suspension systems and magnetic bearings in the USSR

    International Nuclear Information System (INIS)

    Kuzin, A.V.

    1992-01-01

    This paper traces the development and progress of magnetic suspension systems and magnetic bearings in the USSR. The paper describes magnetic bearings for turbomachines, magnetic suspension systems for vibration isolation, some special measuring devices, wind tunnels, and other applications. The design, principles of operation, and dynamic characteristics of the system are presented

  14. Design, implementation and control of a magnetic levitation device

    Science.gov (United States)

    Shameli, Ehsan

    Magnetic levitation technology has shown a great deal of promise for micromanipulation tasks. Due to the lack of mechanical contact, magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. These advantages have made magnetic levitation systems a great candidate for clean room applications. In this thesis, a new large gap magnetic levitation system is designed, developed and successfully tested. The system is capable of levitating a 6.5(gr) permanent magnet in 3D space with an air gap of approximately 50(cm) with the traveling range of 20x20x30 mm3. The overall positioning accuracy of the system is 60mum. With the aid of finite elements method, an optimal geometry for the magnetic stator is proposed. Also, an energy optimization approach is utilized in the design of the electromagnets. In order to facilitate the design of various controllers for the system, a mathematical model of the magnetic force experienced by the levitated object is obtained. The dynamic magnetic force model is determined experimentally using frequency response system identification. The response of the system components including the power amplifiers, and position measurement system are also considered in the development of the force model. The force model is then employed in the controller design for the magnetic levitation device. Through a modular approach, the controller design for the 3D positioning system is started with the controller design for the vertical direction, i.e. z, and then followed by the controller design in the horizontal directions, i.e. x and y. For the vertical direction, several controllers such as PID, feed forward and feedback linearization are designed and their performances are compared. Also a control command conditioning method is introduced as a solution to increase the control performance and the results of the proposed controller are compared with the other designs. Experimental results showed that for the magnetic

  15. Optimal design method for magnetization directions of a permanent magnet array

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Seok [Center for Information Storage Device, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Yoo, Jeonghoon, E-mail: yoojh@yonsei.ac.k [School of Mechanical Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2010-08-15

    In many magnetic systems, the permanent magnet (PM) pattern has a great influence on their performance. This study proposes a systematic optimization method for designing discrete magnetization directions. While previous works have been mostly dependent on researchers' intuition, the developed method is systematic and can be applied to a two-dimensional PM-type eddy current brake model. The effectiveness of the method is confirmed, where the design's aim is to maximize the braking force on a moving conductor. The sensitivity analysis is accomplished by the adjoint variable method and the sequential linear programming is used as an optimizer. Several optimization results for various conditions through the proposed design method are compared to each other and the optimal magnet configuration for an eddy current brake is suggested.

  16. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    International Nuclear Information System (INIS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-01-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects

  17. Electrical supply for MFTF-B superconducting magnet system

    International Nuclear Information System (INIS)

    Shimer, D.W.; Owen, E.W.

    1985-01-01

    The MFTF-B magnet system consists of 42 superconducting magnets which must operate continuously for long periods of time. The magnet power supply system is designed to meet the operational requirements of accuracy, flexibility, and reliability. The superconducting magnets require a protection system to protect against critical magnet faults of quench, current lead overtemperature, and overcurrent. The protection system is complex because of the large number of magnets, the strong coupling between magnets, and the high reliability requirement. This paper describes the power circuits and the components used in the design

  18. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  19. Design of a 2-DOF Control and Disturbance Estimator for a Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    A. Pati

    2017-02-01

    Full Text Available This work proposes a systematic two-degree freedom control scheme to improve the reference input tracking and load disturbance rejection for an unstable magnetic levitation system. The proposed control strategy is a two-step design process. Firstly, a proportional derivative controller is introduced purposely to get the desired set-point response of the magnetic levitation system and then, an integral square error (ISE performance specification is used for designing a set-point tracking controller. Secondly, a disturbance estimator is designed using the desired closed loop complimentary sensitivity function for the rejection of load disturbances. This leads to the decoupling of the nominal set-point response from the load disturbance response similar to an open loop control manner. Thus, it is convenient to optimize both controllers simultaneously as well as separately. The effectiveness of the proposed control strategy is validated through simulation.

  20. Enhancement of the efficiency of magnetic targeting for drug delivery: Development and evaluation of magnet system

    International Nuclear Information System (INIS)

    Cao Quanliang; Han Xiaotao; Li Liang

    2011-01-01

    Deep magnetic capture and clinical application are the current trends for magnetic targeted drug delivery system. More promising and possible strategies are needed to overcome the current limitations and further improve the magnetic targeting technique. Recent advances in the development of targeting magnet system show promise in progressing this technology from the laboratory to the clinic. Starting from well-known basic concepts, current limitations of magnetic targeted drug delivery system are analyzed. Meanwhile, the design concepts and evaluations of some effective improvements in magnet system are discussed and reviewed with reference to (i) reasonable design of magnet system; (ii) control modes of magnet system used to generate dynamical magnetic fields; and (iii) magnetic field driving types. - Research Highlights: → The current limitations of MTDDS for deep capture and clinical application are analyzed. → The development of magnet system shows promise in progressing MTDDS to clinical application. → The design concepts and evaluations of improvements in magnet system are reviewed and discussed. → The key to improve magnet system lies in controllable magnets and different excitations.

  1. Design of JT-60SA magnets and associated experimental validations

    International Nuclear Information System (INIS)

    Zani, L.; Barabaschi, P.; Peyrot, M.; Meunier, L.; Tomarchio, V.; Duglue, D.; Decool, P.; Torre, A.; Marechal, J.L.; Della Corte, A.; Di Zenobio, A.; Muzzi, L.; Cucchiaro, A.; Turtu, S.; Ishida, S.; Yoshida, K.; Tsuchiya, K.; Kizu, K.; Murakami, H.

    2011-01-01

    In the framework of the JT-60SA project, aiming at upgrading the present JT-60U tokamak toward a fully superconducting configuration, the detailed design phase led to adopt for the three main magnet systems a brand new design. Europe (EU) is expected to provide to Japan (JA) the totality of the toroidal field (TF) magnet system, while JA will provide both Equilibrium field (EF) and Central Solenoid (CS) systems. All magnet designs were optimized trough the past years and entered in parallel into extensive experimentally-based phases of concept validation, which came to maturation in the years 2009 and 2010. For this, all magnet systems were investigated by mean of dedicated samples, e.g. conductor and joint samples designed, manufactured and tested at full scale in ad hoc facilities either in EU or in JA. The present paper, after an overall description of magnet systems layouts, presents in a general approach the different experimental campaigns dedicated to qualification design and manufacture processes of either coils, conductors and electrical joints. The main results with the associated analyses are shown and the main conclusions presented, especially regarding their contribution to consolidate the triggering of magnet mass production. The status of respective manufacturing stages in EU and in JA are also evoked. (authors)

  2. Design of a dynamic transcranial magnetic stimulation coil system.

    Science.gov (United States)

    Ge, Sheng; Jiang, Ruoli; Wang, Ruimin; Chen, Ji

    2014-08-01

    To study the brain activity at the whole-head range, transcranial magnetic stimulation (TMS) researchers need to investigate brain activity over the whole head at multiple locations. In the past, this has been accomplished with multiple single TMS coils that achieve quasi whole-head array stimulation. However, these designs have low resolution and are difficult to position and control over the skull. In this study, we propose a new dynamic whole-head TMS mesh coil system. This system was constructed using several sagittal and coronal directional wires. Using both simulation and real experimental data, we show that by varying the current direction and strength of each wire, this new coil system can form both circular coils or figure-eight coils that have the same features as traditional TMS coils. Further, our new system is superior to current coil systems because stimulation parameters such as size, type, location, and timing of stimulation can be dynamically controlled within a single experiment.

  3. Modular transportable superconducting magnetic Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lieurance, D.; Kimball, F.; Rix, C. [Martin Marietta Space Magnetics, San Diego, CA (United States)

    1994-12-31

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  4. Modular transportable superconducting magnetic energy systems

    Science.gov (United States)

    Lieurance, Dennis; Kimball, Foster; Rix, Craig

    1995-04-01

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  5. Design principles for prototype and production magnetic measurements of superconducting magnets

    International Nuclear Information System (INIS)

    Brown, B.C.

    1989-02-01

    The magnetic field strength and shape for SSC superconducting magnets will determine critical properties of the accelerator systems. This paper will enumerate the relations between magnetic field properties and magnet material selection and assembly techniques. Magnitudes of various field errors will be explored along with operating parameters which can affect them. Magnetic field quality requirements will be compared to available measuring techniques and the relation between magnetic field measurements and other quality control efforts will be discussed. This will provide a framework for designing a complete magnet measurement plan for the SSC project. 17 refs., 1 fig., 5 tabs

  6. Design of spoke type motor and magnetizer for improving efficiency based rare-earth-free permanent-magnet motor

    Science.gov (United States)

    Kim, Young Hyun; Cheon, Byung Chul; Lee, Jung Ho

    2018-05-01

    This study proposes criteria for both optimal-shape and magnetizer-system designs to be used for a high-output spoke-type motor. The study also examines methods of reducing high-cogging torque and torque ripple, to prevent noise and vibration. The optimal design of the stator and rotor can be enhanced using both a response surface method and finite element method. In addition, a magnetizer system is optimally designed for the magnetization of permanent magnets for use in the motor. Finally, this study verifies that the proposed motor can efficiently replace interior permanent magnet synchronous motor in many industries.

  7. Design of spoke type motor and magnetizer for improving efficiency based rare-earth-free permanent-magnet motor

    Directory of Open Access Journals (Sweden)

    Young Hyun Kim

    2018-05-01

    Full Text Available This study proposes criteria for both optimal-shape and magnetizer-system designs to be used for a high-output spoke-type motor. The study also examines methods of reducing high-cogging torque and torque ripple, to prevent noise and vibration. The optimal design of the stator and rotor can be enhanced using both a response surface method and finite element method. In addition, a magnetizer system is optimally designed for the magnetization of permanent magnets for use in the motor. Finally, this study verifies that the proposed motor can efficiently replace interior permanent magnet synchronous motor in many industries.

  8. Magnetic Coordinate Systems

    Science.gov (United States)

    Laundal, K. M.; Richmond, A. D.

    2017-03-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

  9. Kicker magnet design

    International Nuclear Information System (INIS)

    Li, Z.; Thiessen, H.A.

    1989-01-01

    In this paper, the kicker magnet is studied by use of the program POISSON. For using the dc-code POISSON in the ac problem of the kicker magnet, an approximation of the ac effects is made, this simplifying the ac problem into a dc problem. The study of the magnet is taken in two steps: assuming the γ of the ferrite material is fixed in the calculation to get a preliminary design of the magnet; using the real B /minus/ H curve of the CMD5005 ferrite material in the calculation to get the final design of the magnet. The stored energy, the excitation curve and the excitation efficiency of the kicker magnet are also discussed. 10 figs., 7 tabs

  10. Design of integral magnetic field sensor

    International Nuclear Information System (INIS)

    Ma Liang; Cheng Yinhui; Wu Wei; Li Baozhong; Zhou Hui; Li Jinxi; Zhu Meng

    2010-01-01

    Magnetic field is one of the important physical parameters in the measuring process of pulsed EMP. We researched on anti-interference and high-sensitivity measurement technique of magnetic field in this report. Semi rigid cables were to bent into ringed antenna so that the antenna was shielded from electric-field interference and had little inductance; In order to have high sensitivity, operational transconductance amplifier was used to produce an active integrator; We designed an optical-electronic transferring module to upgrade anti-interference capability of the magnetic-field measurement system. A measurement system of magnetic field was accomplished. The measurement system was composed of antenna, integrator, and optical-electric transferring module and so on. We calibrated the measurement system in coaxial TEM cell. It indicates that, the measurement system's respondence of rise time is up to 2.5 ns, and output width at 90%-maximum of the pulse is wider than 200 ns. (authors)

  11. Designing of superconducting magnet for clinical MRI

    International Nuclear Information System (INIS)

    Kar, Soumen; Choudhury, A.; Sharma, R.G.; Datta, T.S.

    2015-01-01

    Superconducting technology of Magnetic Resonance Imaging (MRI) scanner is closely guarded technology as it has huge commercial application for clinical diagnostics. This is a rapidly evolving technology which requires innovative design of magnetic and cryogenic system. A project on the indigenous development of 1.5 T (B_0) MRI scanner has been initiated by SAMEER, Mumbai funded by DeitY, Gov. of India. IUAC is the collaborating institute for designing and developing the superconducting magnets and the cryostat for 1.5 T MRI scanner. The superconducting magnet is heart of the present day MRI system. The performance of the magnet has the highest impact on the overall image quality of the scanner. The stringent requirement of the spatial homogeneity (few parts per million within 50 cm diametrical spherical volume), the temporal stability (0.1 ppm/hr.) of the superconducting magnet and the safety standard (5 G in 5 m x 3 m ellipsoidal space) makes the designing of the superconducting magnet more complex. MRI consists of set of main coils and shielding coils. The large ratio between the diameter and the winding length of each coil makes the B_p_e_a_k/B_0 ratio much higher, which makes complexity in selecting the load line of the magnet. Superconducting magnets will be made of NbTi wire-in-channel (WIC) conductor with high copper to superconducting (NbTi) ratio. Multi-coil configuration on multi-bobbin architecture is though is cost effective but poses complexity in the mechanical integration to achieve desired homogeneity. Some of the major sources of inhomogeneities, in a multi-bobbin configuration, are the imperfect axial positioning and angular shift. We have simulated several factors which causes the homogeneity in six (main) coils configuration for a 1.5 T MRI magnet. Differential thermal shrinkage between the bobbin and superconducting winding is also a major source of inhomogeneity in a MRI magnet. This paper briefly present the different designing aspects of the

  12. Elmo Bumpy Torus proof of principle. Phase II. Title 1 report. Volume III. Magnet system. Preliminary design report

    International Nuclear Information System (INIS)

    Ackerman, S.

    1982-01-01

    During Title I, General Dynamics' principal role as a subcontractor to the McDonnell Douglas Astronautics Company (MDAC) is to assist in the further development of a low-cost superconducting magnet mirror coil system for the EBT-P program consistent with long life and dependable operation. The activity can best be defined as an extension of ORNL's previous development program with further joint ORNL/MDAC/GDC refining of the mirror coil components. MDAC/GDC participation for the entire program can be subdivided into four distinct elements as follows: (1) design, development, and fabrication of two dewar subassemblies to enclose the ORNL developed and fabricated cold mass assemblies; (2) design, development, and fabrication of a production prototype magnet system including conductor (procurement), cold mass components, dewar and x-ray shield. This prototype would form the basis for the production of 36 magnets for the torus and three spares. (3) design, development, and fabrication of an electrical/electronic system including quench protection, instrumentation and control, and power supply to power and protect the mirror coil system during its operation in the torus; (4) fabrication of the 39 production magnets

  13. Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements : Technical Summary

    Science.gov (United States)

    2017-12-01

    This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...

  14. Mechanical design of ISABELLE magnet cryostats

    International Nuclear Information System (INIS)

    Kassner, D.

    1977-01-01

    It has been proposed to construct an intersecting storage ring accelerator, ISABELLE, at BNL, consisting of two concentric rings of magnets containing counter-rotating beams of charged particles. Each ring contains 216 dipole magnets and 138 quadrupoles. All magnets are superconducting and operate at a temperature of 4.3 K. A description of the design of the cryostats, including the internal supports, heat shield superinsulation system and the vacuum vessel is given. Details of fabrication techniques are also included

  15. 1-GWh diurnal load-leveling Superconducting Magnetic Energy Storage system reference design

    International Nuclear Information System (INIS)

    Rogers, J.D.; Hassenzahl, W.V.; Schermer, R.I.

    1979-09-01

    A point reference design has been completed for a 1-GWh Superconducting Magnetic Energy Storage system. The system is for electric utility diurnal load-leveling but can also function to meet much faster power demands including dynamic stabilization. This study explores several concepts of design not previously considered in the same detail as treated here. Because the study is for a point design, optimization in all respects is not complete. This report examines aspects of the coil, the superconductor supported off of the dewar shell, the dewar shell, and its configuration and stresses, the underground excavation and construction for holding the superconducting coil and its dewar, the helium refrigeration system, the electrical converter system, the vacuum system, the guard coil, and the costs. This report is divided into two major portions. The first is a general treatment of the work and the second is seven detailed technical appendices issued as separate reports. The information presented on the aluminum stabilizer for the conductor, on the excavation, and on the converter is based upon industrial studies contracted for this work

  16. Second generation superconducting super collider dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The SSC Magnet Development Program is developing accelerator dipole magnets in successive iterations. The initial iteration is complete with six full length model magnets and a thermal model having been built and tested. This initial experience along with the evolving SSC Magnet System Requirements have resulted in the second generation magnet cryostat design. It is this configuration that will be employed for the near term ongoing magnetic, thermal, string and accelerated life testing and will be the design considered for Phase I; i.e., Technology Orientation, of the SSC Magnet Industrialization Program. 5 refs., 7 figs., 1 tab

  17. TMX magnet system, present and future

    International Nuclear Information System (INIS)

    Wong, R.L.; Pedrotti, L.R.; Leavitt, G.A.; Waugh, A.F.; Chargin, A.K.; Calderon, M.O.

    1979-01-01

    The magnetic field design and the mechanical design of the TMX magnet system were previously reported by Chen and Hinkle. This paper is a summary of the work that has been accomplished in the two years since then

  18. Design and fabrication of the superconducting-magnet system for the Mirror Fusion Test Facility (MFTF-B)

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Kozman, T.A.

    1982-01-01

    The superconducting magnet system for the Mirror Fusion Test Facility (MFTF-B) consists of 24 magnets; i.e. two pairs of C-shaped Yin-Yang coils, four C-shaped transition coils, four solenoidal axicell coils, and a 12-solenoid central cell. General Dynamics Convair Division has designed all the coils and is responsible for fabricating 20 coils. The two Yin-Yang pairs (four coils) are being fabricated by the Lawrence Livermore National Laboratory. Since MFTF-B is not a magnet development program, but rather a major physics experiment critical to the mirror fusion program, the basic philosophy has been to use proven materials and analytical techniques wherever possible. The transition and axicell coils are currently being analyzed and designed, while fabrication is under way on the solenoid magnets

  19. Magnet system for a thermal barrier Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Kim, N.S.; Conn, R.W.

    1981-01-01

    The magnet system for a thermal barrier D-D tandem mirror reactor has been studied as part of the UCLA tandem mirror reactor design study SATYR. Three main considerations in designing the SATYR magnet system are to obtain the desired field strength variation throughout the system, to have proper space for plasma and neutron shielding, and to satisfy the MHD stability to achieve maximum central cell /beta/. Due to the importance and the complexity, the 'internal' field reversal magnet is the main concern in the entire magnet system for SATYR. Two different magnet designs, a non-uniform current density solenoid and a higher-order solenoid, are discussed. Coil levitation for the internal field reversal magnet has been analyzed

  20. Effects from magnetic boundary conditions in superconducting-magnetic proximity systems

    Directory of Open Access Journals (Sweden)

    Thomas E. Baker

    2016-05-01

    Full Text Available A superconductor-magnetic proximity system displays singlet-triplet pair correlations in the magnetization as a function of inhomogeneities of the magnetic profile. We discuss how the magnetic boundary conditions affects differently the curvature and winding number of rotating magnetizations in the three commonly used structures to generate long range triplet components: an exchange spring, a helical structure and a misaligned magnetic multilayer. We conclude that the choice of the system is dictated by the goal one wishes to achieve in designing a spintronic device but note that only the exchange spring presently offers an experimentally realizable magnetic profile that is tunable.

  1. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, A., E-mail: Atefeh.Fathi115@gmail.com [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Feghhi, S.A.H.; Sadati, S.M. [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Ebrahimibasabi, E. [Department of Physics, Shahrood University of Technology, 3619995161, Shahrood (Iran, Islamic Republic of)

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  2. Models for large superconducting toroidal magnet systems

    International Nuclear Information System (INIS)

    Arendt, F.; Brechna, H.; Erb, J.; Komarek, P.; Krauth, H.; Maurer, W.

    1976-01-01

    Prior to the design of large GJ toroidal magnet systems it is appropriate to procure small scale models, which can simulate their pertinent properties and allow to investigate their relevant phenomena. The important feature of the model is to show under which circumstances the system performance can be extrapolated to large magnets. Based on parameters such as the maximum magnetic field and the current density, the maximum tolerable magneto-mechanical stresses, a simple method of designing model magnets is presented. It is shown how pertinent design parameters are changed when the toroidal dimensions are altered. In addition some conductor cost estimations are given based on reactor power output and wall loading

  3. Lightning magnetic field measuring system in Bogota

    OpenAIRE

    Escobar Alvarado, Oscar Fernardo

    2013-01-01

    This thesis presents the configuration and performance of a lightning radiated electromagnetic field measuring system in Bogotá Colombia. The system is composed by both magnetic and electric field measuring systems working as separated sensors. The aim of the thesis is the design and construction of a Magnetic Field Measuring System and the implementation of a whole lightning measuring system in Bogotá. The theoretical background, design process, construction and implementation of the system ...

  4. TWO DIMENTIONAL STATIC MAGNETIC ANALYSIS OF RADIAL MAGNETIC BEARING SYSTEMS WITH DIFFERENT STRUCTURES

    Directory of Open Access Journals (Sweden)

    Yusuf ÖNER

    2005-03-01

    Full Text Available The friction loss of electrical machines is an important problem as like in other rotary machines. In addition, the bearings, where the friction losses occur, also require lubrication at periodic intervals and need to be maintained. In this study, to minimize the friction loss of electrical motor, two dimentional static magnetic analysis of radial magnetic bearing systems with different structures are performed and compared with each other; also, magnetic bearing system with four-pole is realized and applied to an induction motor. In simulation, the forces applied to the rotor of induction motor from designed magnetic bearing system are calculated in a computer by using FEMM software package. In application, when comparing designed magnetic bearing system with mechanical bearings up to the revolution of 350 rpm, it was observed that the loss of no-load operating condition of induction motor is decreased about 15 % with magnetic bearing system. In addition to this, mechanical noisy of the motor is also decreased considerably.

  5. Conceptual design of a commercial tokamak reactor using resistive magnets

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-01-01

    The future of the tokamak approach to controlled thermonuclear fusion depends in part on its potential as a commercial electricity-producing device. This potential is continually being evaluated in the fusion community using parametric, system, and conceptual studies of various approaches to improving tokamak reactor design. The potential of tokamaks using resistive magnets as commercial electricity-producing reactors is explored. Parametric studies have been performed to examine the major trade-offs of the system and to identify the most promising configurations for a tokamak using resistive magnets. In addition, a number of engineering issues have been examined including magnet design, blanket/first-wall design, and maintenance. The study indicates that attractive design space does exist and presents a conceptual design for the Resistive Magnet Commercial Tokamak Reactor (RCTR). No issue has been identified, including recirculating power, that would make the overall cost of electricity of RCTR significantly different from that of a comparably sized superconducting tokamak. However, RCTR may have reliability and maintenance advantages over commercial superconducting magnet devices

  6. Attractive and repulsive magnetic suspension systems overview

    Science.gov (United States)

    Cope, David B.; Fontana, Richard R.

    1992-01-01

    Magnetic suspension systems can be used in a wide variety of applications. The decision of whether to use an attractive or repulsive suspension system for a particular application is a fundamental one which must be made during the design process. As an aid to the designer, we compare and contrast attractive and repulsive magnetic suspension systems and indicate whether and under what conditions one or the other system is preferred.

  7. Structural support system for a superconducting magnet coil

    International Nuclear Information System (INIS)

    Meuser, R.B.

    1977-01-01

    The purpose of the ESCAR (Experimental Superconducting Accelerator Ring) project, now under way at the Lawrence Berkeley Laboratory, is to gather data and experience in the design and operation of a relatively small synchrotron employing superconducting magnets. Such data are essential to ensure that the design of future large accelerators may proceed in a knowledgeable and responsible manner. One of the many engineering problems associated with a superconducting magnet is the design of the coil suspension system. The coil, maintained at the temperature of liquid helium, must be held rigidly by a structure that does not conduct too much heat into the liquid helium system. The suspension system used on the ESCAR magnets is described. Topics covered include the coil support system requirements, ESCAR magnet support system, and operating experience

  8. A magnet system for HEP experiments

    CERN Document Server

    Gaddi, A

    2012-01-01

    This chapter describes the sequence of steps that lead to the design of a magnet system for modern HEP detectors. We start looking to the main types of magnets used in HEP experiments, along with some basic formulae to set the main parameters, such as ampere-turns, impedance and stored energy. A section is dedicated to the description of the iron yoke, with emphasis on magnet-detector integration and assembly, steel characteristics, stray field issues and alternative design. In the second part of the chapter we start looking at a brief history of superconducting magnets and a comparison between warm and superconducting ones. Following that, we describe the commonly used superconducting cables, the conductor design and technology and the winding techniques. A section of the chapter is dedicated to the cryogenic design, vacuum insulation and other ancillary systems. We also describe the power circuit, with the power supply unit, the current leads, the current measurement devices and other instruments and safety...

  9. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  10. The design of photoelectric signal processing system for a nuclear magnetic resonance gyroscope based on FPGA

    Science.gov (United States)

    Zhang, Xian; Zhou, Binquan; Li, Hong; Zhao, Xinghua; Mu, Weiwei; Wu, Wenfeng

    2017-10-01

    Navigation technology is crucial to the national defense and military, which can realize the measurement of orientation, positioning, attitude and speed for moving object. Inertial navigation is not only autonomous, real-time, continuous, hidden, undisturbed but also no time-limited and environment-limited. The gyroscope is the core component of the inertial navigation system, whose precision and size are the bottleneck of the performance. However, nuclear magnetic resonance gyroscope is characteristic of the advantage of high precision and small size. Nuclear magnetic resonance gyroscope can meet the urgent needs of high-tech weapons and equipment development of new generation. This paper mainly designs a set of photoelectric signal processing system for nuclear magnetic resonance gyroscope based on FPGA, which process and control the information of detecting laser .The photoelectric signal with high frequency carrier is demodulated by in-phase and quadrature demodulation method. Finally, the processing system of photoelectric signal can compensate the residual magnetism of the shielding barrel and provide the information of nuclear magnetic resonance gyroscope angular velocity.

  11. Application of the BRF system to some superconducting magnet design problems

    International Nuclear Information System (INIS)

    Meuser, R.B.

    1974-01-01

    The Berkeley Remote Facility (BRF) system--affected through a system of teletype terminals linked to the LBL computers--was used to solve a large number of magnetic-field problems associated with the design and analysis of superconducting beam-transport magnets. The limitations of the BRF system are severe: total storage, 1000; 10 subscripted variables; no integer or complex arithmetic; no function or subroutine subprograms except those in its Spartan library; and a pidgin Fortran language. However, for fully 90 percent of the computational work, the low IQ of the BRF was more than counter-balanced by its being on-line. The magnets built have a long cylindrical aperture surrounded by arrays of longitudinal superconducting wires and iron arranged to produce a transverse field of prescribed shape, uniform fields for bending high energy charged particle beams, and quarupole fields for focusing. The field in the aperture is expressed, usually, in terms of the coefficients of the Taylor's expansion--the ''multipole coefficients''. Point values of the field vector are also of interest, especially within the windings, as the magnitude of the field determines the allowable current. Many small programs were developed to analyze both the two- and three-dimensional fields produced by various kinds of arrays of conductors. Some programs have the ability to vary a number of geometric parameters automatically in such a way as to drive the same number of multipole coefficients to zero. The on-line feature is especially handy, as such iterative calculations must often be cajoled into convergence. (U.S.)

  12. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  13. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms.

    Science.gov (United States)

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-21

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  14. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms

    International Nuclear Information System (INIS)

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-01-01

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards. (paper)

  15. Topology optimization for design of segmented permanent magnet arrays with ferromagnetic materials

    Science.gov (United States)

    Lee, Jaewook; Yoon, Minho; Nomura, Tsuyoshi; Dede, Ercan M.

    2018-03-01

    This paper presents multi-material topology optimization for the co-design of permanent magnet segments and iron material. Specifically, a co-design methodology is proposed to find an optimal border of permanent magnet segments, a pattern of magnetization directions, and an iron shape. A material interpolation scheme is proposed for material property representation among air, permanent magnet, and iron materials. In this scheme, the permanent magnet strength and permeability are controlled by density design variables, and permanent magnet magnetization directions are controlled by angle design variables. In addition, a scheme to penalize intermediate magnetization direction is proposed to achieve segmented permanent magnet arrays with discrete magnetization directions. In this scheme, permanent magnet strength is controlled depending on magnetization direction, and consequently the final permanent magnet design converges into permanent magnet segments having target discrete directions. To validate the effectiveness of the proposed approach, three design examples are provided. The examples include the design of a dipole Halbach cylinder, magnetic system with arbitrarily-shaped cavity, and multi-objective problem resembling a magnetic refrigeration device.

  16. Design of a Compact Dump Resistor System for LCD Magnet

    CERN Document Server

    Gaddi, A

    2010-01-01

    In this technical note we suggest a possible solution for the choice of the detector magnet dump resistor. The push-pull scenario for Linear Collider Detectors imposes new solutions for magnet powering and protection lines, else than what developed for LHC detectors. The magnet dump resistor is the protecting equipment that has the function of extracting a significant amount of magnetic stored energy, from the coil winding to a dump. The LCD magnet has to move with the experiment from the garage to the beam position, so it has to be compact and reliable at the same time. We make here a proposal for a passive water-cooled dumper, we calculate the minimum amount of water required, the resistor hot-spot temperature, the overall mechanical design. The electrical part is not covered by this note, as it can be assumed that the solutions adopted by LHC detector magnets, in terms of quench instrumentation, energy extraction and maximum voltage, are not significantly affected by the push-pull scenario.

  17. Analysis and design of permanent magnet biased magnetic bearing based on hybrid factor

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2016-03-01

    Full Text Available In this article, hybrid factor is proposed for hybrid magnetic bearing. The hybrid factor is defined as the ratio of the force produced by the permanent magnet and the forces produced by the permanent magnet and current in hybrid magnetic bearing. It is deduced from a certain radial hybrid magnetic bearing using its important parameters such as the current stiffness and displacement stiffness at first and then the dynamic model of magnetically suspended rotor system is established. The relationship between structural parameters and control system parameters is analyzed based on the hybrid factor. Some influencing factors of hybrid factor in hybrid magnetic bearing, such as the size of the permanent magnet, length of air gap, and area of the stator poles, are analyzed in this article. It can be concluded that larger hybrid factor can be caused by the smaller power loss according to the definition of hybrid factor mentioned above. Meanwhile, the hybrid factor has a maximum value, which is related to control system parameters such as proportional factor expect for structural parameters. Finally, the design steps of parameters of hybrid magnetic bearing can be concluded.

  18. TID and I-TD controller design for magnetic levitation system using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Debdoot Sain

    2016-09-01

    Full Text Available This article is about the design of controllers for magnetic levitation (Maglev system in both simulation and real time. Local linearization around the equilibrium point has been done for the nonlinear Maglev system to obtain a linearized model transfer function. In this study, the design of integral-tilted-derivative (I-TD controller has been proposed for the Maglev system and its performance is compared with conventional tilted-integral-derivative (TID controller. In this study, TID controller parameters have been optimized through genetic algorithm (GA and those set of values have been employed for the design of I-TD controller. A performance comparison between TID and I-TD controller is then investigated. The analysis shows the superiority of I-TD controller over TID controller in terms of maximum overshoot, gain margin and phase margin. The settling time remains almost same in both the cases. In future, a detailed study of robustness in presence of model uncertainties will be incorporated as a scope of further research.

  19. Magnetic shielding structure optimization design for wireless power transmission coil

    Science.gov (United States)

    Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui

    2017-09-01

    In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.

  20. CSNS magnet system and prototypes fabrication

    International Nuclear Information System (INIS)

    Deng Changdong; Chen Fusan; Sun Xianjing; Chen Wan; Sun Yaolin; Shi Caitu

    2008-01-01

    The 1.6 GeV synchrotron of China Spallation Neutron Source (CSNS) project is a Rapid Cycling Synchrotron (RCS), which accelerates a high-intensity proton beam from 80 MeV to 1.6 GeV at a repetition rate of 25 Hz. The RCS magnet system consists of 24 dipole magnets (main dipoles), 48 quadrupole magnets (main quadrupoles), 16 sextupole magnets, some tune shift quadrupoles and corrector magnets. All the magnets are of large aperture for a high beam power of 0.1 MW, one design issue is the fringe field at pole end. And the main dipoles and main quadrupoles work at 25 Hz repetition rate, the eddy current is an additional issue. In this paper the magnet design of the two kinds of main magnets will be described. (authors)

  1. Structural performance of the first SSC [Superconducting Super Collider] Design B dipole magnet

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs

  2. Some conceptual designs for a LASSY spectrometer magnet

    International Nuclear Information System (INIS)

    Green, M.A.

    1995-09-01

    The LASSY spectrometer is a gas filled spectrometer (hydrogen or helium at a pressure of about 1 torr). The design bending power for the primary bending magnet for the spectrometer will have an induction bend radius product of 2.5 tesla-meters. In order to increase the acceptance of the spectrometer, the bending magnet system must be located close to the target where the desired nuclei are created. The spectrometer magnet system must consist of both bending and focusing elements so that the wide acceptance of particles can be brought to a focus at the analysis point that is down stream from the last magnet element. In order improve the spectrometer resolution and to catch the shortest lived nuclei, the length of the magnet system must be as short as possible. The length for the LASSY spectrometer magnet system from the target to the analysis point has been set at 2.5 meters or less. To improve the resolution of the spectrometer, the bending angle for bending magnet system must be increased to close to 180 degrees. In order to achieve a large bending angle and a short magnet system length, the bending induction must be above 3 tesla and the focusing elements must be combined with the bending elements. As a result, a LASSY spectrometer will have bending magnet with a bending angle from 140 to 170 degrees. This magnet win be combined with one or more focusing magnets (a straight dipole in some places and a combined function dipole in other places). The result is a single superconducting bending magnet with one or more quadrupoles incorporated within the large angle bending magnet

  3. Bond graph modeling and LQG/LTR controller design of magnetically levitation systems

    International Nuclear Information System (INIS)

    Kim, Jong Shik; Park, Jeon Soo

    1991-01-01

    A logical and systematic procedure to derive a mathematical model for magnetically levitation (MAGLEV) systems with a combined lift and guidance is developed by using bond graph modeling techniques. First, bond graph is contructed for the 1 st -dimensional MAGLEV system in which three subsystems (energy feeding, track and vehicle) are considered. And, the 2 nd -dimensional MAGLEV system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond graph languages. Finally, the LQG/LTR control system is designed for a multivariable MAGLEV system with stagger configuration type. In this paper, it has been shown that the bond graph is an excellent effective method for modeling multi-energy domain systems such as MAGLEV systems with uncertainties such as mass variations, track irregularities and wind gusts. (Author)

  4. Bond graph modeling and LQG/LTR controller design of magnetically levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Shik; Park, Jeon Soo [Busan National Univ. (Korea, Republic of)

    1991-09-01

    A logical and systematic procedure to derive a mathematical model for magnetically levitation (MAGLEV) systems with a combined lift and guidance is developed by using bond graph modeling techniques. First, bond graph is contructed for the 1{sup st}-dimensional MAGLEV system in which three subsystems (energy feeding, track and vehicle) are considered. And, the 2{sup nd}-dimensional MAGLEV system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond graph languages. Finally, the LQG/LTR control system is designed for a multivariable MAGLEV system with stagger configuration type. In this paper, it has been shown that the bond graph is an excellent effective method for modeling multi-energy domain systems such as MAGLEV systems with uncertainties such as mass variations, track irregularities and wind gusts. (Author).

  5. Applied CATIA Secondary Development to Parametric Design of Active Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2016-01-01

    Full Text Available Based on the properties of active magnetic bearing, the electromagnetic parameters and structure parameters are analyzed, parametric design method is introduced to study the structure of active magnetic bearing. Through a program personalization process that is in accordance with active magnetic bearing is established. Personalization process aims to build the parametric model of active magnetic bearings and component library by use of CATIA secondary development. Component library is to build assembly model for a multiple degree of freedom magnetic bearing system. Parametric design is a method that provides the direction for its structural design.

  6. Design considerations for superconducting magnets as a maglev pad

    International Nuclear Information System (INIS)

    Ichikawa, H.; Ogiwara, H.

    1974-01-01

    The design and construction of a thin superconducting magnet for a magnetically suspended high-speed train are explained. The superconducting magnet, which is to be used in a null-flux maglev train system, is called a 'wing-type' superconducting magnet because of its geometry. The wing-type superconducting magnet is about 1.5m long and weighs about 500kg, but its heat loss is within 1W, which is very small compared with that of conventional superconducting magnets. (author)

  7. Proceedings of Pulsed Magnet Design and Measurement Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Shaftan, T.; Heese, R.; Ozaki,S.

    2010-01-19

    The goals of the Workshop are to assess the design of pulsed system at the NSLS-II and establish mitigation strategies for critical issues during development. The focus of the Workshop is on resolving questions related to the set-up of the pulsed magnet laboratory, on measuring the pulsed magnet's current waveforms and fields, and on achieving tight tolerances on the magnet's alignment and field quality.

  8. Magnetic Barkhausen Noise Measurements Using Tetrapole Probe Designs

    Science.gov (United States)

    McNairnay, Paul

    A magnetic Barkhausen noise (MBN) testing system was developed for Defence Research and Development Canada (DRDC) to perform MBN measurements on the Royal Canadian Navy's Victoria class submarine hulls that can be correlated with material properties, including residual stress. The DRDC system was based on the design of a MBN system developed by Steven White at Queen's University, which was capable of performing rapid angular dependent measurements through the implementation of a flux controlled tetrapole probe. In tetrapole probe designs, the magnetic excitation field is rotated in the surface plane of the sample under the assumption of linear superposition of two orthogonal magnetic fields. During the course of this work, however, the validity of flux superposition in ferromagnetic materials, for the purpose of measuring MBN, was brought into question. Consequently, a study of MBN anisotropy using tetrapole probes was performed. Results indicate that MBN anisotropy measured under flux superposition does not simulate MBN anisotropy data obtained through manual rotation of a single dipole excitation field. It is inferred that MBN anisotropy data obtained with tetrapole probes is the result of the magnetic domain structure's response to an orthogonal magnetization condition and not necessarily to any bulk superposition magnetization in the sample. A qualitative model for the domain configuration under two orthogonal magnetic fields is proposed to describe the results. An empirically derived fitting equation, that describes tetrapole MBN anisotropy data, is presented. The equation describes results in terms of two largely independent orthogonal fields, and includes interaction terms arising due to competing orthogonally magnetized domain structures and interactions with the sample's magnetic easy axis. The equation is used to fit results obtained from a number of samples and tetrapole orientations and in each case correctly identifies the samples' magnetic easy axis.

  9. Introduction to magnetic fusion reactor design

    International Nuclear Information System (INIS)

    Watanabe, Kenji

    1988-01-01

    Trend of the tokamak reactor design works so far carried out is reviewed, and method of conceptual design for commercial fusion reactor is critically considered concerning the black-box conpepts. System-framework of the engineering of magnetic fusion (commercial) reactor design is proposed as four steps. Based on it the next design studies are recommended in parallel approaches for making real-overcome of reactor material problem, from the view point of technological realization and not from the economical one. Real trials are involved. (author)

  10. Design Optimization and Site Matching of Direct-Drive Permanent Magnet Wind Generator Systems

    DEFF Research Database (Denmark)

    Li, H.; Chen, Zhe

    2009-01-01

    This paper investigates the possible site matching of the direct-drive wind turbine concepts based on the electromagnetic design optimization of permanent magnet (PM) generator systems. Firstly, the analytical models of a three-phase radial-flux PM generator with a back-to-back power converter...... of the maximum wind energy capture, the rotor diameter and the rated wind speed of a direct-drive wind turbine with the optimum PM generator are determined. The annual energy output (AEO) is also presented using the Weibull density function. Finally, the maximum AEO per cost (AEOPC) of the optimized wind...... are presented. The optimum design models of direct-drive PM wind generation system are developed with an improved genetic algorithm, and a 500-kW direct-drive PM generator for the minimal generator active material cost is compared to demonstrate the effectiveness of the design optimization. Forty-five PM...

  11. MFTF-α+T end plug magnet design

    International Nuclear Information System (INIS)

    Srivastava, V.C.; O'Toole, J.A.

    1983-01-01

    The conceptual design of the end-plug magnets for MFTF-α+T is described. MFTF-α+ T is a near-term upgrade of MFTF-B, which features new end plugs to improve performance. The Fusion Engineering Design Center has performed the engineering design of MFTF-α+T under the overall direction of Lawrence Livermore National Laboratory. Each end plug consists of two Yin-Yang pairs, each with approx.2.5:1 mirror ratio and approx.5-T peak field on axis; two transition coils; and a recircularizing solenoid. This paper describes the end-plug magnet system functional requirements and presents a conceptual design that meets them. The peak field at the windings of the end-plug coils is approx.6-T. These coils are designed using the NbTi MFTF-B conductor and cooled by a 4.2K liquid helium bath. All the end-plug magnets are designed to operate in the cryostable mode with adequate quench protection for safety. Shielding requirements are stated and a summary of heat loads is provided. Field and force calculations are discussed. The field on axis is shown to meet the functional requirements. Force resultants are reported in terms of winding running loads and resultant coil forces are also given. The magnet structural support is described. A trade study to determine the optimum end-cell coil internal nuclear shield thickness and the resulting coil size based on minimizing the end-cell life cycle cost is summarized

  12. Magnetic nanofluids and magnetic composite fluids in rotating seal systems

    International Nuclear Information System (INIS)

    Borbath, T; Borbath, I; Boros, T; Bica, D; Vekas, L; Potencz, I

    2010-01-01

    Recent results are presented concerning the development of magnetofluidic leakage-free rotating seals for vacuum and high pressure gases, evidencing significant advantages compared to mechanical seals. The micro-pilot scale production of various types of magnetizable sealing fluids is shortly reviewed, in particular the main steps of the chemical synthesis of magnetic nanofluids and magnetic composite fluids with light hydrocarbon, mineral oil and synthetic oil carrier liquids. The behavior of different types of magnetizable fluids in the rotating sealing systems is analyzed. Design concepts, some constructive details and testing procedures of magnetofluidic rotating seals are presented such as the testing equipment. The main characteristics of several magnetofluidic sealing systems and their applications will be presented: vacuum deposition systems and liquefied gas pumps applications, mechanical and magnetic nanofluid combined seals, gas valves up to 40 bar equipped by rotating seal with magnetic nanofluids and magnetic composite fluids.

  13. Design of a Mathematical Unit in FPGA for the Implementation of the Control of a Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    Juan José Raygoza-Panduro

    2008-01-01

    Full Text Available This paper presents the design and implementation of an automatically generated mathematical unit, from a program developed in Java that describes the VHDL circuit, ready to be synthesized with the Xilinx ISE tool. The core contains diverse complex operations such as mathematical functions including sine and cosine, among others. The proposed unit is used to synthesize a sliding mode controller for a magnetic levitation system. This kind of systems is used in industrial applications requiring high level of mathematical calculations in small time periods. The core is designed to calculate trigonometric and arithmetic operations in such a way that each function is performed in a clock cycle. In this paper, the results of the mathematical core are shown in terms of implementation, utilization, and application to control a magnetic levitation system.

  14. Permanent Magnet Dipole for DIRAC Design Report

    CERN Document Server

    Vorozhtsov, Alexey

    2012-01-01

    Two dipole magnets including one spare unit are needed for the for the DIRAC experiment. The proposed design is a permanent magnet dipole. The design based on Sm2Co17 blocks assembled together with soft ferromagnetic pole tips. The magnet provides integrated field strength of 24.6 10-3 T×m inside the aperture of 60 mm. This Design Report summarizes the main magnetic and mechanic design parameters of the permanent dipole magnets.

  15. The superconducting magnet system for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Lang, D.D.; Bulmer, R.J.; Chaplin, M.R.; O'Connor, T.G.; Slack, D.S.; Wong, R.L.; Zbasnik, J.P.; Schultz, J.H.; Diatchenko, N.; Montgomery, D.B.

    1994-01-01

    The superconducting magnet system for the Tokamak Physics eXperiment (TPX) will be the first all superconducting magnet system for a Tokamak, where the poloidal field coils, in addition to the toroidal field coils are superconducting. The magnet system is designed to operate in a steady state mode, and to initiate the plasma discharge ohmically. The toroidal field system provides a peak field of 4.0 Tesla on the plasma axis at a plasma major radius of 2.25 m. The peak field on the niobium 3-tin, cable-in-conduit (CIC) conductor is 8.4 Tesla for the 16 toroidal field coils. The toroidal field coils must absorb approximately 5 kW due to nuclear heating, eddy currents, and other sources. The poloidal field system provides a total of 18 volt seconds to initiate the plasma and drive a plasma current up to 2 MA. The poloidal field system consists of 14 individual coils which are arranged symmetrically above and below the horizontal mid plane. Four pairs of coils make up the central solenoid, and three pairs of poloidal ring coils complete the system. The poloidal field coils all use a cable-in-conduit conductor, using either niobium 3-tin (Nb 3 Sn) or niobium titanium (NbTi) superconducting strands depending on the operating conditions for that coil. All of the coils are cooled by flowing supercritical helium, with inlet and outlet connections made on each double pancake. The superconducting magnet system has gone through a conceptual design review, and is in preliminary design started by the LLNL/MIT/PPPL collaboration. A number of changes have been made in the design since the conceptual design review, and are described in this paper. The majority of the design and all fabrication of the superconducting magnet system will be ,accomplished by industry, which will shortly be taking over the preliminary design. The magnet system is expected to be completed in early 2000

  16. Design of permanent magnetic solenoids for REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, Tim

    2013-10-15

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. It is originally designed and built for ultrafast electron diffraction (UED) within the framework of the Center for Free-Electron Laser Science (CFEL). Additionally, two future experiments are planned at REGAE. First, an external injection experiment for Laser Wakefield Acceleration (LWA) will be performed in the framework of the LAOLA collaboration (LAboratory fOr Laser- and beam-driven plasma Acceleration). This experiment will provide a method for the reconstruction of the electric field distribution within a linear plasma wakefield. Second, a time resolving high energy Transmission Electron Microscope (TEM) will be implemented. Among others it is designed to allow for living cell imaging. Both experiments require strong focusing magnets inside the new target chamber at REGAE. Permanent magnetic solenoids (PMSs) can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. The present thesis deals with the design of such strong focusing PMSs. Since short and strong solenoids, as required for REGAE, exhibit a distinct non-linearity, the induced emittance growth is relatively large. This emittance growth is investigated and minimized for different set-ups with axially and radially magnetized annular magnets. Furthermore a magnetic shielding is developed. Together with a mechanical lifting system it assures that magnetic leakage fields do not disturb experiments, where the PMSs are removed from the beamline.

  17. Design of permanent magnetic solenoids for REGAE

    International Nuclear Information System (INIS)

    Gehrke, Tim

    2013-10-01

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. It is originally designed and built for ultrafast electron diffraction (UED) within the framework of the Center for Free-Electron Laser Science (CFEL). Additionally, two future experiments are planned at REGAE. First, an external injection experiment for Laser Wakefield Acceleration (LWA) will be performed in the framework of the LAOLA collaboration (LAboratory fOr Laser- and beam-driven plasma Acceleration). This experiment will provide a method for the reconstruction of the electric field distribution within a linear plasma wakefield. Second, a time resolving high energy Transmission Electron Microscope (TEM) will be implemented. Among others it is designed to allow for living cell imaging. Both experiments require strong focusing magnets inside the new target chamber at REGAE. Permanent magnetic solenoids (PMSs) can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. The present thesis deals with the design of such strong focusing PMSs. Since short and strong solenoids, as required for REGAE, exhibit a distinct non-linearity, the induced emittance growth is relatively large. This emittance growth is investigated and minimized for different set-ups with axially and radially magnetized annular magnets. Furthermore a magnetic shielding is developed. Together with a mechanical lifting system it assures that magnetic leakage fields do not disturb experiments, where the PMSs are removed from the beamline.

  18. New approaches in the design of magnetic tweezers–current magnetic tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Bessalova, Valentina [Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow (Russian Federation); Perov, Nikolai [Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow (Russian Federation); Immanuel Kant Baltic Federal University, Nevskogo 14, 236004 Kaliningrad (Russian Federation); Rodionova, Valeria [Immanuel Kant Baltic Federal University, Nevskogo 14, 236004 Kaliningrad (Russian Federation); National University of Science and Technology ' MISiS' , Leninsky Prospect 4, 119049 Moscow (Russian Federation)

    2016-10-01

    The main advantages of the magnetic tweezers are the low price and simplicity of use. However the range of their application is reduced due to shortcomings like, for example, the remanent induction of the core and interaction between ferromagnetic cores. We present the new design of magnetic tweezers–Current Magnetic Tweezers (CMT) that allow particle manipulation by means of the magnetic field generated by the electric currents flowing through the non-magnetic wires. Arranging wires in different geometric shapes allows the particle movement either in two or three dimensions. Forces acting on the magnetic particles with the magnetic moment of 2·10{sup −11} A m{sup 2} at distances up to 1 mm had been experimentally measured. It is established that a current of about 1 A at a 1 mm distance generates force of (approximately) 3 pN which is consistent with theoretical estimates. - Highlights: • We suggest the idea and the results of the test the prototype based on 3 wire's system that allows manipulation of nanoparticles on XY plane.

  19. New approaches in the design of magnetic tweezers–current magnetic tweezers

    International Nuclear Information System (INIS)

    Bessalova, Valentina; Perov, Nikolai; Rodionova, Valeria

    2016-01-01

    The main advantages of the magnetic tweezers are the low price and simplicity of use. However the range of their application is reduced due to shortcomings like, for example, the remanent induction of the core and interaction between ferromagnetic cores. We present the new design of magnetic tweezers–Current Magnetic Tweezers (CMT) that allow particle manipulation by means of the magnetic field generated by the electric currents flowing through the non-magnetic wires. Arranging wires in different geometric shapes allows the particle movement either in two or three dimensions. Forces acting on the magnetic particles with the magnetic moment of 2·10 −11 A m 2 at distances up to 1 mm had been experimentally measured. It is established that a current of about 1 A at a 1 mm distance generates force of (approximately) 3 pN which is consistent with theoretical estimates. - Highlights: • We suggest the idea and the results of the test the prototype based on 3 wire's system that allows manipulation of nanoparticles on XY plane.

  20. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb$_{3}$Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  1. Large Superconducting Magnet Systems

    Energy Technology Data Exchange (ETDEWEB)

    Védrine, P [Saclay (France)

    2014-07-01

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  2. Magnetic-field design of the accumulator multipole magnet

    International Nuclear Information System (INIS)

    Oleksiuk, L.

    1983-01-01

    A multiple magnet using the FFAG graded coil technique has been designed with the aid of the two dimensional magnet modelling code Poisson. Rapid design interaction in problem formulation has been achieved with a new finite element mesh generator in which mesh densities can be manipulated to overcome difficulties in mesh topologies when spanning the grid over the problem domain

  3. Large superconducting magnet systems for plasma and fusion applications

    International Nuclear Information System (INIS)

    Heinz, W.

    1976-05-01

    Work on superconducting magnet systems and state of the art of superconducting magnet technology are described. Conceptual design consideration and problems of large magnet systems (stability, magnetic forces, cooling modes, safety) are discussed. Recent results of experimental work at Karlsruhe are reported. An outline of American and European programs is given. (orig.) [de

  4. A magnetic suspension system for measuring liquid density

    Directory of Open Access Journals (Sweden)

    Luz María Centeno González

    2013-01-01

    Full Text Available Density is a derived quantity of mass and length; it is defined as mass per volume unit and its SI unit is kg/m3. National metrology institutes have been designing and building their own magnetic suspension systems during the last 5 decades for making fluid density measurements; this has allowed them to carry out research into liquids and gases’ physical characteristics. This paper was aimed at designing and developing a magnetic suspension system for a magnetic balance used in determining liquid density to be used in CENAM’s metrology density laboratories.

  5. Design of magnetic flux concentrator of permancent magnet for control rod position indicator of SMART CEDM

    International Nuclear Information System (INIS)

    Yoo, J. Y.; Kim, J. H.; Hur, H.; Kim, J. I.

    2002-01-01

    The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indication system and its actual implementation in the exiting nuclear power plants in Korea was performed first. The control rod position indicator having the high performance for SMART was developed on the basis of RSPT technology identified through the survey. The arrangement of permanent magnet and reed switches is the most important procedure in the design of control rod position indication. In this study, the magnetic flux concentrator of permanent magnet is introduced and the calculation method for effective flux area for reed switch is presented

  6. Design study of superconducting magnets for a combustion magnetohydrodynamic (MHD) generator

    Science.gov (United States)

    Thome, R. J.; Ayers, J. W.

    1977-01-01

    Design trade off studies for 13 different superconducting magnet systems were carried out. Based on these results, preliminary design characteristics were prepared for several superconducting magnet systems suitable for use with a combustion driven MHD generator. Each magnet generates a field level of 8 T in a volume 1.524 m (60 in.) long with a cross section 0.254 m x 0.254 m (10 in. x 10 in.) at the inlet and 0.406 m x .406 m (16 in. x 16 in.) at the outlet. The first design involves a racetrack coil geometry intended for operation at 4.2 K; the second design uses a racetrack geometry at 2.0 K; and the third design utilizes a rectangular saddle geometry at 4.2 K. Each case was oriented differently in terms of MHD channel axis and main field direction relative to gravity in order to evaluate fabrication ease. All cases were designed such that the system could be disassembled to allow for alteration of field gradient in the MHD channel by changing the angle between coils. Preliminary design characteristics and assembly drawings were generated for each case.

  7. Compact magnetic fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1983-12-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak/sup 1/ and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics.

  8. Compact magnetic fusion systems

    International Nuclear Information System (INIS)

    Linford, R.K.

    1983-01-01

    If the core (first wall, blanket, shield, and magnet coils) of fusion reactor systems could be made smaller in mass and volume for a given net electric power output than is usually predicted for the mainline tokamak 1 and mirror concepts, the cost of the technological development of the core and the construction of power plants might be significantly reduced. Although progress in plasma physics and engineering approaches should continue to yield improvements in reactor designs, certain physics features of the mainline concepts may prevent major reductions in the size of the core without straining the limits of technology. However, more than a factor of ten reduction in volume and mass of the core, at constant output power, may be possible for a class of toroidal confinement concepts in which the confining magnetic fields are supported more by currents flowing in the plasma than those in the external coils. In spite of this dramatic increase in power density (ratio of total thermal output power to the volume of the core), the design of compact systems need not rely on any materials requirements that are qualitatively more difficult than those proposed for the lower-power-density mainline fusion concepts. In some respects compact systems require less of an extension of existing technology, e.g. magnetics

  9. The LHCb magnet design team

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Photos 01, 02: The LHCb magnet is equipped with resistive coils. Having a "warm " rather than a superconducting magnet, as was originally planned, was a design choice advocated by former Technical Coordinator Hans-Jurgen Hilke. Although this solution was adopted to keep the experiment on budget and on schedule, the geometry required and the need for good lateral homogeneity of the magnetic field called for an innovative design, developed by Wilfried Flegel. Jacques André, Claude Rosset and Olivier Jamet were responsible for the working drawings while Marcello Losasso did the 3-D calculations of the magnetic field. The LHCb magnet design team is pictured in front of one of the two magnet coils which recently arrived at CERN. Each coil comprises 15 individual monolayer ´pancakes´ of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of 15 turns of conductor, wound from a 300-m length of extruded aluminium. Left to right: Olivier Jamet, Hans-Jur...

  10. Design of a Geothermal Downhole Magnetic Flowmeter

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, Dave A.; Normann, Randy A.

    2015-06-15

    This paper covers the development of a 300°C geothermal solid-state magnetic flowmeter (or magmeter) to support in situ monitoring of future EGS (enhanced geothermal system) production wells. Existing flowmeters are simple mechanical spinner sensors. These mechanical sensors fail within as little as 10 hrs, while a solid-state magmeter has the potential for months/years of operation. The design and testing of a magnetic flow sensor for use with existing high-temperature electronics is presented.

  11. TFTR magnetic field design analyses

    International Nuclear Information System (INIS)

    Davies, K.; Iwinski, E.; McWhirter, J.M.

    1975-11-01

    The three main magnetic field windings for the TFTR are the toroidal field (TF) windings, the ohmic heating (OH) winding, and the equilibrium field (EF) winding. The following information is provided for these windings: (1) descriptions, (2) functions, (3) magnetic designs, e.g., number and location of turns, (4) design methods, and (5) descriptions of resulting magnetic fields. This report does not deal with the thermal, mechanical support, or construction details of the windings

  12. 55-TW magnetically insulated transmission-line system: Design, simulations, and performance

    Directory of Open Access Journals (Sweden)

    W. A. Stygar

    2009-12-01

    Full Text Available We describe herein a system of self-magnetically insulated vacuum transmission lines (MITLs that operated successfully at 20 MA, 3 MV, and 55 TW. The system delivered the electromagnetic-power pulse generated by the Z accelerator to a physics-package load on over 1700 Z shots. The system included four levels that were electrically in parallel. Each level consisted of a water flare, vacuum-insulator stack, vacuum flare, and 1.3-m-radius conical outer MITL. The outputs of the four outer MITLs were connected in parallel by a 7.6-cm-radius 12-post double-post-hole vacuum convolute. The convolute added the currents of the four outer MITLs, and delivered the combined current to a single 6-cm-long inner MITL. The inner MITL delivered the current to the load. The total initial inductance of the stack-MITL system was 11 nH. A 300-element transmission-line-circuit model of the system has been developed using the tl code. The model accounts for the following: (i impedance and electrical length of each of the 300 circuit elements, (ii electron emission from MITL-cathode surfaces wherever the electric field has previously exceeded a constant threshold value, (iii Child-Langmuir electron loss in the MITLs before magnetic insulation is established, (iv MITL-flow-electron loss after insulation, assuming either collisionless or collisional electron flow, (v MITL-gap closure, (vi energy loss to MITL conductors operated at high lineal current densities, (vii time-dependent self-consistent inductance of an imploding z-pinch load, and (viii load resistance, which is assumed to be constant. Simulations performed with the tl model demonstrate that the nominal geometric outer-MITL-system impedance that optimizes overall performance is a factor of ∼3 greater than the convolute-load impedance, which is consistent with an analytic model of an idealized MITL-load system. Power-flow measurements demonstrate that, until peak current, the Z stack-MITL system

  13. Case study of a magnetic system for low-energy machines

    Directory of Open Access Journals (Sweden)

    Daniel Schoerling

    2016-08-01

    Full Text Available The extra low-energy antiproton ring (ELENA is a CERN particle decelerator with the purpose to deliver antiprotons at lowest energies aiming to enhance the study of antimatter. The hexagonal shaped ring with a circumference of about 30 m will decelerate antiprotons from momenta of 100 to 13.7  MeV/c. In this paper, the design approach for a magnet system for such a machine is presented. Due to the extra-low beam rigidity, the design of the magnet system is especially challenging because even small fields, arising for example from residual magnetization and hysteresis, have a major impact on beam dynamics. In total, seven prototype magnets of three different magnet types have been built and tested. This paper outlines challenges, describes solutions for the design of the magnet system and discusses the results of the prototypes.

  14. Magnetic spectrometer control system

    International Nuclear Information System (INIS)

    Lecca, L.A.; Di Paolo, Hugo; Fernandez Niello, Jorge O.; Marti, Guillermo V; Pacheco, Alberto J.; Ramirez, Marcelo

    2003-01-01

    The design and implementation of a new computerized control system for the several devices of the magnetic spectrometer at TANDAR Laboratory is described. This system, as a main difference from the preexisting one, is compatible with almost any operating systems of wide spread use available in PC. This allows on-line measurement and control of all signals from any terminal of a computer network. (author)

  15. Magnetic Design of Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, E [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    In this paper we discuss the main principles of magnetic design for superconducting magnets (dipoles and quadrupoles) for particle accelerators. We give approximated equations that govern the relation between the field/gradient, the current density, the type of superconductor (Nb−Ti or Nb3Sn), the thickness of the coil, and the fraction of stabilizer. We also state the main principle controlling the field quality optimization, and discuss the role of iron. A few examples are given to show the application of the equations and their validity limits.

  16. Design prospect of remountable high-temperature superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Hidetoshi, E-mail: hidetoshi.hashizume@qse.tohoku.ac.jp; Ito, Satoshi

    2014-10-15

    The remountable (mountable and demountable repeatedly) high-temperature superconducting (HTS) magnet has been proposed for huge and complex superconducting magnets in future fusion reactors to fabricate and repair easily the magnet and access inner structural components. This paper summarizes progress in R and D activities of mechanical joints of HTS conductors in terms of the electrical resistance and heat transfer performance at the joint region. The latest experimental results show the low joint resistance, 4 nΩ under 70 kA current condition using REBCO HTS conductor with mechanical lap joint system, and for the cooling system the maximum heat flux of 0.4 MW/m{sup 2} is removed by using bronze sintered porous media with sub-cooled liquid nitrogen. These values indicate that there is large possibility to design the remountable HTS magnet for fusion reactors.

  17. Mirror fusion test facility magnet system. Final design report

    International Nuclear Information System (INIS)

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-01-01

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy

  18. The magnet components database system

    International Nuclear Information System (INIS)

    Baggett, M.J.; Leedy, R.; Saltmarsh, C.; Tompkins, J.C.

    1990-01-01

    The philosophy, structure, and usage of MagCom, the SSC magnet components database, are described. The database has been implemented in Sybase (a powerful relational database management system) on a UNIX-based workstation at the Superconducting Super Collider Laboratory (SSCL); magnet project collaborators can access the database via network connections. The database was designed to contain the specifications and measured values of important properties for major materials, plus configuration information (specifying which individual items were used in each cable, coil, and magnet) and the test results on completed magnets. The data will facilitate the tracking and control of the production process as well as the correlation of magnet performance with the properties of its constituents. 3 refs., 9 figs

  19. The magnet components database system

    International Nuclear Information System (INIS)

    Baggett, M.J.; Leedy, R.; Saltmarsh, C.; Tompkins, J.C.

    1990-01-01

    The philosophy, structure, and usage MagCom, the SSC magnet components database, are described. The database has been implemented in Sybase (a powerful relational database management system) on a UNIX-based workstation at the Superconducting Super Collider Laboratory (SSCL); magnet project collaborators can access the database via network connections. The database was designed to contain the specifications and measured values of important properties for major materials, plus configuration information (specifying which individual items were used in each cable, coil, and magnet) and the test results on completed magnets. These data will facilitate the tracking and control of the production process as well as the correlation of magnet performance with the properties of its constituents. 3 refs., 10 figs

  20. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  1. Design and construction of a novel compact doubly achromatic asymmetric 2700 magnet system for 25 MeV therapy electron accelerator

    International Nuclear Information System (INIS)

    Hutcheon, R.M.; Hodge, S.B.

    1980-09-01

    A modern cancer therapy electron accelerator unit must satisfy many design constraints, one of which is the isocentric height above floor level. Usually 130 cm is considered the maximum height at which a nurse can work with a patient. The advent of higher energy machines has increasingly made this more difficult to achieve, as higher magnetic fields are required in the magnet that directs the beam onto the patient. A new 270 degree doubly-achromatic magnet configuration has been developed which minimizes the isocentre height for a given maximum energy and maximum magnetic field. The system is an asymmetric two-magnet configuration, with zero field index, equal fields and a bend of greater than 180 degrees in the first magnet. It is compact, easy to manufacture and relatively insensitive to assembly tolerances. Energy defining slits are easily incorporated in the design and can readily be radiation shielded. Input and output beam matching and steering is easily accomplished with a compact input quadrupole doublet and small steering windings. This report details the design and bench testing of a head magnet for a 25 MeV electron accelerator with +- 10 percent energy acceptance. The output beam requirement is < 3 mm diameter with < +- 17 mrad angular divergence. (auth)

  2. Magnetic design consideration of a Magnetic Lead Screw with Halbach Array

    DEFF Research Database (Denmark)

    Holm, Rasmus Koldborg; Berg, Nick Ilsø; Rasmussen, Peter Omand

    This paper presents the novel design of a Magnetic Lead Screw (MLS) with magnetic thread of Halbach Arrays. The MLS where designed and build, tests indicated a stall force which where 12 % lower than calculated in 3D FE. This is explained by demagnetization of the magnet during stall, the behavio...

  3. Topology optimized permanent magnet systems

    Science.gov (United States)

    Bjørk, R.; Bahl, C. R. H.; Insinga, A. R.

    2017-09-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a Λcool figure of merit of 0.472 is reached, which is an increase of 100% compared to a previous optimized design.

  4. Optimal design of a double-sided linear motor with a multi-segmented trapezoidal magnet array for a high precision positioning system

    International Nuclear Information System (INIS)

    Lee, Moon G.; Gweon, Dae-Gab

    2004-01-01

    A comparative analysis is performed for linear motors adopting conventional and multi-segmented trapezoidal (MST) magnet arrays, respectively, for a high-precision positioning system. The proposed MST magnet array is a modified version of a Halbach magnet array. The MST array has trapezoidal magnets with variable shape and dimensions while the Halbach magnet array generally has a rectangular magnet with identical dimensions. We propose a new model that can describe the magnetic field resulting from the complex-shaped magnets. The model can be applied to both MST and conventional magnet arrays. Using the model, a design optimization of the two types of linear motors is performed and compared. The magnet array with trapezoidal magnets can produce more force than one with rectangular magnets when they are arrayed in a linear motor where there is a yoke with high permeability. After the optimization and comparison, we conclude that the linear motor with the MST magnet array can generate more actuating force per volume than the motor with the conventional array. In order to satisfy the requirements of next generation systems such as high resolution, high speed, and long stroke, the use of a linear motor with a MST array as an actuator in a high precision positioning system is recommended from the results obtained here

  5. Permanent magnet motor technology design and applications

    CERN Document Server

    Gieras, Jacek F

    2009-01-01

    Demonstrates the construction of permanent magnet (PM) motor drives and supplies ready-to-implement solutions to common roadblocks along the way. This book also supplies fundamental equations and calculations for determining and evaluating system performance, efficiency, reliability, and cost. It explores modern computer-aided design of PM motors.

  6. Design study of an indirect cooling superconducting magnet for a fusion device

    International Nuclear Information System (INIS)

    Mito, Toshiyuki; Hemmi, Tsutomu

    2009-01-01

    The design study of superconducting magnets adapting a new coil winding scheme of an indirect cooling method is reported. The superconducting magnet system for the spherical tokamak (ST), which is proposed to study the steady state plasma experiment with Q - equiv-1, requires high performances with a high current density compared to the ordinal magnet design because of its tight spatial restriction. The superconducting magnet system for the fusion device has been used in the condition of high magnetic field, high electromagnetic force, and high heat load. The pool boiling liquid helium cooling outside of the conductor or the forced flow of supercritical helium cooling inside of the conductor, such as cable-in-conduit conductors, were used so far for the cooling method of the superconducting magnet for a fusion application. The pool cooling magnet has the disadvantages of low mechanical rigidities and low withstand voltages of the coil windings. The forced flow cooling magnet with cable-in-conduit conductors has the disadvantages of the restriction of the coil design because of the path of the electric current must be the same as that of the cooling channel for refrigerant. The path of the electric current and that of the cooling channel for refrigerant can be independently designed by adopting the indirect cooling method that inserts the independent cooling panel in the coil windings and cools the conductor from the outside. Therefore the optimization of the coil windings structure can be attempted. It was shown that the superconducting magnet design of the high current density became possible by the indirect cooling method compared with those of the conventional cooling scheme. (author)

  7. Computer aided design of solonoid magnets

    Energy Technology Data Exchange (ETDEWEB)

    DeOlivares, J.M.

    1978-06-01

    Computer programs utilizing Legendre functions and elliptic integral functions have been written to aid in the design of solenoid magnets. The field inside an axisymmetric magnet can be expanded in a converging power series of Legendre functions. The Legendre function approach is very useful for designing solenoid magnets with a high degree of field uniformity. This approach has been programed on the LBL CDC 7600 computer so that one can design an axisymmetric magnet which meets any desired field structure. Two examples of computer designed solenoids are presented. A computer program utilizing elliptic integral functions was also written for the LBL CDC 7600 computer. This method was used in a computer program to verify the results obtained from the Legendre approach and for field calculations within the conductor. The elliptic integral field calculations within the conductor showed that thin solenoids produce field peaking at the ends of the magnet. Computer data is generated for various magnet geometries and compared with theoretical predictions. Computer results and theoretical prediction both show that field peaking is reduced for longer coils, increased for thinner coils and field peaking is a logarithmic function of length, thickness and radius.

  8. Superconducting magnetic systems and electrical machines

    International Nuclear Information System (INIS)

    Glebov, I.A.

    1975-01-01

    The use of superconductors for magnets and electrical machines attracts close attention of designers and scientists. A description is given of an ongoing research program to create superconductive magnetic systems, commutator motors, homopolar machines, topological generators and turbogenerators with superconductive field windings. All the machines are tentative experimental models and serve as a basis for further developments

  9. Magnet system of the ''AMBAL'' experimental trap with ambipolar mirrors

    International Nuclear Information System (INIS)

    Dimov, G.I.; Lysyanskij, P.B.; Tadber, M.V.; Timoshin, I.Ya.; Shrajner, K.K.

    1982-01-01

    A magnet system of the ''AMBAL'' ambipolar trap under construction is described. The trap magnetic field configuration, geometry of the main coils and diagram of the whole device magnet system are outlined. Drift surface cross sections in the equatorial plane of the ring mirror device, in the median plane and at different distances from the trap median plane are presented. The magnet system design is described in brief

  10. SUPERCONDUCTING COMBINED FUNCTION MAGNET SYSTEM FOR J-PARC NEUTRINO EXPERIMENT

    International Nuclear Information System (INIS)

    2004-01-01

    The J-PARC Neutrino Experiment, the construction of which starts in JFY 2004, will use a superconducting magnet system for its primary proton beam line. The system, which bends the 50 GeV 0.75 MW proton beam by about 80 degrees, consists of 28 superconducting combined function magnets. The magnets utilize single layer left/right asymmetric coils that generate a dipole field of 2.6 T and a quadrupole field of 18.6 T/m with the operation current of about 7.35 kA. The system also contains a few conduction cooled superconducting corrector magnets that serve as vertical and horizontal steering magnets. All the magnets are designed to provide a physical beam aperture of 130 mm in order to achieve a large beam acceptance. Extensive care is also required to achieve safe operation with the high power proton beam. The paper summarizes the system design as well as some safety analysis results

  11. Cryogenic system for the HERA magnet measurement facility

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.; Clausen, M.; Kebler, G.

    1986-01-01

    This paper describes the design for a helium, cryogenic distribution system that allows independent operation and testing of superconducting magnets of the HERA project before they are installed in the 6-km ring tunnel. The 820-GeV proton storage ring of HERA will contain approximately 650 magnets having superconducting coils which are clamped by aluminum/stainless-steel collars and surrounded by a yoke of magnetic iron at liquid helium temperature. When the magnets arive at DESY from the manufacture, each magnet will be individually tested at helium operating conditions in the magnet measurement facility to insure the quality of the magnetic characteristics and the cryogenic performance. The capabilities of the cryogenic system and the schedule for magnet testing are discussed

  12. Magnet design and test of positron emission tomography cyclotron

    International Nuclear Information System (INIS)

    Wei Tao; Yang Guojun; He Xiaozhong; Pang Jian; Zhao Liangchao; Zhang Kaizhi

    2012-01-01

    An 11 MeV H - compact cyclotron used for medical radioactive isotope production is under construction in Institute of Fluid Physics, CAEP. The cyclotron magnet adopts the design of small valley gaps and coulee structure which can provide high average magnetic field and strong focus ability. To achieve 5 × 10 -4 measuring accuracy, a magnetic field mapping system has been developed. After iterative correction using field measurement data, the total phase excursion of the cyclotron is within ± 9° and the first harmonic is less than 10 -3 T, which are all acceptable. Furthermore, the beam testing declares the successful construction of the cyclotron magnet. Besides, some magnetic field influence factors were discussed, including the magnetic field distortion and measurement error. (authors)

  13. Conceptual design of DC power supplies for FFHR superconducting magnet

    International Nuclear Information System (INIS)

    Chikaraishi, Hirotaka

    2012-01-01

    The force-free helical reactor (FFHR) is a helical-type fusion reactor whose design is being studied at the National Institute for Fusion Science. The FFHR will use three sets of superconducting coils to confine the plasma. It is not a fusion plasma experimental device, and the magnetic field configuration will be optimized for burning plasma. This paper introduces a conceptual design for a dc power system to excite the superconducting coils of the FFHR. In this design, the poloidal coils are divided into a main part, which generates a magnetic field for steady-state burning, and a control part, which is used in the ignition process to control the magnetic axis. The feasibility of this configuration was studied using the Large Helical Device coil parameters, and the coil voltages required to sweep the magnetic axis were calculated. It was confirmed that the axis sweep could be performed without a high output voltage from the main power supply. Finally, the power supply ratings for the FFHR were estimated from the stored magnetic energy. (author)

  14. System-Level Shared Governance Structures and Processes in Healthcare Systems With Magnet®-Designated Hospitals: A Descriptive Study.

    Science.gov (United States)

    Underwood, Carlisa M; Hayne, Arlene N

    The purpose was to identify and describe structures and processes of best practices for system-level shared governance in healthcare systems. Currently, more than 64.6% of US community hospitals are part of a system. System chief nurse executives (SCNEs) are challenged to establish leadership structures and processes that effectively and efficiently disseminate best practices for patients and staff across complex organizations, geographically dispersed locations, and populations. Eleven US healthcare SCNEs from the American Nurses Credentialing Center's repository of Magnet®-designated facilities participated in a 35-multiquestion interview based on Kanter's Theory of Organizational Empowerment. Most SCNEs reported the presence of more than 50% of the empowerment structures and processes in system-level shared governance. Despite the difficulties and complexities of growing health systems, SCNEs have replicated empowerment characteristics of hospital shared governance structures and processes at the system level.

  15. Design of a Discrete Tracking Controller for a Magnetic Levitation System: A Nonlinear Rational Model Approach

    Directory of Open Access Journals (Sweden)

    Fernando Gómez-Salas

    2015-01-01

    Full Text Available This work proposes a discrete-time nonlinear rational approximate model for the unstable magnetic levitation system. Based on this model and as an application of the input-output linearization technique, a discrete-time tracking control design will be derived using the corresponding classical state space representation of the model. A simulation example illustrates the efficiency of the proposed methodology.

  16. Design of the magnetic system of an ECR type ion source; Diseno del sistema magnetico de una fuente de iones tipo ECR

    Energy Technology Data Exchange (ETDEWEB)

    Camps C, E.; Munoz C, A

    1990-05-15

    A computer program written with the purpose of studying the magnetic field produced by a linear system of n coils is shown. Based on this a four coils system is designed that was used in an ion source of Resonance Electron-cyclotron type (REC) that is sought to build. In turn, structure characteristics of the magnetic field proper for such purpose are discussed. (Author)

  17. Power magnetic devices a multi-objective design approach

    CERN Document Server

    Sudhoff, Scott D

    2014-01-01

    Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for ind

  18. ESCAR superconducting magnet system

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Meuser, R.B.; Pope, W.L.; Green, M.A.

    1975-01-01

    Twenty-four superconducting dipoles, each about 1 meter long, provide the guide field for the Experimental Superconducting Accelerator Ring proton accelerator--storage ring. Injection of 50 MeV protons corresponds to a 3 kG central dipole field, and a peak proton energy of 4.2 GeV corresponds to a 46 kG central field. Thirty-two quadrupoles provide focusing. The 56 superconducting magnets are contained in 40 cryostats that are cryogenically connected in a novel series ''weir'' arrangement. A single 1500 W refrigeration plant is required. Design and testing of the magnet and cryostat system are described. (U.S.)

  19. Magnets for the Mirror Fusion Test Facility: testing of the first Yin-Yang and the design and development of other magnets

    International Nuclear Information System (INIS)

    Kozman, T.A.; Wang, S.T.; Chang, Y.

    1983-01-01

    Completed in May 1981, the first Yin-Yang magnet for the tandem Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) was successfully tested in February 1982 to its full design field (7.68 T) and current (5775 A). Since that time, the entire magnet array has been reconfigured - from the original A-cell to an axicell design. The MFTF-B magnet array now contains a total of 26 large superconducting coils: 2 sets of yin-yang pairs, 2 sets of transition magnets (each containing two coils), 2 sets of axicell magnets (each containing three coils), and 12 central-cell solenoids. This paper chronicles recent magnet history - from te testing of the initial yin-yang set, through the design of the axicell configuration, to the planned development of the system

  20. A Magnetic Resonance Imaging Receiver Design Based on NI PXIe-7966R

    Directory of Open Access Journals (Sweden)

    HU Jin-jie

    2017-12-01

    Full Text Available A magnetic resonance imaging receiver design based on NI PXIe-7966R is proposed, with which the magnetic resonance signals are sampled directly and down-converted digitally, the raw data are uploaded and the magnetic resonance image are restored. The system-level digital signal processing (DSP development tools offered by NI LabVIEW field programmable gate array (FPGA was used for FPGA function modeling, simulation and automatic code generation of hardware description language (HDL. It was very flexible during the digital down conversion (DDC designing. The sampling rate of this module was 50 Mbps, and the receiver bandwidth could be varied between 100 Hz and 1 MHz. The experimental results showed that the receiver design is a high performance magnetic resonance receiver solution.

  1. Magnet design for a low-emittance storage ring

    International Nuclear Information System (INIS)

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The magnet design of the MAX IV 3 GeV storage ring replaces the conventional support girder + discrete magnets scheme of previous third-generation light sources with a compact integrated design having several consecutive magnet elements precision-machined out of a common solid iron block. The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk

  2. Development and application of intelligent CAE system for cyclotron main magnet

    International Nuclear Information System (INIS)

    Zhang Tianjue; Chen Yong; Fan Mingwu

    1993-01-01

    The main magnet that represents the feature of the cyclotron is the most important part in a cyclotron construction. Though there are many codes devoted to solve magnetic field computation problems, the results from them are depended on user's skill and experience very much. To help cyclotron magnet designer get acceptable result an intelligent CAE system for cyclotron main magnet design and machining has been developed. A reasonable good results in design could be get even the designer is a beginner with the help from an expert knowledge library installed in the program. The codes include following functions: 1. Intelligent CAD; 2. 2D and 3D magnetic field computation; 3. Beam dynamics analysis; 4. CAM for main magnet

  3. Magnetically-driven medical robots: An analytical magnetic model for endoscopic capsules design

    Science.gov (United States)

    Li, Jing; Barjuei, Erfan Shojaei; Ciuti, Gastone; Hao, Yang; Zhang, Peisen; Menciassi, Arianna; Huang, Qiang; Dario, Paolo

    2018-04-01

    Magnetic-based approaches are highly promising to provide innovative solutions for the design of medical devices for diagnostic and therapeutic procedures, such as in the endoluminal districts. Due to the intrinsic magnetic properties (no current needed) and the high strength-to-size ratio compared with electromagnetic solutions, permanent magnets are usually embedded in medical devices. In this paper, a set of analytical formulas have been derived to model the magnetic forces and torques which are exerted by an arbitrary external magnetic field on a permanent magnetic source embedded in a medical robot. In particular, the authors modelled cylindrical permanent magnets as general solution often used and embedded in magnetically-driven medical devices. The analytical model can be applied to axially and diametrically magnetized, solid and annular cylindrical permanent magnets in the absence of the severe calculation complexity. Using a cylindrical permanent magnet as a selected solution, the model has been applied to a robotic endoscopic capsule as a pilot study in the design of magnetically-driven robots.

  4. The design, construction and application of time varying magnetic exposure system

    International Nuclear Information System (INIS)

    El-Din, S.A.A.; Saad, H.M.; Said, H.H.

    2000-01-01

    An exposure system has been designed and constructed to study the probable biological effects of a-50-Hz alternating field on mice. The system is in the form of a cooled water wooden cage that can accommodate 12 mice at a time. The cage is enclosed into an electromagnet consists of three parallel closely connected rectangular coils able to induce a magnetic field of an intensity up to 200 Gauss. The derivation of the equations to define the spatial distribution of the field due to the currents in the coils is presented. A computer program with basic language is suggested to calculate the field strength into the cage. A comparison is made between these computed values and the corresponding measured ones. A representative experiment was carried out where three mice groups were exposed one for 3 h/day the others were repeated for two days and three days respectively. A change was found in hemoglobin spectrum in comparison with the control group has been noticed. This result can be attributed to the change of the spin states of the heme-iron

  5. Construction of a 13 kG magnetic coil system

    International Nuclear Information System (INIS)

    Rossi, J.O.; Aso, Y.; Castro, P.J.; Barroso, J.J.; Ludwig, G.O.; Montes, A.; Nono, M.C.A.; Correa, R.A.

    1991-08-01

    The construction of magnetic coil system for a 35 GHz gyrotron is reported in great detail. This system is designed to generate a magnetic induction of 13,2 kG over an extension of 13 cm. By using an operating current of about 100 A, it was verified that both the axial magnetic field profile and the spatial non-uniformity are in close agreement with those theoretically predicted. (author)

  6. Automated magnetic divertor design for optimal power exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Blommaert, Maarten

    2017-07-01

    The so-called divertor is the standard particle and power exhaust system of nuclear fusion tokamaks. In essence, the magnetic configuration hereby 'diverts' the plasma to a specific divertor structure. The design of this divertor is still a key issue to be resolved to evolve from experimental fusion tokamaks to commercial power plants. The focus of this dissertation is on one particular design requirement: avoiding excessive heat loads on the divertor structure. The divertor design process is assisted by plasma edge transport codes that simulate the plasma and neutral particle transport in the edge of the reactor. These codes are computationally extremely demanding, not in the least due to the complex collisional processes between plasma and neutrals that lead to strong radiation sinks and macroscopic heat convection near the vessel walls. One way of improving the heat exhaust is by modifying the magnetic confinement that governs the plasma flow. In this dissertation, automated design of the magnetic configuration is pursued using adjoint based optimization methods. A simple and fast perturbation model is used to compute the magnetic field in the vacuum vessel. A stable optimal design method of the nested type is then elaborated that strictly accounts for several nonlinear design constraints and code limitations. Using appropriate cost function definitions, the heat is spread more uniformly over the high-heat load plasma-facing components in a practical design example. Furthermore, practical in-parts adjoint sensitivity calculations are presented that provide a way to an efficient optimization procedure. Results are elaborated for a fictituous JET (Joint European Torus) case. The heat load is strongly reduced by exploiting an expansion of the magnetic flux towards the solid divertor structure. Subsequently, shortcomings of the perturbation model for magnetic field calculations are discussed in comparison to a free boundary equilibrium (FBE) simulation

  7. Automated magnetic divertor design for optimal power exhaust

    International Nuclear Information System (INIS)

    Blommaert, Maarten

    2017-01-01

    The so-called divertor is the standard particle and power exhaust system of nuclear fusion tokamaks. In essence, the magnetic configuration hereby 'diverts' the plasma to a specific divertor structure. The design of this divertor is still a key issue to be resolved to evolve from experimental fusion tokamaks to commercial power plants. The focus of this dissertation is on one particular design requirement: avoiding excessive heat loads on the divertor structure. The divertor design process is assisted by plasma edge transport codes that simulate the plasma and neutral particle transport in the edge of the reactor. These codes are computationally extremely demanding, not in the least due to the complex collisional processes between plasma and neutrals that lead to strong radiation sinks and macroscopic heat convection near the vessel walls. One way of improving the heat exhaust is by modifying the magnetic confinement that governs the plasma flow. In this dissertation, automated design of the magnetic configuration is pursued using adjoint based optimization methods. A simple and fast perturbation model is used to compute the magnetic field in the vacuum vessel. A stable optimal design method of the nested type is then elaborated that strictly accounts for several nonlinear design constraints and code limitations. Using appropriate cost function definitions, the heat is spread more uniformly over the high-heat load plasma-facing components in a practical design example. Furthermore, practical in-parts adjoint sensitivity calculations are presented that provide a way to an efficient optimization procedure. Results are elaborated for a fictituous JET (Joint European Torus) case. The heat load is strongly reduced by exploiting an expansion of the magnetic flux towards the solid divertor structure. Subsequently, shortcomings of the perturbation model for magnetic field calculations are discussed in comparison to a free boundary equilibrium (FBE) simulation. These flaws

  8. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Science.gov (United States)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  9. Review of design principles for ITER VV remote inspection in magnetic field

    International Nuclear Information System (INIS)

    Izard, Jean-Baptiste; Perrot, Yann; Friconneau, Jean-Pierre

    2009-01-01

    Because ITER magnet system has a limited number of mechanical and thermal stress cycles, shut down number of the toroidal field is limited during lifetime of ITER. Any inspection device able to withstand the toroidal field between two plasma shots will enhance the inspection frequency capacity of ITER during operation phase. In addition to the high magnetic field the system should also cope with high temperature, ultra-high vacuum and high radiation, in order to keep the reactor availability high. Radiation, ultra-high vacuum and temperature constraints already addressed by on going R and D activities within Europe-considering the required level of radiation is to date the highest encountered in remote handling, and that facing all these constraints at once is an additional issue to overcome. Whereas, operating remote handling systems in high magnetic field is quite new field of investigation. This paper aims to be a guideline for future designers to help them choose among options the adequate solution for an ITER relevant inspection device. It provides the designer an objective view of the different effects that stem from technical choices and help them deciding whether a technology is relevant or not depending on the task's requirements. We have selected a set of technologies and products available for structural design, actuation, sensing and data transmission in order to design inspection remote handling equipment for ITER in the given constraints. These different solutions are commented with specific considerations and directions to have them fit in the specifications. Different design strategies to cope with magnetic field are then discussed, which imply either insensitive design or using the magnetic field as a potential energy source and as a positioning help. This analysis is the first result of one of the projects in the PREFIT partnership, part of the European Fusion Training Scheme.

  10. Design of the power system for dynamic resonant magnetic perturbation coils on the J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Ding, Y.H., E-mail: yhding@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, M.; Rao, B.; Nan, J.Y.; Zeng, W.B.; Zheng, M.Y.; Xu, H.Y.; Zhuang, G.; Pan, Y. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-10-15

    Highlights: ► We introduce the dynamic resonant magnetic perturbation coils system on J-TEXT. ► Details of the design of the power supply system have been presented. ► At DC mode, two antiparallel 6-pulse phase thyristor rectifiers were chosen. ► An AC–DC–AC converter including a series resonant inverter was adopted for AC mode. ► Some engineering testing result was given in this paper. -- Abstract: A set of in-vessel saddle coils has been installed on J-TEXT tokamak. They are proposed for further researches on controlling tearing modes and driving plasma rotation by static and dynamic resonant magnetic perturbations (RMPs). The saddle coils will be energized by DC with the amplitude up to 10 kA, or AC with maximum amplitude up to 5 kA within the frequency range of 1–5 kHz. At DC mode two antiparallel 6-pulse phase thyristor rectifiers are chosen to obtain bidirectional current, while at AC mode an AC–DC–AC converter including a series resonant inverter can generate current of various amplitudes and frequencies. The paper presents the design of the power supply system, based on the definition of the power supply requirements and the feasibility of implementation of the topology and control strategy. Some simulation and experimental results are given in the end.

  11. Elaboration of the principal design characteristics of the magnetic system for the hydrogen prototype of the neutron source

    International Nuclear Information System (INIS)

    Aleksandrov, A.S.; Gorbovskij, A.I.; Mishagin, V.V.

    1994-01-01

    The paper reviews designs of magnets and vacuum system of the Hydrogen Prototype of the Neutron Source. An idea of this neutron source is based on the use of neutral-beam-driven plasma in an axisymmetric magnetic mirror to generate high flux D-T neutrons. Preliminary evaluations have shown that such a source has several potential advantages when is used for fusion material and component tests. The Hydrogen Prototype is essentially full scale model of the source but operated with a hydrogen plasma. 10 refs.; 6 figs.; 1 tab

  12. SCMS-1, Superconducting Magnet System for an MHD generator

    International Nuclear Information System (INIS)

    Zenkevich, V.B.; Kirenin, I.A.; Tovma, V.A.

    1977-01-01

    The research and development effort connected with the building of the superconducting magnet systems for MHD generators at the Institute for High Temperatures of the U.S.S.R. Academy of Sciences included the designing, fabrication and testing of the superconducting magnet system for an MHD generator (SCMS-1), producing a magnetic field up to 4 Tesla in a warm bore tube 300 mm in diameter and 1000 mm long (the nonuniformity of the magnetic field in the warm bore did not exceed +-5%. The superconducting magnet system is described. The design selected consisted of a dipole, saddle-form coil, wound around a tube. The cooling of the coils is of the external type with helium access to each layer of the winding. For winding of the superconducting magnet system a 49-strand cable was used consisting of 42 composition conductors, having a diameter of 0.3 mm each, containing six superconducting strands with a niobium-titanium alloy base (the superconducting strands were 70 microns in diameter), and seven copper conductors of the same diameter as the composite conductors. The cable is made monolithic with high purity indium and insulated with lavsan fiber. The cable diameter with insulation is 3.5 mm

  13. Bioinspired Design: Magnetic Freeze Casting

    Science.gov (United States)

    Porter, Michael Martin

    Nature is the ultimate experimental scientist, having billions of years of evolution to design, test, and adapt a variety of multifunctional systems for a plethora of diverse applications. Next-generation materials that draw inspiration from the structure-property-function relationships of natural biological materials have led to many high-performance structural materials with hybrid, hierarchical architectures that fit form to function. In this dissertation, a novel materials processing method, magnetic freeze casting, is introduced to develop porous scaffolds and hybrid composites with micro-architectures that emulate bone, abalone nacre, and other hard biological materials. This method uses ice as a template to form ceramic-based materials with continuously, interconnected microstructures and magnetic fields to control the alignment of these structures in multiple directions. The resulting materials have anisotropic properties with enhanced mechanical performance that have potential applications as bone implants or lightweight structural composites, among others.

  14. Magnetic Design and Code Benchmarking of the SMC (Short Model Coil) Dipole Magnet

    CERN Document Server

    Manil, P; Rochford, J; Fessia, P; Canfer, S; Baynham, E; Nunio, F; de Rijk, G; Védrine, P

    2010-01-01

    The Short Model Coil (SMC) working group was set in February 2007 to complement the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb$_{3}$Sn dipole magnet. In 2009, the EuCARD/HFM (High Field Magnets) program took over these programs. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet is designed to reach a peak field of about 13 Tesla (T) on conductor, using a 2500 A/mm2 Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb$_{3}$Sn cable, by applying different levels of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has been realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. The goal of the magnetic design presented in this paper is to match the high field region with the high stress region, l...

  15. Design and development of ITER high-frequency magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: Yunxing.Ma@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Fircroft Engineering, Lingley House, 120 Birchwood Point, Birchwood Boulevard, Warrington, WA3 7QH (United Kingdom); Vayakis, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Begrambekov, L.B. [National Research Nuclear University (MEPhI), 115409, Moscow, Kashirskoe shosse 31 (Russian Federation); Cooper, J.-J. [Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire OX14 3DB (United Kingdom); Duran, I. [IPP Prague, Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic); Hirsch, M.; Laqua, H.P. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Moreau, Ph. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Oosterbeek, J.W. [Eindhoven University of Technology (TU/e), PO Box 513, 5600 MB Eindhoven (Netherlands); Spuig, P. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Stange, T. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-15

    Highlights: • ITER high-frequency magnetic sensor system has been designed. • Prototypes have been successfully manufactured. • Manufactured prototypes have been tested in various labs. • Test results experimentally validated the design. - Abstract: High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in a harsh environment with considerable neutron/nuclear radiation and high thermal load. Essential components of the HF sensor system, including inductive coil, electron cyclotron heating (ECH) shield, electrical cabling and termination load, have been designed to meet ITER measurement requirements. System performance (e.g. frequency response, thermal conduction) has been assessed. A prototyping campaign was initiated to demonstrate the manufacturability of the designed components. Prototypes have been produced according to the specifications. A series of lab tests have been performed to examine assembly issues and validate electrical and thermo-mechanical aspects of the design. In-situ microwave radiation test has been conducted in the MISTRAL test facility at IPP-Greifswald to experimentally examine the microwave shielding efficiency and structural integrity of the ECH shield. Low-power microwave attenuation measurement and scanning electron microscopic inspection were conducted to probe and examine the quality of the metal coating on the ECH shield.

  16. Nanoparticles for magnetic biosensing systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco BCMaterials UPV-EHU, Leioa, 48940 Spain (Spain); Ural Federal University, Ekaterinburg, 620000 (Russian Federation); Novoselova, Iu.P. [Ural Federal University, Ekaterinburg, 620000 (Russian Federation); Schupletsova, V.V. [I.Kant Baltic Federal University, Kaliningrad, 23601 (Russian Federation); Andrade, R. [SGIker, ServiciosGenerales de Investigación, Universidad del País Vasco (UPV/EHU), Bilbao, 48080 Spain (Spain); Dunec, N.A.; Litvinova, L.S. [I.Kant Baltic Federal University, Kaliningrad, 23601 (Russian Federation); Safronov, A.P. [Ural Federal University, Ekaterinburg, 620000 (Russian Federation); Institute of Electrophysics, Ural Division, RAS, Ekaterinburg, 620016 (Russian Federation); Yurova, K.A. [I.Kant Baltic Federal University, Kaliningrad, 23601 (Russian Federation); Kulesh, N.A. [Ural Federal University, Ekaterinburg, 620000 (Russian Federation); Dzyuman, A.N. [Siberian State Medical University, Tomsk, 634050 (Russian Federation); Khlusov, I.A. [Siberian State Medical University, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2017-06-01

    The further development of magnetic biosensors requires a better understanding of the interaction between living systems and magnetic nanoparticles (MNPs). We describe our experience of fabrication of stable ferrofluids (FF) using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. Their morphofunctional responses in the Fe concentration range 2–1000 maximum tolerated dose revealed no cytotoxicity. - Highlights: • Stable ferrofluids (FF) were obtained using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. • Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. • Cells morphofunctional response in the Fe concentration range 2–1000 maximum tolerated dose revealed no cytotoxicity. • The results can be used for magnetic biosensoring, as well as for an addressed design of cell delivery systems.

  17. Nanoparticles for magnetic biosensing systems

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Novoselova, Iu.P.; Schupletsova, V.V.; Andrade, R.; Dunec, N.A.; Litvinova, L.S.; Safronov, A.P.; Yurova, K.A.; Kulesh, N.A.; Dzyuman, A.N.; Khlusov, I.A.

    2017-01-01

    The further development of magnetic biosensors requires a better understanding of the interaction between living systems and magnetic nanoparticles (MNPs). We describe our experience of fabrication of stable ferrofluids (FF) using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. Their morphofunctional responses in the Fe concentration range 2–1000 maximum tolerated dose revealed no cytotoxicity. - Highlights: • Stable ferrofluids (FF) were obtained using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. • Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. • Cells morphofunctional response in the Fe concentration range 2–1000 maximum tolerated dose revealed no cytotoxicity. • The results can be used for magnetic biosensoring, as well as for an addressed design of cell delivery systems.

  18. Specific features of designs of superconducting magnets for high-energy synchrotrons

    International Nuclear Information System (INIS)

    Monoszon, N.A.

    1979-01-01

    Distinctive features of designs of synchrotron superconducting magnetic systems (SMS) are considered. Some results of testing the prototypes of the ISABELLE storage ring magnets, the DABLER energy doubler and the accelerating-storage complex project are presented. Designs of di.ooles and quadrupoles are described. It is shown that the design of the DABLER SMS considerably differs from the ISABELLE SMS. The DABLER uses nonsaturated magnetic screens which provide lesser distortions of the magnetic field distribution. For the ISABELLE project a dipole with a two-layer winding has been developed which produced a field of 6.2 T. Magnetization curves as well as training and field distribution curves for a number of DABLER dipoles are presented. To prevent local overheating provision is made for using a heater enclosed in a winding. A 1 m dipole model with a sector winding of the DABLER type has been manufactured and tested in the IHEP. During tests a short-sample current and a total value of calculated field equal to 4.45 T in the chamber centre amd 5.3 T in the winding have been achieved

  19. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    International Nuclear Information System (INIS)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S.; Bae, D.K.; Lee, C.Y.; Ko, T.K.

    2011-01-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN 2 ).

  20. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Science.gov (United States)

    Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.

    2011-11-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN2).

  1. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S. [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Bae, D.K. [Chungju National University, Chungju 380-702 (Korea, Republic of); Lee, C.Y. [Ultra High-Speed Train Research Department, Korea Railroad Research Institute, Uiwang-Si 437-757 (Korea, Republic of); Ko, T.K., E-mail: tkko@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-11-15

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN{sub 2}).

  2. Axicell MFTF-B superconducting-magnet system

    International Nuclear Information System (INIS)

    Wang, S.T.; Bulmer, R.; Hanson, C.; Hinkle, R.; Kozman, T.; Shimer, D.; Tatro, R.; VanSant, J.; Wohlwend, J.

    1982-01-01

    The Axicell MFTF-B magnet system will provide the field environment necessary for tandem mirror plasma physics investigation with thermal barriers. The performance of the device will stimulate DT to achieve energy break-even plasma conditions. Operation will be with deuterium only. There will be 24 superconducting coils consisting of 2 sets of yin-yang pairs, 14 central-cell solenoids, 2 sets of axicell mirror-coil pairs, and 2 transition coils between the axicell mirror coil-pairs and the yin-yang coils. This paper describes the progress in the design and construction of MFTF-B Superconducting-Magnet System

  3. A type of 2D magnetic equivalent circuit framework of permanent magnet for magnetic system in AEMR

    Directory of Open Access Journals (Sweden)

    Huimin Liang

    2015-02-01

    Full Text Available Modeling of permanent magnet (PM is very important in the process of electromagnetic system calculation of aerospace electromagnetic relay (AEMR. In traditional analytical calculation, PM is often equivalent to a lumped parameter model of one magnetic resistance and one magnetic potential, but great error is often caused for the inner differences of PM; based on the conception of flux tube, a type of 2D magnetic equivalent circuit framework of permanent magnet model (2D MECF is established; the element is defined, the relationship between elements is deduced, and solution procedure as well as verification condition of this model is given; by a case study of the electromagnetic system of a certain type of AEMR, the electromagnetic system calculation model is established based on 2D MECF and the attractive force at different rotation angles is calculated; the proposed method is compared with the traditional lumped parameter model and finite element method (FEM; for some types of electromagnetic systems with symmetrical structure, 2D MECF proves to be of acceptable accuracy and high calculation speed which fit the requirement of robust design for AEMR.

  4. A software packadge linking PE2D and ANSYS for SSC magnet design

    International Nuclear Information System (INIS)

    Kallas, N.; Haddock, C.; Jayakumar, J.; Orrell, D.; Snitchler, G.; Spigo, G.; Turner, J.

    1991-05-01

    The design of the Cold Mass(CM) of superconducting magnets at the Magnet Systems Division(MSD) of the Superconducting Super Collider Laboratory(SSCL) involves among others the optimization of field quality and structural performance as related to the quench behavior of the magnets. It is desirable to be able to study the changes in field quality due to dimensional changes of the cold mass components under stress as the magnet is cooled and energized. This document describes a software package of functions which enable the computer aided study of this aspect of cold mass design. 9 refs., 6 figs., 1 tab

  5. Design of magnetic coordination complexes for quantum computing.

    Science.gov (United States)

    Aromí, Guillem; Aguilà, David; Gamez, Patrick; Luis, Fernando; Roubeau, Olivier

    2012-01-21

    A very exciting prospect in coordination chemistry is to manipulate spins within magnetic complexes for the realization of quantum logic operations. An introduction to the requirements for a paramagnetic molecule to act as a 2-qubit quantum gate is provided in this tutorial review. We propose synthetic methods aimed at accessing such type of functional molecules, based on ligand design and inorganic synthesis. Two strategies are presented: (i) the first consists in targeting molecules containing a pair of well-defined and weakly coupled paramagnetic metal aggregates, each acting as a carrier of one potential qubit, (ii) the second is the design of dinuclear complexes of anisotropic metal ions, exhibiting dissimilar environments and feeble magnetic coupling. The first systems obtained from this synthetic program are presented here and their properties are discussed.

  6. Aspects of safety and reliability for fusion magnet systems first annual report

    International Nuclear Information System (INIS)

    Powell, J.

    1976-01-01

    General systems aspects of fusion magnet safety are examined first, followed by specific detailed analyses covering structural, thermal, electrical, and other aspects of fusion magnet safety. The design examples chosen for analysis are illustrative and are not intended to be definitive, since fusion magnet designs are rapidly evolving. Included is a comprehensive collection of design and operating data relating to the safety of existing superconducting magnet systems. The remainder of the overview lists the main conclusions developed from the work to date. These should be regarded as initial steps. Since this study has concentrated on examining potential safety concerns, it may tend to overemphasize the problems of fusion magnets. In fact, many aspects of fusion magnets are well developed and are consistent with good safety practice. A short summary of the findings of this study is given

  7. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Directory of Open Access Journals (Sweden)

    Jeong-Man Kim

    2017-05-01

    Full Text Available This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE systems. In order to implement the design of linear oscillatory generator (LOG for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  8. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

    Energy Technology Data Exchange (ETDEWEB)

    Zacchia, Nicholas A.; Valentine, Megan T. [Department of Mechanical Engineering and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States)

    2015-05-15

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  9. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications.

    Science.gov (United States)

    Zacchia, Nicholas A; Valentine, Megan T

    2015-05-01

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  10. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  11. Magnetic-Field-Response Measurement-Acquisition System

    Science.gov (United States)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  12. Magnetic suspension of a rotating system. Application to inertial flywheels

    International Nuclear Information System (INIS)

    Lemarquand, Guy

    1984-01-01

    The various possible magnetic suspension configurations compatible with rotating mechanical systems are defined from studies of the characteristics of different types of magnetic bearings. The results obtained are used in the design and realization of a magnetic suspension for an inertial flywheel. (author) [fr

  13. Review of magnetic refrigeration system as alternative to conventional refrigeration system

    Science.gov (United States)

    Mezaal, N. A.; Osintsev, K. V.; Zhirgalova, T. B.

    2017-10-01

    The refrigeration system is one of the most important systems in industry. Developers are constantly seeking for how to avoid the damage to the environment. Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials, MCE warms as the magnetic moments of the atom are aligned by the application of a magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle), where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. Many magnetic refrigeration prototypes with different designs and software models have been built in different parts of the world. In this paper, the authors try to shed light on the magnetic refrigeration and show its effectiveness compared with conventional refrigeration methods.

  14. Study of magnetization switching in coupled magnetic nanostructured systems

    Science.gov (United States)

    Radu, Cosmin

    A study of magnetization dynamics experiments in nanostructured materials using the rf susceptibility tunnel diode oscillator (TDO) method is presented along with a extensive theoretical analysis. An original, computer controlled experimental setup that measures the change in susceptibility with the variation in external magnetic field and sample temperature was constructed. The TDO-based experiment design and construction is explained in detail, showing all the elements of originality. This experimental technique has proven reliable for characterizing samples with uncoupled magnetic structure and various magnetic anisotropies like: CrO2, FeCo/IrMn and Co/SiO2 thin films. The TDO was subsequently used to explore the magnetization switching in coupled magnetic systems, like synthetic antiferromagnet (SAF) structures. Magnetoresistive random access memory (MRAM) is an important example of devices where the use of SAF structure is essential. To support the understanding of the SAF magnetic behavior, its configuration and application are reviewed and more details are provided in an appendix. Current problems in increasing the scalability and decreasing the error rate of MRAM devices are closely connected to the switching properties of the SAF structures. Several theoretical studies that were devoted to the understanding of the concepts of SAF critical curve are reviewed. As one can notice, there was no experimental determination of SAF critical curve, due to the difficulties in characterizing a magnetic coupled structure. Depending of the coupling strength between the two ferromagnetic layers, on the SAF critical curve one distinguishes several new features, inexistent in the case of uncoupled systems. Knowing the configuration of the SAF critical curve is of great importance in order to control its switching characteristics. For the first time a method of experimentally recording the critical curve for SAF is proposed in this work. In order to overcome technological

  15. Design and control strategy applying the novel highly effective magnetic flux coupling (HEMFC) scheme for a non-contact power transfer system

    International Nuclear Information System (INIS)

    Chen, W.-P.; Huang, W.-N.; Chen, P.-S.; Fan, T.-Y.; Chen, M.-P.; Teng, C.-C.

    2006-01-01

    In this paper, the novel design concept for highly effective magnetic flux coupling (HEMFC) schemes, based on enhancement of path guiding effect for leakage flux transmitting, is proposed for a non-contact power transfer system. Two implementation techniques are presented herein utilizing simple structure opinions of specific slant air gap as well as adding of metal bushing components. Both simulation and experimental results demonstrate that the improvement of magnetic coupling ratio and overall system efficiency are achieved by applying the two HEMFC schemes as the power transmitting devices

  16. Design of a Resonant Magnetic Perturbation ELM Suppression System for JET

    International Nuclear Information System (INIS)

    Agarici, G.; Becoulet, M.; Nardon, E.; Saille, A.; Thomas, P.R.; Verger, J.M.

    2006-01-01

    The suppression of ELMs with a Resonant Magnetic Perturbation (RMP), as demonstrated in DIIID experiments, is an attractive solution to the problem of divertor target erosion in ITER. Ideally, the RMP should be strong at the plasma edge and weak in the core, which requires the installation of the RMP coils as close as possible to the plasma. In both ITER and JET, an installation within the vacuum vessel would subject the coils to neutron irradiation, tritium contamination and all the problems of furnishing cooling and electrical services, across many interfaces. It has been proposed to install an '' ITER prototype '' RMP on JET. The nearest ex-vessel location, which avoids these difficulties and permits a suitable perturbation field, is between the poloidal field coils, P3 and P4. The proposed RMP system consists of 18 upper and 18 lower Ergodic field coils, arranged around the torus and located ∼ 2.5 m from the plasma edge. Each coil measures 0.9 m poloidally and 1.8 m toroidally, with a 30 cm cross-section and a weight near 1,4 tonne. 400 kA per coil are necessary to produce the radial magnetic field perturbation required for a plasma of 4 MA/3.4 T. Using a standard rectangular water-cooled conductor (OFHC copper plate 50 x 12.5 mm 2 with two holes inside), the coil can be built by winding 6 x 12 turns. In order to generate the required toroidal mode, n = 3, the current direction inside the coils will alternate every 3 coils. Vertical forces, up to 36 tonnes, and radial forces, up to 18 tonnes, due to the interaction between the machine main magnetic field and the coil current are withstood by a circular structure of 4 m diameter, made-out of 2 cm thick stainless-steel plates. Since the structure is toroidally continuous, the total radial forces counter balance each-other, whilst, via vertical supports, the vertical forces are taken by the 8 iron limbs of the external magnetic circuit. The installation of the coils is simplified by the circular geometry of the

  17. Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance.

    Science.gov (United States)

    Bashyam, Ashvin; Li, Matthew; Cima, Michael J

    2018-07-01

    Single-sided NMR has the potential for broad utility and has found applications in healthcare, materials analysis, food quality assurance, and the oil and gas industry. These sensors require a remote, strong, uniform magnetic field to perform high sensitivity measurements. We demonstrate a new permanent magnet geometry, the Unilateral Linear Halbach, that combines design principles from "sweet-spot" and linear Halbach magnets to achieve this goal through more efficient use of magnetic flux. We perform sensitivity analysis using numerical simulations to produce a framework for Unilateral Linear Halbach design and assess tradeoffs between design parameters. Additionally, the use of hundreds of small, discrete magnets within the assembly allows for a tunable design, improved robustness to variability in magnetization strength, and increased safety during construction. Experimental validation using a prototype magnet shows close agreement with the simulated magnetic field. The Unilateral Linear Halbach magnet increases the sensitivity, portability, and versatility of single-sided NMR. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A spiral, bi-planar gradient coil design for open magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Peng; Shi, Yikai; Wang, Wendong; Wang, Yaohui

    2018-01-01

    To design planar gradient coil for MRI applications without discretization of continuous current density and loop-loop connection errors. In the new design method, the coil current is represented using a spiral curve function described by just a few control parameters. Using a proper parametric equation set, an ensemble of spiral contours is reshaped to satisfy the coil design requirements, such as gradient linearity, inductance and shielding. In the given case study, by using the spiral coil design, the magnetic field errors in the imaging area were reduced from 5.19% (non-spiral design) to 4.47% (spiral design) for the transverse gradient coils, and for the longitudinal gradient coil design, the magnetic field errors were reduced to 5.02% (spiral design). The numerical evaluation shows that when compared with conventional wire loop, the inductance and resistance of spiral coil was reduced by 11.55% and 8.12% for x gradient coil, respectively. A novel spiral gradient coil design for biplanar MRI systems, the new design offers better magnetic field gradients, smooth contours than the conventional connected counterpart, which improves manufacturability.

  19. Force characteristic analysis of a magnetic gravity compensator with annular magnet array for magnetic levitation positioning system

    Science.gov (United States)

    Zhou, Yiheng; Kou, Baoquan; Liu, Peng; Zhang, He; Xing, Feng; Yang, Xiaobao

    2018-05-01

    Magnetic levitation positioning system (MLPS) is considered to be the state of the art in inspection and manufacturing systems in vacuum. In this paper, a magnetic gravity compensator with annular magnet array (AMA-MGC) for MLPS is proposed. Benefiting from the double-layer annular Halbach magnet array on the stator, the proposed AMA-MGC possesses the advantages of symmetrical force, high force density and small force fluctuation. Firstly, the basic structure and operation principle of the AMA-MGC are introduced. Secondly, the basic characteristics of the AMA-MGC such as magnetic field distribution, levitation force, parasitic force and parasitic torque are analyzed by the three-dimensional finite element analysis (3-D FEA). Thirdly, the influence of structural parameters on force density and force fluctuation is investigated, which is conductive to the design and optimization of the AMA-MGC. Finally, a prototype of the AMA-MGC is constructed, and the experiment shows good agreement with the 3-D FEA results.

  20. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M., E-mail: mike.schmidt@dreebit.com [DREEBIT GmbH, 01109 Dresden (Germany); Zschornack, G.; Kentsch, U.; Ritter, E. [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany)

    2014-02-15

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  1. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions.

    Science.gov (United States)

    Schmidt, M; Zschornack, G; Kentsch, U; Ritter, E

    2014-02-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  2. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    International Nuclear Information System (INIS)

    Schmidt, M.; Zschornack, G.; Kentsch, U.; Ritter, E.

    2014-01-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup

  3. Design scoping study of the 12T Yin-Yang magnet system for the Tandem Mirror Next Step (TMNS). Final report

    International Nuclear Information System (INIS)

    1981-09-01

    The overall objective of this engineering study was to determine the feasibility of designing a Yin-Yang magnet capable of producing a peak field in the windings of 12T for the Tandem Mirror Next Step (TMNS) program. As part of this technical study, a rough order of magnitude (ROM) cost estimate of the winding for this magnet was undertaken. The preferred approach to the winding design of the TMNS plug coil utilizes innovative design concepts to meet the structural, electrical and thermodynamic requirements of the magnet system. Structurally, the coil is radially partitioned into four sections, preventing the accumulation of the radial loads and reacting them into the structural case. To safely dissipate the 13.34 GJ of energy stored in each Yin-Yang magnet, the winding has been electrically subdivided into parallel or nested coils, each having its own power supply and protection circuitry. This arrangement effectively divides the total stored energy of the coils into manageable subsystems. The windings are cooled with superfluid helium II, operated at 1.8K and 1.2 atmospheres. The superior cooling capabilities of helium II have enabled the overall winding envelope to be minimized, providing a current density of 2367 A/CM 2 , excluding substructure

  4. Selection of the optimum magnet design for the International Linear Collider positron source helical undulator

    Directory of Open Access Journals (Sweden)

    D. J. Scott

    2007-03-01

    Full Text Available A comparison of possible undulator designs for the International Linear Collider positron source has resulted in a superconducting bifilar wire design being selected. After a comprehensive paper study and fabrication of the two preeminent designs, the superconducting undulator was chosen instead of the permanent magnet alternative. This was because of its superior performance in terms of magnetic field strength and quality, operational flexibility, risk of radiation damage, ease in achieving the required vacuum, and cost. The superconducting undulator design will now be developed into a complete system design for the full 200 m long magnet that is required.

  5. Embedded Sensors and Controls to Improve Component Performance and Reliability - System Dynamics Modeling and Control System Design

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-10-01

    This report documents the current status of the modeling, control design, and embedded control research for the magnetic bearing canned rotor pump being used as a demonstration platform for deeply integrating instrumentation and controls (I{\\&}C) into nuclear power plant components. This pump is a highly inter-connected thermo/electro/mechanical system that requires an active control system to operate. Magnetic bearings are inherently unstable system and without active, moment by moment control, the rotor would contact fixed surfaces in the pump causing physical damage. This report details the modeling of the pump rotordynamics, fluid forces, electromagnetic properties of the protective cans, active magnetic bearings, power electronics, and interactions between different dynamical models. The system stability of the unforced and controlled rotor are investigated analytically. Additionally, controllers are designed using proportional derivative (PD) control, proportional integral derivative (PID) control, voltage control, and linear quadratic regulator (LQR) control. Finally, a design optimization problem that joins the electrical, mechanical, magnetic, and control system design into one problem to balance the opposing needs of various design criteria using the embedded system approach is presented.

  6. Superconducting electromagnets for large wind tunnel magnetic suspension and balance systems

    International Nuclear Information System (INIS)

    Boom, R.W.; Abdelsalam, M.K.; Bakerek, K.

    1985-01-01

    This paper presents a new design study of a Magnetic Suspension and Balance System (MSBS) for airplane models in a large 8 ft x 8 ft wind tunnel. New developments in the design include: use of a superconducting solenoid as a model core instead of magnetized iron; combination of permanent magnet material in the model wings along with four race-track coils to produce the required roll torque; and mounting of all the magnets in an integral cold structure instead of in separate cryostats. Design of superconducting solenoid model cores and practical experience with a small-scale prototype are discussed

  7. A water-cooled 13-kG magnet system

    International Nuclear Information System (INIS)

    Rossi, J.O.; Goncalves, J.A.N.; Barroso, J.J.; Patire Junior, H.; Spassovsky, I.P.; Castro, P.J.

    1993-01-01

    The construction, performance, and reliability of a high field magnet system are reported. The magnet is designed to generate a flat top 13 kG magnetic induction required for the operation of a 35 GHz, 100 k W gyrotron under development at INPE. The system comprises three solenoids, located in the gun, cavity, and collector regions, consisting of split pair magnets with the field direction vertical. The magnets are wound from insulated copper tube whose rectangular cross section has 5.0 mm-diameter hole leading the cooling water. On account of the high power (∼ 100 k W) supplied to the cavity coils, it turned out necessary to employ a cooling system which includes hydraulic pump a heat exchanger. The collector and gun magnets operate at lower DC current (∼ 150 A), and, in this case, flowing water provided by wall pipes is far enough to cool down the coils. In addition, a 250 k V A high power AC/DC Nutek converser is used to supply power to the cavity magnet. For the collector and gun magnets, 30 V/600 A DC power supplies are used. (author)

  8. Designing magnetic composite materials using aqueous magnetic fluids

    CERN Document Server

    Galicia, J A; Cousin, F; Guemghar, D; Menager, C; Cabuil, V

    2003-01-01

    In this paper, we report on how to take advantage of good knowledge of both the chemistry and the stability of an aqueous magnetic colloidal suspension to realize different magnetic composites. The osmotic pressure of the magnetic nanoparticles is set prior to the realization of the composite to a given value specially designed for the purpose for each hybrid material: magnetic particles in polymer networks, particles as probes for studying the structure of clay suspensions and shape modification of giant liposomes. First, we show that the introduction of magnetic particles in polyacrylamide gels enhances their Young modulus and reduces the swelling caused by water. The particles cause both a mechanical and an osmotic effect. The latter is strongly dependent on the ionic strength and is attributed to an attraction between particles and the polymeric matrix. In the second part, we determine the microscopic structure of suspensions of laponite as a function of concentration, by combining SANS and magneto-optica...

  9. Accelerator Quality HTS Dipole Magnet Demonstrator designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

    CERN Document Server

    Kirby, G; Ballarino, A; Bottura, L; Chouika, N; Clement, S; Datskov, V; Fajardo, L; Fleiter, J; Gauthier, R; Lambert, L; Lopes, M; Perez, J; DeRijk, G; Rijllart, A; Rossi, L; Ten Kate, H; Durante, M; Fazilleau, P; Lorin, C; Haro, E; Stenvall, A; Caspi, S; Marchevsky, M; Goldacker, W; Kario, A

    2014-01-01

    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development.

  10. Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

    CERN Document Server

    Kirby, G A; Ballarino, A; Bottura, L; Chouika, N; Clement, S; Datskov, V; Fajardo, L; Fleiter, J; Gauthier, R; Gentini, L; Lambert, L; Lopes, M; Perez, J C; de Rijk, G; Rijllart, A; Rossi, L; ten Kate, H; Durante, M; Fazilleau, P; Lorin, C; Härö, E; Stenvall, A; Caspi, S; Marchevsky, M; Goldacker, W; Kario, A

    2015-01-01

    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development.

  11. Development of a Superconducting Magnet System for the ONR/General Atomics Homopolar Motor

    Science.gov (United States)

    Schaubel, K. M.; Langhorn, A. R.; Creedon, W. P.; Johanson, N. W.; Sheynin, S.; Thome, R. J.

    2006-04-01

    This paper describes the design, testing and operational experience of a superconducting magnet system presently in use on the Homopolar Motor Program. The homopolar motor is presently being tested at General Atomics in San Diego, California for the U.S Navy Office of Naval Research. The magnet system consists of two identical superconducting solenoid coils housed in two cryostats mounted integrally within the homopolar motor housing. The coils provide the static magnetic field required for motor operation and are wound using NbTi superconductor in a copper matrix. Each magnet is conduction cooled using a Gifford McMahon cryocooler. The coils are in close proximity to the iron motor housing requiring a cold to warm support structure with high stiffness and strength. The design of the coils, cold to warm support structure, cryogenic system, and the overall magnet system design will be described. The test results and operational experience will also be described.

  12. Mechanical design of a high field common coil magnet

    CERN Document Server

    Caspi, S; Dietderich, D R; Gourlay, S A; Gupta, R; McInturff, A; Millos, G; Scanlan, R M

    1999-01-01

    A common coil design for high field 2-in-1 accelerator magnets has been previously presented as a "conductor-friendly" option for high field magnets applicable for a Very Large Hadron Collider. This paper presents the mechanical design for a 14 tesla 2-in-1 dipole based on the common coil design approach. The magnet will use a high current density Nb/sub 3/Sn conductor. The design addresses mechanical issues particular to the common coil geometry: horizontal support against coil edges, vertical preload on coil faces, end loading and support, and coil stresses and strains. The magnet is the second in a series of racetrack coil magnets that will provide experimental verification of the common coil design approach. (9 refs).

  13. Design of force-cooled conductors for large fusion magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems.

  14. Design of force-cooled conductors for large fusion magnets

    International Nuclear Information System (INIS)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems

  15. Magnetic Materials Characterization and Modeling for the Enhanced Design of Magnetic Shielding of Cryomodules in Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Sanjay [Virginia Commonwealth Univ., Richmond, VA (United States)

    2016-05-31

    Particle accelerators produce beams of high-energy particles, which are used for both fundamental and applied scientific research and are critical to the development of accelerator driven sub-critical reactor systems. An effective magnetic shield is very important to achieve higher quality factor (Qo) of the cryomodule of a particle accelerator. The allowed value of field inside the cavity due to all external fields (particularly the Earth’s magnetic field) is ~15 mG or less. The goal of this PhD dissertation is to comprehensively study the magnetic properties of commonly used magnetic shielding materials at both cryogenic and room temperatures. This knowledge can be used for the enhanced design of magnetic shields of cryomodes (CM) in particle accelerators. To this end, we first studied the temperature dependent magnetization behavior (M-H curves) of Amumetal and A4K under different annealing and deformation conditions. This characterized the effect of stress or deformation induced during the manufacturing processes and subsequent restoration of high permeability with appropriate heat treatment. Next, an energy based stochastic model for temperature dependent anhysteretic magnetization behavior of ferromagnetic materials was proposed and benchmarked against experimental data. We show that this model is able to simulate and explain the magnetic behavior of as rolled, deformed and annealed amumetal and A4K over a large range of temperatures. The experimental results for permeability are then used in a finite element model (FEM) in COMSOL to evaluate the shielding effectiveness of multiple shield designs at room temperature as well as cryogenic temperature. This work could serve as a guideline for future design, development and fabrication of magnetic shields of CMs.

  16. Periodic permanent magnet focusing system with high peak field

    International Nuclear Information System (INIS)

    Zhang Hong; Liu Weiwei; Bai Shuxin; Chen Ke

    2008-01-01

    In this study, hybrid periodic permanent magnet (PPM) system is studied, which has high axial magnetic field and low magnetic leakage. By simulation computation, some laws of magnetic field distribution vs. structure dimensions were obtained. A hybrid PPM is designed and constructed whose peak field reaches 0.6 T. The factors inducing discrepancies between computational results and practical measurements are analyzed. The magnetic field distribution is very sensitive to the variations of constructional parameters. Construction accuracy greatly influences the magnetic field distribution. Research results obtained here are potentially valuable for future work

  17. Intelligent CAE system of CYCLONE type cyclotron main magnet and its applications

    International Nuclear Information System (INIS)

    Zhang Tianjue; Chen Yong; Fan Mingwu

    1993-01-01

    The main magnet that features the cyclotron is the most important part in a cyclotron construction. Though there are many codes devoted to solving magnetic field computation problems, the results depend on the user's skill and experience very much. To help a cyclotron magnet designer get acceptable results, an intelligent CAE system for CYCLONE type cyclotron magnet design and machining has been developed. Reasonable good results could be got even the designer with the help from an expert knowledge library installed in the program

  18. LHC II system sensitivity to magnetic fluids

    CERN Document Server

    Cotae, Vlad

    2005-01-01

    Experiments have been designed to reveal the influences of ferrofluid treatment and static magnetic field exposure on the photosynthetic system II, where the light harvesting complex (LHC II) controls the ratio chlorophyll a/ chlorophyll b (revealing, indirectly, the photosynthesis rate). Spectrophotometric measurement of chlorophyll content revealed different influences for relatively low ferrofluid concentrations (10-30 mul/l) in comparison to higher concentrations (70-100 mul/l). The overlapped effect of the static magnetic field shaped better the stimulatory ferrofluid action on LHC II system in young poppy plantlets.

  19. Intelligent CAE system of CYCLONE type cyclotron main magnet and its applications

    International Nuclear Information System (INIS)

    Zhang Tianjue; Chen Yong; Fan Mingwu

    1992-07-01

    The main magnet that represents the feature of the cyclotron is the most important part in a cyclotron construction. Though there are many codes devoted to solve magnetic field computation problems, the results from them depend on the user's skill and experience very much. To help cyclotron magnet designer to get acceptable results, an intelligent CAE (computer aided engineering) system for CYCLONE type cyclotron magnet design and machining has been developed. A reasonable good results in the design could be got even if the designer is a beginner, because of the help from an expert knowledge library installed in the program

  20. Design and implementation of data acquisition system for magnets of SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Doshi, K., E-mail: pushpuk@ipr.res.in; Pradhan, S.; Masand, H.; Khristi, Y.; Dhongde, J.; Sharma, A.; Parghi, B.; Varmora, P.; Prasad, U.; Patel, D.

    2014-05-15

    The magnet system of the Steady-State Superconducting Tokamak-1 at the Institute for Plasma Research, Gandhinagar, India, consists of sixteen toroidal field and nine poloidal field. Superconducting coils together with a pair of resistive PF coils, an air core ohmic transformer and a pair of vertical field coils. These magnets are instrumented with various cryogenic compatible sensors and voltage taps for its monitoring, operation, protection, and control during different machine operational scenarios like cryogenic cool down, current charging cycles including ramp up, flat top, plasma breakdown, dumping/ramp down and warm up. The data acquisition system for these magnet instrumentation have stringent requirement regarding operational flexibility, reliability for continuous long term operation and data visualization during operations. A VME hardware based data acquisition system with ethernet based remote system architecture is implemented for data acquisition and control of the complete magnet operation. Software application is developed in three parts namely an embedded VME target, a network server and a remote client applications. A target board application implemented with real time operating system takes care of hardware configuration and raw data transmission to server application. A java server application manages several activities mainly multiple client communication over ethernet, database interface and data storage. A java based platform independent desktop client application is developed for online and offline data visualization, remote hard ware configuration and many other user interface tasks. The application has two modes of operation to cater to different needs of cool-down and charging operations. This paper describes application architecture, installation and commissioning and operational experience from the recent campaigns of SST-1.

  1. Neural control of magnetic suspension systems

    Science.gov (United States)

    Gray, W. Steven

    1993-01-01

    The purpose of this research program is to design, build and test (in cooperation with NASA personnel from the NASA Langley Research Center) neural controllers for two different small air-gap magnetic suspension systems. The general objective of the program is to study neural network architectures for the purpose of control in an experimental setting and to demonstrate the feasibility of the concept. The specific objectives of the research program are: (1) to demonstrate through simulation and experimentation the feasibility of using neural controllers to stabilize a nonlinear magnetic suspension system; (2) to investigate through simulation and experimentation the performance of neural controllers designs under various types of parametric and nonparametric uncertainty; (3) to investigate through simulation and experimentation various types of neural architectures for real-time control with respect to performance and complexity; and (4) to benchmark in an experimental setting the performance of neural controllers against other types of existing linear and nonlinear compensator designs. To date, the first one-dimensional, small air-gap magnetic suspension system has been built, tested and delivered to the NASA Langley Research Center. The device is currently being stabilized with a digital linear phase-lead controller. The neural controller hardware is under construction. Two different neural network paradigms are under consideration, one based on hidden layer feedforward networks trained via back propagation and one based on using Gaussian radial basis functions trained by analytical methods related to stability conditions. Some advanced nonlinear control algorithms using feedback linearization and sliding mode control are in simulation studies.

  2. The CAD concept for stellarator-type magnetic systems

    International Nuclear Information System (INIS)

    Vorobyova, V.P.; Martynov, S.A.; Khazhmuradov, M.A.

    2002-01-01

    The paper describes the computer-aided design (CAD) concept for stellarator-type magnetic systems. Consideration is given to the main peculiarities, principles, and dialog organization and design stages of the CAD. The practical realization of the concept is illustrated by specific examples

  3. CLIC project R&D studies: the magnet system for the 3 TEV

    CERN Document Server

    Modena, Michele

    2017-01-01

    This Note presents the R&D activities done and coordinated by TE-MSC Group on the magnetic system for the CLIC (Compact Linear Collider) project. The main aspects investigated are: the magnetic system definition, basic design for all magnets (i.e. a CLIC Magnet Catalogue), powering and cost evaluation, advanced design and prototyping for the most critical magnet variants. The CLIC layout here considered is the one for the highest collision energy of 3 TeV. This layout was the one studied in detail as baseline for the CLIC Conceptual Design Report that was released in 2012. This Note summarize the activities of about 6 years (2010-2016) done with the contribution of CERN staff (part-time), the contribution of some CERN Project Associates sponsored by the CLIC Project and in collaboration with STCF Daresbury Laboratory (UK).

  4. Quality control in the design, fabrication and operation of the ITER magnets

    International Nuclear Information System (INIS)

    Mitchell, N.

    2006-01-01

    The ITER magnets are a complex system involving interfaces between many advanced technologies (superconductors, forging/welding/machining of massive structures, cryogenics, composites and moulding, high voltage electrical), yet at the same time form part of the ITER 'basic machine' which is required to operate at the design parameters, broadly failure free, for the design life of the tokamak. This imposes special quality control problems for the ITER project integration by the ITER International Team (IT) through the design, fabrication and operation. The magnets are not a test bed for new technology but in spite of this must use it, successfully. There is little previous experience of such a system but full functionality is required from the start, with limited opportunity for adjustment. And, finally, costs and schedule must be contained. The procurement strategy for the machine, with magnet components being supplied 'in kind', requires particular attention to the specifications, scheduling and quality control (QC). Special issues here are the testing requirements on magnet components, especially before final installation but also at critical intermediate stages. Unnecessary or ineffective quality control procedures cause delay and high costs, and divert attention from critical items. The main points of the magnet QC programme are summarised, including the use of codes and standards, qualification, manufacturing quality assurance, commissioning and in-service inspection

  5. Magnetic design of the AC5 dipole magnet

    International Nuclear Information System (INIS)

    Randle, T.C.; Simkin, J.

    1975-11-01

    The design procedures used to obtain almost uniform fields up to 4.5 Tesla in a superconducting dipole magnet with an associated iron yoke are described, including peak field and end winding calculations. The measured fields of the manufactured magnet are compared with the calculations and it is suggested that the differences, of about 0.1% within the usable aperture, may be due to a small systematic variation of the winding uniformity in each layer. (author)

  6. TPC magnet cryogenic system

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system

  7. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok

    2014-10-15

    Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  8. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    International Nuclear Information System (INIS)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-01-01

    Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy

  9. Magnet system studies for the Zeus experiment

    International Nuclear Information System (INIS)

    Baynham, D.E.; Coombs, R.C.; Uden, C.N.

    1985-11-01

    The ZEUS experiment will be mounted at the HERA accelerator complex currently under construction at DESY, Hamburg. A large volume of magnetic field will be required for charge selection of particles and track fitting. Two superconducting magnet systems which meet the parameters of the ZEUS Experiment are described; a small solenoid with good radiation transparency and a large aperture Helmholtz coil configuration. Basic design concepts and parameters are presented. (author)

  10. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    Science.gov (United States)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active-magnetic

  11. Electrical protection of superconducting magnet systems

    International Nuclear Information System (INIS)

    Sutter, D.F.; Flora, R.H.

    1975-01-01

    The problem of dissipating the energy stored in the field of a superconducting magnet when a quench occurs has received considerable study. However, when the magnet becomes a system 4 miles in length whose normal operation is an ac mode, some re-examination of standard techniques for dissipating energy outside the magnets is in order. Data accumulated in the Fermilab Energy Doubler magnet development program shows that heating associated with the temporal and spatial development of quenches is highly localized and can result in temperatures damaging to the superconducting wire. The design and operation are discussed for several energy dumping schemes, compatible with the operation of ac superconducting magnets, wherein more than 70 percent of the stored energy can be dissipated outside the magnet. Instrumentation to detect quenches early in their development and circuits for dumping the field energy are described, and representative operating performance data for the dump circuits and data showing temporal development of quenches are presented. (auth)

  12. Conceptual integrated approach for the magnet system of a tokamak reactor

    International Nuclear Information System (INIS)

    Duchateau, J.-L.; Hertout, P.; Saoutic, B.; Artaud, J.-F.; Zani, L.; Reux, C.

    2014-01-01

    Highlights: • We give a conceptual approach of a fusion reactor magnet system based on analytical formula. • We give design criteria for the CS and TF cable in conduit conductors and for the magnet system structural description. • We apply this conceptual approach to ITER and we crosscheck with actual characteristics. • We apply this conceptual approach to a possible version of DEMO. - Abstract: In the framework of the reflexion about DEMO, a conceptual integrated approach for the magnet system of a tokamak reactor is presented. This objective is reached using analytical formulas which are presented in this paper, coupled to a Fortran code ESCORT (Electromagnetic Superconducting System for the Computation of Research Tokamaks), to be integrated into SYCOMORE, a code for reactor modelling presently in development at CEA/IRFM in Cadarache, using the tools of the EFDA Integrated Tokamak Modelling task force. The analytical formulas deal with all aspects of the magnet system, starting from the derivation of the TF system general geometry, from the plasma main characteristics. The design criteria for the cable current density and the structural design of the toroidal field and central solenoid systems are presented, enabling to deliver the radial thicknesses of the magnets and enabling also to estimate the plasma duration of the plateau. As a matter of fact, a pulsed version DEMO is presently actively considered in the European programmes. Considerations regarding the cryogenics and the protection are given, affecting the general design. An application of the conceptual approach is presented, allowing a comparison between ESCORT output data and actual ITER parameters and giving the main characteristics of a possible version for DEMO

  13. Mechanical Design of Superconducting Accelerator Magnets

    International Nuclear Information System (INIS)

    Toral, F

    2014-01-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques

  14. Mechanical Design of Superconducting Accelerator Magnets

    CERN Document Server

    Toral, Fernando

    2014-07-17

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  15. Mechanical Design of Superconducting Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Toral, F [Madrid, CIEMAT (Spain)

    2014-07-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  16. Magnetic field models and their application in optimal magnetic divertor design

    Energy Technology Data Exchange (ETDEWEB)

    Blommaert, M.; Reiter, D. [Institute of Energy and Climate Research (IEK-4), FZ Juelich GmbH, Juelich (Germany); Baelmans, M. [KU Leuven, Department of Mechanical Engineering, Leuven (Belgium); Heumann, H. [TEAM CASTOR, INRIA Sophia Antipolis (France); Marandet, Y.; Bufferand, H. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Gauger, N.R. [TU Kaiserslautern, Chair for Scientific Computing, Kaiserslautern (Germany)

    2016-08-15

    In recent automated design studies, optimal design methods were introduced to successfully reduce the often excessive heat loads that threaten the divertor target surface. To this end, divertor coils were controlled to improve the magnetic configuration. The divertor performance was then evaluated using a plasma edge transport code and a ''vacuum approach'' for magnetic field perturbations. Recent integration of a free boundary equilibrium (FBE) solver allows to assess the validity of the vacuum approach. It is found that the absence of plasma response currents significantly limits the accuracy of the vacuum approach. Therefore, the optimal magnetic divertor design procedure is extended to incorporate full FBE solutions. The novel procedure is applied to obtain first results for the new WEST (Tungsten Environment in Steady-state Tokamak) divertor currently under construction in the Tore Supra tokamak at CEA (Commissariat a l'Energie Atomique, France). The sensitivities and the related divertor optimization paths are strongly affected by the extension of the magnetic model. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Magnet design for a low-emittance storage ring

    Science.gov (United States)

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  18. Design and analysis of a field modulated magnetic screw for artificial heart

    Science.gov (United States)

    Ling, Zhijian; Ji, Jinghua; Wang, Fangqun; Bian, Fangfang

    2017-05-01

    This paper proposes a new electromechanical energy conversion system, called Field Modulated Magnetic Screw (FMMS) as a high force density linear actuator for artificial heart. This device is based on the concept of magnetic screw and linear magnetic gear. The proposed FMMS consists of three parts with the outer and inner carrying the radially magnetized helically permanent-magnet (PM), and the intermediate having a set of helically ferromagnetic pole pieces, which modulate the magnetic fields produced by the PMs. The configuration of the newly designed FMMS is presented and its electromagnetic performances are analyzed by using the finite-element analysis, verifying the advantages of the proposed structure.

  19. The electromagnetic design of a permanent magnet based separator

    International Nuclear Information System (INIS)

    Nedelcu, S.

    2002-08-01

    The aim of this work was to design a permanent magnet based device that can selectively transport paramagnetic particles. Using specialised electromagnetic design software various arrangements of permanent magnets have been investigated. Each test geometry had to be constructively simple and able to produce highly non-uniform magnetic fields before being considered further in any more detail. The main parameter to indicate that the test geometry might be a suitable device has been ascribed to the ratio η between the highest (ON) and lowest (OFF) magnetic fields that were measured. A linear arrangement of permanent magnets has been considered first. This device produced a ratio η ∼ 2. Further, the cylindrical and the tubular arrangements may be considered as substantial improvements over the first geometry. The OFF magnetic fields have been substantially reduced by the method of magnetic shielding. Intensive research and modelling has been spent on addressing the problem of finding the optimal geometry for such arrangements. An experimental system has been also built, and the experimental values were compared against the theory. However, the results produced evidence that the manufacturing of any improved geometry (an estimated η ∼ 100) in this direction might be very difficult, for the tolerances involved were very strict. The disk arrangement was the latest device to be investigated. Particularly, a magnetic dipole model developed earlier for the ring arrangement suggested the way in which to arrange the magnets in the ON position. Moreover, the use of the magnetic symmetry of the device forced the OFF magnetic fields to negligible values. Detailed computer simulations of the dynamics of the particles in the applied magnetic field of the tubular and disk arrangements have been earned out. The adopted models could show realistic phenomena, e.g. particle clustering, chaining, block movement, etc. The separation efficiency proved to be nearly 100%. For the

  20. Automatic design of permanent magnet coupling

    International Nuclear Information System (INIS)

    Yonnet, J.-P.; Pandele, P.; Coutel, C.; Wurtz, F.

    1998-01-01

    Up to now, two main methods have been used to design permanent magnet couplings : finite element calculation, and analytical expressions of the forces between the magnets. The two methods use the same starting point, the permanent magnet coupling dimensions. The calculated parameters are the forces and the torques. The optimization of the couplings shape is generally done by using different curves describing torque variations as a function of the different geometrical parameters. We have developed a very new approach solving the reverse problem. Choosing the value of the torque, the airgap and an optimization criterium, the new method automatically calculates the size of the magnets and the ideal number of poles. It is based on a software, PASCOSMA, using an analytical model of the coupling which can be eventually corrected by a finite element method like FLUX2D. The coupling optimization is automatically made, keeping the parameters between predefined values. For a given application, it is very easy to obtain the best design, for example with the minimum magnet volume. (orig.)

  1. TPX: Contractor preliminary design review. Volume 2, PF systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, H.A. [Lawrence Livermore National Lab., CA (United States)

    1995-07-28

    This system development specification covers the Poloidal Field (PF) Magnet System, WBS 14 in the Princeton Plasma Physics Laboratory TPX Program to build a tokamak fusion reactor. This specification establishes the performance, design, development and test requirements of the PF Magnet System.

  2. TPX: Contractor preliminary design review. Volume 2, PF systems engineering

    International Nuclear Information System (INIS)

    Calvin, H.A.

    1995-01-01

    This system development specification covers the Poloidal Field (PF) Magnet System, WBS 14 in the Princeton Plasma Physics Laboratory TPX Program to build a tokamak fusion reactor. This specification establishes the performance, design, development and test requirements of the PF Magnet System

  3. Magnetic Field Response Measurement Acquisition System

    Science.gov (United States)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  4. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Science.gov (United States)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-10-01

    A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium-titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  5. Magnet Systems

    Data.gov (United States)

    Federal Laboratory Consortium — Over the decades, Fermilab has been responsible for the design, construction, test and analysis of hundreds of conventional and superconducting accelerator magnets...

  6. Active tensor magnetic gradiometer system final report for Project MM–1514

    Science.gov (United States)

    Smith, David V.; Phillips, Jeffrey D.; Hutton, S. Raymond

    2014-01-01

    An interactive computer simulation program, based on physical models of system sensors, platform geometry, Earth environment, and spheroidal magnetically-permeable targets, was developed to generate synthetic magnetic field data from a conceptual tensor magnetic gradiometer system equipped with an active primary field generator. The system sensors emulate the prototype tensor magnetic gradiometer system (TMGS) developed under a separate contract for unexploded ordnance (UXO) detection and classification. Time-series data from different simulation scenarios were analyzed to recover physical dimensions of the target source. Helbig-Euler simulations were run with rectangular and rod-like source bodies to determine whether such a system could separate the induced component of the magnetization from the remanent component for each target. This report concludes with an engineering assessment of a practical system design.

  7. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    Science.gov (United States)

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Design study of the KIRAMS-430 superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-01-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the "1"2C"6"+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  9. Design study of the KIRAMS-430 superconducting cyclotron magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Wook; Kang, Joonsun, E-mail: genuinei@kirams.re.kr; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the {sup 12}C{sup 6+} ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  10. HTS Insert Magnet Design Study

    CERN Document Server

    Devaux, M; Fleiter, J; Fazilleau, P; Lécrevisse, T; Pes, C; Rey, J-M; Rifflet, J-M; Sorbi, M; Stenvall, A; Tixador, P; Volpini, G

    2011-01-01

    Future accelerator magnets will need to reach higher field in the range of 20 T. This field level is very difficult to reach using only Low Temperature Superconductor materials whereas High Temperature Superconductors (HTS) provide interesting opportunities. High current densities and stress levels are needed to design such magnets. YBCO superconductor indeed carries large current densities under high magnetic field and provides good mechanical properties especially when produced using the IBAD approach. The HFM EUCARD program studies the design and the realization of an HTS insert of 6 T inside a Nb$_{3}$Sn dipole of 13T at 4.2 K. In the2HTS insert, engineering current densities higher than 250 MA/m under 19 T are required to fulfill the specifications. The stress level is also very severe. YBCO IBAD tapes theoretically meet these challenges from presented measurements. The insert protection is also a critical because HTS materials show low quench propagation velocities and the coupling with the Nb$_{3}$Sn m...

  11. Conceptual design of the cryostat for the new high luminosity (HL-LHC) triplet magnets

    Science.gov (United States)

    Ramos, D.; Parma, V.; Moretti, M.; Eymin, C.; Todesco, E.; Van Weelderen, R.; Prin, H.; Berkowitz Zamora, D.

    2017-12-01

    The High Luminosity LHC (HL-LHC) is a project to upgrade the LHC collider after 2020-2025 to increase the integrated luminosity by about one order of magnitude and extend the physics production until 2035. An upgrade of the focusing triplets insertion system for the ATLAS and CMS experiments is foreseen using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. This will require the design and construction of four continuous cryostats, each about sixty meters in length and one meter in diameter, for the final beam focusing quadrupoles, corrector magnets and beam separation dipoles. The design is constrained by the dimensions of the existing tunnel and accessibility restrictions imposing the integration of cryogenic piping inside the cryostat, thus resulting in a very compact integration. As the alignment and position stability of the magnets is crucial for the luminosity performance of the machine, the magnet support system must be carefully designed in order to cope with parasitic forces and thermo-mechanical load cycles. In this paper, we present the conceptual design of the cryostat and discuss the approach to address the stringent and often conflicting requirements of alignment, integration and thermal aspects.

  12. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    Directory of Open Access Journals (Sweden)

    Agustín Leobardo Herrera-May

    2016-08-01

    Full Text Available Microelectromechanical systems (MEMS resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases.

  13. Design and construction of high-frequency magnetic probe system on the HL-2A tokamak

    Science.gov (United States)

    Liang, S. Y.; Ji, X. Q.; Sun, T. F.; Xu, Yuan; Lu, J.; Yuan, B. S.; Ren, L. L.; Yang, Q. W.

    2017-12-01

    A high-frequency magnetic probe system is designed, calibrated and constructed on the HL-2A tokamak. To investigate the factors which affect the probe frequency response, the inductance and capacitance in the probe system are analyzed using an equivalent circuit. Suitable sizes and turn number of the coil, and the length of transmission cable are optimized based on the theory and detailed test in the calibration. To deal with the frequency response limitation and bake-out, the ceramic grooved technique is used and the probe is wound with a bare copper wire. A cascade filter is manufactured with a suitable bandwidth as well as a good phase consistency between channels. The system has been used in the experiment to measure high frequency (≤300 kHz) magnetohydrodynamic fluctuations, which can meet the requirement of physical analysis on HL-2A.

  14. Electro-mechanical connection system for ITER in-vessel magnetic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rizzolo, Andrea; Brombin, Matteo; Gonzalez, Winder [Consorzio RFX, Corso Stati Uniti, 4, 35127 Padova (Italy); Marconato, Nicolò, E-mail: nicolo.marconato@igi.cnr.it [Consorzio RFX, Corso Stati Uniti, 4, 35127 Padova (Italy); Peruzzo, Simone [Consorzio RFX, Corso Stati Uniti, 4, 35127 Padova (Italy); Arshad, Shakeib [Fusion for Energy, C/Josep Pla, 2, 08019 Barcelona (Spain); Ma, Yunxing; Vayakis, George [ITER Organization, Route de Vinon-sur-Verdon, 13067 St Paul Lez Durance (France); Williams, Adrian [Oxford Technologies Ltd, 7 Nuffield Way, Abingdon, Oxon, OX14 1RL (United Kingdom)

    2016-11-01

    Highlights: • Latest status of the ITER “Generic In-Vessel Magnetic Platform” design activity. • Integration within the ITER In-Vessel configuration model. • Geometry optimization based on thermo-mechanical and magnetic field 3D calculation. • Assessment of the remote handling maintenance compatibility. - Abstract: This paper presents the preliminary design of the “In-Vessel Magnetic platform”, which is a subsystem of the magnetic diagnostics formed by all the components necessary for guaranteeing the thermo-mechanical interface of the actual magnetic sensors with the vacuum vessel (VV), their protection and the electrical connection to the in-vessel wiring for the transmission of the detected signal with a minimum level of noise. The design has been developed in order to comply with different functional requirements: the mechanical attachment to the VV; the electrical connection to the in-vessel wiring; efficient heat transfer to the VV; the compatibility with Remote Handling (RH) system for replacement; the integration of metrology features for post-installation control; the Electro Magnetic Interference (EMI) shielding from Electron Cyclotron Heating (ECH) stray radiation without compromising the sensor pass band (15 kHz). Significant effort has been dedicated to develop the CAD model, integrated within the ITER In-Vessel configuration model, taking care of the geometrical compliance with the Blanket modules (modified in order to accommodate the magnetic sensors in suitable grooves) and the RH compatibility. Thorough thermo-mechanical and electro-magnetic Finite Element Method (FEM) analyses have been performed to assess the reliability of the system in standard and off-normal operating conditions for the low frequency magnetic sensors.

  15. Design Study: ELENA Bending Magnet Prototype

    CERN Document Server

    Schoerling, D

    2013-01-01

    The ELENA bending magnet prototype shall prove that the proposed design meets the requirements set by the ELENA beam dynamics. The following points will be discussed in detail: (i) production process of a magnetic yoke diluted with stainless steel plates, (ii) the stability and repeatability of the field homogeneity of such a yoke over the full working range, (iii) choice of soft magnetic steel, (iv) hysteresis effects, (v) mechanical deformations, (vi) thermal insulation to intercept heat load from baking for activation of NEG coating in the vacuum chamber, (vii) end shim design. In order to verify these points the following measurements will be performed: (i) Hall probe scanning, (ii) integrated field homogeneity measurement (DC), (iii) integrated field homogeneity measurement (AC).

  16. Development and application of a generic CFD toolkit covering the heat flows in combined solid-liquid systems with emphasis on the thermal design of HiLumi superconducting magnets

    Science.gov (United States)

    Bozza, Gennaro; Malecha, Ziemowit M.; Van Weelderen, Rob

    2016-12-01

    The main objective of this work is to develop a robust multi-region numerical toolkit for the modeling of heat flows in combined solid-liquid systems. Specifically heat transfer in complex cryogenic system geometries involving super-fluid helium. The incentive originates from the need to support the design of superconductive magnets in the framework of the HiLumi-LHC project (Brüning and Rossi, 2015) [1]. The intent is, instead of solving heat flows in restricted domains, to be able to model a full magnet section in one go including all relevant construction details as accurately as possible. The toolkit was applied to the so-called MQXF quadrupole magnet design. Parametrisation studies were used to find a compromise in thermal design and electro-mechanical construction constraints. The cooling performance is evaluated in terms of temperature margin of the magnets under full steady state heat load conditions and in terms of maximal sustainable load. We also present transient response to pulse heat loads of varying duration and power and the system response to time-varying cold source temperatures.

  17. Design and cost evaluation of generic magnetic fusion reactor using the D-D fuel cycle

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1988-01-01

    A fusion reactor systems code has been developed to evaluate the economic potential of power generation from a toroidal magnetic fusion reactor using deuterium-deuterium (D-D) fuel. A method similar to that developed by J. Sheffield, of the Oak Ridge National Laboratory, for deuterium-tritium (D-T) fuel was used to model the generic aspects of magnetic fusion reactors. The results of the systems study and cost evaluation show that the cost of electricity produced by a D-D reactor is two times higher than that produced by an equivalent D-T reactor design. The significant finding of the study is that the cost ratio between the D-D and D-T systems can potentially be reduced to 1.5 by improved engineering design and even lower by better physics performance. The absolute costs for both systems at this level are close to the costs for nuclear fission and fossil fuel plants. A design for a magnet reinforced with advanced composite materials is presented as an example of an engineering improvement that could reduce the cost of electricity produced by both reactors. However, since the magnets in the D-D reactor are much larger than in the K-T reactor, the cost ratio of the two systems is significantly reduced

  18. Design of nested Halbach cylinder arrays for magnetic refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Trevizoli, Paulo V., E-mail: trevizoli@polo.ufsc.br; Lozano, Jaime A.; Peixer, Guilherme F.; Barbosa Jr, Jader R.

    2015-12-01

    We present an experimentally validated analytical procedure to design nested Halbach cylinder arrays for magnetic cooling applications. The procedure aims at maximizing the magnetic flux density variation in the core of the array for a given set of design parameters, namely the inner diameter of the internal magnet, the air gap between the magnet cylinders, the number of segments of each magnet and the remanent flux density of the Nd{sub 2}Fe{sub 14}B magnet grade. The design procedure was assisted and verified by 3-D numerical modeling using a commercial software package. An important aspect of the optimal design is to maintain an uniform axial distribution of the magnetic flux density in the region of the inner gap occupied by the active magnetocaloric regenerator. An optimal nested Halbach cylinder array was manufactured and experimentally evaluated for the magnetic flux density in the inner gap. The analytically calculated magnetic flux density variation agreed to within 5.6% with the experimental value for the center point of the magnet gap. - Highlights: • An analytical procedure to design nested Halbach cylinder arrays is proposed. • An optimal magnet configuration was built based on the analytical procedure. • The procedure was validated with 3D COMSOL simulations and experimental data.

  19. Design of the Yang magnetically-insulated transmission line

    International Nuclear Information System (INIS)

    Gu Yuanchao; Song Shenyi

    2002-01-01

    The authors have designed a new magnetically insulated transmission line (MITL) for the Yang accelerator. The differences between the existing line and the designing one are given. The electric strength of some special regions on the lines and the inductance of the lines have been calculated. The authors have checked the states of magnetic insulation on the designing line

  20. Conceptual design of a 0.1 W magnetic refrigerator for operation between 10 K and 2 K

    International Nuclear Information System (INIS)

    Helvensteijn, B.P.M.; Kashani, A.

    1990-01-01

    The design of a magnetic refrigerator for space applications is discussed. The refrigerator is to operate in the temperature range of 10 K-2 K, at a 2 K cooling power of 0.10 W. As in other magnetic refrigerators operating in this temperature range GGG has been selected as the refrigerant. Crucial to the design of the magnetic refrigerator are the heat switches at both the hot and cold ends of the GGG pill. The 2 K heat switch utilizes a narrow He II filled gap. The 10 K heat switch is based on a narrow helium gas gap. For each switch, the helium in the gap is cycled by means of activated carbon pumps. The design concentrates on reducing the switching times of the pumps and the switches as a whole. A single stage system (one magnet; one refrigerant pill) is being developed. Continuous cooling requires the fully stationary system to have at least two stages running parallel/out of phase with each other. In order to conserve energy, it is intended to recycle the magnetic energy between the magnets. To this purpose, converter networks designed for superconducting magnetic energy storage are being studied. 17 refs

  1. Design and fabrication of the vacuum systems for TPS pulsed septum magnets

    Energy Technology Data Exchange (ETDEWEB)

    Chan, C.K.; Chang, C.C.; Chen, C.L.; Yang, C.S.; Chen, C.S.; Lin, F.Y.; Chen, J.R.

    2014-11-01

    Three in-air pulsed septum magnets were developed to inject and extract electron beams for the 3 GeV synchrotron facility, the Taiwan Photon Source (TPS). The vacuum chamber is a novel combined aluminium-stainless steel design, using a bimetallic flange to connect the two material types. To evaluate the vacuum performances of these vacuum chambers, we set up a test bench at which we simultaneously measure the rates of thermal outgassing of the aluminium chamber and the septum tube with a throughput method. The test result indicates that the rate q{sub 72} of thermal outgassing measured after 1 day from baking at 150 °C was 1×10{sup −13} mbar L s{sup −1} cm{sup −2}. The magnetic leakage measurements show the combination of conductor slitting, magnetic shielding and the aluminium vacuum chamber reduce the peak value of the leakage field integral to ∼10 G cm along the trajectory of the stored beam.

  2. Design and fabrication of the vacuum systems for TPS pulsed septum magnets

    Science.gov (United States)

    Chan, C. K.; Chang, C. C.; Chen, C. L.; Yang, C. S.; Chen, C. S.; Lin, F. Y.; Chen, J. R.

    2014-11-01

    Three in-air pulsed septum magnets were developed to inject and extract electron beams for the 3 GeV synchrotron facility, the Taiwan Photon Source (TPS). The vacuum chamber is a novel combined aluminium-stainless steel design, using a bimetallic flange to connect the two material types. To evaluate the vacuum performances of these vacuum chambers, we set up a test bench at which we simultaneously measure the rates of thermal outgassing of the aluminium chamber and the septum tube with a throughput method. The test result indicates that the rate q72 of thermal outgassing measured after 1 day from baking at 150 °C was 1×10-13 mbar L s-1 cm-2. The magnetic leakage measurements show the combination of conductor slitting, magnetic shielding and the aluminium vacuum chamber reduce the peak value of the leakage field integral to ~10 G cm along the trajectory of the stored beam.

  3. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, M.; Leung, K.K.

    1991-01-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described

  4. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  5. Magnetic circuit design of magnetically driving gliding arc discharge device

    International Nuclear Information System (INIS)

    Jiang Zhonghe; Liu Minghai; Gu Chenglin; Pan Yuan

    2002-01-01

    A gliding arc discharge driven by magnetic field at atmospheric pressure can generate non-equilibrium plasma with good confinement property, and has extensive application in the areas of microelectronic fabrication, environmental engineering, etc. The magnetic circuit of the generator is designed with the permeance method, and analytic expression is obtained on the magnetic induction, the permeant magnetic material thickness and length of air gap. The results have been compared with those of the finite element method, the difference is 3.1%. But the permeance method is more concise and convenient and more universal and economical. So the permeance method is a more credible and useful engineering arithmetic

  6. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  7. Review in Transverse Flux Permanent Magnet Generator Design

    Directory of Open Access Journals (Sweden)

    A. Ejlali

    2016-12-01

    Full Text Available Recently, Transverse Flux Permanent Magnet Generators (TFPMGs have been proposed as a possible generator in direct drive variable speed wind turbines due to their unique merits. Generally, the quality of output power in these systems is lower than multi stage fixed speed systems, because of removing the gears, so it’s important to design these kinds of generators with low ripple and lowest harmful harmonics and cogging torque that is one of the most important terms in increasing the quality of output power of generator. The objective of this paper is introducing a simple design method and optimization of high power TFPMG applied in vertical axis direct drive wind turbine system by lowest possible amplitude of cogging torque and highest possible power factor, efficiency and power density.  In order to extract the output values of generator and sensitivity analysis for design and optimization, 3D-Finite element model, has been used. This method has high accuracy and gives us a better insight of generator performance and presents back EMF, cogging torque, flux density and FFT of this TFPMG. This study can help designers in design approach of such motors.

  8. Design and Demonstration of a Test-Rig for Static Performance-Studies of Permanent Magnet Couplings

    DEFF Research Database (Denmark)

    Högberg, Stig; Jensen, Bogi Bech; Bendixen, Flemming Buus

    2013-01-01

    The design and construction of an easy-to-use test-rig for permanent magnet couplings is presented. Static torque of permanent magnet couplings as a function of angular displacement is measured of permanent magnet couplings through an semi-automated test system. The test-rig is capable of measuring...

  9. Coding and signal processing for magnetic recording systems

    CERN Document Server

    Vasic, Bane

    2004-01-01

    RECORDING SYSTEMSA BriefHistory of Magnetic Storage, Dean PalmerPhysics of Longitudinal and Perpendicular Recording, Hong Zhou, Tom Roscamp, Roy Gustafson, Eric Boernern, and Roy ChantrellThe Physics of Optical Recording, William A. Challener and Terry W. McDanielHead Design Techniques for Recording Devices, Robert E. RottmayerCOMMUNICATION AND INFORMATION THEORY OF MAGNETIC RECORDING CHANNELSModeling the Recording Channel, Jaekyun MoonSignal and Noise Generation for Magnetic Recording Channel Simulations, Xueshi Yang and Erozan M. KurtasStatistical Analysis of Digital Signals and Systems, Dra

  10. Design and characterization of permanent magnetic solenoids for REGAE

    International Nuclear Information System (INIS)

    Hachmann, M.; Flöttmann, K.; Gehrke, T.; Mayet, F.

    2016-01-01

    REGAE is a small electron linear accelerator at DESY. In order to focus short and low charged electron bunches down to a few μm permanent magnetic solenoids were designed, assembled and field measurements were done. Due to a shortage of space close to the operation area an in-vacuum solution has been chosen. Furthermore a two-ring design made of wedges has been preferred in terms of beam dynamic issues. To keep the field quality of a piecewise built magnet still high a sorting algorithm for the wedge arrangement including a simple magnetic field model has been developed and used for the construction of the magnets. The magnetic field of these solenoids has been measured with high precision and compared to simulations. - Highlights: • presenting a two-ring radially magnetized permanent magnetic solenoid design. • development of a analytical field description and field quality factor. • development of a sorting algorithm for permanent magnetic pieces to form a magnet. • performing a high-precision field measurement of a high gradient field.

  11. The magnet database system

    International Nuclear Information System (INIS)

    Baggett, P.; Delagi, N.; Leedy, R.; Marshall, W.; Robinson, S.L.; Tompkins, J.C.

    1991-01-01

    This paper describes the current status of MagCom, a central database of SSC magnet information that is available to all magnet scientists via network connections. The database has been designed to contain the specifications and measured values of important properties for major materials, plus configuration information (specifying which individual items were used in each cable, coil, and magnet) and the test results on completed magnets. These data will help magnet scientists to track and control the production process and to correlate the performance of magnets with the properties of their constituents

  12. Power supply system for the superconducting outsert of the CHMFL hybrid magnet

    Science.gov (United States)

    Fang, Z.; Zhu, J.; Chen, W.; Jiang, D.; Huang, P.; Chen, Z.; Tan, Y.; Kuang, G.

    2017-12-01

    The construction of a new hybrid magnet, consisting of a 11 T superconducting outsert and a 34 T resistive insert magnet, has been finished at the Chinese High Magnetic Field Laboratory (CHMFL) in Hefei. With a room temperature bore of 800 mm in diameter, the hybrid magnet superconducting outsert is composed of four separate Nb3Sn-based Cable-in-Conduit Conductor (CICC) coils electrically connected in series and powered by a single power supply system. The power supply system for the superconducting outsert consists of a 16 kA DC power supply, a quench protection system, a pair of 16 kA High Temperature Superconducting (HTS) current leads, and two Low Temperature Superconducting bus-lines. The design and manufacturing of the power supply system have been completed at the CHMFL. This paper describes the design features of the power supply system as well as the current fabrication condition of its main components.

  13. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M.; Leung, K.K.

    1991-05-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs

  14. Core reset system design for linear induction accelerator

    International Nuclear Information System (INIS)

    Durga Praveen Kumar, D.; Mitra, S.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    A repetitive pulsed power system based Linear Induction Accelerator (LIA-200) is being developed at BARC to get an electron beam of 200keV, 5kA, 50ns, 10-100 Hz. Amorphous core is the heart of these accelerators. It serves various functions in different subsystems viz. pulse power modulator, pulse transformer, magnetic switches and induction cavities. One of the factors that make the magnetic components compact is utilization of the total flux swing available in the core. In the present system, magnetic switches, pulse transformers, and induction cavity are designed to avail the full flux swing available in the core. For achieving this objective, flux density in the core has to be kept at the reverse saturation, before the main pulse is applied. The electrical circuit which makes it possible is called the core reset system. In this paper the details of core reset system designed for LIA-200 are described. (author)

  15. A design proposal for high field dipole magnet

    International Nuclear Information System (INIS)

    Hirabayashi, H.; Kobayashi, M.; Shintomi, T.; Tsuchiya, K.; Wake, M.

    1981-06-01

    A design of the high field dipole magnet which is going to be constructed in the KEK-Fermilab collaboration program is proposed. The central field of the magnet is meant to achieve 10 T by the use of ternary alloy conductor in the 1.8 K superfluid environment under atmospheric pressure. Since the electro-magnetic force in such a high field region is strong enough to give a fatal problem, a careful calculation is necessary for the magnet design. The program POISSON and LINDA were used for the magnetic field calculation. The computer code ISAS which is originated from NASTRAN developed at NASA was applied to calculate the stress and the deformation. A horizontal cryostat desigh for the operation of the 10 T dipole magnet is also proposed. (author)

  16. Tokamak DEMO-FNS: Concept of magnet system and vacuum chamber

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, E. A., E-mail: Azizov-EA@nrcki.ru; Ananyev, S. S. [National Research Center Kurchatov Institute (Russian Federation); Belyakov, V. A.; Bondarchuk, E. N.; Voronova, A. A. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russian Federation); Golikov, A. A. [National Research Center Kurchatov Institute (Russian Federation); Goncharov, P. R. [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Dnestrovskij, A. Yu. [National Research Center Kurchatov Institute (Russian Federation); Zapretilina, E. R. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russian Federation); Ivanov, D. P. [National Research Center Kurchatov Institute (Russian Federation); Kavin, A. A.; Kedrov, I. V. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russian Federation); Klischenko, A. V.; Kolbasov, B. N. [National Research Center Kurchatov Institute (Russian Federation); Krasnov, S. V. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russian Federation); Krylov, A. I. [National Research Center Kurchatov Institute (Russian Federation); Krylov, V. A.; Kuzmin, E. G. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russian Federation); Kuteev, B. V. [National Research Center Kurchatov Institute (Russian Federation); Labusov, A. N. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russian Federation); and others

    2016-12-15

    The level of knowledge accumulated to date in the physics and technologies of controlled thermonuclear fusion (CTF) makes it possible to begin designing fusion—fission hybrid systems that would involve a fusion neutron source (FNS) and which would admit employment for the production of fissile materials and for the transmutation of spent nuclear fuel. Modern Russian strategies for CTF development plan the construction to 2023 of tokamak-based demonstration hybrid FNS for implementing steady-state plasma burning, testing hybrid blankets, and evolving nuclear technologies. Work on designing the DEMO-FNS facility is still in its infancy. The Efremov Institute began designing its magnet system and vacuum chamber, while the Kurchatov Institute developed plasma-physics design aspects and determined basic parameters of the facility. The major radius of the plasma in the DEMO-FNS facility is R = 2.75 m, while its minor radius is a = 1 m; the plasma elongation is k{sub 95} = 2. The fusion power is P{sub FUS} = 40 MW. The toroidal magnetic field on the plasma-filament axis is B{sub t0} = 5 T. The plasma current is I{sub p} = 5 MA. The application of superconductors in the magnet system permits drastically reducing the power consumed by its magnets but requires arranging a thick radiation shield between the plasma and magnet system. The central solenoid, toroidal-field coils, and poloidal-field coils are manufactured from, respectively, Nb{sub 3}Sn, NbTi and Nb{sub 3}Sn, and NbTi. The vacuum chamber is a double-wall vessel. The space between the walls manufactured from 316L austenitic steel is filled with an iron—water radiation shield (70% of stainless steel and 30% of water).

  17. Construction program for a large superconducting MHD magnet system at the coal-fired flow facility

    International Nuclear Information System (INIS)

    Wang, S.T.; Genens, L.; Gonczy, J.; Ludwig, H.; Lieberg, M.; Kraft, E.; Gacek, D.; Huang, Y.C.; Chen, C.J.

    1980-01-01

    The Argonne National Laboratory has designed and is constructing a 6 T large aperture superconducting MHD magnet for use in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee. The magnet system consists of the superconducting magnet, a magnet power supply, an integrated instrumentation for operation, control and protection, and a complete cryogenic facility including a CTI Model 2800 helium refrigerator/liquefier with two compressors, helium gas handling system and a 7500 liter liquid helium dewar. The complete system will be tested at Argonne, IL in 1981. The magnet design is reviewed, and the coil fabrication programs are described in detail

  18. Failure modes and effects analysis of fusion magnet systems

    International Nuclear Information System (INIS)

    Zimmermann, M.; Kazimi, M.S.; Siu, N.O.; Thome, R.J.

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs

  19. Quench protection and design of large high-current-density superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.

    1981-03-01

    Although most large superconducting magnets have been designed using the concept of cryostability, there is increased need for large magnets which operate at current densities above the cryostable limit (greater than 10 8 Am -2 ). Large high current density superconducting magnets are chosen for the following reasons: reduced mass, reduced coil thickness or size, and reduced cost. The design of large high current density, adiabatically stable, superconducting magnets requires a very different set of design rules than either large cryostable superconducting magnets or small self-protected high current density magnets. The problems associated with large high current density superconducting magnets fall into three categories; (a) quench protection, (b) stress and training, and (c) cryogenic design. The three categories must be considered simultaneously. The paper discusses quench protection and its implication for magnets of large stored energies (this includes strings of smaller magnets). Training and its relationship to quench protection and magnetic strain are discussed. Examples of magnets, built at the Lawrence Berkeley Laboratory and elsewhere using the design guidelines given in this report, are presented

  20. Magnetic System for the CLAS12 Proposal

    International Nuclear Information System (INIS)

    Statera, Marco; Contalbrigo, Marco M.; Pappalardo, Luciano Libero; Barion, Luca; Bertelli, S.; Ciullo, Giuseppe; Lenisa, Paolo

    2013-01-01

    The conceptual design of a magnetic system for an experiment to measure the transverse spin effects in semi-inclusive Deep Inelastic Scattering (SIDIS) at 11 GeV with a transversely polarized target using the CLAS12 detector at Jefferson Lab is presented. A proposal has been submitted to study spin azimuthal asymmetries in SIDIS using an 11-GeV polarized electron beam from the upgraded CEBAF facility and the CLAS12 detector equipped with a transversely polarized target. The main focus of the experiment will be the measurement of transverse target single and double spin asymmetries in the reaction ep↑ -> ehX, where e is an electron, p↑ is transversely polarized proton, h is a meson (e.g., a pion or a kaon) and X is the undetected final state. The details of the conceptual design of the shielding magnetic system and transverse dipole are reported

  1. Refining design of superconducting magnets synchronous with winding using particle swarm optimization

    International Nuclear Information System (INIS)

    Du, J.J.; Wu, W.; Mei, E.M.; Yuan, P.; Ma, L.Z.; Dong, Z.W.

    2013-01-01

    Highlights: ► A method of synchronous optimization design of superconducting magnets is proposed. ► We get a refining design of a main magnet on Lanzhou Penning Trap by the method. ► We expounds the necessity of tracking optimizing of coils for magnets. ► Particle swarm optimization shows effectiveness in magnet optimization. ► The expected homogeneity of the magnet improves considerably. -- Abstract: A methodology of synchronous optimization design of magnets under construction according to original design scheme is put forward in this paper, and it has been successfully used for refining design of a superconducting magnet on Lanzhou Penning Trap (LPT). This paper expounds the necessity of tracking optimization of magnet coil in the process of traditional manufacturing, and optimization design of magnet coils by particle swarm optimization is proposed. Particle swarm optimization is turned out to be an effective design method for magnet optimization. The expected homogeneity of the magnet is improved to 200 ppm from 1150 ppm through the refining optimizing, which provides important guarantee for required homogeneity of the whole magnet

  2. Design for Fermilab main injector magnet ramps which account for hysteresis

    International Nuclear Information System (INIS)

    Brown, B.C.; Bhat, C.M.; Harding, D.J.; Martin, P.S.; Wu, G.

    1997-05-01

    Although the dominant fields in accelerator electromagnets are proportional to the excitation current, precise control of accelerator parameters requires a detailed understanding of the fields in Main Injector magnets including contribution from eddy currents, magnet saturation, and hysteresis. Operation for decelerating beam makes such considerations particularly significant. Analysis of magnet measurements and design of control system software is presented. Field saturation and its effects on low field hysteresis are accounted for in specifying the field ramps for dipole, quadrupole and sextupole magnets. Some simplifying assumptions are made which are accepted as limitations on the required ramp sequences. Specifications are provided for relating desired field ramps to required current ramps for the momentum, tune, and chromaticity control

  3. Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Sessler, A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.

  4. Electronics and instrumentation for the SST-1 superconducting magnet system

    International Nuclear Information System (INIS)

    Khristi, Yohan; Pradhan, Subrata; Varmora, Pankaj; Banaudha, Moni; Praghi, Bhadresh R.; Prasad, Upendra

    2015-01-01

    Steady State Superconducting Tokamak-1 (SST-1) at Institute for Plasma Research (IPR), India is now in operation phase. The SST-1 magnet system consists of sixteen superconducting (SC), D-shaped Toroidal Field (TF) coils and nine superconducting Poloidal Field (PF) coils together with a pair of resistive PF coils, inside the vacuum vessel of SST-1. The magnets were cooled down to 4.5 K using either supercritical or two-phase helium, after which they were charged up to 10 kA of transport current. Precise quench detection system, cryogenic temperature, magnetic field, strain, displacement, flow and pressure measurements in the Superconducting (SC) magnet were mandatory. The Quench detection electronics required to protect the SC magnets from the magnet Quench therefore system must be reliable and prompt to detect the quench from the harsh tokamak environment and high magnetic field interference. A ∼200 channels of the quench detection system for the TF magnet are working satisfactorily with its design criteria. Over ∼150 channels Temperature measurement system was implemented for the several locations in the magnet and hydraulic circuits with required accuracy of 0.1K at bellow 30K cryogenic temperature. Whereas the field, strain and displacement measurements were carried out at few predefined locations on the magnet. More than 55 channels of Flow and pressure measurements are carried out to know the cooling condition and the mass flow of the liquid helium (LHe) coolant for the SC Magnet system. This report identifies the different in-house modular signal conditioning electronics and instrumentation systems, calibration at different levels and the outcomes for the SST-1 TF magnet system. (author)

  5. Mechanical design and protection of superconducting magnets

    CERN Document Server

    Asner, Alfred M

    1978-01-01

    The principles of the mechanical design of superconducting magnets of concentric configuration, with iron low-temperature and room- temperature screening, are outlined. Measures for protection of such magnets against quench forces, are considered. (4 refs).

  6. Magnetic analysis of the magnetic field reduction system of the ITER neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Germán, E-mail: german.barrera@ciemat.es [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 22, 28040 Madrid (Spain); Ahedo, Begoña; Alonso, Javier; Ríos, Luis [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 22, 28040 Madrid (Spain); Chareyre, Julien; El-Ouazzani, Anass [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Agarici, Gilbert [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 07/08, 08019 Barcelona (Spain)

    2015-10-15

    The neutral beam system for ITER consists of two heating and current drive neutral beam injectors (HNB) and a diagnostic neutral beam (DNB) injector. The proposed physical plant layout allows a possible third HNB injector to be installed later. For the correct operation of the beam, the ion source and the ion path until it is neutralized must operate under a very low magnetic field environment. To prevent the stray ITER field from penetrating inside those mentioned critical areas, a magnetic field reduction system (MFRS) will envelop the beam vessels and the high voltage transmission lines to ion source. This system comprises the passive magnetic shield (PMS), a box like assembly of thick low carbon steel plates, and the Active Correction and Compensation Coils (ACCC), a set of coils carrying a current which depends on the tokamak stray field. This paper describes the magnetic model and analysis results presented at the PMS and ACCC preliminary design review held in ITER organization in April 2013. The paper focuses on the magnetic model description and on the description of the analysis results. The iterative process for obtaining optimized currents in the coils is presented. The set of coils currents chosen among the many possible solutions, the magnetic field results in the interest regions and the fulfillment of the magnetic field requirements are described.

  7. Conceptual design of the superconducting magnet for the 250 MeV proton cyclotron.

    Science.gov (United States)

    Ren, Yong; Liu, Xiaogang; Gao, Xiang

    2016-01-01

    The superconducting cyclotron is of great importance to treat cancer parts of the body. To reduce the operation costs, a superconducting magnet system for the 250 MeV proton cyclotron was designed to confirm the feasibility of the superconducting cyclotron. The superconducting magnet system consists of a pair of split coils, the cryostat and a pair of binary high temperature superconductor current leads. The superconducting magnet can reach a central magnetic field of about 1.155 T at 160 A. The three GM cryocooler with cooling capacities of 1.5 W at 4.5 K and 35 W at 50 K and one GM cryocooler of 100 W at 50 K were adopted to cool the superconducting magnet system through the thermosiphon technology. The four GM cryocoolers were used to cool the superconducting magnet to realize zero evaporation of the liquid helium.

  8. Optimal Design of Magnetic ComponentsinPlasma Cutting Power Supply

    Science.gov (United States)

    Jiang, J. F.; Zhu, B. R.; Zhao, W. N.; Yang, X. J.; Tang, H. J.

    2017-10-01

    Phase-shifted transformer and DC reactor are usually needed in chopper plasma cutting power supply. Because of high power rate, the loss of magnetic components may reach to several kilowatts, which seriously affects the conversion efficiency. Therefore, it is necessary to research and design low loss magnetic components by means of efficient magnetic materials and optimal design methods. The main task in this paper is to compare the core loss of different magnetic material, to analyze the influence of transformer structure, winding arrangement and wire structure on the characteristics of magnetic component. Then another task is to select suitable magnetic material, structure and wire in order to reduce the loss and volume of magnetic components. Based on the above outcome, the optimization design process of transformer and dc reactor are proposed in chopper plasma cutting power supply with a lot of solutions. These solutions are analyzed and compared before the determination of the optimal solution in order to reduce the volume and power loss of the two magnetic components and improve the conversion efficiency of plasma cutting power supply.

  9. Conceptual designs of conduction cooled MgB2 magnets for 1.5 and 3.0T full body MRI systems

    Science.gov (United States)

    Baig, Tanvir; Al Amin, Abdullah; Deissler, Robert J; Sabri, Laith; Poole, Charles; Brown, Robert W; Tomsic, Michael; Doll, David; Rindfleisch, Matthew; Peng, Xuan; Mendris, Robert; Akkus, Ozan; Sumption, Michael; Martens, Michael

    2017-01-01

    Conceptual designs of 1.5 and 3.0 T full-body magnetic resonance imaging (MRI) magnets using conduction cooled MgB2 superconductor are presented. The sizes, locations, and number of turns in the eight coil bundles are determined using optimization methods that minimize the amount of superconducting wire and produce magnetic fields with an inhomogeneity of less than 10 ppm over a 45 cm diameter spherical volume. MgB2 superconducting wire is assessed in terms of the transport, thermal, and mechanical properties for these magnet designs. Careful calculations of the normal zone propagation velocity and minimum quench energies provide support for the necessity of active quench protection instead of passive protection for medium temperature superconductors such as MgB2. A new ‘active’ protection scheme for medium Tc based MRI magnets is presented and simulations demonstrate that the magnet can be protected. Recent progress on persistent joints for multifilamentary MgB2 wire is presented. Finite difference calculations of the quench propagation and temperature rise during a quench conclude that active intervention is needed to reduce the temperature rise in the coil bundles and prevent damage to the superconductor. Comprehensive multiphysics and multiscale analytical and finite element analysis of the mechanical stress and strain in the MgB2 wire and epoxy for these designs are presented for the first time. From mechanical and thermal analysis of our designs we conclude there would be no damage to such a magnet during the manufacturing or operating stages, and that the magnet would survive various quench scenarios. This comprehensive set of magnet design considerations and analyses demonstrate the overall viability of 1.5 and 3.0 T MgB2 magnet designs. PMID:29170604

  10. Superconducting super collider second generation dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The Superconducting Super Collider, a planned colliding beam particle physics research facility, requires /approximately/10,000 superconducting devices for the control of high energy particle beams. The /approximately/7,500 collider ring superconducting dipole magnets require cryostats that are functional, cryogenically efficient, mass producible and cost effective. A second generation cryostat design has been developed utilizing the experiences gained during the construction, installation and operation of several full length first generation dipole magnet models. The nature of the cryostat improvements is presented. Considered are the connections between the magnet cold mass and its supports, cryogenic supports, cold mass axial anchor, thermal shields, insulation, vacuum vessel and interconnections. The details of the improvements are enumerated and the abstracted results of available component and system evaluations are presented. 8 refs., 11 figs

  11. Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm.

    Science.gov (United States)

    Cooley, Clarissa Zimmerman; Haskell, Melissa W; Cauley, Stephen F; Sappo, Charlotte; Lapierre, Cristen D; Ha, Christopher G; Stockmann, Jason P; Wald, Lawrence L

    2018-01-01

    Permanent magnet arrays offer several attributes attractive for the development of a low-cost portable MRI scanner for brain imaging. They offer the potential for a relatively lightweight, low to mid-field system with no cryogenics, a small fringe field, and no electrical power requirements or heat dissipation needs. The cylindrical Halbach array, however, requires external shimming or mechanical adjustments to produce B 0 fields with standard MRI homogeneity levels (e.g., 0.1 ppm over FOV), particularly when constrained or truncated geometries are needed, such as a head-only magnet where the magnet length is constrained by the shoulders. For portable scanners using rotation of the magnet for spatial encoding with generalized projections, the spatial pattern of the field is important since it acts as the encoding field. In either a static or rotating magnet, it will be important to be able to optimize the field pattern of cylindrical Halbach arrays in a way that retains construction simplicity. To achieve this, we present a method for designing an optimized cylindrical Halbach magnet using the genetic algorithm to achieve either homogeneity (for standard MRI applications) or a favorable spatial encoding field pattern (for rotational spatial encoding applications). We compare the chosen designs against a standard, fully populated sparse Halbach design, and evaluate optimized spatial encoding fields using point-spread-function and image simulations. We validate the calculations by comparing to the measured field of a constructed magnet. The experimentally implemented design produced fields in good agreement with the predicted fields, and the genetic algorithm was successful in improving the chosen metrics. For the uniform target field, an order of magnitude homogeneity improvement was achieved compared to the un-optimized, fully populated design. For the rotational encoding design the resolution uniformity is improved by 95% compared to a uniformly populated design.

  12. Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sarwar, A., E-mail: azeem@umd.edu [Fischell Department of Bioengineering, College Park, MD (United States); University of Maryland at College Park (United States); Nemirovski, A. [H. Milton Stewart School of Industrial and Systems Engineering (ISyE), Georgia Institute of Technology (United States); Shapiro, B. [Fischell Department of Bioengineering, College Park, MD (United States); Institute for Systems Research (United States); University of Maryland at College Park (United States)

    2012-03-15

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at a depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nanoparticles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm{sup 3} volume optimal Halbach design yields a 5 Multiplication-Sign greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength ({<=}1 T), size ({<=}2000 cm{sup 3}), and number of elements ({<=}36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors {<=}5 Degree-Sign), thus yielding practical designs to improve magnetic drug targeting treatment depths. - Highlights: Black-Right-Pointing-Pointer Optimization methods presented to design Halbach arrays for drug targeting. Black-Right-Pointing-Pointer The goal is to maximize forces on magnetic nanoparticles at deep tissue locations. Black-Right-Pointing-Pointer The presented methods yield provably globally optimal Halbach

  13. Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles

    International Nuclear Information System (INIS)

    Sarwar, A.; Nemirovski, A.; Shapiro, B.

    2012-01-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at a depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nanoparticles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm 3 volume optimal Halbach design yields a 5× greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤1 T), size (≤2000 cm 3 ), and number of elements (≤36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤5°), thus yielding practical designs to improve magnetic drug targeting treatment depths. - Highlights: ► Optimization methods presented to design Halbach arrays for drug targeting. ► The goal is to maximize forces on magnetic nanoparticles at deep tissue locations. ► The presented methods yield provably globally optimal Halbach designs in 2D and 3D. ► These designs significantly outperform benchmark magnets of the same size and strength. ► These

  14. SLC Arc transport system: AG-magnet measurement and performance

    International Nuclear Information System (INIS)

    Weng, W.T.; Anderson, M.; Byers, R.; Cobb, J.; Fischer, G.; Hamilton, V.

    1985-03-01

    This paper describes the design, construction, and operation of devices used to rapidly measure the mechanical and magnetic properties of some 950 Alternate gradient magnets used in the arc system of the Stanford Linear Collider. The problems of dealing with the measurement of the transverse dimensions to within minute (0.0001 in.) resolution of objects that are 8 ft long are discussed. Early results from the production runs of these magnets are presented. 7 refs., 6 figs

  15. The LHC magnet system and its status of development

    Science.gov (United States)

    Bona, Maurizio; Perin, Romeo; Vlogaert, Jos

    1995-01-01

    CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.

  16. Ultraprecise magnet design and shimming

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1987-01-01

    Computer studies of pole design and magnet shimming techniques are discussed for a very precise 14.72 kG iron core storage ring magnet to be used for the proposed measurement of the muon anomalous magnetic moment. The experiment requires knowledge of the field in the 7m radius storage ring dipole to approximately 0.1 ppM (1 x 10 -7 ). The goal is to produce field uniformity of approximately 1 ppM. Practical and mathematical limitations prevent obtaining such accuracy directly with a computer code such as POISSON, which is used in this study. However, this precision can be obtained for perturbations of the magnetic field. Results are presented on the internal consistency of the computations and on the reliability of computing perturbations produced by Fe shims. Shimming techniques for very precise field modification and control are presented

  17. Design of permanent magnet synchronous motor within minimum cost

    OpenAIRE

    Півняк, Геннадій Григорович; Бешта, Олександр Степанович; Фурса, Сергій Григорійович; Neuberger, Nikolaus; Nolle, N.

    2010-01-01

    The article describes design and simulation experience of permanent magnet synchronous motor (PMSM). The design goal is to develop PMSM of the least possible cost. For that purpose the standard induction motor stator was applied as a basic solution and permanent magnets were installed in rotor. Simulation results are presented, the dependence of efficiency and total loss on magnet material mass are obtained. The optimal value of permanent magnets is estimated for the given electric motor frame.

  18. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system.

    Science.gov (United States)

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N Robert; Pelc, Norbert; Fahrig, Rebecca

    2013-02-01

    Using hybrid x-ray∕MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also evaluated to determine

  19. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Lillaney, Prasheel; Pelc, Norbert [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States); Shin Mihye [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Hinshaw, Waldo; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Bennett, N. Robert [Department of Radiology, Stanford University, Stanford, California 94305 and Qualcomm MEMS Technologies, San Jose, California 95134 (United States)

    2013-02-15

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also

  20. Canadian high speed magnetically levitated vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, D L [Queen' s Univ., Kingston, Ont.; Belanger, P R; Burke, P E; Dawson, G E; Eastham, A R; Hayes, W F; Ooi, B T; Silvester, P; Slemon, G R

    1978-04-01

    A technically feasible high speed (400 to 480 km/h) guided ground transportation system, based on the use of the vehicle-borne superconducting magnets for electrodynamic suspension and guidance and for linear synchronous motor propulsion was defined as a future modal option for Canadian application. Analysis and design proposals were validated by large-scale tests on a rotating wheel facility and by modelling system components and their interactions. Thirty ton vehicles carrying 100 passengers operate over a flat-topped elevated guideway, which minimizes system down-time due to ice and snow accumulation and facilitates the design of turn-outs. A clearance of up to 15 cm is produced by the electrodynamic interaction between the vehicle-borne superconducting magnets and aluminum guideway strips. Propulsion and automatic system control is provided by the superconducting linear synchronous motor which operates at good efficiency (0.74) and high power factor (0.95). The vehicle is guided primarily by the interaction between the LSM field magnet array and flat null-flux loops overlying the stator windings in the guideway. The linear synchronous motor, electrodynamic suspension as well as levitation strip joints, parasitic LSM winding losses and limitations to the use of ferromagnetic guideway reinforcement were investigated experimentally on the test wheel facility. The use of a secondary suspension assures adequate dynamic stability, and good ride quality is achieved by optimized passive components with respect to lateral modes and by an actively controlled secondary suspension with respect to vertical motion.

  1. TMX magnet control system

    International Nuclear Information System (INIS)

    Goerz, D.A.

    1978-01-01

    A control system utilizing a microcomputer has been developed that controls the power supplies driving the Tandem Mirror Experiment (TMX) magnet set and monitors magnet coil operation. The magnet set consists of 18 magnet coils that are driven by 26 dc power supplies. There are two possible modes of operation with this system: a pulse mode where the coils are pulsed on for several seconds with a dc power consumption of 16 MW; and a continuous mode where the coils can run steady state at 10 percent of maximum current ratings. The processor has been given an active control role and serves as an interface between the operator and electronic circuitry that controls the magnet power supplies. This microcomputer also collects and processes data from many analog singal monitors in the coil circuits and numerous status signals from the supplies. Placing the microcomputer in an active control role has yielded a compact, cost effective system that simplifies the magnet system operation and has proven to be very reliable. This paper will describe the TMX magnet control sytem and discuss its development

  2. Progress on axicell MFTF-B superconducting magnet systems

    International Nuclear Information System (INIS)

    Wang, S.T.; Kozman, T.A.; Hanson, C.L.; Shimer, D.W.; VanSant, J.H.; Zbasnik, J.

    1983-01-01

    Since the entire Mirror Fusion Test Facility (MFTF-B) Magnet System was reconfigured from the original A-cell to an axicell design, much progress has been made on the design, fabrication, and installation planning. The axicell MFTF-B magnet array consists of a total of 26 large superconducting main coils. This paper provides an engineering overview of the progress of these coils. Recent studies on the effects of field errors on the plasma at the recircularizing region (transition coils) show that small field errors will generate large displacements of the field lines. These field errors might enhance radial electron heat transport and deteriorate the plasma confinement. Therefore, 16 superconducting trim coils have been designed to correct the coil misalignments. Progress of the trim coils are reported also

  3. Status of design, development and test of the dipole magnets for the high energy booster

    International Nuclear Information System (INIS)

    Butler, J.M.; Boulios, G.; Finger, K.; Kaylor, L.; McConnon, A.; McConnon, S.; Osborne, S.; Sinnott, Z.; Pisz, F.; Swenson, C.

    1994-01-01

    Westinghouse Magnet Systems Division has a contract to design, develop, build and test the superconducting dipole magnets for the High Energy Booster. This paper covers the key requirements of the magnet and the design features to meet these requirements. Although similar to the Collider dipole magnets, there are some key differences in the functional requirements and design constraints which lead to design differences. Most significant is the requirement to prevent quench during bipolar operation at a ramp rate of 62 A/s compared to unipolar operation at 4 A/s for the Collider. Testing of 50 mm magnets made for the SSCL string test show that the design is sensitive to interstrand eddy currents and resultant heating at the higher ramp rate. The cryostat diameter is not constrained by the fixed distance between top and bottom rings as in the Collider. The authors are taking advantage of the additional space allowed. Emphasis in this paper is placed on the design differences and the reasons for them in both the cold mass and the cryostat. The cold testing requirements and plans for test facilities to carry out the tests are summarized

  4. Magnetic shielding for MRI superconducting magnets

    International Nuclear Information System (INIS)

    Ishiyama, A.; Hirooka, H.

    1991-01-01

    This paper describes an optimal design of a highly homogeneous superconducting coil system with magnetic shielding for Magnetic Resonance Imaging (MRI). The presented optimal design method; which is originally proposed in our earlier papers, is a combination of the hybrid finite element and boundary element method for analysis of an axially symmetric nonlinear open boundary magnetic field problem, and the mathematical programming method for solving the corresponding optimization problem. In this paper, the multi-objective goal programming method and the nonlinear least squares method have been adopted. The optimal design results of 1.5- and 4.7-Tesla-magnet systems with different types of magnetic shielding for whole-body imaging are compared and the advantages of a combination of active and yoke shields are shown

  5. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, H. [Fermilab; Flora, B. [Fermilab; Wolff, D. [Fermilab

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  6. The Iseult/Inumac whole body 11.7 T MRI magnet design

    International Nuclear Information System (INIS)

    Schild, Th.; Aubert, G.; Berriaud, C.; Bredy, Ph.; Juster, F.P.; Meuris, C.; Nunio, F.; Quettier, L.; Rey, J.M.; Vedrine, P.

    2008-01-01

    A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore. Regarding the large aperture and field strength, this magnet is a real challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R and D program, Iseult, focus on high field MRI. The conservative MRI magnet design principles are not readily applicable and other concepts taken from high energy physics or fusion experiments, namely the Tore Supra tokamak magnet system, will be used. The coil will thus be made of a niobium-titanium conductor cooled by a He II bath at 1.8 K, permanently connected to a cryo-plant. Due to the high level of stored energy, about 340 MJ, and a relatively high nominal current, about 1500 A, the magnet will be operated in a non-persistent mode with a conveniently stabilized power supply. In order to take advantage of superfluid helium properties and regarding the high electromagnetic stresses on the conductors, the winding will be made of wetted double pancakes meeting the Stekly criterion for cryo-stability. The magnet will be actively shielded to fulfill the specifications regarding the stray field. (authors)

  7. Coupled particle–fluid transport and magnetic separation in microfluidic systems with passive magnetic functionality

    International Nuclear Information System (INIS)

    Khashan, Saud A; Furlani, Edward P

    2013-01-01

    A study is presented of coupled particle–fluid transport and field-directed particle capture in microfluidic systems with passive magnetic functionality. These systems consist of a microfluidic flow cell on a substrate that contains embedded magnetic elements. Two systems are considered that utilize soft- and hard-magnetic elements, respectively. In the former, an external field is applied to magnetize the elements, and in the latter, they are permanently magnetized. The field produced by the magnetized elements permeates into the flow cell giving rise to an attractive force on magnetic particles that flow through it. The systems are studied using a novel numerical/closed-form modelling approach that combines numerical transport analysis with closed-form field analysis. Particle–fluid transport is computed using computational fluid dynamics (CFD), while the magnetic force that governs particle capture is obtained in closed form. The CFD analysis takes into account dominant particle forces and two-way momentum transfer between the particles and the fluid. The two-way particle–fluid coupling capability is an important feature of the model that distinguishes it from more commonly used and simplified one-way coupling analysis. The model is used to quantify the impact of two-way particle–fluid coupling on both the capture efficiency and the flow pattern in the systems considered. Many effects such as particle-induced flow-enhanced capture efficiency and flow circulation are studied that cannot be predicted using one-way coupling analysis. In addition, dilute particle dispersions are shown to exhibit significant localized particle–fluid coupling near the capture regions, which contradicts the commonly held view that two-way coupling can be ignored when analysing high-gradient magnetic separation involving such particle systems. Overall, the model demonstrates that two-way coupling needs to be taken into account for rigorous predictions of capture efficiency

  8. Magnetic design considerations for the SSC vertical bending (BV1C) magnet

    International Nuclear Information System (INIS)

    Venkatraman, V.; Goodzeit, C.; Jayakumar, R.; Nobrega, F.; Snitchler, G.

    1994-01-01

    The BV1C magnet is a large aperture, vertical bending magnet to be used to bend proton beams in the interaction region. An aperture larger than 80 mm is required. The central field has to be a minimum of 6T with a 10% margin. The lattice requirements for field quality are stringent because two counter beams traverse this magnet off the center axis. This magnet's transfer function sag is specified to match closely the transfer function sag of the low beta quadrupoles. With these specifications in mind, suitable designs for the 2-D magnetic cross-sections have been analyzed

  9. MSCAP [Magnet System Circuitry Analysis Program] simulations of TESPE magnet safety transients

    International Nuclear Information System (INIS)

    Herring, J.S.; Juengst, K.P.; Jones, J.L.; Kraus, H.G.

    1988-01-01

    During 1987, a series of tests were carried out on the TESPE Facility at the Institut fuer Technische Physik of the Kernforschungszentrum Karlsruhe in conjunction with the Idaho National Engineering Laboratory (INEL) to experimentally and analytically investigate arcing phenomena in high field superconducting magnets. One objective of the tests was to verify computer code simulations of the magnet system. TESPE is a six coil, NbTi, toroidal magnet set, designed to operate with 7 T and 8.3 MJ at 7000 A. The full TESPE circuit was modeled for four series of experiments: internal shorts during charge and discharge, arcs initiated by electrode separation, arcs initiated by a vaporizing wire, and arcs moving along two rails. 3 refs., 15 figs., 1 tab

  10. Passive magnetic shielding in MRI-Linac systems

    Science.gov (United States)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  11. Mechanical design and engineering calculation of the SMCAMS magnet

    International Nuclear Information System (INIS)

    Chen Guosheng

    2001-01-01

    The basis of the mechanical design of the SMCAMS magnet, and the structure characters of the magnet and its coils are introduced. Finally, the engineering design of other parts, including deflectors, probes and accelerating electrodes are described

  12. Development of superconducting magnet systems for HIFExperiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, Gian Luca; Faltens, A.; Leitzke, A.; Seidl, P.; Lund, S.; Martovets ky, N.; Chiesa, L.; Gung, C.; Minervini, J.; Schultz, J.; Goodzeit, C.; Hwang, P.; Hinson, W.; Meinke, R.

    2004-07-27

    The U.S. Heavy Ion Fusion program is developing superconducting focusing quadrupoles for near-term experiments and future driver accelerators. Following the fabrication and testing of several models, a baseline quadrupole design was selected and further optimized. The first prototype of the optimized design achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, with measured field harmonics within 10 parts in 10{sup 4}. In parallel, a compact focusing doublet was fabricated and tested using two of the first-generation quadrupoles. After assembly in the cryostat, both magnets reached their conductor-limited quench current. Further optimization steps are currently underway to improve the performance of the magnet system and reduce its cost. They include the fabrication and testing of a new prototype quadrupole with reduced field errors as well as improvements of the cryostat design for the focusing doublet. The prototype units will be installed in the HCX beamline at LBNL, to perform accelerator physics experiments and gain operational experience. Successful results in the present phase will make superconducting magnets a viable option for the next generation of integrated beam experiments.

  13. Optimal design of a 7 T highly homogeneous superconducting magnet for a Penning trap

    International Nuclear Information System (INIS)

    Wu Wei; He Yuan; Ma Lizhen; Huang Wenxue; Xia Jiawen

    2010-01-01

    A Penning trap system called Lanzhou Penning Trap (LPT) is now being developed for precise mass measurements at the Institute of Modern Physics(IMP). One of the key components is a 7 T actively shielded superconducting magnet with a clear warm bore of 156 mm. The required field homogeneity is 3 x 10 -7 over two 1 cubic centimeter volumes lying 220 mm apart along the magnet axis. We introduce a two-step method which combines linear programming and a nonlinear optimization algorithm for designing the multi-section superconducting magnet. This method is fast and flexible for handling arbitrary shaped homogeneous volumes and coils. With the help of this method an optimal design for the LPT superconducting magnet has been obtained. (authors)

  14. A review of dynamic characteristics of magnetically levitated vehicle systems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  15. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles.

    Science.gov (United States)

    Sarwar, A; Nemirovski, A; Shapiro, B

    2012-03-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm(3) volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm(3)), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths.

  16. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  17. A haptic unit designed for magnetic-resonance-guided biopsy.

    Science.gov (United States)

    Tse, Z T H; Elhawary, H; Rea, M; Young, I; Davis, B L; Lamperth, M

    2009-02-01

    The magnetic fields present in the magnetic resonance (MR) environment impose severe constraints on any mechatronic device present in its midst, requiring alternative actuators, sensors, and materials to those conventionally used in traditional system engineering. In addition the spatial constraints of closed-bore scanners require a physical separation between the radiologist and the imaged region of the patient. This configuration produces a loss of the sense of touch from the target anatomy for the clinician, which often provides useful information. To recover the force feedback from the tissue, an MR-compatible haptic unit, designed to be integrated with a five-degrees-of-freedom mechatronic system for MR-guided prostate biopsy, has been developed which incorporates position control and force feedback to the operator. The haptic unit is designed to be located inside the scanner isocentre with the master console in the control room. MR compatibility of the device has been demonstrated, showing a negligible degradation of the signal-to-noise ratio and virtually no geometric distortion. By combining information from the position encoder and force sensor, tissue stiffness measurement along the needle trajectory is demonstrated in a lamb liver to aid diagnosis of suspected cancerous tissue.

  18. A study on stable levitation of permanent magnet transportation system with coreless linear synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Hiwaki, H [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Watada, M [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Torii, S [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Ebihara, D [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan)

    1996-12-31

    In the permanent magnet levitation system, it is impossible to stabilize the motion of the vehicle in both levitation and guidance directions only by permanent magnet. Therefore, the authors proposed the combined system of permanent magnet for levitation and coreless linear synchronous motor (coreless LSM). To design the coreless coils for LSM, the method to calculate the spring coefficient between coreless coil and permanent magnet for LSM is shown. By using this method, the spring coefficients of the three coil arrangements are compared and coreless coil is designed. Furthermore, the authors showed the possibility of stabilizing the motion of the levitation system with coreless LSM. (orig.)

  19. Transcranial magnetic stimulation: Improved coil design for deep brain investigation

    Science.gov (United States)

    Crowther, L. J.; Marketos, P.; Williams, P. I.; Melikhov, Y.; Jiles, D. C.; Starzewski, J. H.

    2011-04-01

    This paper reports on a design for a coil for transcranial magnetic stimulation. The design shows potential for improving the penetration depth of the magnetic field, allowing stimulation of subcortical structures within the brain. The magnetic and induced electric fields in the human head have been calculated with finite element electromagnetic modeling software and compared with empirical measurements. Results show that the coil design used gives improved penetration depth, but also indicates the likelihood of stimulation of additional tissue resulting from the spatial distribution of the magnetic field.

  20. Detailed design of the large-bore 8 T superconducting magnet for the NAFASSY test facility

    Science.gov (United States)

    Corato, V.; Affinito, L.; Anemona, A.; Besi Vetrella, U.; Di Zenobio, A.; Fiamozzi Zignani, C.; Freda, R.; Messina, G.; Muzzi, L.; Perrella, M.; Reccia, L.; Tomassetti, G.; Turtù, S.; della Corte, A.

    2015-03-01

    The ‘NAFASSY’ (NAtional FAcility for Superconducting SYstems) facility is designed to test wound conductor samples under high-field conditions at variable temperatures. Due to its unique features, it is reasonable to assume that in the near future NAFASSY will have a preeminent role at the international level in the qualification of long coiled cables in operative conditions. The magnetic system consists of a large warm bore background solenoid, made up of three series-connected grading sections obtained by winding three different Nb3Sn Cable-in-Conduit Conductors. Thanks to the financial support of the Italian Ministry for University and Research the low-field coil is currently under production. The design has been properly modified to allow the system to operate also as a stand-alone facility, with an inner bore diameter of 1144 mm. This magnet is able to provide about 7 T on its axis and about 8 T close to the insert inner radius, giving the possibility of performing a test relevant for large-sized NbTi or medium-field Nb3Sn conductors. The detailed design of the 8 T magnet, including the electro-magnetic, structural and thermo-hydraulic analysis, is here reported, as well as the production status.

  1. Proceedings of the kaon pds magnet design workshop

    International Nuclear Information System (INIS)

    Otter, A.J.; Strathdee, A.

    1989-03-01

    These proceedings bring together the papers given at the Magnet Design Workshop (October 3 - 5 ) which was held to kick off the Kaon Factory PDS which was officially started on October 1, 1988. The workshop included sessions on power supplies and measurements as well as synchrotron and kicker magnet design. The aim of the meetings was to bring together experts who could advise us on magnet and power supply techniques which, prior to the Kaon era, have not been required at TRIUMF. These include fast - cycling cyclotron magnets and their power supplies, and the kickers needed to switch the beam from one ring to another or to the experimental areas. We also invited participation from industrial companies who will be potential magnet suppliers when Kaon Factory is funded. It was a pleasure to have representatives from six industrial companies amongst the participants

  2. Workshop on Accelerator Magnet Superconductors, Design and Optimization

    CERN Document Server

    WAMSDO Workshop

    2009-01-01

    This report contains the proceedings of the CARE-HHH-AMT Workshop on Accelerator Magnet Superconductors, Design and Optimization (WAMSDO) held at CERN from 19 to 23 May 2008. The needs in terms of superconducting magnets for the accelerator projects were discussed, mainly for the LHC interaction regions and injector upgrades, and for the GSI FAIR complex. The first part of the workshop focused on the development of superconductor and cables, i.e., low-loss Nb-Ti cables, Nb$_{3}$Sn and high-temperature superconductors. An industry session summarized the actual plans and status of the activities in the main European industries. Then, a worldwide status of the high field magnets programme was presented. A special session was devoted to fast cycled magnets, including FAIR facilities and LHC injector upgrades. A final session focused on the optimization methods and numerical tools for magnet design.

  3. Development of a temperature-variable magnetic resonance imaging system using a 1.0T yokeless permanent magnet.

    Science.gov (United States)

    Terada, Y; Tamada, D; Kose, K

    2011-10-01

    A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from -5°C to 45°C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    International Nuclear Information System (INIS)

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data

  5. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data.

  6. Basic principles governing the design of magnetic switches

    International Nuclear Information System (INIS)

    Birx, D.L.; Lauer, E.J.; Reginato, L.L.; Schmidt, J.; Smith, M.

    1980-01-01

    The idea of using saturable reactors as the basis of high power pulse generators is not a new concept, but there have been few recent applications of this technology. Here the principle of magnetic pulse generation is briefly described and some of the basic guidelines used to design these circuits are discussed. A demonstration of the principles by a small scale pulse amplifier is presented, and finally there is an extrapolation to a large scale system

  7. Assessment of a magnet system combining the advantages of cable-in-conduit forced-flow and pool-boiling magnets

    International Nuclear Information System (INIS)

    Slack, D.; Hassenzahl, W.; Felker, B.; Chaplin, M.

    1993-01-01

    This paper presents an idea for a magnet system that could be used to advantage in tokamaks and other fusion engineering devices. Higher performance designs, specifically newer tokamaks such as those for the international Tokamak Engineering Reactor (ITER) and Tokamak Physics Experiment (TPX) use Cable in Conduit Conductor (CICC) forced flow coils to advantage to meet field and current density requirements. Pool boiling magnets lack structural integrity to resist high magnetic forces since helium cooling areas must surround each conductor. A second problem is that any leak can threaten the voltage standoff integrity of the magnet system. This is because a leak can result in low-pressure helium gas becoming trapped by limited conductance in the magnet bundle and low-pressure helium has poor dielectric strength. The system proposed here is basically a CICC system, with it's inherent advantages, but bathed in higher pressure supercritical helium to eliminate the leak and voltage break-down problems. Schemes to simplify helium coolant plumbing with the proposed system are discussed. A brief historical review of related magnet systems is included. The advantages and disadvantages of using higher pressure, supercritical helium in combination with solid electrical insulation in a CICC system are discussed. Related electrical data from some previous works are compiled and discussed

  8. Design of an electrostatic magnetic quadrupole accelerator

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohara, Y.

    1993-01-01

    A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field

  9. Magnetic separation in microfluidic systems

    DEFF Research Database (Denmark)

    Smistrup, Kristian

    2007-01-01

    to facilitate real-time monitoring of the experiments. The set-up and experimental protocol are described in detail. Results are presented for ’active’ magnetic bead separators, where on-chip microfabricated electromagnets supply the magnetic field and field gradients necessary for magnetic bead separation....... It is shown conceptually how such a system can be applied for parallel biochemical processing in a microfluidic system. ’Passive’ magnetic separators are presented, where on-chip soft magnetic elements are magnetized by an external magnetic field and create strong magnetic fields and gradients inside...

  10. Design and analysis of beam separator magnets for third generation aberration compensated PEEMs

    International Nuclear Information System (INIS)

    Wu, Y.K.; Robin, D.S.; Forest, E.; Schlueter, R.; Anders, S.; Feng, J.; Padmore, H.; Wei, D.H.

    2004-01-01

    A state of the art X-ray photoemission electron microscope (PEEM2) is operational at the Advanced Light Source at a resolution of typically 50 nm for a range of chemical and magnetic surface studies. A new microscope, PEEM3, is under development with an aim of achieving a resolution of 5 nm and more than an order of magnitude increase in transmission at the nominal resolution of PEEM2. The resolution and flux improvement is realized by providing geometric and chromatic aberration compensations in the system using an electron mirror and a beam separator magnet. The nearly aberration-free design of the beam separator is critical to the performance of third generation PEEMs. In this paper, we present the optics design model, optimal operation parameters, analyses of aberration impact, as well as the mechanical alignment tolerance for PEEM3 separator prototypes. In particular, we emphasize the importance of a new semi-analytical approach to design complex charged particle optics using the truncated power series algebra. Because of its ability to compute high-order aberrations, this approach allows systematic and comprehensive analyses of any charged particle optics systems with analytical electric and magnetic fields

  11. Parametric design studies of toroidal magnetic energy storage units

    International Nuclear Information System (INIS)

    Herring, J.S.

    1990-01-01

    Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round-trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code has been written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have 'D' shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. This paper presents designs for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 t to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils have been divided into modules suitable for normal truck or rail transport. 8 refs., 5 tabs

  12. Parametric design studies of toroidal magnetic energy storage units

    Science.gov (United States)

    Herring, J. Stephen

    Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code was written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have D shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. Designs are presented for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 T to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils were divided into modules suitable for normal truck or rail transport.

  13. Magnetic field simulation and shimming analysis of 3.0T superconducting MRI system

    Science.gov (United States)

    Yue, Z. K.; Liu, Z. Z.; Tang, G. S.; Zhang, X. C.; Duan, L. J.; Liu, W. C.

    2018-04-01

    3.0T superconducting magnetic resonance imaging (MRI) system has become the mainstream of modern clinical MRI system because of its high field intensity and high degree of uniformity and stability. It has broad prospects in scientific research and other fields. We analyze the principle of magnet designing in this paper. We also perform the magnetic field simulation and shimming analysis of the first 3.0T/850 superconducting MRI system in the world using the Ansoft Maxwell simulation software. We guide the production and optimization of the prototype based on the results of simulation analysis. Thus the magnetic field strength, magnetic field uniformity and magnetic field stability of the prototype is guided to achieve the expected target.

  14. System concept definition of the Grumman superconducting Electromagnetic Suspension (EMS) Maglev design

    Science.gov (United States)

    Proise, M.

    1994-01-01

    Grumman, under contract to the Army Corps of Engineers, completed a System Concept Definition (SCD) study to design a high-speed 134 m/s (300 m.p.h.) magnetically levitated (Maglev) transportation system. The primary development goals were to design a Maglev that is safe, reliable, environmentally acceptable, and low-cost. The cost issue was a predominant one, since previous studies have shown that an economically viable Maglev system (one that is attractive to investors for future models of passenger and/or freight transportation) requires a cost that is about $12.4 M/km ($20 Million per mile). The design is based on the electromagnetic suspension (EMS) system using superconducting iron-core magnets mounted along both sides of the vehicle. The EMS system has several advantages compared to the electrodynamic suspension (EDS) Maglev systems such as low stray magnetic fields in the passenger cabin and the surrounding areas, uniform load distribution along the full length of the vehicle, and small pole pitch for smoother propulsion and ride comfort. It is also levitated at all speeds and incorporates a wrap-around design of safer operation. The Grumman design has all the advantages of an EMS system identified above, while eliminating (or significantly improving) drawbacks associated with normal magnet powered EMS systems. Improvements include larger gap clearance, lighter weight, lower number of control servos, and higher off line switching speeds. The design also incorporates vehicle tilt (plus or minus 9 deg) for higher coordinated turn and turn out speed capability.

  15. Design of arbitrarily homogeneous permanent magnet systems for NMR and MRI: theory and experimental developments of a simple portable magnet.

    Science.gov (United States)

    Hugon, Cedric; D'Amico, Francesca; Aubert, Guy; Sakellariou, Dimitris

    2010-07-01

    Starting from general results of magnetostatics, we give fundamental considerations on the design and characterization of permanent magnets for NMR based on harmonic analysis and symmetry. We then propose a simple geometry that takes advantage of some of these considerations and discuss the practical aspects of the assembly of a real magnet based on this geometry, involving the characterization of its elements, the optimization of the layout and the correction of residual inhomogeneities due to material and geometry imperfections. We report with this low-cost, light-weight magnet (100 euros and 1.8 kg including the aluminum frame) a field of 120 mT (5.1 MHz proton) with a 10 ppm natural homogeneity over a sphere of 1.5 mm in diameter. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Design of permanent magnet quadrupole for LEHIPA DTL

    International Nuclear Information System (INIS)

    Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2011-01-01

    The drift tube linac (DTL) of the low energy high intensity proton accelerator (LEHIPA) has been designed to accelerate 30 mA proton beam from 3 MeV to 20 MeV in a distance of around 13 m. A FFDD lattice structure is selected to provide strong transverse focusing, where each drift tube includes one quadrupole magnet. Beam dynamics simulations specified an effective magnet length of 47 mm, maximum field gradient of 47 T/m, and bore aperture of 24 mm. For these specifications, a detailed design of a very thin permanent magnet quadrupole (PMQ) is presented. Four types of PMQ designs have been compared: a 16-segment trapezoidal design in the Halbach configuration, two 16-segment rectangular designs (with and without gaps), and an 8-segment rectangular design. 2D and 3D modeling codes, POISSON and CST Studio suite are used for the design studies. The good field region is calculated based on field gradient deviation in the transverse plane and integral field homogeneity. The very low aspect ratio of these PMQs leads to edge effects, thereby reducing the central field strength. The 3D simulations are used to study these edge effects. (author)

  17. Updating the Design of the Poloidal Field Coils for the ITER Magnet System

    International Nuclear Information System (INIS)

    Yoshida, K.; Takahashi, Y.; Mitchell, N.; Jong, C.; Bessette, D.

    2006-01-01

    The ITER superconducting coil system consists of 18 Toroidal Field coils, six Poloidal Field (PF) coils, six Central Solenoid (CS) modules, 18 Correction Coils and their feeders. The six PF coils are attached to the TF coil cases through flexible plates or sliding supports allowing radial displacements. The PF coils and CS modules provide suitable magnetic fields for plasma shaping and position control. The PF coils use NbTi superconductor, cooled by supercritical helium. This gives a substantial cost saving compared to Nb 3 Sn and the elimination of a reaction heat treatment greatly simplifies the insulation of such large diameter coils. The cable configuration is 6 sub-cables arranged around a central cooling space. The conductors have a heavy square walled stainless steel jacket. The latest parameters of conductor design are evaluated by analysis of the minimum quench energy and hotspot temperature. The PF coils are self supporting as regards the radial magnetic loads. The vertical loads on each PF coil are transmitted to the TF coil cases. Load transmission is through flexible plates for the PF2 to PF5 coils or sliding supports for the PF1 and PF6 coils with fibreslip bearing surfaces. The supports for the PF winding consist of a set of clamping plates and stud bolts. The shape of the clamping plates has been designed to minimize stresses in the winding pack insulation. Bolts are pre-tensioned to keep pressure between the winding pack and clamping plate. Because of the difficulties in replacing the PF coils, the most unreliable component (the coil insulation) is designed with extra redundancy. There are two insulation layers with a thin metal screen in between. By monitoring the voltage of the intermediate screen, it is possible to detect an incipient short, defined as a short in only one of the two insulation layers. Adjustment of the screen voltage level may allow the shot growth to the stopped once it is detected. Alternately the faulty double pancake must

  18. Design and construction of a resistive energy dump device for bipolar superconducting magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, M. J.

    1977-05-01

    When superconducting magnets quench, the resistance of the conductor material rises rapidly to its normal value. This increase in resistance can result in catastrophic heating in the magnet unless stored field energy is quickly removed from the system. Phase inversion is the normal mode of energy removal. SCR's in the power supply are phased back, the output of the supply is inverted, and magnetic field energy is directed back into the utility grid. Under certain conditions, however, the power supply may fail to invert properly, and an alternate energy removal scheme must protect the superconducting magnet system. Composed of an isolation switch, a semiconductor switching module, and a dump resistor, the resistive dump device provides a viable protection scheme. Operationally, several conditions are capable of activating the isolation switch and triggering the bipolar SCR switching module. Manual dump commands, for instance, permit the operator to dump field energy in the event of observed abnormalities. A special voltage tap quench detector senses the aforementioned abnormal power supply output inversion and also fires the dump circuit. Regardless of the nature of the trigger input, however, activation of the energy dump device diverts coil current through the dump resistor. I/sup 2/R losses over time then safely dissipate stored magnetic field energy.

  19. Magnetic filter field for ELISE––Concepts and design

    International Nuclear Information System (INIS)

    Fröschle, M.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Schiesko, L.; Wünderlich, D.

    2013-01-01

    Highlights: ► ELISE is an important intermediate step toward the full size ITER injector ion source ► It is one of the first ion sources equipped with a magnetic filter field formed by a PG current. ► The magnetic filter field is responsible for the performance of the source ► It controls the currents of extracted negative ions and co-extracted electrons ► The ELISE magnetic filter field meets all actual scientific findings ► It has a vast variability for future investigations and optimizations. -- Abstract: Negative ion neutral beam injection heating systems as planned for ITER need efficient precautions in the plasma source to minimize the co-extraction of electrons and destruction of negative ions. One solution is to apply a magnetic filter field of several mT, which reduces the electron temperature and the amount of electrons in the extraction region in front of the plasma grid. For the small IPP prototype sources it has been found, that both, the absolute value of the magnetic flux density in the extraction region as well as its integral along the distance from plasma driver to plasma grid has an important influence on the performance of the source. In the ITER ion sources, a strong current of several kA driven through the plasma grid is used to create the transversal magnetic field. The test bed ELISE (Extraction from a Large Ion Source Experiment) at IPP Garching houses the first negative ion source with the full width of the ITER source, with a similar aperture arrangement of the extraction system and with a magnetic filter field formed by a plasma grid current. One issue of the research at this test facility will be to explore and optimize the magnetic filter field. The paper summarizes experiences and results of previous filter field test campaigns and presents the magnetic filter field design for ELISE

  20. Design and test of a flat-top magnetic field system driven by capacitor banks.

    Science.gov (United States)

    Jiang, Fan; Peng, Tao; Xiao, Houxiu; Zhao, Jianlong; Pan, Yuan; Herlach, Fritz; Li, Liang

    2014-04-01

    An innovative method for generating a flat-top pulsed magnetic field by means of capacitor banks is developed at the Wuhan National High Magnetic Field Center (WHMFC). The system consists of two capacitor banks as they are normally used to generate a pulsed field. The two discharge circuits (the magnet circuit and the auxiliary circuit) are coupled by a pulse transformer such that the electromotive force (EMF) induced via the transformer in the magnet circuit containing the magnet coil is opposed to the EMF of the capacitor bank. At a certain point before the current pulse in the coil reaches its peak, the auxiliary circuit is triggered. With optimized parameters for charging voltage and trigger delay, the current in the magnet circuit can be approximately kept constant to obtain a flat-top. A prototype was developed at the WHMFC; the magnet circuit was energized by seven 1 MJ (3.2 mF/25 kV) capacitor modules and the auxiliary circuit by four 1 MJ modules. Fields up to 41 T with 6 ms flat-top have been obtained with a conventional user magnet used at the WHMFC.

  1. Sensorless magnetically levitated system with reduced observer

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, T [Inst. fuer Elektrische Maschinen, RWTH Aachen (Germany); Henneberger, G [Inst. fuer Elektrische Maschinen, RWTH Aachen (Germany); Ress, C [Inst. fuer Elektrische Maschinen, RWTH Aachen (Germany)

    1996-12-31

    The present paper describes the use of a reduced observer for a hybrid excited magnetic levitation system. The latter is part of a contactless and energy saving driven conveyance system. Thereby one has to select the working point of the system in such a way, that the force due to the weight of the vehicle including its load will be compensated only by the permanent magnets. The linearized model is observable even if only the current in the coils is measured. Therefore it seems reasonable to evaluate the other variables of the state vector by an observer. Thus the sensors for the airgap can be omitted. Using an observer has another advantage as well. It will tune the airgap automatically to the value which is necessary in order to operate the system in the most energy saving way. The whole design was simulated. (orig.)

  2. Integrated magnetics design for HF-link power converters

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper deals with the design of integrated magnetics for HF-link converters, where the two integrated magnetic components on the same core do not necessarily belong to the same voltage loop. Depending on the specific HF-link converter topology, the proposed integrated magnetics can either alleviate the derivation of independent auxiliary supply voltages from the main transformer or integrate other magnetic structures, thus saving board space and cutting costs. (au)

  3. Mapping system, magnetic measurement and shimming in CRM cyclotron

    International Nuclear Information System (INIS)

    Zhong Junqing; Lv Yinlong; Yin Zhiguo

    2008-01-01

    The Central Region Model (CRM) is a compact H - cyclotron. Because of the intrinsic asymmetry of the magnet, its machining and assembly are very complicated. To guarantee the magnet field distribution, it is necessary to measure and shim the magnetic field. This paper presents a study on the design and use of the mapping system based on the Hall Effect and the re-machining of shimming bars after analyzing the magnetic field measurement data to achieve the isochronous field and good vertical focusing frequency. The method to effectively reduce the amplitude of the 1st harmonic by shimming bars 1s also introduced. (authors)

  4. Design of a pulsed switching magnet for the Bevalac

    International Nuclear Information System (INIS)

    Abbott, S.; Alonso, J.; Brown, J.; Kalnins, J.; Krebs, G.; Reimers, R.

    1989-03-01

    The design and construction of a water cooled, pulsed, laminated core dipole magnet which has recently been installed at the Bevalac is described. This new, energy efficient magnet was funded by the DOE In-House Energy Management Program. The magnet has been specifically designed for maximum efficiency in power utilization and has replaced two dc powered magnets in the Bevalac switchyard. It will reduce energy usage by 747 MWh/yr, and it provides the capability of pulse-to-pulse switching in 0.7 seconds between two major beamline channels serving the nuclear science and radiotherapy programs at the /Bevalac. A unique feature of this magnet is the core design which utilizes an external structure that remains integral with the core laminations after assembly. The structure provides for both torsional and longitudinal rigidity of the core while also facilitating the precision assembly and compression of the core laminations without the use of special assembly fixtures. 2 refs., 4 figs., 1 tab

  5. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix

    Science.gov (United States)

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

  6. Efficient fuzzy logic controller for magnetic levitation systems | Shu ...

    African Journals Online (AJOL)

    In this paper magnetic levitation controller using fuzzy logic is proposed. The proposed Fuzzy logic controller (FLC) is designed, and developed using triangular membership function with 7×7 rules. The system model was implemented in MATLAB/SIMULINK and the system responses to Fuzzy controller with different input ...

  7. Magnet/cryocooler integration for thermal stability in conduction-cooled systems

    Science.gov (United States)

    Chang, H.-M.; Kwon, K. B.

    2002-05-01

    The stability conditions that take into accounts the size of superconducting magnets and the refrigeration capacity of cryocoolers are investigated for the conduction-cooled systems without liquid cryogens. The worst scenario in the superconducting systems is that the heat generation in the resistive state exceeds the refrigeration, causing a rise in the temperature of the magnet winding and leading to burnout. It is shown by an analytical solution that in the continuously resistive state, the temperature may increase indefinitely or a stable steady state may be reached, depending upon the relative size of the magnet with respect to the refrigeration capacity of the cryocooler. The stability criteria include the temperature-dependent properties of the magnet materials and the refrigeration characteristics of the cryocooler. A useful graphical scheme is presented and the design of the stable magnet/cryocooler interface is demonstrated.

  8. Magnetic design and method of a superconducting magnet for muon g - 2/EDM precise measurements in a cylindrical volume with homogeneous magnetic field

    Science.gov (United States)

    Abe, M.; Murata, Y.; Iinuma, H.; Ogitsu, T.; Saito, N.; Sasaki, K.; Mibe, T.; Nakayama, H.

    2018-05-01

    A magnetic field design method of magneto-motive force (coil block (CB) and iron yoke) placements for g - 2/EDM measurements has been developed and a candidate placements were designed under superconducting limitations of current density 125 A/mm2 and maximum magnetic field on CBs less than 5.5 T. Placements of CBs and an iron yoke with poles were determined by tuning SVD (singular value decomposition) eigenmode strengths. The SVD was applied on a response matrix from magneto-motive forces to the magnetic fields in the muon storage region and two-dimensional (2D) placements of magneto-motive forces were designed by tuning the magnetic field eigenmode strengths obtained by the magnetic field. The tuning was performed iteratively. Magnetic field ripples in the azimuthal direction were minimized for the design. The candidate magnetic design had five CBs and an iron yoke with center iron poles. The magnet satisfied specifications of homogeneity (0.2 ppm peak-to-peak in 2D placements (the cylindrical coordinate of the radial position R and axial position Z) and less than 1.0 ppm ripples in the ring muon storage volume (0.318 m 0.0 m) for the spiral muon injection from the iron yoke at top.

  9. KSTAR Helium Refrigeration System Design and Manufacturing

    International Nuclear Information System (INIS)

    Dauguet, P.; Briend, P.; Abe, I.; Fauve, E.; Bernhardt, J.-M.; Andrieu, F.; Beauvisage, J.

    2006-01-01

    The tokamak developed in the KSTAR (Korean Superconducting Tokamak Advanced Research) project makes intensive use of superconducting magnets operated at 4.5 K. The cold components of the KSTAR tokamak require forced flow of supercritical helium for magnets/structure, boiling liquid helium for current leads, and gaseous helium for thermal shields. The cryogenic system will provide stable operation and full automatic control. A three-pressure helium cycle composed of six turbines has been customised design for this project. The '' design '' operating mode results with a system composed of a 9 kW refrigerator (including safety margin) and using gas and liquid storages for mass balancing. During Shot/Standby mode, the heat loads are highly time-dependent. A thermal damper is used to smooth these variations and will allow stable operation. (author)

  10. Design of a multi-dopamine-modified polymer ligand optimally suited for interfacing magnetic nanoparticles with biological systems.

    Science.gov (United States)

    Wang, Wentao; Ji, Xin; Na, Hyon Bin; Safi, Malak; Smith, Alexandra; Palui, Goutam; Perez, J Manuel; Mattoussi, Hedi

    2014-06-03

    We have designed a set of multifunctional and multicoordinating polymer ligands that are optimally suited for surface functionalizing iron oxide and potentially other magnetic nanoparticles (NPs) and promoting their integration into biological systems. The amphiphilic polymers are prepared by coupling (via nucleophilic addition) several amine-terminated dopamine anchoring groups, poly(ethylene glycol) moieties, and reactive groups onto a poly(isobutylene-alt-maleic anhydride) (PIMA) chain. This design greatly benefits from the highly efficient and reagent-free one-step reaction of maleic anhydride groups with amine-containing molecules. The availability of several dopamine groups in the same ligand greatly enhances the ligand affinity, via multiple coordination, to the magnetic NPs, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation with target biomolecules. Iron oxide nanoparticles ligand exchanged with these polymer ligands have a compact hydrodynamic size and exhibit enhanced long-term colloidal stability over the pH range of 4-12 and in the presence of excess electrolytes. Nanoparticles ligated with terminally reactive polymers have been easily coupled to target dyes and tested in live cell imaging with no measurable cytotoxicity. Finally, the resulting hydrophilic nanoparticles exhibit large and size-dependent r2 relaxivity values.

  11. Coil end design for the LHC dipole magnet

    International Nuclear Information System (INIS)

    Brandt, J.S.

    1996-01-01

    This paper describes the design of the coil ends for the Large Hadron Collider dipole magnets of the CERN European Laboratory for Particle Physics in Switzerland. This alternative to existing European designs was provided by Fermi National Accelerator Laboratory by agreement between CERN and the United States. The superconducting cable paths are determined from both magnetic and mechanical considerations. The coil end parts used to shape and constrain the conductors in the coil ends are designed using the developable surface, grouped end approach. This method allows the analysis of strain energy within the conductor groups, and the optimization of mechanical factors during the design. Design intent and implementation are discussed. Inner and outer coil design challenges and end analysis are detailed

  12. DEALS: a maintainable superconducting magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Hseih, S.Y.; Danby, G.; Powell, J.R.

    1979-01-01

    The feasibility of demountable superconducting magnet systems has been examined in a design study of a DEALS [Demountable Externally Anchored Low Stress] TF magnet for an HFITR [High Field Ignition Test Reactor] Tokamak device. All parts of the system appear feasible, including the demountable superconducting joints. Measurements on small scale prototype joints indicate that movable pressure contact joints exhibit acceptable electrical, mechanical, and cryogenic performance. Such joints permit a relatively simple support structure and are readily demountable. Assembly and disassembly sequences are described whereby any failed portion of the magnet, or any part of the reactor inside the TF coils can be removed and replaced if necessary

  13. Progress on PEP-II magnet power conversion system

    International Nuclear Information System (INIS)

    Bellomo, P.; Genova, L.; Jackson, T.; Shimer, D.

    1996-01-01

    The various power systems for supplying the PEP-II DC magnets rely exclusively on switchmode conversion, utilizing a variety of means depending on the requirements. All of the larger power supplies, ranging from 10 to 200 kW, are powered from DC sources utilizing rectified 480 V AC. Choppers can be used for the series connected strings, but for smaller groups and individual magnets, inverters driving high-frequency transformers with rectifiers comprise the best approach. All of the various systems use a ''building block'' approach of multiple standard-size units connected in series or parallel to most cost-effectively deal with a great range of voltage and current requirements. Utilization of existing infrastructure from PEP-I has been a cost-effective determinant. Equipment is being purchased either off-the-shelf, through performance specification, or by hardware purchase based on design-through-prototype. The corrector magnet power system, utilizing inexpensive, off-the-shelf, four-quadrant switching motor-controllers, has already proven very reliable: 120 of the total of 900 units have been running on the injection system for four months with no failures

  14. Progress on PEP-II magnet power conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Bellomo, P.; Genova, L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Jackson, T. [Lawrence Berkeley National Lab., CA (United States); Shimer, D. [Lawrence Livermore National Lab., CA (United States)

    1996-06-04

    The various power systems for supplying the PEP-II DC magnets rely exclusively on switchmode conversion, utilizing a variety of means depending on the requirements. All of the larger power supplies, ranging from 10 to 200 kW, are powered from DC sources utilizing rectified 480 V AC. Choppers can be used for the series connected strings, but for smaller groups and individual magnets, inverters driving high-frequency transformers with rectifiers comprise the best approach. All of the various systems use a ``building block`` approach of multiple standard-size units connected in series or parallel to most cost-effectively deal with a great range of voltage and current requirements. Utilization of existing infrastructure from PEP-I has been a cost-effective determinant. Equipment is being purchased either off-the-shelf, through performance specification, or by hardware purchase based on design-through-prototype. The corrector magnet power system, utilizing inexpensive, off-the-shelf, four-quadrant switching motor-controllers, has already proven very reliable: 120 of the total of 900 units have been running on the injection system for four months with no failures.

  15. Septum magnet MNP-23 for the CERN PS experimental area and its fast interlock system

    CERN Document Server

    Borburgh, J; Prost, A; Zickler, T

    2004-01-01

    Two MNP-23 septum-like magnets are installed at CERN in the transfer line from the Proton Synchrotron (PS) to the East Hall Experimental Area. They are exposed to extremely high doses of ionizing radiation. In the past, the magnets experienced two catastrophic failures due to overheating of its coils and cannot be repaired. The magnets of improved design which is subject of this article are built as replacements for the magnets presently installed. The MNP-23 is a resistive C shaped iron-dominated magnet made of solid low carbon steel blocks. The excitation windings consist of two water-cooled coils wound from hollow copper conductor. The septum design of these magnets implies a high current density which requires an efficient water cooling system. The newly designed cooling circuit provides better cooling performance and more reliability. To avoid failures due to coil overheating, an elaborate interlock system was developed and installed. It consists of two parts: firstly a slow, more classic sensor, to dete...

  16. A design for a high voltage magnet coil ringer test set

    International Nuclear Information System (INIS)

    Koska, W.; Sims, R.E.

    1992-04-01

    By discharging a bank of charged capacitors through a high power SCR switch into an SSC dipole magnet assembly, it is possible to ''ring'' the coil and develop a voltage stress of greater than 50 volts turn-to-turn, thereby verifying the insulation integrity. We will present an overview of the test set design for a 2 kV isolated SCR firing circuit, including safety features, selectable capacitor banks, and digital waveform storage system. Results from testing typical coils and magnets will be included. Possible upgrades are also discussed

  17. Design Considerations of Permanent Magnet Transverse Flux Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    electrical machines. This paper addresses two important design considerations for PMTFM—the influence of permanent magnet leakage flux, which plays an important role in the determination of machine output torque, and the leakage inductance. A new simple method to provide a quick estimation of the armature......Permanent magnet transverse flux machine (PMTFM) is well known for its high torque density and is interested in various direct-drive applications. Due to its complicated 3-D flux components, design and design optimization of a PMTFM is more difficult and time consuming than for radial flux...

  18. A modular and extensible data acquisition and control system for testing superconducting magnets

    International Nuclear Information System (INIS)

    Darryl F. Orris and Ruben H. Carcagno

    2001-01-01

    The Magnet Test Facility at Fermilab tests a variety of full-scale and model superconducting magnets for both R and D and production. As the design characteristics and test requirements of these magnets vary widely, the magnet test stand must accommodate a wide range of Data Acquisition (DAQ) and Control requirements. Such a system must provide several functions, which includes: quench detection, quench protection, power supply control, quench characterization, and slow DAQ of temperature, mechanical strain gauge, liquid helium level, etc. The system must also provide cryogenic valve control, process instrumentation monitoring, and process interlock logic associated with the test stand. A DAQ and Control system architecture that provides the functionality described above has been designed, fabricated, and put into operation. This system utilizes a modular approach that provides both extensibility and flexibility. As a result, the complexity of the hardware is minimized while remaining optimized for future expansion. The architecture of this new system is presented along with a description of the different technologies applied to each module. Commissioning and operating experience as well as plans for future expansion are discussed

  19. A conceptual design of high-temperature superconducting isochronous cyclotron magnet

    International Nuclear Information System (INIS)

    Jiao, F.; Tang, Y.; Li, J.; Ren, L.; Shi, J.

    2011-01-01

    A design of High-temperature superconducting (HTS) isochronous cyclotron magnet is proposed. The maximum magnetic field of cyclotron main magnet reaches 3 T. Laying the HTS coil aboard the magnetic pole will raise the availability of the magnetic Field. Super-iron structure can provide a high uniformity and high gradient magnetic field. Super-iron structure can raise the availability of the HTS materials. Along with the development of High-temperature superconducting (HTS) materials, the technology of HTS magnet is becoming increasingly important in the Cyclotron, which catches growing numbers of scholars' attentions. Based on the analysis of the problems met in the process of marrying superconducting materials with ferromagnetic materials, this article proposes a design of HTS isochronous cyclotron magnet. The process of optimization of magnet and the methods of realizing target parameters are introduced after taking finite element software as analyzing tools.

  20. Changes in the PHOBOS magnet design

    International Nuclear Information System (INIS)

    Shea, J.Y.; Mignerey, A.C.

    1996-01-01

    After more sophisticated simulation and calculation work, it was realized that the design of the PHOBOS magnet could not create a open-quotes field freeclose quotes region for the first four silicon planes for the purpose of tracking. The cut of the pole face was pushed back towards the center of the magnet by 10 cm. The new results from TOSCA were considered acceptable for the purpose of the PHOBOS tracking equipment

  1. Design of a model dipole magnet for the SSC high energy booster

    International Nuclear Information System (INIS)

    Hassan, N.; Couzens, K.; Dwyer, S.; Jaisle, A.; Jayakumar, R.; Krishnamurthy, S.; Mihelic, R.; Phillips, S.; Puri, R.K.; Sarna, K.

    1994-01-01

    A superconducting model dipole magnet has been designed to serve as a vehicle in an R ampersand D program to develop a dipole magnet for potential use in the SSC High Energy Booster. The objective has been to use the Brookhaven National Laboratory (BNL) and Fermi National Accelerator Laboratory (FNAL) 50 mm aperture dipole designs to the maximum possible extent for design of a dipole magnet with the same size aperture and a field intensity of 6.67 T. Objectives of this program have also included an evaluation of magnet cross section designs which provides increased margin and includes a field quality iteration on BNL and FNAL dipole designs. The salient parameters of this magnet are listed. In this paper the 2D magnetic and mechanical design of the cold mass in conceptual and detailed form is presented

  2. Basic Characteristics and Design of a Novel Hybrid Magnetic Bearing for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanjun Yu

    2016-11-01

    Full Text Available This paper proposes a five-degree-of-freedom (5-DOF hybrid magnetic bearing (HMB for direct-drive wind turbines, which can realize suspension in the 4-DOF radial and 1-DOF axial directions. Only two sets of radial control windings are employed in the proposed HMB because only one set of radial control windings can achieve the 2-DOF suspension in the radial direction. Unlike the traditional active thrust magnetic bearings, this paper uses a cylindrical rotor core without a large thrust disc in the novel HMB. The numbers of the controller, power amplifier and system volume can be reduced in the magnetic suspension system. This paper also presents the structure and basic characteristics of the proposed magnetic bearing. A precision equivalent magnetic circuit analysis of the permanent magnet ring and control magnetic field is conducted in this study, in consideration of the non-uniform distribution of magnetic density. Accordingly, the mathematical models, including the suspension force expression, are derived based on the accurate equivalent magnetic circuit. The basic principle of the structure parameter design is presented, based on the given key parameters. The accuracy of the analytical method is further validated by 3D finite element analysis.

  3. Conceptual design of a compact high gradient quadrupole magnet of varying strength using permanent magnets

    Directory of Open Access Journals (Sweden)

    Gautam Sinha

    2018-02-01

    Full Text Available A concept is presented to design magnets using cylindrical-shaped permanent-magnet blocks, where various types of magnetic fields can be produced by either rotating or varying the size of the magnetic blocks within a given mechanical structure. A general method is introduced to calculate the 3D magnetic field produced by a set of permanent magnets. An analytical expression of the 2D field and the condition to generate various magnetic fields like dipole, quadrupole, and sextupole are derived. Using the 2D result as a starting point, a computer code is developed to get the optimum orientation of the magnets to obtain the user-specific target field profile over a given volume in 3D. Designs of two quadrupole magnets are presented, one using 12 and the other using 24 permanent-magnet blocks. Variation of the quadrupole strength is achieved using tuning coils of a suitable current density and specially designed end tubes. A new concept is introduced to reduce the integrated quadrupole field strength by inserting two hollow cylindrical tubes made of iron, one at each end. This will not affect the field gradient at the center but reduce the integrated field strength by shielding the magnetic field near the ends where the tubes are inserted. The advantages of this scheme are that it is easy to implement, the magnetic axis will not shift, and it will prevent interference with nearby devices. Around 40% integrated field variation is achieved using this method in the present example. To get a realistic estimation of the field quality, a complete 3D model using a nonlinear B-H curve is also studied using a finite-element-based computer code. An example to generate around an 80  T/m quadrupole field gradient is also presented.

  4. Conceptual design of a compact high gradient quadrupole magnet of varying strength using permanent magnets

    Science.gov (United States)

    Sinha, Gautam

    2018-02-01

    A concept is presented to design magnets using cylindrical-shaped permanent-magnet blocks, where various types of magnetic fields can be produced by either rotating or varying the size of the magnetic blocks within a given mechanical structure. A general method is introduced to calculate the 3D magnetic field produced by a set of permanent magnets. An analytical expression of the 2D field and the condition to generate various magnetic fields like dipole, quadrupole, and sextupole are derived. Using the 2D result as a starting point, a computer code is developed to get the optimum orientation of the magnets to obtain the user-specific target field profile over a given volume in 3D. Designs of two quadrupole magnets are presented, one using 12 and the other using 24 permanent-magnet blocks. Variation of the quadrupole strength is achieved using tuning coils of a suitable current density and specially designed end tubes. A new concept is introduced to reduce the integrated quadrupole field strength by inserting two hollow cylindrical tubes made of iron, one at each end. This will not affect the field gradient at the center but reduce the integrated field strength by shielding the magnetic field near the ends where the tubes are inserted. The advantages of this scheme are that it is easy to implement, the magnetic axis will not shift, and it will prevent interference with nearby devices. Around 40% integrated field variation is achieved using this method in the present example. To get a realistic estimation of the field quality, a complete 3D model using a nonlinear B -H curve is also studied using a finite-element-based computer code. An example to generate around an 80 T /m quadrupole field gradient is also presented.

  5. Improving Magnet Designs With High and Low Field Regions

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2011-01-01

    A general scheme for increasing the difference in magnetic flux density between a high and a low magnetic field region by removing unnecessary magnet material is presented. This is important in, e.g., magnetic refrigeration where magnet arrays have to deliver high field regions in close proximity...... to low field regions. Also, a general way to replace magnet material with a high permeability soft magnetic material where appropriate is discussed. As an example, these schemes are applied to a two dimensional concentric Halbach cylinder design resulting in a reduction of the amount of magnet material...

  6. A levitation force and magnetic field distribution measurement system in three dimensions

    International Nuclear Information System (INIS)

    Yang, W.M.; Chao, X.X.; Shu, Z.B.; Zhu, S.H.; Wu, X.L.; Bian, X.B.; Liu, P.

    2006-01-01

    A levitation force and magnetic field distribution measurement system in three dimension has been designed and constructed, which can be used for the levitation force measurement between a superconductor and a magnet, or magnet to magnet in three dimensions; and for the measurement of magnetic field distribution in three dimensions according to your need in space. It can also give out the dynamical changing result of magnetic field density with time during levitation force measurement. If we change the sensor of the detector of the measurement system, it also can be used for other kinds of measurement of physical properties. It is a good device for the measurement of magnetic properties of materials. In addition the device can also be used to work at carving in three dimensions

  7. Shimadzu magnetic resonance imaging system, SMT-50

    International Nuclear Information System (INIS)

    Oikawa, Shiro; Nishida, Takayuki; Fujio, Yasuo

    1986-01-01

    The magnetic resonance imaging (MRI) system, as a new modality of medical imaging, has already been put to practical applications on many clinical sites, through which a lot of clinical data has been accumulated. It can offer a powerful new probe of internal anatomy of the human body and its functions. Now that the MRI has established its effectiveness in diagnosis, a really practical MRI system which features high efficiency and economical design with high patient throughput is strongly called for. Introduced in this article is a superconductive magnet MRI system, SMT-50, operating at 5000 Gauss. It has realized an excellent diagnostic capability with such functions as multi-slice multi-echo imaging, high sensitive, surface coil technique and so on. High resolution image display (1024 x 1024 pixcel) unit and separate console system (viewing console and scanning console) will assist high patient throughput. The outline of the SMT-50 and its clinical data are reported here. (author)

  8. Gas gap heat switch for a cryogen-free magnet system

    International Nuclear Information System (INIS)

    Barreto, J; De Sousa, P Borges; Martins, D; Bonfait, G; Catarino, I; Kar, S

    2015-01-01

    Cryogen-free superconducting magnet systems (CFMS) have become popular over the last two decades for the simple reason that the use of liquid helium is rather cumbersome and that helium is a scarce resource. Some available CFMS use a mechanical cryocooler as the magnet's cold source. However, the variable temperature insert (VTI) for some existing CFMS are not strictly cryogen-free as they are still based on helium gas circulation through the sample space. We designed a prototype of a gas gap heat switch (GGHS) that allows a thermal management of a completely cryogen-free magnet system, with no helium losses. The idea relies on a parallel cooling path to a variable temperature insert (VTI) of a magnetic properties measurement system under development at Inter-University Accelerator Centre. A Gifford-McMahon cryocooler (1.5 W @ 4.2 K) would serve primarily as the cold source of the superconducting magnet, dedicating 1 W to this cooling, under quite conservative safety factors. The remaining cooling power (0.5 W) is to be diverted towards a VTI through a controlled GGHS that was designed and built with a 80 μm gap width. The built GGHS thermal performance was measured at 4 K, using helium as the exchange gas, and its conductance is compared both with a previously developed analytical model and a finite element method. Lessons learned lead to a new and more functional prototype yet to be reported. (paper)

  9. Two-Dimensional Fuzzy Sliding Mode Control of a Field-Sensed Magnetic Suspension System

    Directory of Open Access Journals (Sweden)

    Jen-Hsing Li

    2014-01-01

    Full Text Available This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system.

  10. Artificial magnetic metamaterial design by using spiral resonators

    OpenAIRE

    Baena, J.D.; Marqués Sillero, Ricardo; Medina Mena, Francisco; Martel Villagrán, Jesús

    2004-01-01

    A metallic planar particle, that will be called spiral resonator (SR), is introduced as a useful artificial atom for artificial magnetic media design and fabrication. A simple theoretical model which provides the most relevant properties and parameters of the SR is presented. The model is validated by both electromagnetic simulation and experiments. The applications of SR's include artificial negative magnetic permeability media (NMPM) and left-handed-media (LHM) design. The main advantages o...

  11. Synthesis of magnetic systems producing field with maximal scalar characteristics

    International Nuclear Information System (INIS)

    Klevets, Nickolay I.

    2005-01-01

    A method of synthesis of the magnetic systems (MSs) consisting of uniformly magnetized blocks is proposed. This method allows to synthesize MSs providing maximum value of any magnetic field scalar characteristic. In particular, it is possible to synthesize the MSs providing the maximum of a field projection on a given vector, a gradient of a field modulus and a gradient of a field energy on a given directing vector, a field magnitude, a magnetic flux through a given surface, a scalar product of a field or a force by a directing function given in some area of space, etc. The synthesized MSs provide maximal efficiency of permanent magnets utilization. The usage of the proposed method of MSs synthesis allows to change a procedure of projecting in principal, namely, to execute it according to the following scheme: (a) to choose the sizes, a form and a number of blocks of a system proceeding from technological (economical) reasons; (b) using the proposed synthesis method, to find an orientation of site magnetization providing maximum possible effect of magnet utilization in a system obtained in (a). Such approach considerably reduces a time of MSs projecting and guarantees maximal possible efficiency of magnets utilization. Besides it provides absolute assurance in 'ideality' of a MS design and allows to obtain an exact estimate of the limit parameters of a field in a working area of a projected MS. The method is applicable to a system containing the components from soft magnetic material with linear magnetic properties

  12. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Won [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  13. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    International Nuclear Information System (INIS)

    Yoon, Sang Won

    2017-01-01

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  14. Passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  15. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    Science.gov (United States)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  16. The design of nuclear magnetic resonance programmable pulsed source based SOPC

    International Nuclear Information System (INIS)

    Zhang Qingshun; Zhang Yakun; Wang Wenli

    2012-01-01

    The design of pulse source in the equipment of pulsed Nuclear Magnetic Resonance is studied based on SOPC. The strong processing power of Nios Ⅱ embedded processor and the design flexibility of FPGA are fully used. The SOPC system is built. The overall design plan for the pulse source is described. The design of programmable multi-pulse generation logic user-defined components in the FPGA is introduced mainly. Part of the implementation program and the task logic simulation waveforms are presented. The pulse source has better application value because a clear, stable and good quality multi-pulse output waveform can be shown on the oscilloscope finally. The system software and hardware are easy to be modified and upgraded, meeting different application of pulsed NMR pulse sequence in variety of requirements. (authors)

  17. Design of a novel 6-DOF planar maglev system

    International Nuclear Information System (INIS)

    Lai, Y.-C.; Yen, J.-Y.

    2006-01-01

    This paper describes a novel single-deck and six degree-of-freedom (DOF) planar maglev positioning system design. The proposed design uses an array of solenoids to levitate and to hold a permanent magnet carrier in place. The solenoids are excited separately to generate restoring forces when the permanent magnet carrier is displaced from its equilibrium position. The research uses the ANSOFT finite element analysis simulation to analyze the solenoid restoring forces and to motivate a suitable permanent magnets arrangement. Active control on the solenoid currents is then used to maintain the carrier position. The system identification is carried out by perturbing the experimental set-up from its equilibrium position. The simulation results based on the identification models show that simple control is effective for maintaining the carrier position. Initial implementation has also showed that the concept is feasible

  18. Printed board dipole trim magnet design for 20 MeV LIA

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chengjun; Zhu, Wenjun; Zhang, Kaizhi; Zhang, Wenwei; Yu, Haijun [China Academy of Engineering Physics., Chengdu (China). Inst. of Fluid Physics

    1997-12-31

    The printed board dipole trim magnet design for a 20 MeV LIA is presented. The prototype dipole magnet with the sin/cos distributed windings has demonstrated more than 650 Gs-cm integrated dipole field and 1% integrated dipole field homogeneity within 5 cm in radius, which is about 40% of the magnet radius. Numerical modeling of two prototype magnet designs using the 3D magnetic field code SCMAG is presented as well as data from magnetic field measurements of the two magnets. The agreement between the calculations and measurements is accurate to 2-3%. (author). 3 figs., 4 refs.

  19. A novel magnetic lead screw active suspension system for vehicles

    DEFF Research Database (Denmark)

    Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand

    2014-01-01

    This paper encompasses a detailed study of the redesign of a novel Magnetic Lead Screw (MLS) active suspension system for possible regeneration of the energy dispatched in the suspension system and active control of vehicle body movement. The MLS converts a low speed high force linear motion...... of a translator into a high speed low torque rotational motion of a rotor through helically shaped magnets. The paper describes the drawback of the first MLS prototype v1.0 developed for active suspension system, which lead to a new design of the MLS prototype named v1.5. Furthermore the paper introduces detailed...

  20. Development of superconducting magnet systems for HIF Experiments

    International Nuclear Information System (INIS)

    Sabbi, Gian Luca; Faltens, A.; Leitzke, A.; Seidl, P.; Lund, S.; Martovetsky, N.; Chiesa, L.; Gung, C.; Minervini, J.; Schultz, J.; Goodzeit, C.; Hwang, P.; Hinson, W.; Meinke, R.

    2004-01-01

    The U.S. Heavy Ion Fusion program is developing superconducting focusing quadrupoles for near-term experiments and future driver accelerators. Following the fabrication and testing of several models, a baseline quadrupole design was selected and further optimized. The first prototype of the optimized design achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, with measured field harmonics within 10 parts in 10 4 . In parallel, a compact focusing doublet was fabricated and tested using two of the first-generation quadrupoles. After assembly in the cryostat, both magnets reached their conductor-limited quench current. Further optimization steps are currently underway to improve the performance of the magnet system and reduce its cost. They include the fabrication and testing of a new prototype quadrupole with reduced field errors as well as improvements of the cryostat design for the focusing doublet. The prototype units will be installed in the HCX beamline at LBNL, to perform accelerator physics experiments and gain operational experience. Successful results in the present phase will make superconducting magnets a viable option for the next generation of integrated beam experiments

  1. Electromagnetic and mechanical design of RFX Magnetizing Winding

    International Nuclear Information System (INIS)

    Guarnieri, M.; Modena, C.; Schrefler, B.A.; Stella, A.

    1985-01-01

    This paper presents the RFX Magnetizing Winding design and describes its most significant features. Two numerical codes have been used for the magnetic design and a number of solutions, complying with the design specifications, have been obtained. The most attractive of them have been studied in detail from the electromagnetic point of view and a comparison is given here together with an analysis of the stress states. The finite element procedure used is discussed in the paper and the results of the comparison indicated above are presented together with the main electromagnetic parameters and winding features

  2. Superconducting magnet system for the J-PARC neutrino beam line. Development, construction and operation of superconducting magnets

    International Nuclear Information System (INIS)

    Sasaki, Ken-ichi; Nakamoto, Tatsushi; Ajima, Yasuo; Okamura, Takahiro; Ogitsu, Toru; Kimura, Nobuhiro; Terashima, Akio; Tomaru, Takayuki; Higashi, Norio

    2010-01-01

    Superconducting combined-function magnets have been utilized for the 50-GeV, 750-kW proton beam line in the J-PARC neutrino experiment. The magnets are designed to provide a dipole field of 2.6 T combined with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm at a nominal current of 7,345 A. Following the success of a prototype R and D project, a superconducting magnet system for the J-PARC neutrino beam line has been constructed since 2005. Using a new conceptual beam line with the superconducting combined-function magnets has demonstrated successful beam transport to the target neutrino production. (author)

  3. Design of modular coils for a quasi-axisymmetric stellarator with a flexible control of the magnetic field configuration

    International Nuclear Information System (INIS)

    Shimizu, A.; Okamura, S.; Isobe, M.; Suzuki, C.; Nishimura, S.; Watari, T.; Matsuoka, K.

    2002-08-01

    A design of the modular coil system for CHS-qa has been made for the plasma configuration '2b32' with the aspect ratio 3.2. The magnetic field strength and the major radius are 1.5 T and 1.5 m, respectively. The normal component of magnetic field produced by the modular coils is minimized on the plasma boundary to obtain the optimum coil design. We put engineering constraint on the distance between adjacent modular coils and the radius of coil curvature. The dependence of the residual normal component of the field on these conditions is examined, and the realistic values for them are selected. Additional coils to control various properties of the magnetic field configuration (the rotational transform, the magnetic well depth, etc.) have been designed and a flexibility of the magnetic field configuration is realized. For the case that the rotational transform crosses the low-order rational value resulting in magnetic islands, the residues of islands are evaluated with which a further improvement of coil design can be made to eliminate magnetic islands. (author)

  4. Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    NARCIS (Netherlands)

    Erni, W.; Keshelashvili, I; Krusche, B.

    2009-01-01

    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible

  5. The dipole corrector magnets for the RHIC fast global orbit feedback system

    International Nuclear Information System (INIS)

    Thieberger, P.; Arnold, L.; Folz, C.; Hulsart, R.; Jain, A.; Karl, R.; Mahler, G.; Meng, W.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Ptitsyn, V.; Ritter, J.; Smart, L.; Tuozzolo, J.; White, J.

    2011-01-01

    The recently completed RHIC fast global orbit feedback system uses 24 small 'window-frame' horizontal dipole correctors. Space limitations dictated a very compact design. The magnetic design and modelling of these laminated yoke magnets is described as well as the mechanical implementation, coil winding, vacuum impregnation, etc. Test procedures to determine the field quality and frequency response are described. The results of these measurements are presented and discussed. A small fringe field from each magnet, overlapping the opposite RHIC ring, is compensated by a correction winding placed on the opposite ring's magnet and connected in series with the main winding of the first one. Results from measurements of this compensation scheme are shown and discussed.

  6. Mobile refrigeration system for precool and warm up of superconducting magnets

    Science.gov (United States)

    Gandla, S. K.; Longsworth, R. C.

    2017-12-01

    Conservation of helium has become more important in recent years due to global shortages in supply. Magnetic resonance imaging (MRI) superconducting magnets use approximately 20% of the world’s helium reserves in liquid form to cool down and maintain operating temperatures at 4 K. This paper describes a mobile cryogenic refrigeration system, which has been developed by Sumitomo (SHI) Cryogenics of America, Inc. to conserve helium by shipping MRI magnets warm and cooling them down or servicing them on site at a medical facility. The system can cool a typical magnet from room temperature to below 40K in less than a week. The system consists of four single stage Displex®-type Gifford-McMahon (GM) expanders in a cryostat with heat exchangers integrated on the cold ends that cool the helium gas, which is circulated in a closed-loop system through the magnet by a cryogenic fan. The system is configured with heaters on the heat exchangers to effectively warm up a magnet. The system includes a scroll vacuum pump, which is used to evacuate the helium circuit with or without the magnet and turbo pump to evacuate the cryostat. Vacuum-jacketed transfer lines connect the cryostat to the magnet. The system is designed with its own controller for continuous operation of precool, warm up and evacuation processes with automatic and manual controls. The cryostat, pumps and gas controls are mounted on a dewar cart. One compressor and the system controller are mounted on a compressor and control cart, and the other three compressors are mounted on separate carts.

  7. Preliminary investigations of design philosophies and features applicable to large magnetic suspension and balance systems

    Science.gov (United States)

    Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.

    1979-01-01

    The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.

  8. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function

    Directory of Open Access Journals (Sweden)

    Bo Zhao

    2015-09-01

    Full Text Available This paper presents the design and realization of a three degrees of freedom (DOFs displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system.

  9. Magnetically coupled flextensional transducer for wideband vibration energy harvesting: Design, modeling and experiments

    Science.gov (United States)

    Zou, Hong-Xiang; Zhang, Wen-Ming; Li, Wen-Bo; Wei, Ke-Xiang; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2018-03-01

    The combination of nonlinear bistable and flextensional mechanisms has the advantages of wide operating frequency and high equivalent piezoelectric constant. In this paper, three magnetically coupled flextensional vibration energy harvesters (MF-VEHs) are designed from three magnetically coupled vibration systems which utilize a magnetic repulsion, two symmetrical magnetic attractions and multi-magnetic repulsions, respectively. The coupled dynamic models are developed to describe the electromechanical transitions. Simulations under harmonic excitation and random excitation are carried out to investigate the performance of the MF-VEHs with different parameters. Experimental validations of the MF-VEHs are performed under different excitation levels. The experimental results verify that the developed mathematical models can be used to accurately characterize the MF-VEHs for various magnetic coupling modes. A comparison of three MF-VEHs is provided and the results illustrate that a reasonable arrangement of multiple magnets can reduce the threshold excitation intensity and increase the harvested energy.

  10. Design concepts for a continuously rotating active magnetic regenerator

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Engelbrecht, Kurt; Bjørk, Rasmus

    2011-01-01

    Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the active magnetic regenerator (AMR) from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33−xSrxMn1.05O3, gives both a low pressure drop and allows....... Focus is on maximising the magnetic field in the high field regions but also, importantly, minimising the flux in the low field regions. The design is iteratively optimised through 3D finite element magnetostatic modelling....

  11. Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank

    Science.gov (United States)

    Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.

    2013-03-01

    A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.

  12. Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field.

    Science.gov (United States)

    Matsuzawa, Koki; Abe, Mitsushi; Kose, Katsumi; Terada, Yasuhiko

    2017-05-01

    Existing open magnetic resonance imaging (MRI) systems use biplanar gradient coils for the spatial encoding of signals. We propose using novel oval gradient coils for an open vertical-field MRI. We designed oval gradients for a 0.3T open MRI system and showed that such a system could outperform a traditional biplanar gradient system while maintaining adequate gradient homogeneity and subject accessibility. Such oval gradient coils would exhibit high efficiency, low inductance and resistance, and high switching capability. Although the designed oval Y and Z coils showed more heat dissipation and less cooling capability than biplanar coils with the same gap, they showed an efficient heat-dissipation path to the surrounding air, which would alleviate the heat problem. The performance of the designed oval-coil system was demonstrated experimentally by imaging a human hand. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A configurable component-based software system for magnetic field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J.M.; DiMarco, J.; Kotelnikov, S.; Trombly-Freytag, K.; Walbridge, D.; Tartaglia, M.; /Fermilab

    2005-09-01

    A new software system to test accelerator magnets has been developed at Fermilab. The magnetic measurement technique involved employs a single stretched wire to measure alignment parameters and magnetic field strength. The software for the system is built on top of a flexible component-based framework, which allows for easy reconfiguration and runtime modification. Various user interface, data acquisition, analysis, and data persistence components can be configured to form different measurement systems that are tailored to specific requirements (e.g., involving magnet type or test stand). The system can also be configured with various measurement sequences or tests, each of them controlled by a dedicated script. It is capable of working interactively as well as executing a preselected sequence of tests. Each test can be parameterized to fit the specific magnet type or test stand requirements. The system has been designed with portability in mind and is capable of working on various platforms, such as Linux, Solaris, and Windows. It can be configured to use a local data acquisition subsystem or a remote data acquisition computer, such as a VME processor running VxWorks. All hardware-oriented components have been developed with a simulation option that allows for running and testing measurements in the absence of data acquisition hardware.

  14. Mechanical design of a 250 kilogauss solenoidal magnet

    International Nuclear Information System (INIS)

    Bonanos, P.

    1975-12-01

    The mechanical design and construction of a 5 cm bore, 23 cm long solenoidal magnet operated at 250 kilogauss is described. The magnet provides confining field for a plasma heated by a CO 2 laser. Radial diagnostic ports with a clear aperture of 0.41 cm allow viewing access near the magnet midplane. The on-axis field homogeneity is within 5 percent over a central length of 12 cm. The magnet sustained 500 to 1000 pulses at the highest field levels before catastrophic failure

  15. Magnet design with 100-kA HTS STARS conductors for the helical fusion reactor

    Science.gov (United States)

    Yanagi, N.; Terazaki, Y.; Ito, S.; Tamura, H.; Hamaguchi, S.; Mito, T.; Hashizume, H.; Sagara, A.

    2016-12-01

    The high-temperature superconducting (HTS) option is employed for the conceptual design of the LHD-type helical fusion reactor FFHR-d1. The 100-kA-class STARS (Stacked Tapes Assembled in Rigid Structure) conductor is used for the magnet system including the continuously wound helical coils. Protection of the magnet system in case of a quench is a crucial issue and the hot-spot temperature during an emergency discharge is estimated based on the zero-dimensional and one-dimensional analyses. The number of division of the coil winding package is examined to limit the voltage generation. For cooling the HTS magnet, helium gas flow is considered and its feasibility is examined by simple analysis as a first step.

  16. Design and Integration of an All-Magnetic Attitude Control System for FASTSAT-HSV01's Multiple Pointing Objectives

    Science.gov (United States)

    DeKock, Brandon; Sanders, Devon; Vanzwieten, Tannen; Capo-Lugo, Pedro

    2011-01-01

    The FASTSAT-HSV01 spacecraft is a microsatellite with magnetic torque rods as it sole attitude control actuator. FASTSAT s multiple payloads and mission functions require the Attitude Control System (ACS) to maintain Local Vertical Local Horizontal (LVLH)-referenced attitudes without spin-stabilization, while the pointing errors for some attitudes be significantly smaller than the previous best-demonstrated for this type of control system. The mission requires the ACS to hold multiple stable, unstable, and non-equilibrium attitudes, as well as eject a 3U CubeSat from an onboard P-POD and recover from the ensuing tumble. This paper describes the Attitude Control System, the reasons for design choices, how the ACS integrates with the rest of the spacecraft, and gives recommendations for potential future applications of the work.

  17. Design and operation of a biomagnetic multichannel system

    International Nuclear Information System (INIS)

    Schneider, S.; Seifert, H.; Reichenberger, H.; Hoenig, H.E.

    1992-01-01

    This paper describes the design and optimization of the KRENIKON system for the measurement of magnetic fields of the brain and the heart. Aspects for the configuration of the sensor array are discussed. Special emphasis is given to the suppression of interferences by a combination of magnetic shielding with first-order gradiometers and to the construction of the gradiometer array in foil technology. (orig.)

  18. A Method for Eddy Current Field Measurement in Permanent Magnet Magnetic Resonance Imaging Systems

    Directory of Open Access Journals (Sweden)

    SONG Rui

    2018-03-01

    Full Text Available Magnetic resonance imaging (MRI is a widely used medical imaging technique. In MRI system, gradient magnetic fields are used to code spatial information. However, the fast-switching electric currents in the gradients coils used to generate gradient fields also induce vortex electric field, often referred as eddy current, in the surrounding metal conductors. In this paper, a method for eddy current field measurement was proposed. Based on the Faraday law of electromagnetic induction, an eddy current field measuring device was designed. Combining hardware acquisition and software processing, the eddy current field was obtained by subtracting the ideal gradient field from the magnetic field measured experimentally, whose waveform could be displayed in real time. The proposed method was verified by experimental results.

  19. Analytical solution of concentric two-pole Halbach cylinders as a preliminary design tool for magnetic refrigeration systems

    Science.gov (United States)

    Fortkamp, F. P.; Lozano, J. A.; Barbosa, J. R.

    2017-12-01

    This work presents a parametric analysis of the performance of nested permanent magnet Halbach cylinders intended for applications in magnetic refrigeration and heat pumping. An analytical model for the magnetic field generated by the cylinders is used to systematically investigate the influence of their geometric parameters. The proposed configuration generates two poles in the air gap between the cylinders, where active magnetic regenerators are positioned for conversion of magnetic work into cooling capacity or heat power. A sample geometry based on previous designs of magnetic refrigerators is investigated, and the results show that the magnetic field in the air gap oscillates between 0 to approximately 1 T, forming a rectified cosine profile along the circumference of the gap. Calculations of the energy density of the magnets indicate the need to operate at a low energy (particular the inner cylinder) in order to generate a magnetic profile suitable for a magnetic cooler. In practice, these low-energy regions of the magnet can be potentially replaced by soft ferromagnetic material. A parametric analysis of the air gap height has been performed, showing that there are optimal values which maximize the magnet efficiency parameter Λcool . Some combinations of cylinder radii resulted in magnetic field changes that were too small for practical purposes. No demagnetization of the cylinders has been found for the range of parameters considered.

  20. 1-GWh diurnal load-leveling Superconducting Magnetic Energy Storage System reference design. Appendix G. Design study. Thyristor converter stations for use with superconducting magnetic energy storage systems

    International Nuclear Information System (INIS)

    Lindh, C.B.; Pohl, R.V.; Trojan, H.T.

    1979-09-01

    The cost for the power conversion equipment for four different SMES systems were developed. These were 1- and 5-GWh units for 4- and 8-h charge periods. Only constant power operation of the converter was considered with 10% of the maximum energy remaining in the magnet at the end of the discharge cycle. The cost increases almost linearly with the maximum coil current between 30 kA and 150 kA, and the cost for a 4-h charge system is about 20% lower than for an 8-h charge system. The converter terminal cost is estimated to be $40/kW of installed power for a 1-GWh 4-h charge system at 30 kA maximum current and $60/kW of installed power for a 5-GWh 4-h charge system at 50 kA maximum current

  1. Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    CERN Document Server

    Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, O; Xu, H; Becker, J; Feldbauer, F; Heinsius, F -H; Held, T; Koch, H; Kopf, B; Pelizaeus, M; Schröder, T; Steinke, M; Wiedner, U; Zhong, J; Bianconi, A; Bragadireanu, M; Pantea, D; Tudorache, A; Tudorache, V; De Napoli, M; Giacoppo, F; Raciti, G; Rapisarda, E; Sfienti, C; Bialkowski, E; Budzanowski, A; Czech, B; Kistryn, M; Kliczewski, S; Kozela, A; Kulessa, P; Pysz, K; Schäfer, W; Siudak, R; Szczurek, A; zycki, W Czy; Domagala, M; Hawryluk, M; Lisowski, E; Lisowski, F; Wojnar, L; Gil, D; Hawranek, P; Kamys, B; Kistryn, St; Korcyl, K; Krzemien, W; Magiera, A; Moskal, P; Rudy, Z; Salabura, P; Smyrski, J; Wronska, A; Al-Turany, M; Augustin, I; Deppe, H; Flemming, H; Gerl, J; Goetzen, K; Hohler, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Mishra, D; Orth, H; Peters, K; Saitô, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Voss, B; Wieczorek, P; Wilms, A; Brinkmann, K -T; Freiesleben, H; Jaekel, R; Kliemt, R; Wuerschig, T; Zaunick, H -G; Abazov, V M; Alexeev, G; Arefev, A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Feshchenko, A A; Galoyan, A S; Grigorian, S; Karmokov, A; Koshurnikov, E K; Kudaev, V Ch; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevski, A; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, A; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Föhl, K; Glazier, D; Watts, D; Woods, P; Eyrich, W; Lehmann, A; Teufel, A; Dobbs, S; Metreveli, Z; Seth, K; Tann, B; Tomaradze, A G; Bettoni, D; Carassiti, V; Cecchi, A; Dalpiaz, P; Fioravanti, E; Garzia, I; Negrini, M; Savri`e, M; Stancari, G; Dulach, B; Gianotti, P; Guaraldo, C; Lucherini, V; Pace, E; Bersani, A; Macri, M; Marinelli, M; Parodi, R F; Brodski, I; Döring, W; Drexler, P; Düren, M; Gagyi-Palffy, Z; Hayrapetyan, A; Kotulla, M; Kühn, W; Lange, S; Liu, M; Metag, V; Nanova, M; Novotny, R; Salz, C; Schneider, J; Schoenmeier, P; Schubert, R; Spataro, S; Stenzel, H; Strackbein, C; Thiel, M; Thoering, U; Yang, S; Clarkson, T; Cowie, E; Downie, E; Hill, G; Hoek, M; Ireland, D; Kaiser, R; Keri, T; Lehmann, I; Livingston, K; Lumsden, S; MacGregor, D; McKinnon, B; Murray, M; Protopopescu, D; Rosner, G; Seitz, B; Yang, G; Babai, M; Biegun, A K; Bubak, A; Guliyev, E; Jothi, V S; Kavatsyuk, M; Löhner, H; Messchendorp, J; Smit, H; van der Weele, J C; García, F; Riska, D -O; Büscher, M; Dosdall, R; Dzhygadlo, R; Gillitzer, A; Grunwald, D; Jha, V; Kemmerling, G; Kleines, H; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Prasuhn, D; Randriamalala, T; Ritman, J; Roeder, M; Stockmanns, T; Wintz, P; Wüstner, P; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Fissum, S; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Espi, M C Mora; Pochodzalla, J; Sanchez, S; Sanchez-Lorente, A; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Balanutsa, V; Chernetsky, V; Demekhin, A; Dolgolenko, A; Fedorets, P; Gerasimov, A; Goryachev, V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Hoeppner, C; Ketzer, B; Konorov, I; Mann, A; Neubert, S; Paul, S; Weitzel, Q; Khoukaz, A; Rausmann, T; Täschner, A; Wessels, J; Varma, R; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Boucher, J; Hennino, T; Kunne, R; Ong, S; Pouthas, J; Ramstein, B; Rosier, P; Sudol, M; Van de Wiele, J; Zerguerras, T; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Boca, G; Braghieri, A; Costanza, S; Fontana, A; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Belikov, N I; Davidenko, A M; Derevshchikov, A A; Goncharenko, Yu M; Grishin, V N; Kachanov, V A; Konstantinov, D A; Kormilitsin, V A; Kravtsov, V I; Matulenko, Yu A; Melnik, Y M; Meshchanin, A P; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Nurushev, S B; Ryazantsev, A V; Semenov, P A; Soloviev, L F; Uzunian, A V; Vasilev, A N; Yakutin, A E; Baeck, T; Cederwall, B; Bargholtz, C; Geren, L; Tegnér, P E; Belostotskii, S; Gavrilov, G; Itzotov, A; Kiselev, A; Kravchenko, P; Manaenkov, S; Miklukho, O; Naryshkin, Yu; Veretennikov, D; Vikhrov, V; Zhadanov, A; Fava, L; Panzieri, D; Alberto, D; Amoroso, A; Botta, E; Bressani, T; Bufalino, S; Bussa, M P; Busso, L; De Mori, F; Destefanis, M; Ferrero, L; Grasso, A; Greco, M; Kugathasan, T; Maggiora, M; Marcello, S; Serbanut, G; Sosio, S; Bertini, R; Calvo, D; Coli, S; De Remigis, P; Feliciello, A; Filippi, A; Giraudo, G; Mazza, G; Rivetti, A; Szymanska, K; Tosello, F; Wheadon, R; Morra, O; Agnello, M; Iazzi, F; Szymanska, K; Birsa, R; Bradamante, F; Bressan, A; Martin, A; Clement, H; Ekström, C; Calén, H; Grape, S; Hoeistad, B; Johansson, T; Kupsc, A; Marciniewski, P; Thomé, E; Zlomanczuk, Yu; Díaz, J; Ortiz, A; Borsuk, S; Chlopik, A; Guzik, Z; Kopec, J; Kozlovskii, T; Melnychuk, D; Plominski, M; Szewinski, J; Traczyk, K; Zwieglinski, B; Bühler, P; Gruber, A; Kienle, P; Marton, J; Widmann, E; Zmeskal, J

    2009-01-01

    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.

  2. Design philosophy of PFBR shutdown systems

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Vijayashree, R.; Govindarajan, S.; Vaidyanathan, G.; Muralikrishna, G.; Shanmugam, T.K.; Chetal, S.C.; Raghavan, K.; Bhoje, S.B.

    1996-01-01

    This paper presents the overall design philosophy of shutdown system of 500 MWe Prototype Fast Breeder Reactor (PFBR). It discusses design criteria, parameters calling for safety action, different safety actions and the concepts conceived for shutdown systems. In tune with the philosophy of defence-in-depth, additional passive shutdown features, viz., Self Actuating Device (SADE) and Curie Point Magnetic (CPM) switch and protective feature like absorber rod Stroke Limiting Device (SLD) are contemplated. It also discusses about suitability of Gas Expansion Module (GEM) as one of the safety devices in PFBR. (author). 3 refs, 3 figs, 1 tab

  3. Design of the ITER high-frequency magnetic diagnostic coils

    International Nuclear Information System (INIS)

    Toussaint, M.; Testa, D.; Baluc, N.; Chavan, R.; Fournier, Y.; Lister, J.B.; Maeder, T.; Marmillod, P.; Sanchez, F.; Stoeck, M.

    2011-01-01

    This paper is an overview of work carried out on the design of the ITER high-frequency magnetic diagnostic coil (HF sensor). In the first part, the ITER requirements for the HF sensor are presented. In the second part, the ITER reference design of the HF sensor has been assessed and showed some potential weaknesses, which led us to the conclusion that alternative designs could usefully be examined. Several options have been explored, and are presented in the third part: (a) direct laser cutting a metallic tube, (b) stacking of plane windings manufactured from a tungsten plate by electrical discharge machining, (c) coil using the conventional spring manufacture. In the fourth part, sensors using the low temperature co-fired ceramic technology (LTCC) are presented: (d) monolithic 1D magnetic flux sensors based on LTCC technology, and (e) monolithic 3D magnetic flux sensors based on the same LTCC technology. The solution which showed the best results is the monolithic 3D magnetic flux sensor based on LTCC.

  4. Mechanical Design of the SMC (Short Model Coil) Dipole Magnet

    International Nuclear Information System (INIS)

    Regis, F.; Fessia, P.; Bajko, M.; Rijk, G. de; Manil, P.

    2010-01-01

    The Short Model Coil (SMC) working group was set in February 2007 within the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb 3 Sn dipole magnet. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet was originally conceived to reach a peak field of about 13 T on conductor, using a 2500 A/mm 2 Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb 3 Sn cable, by applying different level of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has to be realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. In this paper we will describe the mechanical optimization of the dipole, starting from a conceptual configuration based on a former magnetic analysis. Two and three-dimensional Finite Element Method (FEM) models have been implemented in ANSYS and in CAST3M, aiming at setting the mechanical parameters of the dipole magnet structure, thus fulfilling the design constraints imposed by the materials. (authors)

  5. Recent progress towards developing a high-field, high-T(sub c) superconducting magnet for magnetic suspension and balance systems

    International Nuclear Information System (INIS)

    Derochemont, L.P.; Oakes, C.E.; Squillante, M.R.; Duan, Hong-Min; Hermann, A.M.; Andrews, R.J.; Poeppel, R.B.; Maroni, V.A.; Carlberg, I.A.; Kelliher, W.C.

    1992-01-01

    This paper reviews superconducting magnets and high T(sub c) superconducting oxide ceramic materials technology to identify areas of fundamental impasse to the fabrication of components and devices that tap what are believed to be the true potential of these new materials. High T(sub c) ceramics pose problems in fundamentally different areas which need to be solved unlike low T(sub c) materials. The authors map out an experimental plan designed to research process technologies which, if suitably implemented, should allow these deficiencies to be solved. Finally, assessments are made of where and on what regimes magnetic system designers should focus their attention to advance the practical development of systems based on these new materials

  6. Recent progress towards developing a high field, high-T(sub c) superconducting magnet for magnetic suspension and balance systems

    Science.gov (United States)

    Derochemont, L. Pierre; Oakes, Carlton E.; Squillante, Michael R.; Duan, Hong-Min; Hermann, Allen M.; Andrews, Robert J.; Poeppel, Roger B.; Maroni, Victor A.; Carlberg, Ingrid A.; Kelliher, Warren C.

    1992-01-01

    This paper reviews superconducting magnets and high T(sub c) superconducting oxide ceramic materials technology to identify areas of fundamental impasse to the fabrication of components and devices that tap what are believed to be the true potential of these new materials. High T(sub c) ceramics pose problems in fundamentally different areas which need to be solved unlike low T(sub c) materials. The authors map out an experimental plan designed to research process technologies which, if suitably implemented, should allow these deficiencies to be solved. Finally, assessments are made of where and on what regimes magnetic system designers should focus their attention to advance the practical development of systems based on these new materials.

  7. Heat-Assisted Magnetic Recording: Fundamental Limits to Inverse Electromagnetic Design

    Science.gov (United States)

    Bhargava, Samarth

    In this dissertation, we address the burgeoning fields of diffractive optics, metals-optics and plasmonics, and computational inverse problems in the engineering design of electromagnetic structures. We focus on the application of the optical nano-focusing system that will enable Heat-Assisted Magnetic Recording (HAMR), a higher density magnetic recording technology that will fulfill the exploding worldwide demand of digital data storage. The heart of HAMR is a system that focuses light to a nano- sub-diffraction-limit spot with an extremely high power density via an optical antenna. We approach this engineering problem by first discussing the fundamental limits of nano-focusing and the material limits for metal-optics and plasmonics. Then, we use efficient gradient-based optimization algorithms to computationally design shapes of 3D nanostructures that outperform human designs on the basis of mass-market product requirements. In 2014, the world manufactured ˜1 zettabyte (ZB), ie. 1 Billion terabytes (TBs), of data storage devices, including ˜560 million magnetic hard disk drives (HDDs). Global demand of storage will likely increase by 10x in the next 5-10 years, and manufacturing capacity cannot keep up with demand alone. We discuss the state-of-art HDD and why industry invented Heat-Assisted Magnetic Recording (HAMR) to overcome the data density limitations. HAMR leverages the temperature sensitivity of magnets, in which the coercivity suddenly and non-linearly falls at the Curie temperature. Data recording to high-density hard disks can be achieved by locally heating one bit of information while co-applying a magnetic field. The heating can be achieved by focusing 100 microW of light to a 30nm diameter spot on the hard disk. This is an enormous light intensity, roughly ˜100,000,000x the intensity of sunlight on the earth's surface! This power density is ˜1,000x the output of gold-coated tapered optical fibers used in Near-field Scanning Optical Microscopes

  8. Field Mapping System for Solenoid Magnet

    Science.gov (United States)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  9. Magnet power supply system for the ALS storage ring and booster

    International Nuclear Information System (INIS)

    Jackson, L.T.; Luchini, K.; Lutz, I.

    1993-05-01

    The Magnet Power Supply System is described by specification, design, hardware, and operating experience. A unique system for the one Hz, 1.5 GeV Booster, where the wideband QF and QD power supplies track the dipole current to within 0.1% at injection will be detailed. AC distribution system considerations related to inverting the stored energy of the booster magnet back into power grid will be discussed. The rational for linear correctors and individual quad supplies (225 total units) will be placed within the context of the storage-ring requirements

  10. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  11. Permanent magnet design for magnetic heat pumps using total cost minimization

    Science.gov (United States)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Niknia, I.; Rowe, A.

    2017-11-01

    The active magnetic regenerator (AMR) is an attractive technology for efficient heat pumps and cooling systems. The costs associated with a permanent magnet for near room temperature applications are a central issue which must be solved for broad market implementation. To address this problem, we present a permanent magnet topology optimization to minimize the total cost of cooling using a thermoeconomic cost-rate balance coupled with an AMR model. A genetic algorithm identifies cost-minimizing magnet topologies. For a fixed temperature span of 15 K and 4.2 kg of gadolinium, the optimal magnet configuration provides 3.3 kW of cooling power with a second law efficiency (ηII) of 0.33 using 16.3 kg of permanent magnet material.

  12. Preparation for commissioning of structural sensors of Wendelstein 7-X magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Fellinger, Joris, E-mail: joris.fellinger@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Egorov, Konstantin [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Bykov, Victor; Schauer, Felix [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2015-10-15

    Highlights: • Graphical user interface for fast comparison between loads, parameter settings and models of potentially critical components of magnet system. • Fast definition of magnetic field strength limits for any electromagnetic configuration. • Definition of operational warning limits for measured signals to prevent overloading due to unexpected mechanical response of the magnet system. - Abstract: The modular stellarator Wendelstein 7-X (W7-X) in Greifswald, Germany is currently under commissioning. The magnet system (MS) consists of five symmetric modules, each one containing two flip-symmetric half modules of five non-planar and two planar superconducting coils operated in the cryostat system (CS) at 4 K. In order to validate the FE models that formed the basis of the design and the operational limits, the MS and CS were instrumented with more than 3000 sensors. The paper gives an overview of the numerical tools developed to enable safe operation of the MS based on comparisons between measured sensor signals and their FE model predictions. Output extraction from the FE models was standardized for all potentially critical components and all sensor locations. A graphical user interface (GUI) was programmed to compare critical results of different simulations and models. The GUI shows the design limit for each component. With local models, the safe design of each component was demonstrated against these design limits. The GUI also gives the degree of utilization of each component as the ratio between the calculated loads relative to the design limit. The highest degree of utilization over all components was used to define safe modes of operation and to set limits on allowed deviations of the measured signals relative to the projection before operation has to be interrupted.

  13. Structural design of the toroidal configuration of the HTS SMES cooling system

    International Nuclear Information System (INIS)

    Yeom, H.K.; Koh, D.Y.; Ko, J.S.; Kim, H.B.; Hong, Y.J.; Kim, S.H.; Seong, K.C.

    2011-01-01

    The superconducting magnetic energy storage (SMES) system is working on around 30 K, because the magnet is made of high temperature superconductor. To maintain the cryogenic temperature, the superconducting coil is cooled by cryogen, helium gas or liquid neon. But there are some weak points in the cryogen cooling system. For example periodic charge of the cryogen and size is big and so on. So, we have designed the conduction cooling system for toroidal configuration HTS SMES. The toroidal type HTS SMES has some merits, so it is very small magnetic field leakage, and magnetic field applied perpendicular to the tape surface can be reduced. Our system has 28 numbers of HTS double pancake coils and they are arrayed toroidal configuration. The toroidal inner radius is 162 mm, and outer radius is 599 mm, and height is about 162 mm. In this study, we have designed the cooling structure and analyzed temperature distribution of cooling path, thermal stress and deformation of the cooling structure.

  14. Design of wide flat-topped low transverse field solenoid magnet

    International Nuclear Information System (INIS)

    Jing Xiaobing; Chen Nan; Li Qin

    2010-01-01

    A wide flat-topped low transverse error field solenoid magnet design for linear induction accelerator is presented. The design features non-uniform winding to reduce field fluctuation due to the magnets' gap, and homogenizer rings within the solenoid to greatly reduce the effects of winding errors. Numerical modeling of several designs for 12 MeV linear induction accelerator (LIA) in China Academy of Engineering Physics has demonstrated that by using these two techniques the magnetic field fluctuations in the accelerator gap can be reduced by 70% and the transverse error field can be reduced by 96.5%. (authors)

  15. Design and construction of permanent magnetic gears

    DEFF Research Database (Denmark)

    Jørgensen, Frank Thorleif

    /l]. Measurement from this gear has resulted in a measured total torque density of 23 [Nm/l]. Mechanical versions of this gear type are found with total torque density in the 16 to 31 [Nm/l] range. The third and last gear technology that is investigated is a gear that reminds of a planetary gear. Research shows......This thesis deals with design and development of permanent magnetic gears. The goal of this thesis is to develop knowledge and calculation software for magnetic gears. They use strong NdFeB permanent magnets and a new magnetic gear technology, which will be a serious alternative to classical...... mechanical gears. The new magnetic gear will have a high torque density1 relationship –high efficiency and are maintenance free. In this project was manufactured two test gears which is tested and verified with models developed in this project. Present technological status for magnetic gears is introduced...

  16. Preliminary study of magnet design for an SSC

    International Nuclear Information System (INIS)

    Taylor, C.E.; Meuser, R.B.

    1983-08-01

    The overriding design consideration for the SSC magnets is that cost of the facility be minimized; at 8 T, approximately 40 km of bending magnets is required for each ring of a 20 TeV collider. We present some results of a parametric study of two-in-one, iron-core magnets for an SSC. These results are necessarily preliminary in nature, and are intended only to show some of the trade-offs for a wide range of the variables. We show also some results for a reference design that produces 6.5 T in the aperture at 4.4 K for a coil inside diameter of 40 mm. It is not to be inferred that we have established this to be an optimum in any sense

  17. Tunable Absorption System based on magnetorheological elastomers and Halbach array: design and testing

    Energy Technology Data Exchange (ETDEWEB)

    Bocian, Mirosław; Kaleta, Jerzy; Lewandowski, Daniel, E-mail: daniel.lewandowski@pwr.edu.pl; Przybylski, Michał

    2017-08-01

    Highlights: • Construction of a Tunable Absorption System incorporating MRE has been done. • For system control by magnetic field a double circular Halbach array has been used. • Significant changes of the TSAs natural frequency and damping has been obtained. - Abstract: In this paper, the systematic design, construction and testing of a Tunable Absorption System (TAS) incorporating magnetorheological elastomer (MRE) has been investigated. The TAS has been designed for energy absorption and mitigation of vibratory motions from an impact excitation. The main advantage of the designed TAS is that it has the ability to change and adapt to working conditions. Tunability can be realised through a change in the magnetic field caused by the change of an internal arrangement of permanent magnets within a double dipolar circular Halbach array. To show the capabilities of the tested system, experiments based on an impulse excitation have been performed. Significant changes of the TASs natural frequency and damping characteristics have been obtained. By incorporating magnetic tunability within the TAS a significant qualitative and quantitative change in the devices mechanical properties and performance were obtained.

  18. Performance of a proximity cryogenic system for the ATLAS central solenoid magnet

    CERN Document Server

    Doi, Y; Makida, Y; Kondo, Y; Kawai, M; Aoki, K; Haruyama, T; Kondo, T; Mizumaki, S; Wachi, Y; Mine, S; Haug, F; Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2002-01-01

    The ATLAS central solenoid magnet has been designed and constructed as a collaborative work between KEK and CERN for the ATLAS experiment in the LHC project The solenoid provides an axial magnetic field of 2 Tesla at the center of the tracking volume of the ATLAS detector. The solenoid is installed in a common cryostat of a liquid-argon calorimeter in order to minimize the mass of the cryostat wall. The coil is cooled indirectly by using two-phase helium flow in a pair of serpentine cooling line. The cryogen is supplied by the ATLAS cryogenic plant, which also supplies helium to the Toroid magnet systems. The proximity cryogenic system for the solenoid has two major components: a control dewar and a valve unit In addition, a programmable logic controller, PLC, was prepared for the automatic operation and solenoid test in Japan. This paper describes the design of the proximity cryogenic system and results of the performance test. (7 refs).

  19. Design of a large superconducting spectrometer magnet

    International Nuclear Information System (INIS)

    Shintomi, T.; Makida, Y.; Mito, T.; Yamanoi, Y.; Hashimito, O.; Nagae, T.

    1989-04-01

    The superconducting spectrometer magnet for nuclear physics experiments has been under construction by Institute for Nuclear Study, University of Tokyo with collaboration from KEK. The magnet has a sector type coil. The magnetic field is 3 T with the magnet gap of 50 cm and the stored energy is 11.8 MJ. The easy operation and maintenance are taken into consideration in addition to usual design concept. Three dimensional magnetic field calculation and the stress analysis have been performed. The code 'QUENCH' was applied to decide the operation current and to check the safety of the coil. As a result, the current of 500 A was selected. The heat leaks were checked and estimated less than 2 W at 4 K. A small refrigerator is to be used for thermal insulations at 80 and 20 K. (author)

  20. ATLAS Magnet System Nearing Completion

    CERN Document Server

    ten Kate, H H J

    2008-01-01

    The ATLAS Detector at the Large Hadron Collider at CERN is equipped with a superconducting magnet system that consists of a Barrel Toroid, two End-Cap Toroids and a Central Solenoid. The four magnets generate the magnetic field for the muon- and inner tracking detectors, respectively. After 10 years of construction in industry, integration and on-surface tests at CERN, the magnets are now in the underground cavern where they undergo the ultimate test before data taking in the detector can start during the course of next year. The system with outer dimensions of 25 m length and 22 m diameter is based on using conduction cooled aluminum stabilized NbTi conductors operating at 4.6 K and 20.5 kA maximum coil current with peak magnetic fields in the windings of 4.1 T and a system stored magnetic energy of 1.6 GJ. The Barrel Toroid and Central Solenoid were already successfully charged after installation to full current in autumn 2006. This year the system is completed with two End Cap Toroids. The ultimate test of...

  1. Operation and design selection of high temperature superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2004-01-01

    Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN 2 for cooling down, and about 0.2 l LN 2 h -1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings

  2. Specialty magnets

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-07-01

    A number of basic conceptual designs are explained for magnet systems that use permanent magnet materials. Included are iron free multipoles and hybrid magnets. Also appended is a discussion of the manufacturing process and magnetic properties of some permanent magnet materials

  3. Design and development of a 3 axis magnetic field measurement facility using Hall probe

    International Nuclear Information System (INIS)

    Sahoo, Shantonu; Bhattacharyya, Sumantra; Chaddha, Niraj; Mishra, Santosh Kr.; Nandy, Partha P.; Nandi, Chinmay; Bhole, Rajendra B.; Pal, Sarbajit; Pal, Gautam

    2015-01-01

    A 3-axis drive system has been designed and developed in-house to measure the magnetic field with positional accuracy of 0.2 mm in a volume of 1.5 x 1.3 x 0.15 cubic-meter. Hall sensor based magnetometer is used to measure the magnetic field with a precision of 100 μT(1 Gauss). The drive of each axis has linear guide and zero backlash ball screw combination to achieve accurate movement of the hall probe with positional repeatability of +/- 0.2 micron per 50 mm. The hardware and software, also developed in-house, facilitate precise probe positioning and sophisticated visualization of field map. Dedicated microcontroller based motor controllers and encoder read-out cards for each axis have been developed. The facility is integrated with a rich touch-screen based intelligent GUI for automated scanning and data acquisition. This facility can be used for accurate magnetic field mapping of big dipole magnets, solenoids, etc. The facility has been tested successfully to characterize a Dipole Magnet designed for Radioactive Ion Beam (RIB) facility. (author)

  4. Vibration measurements and analyses for a magnet-superconductor levitated system

    International Nuclear Information System (INIS)

    Wen Zheng; Liu Yu; Yang Wenjiang; Qiu Ming

    2007-01-01

    Magnetic levitation technology, having the characteristics of low cost and high quality, has been considered a preferable option for the next generation of launcher systems. A world-wide research design on the conceptual level has been carried out on the highly reusable space transportation systems by applying magnetic levitation to the launch assistance. Recently, a research plan has been implemented in our laboratory by constructing a scale-model suspension system with high temperature superconductor (HTS henceforth) bulks over a 7 m Nd-Fe-B permanent-magnet (PM henceforth) track for the launch assistance. An experimental platform was built to investigate the dynamic responses of the PM-HTS interaction at different field-cooled positions. The critical frequencies and amplitudes which lead to the instability of levitation drift were investigated. The stiffness and the vibration damping were also discussed at the zero-field-cooled position

  5. Design, manufacture and measurements of permanent dipole magnets for DIRAC

    CERN Document Server

    Vorozhtsov, A; Kasaei, S; Solodko, E; Thonet, P A; Tommasini, D

    2013-01-01

    The one of the aim of the DIRAC experiment is the observation of the long-lived π+π- atoms, using the proton beam of the CERN Proton Synchrotron [1]. Two dipole magnets are needed for the for the DIRAC experiment as high resolution spectrometers. The dipole magnet will be used to identify the long-lived atoms on the high level background of π+π- pairs produced simultaneously with π+π- atoms. The proposed design is a permanent magnet dipole with a mechanical aperture of 60 mm. The magnet, of a total physical length of 66 mm, is based on Sm2Co17 blocks and provides an integrated field strength of 24·10-3 T×m. The Sm2Co17 was chosen as a material for the permanent magnet blocks due to its radiation hardness and weaker temperature dependence. The magnetic field quality is determined by 2 ferromagnetic poles, aligned together with the permanent magnets blocks. The paper describes the design, manufacture and magnetic measurements of the magnets.

  6. Optimal design of implants for magnetically mediated hyperthermia: A wireless power transfer approach

    Science.gov (United States)

    Lang, Hans-Dieter; Sarris, Costas D.

    2017-09-01

    In magnetically mediated hyperthermia (MMH), an externally applied alternating magnetic field interacts with a mediator (such as a magnetic nanoparticle or an implant) inside the body to heat up the tissue in its proximity. Producing heat via induced currents in this manner is strikingly similar to wireless power transfer (WPT) for implants, where power is transferred from a transmitter outside of the body to an implanted receiver, in most cases via magnetic fields as well. Leveraging this analogy, a systematic method to design MMH implants for optimal heating efficiency is introduced, akin to the design of WPT systems for optimal power transfer efficiency. This paper provides analytical formulas for the achievable heating efficiency bounds as well as the optimal operating frequency and the implant material. Multiphysics simulations validate the approach and further demonstrate that optimization with respect to maximum heating efficiency is accompanied by minimizing heat delivery to healthy tissue. This is a property that is highly desirable when considering MMH as a key component or complementary method of cancer treatment and other applications.

  7. Modular tokamak magnetic system

    International Nuclear Information System (INIS)

    Yang, T.F.

    1988-01-01

    This patent describes a tokamak reactor including a vacuum vessel, toroidal confining magnetic field coils disposed concentrically around the minor radius of the vacuum vessel, and poloidal confining magnetic field coils, an ohmic heating coil system comprising at least one magnetic coil disposed concentrically around a toroidal field coil, wherein the magnetic coil is wound around the toroidal field coil such that the ohmic heating coil enclosed the toroidal field coil

  8. Design and analysis of tubular permanent magnet linear wave generator.

    Science.gov (United States)

    Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng

    2014-01-01

    Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.

  9. Design and Analysis of Tubular Permanent Magnet Linear Wave Generator

    Directory of Open Access Journals (Sweden)

    Jikai Si

    2014-01-01

    Full Text Available Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.

  10. Design and Analysis of Tubular Permanent Magnet Linear Wave Generator

    Science.gov (United States)

    Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng

    2014-01-01

    Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG. PMID:25050388

  11. Nanoparticulated magnetic drug delivery systems: Preparation and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Morais, P C, E-mail: pcmor@unb.b [Universidade de BrasIlia, Instituto de Fisica, Nucleo de Fisica Aplicada, Brasilia DF 70910-900 (Brazil)

    2010-03-01

    This paper describes how magnetic resonance can be successfully used as a tool to help customize and quantify nanosized magnetic particles while labeling cells and administered in animals for targeting different biological sites. Customization of magnetic nanoparticles is addressed here in terms of production of complex magnetic drug delivery systems whereas quantification of magnetic nanoparticle in different biological compartments emerges as a key experimental information to assess time-dependent magnetic nanoparticle biodistribution profiles. Examples of using magnetic resonance in unfolding information regarding the pharmacokinetics of intravenously-injected surface-functionalized magnetic nanoparticles in animals are included in the paper.

  12. Design optimization of superconducting magnetic energy storage coil

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok

    2014-05-15

    Highlights: • We modeled the optimization formulation that minimizes overall refrigeration load into the SMES cryostat. • Higher the operating current reduces the dynamic load but increases static heat load into the cryostat. • Higher allowable hoop stress reduces both coil volume and refrigeration load. • The formulation can be in general be utilized for any arbitrary specification of SMES coil and conductor type. - Abstract: An optimization formulation has been developed for a superconducting magnetic energy storage (SMES) solenoid-type coil with niobium titanium (Nb–Ti) based Rutherford-type cable that minimizes the cryogenic refrigeration load into the cryostat. Minimization of refrigeration load reduces the operating cost and opens up the possibility to adopt helium re-condensing system using cryo-cooler especially for small-scale SMES system. Dynamic refrigeration load during charging or discharging operational mode of the coil dominates over steady state load. The paper outlines design optimization with practical design constraints like actual critical characteristics of the superconducting cable, maximum allowable hoop stress on winding, etc., with the objective to minimize refrigeration load into the SMES cryostat. Effect of design parameters on refrigeration load is also investigated.

  13. Magnetic Decoupling Design and Experimental Validation of a Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine for HEVs

    Directory of Open Access Journals (Sweden)

    Zhiyi Song

    2012-10-01

    Full Text Available The radial-radial flux compound-structure permanent-magnet synchronous machine (CS-PMSM, integrated by two concentrically arranged permanent-magnet electric machines, is an electromagnetic power-splitting device for hybrid electric vehicles (HEVs. As the two electric machines share a rotor as structural and magnetic common part, their magnetic paths are coupled, leading to possible mutual magnetic-field interference and complex control. In this paper, a design method to ensure magnetic decoupling with minimum yoke thickness of the common rotor is investigated. A prototype machine is designed based on the proposed method, and the feasibility of magnetic decoupling and independent control is validated by experimental tests of mutual influence. The CS-PMSM is tested by a designed driving cycle, and functions to act as starter motor, generator and to help the internal combustion engine (ICE operate at optimum efficiency are validated.

  14. Waste water purification by magnetic separation technique using HTS bulk magnet system

    International Nuclear Information System (INIS)

    Oka, T.; Kanayama, H.; Tanaka, K.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Terasawa, T.; Itoh, Y.; Yabuno, R.

    2009-01-01

    We have investigated the feasibility of strong magnetic field generators composed of the high temperature superconducting (HTS) bulk magnet systems to the magnetic separation techniques for the waste water including thin emulsion bearing the cutting oil. Two types of the strong field generators were prepared by the face-to-face HTS bulk magnet systems, which emit the magnetic field density of 1 and 2 T in the open spaces between the magnetic poles activated by the pulsed field magnetization and the field cooling methods, respectively. A couple of water channels containing iron balls were settled in the strong field to trap the magnetized flocks in the waste water. The separation ratios of flocks containing 200 ppm magnetite powder were evaluated with respect to the flow rates of the waste water. The performances of bulk magnet system have kept showing values of around 100% until the flowing rate reached up to 18 l/min. This suggests that the magnetic separation by using bulk magnets is effective for the practical water purification systems.

  15. Mechanical Design of the SMC (Short Model Coil) Dipole Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Regis, F.; Fessia, P.; Bajko, M.; Rijk, G. de [European Organization for Nuclear Research - CERN, CH-1211, Geneve 23 (Switzerland); Manil, P. [CEA/Saclay, IRFU/SIS, 91191 Gif-sur-Yvette (France)

    2010-06-15

    The Short Model Coil (SMC) working group was set in February 2007 within the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb{sub 3}Sn dipole magnet. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet was originally conceived to reach a peak field of about 13 T on conductor, using a 2500 A/mm{sup 2} Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb{sub 3}Sn cable, by applying different level of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has to be realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. In this paper we will describe the mechanical optimization of the dipole, starting from a conceptual configuration based on a former magnetic analysis. Two and three-dimensional Finite Element Method (FEM) models have been implemented in ANSYS and in CAST3M, aiming at setting the mechanical parameters of the dipole magnet structure, thus fulfilling the design constraints imposed by the materials. (authors)

  16. Design of a 2 Tesla transmission line magnet for the VLHC

    CERN Document Server

    Foster, G W; Novitski, I

    2000-01-01

    A prototype of the transmission line magnet for the Very Large Hadron Collider is being designed at Fermilab. This is a single-turn warm iron superconducting magnet in a "Double-C" configuration. Iron poles form a high quality alternating-gradient magnet field in two 20 mm height beam gaps. Simple magnet construction and manufacturing processes and a room temperature iron yoke give a significant reduction in magnet cost. Open beam gaps simplify magnetic measurements and vacuum chamber installation. The magnet mechanical stability was investigated for several mechanical models. A high field quality over the whole range (0.1 T-2.0 T) of field variation was calculated using correcting holes in the iron poles. The magnet optimization was carried out by POISSON, OPERA 2D and ANSYS codes. The results of magnet design and model tests are presented. (6 refs).

  17. Report on the production magnet measurement system for the Fermilab Energy-Saver superconducting dipoles and quadrupoles

    International Nuclear Information System (INIS)

    Brown, B.C.; Cooper, W.E.; Garvey, J.D.

    1983-03-01

    The measurement system and procedures used to test more than 900 superconducting dipole magnets and more than 275 superconducting quadrupole magnets for the Fermilab Energy Saver are described. The system is designed to measure nearly all parameters relevant to the use of the magnets in the accelerator including maximum field capability and precision field measurements. The performance of the instrumentation with regard to precision, reliability, and operational needs for high volume testing will be described. Previous reports have described the measurement system used during development of the Saver magnets from which this system has evolved

  18. Precise NMR measurement and stabilization system of magnetic field of a superconducting 7 T wave length shifter

    CERN Document Server

    Borovikov, V M; Karpov, G V; Korshunov, D A; Kuper, E A; Kuzin, M V; Mamkin, V R; Medvedko, A S; Mezentsev, N A; Repkov, V V; Shkaruba, V A; Shubin, E I; Veremeenko, V F

    2001-01-01

    The system of measurement and stabilization of the magnetic field in the superconducting 7 T wave length shifter (WLS), designed at Budker Institute of Nuclear Physics are described. The measurements are performed by nuclear magnetic resonance (NMR) magnetometer at two points of the WLS magnetic field. Stabilization of the field is provided by the current pumping system. The stabilization system is based on precise NMR measurement of magnetic field as a feedback signal for computer code which control currents inside the superconducting coils. The problem of the magnetic field measurements with NMR method consists in wide spread of field in the measured area (up to 50 Gs/mm), wide temperature range of WLS operating, small space for probe and influence of iron hysteresis. Special solid-state probes were designed to satisfy this requirements. The accuracy of magnetic field measurements at probe locations is not worse than 20 ppm. For the WLS field of 7 T the reproducibility of the magnetic field of 30 ppm has be...

  19. A nonlinear controller design for permanent magnet motors using a synchronization-based technique inspired from the Lorenz system.

    Science.gov (United States)

    Zaher, Ashraf A

    2008-03-01

    The dynamic behavior of a permanent magnet synchronous machine (PMSM) is analyzed. Nominal and special operating conditions are explored to show that the PMSM can experience chaos. A nonlinear controller is introduced to control these unwanted chaotic oscillations and to bring the PMSM to a stable steady state. The designed controller uses a pole-placement approach to force the closed-loop system to follow the performance of a simple first-order linear system with zero steady-state error to a desired set point. The similarity between the mathematical model of the PMSM and the famous chaotic Lorenz system is utilized to design a synchronization-based state observer using only the angular speed for feedback. Simulation results verify the effectiveness of the proposed controller in eliminating the chaotic oscillations while using a single feedback signal. The superiority of the proposed controller is further demonstrated by comparing it with a conventional PID controller. Finally, a laboratory-based experiment was conducted using the MCK2812 C Pro-MS(BL) motion control kit to confirm the theoretical results and to verify both the causality and versatility of the proposed controller.

  20. Design study on 50 kJ HTS SMES for simulated dynamic experiment of electric power systems

    International Nuclear Information System (INIS)

    Dai Taozhen; Fan Zeyang; Li Jingdong; Tang Yuejin; Cheng Shijie; Pan Yuan; Wang Jingrong

    2004-01-01

    We conducted a study in order to determine a suitable design for a 50 kJ class high temperature superconducting (HTS) SMES. Magnet size and volume are expected to be reduced by using the HTS since the HTS wire keeps better properties at high magnetic field than does LTS wire. In this paper, both the electromagnetic and mechanical design objects are considered when optimizing the magnet volume of a 50 kJ/10 kW grid model HTS-SMES system with finite element analysis method and simulated annealing algorithm. We carried out parameter surveys of the magnetic fields and circumference stress applied to the HTS-SMES magnets and studied a suitable magnet dimension with low inductance and high current. 2-3.5 T maximum magnetic field applied to the magnet and a low inductance and high current design for a 50 kJ HTS magnet are suitable for improving the dynamic response of system

  1. Design and fabrication of magnetic coolant filter

    Science.gov (United States)

    Prashanth, B. N.

    2017-07-01

    Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not

  2. Design of Nb3Sn Coils for LARP Long Magnets

    International Nuclear Information System (INIS)

    Ferracin, Paolo; Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Ferracin, P.; Caspi, S.; Lietzke, A. F.

    2007-01-01

    The LHC Accelerator Research Program (LARP) has a primary goal to develop, assemble, and test full size Nb 3 Sn quadrupole magnet models for a luminosity upgrade of the Large Hadron Collider (LHC). A major milestone in this development is to assemble and test, by the end of 2009, two 4 m-long quadrupole cold masses, which will be the first Nb 3 Sn accelerator magnet models approaching the length of real accelerator magnets. The design is based on the LARP Technological Quadrupoles (TQ), under development at FNAL and LBNL, with gradient higher than 200 T/m and aperture of 90 mm. The mechanical design will be chosen between two designs presently explored for the TQs: traditional collars and Al-shell based design (preloaded by bladders and keys). The fabrication of the first long quadrupole model is expected to start in the last quarter of 2007. Meanwhile the fabrication of 4 m-long racetrack coils started this year at BNL. These coils will be tested in an Al-shell based supporting structure developed at LBNL. Several challenges have to be addressed for the successful fabrication of long Nb 3 Sn coils. This paper presents these challenges with comments and solutions adopted or under study for these magnets. The coil design of these magnets, including conductor and insulation features, and quench protection studies are also presented

  3. Design of Nb3Sn coils for LARP long magnets

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Dietderich, D.; Feher, S.; Ferracin, P.; Ghosh, A.; Gourlay, S.; Kashikhin, V.V.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Sabbi, G.L.; Schmalzle, J.; Wanderer, P.; Zlobin, A.V.; Fermilab; Brookhaven; LBL, Berkeley; Texas A-M

    2006-01-01

    The LHC Accelerator Research Program (LARP) has a primary goal to develop, assemble, and test full size Nb 3 Sn quadrupole magnet models for a luminosity upgrade of the Large Hadron Collider (LHC). A major milestone in this development is to assemble and test, by the end of 2009, two 4m-long quadrupole cold masses, which will be the first Nb3Sn accelerator magnet models approaching the length of real accelerator magnets. The design is based on the LARP Technological Quadrupoles (TQ), under development at FNAL and LBNL, with gradient higher than 200 T/m and aperture of 90 mm. The mechanical design will be chosen between two designs presently explored for the TQs: traditional collars and Al-shell based design (preloaded by bladders and keys). The fabrication of the first long quadrupole model is expected to start in the last quarter of 2007. Meanwhile the fabrication of 4m-long racetrack coils started this year at BNL. These coils will be tested in an Al-shell based supporting structure developed at LBNL. Several challenges have to be addressed for the successful fabrication of long Nb 3 Sn coils. This paper presents these challenges with comments and solutions adopted or under study for these magnets. The coil design of these magnets, including conductor and insulation features, and quench protection studies are also presented

  4. Mechanical stress analysis during a quench in CLIQ protected 16 T dipole magnets designed for the future circular collider

    Science.gov (United States)

    Zhao, Junjie; Prioli, Marco; Stenvall, Antti; Salmi, Tiina; Gao, Yuanwen; Caiffi, Barbara; Lorin, Clement; Marinozzi, Vittorio; Farinon, Stefania; Sorbi, Massimo

    2018-07-01

    Protecting the magnets in case of a quench is a challenge for the 16 T superconducting dipole magnets presently designed for the 100 TeV: Future Circular Collider (FCC). These magnets are driven to the foreseen technological limits in terms of critical current, mechanical strength and quench protection. The magnets are protected with CLIQ (Coupling-Loss Induced Quench) system, which is a recently developed quench protection method based on discharging a capacitor bank across part of the winding. The oscillation of the magnet currents and the dissipation of the high stored energy into the windings cause electrodynamic forces and thermal stresses, which may need to be considered in the magnet mechanical design. This paper focuses on mechanical stress analysis during a quench of the 16 T cos-θ and block type dipole magnets. A finite element model allowed studying the stress due to the non-uniform temperature and current distribution in the superconducting coils. Two different CLIQ configurations were considered for the cos-θ design and one for the block type magnet. The analyses of the mechanical behavior of two magnets during a quench without or with hot spot turn were separately carried out. The simulation results show that the stress related to a quench should be considered when designing a high field magnet.

  5. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

    CERN Document Server

    Wu, Zhizheng; Ben Amara, Foued

    2013-01-01

    Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foue...

  6. Measurement system for SSRF pulsed magnets

    International Nuclear Information System (INIS)

    Peng Chengcheng; Gu Ming; Liu Bo; Ouyang Lianhua

    2007-01-01

    This paper describes the magnetic field measurement system for pulsed magnets in SSRF. The system consists of magnetic probes, analog active integrator, oscilloscope, stepper motor and a controller. An application program based on LabVIEW has been developed as main control unit. After the magnetic field mapping of a septum magnet prototype, it is verified that the test results accord with the results of theoretical calculation and computer simulation. (authors)

  7. Alignment of mapping system for magnet cyclotron DECY-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik; Kurnia Wibowo

    2016-01-01

    A cyclotron is composed of some main and specific components, such as magnet system, ion source, RF system and extractor. A magnet is one of important component in a cyclotron that serves as ion beam bending so the ion beam trajectory is circular. Magnet design should with the requirement of cyclotron that proton energy is 13 MeV. In the construction of the cyclotron magnet, a mapping tool of the magnetic field is required for analysis in shimming process in order to optimize the magnetic field. The magnetic field mapping process is carried out in the median plane of the magnet poles. The magnetic field mapping is carried out repeatedly during the shimming process. During this process, the mapping tool is possible to experience a shift or change in position, for that it is necessary to alignment in order to make sure that the probe is in the median plane of magnet poles and to ensure their positions are always the same on each repetition mapping. During this process, it is possible to experience a shift mapping tool or change the position, for this it is needed to process alignment to ensure the position of the probe is in the median plane magnetic poles and ensure their positions are always the same on each repetition mapping. Alignment on the mapping tool are the height position, zeroing tesla meter and two hall probe mapping. The parameters form the basis for magnetic field measurements based on the three elements: an alignment system on the engine mapping, mapping tool reference point and stage movement of x-y coordinates. Shifts occur due to change in elevation mapping tool table and center coordinates x and y in the mapping process. Changes made to shift mapping coordinates can be shifted as far as 1 to 2 mm for each hall probe in the x and y coordinates with altitude changes 0.05° mapping table and measurement of tesla meter changes in 0.002 T. (author)

  8. 293 K - 1.9 K supporting systems for the Large Hadron Collider (LHC) cryo-magnets

    CERN Document Server

    Mathieu, M; Renaglia, T; Rohmig, P; Williams, L R

    1998-01-01

    The LHC machine will incorporate some 2000 main ring super-conducting magnets cooled at 1.9 K by super-fluid pressurized helium, mainly 15m-long dipoles with their cryostats and 6m-long quadrupoles housed in the Short Straight Section (SSS) units. This paper presents the design of the support system of the LHC arc cryo-magnets between 1.9 K at the cold mass and 293 K at the cryostat vacuum vessel. The stringent positioning precision for magnet alignment and the high thermal performance for cryogenic efficiency are the main conflicting requirements, which have lead to a trade-off design. The systems retained for LHC are based on column-type supports positioned in the vertical plane of the magnets inside the cryostats. An ad-hoc design has been achieved both for cryo-dipoles and SSS. Each column is composed of a main tubular thin-walled structure in composite material (glass-fibre/epoxy resin, for its low thermal conductivity properties), interfaced to both magnet and cryostat via stainless steel flanges. The t...

  9. Design and experimental research on a self-magnetic pinch diode under MV

    Science.gov (United States)

    Pengfei, ZHANG; Yang, HU; Jiang, SUN; Yan, SONG; Jianfeng, SUN; Zhiming, YAO; Peitian, CONG; Mengtong, QIU; Aici, QIU

    2018-01-01

    A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was developed in accordance with the principle of pinhole imaging. The designed SMPD and the corresponding measuring system were tested under ∼MV, with 1.75 × 2 mm2 oval x-ray spots (AWE defined) and forward directed dose 1.6 rad at 1 m. Results confirmed that the anode foil can significantly strengthen the electron beam pinch focus, and the focal spot measuring system can collect clear focal spot images. This finding indicated that the principle and method are feasible.

  10. Design and experimental research on a self-magnetic pinch diode under MV

    Institute of Scientific and Technical Information of China (English)

    Pengfei ZHANG; Yang HU; Jiang SUN; Yan SONG; Jianfeng SUN; Zhiming YAO; Peitian CONG; Mengtong QIU; Aici QIU

    2018-01-01

    A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized.An x-ray focal spot measuring system was developed in accordance with the principle of pinhole imaging.The designed SMPD and the corresponding measuring system were tested under ~MV,with 1.75 × 2 mm2 oval x-ray spots (AWE defined) and forward directed dose 1.6 rad at 1 m.Results confirmed that the anode foil can significantly strengthen the electron beam pinch focus,and the focal spot measuring system can collect clear focal spot images.This finding indicated that the principle and method are feasible.

  11. Proposed magnet system for EBT-P

    International Nuclear Information System (INIS)

    Ballou, J.K.; McManany, T.J.; Power, W.H.; Yeh, H.T.

    1979-01-01

    Since EBT-P, and other EBT devices, depends on having closed field lines for its successful operation, a very tight tolerance (on the order of 6 parts in 10 4 ) must be imposed on certain components of the field error. This is a global tolerance that influences the design of each magnet, its leads, the electrical bus, and the relative position of each magnet to its neighbors. This paper discusses the design, and field error analysis of the ORNL reference design for EBT-P

  12. Magnetic systems for wide-aperture neutron polarizers and analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Gilev, A.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Bazarov, B.A.; Bulkin, A.P.; Schebetov, A.F. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Syromyatnikov, V.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Physical Department, St. Petersburg State University, Ulyanovskaya, 1, Petrodvorets, St. Petersburg 198504 (Russian Federation); Tarnavich, V.V.; Ulyanov, V.A. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation)

    2016-10-11

    Requirements on the field uniformity in neutron polarizers are analyzed in view of the fact that neutron polarizing coatings have been improved during the past decade. The design of magnetic systems that meet new requirements is optimized by numerical simulations. Magnetic systems for wide-aperture multichannel polarizers and analyzers are represented, including (a) the polarizer to be built at channel 4-4′ of the reactor PIK (Gatchina, Russia) for high-flux experiments with a 100×150 mm{sup 2} beam of polarized cold neutrons; (b) the fan analyzer covering a 150×100 mm{sup 2} window of the detector at the Magnetism Reflectometer (SNS, ORNL, USA); (c) the polarizer and (d) the fan analyzer covering a 220×110 mm{sup 2} window of the detector at the reflectometer NERO, which is transferred to PNPI (Russia) from HZG (Germany). Deviations of the field from the vertical did not exceed 2°. The polarizing efficiency of the analyzer at the Magnetism Reflectometer reached 99%, a record level for wide-aperture supermirror analyzers.

  13. Design optimization of a linear permanent magnet synchronous motor for extra low force pulsations

    International Nuclear Information System (INIS)

    Isfahani, Aarsh Hassanpour; Vaez-Zadeh, Sadegh

    2007-01-01

    Air cored linear permanent magnet synchronous motors have essentially low force pulsations due to the lack of the primary iron core and teeth. However, a motor design with much lower force pulsations is required for many precise positioning systems, as in fabrication of microelectronic chips. This paper presents the design optimization of an air cored linear permanent magnet synchronous motor with extra low force pulsations for such applications. In order to achieve the goal, an analytical layer model of the machine is developed. A very effective objective function regarding force pulsations is then proposed; while the selected motor dimensions are regarded as the design variables. A genetic algorithm is used to find the optimal motor dimensions. This results in a substantial ninety percent reduction in the force pulsations. The design optimization is verified by a finite element method

  14. Engineering magnetic polariton system with distributed coefficients: Applications to soliton management

    International Nuclear Information System (INIS)

    Kuetche, Victor K.; Nguepjouo, Francis T.; Kofane, Timoleon C.

    2014-01-01

    In the wake of the recent design of a powerful method for generating higher-dimensional evolution systems with distributed coefficients Kuetche (2014) [15] illustrated on the dynamics of the current-fed membrane of zero Young’s modulus, we construct the general Lax-representation of a new higher-dimensional coupled evolution equations with varying coefficients. Discussing the physical meanings of these equations, we show that the coupled system above describes the propagation of magnetic polaritons within saturated ferrites, resulting structurally from the fast-near adiabatic magnetization dynamics combined to the Maxwell’s equations. Accordingly, we address some practical issues of the nonautonomous soliton managements underlying in the fast remagnetization process of data inputs within magnetic memory devices

  15. Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

    Directory of Open Access Journals (Sweden)

    Yoshihito Miyatake

    2012-01-01

    Full Text Available Magnetically levitated conveyor system using superconductors is discussed. The system is composed of a levitated conveyor, magnetic rails, a linear induction motor, and some power supplies. In the paper, pulse-field magnetization is applied to the system. Then, the levitation height and the dynamics of the conveyor are controlled. The static and dynamic characteristics of the levitated conveyor are discussed.

  16. Design of Anti-windup Compensator for Superconducting Magnetic Energy Storage

    DEFF Research Database (Denmark)

    Fang, Jiakun; Chen, Zhe; Su, Chi

    2013-01-01

    -windup compensator (AWC) is applied to the controller of the superconducting magnetic energy storage (SMES) system to improve power system stability. First, power system with actuator saturation is described to formulate the problem mathematically. Then, uniform anti-windup scheme is studied and compensator...... is designed with method of linear matrix inequality (LMI). Instead of replacing the original controller with a new one, the anti-windup compensation make use of the difference between the controller’s and the actuator’s output to mitigate the adverse influence of saturation, which leaves the original...... controller unaffected. Hence, this method can be used to enhance power system stability under the same capacity with its unsaturated controller so that SMES is utilized more efficiently....

  17. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    International Nuclear Information System (INIS)

    Green, Michael A.; Pan, Heng; Liu, X.K.; Wang, Li; Wu, Hong; Chen, A.B.; Guo, X.L.

    2009-01-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

  18. A news magnetic tools designed by ECOPETROL to inhibit wax in the petroleum production systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez U, C.; Medina Z, C. [ECOPETROL, Instituto Colombiano del Petroleo (Colombia); Pena C, A. [INSERPET, Bucaramanga (Colombia)

    1996-12-31

    The deposition of wax and asphaltenes in production systems cause plugging in the flow lines reducing the oil production and increasing significantly the produced barrels prices. A wax magnetic inhibition technique has been tested with great success. The method has been improved with the use of magnetic tools. This work describes the experience and the results obtained with these tools. 6 figs., 1 tab.

  19. A news magnetic tools designed by ECOPETROL to inhibit wax in the petroleum production systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez U, C; Medina Z, C [ECOPETROL, Instituto Colombiano del Petroleo (Colombia); Pena C, A [INSERPET, Bucaramanga (Colombia)

    1997-12-31

    The deposition of wax and asphaltenes in production systems cause plugging in the flow lines reducing the oil production and increasing significantly the produced barrels prices. A wax magnetic inhibition technique has been tested with great success. The method has been improved with the use of magnetic tools. This work describes the experience and the results obtained with these tools. 6 figs., 1 tab.

  20. Reactor structure and superconducting magnet system of ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Yoshida, Kiyoshi; Shibanuma, Kiyoshi; Okuno, Kiyoshi; Tsuji, Hiroshi; Shimamoto, Susumu

    1993-01-01

    Fusion Experimental Reactors are one of the major steps toward realization of the fusion energy and the key objective are to demonstrate the scientific and technological feasibility prior to the Demo Fusion Reactor. ITER (International Thermonuclear Experimental Reactor) is one of experimental reactors and the conceptual design has been completed by the united efforts of USA, USSR, EC and Japan. In parallel with the conceptual design, key technology development in various areas has being conducted. This paper describes the overall design concepts and the latest technological achievements of the ITER reactor structure and superconducting magnet system. (author)

  1. Photovoltaic-wind hybrid system for permanent magnet DC motor

    Science.gov (United States)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  2. Analysis and Design Optimization of a Coaxial Surface-Mounted Permanent-Magnet Magnetic Gear

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Liu, Xiao; Wang, Chao

    2014-01-01

    ). The analytical field solution allows the prediction of the magnetic torque, which is formulated as a function of design parameters. The impacts of key design parameters on the torque capability are then studied and some significant observations are summarized. Furthermore, the particle swarm optimization (PSO...... on one or another. The results shows that the highest torque density of 157 kNm/m3 is achieved with the consideration focusing on the torque capability only, then the highest torque per permanent magnet (PM) consumption could be improved to 145 Nm/kg by taking the material cost into account....... By synthesizing the torque capability and material cost, a 124 kNm/m3 of torque density and a 128 Nm/kg of torque per PM consumption could be achieved simultaneously by the optimal design....

  3. Design of end magnetic structures for the Advanced Light Source wigglers

    International Nuclear Information System (INIS)

    Humphries, D.; Akre, J.; Hoyer, E.; Marks, S.; Minamihara, Y.; Pipersky, P.; Plate, D.; Schlueter, R.

    1995-01-01

    The vertical magnetic structures for the Advanced Light planar wiggler and 20 cm period elliptical hybrid permanent magnet design. The ends of these structures are characterized by diminishing scalar potential distributions the poles which control beam trajectories. They incorporate electromagnetic correction coils to dynamically correct for variations in the first integral of the field as a function of gap. A permanent magnet trim mechanism is incorporated to minimize the transverse integrated error field distribution. The ends were designed using analytic and computer modeling techniques. The design and modeling results are presented

  4. Design and results of testing the SHF-generator magnetic system of the T-15 device

    International Nuclear Information System (INIS)

    Borisov, V.D.; Koretskij, A.Yu.; Kostenko, A.I.; Monoszon, N.A.; Ostroumov, Yu.N.; Suvorov, M.M.; Trokhachev, G.V.; Churakov, G.F.; Shmal'ko, G.I.; Yakubovskij, V.G.

    1984-01-01

    Design and engineering solutions accepted in the development of the 5T superconducting solenoid of the auxillary heating SHF-generator for the T-15 tokamak are presented. A superconducting coil generates an axially symmetric field with a definite distribution along the SHF-generator gyrocon axis. Limited sizes, high accuracy of coincidence of geometric and magnetic axes, and possibility of operation with different gyrocons are the main peculiarities of the developed cryostat. The required magnetic field of 5T was attained after some training. Heat input at 4.5 K corresponds to the rated value of 2.5 W. Test results for solenoid functional models are presented

  5. Experience with a distributed computing system for magnetic field analysis

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-08-01

    The development of a general purpose computer system, THESEUS, is described the initial use for which has been magnetic field analysis. The system involves several computers connected by data links. Some are small computers with interactive graphics facilities and limited analysis capabilities, and others are large computers for batch execution of analysis programs with heavy processor demands. The system is highly modular for easy extension and highly portable for transfer to different computers. It can easily be adapted for a completely different application. It provides a highly efficient and flexible interface between magnet designers and specialised analysis programs. Both the advantages and problems experienced are highlighted, together with a mention of possible future developments. (U.K.)

  6. Integrated Design of Superconducting Magnets with the CERN Field Computation Program ROXIE

    CERN Document Server

    Russenschuck, Stephan; Bazan, M; Lucas, J; Ramberger, S; Völlinger, Christine

    2000-01-01

    The program package ROXIE has been developed at CERN for the field computation of superconducting accelerator magnets and is used as an approach towards the integrated design of such magnets. It is also an example of fruitful international collaborations in software development.The integrated design of magnets includes feature based geometry generation, conceptual design using genetic optimization algorithms, optimization of the iron yoke (both in 2d and 3d) using deterministic methods, end-spacer design and inverse field calculation.The paper describes the version 8.0 of ROXIE which comprises an automatic mesh generator, an hysteresis model for the magnetization in superconducting filaments, the BEM-FEM coupling method for the 3d field calculation, a routine for the calculation of the peak temperature during a quench and neural network approximations of the objective function for the speed-up of optimization algorithms, amongst others.New results of the magnet design work for the LHC are given as examples.

  7. Introduction to the magnet and vacuum systems of an electron storage ring

    International Nuclear Information System (INIS)

    Weng, W.T.

    1982-01-01

    An accelerator or storage ring complex is a concerted interplay of various functional systems. For the convenience of discussion we can divide it into the following systems: injector, magnet, RF, vacuum, instrumentation and control. In addition, the conventional construction of the building and radiation safety consideration are also needed and finally the beam lines, detector, data acquisition and analysis set-ups for research programs. Dr. L. Teng has given a comprehensive review of the whole complex and the operation of such a facility. I concentrate on the description of magnet and vacuum systems. Only the general function of each system and the basic design concepts will be introduced, no detailed engineering practice will be given which will be best done after a machine design is produced. For further understanding and references a table of bibliography is provided at the end of the paper

  8. Modified BEM calculations on magnetic systems

    International Nuclear Information System (INIS)

    Christoph, V.; Toepfer, J.

    1998-01-01

    A modified boundary element method is presented for the calculation of 3d magnetic fields of magnetic systems including any permanent and soft magnetic materials as well as current distributions. Using an automatic mesh generation inside the magnetic bodies the method is especially suited for the investigation of open air gap systems. The influence of eddy currents on the magnetisation process can be investigated. For illustration, the flux concentration by pole pieces and the generation of magnetic stripe structures in magnetic thick films by pulse fields are considered. (orig.)

  9. Aspects of the engineering design of whole-body nuclear magnetic resonance machines

    International Nuclear Information System (INIS)

    Young, I.R.; Collins, A.G.; Hall, A.S.; Harman, R.R.; Butson, P.C.; Gilderdale, D.J.

    1987-01-01

    The paper on whole-body nuclear magnetic resonance machines reviews the basic physics very briefly, then examines the design requirements and engineering constraints for the major components of such a system. The paper concludes with a brief resume of the techniques used, and a short presentation of the type of results that are achieved. (author)

  10. Conceptual Design of the 45 T Hybrid Magnet at the Nijmegen High Field Magnet Laboratory

    CERN Document Server

    Wiegers, SAJ; Bird, M D; Rook, J; Perenboom, J A A J; Wiegers, S A J; Bonito-Oliva, A; den Ouden, A

    2010-01-01

    A 45 T Hybrid Magnet System is being developed at the Nijmegen High Field Magnet Laboratory as part of the Nijmegen Center for Advanced Spectroscopy. The 45 T Hybrid Magnet System will be used in combination with far-infra-red light produced by a Free Electron Laser under construction directly adjacent to the High Field Magnet Laboratory. The superconducting outsert magnet will consist of three CICC coils wound on a single coil form, using Nb$_{3}$Sn strands. A test program for strand and cable qualification is underway. The CICC will carry 13 kA and the coils will produce 12 T on axis field in a 600 mm warm bore. The nominal operating temperature will be 4.5 K maintained with forced-flow supercritical helium. The insert magnet will produce 33 T at 40 kA in a 32 mm bore consuming 20 MW, and will consist of four coils. The insert magnet will be galvanically and mechanically isolated from the outsert magnet. Complete system availability for users is expected in 2014. In this paper we will report on the conceptu...

  11. CLIQ – Coupling-Loss Induced Quench System for Protecting Superconducting Magnets

    CERN Multimedia

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Upon quench detection, CLIQ is triggered to generate an oscillating current in the magnet coil by means of a capacitive discharge. This in turn introduces a high coupling loss in the superconductor which provokes a quick transition to the normal state of the coil windings. The system is now implemented for the protection of a two meter long superconducting quadrupole magnet and characterized in the CERN magnet test facility. Various CLIQ configurations with different current injection points are tested and the results compared to similar transients lately measured with a not optimized configuration. Test results convincingly show that the newly tested design allows for a more global quench initiation and thus a faster discharge of the magnet energy. Moreover, the performance of CLIQ for reduc...

  12. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    International Nuclear Information System (INIS)

    Li, Y.J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R.X.; Zheng, J.; Deng, C.Y.; Deng, Z.G.

    2016-01-01

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  13. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Dai, Q. [School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Wang, H.; Chen, Z. [School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Sun, R.X.; Zheng, J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Deng, C.Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Deng, Z.G., E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-09-15

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  14. Study on designing of hexapole magnet of ECR ion source

    CERN Document Server

    Sun Liang Ting; Zhao Hong, Wei

    2004-01-01

    Detailed research has been done on the aspects of the design of a Halbach structure permanent hexapole, such as the permanent material adoption, the structure design, the dimension selection, etc. A possible method has been proposed to solve the problem of demagnetization in some magnetic blocks. By optimizing the geometry structure, the magnetic field in the working aperture is made to be the maximum for a certain condition. Some useful codes like POISSON, PERMAG, and TOSCA are used to simulate the sextuple magnetic field. Some useful plots are also presented.

  15. Initial Design of the 60 Megawatt Rotating Magnetic Field (RMF) Oscillator System for the University of Washington ''TCS'' Field Reversed Configuration Experiment

    International Nuclear Information System (INIS)

    Reass, W.A.; Miera, D.A.; Wurden, G.A.

    1997-01-01

    This paper presents the initial electrical and mechanical design of two phase-locked 30 Megawatt RMS, 150 kHz oscillator systems used for current drive and plasma sustainment of the ''Translation, Confinement, and Sustainment'' (TCS) field reversed configuration (FRC) plasma. By the application of orthogonally-placed saddle coils on the surface of the glass vacuum vessel, the phase-controlled rotating magnetic field perturbation will induce an electric field in the plasma which should counter the intrinsic ohmic decay of the plasma, and maintain the FRC. Each system utilizes a bank of 6 parallel magnetically beamed ML8618 triodes. These devices are rated at 250 Amperes cathode current and a 45 kV plate voltage. An advantage of the magnetically beamed triode is their extreme efficiency, requiring only 2.5 kW of filament and a few amps and a few kV of grid drive. Each 3.5 uH saddle coil is configured with an adjustable tank circuit (for tuning). Assuming no losses and a nominal 18 kV plate voltage, the tubes can circulate about 30 kV and 9 kA (pk to pk) in the saddle coil antenna, a circulating power of over 33 megawatts RMS. On each cycle the tubes can kick in up to 1500 Amperes, providing a robust phase control. DC high-voltage from the tubes is isolated from the saddle coil antennas and tank circuits by a 1:1 coaxial air-core balun transformer. To control the ML8618's phase and amplitude, fast 150 Ampere ''totem-pole'' grid drivers, an ''on'' hot-deck and an ''off'' hot-deck are utilized. The hot-decks use up to 6 each 3CPX1500A7 slotted radial beam triodes. By adjusting the conduction angle, amplitude may be regulated, with inter-pulse timing, phase angle can be controlled. A central feedback timing chassis monitors each systems' saddle coil antenna and appropriately derives each systems timing signals. Fiber-optic cables are used to isolate between the control room timing chassis and the remote power oscillator system. Complete system design detail will be

  16. Low level signal data acquisition for the MFTF-B superconducting magnet system

    International Nuclear Information System (INIS)

    Montoya, C.R.

    1984-01-01

    Acquisition of low level signals from sensors mounted on the superconducting magnets in the Tandem Mirror Fusion Test Facility (MFTF-B) impose very strict requirements on the magnet signal conditioning and data acquisition system. Of the various types of sensors required, thermocouples and strain gages produce very low level outputs. These low level outputs must be accurately measured in the harsh environment of slowly varying magnetic fields, cryogenic temperatures, high vacuum, 80 kV pulse power, 60 Hz, 17 MHz and 28, 35, and 56 GHz electrical noise and possible neutron radiation. Successful measurements require careful attention to grounding, shielding, signal handling and processing in the data acquisition system. The magnet instrumentation system provides a means of effectively measuring both low level signals and high level signals from all types of sensors. Various methods involved in the design and implementation of the system for signal conditioning and data gathering will be presented

  17. Conceptual design of laser fusion reactor, SENRI-I - 1. concept and system design

    International Nuclear Information System (INIS)

    Ido, S.; Naki, S.; Norimatsu, T.

    1981-01-01

    Design features of a laser fusion reactor concept SENRI-I and new concepts are reviewed and discussed. The unique feature is the utilization of a magnetic field to guide and control the inner liquid Li flow. Basic requirements and typical parameters used in the design are presented. Items to be discussed are constitution of the system, performance of liquid Li flow, neutronics, thermo-electric cycle, fuel cycle and new concepts

  18. Design features of HTMR-hybrid toroidal magnet tokamak reactor

    International Nuclear Information System (INIS)

    Rosatelli, F.; Avanzini, P.G.; Derchi, D.; Magnasco, M.; Grattarola, M.; Peluffo, M.; Raia, G.; Brunelli, B.; Zampaglione, V.

    1984-01-01

    The HTMR (Hybrid Toroidal Magnet Tokamak Reactor) conceptual design is aimed to demonstrate the feasibility of a Tokamak reactor which could fulfil the scientific and technological objectives expected from next generation devices with size and costs as small as possible. A hybrid toroidal field magnet, made up by copper and superconducting coils, seems to be a promising solution, allowing a considerable flexibility in machine performances, so as to gain useful margins in front of the uncertainties in confinement time scaling laws and beta and plasma density limits. The optimization procedure for the hybrid magnet, configuration, the main design features of HTMR and