WorldWideScience

Sample records for magnesium ferrite prepared

  1. Studies on structural properties of clay magnesium ferrite nano composite

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Singh, Mandeep [Department of Chemistry, Punjab Agricultural University, Ludhiana-141004 (India); Jeet, Kiran, E-mail: kiranjeet@pau.edu; Kaur, Rajdeep [Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana-141004 (India)

    2015-08-28

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m{sup 2}/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  2. The study on microstructure and microwave-absorbing properties of lithium zinc ferrites doped with magnesium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xiaofei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Sun Kangning [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China)], E-mail: xiaowenhoulvbu1@yahoo.com.cn; Sun Chang; Leng Liang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China)

    2009-09-15

    Lithium zinc ferrites doped with magnesium and copper were prepared by means of a combination of sol-gel method and subsequent calcination. The crystalline phase and microstructure of different doped lithium zinc ferrites were measured by X-ray powder diffraction and scanning electronic microscopy analysis. The results indicate that there are no remarkable differences in phase composition between pure lithium zinc ferrite and the as-doped lithium zinc ferrites. The effects of magnesium and copper dopants on microwave absorption in low-frequency region were investigated by the transmission/reflection coaxial line method. It was found from the present work that doping with copper improved microwave-absorbing properties, while doping with magnesium had little effect on microwave absorption of pure lithium zinc ferrite.

  3. Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol

    Science.gov (United States)

    Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita

    2017-02-01

    Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.

  4. Gas sensing properties of magnesium ferrite prepared by co-precipitation method

    International Nuclear Information System (INIS)

    Hankare, P.P.; Jadhav, S.D.; Sankpal, U.B.; Patil, R.P.; Sasikala, R.; Mulla, I.S.

    2009-01-01

    Polycrystalline magnesium ferrite (MgFe 2 O 4 ) was prepared by the co-precipitation method. The synthesized compound was characterized for their phase and morphology by X-ray diffraction and scanning electron microscopy, respectively. Conductance responses of the (MgFe 2 O 4 ) were measured towards gases like hydrogen sulfide (H 2 S), liquefied petroleum gas (LPG), ethanol vapors (C 2 H 5 OH), SO x , H 2 , NO x , NH 3, methanol, acetone and petrol. The gas sensing characterstics were obtained by measuring the sensitivity as a function of various controlling factors like operating temperatures and concentrations of gases. It was found that the sensor exhibited various responses towards these gases at different operating temperatures. Furthermore; the MgFe 2 O 4 based sensor exhibited a fast response and a good recovery towards petrol at temperature 250 deg. C. The results of the response towards petrol reveal that (MgFe 2 O 4 ) synthesized by a simple co-precipitation method, would be a suitable material for the fabrication of the petrol sensor.

  5. Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites

    Science.gov (United States)

    Ateia, Ebtesam E.; Takla, E.; Mohamed, Amira T.

    2017-10-01

    In the presented paper, strontium (Sr) and barium (Ba) nano ferrites were synthesized by citrate auto combustion method. The investigated samples are characterized by X-ray diffraction technique (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The structural properties of the obtained samples were examined by XRD analysis showing that the synthesized nanoparticles are in cubic spinel structure. The average crystallite sizes are in the range of 22.66 and 21.95 nm for Mg0.7Ba0.3Fe2O4 and Mg0.7 Sr0.3Fe2O4 respectively. The VSM analysis confirms the existence of ferromagnetic nature of Sr2+/Ba2+ substituted magnesium nano particles. Exchange interaction between hard (Sr/Ba) and soft (Mg) magnetic phases improves the structural and magnetic properties of nano ferrite particles. Rigidity modulus, longitudinal and shear wave velocities are predicted theoretically from Raman spectroscopy and structural data of the investigated spinel ferrite. The magnetic and structural properties of magnesium are enhanced by doping with barium and strontium nano particles. The saturation magnetization, remanent magnetization and coercivity reported on vibrating sample magnetometer curve illustrate the promising industrial and magnetic recording applications of the prepared samples.

  6. A study of nanosized magnesium ferrite particles with high magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Sumangala, T.P.; Mahender, C.; Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, 400076 Mumbai (India); Prasad, Shiva, E-mail: shiva.pd@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Powai, 400076 Mumbai (India)

    2015-05-15

    Nano-sized magnesium ferrite particles were prepared by sol gel combustion synthesis and were either furnace cooled or quenched after calcining at various temperatures ranging from 300 to 800 °C. A magnetisation value of 61 emu/g was obtained at 5 K for sample calcined at 800 °C and quenched in liquid nitrogen temperature. This is one of the highest reported values of magnetisation obtained from quenching at such a lower temperature. An estimate of the number of Fe{sup 3+} ions on A and B sites was made after applying Néel Model on the magnetisation values measured at 5 K. It was estimated that Fe{sup 3+} ions segregates out from both sites disproportionately so as to cause a net decrease in the overall moment. The resultant cation distribution is found to be consistent with the coercivity data. - Highlights: • Highest magnetisation (M) among nano sized magnesium ferrite particles was obtained. • The obtained magnetisation was nearly double of furnace cooled bulk sample. • Coercivity (H{sub c}) is anti correlated to M for samples with different heat treatment. • Coefficient of non saturation of magnetisation in M–H loop (a), is correlated with H{sub c}. • H{sub c}, M and a are explained in terms of cation distribution obtained using NNéel model.

  7. Some of Physical Properties of Nanostructured (Mg1-xCoxFe2O4 Ferrites Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Ammer Alsherefi

    2018-01-01

    Full Text Available Sol-gel auto combustion technique was used to prepare nanoparticles of magnesium-cobalt ferrites with the chemical formula Mg1-xCoxFe2O4 for  (x=0, 0.2, 0.4, 0.6, 0.8, 1, where x added as weight  percentages, and sintering  at temperature (1100 oC. The X-ray patterns of prepared powder has confirmed the structure of cubic spinel structure (fcc. The prepared samples were composed of nearly spherical nano particles .An average particle size of  magnesium-cobalt ferrite  were  calculated  using  Debye Scherer’s relation is equal 53.12 nm. The surface structure of the samples was investigated by Scanning Electron Microscope(SEM. The electromagnetic properties for prepared samples were investigated using Vector Network Analyzer (VNA in X-band microwave region.

  8. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    Science.gov (United States)

    Yonatan Mulushoa, S.; Murali, N.; Tulu Wegayehu, M.; Margarette, S. J.; Samatha, K.

    2018-03-01

    Cu-Cr substituted magnesium ferrite materials (Mg1 - xCuxCrxFe21 - xO4 with x = 0.0-0.7) have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0) to 0.105 × 108 Ω cm (x = 0.7). Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7). Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size.

  9. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    Directory of Open Access Journals (Sweden)

    S. Yonatan Mulushoa

    2018-03-01

    Full Text Available Cu-Cr substituted magnesium ferrite materials (Mg1 − xCuxCrxFe21 − xO4 with x = 0.0–0.7 have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0 to 0.105 × 108 Ω cm (x = 0.7. Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7. Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size. Keywords: Solid state reaction, X-ray diffraction, Crystallite size, Magnetic and electrical properties, Saturation magnetization

  10. Magnesium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability

    Science.gov (United States)

    Wang, Guangshuo; Ma, Yingying; Li, Meixia; Cui, Guohua; Che, Hongwei; Mu, Jingbo; Zhang, Xiaoliang; Tong, Yu; Dong, Xufeng

    2017-01-01

    In this study, magnesium ferrite (MgFe2O4) nanocrystal clusters were synthesized using an ascorbic acid-assistant solvothermal method and evaluated as a candidate for magnetorheological (MR) fluid. The morphology, microstructure and magnetic properties of the MgFe2O4 nanocrystal clusters were investigated in detail by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), X-ray diffraction (XRD) and superconducting quantum interference device (SQUID). The MgFe2O4 nanocrystal clusters were suspended in silicone oil to prepare MR fluid and the MR properties were tested using a Physica MCR301 rheometer fitted with a magneto-rheological module. The prepared MR fluid showed typical Bingham plastic behavior, changing from a liquid-like to a solid-like structure under an external magnetic field. Compared with the conventional carbonyl iron particles, MgFe2O4 nanocrystal clusters-based MR fluid demonstrated enhanced sedimentation stability due to the reduced mismatch in density between the particles and the carrier medium. In summary, the as-prepared MgFe2O4 nanocrystal clusters are regarded as a promising candidate for MR fluid with enhanced sedimentation stability.

  11. The Effect of Magnesium Substitution and Sintering Temperature on the Structural and Magnetic Properties of Manganese- Magnesium Ferrite

    Directory of Open Access Journals (Sweden)

    S.T. Mohammadi Benehi

    2016-12-01

    Full Text Available Magnesium-manganese ferrite nanopowders (MgxMn1-xFe2O4, x=0.0 up to 1 with step 0.2 were prepared by coprecipitation method. The as-prepared samples were pressed with hydrolic press to form a pellet and were sintered in 900, 1050 and 1250˚C. Scanning Tunneling Microscope (STM images showed the particle size of powders about 17 nm. The X-ray patterns confirmed the formation of cubic single phase spinel structure in samples sintered at 1250˚C. Substituting Mg2+ with Mn2+ in these samples, the lattice parameter decreased from 8.49 to 8.35Å and magnetization saturation decreased from 74.7 to 21.2emu/g. Also, coercity (HC increased from 5 to 23Oe and Curie temperature (TC increased from 269 to 392˚C. Samples with x= 0.2, 0.4, 0.6 sintered at 1250 ˚C, because of their magnetic properties, can be recommended for hyperthermia applications and for phase shifters.

  12. Large polaron tunneling, magnetic and impedance analysis of magnesium ferrite nanocrystallite

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Dev K., E-mail: drdevkumar@yahoo.com [Department of Physics, National Institute of Technology Patna, Patna 800 005 (India); Majumder, Sumit [Department of Physics, Jadavpur University, Kolkata 700032 (India); Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Banerjee, S. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2017-08-15

    Graphical abstract: The diffraction peaks corresponding to the planes (111), (220), (311), (222), (400), (422), (511), (440), (620), (533) and (444) provide a clear evidence for the formation of spinel structure of the ferrites. The lattice parameter ‘a’ determined as 8.392 Å matches well with JCPDS (73-2410) file for MgFe{sub 2}O{sub 4.} The volume of the unit cell is 591.012 Å{sup 3}. The crystallite size of the synthesized powder estimated from X-ray peak broadening of (311) highest intensity diffraction peak using Scherer formula was 56.4 nm. - Highlights: • Both the grain and grain boundaries contribution to conductivity of the Mg-ferrite has been observed. • Polydispersive nature of the material is checked using Cole – Cole relation. • The ac conductivity of magnesium ferrite followed σ{sub ac} ∝ ω{sup n} dependence. • The variation of the exponent ‘n’ with temperature suggests that overlapping large polaron tunnelling is the dominant conduction mechanism. • The superparamagnetic behavior of this Mg-ferrite has been observed for sample S1 annealed at 500 °C. - Abstract: Single phase MgFe{sub 2}O{sub 4} (MFO) ferrite was prepared through sol-gel auto-combustion route. The Rietveld analysis of X-ray patterns reveals that our samples are single phase. The increase in average particle size with annealing temperature and formation of nanoparticle agglomerates is observed in MgFe{sub 2}O{sub 4}. The structural morphology of the nanoparticles is studied using Scanning Electron Microscopy (SEM). Formation of spinel structure is confirmed using Fourier transform infrared spectroscopy (FTIR). The Zero-Field-Cooled (ZFC) and Field-Cooled (FC) magnetization measurements show the maximum irreversibility at 700 °C annealing temperature. The formation of a maximum at blocking temperature, T{sub B}∼ 180 K for sample annealed at 500 °C in the ZFC curve shows the superparamagnetic behavior of the sample. The increase of saturation magnetism (M

  13. Preparation of single-crystal copper ferrite nanorods and nanodisks

    International Nuclear Information System (INIS)

    Du Jimin; Liu Zhimin; Wu Weize; Li Zhonghao; Han Buxing; Huang Ying

    2005-01-01

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  14. Synthesis of Magnesium Ferrites for the Adsorption of Congo Red from Aqueous Solution Using Batch Studies

    Science.gov (United States)

    Erdawati, E.; Darsef, D.

    2018-04-01

    A sol gel method with citric acid as an anionic surfactant was used to fabricate nano magnesium ferrites (MgFe2O4) under different calcination temperatures for 2h, respectively. The microstructure and surface morphology of magnesium ferrite powder were characterized by FTIR, XRD, SEM, and BET. The results of this study are useful for adsorption Congo red. The results showed that increasing solution pH and extending contact time are favorable for improving adsorption efficiency. with initial Congo red concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and0.00189 g/mg/min for solutions with initial congo red of 50 and 100 mg/L, respectively

  15. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    El-Shobaky, G.A., E-mail: elshobaky@yahoo.co [Physical Chemistry Department, National Research Center, Dokki, Cairo (Egypt); Turky, A.M.; Mostafa, N.Y.; Mohamed, S.K. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2010-03-18

    Cobalt ferrite nanoparticles were prepared via thermal treatment of cobalt-iron mixed hydroxides at 400-600 {sup o}C. The mixed hydroxides were coprecipitated from their nitrates solutions using NaOH as precipitating agent. The effects of pH and temperature of coprecipitation and calcination temperature on the physicochemical, surface and catalytic properties of the prepared ferrites were studied. The prepared systems were characterized using TG, DTG, DTA, chemical analysis, atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) as well as surface and texture properties based on nitrogen adsorption-desorption isotherms. The prepared cobalt ferrites were found to be mesoporous materials that have crystallite size ranges between 8 and 45 nm. The surface and catalytic properties of the produced ferrite phase were strongly dependent on coprecipitation conditions of the mixed hydroxides and on their calcination temperature.

  16. Impact of Gd3+/graphene substitution on the physical properties of magnesium ferrite nanocomposites

    Science.gov (United States)

    Ateia, Ebtesam E.; Mohamed, Amira T.; Elsayed, Kareem

    2018-04-01

    Magnesium nano ferrite with composition MgFe2O4, MgGd0.05Fe1.95O4 and MgFe2O4 - 5 wt% GO was synthesized using a citrate auto-combustion method. The crystal structure, morphology, and magnetic properties of the investigated samples were studied. High Resolution Transmission Electron Microscopy (HRTEM) images show that the substitution of small amounts of Gd3+/GO causes a considerable reduction of the grain size. Studies on the magnetic properties demonstrate that the coercivity of GO-substituted magnesium nano ferrites is enhanced from 72 Oe to 203 Oe and the magnetocrystalline anisotropy constant increases from 1171 to 3425 emu Oe/gm at 300 K. The direct effects of graphene on morphology, crystal structure as well as the magnetic properties reveal that the studied sample are suitable for turbidity color and removal. The magnetic entropy change is estimated from magnetization data using Maxwell relation. The calculated Curie temperature from the Curie-Weiss law and the maximum entropy change are in good agreement with each other. Based on UV diffuse reflectance spectroscopy studies, the optical band gaps are in the range of 1.4-2.15 eV. In addition, the combination of small particle size and good magnetic properties makes the investigated samples act as a potential candidates for superior catalysts, adsorbents, and electromagnetic wave absorbers.

  17. Magnetic Properties of Ni-Zn Ferrite Prepared with the Layered Precursor Method

    International Nuclear Information System (INIS)

    Zhou Xin; Hou Zhi-Ling; Li Feng; Qi Xin

    2010-01-01

    We prepare NiZnFe 2 O 4 soft magnetic ferrites with different molar ratios with the layered precursor method and investigate their magnetic properties. In the layered precursor, metal ions are scattered on the layer plate in a certain way on account of the effect of lowest lattice energy and lattice orientation. After high temperature calcinations, spinel ferrites with uniform structural component and single magnetic domain can be obtained, and the magnetic property is improved greatly. NiZnFe 2 O 4 ferrites prepared have the best specific saturation magnetization of 79.15 emu·g −1 , higher than that of 68 emu·g −1 prepared by the chemical co-precipitation method and that of 59 emu·g −1 prepared by the emulsion-gel method. Meanwhile the coercivity of NiZnFe 2 O 4 ferrites prepared by layered precursor method is 14 kA·m −1 , lower than that of 50 emu·g −1 prepared by the co-precipitation method and that of 59 emu·g −1 prepared by the emulsion-gel method. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Preparation of lanthanum ferrite powder at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Andoulsi, R.; Horchani-Naifer, K.; Ferid, M., E-mail: karima_horchani@yahoo.com [Physical Chemistry Laboratory of Mineral Materials and their Applications, Hammam-Lif (Tunisia)

    2012-01-15

    Single lanthanum ferrite phase was successfully prepared at low processing temperature using the polymerizable complex method. To implement this work, several techniques such as differential scanning calorimetry, X-ray diffraction, Fourier Transform Infrared Spectroscopy, scanning electron microscopy and BET surface area measurements were used. Throw the obtained results, it was shown that steps of preparing the powder precursor and temperature of its calcination are critical parameters for avoiding phase segregation and obtaining pure lanthanum ferrite compound. Thus, a single perovskite phase was obtained at 600 deg C. At this temperature, the powder was found to be fine and homogeneous with an average crystallite size of 13 nm and a specific surface area of 12.5 m{sup 2}.g{sup -1}. (author)

  19. Preparation of plate-shape nano-magnesium hydroxide from asbestos tailings

    International Nuclear Information System (INIS)

    Du Gaoxiang; Zheng Shuilin

    2009-01-01

    To prepare magnesium hydroxide is one of the effective methods to the comprehensive utilization of asbestos tailings. Nano-scale magnesium hydroxide was prepared and mechanisms of in-situ surface modification were characterized in the paper. Process conditions of preparation of magnesium hydroxide from purified hydrochloric acid leachate of asbestos tailings were optimized and in-situ surface modification of the product was carried out. Results showed that optimum process conditions for preparing nano-scale magnesium hydroxide were as follows: initial concentration of Mg 2+ in the leachate was 22.75g/L, precipitant was NaOH solution (mass concentration 20%), reaction temperature was 50 deg. C, and reaction time was 5min. The diameter and thickness of the plate nano-scale magnesium hydroxide powder prepared under optimal conditions were about 100 nm and 10 nm, respectively. However, particle agglomeration was obvious, the particle size increased to micron-grade. Dispersity of the magnesium hydroxide powder could be elevated by in-situ modification by silane FR-693, titanate YB-502 and polyethylene glycol and optimum dosages were 1.5%, 1.5% and 0.75% of the mass of magnesium hydroxide, respectively. All of the modifiers adsorbed chemically on surfaces of magnesium hydroxide particles, among which Si-O-Mg bonds formed among silane FR-693 and the particle surfaces and Ti-O-Mg among titanate YB-502 and the surfaces.

  20. Structural, impedance and Mössbauer studies of magnesium ferrite synthesized via sol–gel auto-combustion process

    Directory of Open Access Journals (Sweden)

    Shahid Khan Durrani

    2017-12-01

    Full Text Available Crystalline magnesium ferrite (MgFe2O4 spinel oxide powder was synthesized by nitrate–citrate sol–gel auto-combustion process with stoichiometric composition of metal nitrate salts, urea and citric acid. The study was focused on the modification of synthesis conditions and effect of these modified conditions on the structural and electrical properties of synthesized MgFe2O4 ceramic materials. Phase composition, crystallinity, structure and surface morphology were studied by X-ray diffraction, FTIR and SEM. Pure single phase MgFe2O4 spinel ferrite was obtained after calcination at 850 °C. Rietveld refinement of XRD result confirmed the single cubic phase spinel oxide with the lattice constant of a = 8.3931 Å and Fd3m symmetry. UV–visible absorption study of calcined powder revealed an optical band gap of 2.17 eV. SEM images of sintered specimens (1050–1450 °C showed that the grain size increased with the increase in sintering temperature. From the impedance results of the sintered MgFe2O4 specimens, it was found that the resistance of grain, grain boundary and electrode effect decreased with an increase in sintering temperature and associated grain growth. In the intermediate frequency region lowering of impedance and dielectric values was observed due to the decrease in grain boundary areas. Mössbauer studies indicated that magnesium ferrite had a mixed spinel structure in calcined and sintered samples, however, the well refined single phase MgFe2O4 was observed due to well developed high crystalline structure at 1350 °C and 1450 °C. Keywords: Sol–gel auto-combustion, Magnesium ferrite, X-ray diffraction, SEM, Mössbauer spectroscopy, Impedance spectroscopy

  1. Solubility limits in Mn–Mg ferrites system under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mostafa, N.Y. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Faculty of Science, Taif University, PO Box 888, Al-Haweiah, Taif (Saudi Arabia); Abd Elkader, O.H. [Electron Microscope and Thin Films Department, National Research Center, Dokki 12622, Cairo (Egypt); Electron Microscope Unit, Zoology Department, King Saud University, Riyadh 11451 (Saudi Arabia); Ahmed, M.A. [Physics Department, Faculty of Science, Al Azhar University, Nasr City, Cairo (Egypt)

    2014-09-01

    In the present investigation, we successfully synthesized a pure MnFe{sub 2}O{sub 4} ferrite by the hydrothermal method. Moreover, the effect of Mg ion content on the formation of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} particles (with x varying from 0.1 to 1.0) was also investigated using XRD, SEM, TEM and Mossbauer Spectroscopy. Phases formed in the system Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4}; 0.0≤x≤1.0 were investigated under hydrothermal conditions at 453 K.The produced phases were characterized by X-ray diffraction, Scanning, transmission microscopy and Mossbauer spectroscopy. The information of composition, cation distribution in the spinel structure and the particle size of the products were obtained. The spinel ferrites; Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} were formed in the range 0.0≤x≤0.3. However, sample with x>0.3 showed semi-crystalline magnesium hydroxide (Mg(OH){sub 2}) and hematite (Fe{sub 2}O{sub 3}) beside the ferrite phase. For x=1.0, only magnesium hydroxide and hematite are formed without any ferrites. Particles of uniform size around 10–20 nm were obtained in the spinel structure of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} with x=0.0 and 0.1. The corresponding average crystallite size for each sample was 40.3 nm and 39.2 nm respectively. In addition, the Mossbauer spectra were analyzed into two subspectra, one for the tetrahedral A-site and the other for the octahedral B-site. The Mossbauer parameters were determined and discussed for the studied system. The cation distribution was estimated from the analysis of the Mossbauer spectra as well as the X-ray diffraction patterns. The results showed that Mg ions occupy mainly B-site while both Mn and Fe ions are distributed between A- and B-sites. - Highlights: • Mossbauer characterization of Mg–Mn ferrite prepared by hydrothermal route. • X-ray powder diffraction analysis of Mg–Mn ferrite prepared by hydrothermal route. • Solubility limit of MgMn ferrite under

  2. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaharieva, Katerina, E-mail: zaharieva@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Rives, Vicente, E-mail: vrives@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Tsvetkov, Martin, E-mail: mptsvetkov@gmail.com [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Cherkezova-Zheleva, Zara, E-mail: zzhel@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Kunev, Boris, E-mail: bkunev@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Trujillano, Raquel, E-mail: rakel@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Mitov, Ivan, E-mail: mitov@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Milanova, Maria, E-mail: nhmm@wmail.chem.uni-sofia.bg [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria)

    2015-06-15

    Nanosized copper ferrite-type materials (Cu{sub x}Fe{sub 3–x}O{sub 4}, 0 ≤ x ≤ 1) have been prepared by combination of co-precipitation and mechanochemical activation and/or thermal treatment. The crystalline structure and morphology of the obtained ferrite nanopowders have been characterized by different instrumental methods, such as Powder X-ray diffraction (PXRD), Mössbauer and FT-IR spectroscopies, specific surface area and porosity measurements, thermal analyses (Differential Thermal Analysis and Thermogravimetric Analysis) and Temperature-Programmed Reduction. The average crystallite size of copper ferrites ranged between 7.8 and 14.7 nm and show a superparamagnetic and collective magnetic excitations nature. The photocatalytic decolorization of Malachite green oxalate under different UV illumination intervals was examined using these copper ferrites as photocatalysts. The results indicate that the prepared nanostructured copper ferrites showed enhanced photocatalytic activity and amount adsorbed Malachite Green dye. The co-precipitated nanosized copper ferrite powder with a low content of copper metal ions in a magnetite host structure (Cu{sub 0.25}Fe{sub 2.75}O{sub 4}) showed an apparent pseudo-first-order rate constant 15.4 × 10{sup −3} min{sup −1} and an amount adsorbed Malachite Green as model organic dye pollutant per 1 g catalyst of 33.4 ppm/g after the dark period. The results confirm that the copper ferrites can be suitable for photocatalytic treatment of wastewaters containing organic dyes. The new aspect of presented investigations is to study the influence of different degree of incorporation of copper ions into the magnetite host structure and preparation methods on the photocatalytic properties of nanosized copper ferrite materials and obtaining of potential photocatalyst (Cu{sub 0.25}Fe{sub 2.75}O{sub 4}) with higher photocatalytic activity (15.4 × 10{sup −3} min{sup −1}) than that of the standard referent Degussa P25 (12 × 10

  3. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    International Nuclear Information System (INIS)

    Zaharieva, Katerina; Rives, Vicente; Tsvetkov, Martin; Cherkezova-Zheleva, Zara; Kunev, Boris; Trujillano, Raquel; Mitov, Ivan; Milanova, Maria

    2015-01-01

    Nanosized copper ferrite-type materials (Cu x Fe 3–x O 4 , 0 ≤ x ≤ 1) have been prepared by combination of co-precipitation and mechanochemical activation and/or thermal treatment. The crystalline structure and morphology of the obtained ferrite nanopowders have been characterized by different instrumental methods, such as Powder X-ray diffraction (PXRD), Mössbauer and FT-IR spectroscopies, specific surface area and porosity measurements, thermal analyses (Differential Thermal Analysis and Thermogravimetric Analysis) and Temperature-Programmed Reduction. The average crystallite size of copper ferrites ranged between 7.8 and 14.7 nm and show a superparamagnetic and collective magnetic excitations nature. The photocatalytic decolorization of Malachite green oxalate under different UV illumination intervals was examined using these copper ferrites as photocatalysts. The results indicate that the prepared nanostructured copper ferrites showed enhanced photocatalytic activity and amount adsorbed Malachite Green dye. The co-precipitated nanosized copper ferrite powder with a low content of copper metal ions in a magnetite host structure (Cu 0.25 Fe 2.75 O 4 ) showed an apparent pseudo-first-order rate constant 15.4 × 10 −3 min −1 and an amount adsorbed Malachite Green as model organic dye pollutant per 1 g catalyst of 33.4 ppm/g after the dark period. The results confirm that the copper ferrites can be suitable for photocatalytic treatment of wastewaters containing organic dyes. The new aspect of presented investigations is to study the influence of different degree of incorporation of copper ions into the magnetite host structure and preparation methods on the photocatalytic properties of nanosized copper ferrite materials and obtaining of potential photocatalyst (Cu 0.25 Fe 2.75 O 4 ) with higher photocatalytic activity (15.4 × 10 −3 min −1 ) than that of the standard referent Degussa P25 (12 × 10 −3 min −1 ) for degradation of organic dye

  4. Irregular distribution of metal ions in ferrites prepared by co-precipitation technique structure analysis of Mn-Zn ferrite using extended X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Jeyadevan, B.; Tohji, K.; Nakatsuka, K.; Narayanasamy, A.

    2000-01-01

    The tetrahedral/octahedral site occupancy of non-magnetic zinc ion, added to maximize the net magnetic moment of mixed ferrites has been found to depend on the method of preparation. In this paper, we qualitatively analyze the metal ion distribution in Mn-Zn ferrite particles prepared by co-precipitation and ceramic methods using extended X-ray absorption fine structure (EXAFS) technique. The results suggest that the differences observed in the magnetic properties of the samples prepared by different methods are not only due to the difference in particle size but also due to the difference in cation distribution. The difference in cation distributions between ferrites of similar composition prepared differently has been found to depend on the crystal field stability energies of the metal ion of interest and associated cations

  5. Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Geok Bee [Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia)]. E-mail: tehgb@mail.utar.edu.my; Nagalingam, Saravanan [Department of Bioscience and Chemistry, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia); Jefferson, David A. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2007-01-15

    The sol-gel preparative method was employed to synthesise Co(II) and Co(III)-substituted barium ferrite. This method was attempted to achieve higher homogeneity of the final product. Samples of substituted ferrites were characterised by various experimental techniques including high resolution transmission electron microscopy, X-ray diffraction analysis, magnetometry and thermal gravimetric analysis. The microstructural changes induced by such substitution are also discussed.

  6. Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol-gel method

    International Nuclear Information System (INIS)

    Teh, Geok Bee; Nagalingam, Saravanan; Jefferson, David A.

    2007-01-01

    The sol-gel preparative method was employed to synthesise Co(II) and Co(III)-substituted barium ferrite. This method was attempted to achieve higher homogeneity of the final product. Samples of substituted ferrites were characterised by various experimental techniques including high resolution transmission electron microscopy, X-ray diffraction analysis, magnetometry and thermal gravimetric analysis. The microstructural changes induced by such substitution are also discussed

  7. Synthesis of ferrite nanoparticle by milling process for preparation of single domain magnet

    International Nuclear Information System (INIS)

    Suryadi; Hasbiyallah; Agus S W; Nurul TR; Budhy Kurniawan

    2009-01-01

    Study of ferrite nanoparticle synthesis for preparation of single domain magnet by milling of scrap magnet material have been done. Sample preparation were done using disk mill continued with high energy milling (HEM). Some powder were taken after 5, 10 dan 20 hours milling using HEM-E3D. The powder were then characterized using X-Ray Fluorescence (XRF), X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). XRF characterization result, confirmed by XRD analysis result, showed that the sample are of Strontium ferrite phase. Microstructure analysis result showed the occurrence of grain refining process of ferrite particle with increasing of milling time. Particle having size of nanometers successfully obtained, although in unhomogeneous distribution. Magnetic properties characterization result showed the increasing of hysteresis curve area of sample for longer milling time and sintering process. (author)

  8. and aluminum-substituted cobalt ferrite prepared by co-precipitation

    Indian Academy of Sciences (India)

    Structural and magnetic properties of zinc- and aluminum-substituted cobalt ferrite prepared by co-precipitation method. S T ALONE1,∗ and K M JADHAV2. 1Shiv Chhatrapati College, Aurangabad 431 004, India. 2Department of Physics, Dr. B. A. Marathwada University, Aurangabad 431 004, India. ∗Corresponding author.

  9. Preparation and electromagnetic properties of low-temperature sintered ferroelectric-ferrite composite ceramics

    International Nuclear Information System (INIS)

    Yue Zhenxing; Chen Shaofeng; Qi Xiwei; Gui Zhilun; Li Longtu

    2004-01-01

    For the purpose of multilayer chip EMI filters, the new ferroelectric-ferrite composite ceramics were prepared by mixing PMZNT relaxor ferroelectric powder with composition of 0.85Pb(Mg 1/3 Nb 2/3 )O 3 -0.1Pb(Ni 1/3 Nb 2/3 )O 3 -0.05PbTiO 3 and NiCuZn ferrite powder with composition of (Ni 0.20 Cu 0.20 Zn 0.60 )O(Fe 2 O 3 ) 0.97 at low sintering temperatures. A small amount of Bi 2 O 3 was added to low sintering temperature. Consequently, the dense composite ceramics were obtained at relative low sintering temperatures, which were lower than 940 deg. C. The X-ray diffractometer (XRD) identifications showed that the sintered ceramics retained the presence of distinct ferroelectric and ferrite phases. The sintering studies and scanning electron microscope (SEM) observations revealed that the co-existed two phases affect the sintering behavior and grain growth of components. The electromagnetic properties, such as dielectric constant and initial permeability, change continuously between those of two components. Thus, the low-temperature sintered ferroelectric-ferrite composite ceramics with tunable electromagnetic properties were prepared by adjusting the relative content of two components. These materials can be used for multilayer chip EMI filters with various properties

  10. Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

    Directory of Open Access Journals (Sweden)

    Tejabhiram Yadavalli

    2016-05-01

    Full Text Available A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressure for the formation of the same. Field emission scanning electron microscope studies of these powders revealed the formation of nearly spherical nanostructures in the size range of 20-30 nm which were comparable to those prepared by conventional methods. Magnetic measurements confirmed the ferromagnetic nature of the cobalt ferrites with low magnetic remanance. Further magnetic hyperthermia studies of nanostructures prepared by low temperature method showed a rise in temperature to 50 °C in 600 s.

  11. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  12. Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method

    International Nuclear Information System (INIS)

    Huang, Xiaogu; Zhang, Jing; Wang, Wei; Sang, Tianyi; Song, Bo; Zhu, Hongli; Rao, Weifeng; Wong, Chingping

    2016-01-01

    In this paper, the cobalt zinc ferrite was prepared by coprecipitation method at different pH conditions. The influence of pH values on the coprecipitation reaction was theoretically analyzed at first. The calculated results showed that the pH values should be controlled in the range of 9–11 to form the stable precipitation. The XRD investigation was used to further confirm the formation of the composite on specific pH values. In addition, the morphological study revealed that the average particle size of the composite decreased from 40 nm to 30 nm when the pH value increased from 9–11. The variation of microstructure plays a critical role in controlling the electromagnetic properties. From the electromagnetic analysis, the dielectric loss factor was 0.02–0.07 and magnetic loss factor was 0.2–0.5 for the composite synthesized at pH of 9, which presents dramatically improved dielectric loss and magnetic loss properties than the samples prepared at pH of 10 and 11. The as-prepared cobalt zinc ferrite are highly promising to be used as microwave absorption materials. - Highlights: • Co–Zn ferrite was prepared by coprecipitation method with different pH values. • To obtain pure Co–Zn ferrite, the theoretical pH values were 9–11. • Microstructure and electromagnetic properties can be tuned by varying pH values. • Co–Zn ferrite prepared with pH=9 performed well electromagnetic loss properties.

  13. Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Jain, Palak; Singh, Mandeep

    2015-07-15

    In this paper we report the variation in structural and magnetic properties of ternary ferrite nanoparticles (NPs) having stoichiometery Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) and pure spinel ferrites MFe{sub 2}O{sub 4} (M = Mg, Co). NPs with average particle diameter of 25–45 nm were synthesized employing self-propagating oxalyl dihydrazide - metal nitrate combustion method. The products were characterized using X-ray diffraction (XRD), Vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM) and FT-IR spectroscopy. FT-IR spectral analysis revealed two bands centered at 560 and 440 cm{sup −1} for tetrahedral and octahedral metal–oxygen bond stretching. Zinc doping caused red shift in the frequency band of tetrahedral M−O stretching. XRD powder diffraction patterns confirmed the formation of spinel ferrite nanoparticles, expansion of the lattice on zinc doping and enhancement of spinel phase purity in the doped ferrites. Cobalt ferrite displayed lowering of the magnetic parameters on zinc doping which further decreased in ternary ferrites Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4}Fe{sub 2}O{sub 4} on replacing cobalt ions with non-magnetic magnesium ions up to x = 0.4. At x = 0.6 reverse trend was observed and Ms was enhanced. Magnesium zinc ferrite Mg{sub 0.6}Zn{sub 0.4} Fe{sub 2}O{sub 4} with high value of Ms was obtained. Combustion process employed in the present studies serves as a low temperature facile route for the synthesis and structural analysis of ternary doped ferrite nanoparticles. - Highlights: • Ternary doped cobalt magnesium zinc ferrite nanoparticles are synthesized. • FT-IR displayed red shift in tetrahedral stretching band on Zinc doping. • Expansion of lattice and enhancement of spinel phase purity on zinc doping. • The variation in saturation magnetization (Ms) on doping is explained.

  14. Magnetic behavior of nickel ferrite nanoparticles prepared by co-precipitation route

    International Nuclear Information System (INIS)

    Maaz, K.; Mashiatullah, A.; Javed, T.; Ali, G.; Karim, S.

    2008-01-01

    Magnetic nanoparticles of nickel ferrite (NiFe/sub 2/O/sub 4/) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) analyses confirmed the formation of single phase nickel ferrite nanoparticles in the range 8-28 nm. The size of the particles was observed to be increasing linearly with increasing annealing temperature of the sample. Typical blocking effects were observed below -225 K for all the prepared samples. The superparamagnetic blocking temperature was found to be continuously increasing with increasing particle sizes that has been attributed to the increased effective anisotropy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins of these nanoparticles. (author)

  15. and aluminum-substituted cobalt ferrite prepared by co-precipitation ...

    Indian Academy of Sciences (India)

    Spinal ferrites having the general formula Co1-ZnFe2-AlO4 ( = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were prepared using the wet chemical co-operation technique. The samples were annealed at 800°C for 12 h and were studied by means of X-ray diffraction, magnetization and low field AC susceptibility measurements.

  16. Moessbauer study of Mn-Zn and Mn ferrites prepared by wet method

    International Nuclear Information System (INIS)

    Michalk, C.

    1985-01-01

    Moessbauer spectroscopy was employed to study Mn-Zn ferrites before and after low-temperature annealing. The unannealed Mn-Zn ferrite prepared by a wet method and also the sintered material after annealing at 400 deg C in air show the presence of paramagnetic clusters. These findings are explained as being due to nonrandom ordering of Fe 3+ and Zn 2+ ions caused by local charge compensation in the neighbourhood of cation vacancies. A change of cation distribution after annealing at relatively low temperatures was observed. 10 refs., 3 figs. (author)

  17. Structural and magnetic properties of cadmium substituted manganese ferrites prepared by hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Zaki, Z.I. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Advanced Materials Division, Central Metallurgical R and D Institute (CMRDI), P.O. Box: 87 Helwan, Cairo (Egypt); Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    2013-03-15

    Cd-substituted manganese ferrite Mn{sub 1-x}Cd{sub x}Fe{sub 2}O{sub 4} powders with x having values 0.0, 0.1, 0.3 and 0.5 have been synthesized by hydrothermal route at 180 Degree-Sign C in presence of NaOH as mineralizer. The obtained ferrite samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The XRD analysis showed that pure single phases of cubic ferrites were obtained with x upto 0.3. However, sample with x{>=}0.5 showed hexagonal phase of cadmium hydroxide (Cd(OH){sub 2}) besides the ferrite phase. The increase in Cd-substitution upto x=0.3 leads to an increase in the lattice parameter as well as the average crystallite size of the prepared ferrites. The average crystallite size increased by increasing the Cd-content and was in the range of 39-57 nm. According to VSM results, the saturation magnetization increased with Cd ion substitution. - Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesized of mono dispersed Cd-substituted MnFe{sub 2}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer The change in Ms with increasing Cd-substitution was investigated Black-Right-Pointing-Pointer Pure single phases of cubic ferrites were obtained with x up to 0.3 Black-Right-Pointing-Pointer Sample with x{>=}0.5 showed hexagonal phase of Cd(OH){sub 2} beside the ferrite.

  18. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nonkumwong, Jeeranan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pakawanit, Phakkhananan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wipatanawin, Angkana [Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, Pongsakorn [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 11900 (Thailand); Ananta, Supon [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Srisombat, Laongnuan, E-mail: slaongnuan@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe{sub 2}O{sub 4} core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe{sub 2}O{sub 4} core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe{sub 2}O{sub 4} core. Both of MgFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4}-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles • In vitro cytotoxicity study of complete coated MgFe{sub 2}O{sub 4}-Au core

  19. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    International Nuclear Information System (INIS)

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-01-01

    In this work, the core-magnesium ferrite (MgFe_2O_4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe_2O_4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe_2O_4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe_2O_4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe_2O_4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe_2O_4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe_2O_4 core. Both of MgFe_2O_4 and MgFe_2O_4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe_2O_4-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe_2O_4 nanoparticles • In vitro cytotoxicity study of complete coated MgFe_2O_4-Au core-shell nanoparticles

  20. Preparation of magnesium metal matrix composites by powder metallurgy process

    Science.gov (United States)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  1. Neutron diffraction in a frustrated ferrite

    International Nuclear Information System (INIS)

    Mirebeau, I.; Iancu, G.; Gavoille, G.; Hubsch, J.

    1994-01-01

    The competition between a long range ordered ferrimagnetic lattice and small fluctuating clusters have been probed by neutron diffraction in a titanium magnesium frustrated ferrite. The description of the system is then compared to the predictions of several theoretical models for frustrated systems. 3 figs., 8 refs

  2. Extractive process for preparing high purity magnesium chloride hexahydrate

    Directory of Open Access Journals (Sweden)

    Fezei Radouanne

    2012-01-01

    Full Text Available This paper refers a method for the preparation of magnesium chloride hexahydrate (bischofite from Sebkha el Melah of Zarzis Tunisian natural brine. It is a five-stage process essentially based on crystallization by isothermal evaporation and chemical precipitation. The two first steps were dedicated to the crystallization of sodium chloride and potassiummagnesium double salts, respectively. Then, the resulting liquor was desulfated using calcium chloride solution. After that another isothermal evaporation stage was implemented in order to eliminate potassium ions in the form of carnallite, KCl.MgCl2.6H2O. At the end of this step, the recovered solution primarily composed of magnesium and chloride ions was treated by dioxan in order to precipitate magnesium chloride as MgCl2.6H2O.C4H8O2. This compound dried at constant temperature of 100°C gave good quality magnesium chloride hexahydrate. Besides this salt, the various by-products obtained from the different treatment stages are also useful.

  3. Properties of porous magnesium prepared by powder metallurgy.

    Science.gov (United States)

    Čapek, Jaroslav; Vojtěch, Dalibor

    2013-01-01

    Porous magnesium-based materials are biodegradable and promising for use in orthopaedic applications, but their applications are hampered by their difficult fabrication. This work reports the preparation of porous magnesium materials by a powder metallurgy technique using ammonium bicarbonate as spacer particles. The porosity of the materials depended on the amount of ammonium bicarbonate and was found to have strong negative effects on flexural strength and corrosion behaviour. However, the flexural strength of materials with porosities of up to 28 vol.% was higher than the flexural strength of non-metallic biomaterials and comparable with that of natural bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Preparation of magnesium hydroxide nanoflowers from boron mud via anti-drop precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xi [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Blue Sky Technology Corporation, Beijing 100083 (China); Ma, Hongwen, E-mail: mahw@cugb.edu.cn [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Jiang, Xiaoqian [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Jiang, Zhouqing [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Blue Sky Technology Corporation, Beijing 100083 (China)

    2014-08-15

    Highlights: • We use the anti-drop precipitation method for synthesis of magnesium hydroxide. • Boron mud which is solid waste from a borax factory is used as the magnesium source. • The magnesium hydroxide nanoflowers are prepared in a short time. • The as-prepared magnesium hydroxide can be used as an effective flame retardant. - Abstract: Using boron mud as the starting material, the flower-like magnesium hydroxide (MH) has been successfully prepared via anti-drop precipitation method. The effect of NH{sub 3}·H{sub 2}O concentration, aging time, and surfactant on the morphology of MH was investigated. The optimum precipitation conditions are dropping MgSO{sub 4} solution in 5% NH{sub 3}·H{sub 2}O solution, with 3% polyethylene glycol as surfactant, aging for 30 min. XRD, SEM, FI-IR, and TG/DTA have been employed to characterize the as-prepared samples. XRD reveals that MH with high purity has the brucite structure. SEM images show that the flower-like MH exists in the form of mono-disperse well uniform spherical aggregation with diameter of 3–5 μm. TG/DTA shows a total percentage of weight loss 33.6% with a well-defined endothermic peak near 381.3 °C corresponding to the decomposition of MH. Furthermore, it reports that the extremely fast primary nucleation is of significance for crystal growth of MH.

  5. Moessbauer characterization of calcium-ferrite oxides prepared by calcining Fe2O3 and CaO

    International Nuclear Information System (INIS)

    Hirabayashi, Daisuke; Sakai, Yoichi; Yoshikawa, Takeshi; Mochizuki, Kazuhiro; Kojima, Yoshihiro; Suzuki, Kenzi; Ohshita, Kazumasa; Watanabe, Yasuo

    2006-01-01

    Calcium ferrite oxides were prepared by calcining a mixture powder of iron- and calcium oxide. The 57 Fe-Moessbauer spectra of the calcium ferrites oxides were measured, revealing that the products should be Ca 2 Fe 2 O 5 and CaFe 2 O 4 , the ratio of which was dependent of the Fe/Ca atomic ratio of the mixture powder.

  6. Low dielectric loss in nano-Li-ferrite spinels prepared by sol–gel ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1. Low dielectric loss in nano-Li-ferrite spinels prepared by sol–gel auto-combustion technique. Mamata Maisnam Nandeibam Nilima Maisnam Victory Sumitra Phanjoubam. Volume 39 Issue 1 February 2016 ...

  7. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  8. Manganese ferrite prepared using reverse micelle process: Structural and magnetic properties characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Department of Engineering, Shinshu University, Nagano 380-8553 (Japan); Meena, S.S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mane, M.L. [Department of Physics, S.G.R.G. Shinde Mahavidyalaya, Paranda 413502, MS (India); Kumar, Shalendra [School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Bhatt, Pramod [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur, HP (India); Prasad, N.K.; Alla, S.K. [Deptartment of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Shah, Jyoti; Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Mohammed, K.A. [Department of Mathematics & Physics Sciences, College of Arts and Sciences, University of Nizwa, Nizwa (Oman); Şentürk, Erdoğan [Department of Physics, Sakarya University, Esentepe, 54187 Sakarya (Turkey); Alimuddin [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2015-09-05

    Highlights: • Preparation of Mn{sup 3+} substituted MnFe{sub 2}O{sub 4} ferrite by Reverse microemulsion process. • Characterization by XRD, SEM, VSM, Mössbauer spectroscopy and dielectric measurements techniques. • Magnetic properties of MnFe{sub 2}O{sub 4} enhanced after Mn{sup 3+} substitution. • The dielectric constant and ac conductivity increased with Mn{sup 3+} substitution. - Abstract: Reverse microemulsion process was employed to prepare of nanocrystalline Mn{sup 3+} substituted MnFe{sub 2−x}Mn{sub x}O{sub 4} ferrites. The structural, magnetic and dielectric properties were studied for different concentrations of Mn{sup 3+}. The structural and microstructural properties were analyzed using X-ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy techniques. The phase identification of the materials was studied by Rietveld refined XRD patterns which reveals single phase with cubic symmetry for the samples. The lattice parameters were ranged in between 8.369 and 8.379 Å and do not show any significant change with the substitution of Mn{sup 3+}. The average particles size was found to be around 11 ± 3 nm. Magnetization results obtained from the vibrating sample magnetometer (VSM) confirm that the substitution of Mn{sup 3+} in MnFe{sub 2}O{sub 4} ferrite caused an increase in the saturation magnetization and coercivity. The dependence of Mössbauer parameters on Mn{sup 3+} substitution has been analyzed. Magnetic behavior of the samples were also studied at field cooled (FC) and zero field cooled (ZFC) mode. The dependence of Mössbauer parameters on Mn{sup 3+} substitution was also analyzed. All the magnetic characterization shows that Mn{sup 3+} substitution enhance the magnetic behavior of MnFe{sub 2}O{sub 4} ferrite nanoparticles.

  9. Fast sono assisted ferrofluid mediated silver super - Adsorption over magnesium ferrite-copper sulfide chalcogenide with the aid of multivariate optimization.

    Science.gov (United States)

    Rezaei, Ali Asghar; Hossein Beyki, Mostafa; Shemirani, Farzaneh

    2017-07-01

    This research focuses on the development of a fast ultrasonic assisted ferrofluid mediated methodology to obtain the optimum conditions for silver adsorption from aqueous solutions. For this purpose magnesium ferrite-copper sulfide chalcogenide was synthesized and employed as an efficient nanosorbent. The sorbent was characterized with energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD) and vibrational sample magnetometry (VSM) techniques. For obtaining the optimal operating conditions of silver adsorption, response surface methodology (RSM) was used. Tests were performed by Box-Behnken design (BBD). The value of optimum conditions for silver adsorption include pH=2.5, adsorbent dosage=10.0mg, sonicating time=1min and ionic strength=2.2%. According optimum conditions, percentage of removal should be 99.34%. With replication of similar experiment (n=6) average percentage of 100±0.95% was obtained for Ag + adsorption which shows good agreement between predicted and experimental results. Silver ion adsorption follow Langmuir model with maximum sorption capacity of 2113mgg -1 . Ultrasonic power helped to prepare ferrofluid and demonstrated that had an important role in better dispersing of it in solution and efficient adsorption of analyte. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Temperature and composition dependence of magnetic properties of cobalt-chromium co-substituted magnesium ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, Zahoor [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Meydan, Turgut; Melikhov, Yevgen [Wolfson Center for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom)

    2012-11-15

    The temperature and composition dependence of magnetic properties of Co-Cr co-substituted magnesium ferrite, Mg{sub 1-x}Co{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x=0.0-0.5), prepared by novel polyethylene glycol assisted microemulsion method, are studied. The synthesized materials are characterized by the Moessbauer spectrometer and standard magnetic measurements. Major hysteresis loops are measured up to the magnetic field of 50 kOe at 300, 200 and 100 K. The high field regimes of these loops are modeled using the Law of Approach to saturation to determine the first-order cubic anisotropy coefficient and saturation magnetization. Both the saturation magnetization and the anisotropy coefficient are observed to increase with the decrease in temperature for all Co-Cr co-substitution levels. Also, both the saturation magnetization and the anisotropy coefficient achieved maximum value at x=0.3 and x=0.2, respectively. Explanation of the observed behavior is proposed in terms of the site occupancy of the co-substituent, Co{sup 2+} and Cr{sup 3+} in the cubic spinel lattice. - Highlights: Black-Right-Pointing-Pointer Mg{sub 1-x}Co{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} are synthesized by novel PEG assisted microemulsion method. Black-Right-Pointing-Pointer Co-Cr occupied octahedral site confirmed by the Moessbauer analysis. Black-Right-Pointing-Pointer High field regime of M-H loops are modeled using the Law of Approach to saturation. Black-Right-Pointing-Pointer The values of M{sub S}, M{sub r}, H{sub C} and K{sub 1} are found to increase with decreasing temperature.

  11. Investigation of some characteristics for nickel ferrite prepared by aerosolization

    International Nuclear Information System (INIS)

    El-Masry, M.A.A.; Khater, E.M.H.; Gaber, A.

    1997-01-01

    In this report some characteristics of nickel ferrite powder prepared through the aerosolization technique by atomization were investigated. It was found that both concentration of the solution and temperature affect the powder characteristics. The increase of the pyrolysis temperature increases both the degree of crystallinity and particle size but decreases the specific surface area. Lowering the concentration of the solution. raises the decomposition efficiency and produces lower yield with smaller particle size. 9 figs., 1 tab

  12. Study of the preparation of NI–Mn–Zn ferrite using spent NI–MH and alkaline Zn–Mn batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Guoxi, E-mail: xuhuidao1983@hotmail.com; Xi, Yuebin; Xu, Huidao, E-mail: xuhuidao1983@163.com; Wang, Lu

    2016-01-15

    Magnetic nanoparticles of Ni–Mn–Zn ferrite have been prepared by a sol–gel method making use of spent Ni–MH and Zn–Mn batteries as source materials. Characterization by X-ray diffraction was carried out to study the particle size. The presence of functional groups was identified by Fourier transform infrared spectroscopy. From studies by thermogravimetry and differential scanning calorimetry, crystallization occurred at temperatures above 560 °C. The magnetic properties of the final products were found to be directly influenced by the average particle size of the product. The M{sub s} values increase and the H{sub c} values decrease as the size of the Ni–Mn–Zn ferrite particles increases. - Highlights: • Ni–Mn–Zn ferrites could be prepared using spentbatteries as raw materials. • This work could provide an environmentally friendly process to recycle spent batteries. • The process could reduce cost and secondary pollution of spent batteries recycling. • The magnetic property of the ferrite could be controlled by changing the temperature.

  13. Influence of lanthanum on the optomagnetic properties of zinc ferrite prepared by combustion method

    International Nuclear Information System (INIS)

    Tholkappiyan, R.; Vishista, K.

    2014-01-01

    Pure and lanthanum doped zinc ferrite nanoparticles were synthesized by a combustion method using glycine as fuel. The mechanism of formation of these nanoferrites is discussed briefly. The prepared nanoparticles characterized using powder X-ray diffraction analysis (XRD) revealed the formation of cubic spinel phase with high crystallinity. Average crystallite size, X-ray density and bulk density were found to decrease with an increase in La 3+ concentration. The chemical elements and states on the surface of these ferrites were determined using X-ray photoelectron spectroscopy (XPS). The detailed core level spectra of the photoelectron peaks of Zn 2p, Fe 2p, La 3d and O 1s were analyzed. The magnetic behavior of these nanoparticles was studied using a vibrating sample magnetometer (VSM) and corresponding changes in the saturation magnetization (Ms), coercivity (Hc) and remanent magnetization (Mr) were analyzed. The optical behavior of these ferrite nanoparticles was characterized by UV–Diffuse reflectance studies (UV–DRS). From the UV–DRS studies, the optical band gap was found to be in the range of 1.87–1.97 eV. The combustion method significantly produces large amount of products within a short time. Therefore, this method is potentially suitable for manufacturing industries for preparing the magnetic nanoparticles

  14. Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Hafiz Muhammad Tahir, E-mail: tahirfaridbzu@gmail.com [Department of Physics, Bahauddin Zakariya, University Multan, 60800 (Pakistan); Ahmad, Ishtiaq; Ali, Irshad [Department of Physics, Bahauddin Zakariya, University Multan, 60800 (Pakistan); Ramay, Shahid M. [College of Science, Physics and Astronomy Department, King Saud University, P.O. Box 2455, 11451 Riyadh (Saudi Arabia); Mahmood, Asif [Chemical Engineering Department, College of Engineering, King Saud University, Riyadh (Saudi Arabia); Murtaza, G. [Centre for Advanced Studies in Physics, GC University, Lahore 5400 (Pakistan)

    2017-07-15

    Highlights: • Magnesium based spinel ferrites were successfully synthesized by sol-gel method. • Dielectric constant shows the normal spinel ferrites behavior. • The dc conductivity are found to decrease with increasing temperature. • The samples with low conductivity have high values of activation energy. • The Impedance decreases with increasing frequency of applied field. - Abstract: Spinel ferrites with nominal composition MgPr{sub y}Fe{sub 2−y}O{sub 4} (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz–3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole–Cole plots were used to separate the grain and grain boundary’s effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary’s resistance as compared to the grain’s resistance. As both AC conductivity and Cole–Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe{sub 2}O{sub 4} exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.

  15. Effects of sintering temperature on structural and electrical transport properties of zinc ferrites prepared by sol-gel route

    International Nuclear Information System (INIS)

    Anis-ur-Rehman, M.; Malik, M.A.; Ahmad, I.; Nasir, S.; Mubeen, M.; Abdullah, A.

    2011-01-01

    The effects of sintering temperature on the structural and electrical transport properties of nanocrystalline zinc ferrites are reported. The zinc ferrites were prepared by WOWS sol-gel synthesis route. The prepared sample was sintered at temperatures 500 deg. C, 700 deg. C and 900 deg. C respectively for 2 h. X-ray Diffraction (XRD) technique was used to describe the structural properties. The crystallite size, lattice parameters and porosity of samples were measured from the analysis of XRD data. The average crystallite size for each sample was measured using the Scherrer formula by considering the most intense (3 1 1) peak. The dielectric constant (e), dielectric loss tangent (tan theta ) and AC electrical conductivity of nanocrystalline Zn ferrites are investigated as a function of frequency and sintering temperature. All the electrical properties are explained in accordance with MaxwellWagner model and Koops phenomenological theory. (author)

  16. Preparation and structural characterization of vulcanized natural rubber nanocomposites containing nickel-zinc ferrite nanopowders.

    Science.gov (United States)

    Bellucci, F S; Salmazo, L O; Budemberg, E R; da Silva, M R; Rodríguez-Pérez, M A; Nobre, M A L; Job, A E

    2012-03-01

    Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanocomposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 x 10(-5) respectively.

  17. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    Science.gov (United States)

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  18. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  19. Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co-precipitation methods

    Directory of Open Access Journals (Sweden)

    Manju Kurian

    2016-09-01

    Full Text Available The experimental conditions used in the preparation of nano crystalline mixed ferrite materials play an important role in the particle size of the product. In the present work a comparison is made on sol–gel auto combustion methods and co-precipitation methods by preparing Nickel Zinc Ferrite (Ni0.5Zn0.5Fe2O4 nano particles. The prepared ferrite samples were calcined at different temperatures and characterized by using standard methods. X-ray diffraction analysis indicated the formation of single phase ferrite nanoparticles for samples calcined at 500 °C. The lattice parameter range of 8.32–8.49 Å confirmed the cubic spinel structure. Average crystallite size estimated from X-ray diffractogram was found to be between 17 and 40 nm. The IR spectra showed two main absorption bands, the high frequency band ν1 around 600 cm−1 and the low frequency band ν2 around 400 cm−1 arising from tetrahedral (A and octahedral (B interstitial sites in the spinel lattice. TEM pictures showed particles in the nanometric range confirming the XRD data. The studies revealed that the sol–gel auto combustion method was superior to the co-precipitation method for producing single phase nano particles with smaller crystallite size.

  20. Characterization of Ni ferrites powders prepared by plasma arc discharge process

    Energy Technology Data Exchange (ETDEWEB)

    Safari, A. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Gheisari, Kh., E-mail: khgheisari@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Farbod, M. [Physics Department, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)

    2017-01-01

    The aim of this work was to synthesize a single-phase spinel structure from a mixture of zinc, iron and nickel powders by plasma arc discharge method. A mixture of zinc, iron and nickel powders with the appropriate molar ratio was prepared and formed into a cylindrical shape. The synthesis process was performed in air, oxygen and argon atmospheres with the applied arc current of 400 A and pressure of 1 atm. After establishing an arc between the electrodes, the produced powders were collected and their structure and magnetic properties were examined by XRD and VSM, respectively. ZnO as an impurity was appeared in the as-produced powders owing to the high reactivity of zinc atoms, preventing the formation of Ni–Zn ferrite. A pure spinel structure with the highest saturation magnetization (43.8 emu/g) was observed as zinc powders removed completely from the initial mixture. Morphological evaluations using field emission scanning electron microscopy showed that the mean size of fabricated nanoparticles was in the range 100–200 nm and was dependent on the production conditions. - Highlights: • Nanocrystalline Ni ferrite powders are prepared by plasma arc discharge process. • The mean particle size of the as-synthesized ceramic powders is about 100 nm. • The highest saturation magnetization is observed as zinc powders removed completely from the initial mixture.

  1. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route

    Science.gov (United States)

    Maaz, K.; Karim, S.; Mumtaz, A.; Hasanain, S. K.; Liu, J.; Duan, J. L.

    2009-06-01

    Magnetic nanoparticles of nickel ferrite (NiFe 2O 4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles ( d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at ˜11 nm and then decreases for larger particles. Typical blocking effects were observed below ˜225 K for all the prepared samples. The superparamagnetic blocking temperature ( T B) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles.

  2. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    OpenAIRE

    Yanfeng Ge; Bailing Jiang; Ming Liu; Congjie Wang; Wenning Shen

    2014-01-01

    The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section m...

  3. Preparation of calcium- and magnesium-fortified potato starches with altered pasting properties.

    Science.gov (United States)

    Noda, Takahiro; Takigawa, Shigenobu; Matsuura-Endo, Chie; Ishiguro, Koji; Nagasawa, Koichi; Jinno, Masahiro

    2014-09-15

    Calcium- and magnesium-fortified potato starches were prepared by immersion in various concentrations of CaCl2 and MgCl2 aqueous solutions, respectively. The pasting properties, i.e., peak viscosity and breakdown, of all the starches obtained above were analyzed using a Rapid Visco Analyzer. Furthermore, the gelatinization properties and in vitro digestibility of the representative calcium- and magnesium-fortified starches were tested. The maximum calcium content of the fortified potato starches was as high as 686 ppm with the addition of a high-concentration CaCl2 solution, while the calcium content of the control potato starch was 99 ppm. The magnesium content increased from 89 to 421 ppm by treatment of the potato starch with an MgCl2 solution. Markedly lower values of peak viscosity and breakdown were observed in calcium- and magnesium-fortified potato starches than in the control potato starch. However, the gelatinization temperature and enthalpy as well as resistant starch content of calcium- and magnesium-fortified potato starches were similar to those of the control potato starch. It is concluded that potato starches with altered pasting properties can be easily manufactured by the use of solutions containing high levels of calcium and magnesium.

  4. Thermomagnetic characterization of organic-based ferrofluids prepared with Ni ferrite nanoparticles

    International Nuclear Information System (INIS)

    Arana, Mercedes; Bercoff, Paula G.; Jacobo, Silvia E.

    2017-01-01

    Highlights: • Kerosene-based ferrofluids of Ni-ferrite NPs from high energy ball milling. • Thermomagnetic characterization of organic-based ferrofluids. • Measured thermal variables enhancements of ferrofluid vs. magnetic field. • Curves successfully fitted by a gas-compression model of nanoaggregates. - Abstract: In this work, a thermomagnetic characterization of kerosene-based ferrofluids (FFs) prepared with Ni-ferrite nanoparticles (NPs) is performed by measuring their thermal conductivity and diffusivity coefficient enhancements. The particles were synthesized by high-energy ball milling, as an alternative to the most commonly chosen NPs synthesis methods for FFs. The action of an applied magnetic field on the FF increases the thermal conductivity and diffusivity due to cooperation between the NPs, as it agglomerates them favoring chain-like and clusters formations. It was found that the heat capacity of the studied FFs decreases under the application of a magnetic field. The obtained results for thermal conductivity of FFs under magnetic fields were fitted by a gas-compression model that considers NPs agglomerates in the fluid.

  5. Thermomagnetic characterization of organic-based ferrofluids prepared with Ni ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Arana, Mercedes, E-mail: mercedes.arana@labh2.coppe.ufrj.br [Facultad de Matemática, Astronomía, Física y Computación (FaMAF), Universidad Nacional de Córdoba, IFEG, CONICET, Medina Allende s/n, Ciudad Universitaria, Córdoba (Argentina); Bercoff, Paula G. [Facultad de Matemática, Astronomía, Física y Computación (FaMAF), Universidad Nacional de Córdoba, IFEG, CONICET, Medina Allende s/n, Ciudad Universitaria, Córdoba (Argentina); Jacobo, Silvia E. [DiQuiMMAI, Facultad de Ingeniería, Universidad de Buenos Aires, INTECIN, CONICET, Av. Paseo Colón 850, Buenos Aires (Argentina)

    2017-01-15

    Highlights: • Kerosene-based ferrofluids of Ni-ferrite NPs from high energy ball milling. • Thermomagnetic characterization of organic-based ferrofluids. • Measured thermal variables enhancements of ferrofluid vs. magnetic field. • Curves successfully fitted by a gas-compression model of nanoaggregates. - Abstract: In this work, a thermomagnetic characterization of kerosene-based ferrofluids (FFs) prepared with Ni-ferrite nanoparticles (NPs) is performed by measuring their thermal conductivity and diffusivity coefficient enhancements. The particles were synthesized by high-energy ball milling, as an alternative to the most commonly chosen NPs synthesis methods for FFs. The action of an applied magnetic field on the FF increases the thermal conductivity and diffusivity due to cooperation between the NPs, as it agglomerates them favoring chain-like and clusters formations. It was found that the heat capacity of the studied FFs decreases under the application of a magnetic field. The obtained results for thermal conductivity of FFs under magnetic fields were fitted by a gas-compression model that considers NPs agglomerates in the fluid.

  6. Synthesis, structural investigation and magnetic properties of Zn{sup 2+} substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Raut, A.V., E-mail: nano9993@gmail.com [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Barkule, R.S.; Shengule, D.R. [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Jadhav, K.M., E-mail: drjadhavkm@gmail.com [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004 Maharastra (India)

    2014-05-01

    Structural morphology and magnetic properties of the Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn{sup 2+} content in cobalt ferrite nanoparticles is followed by decrease in n{sub B}, M{sub s} and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique.

  7. Crystallization of -type hexagonal ferrites from mechanically

    Indian Academy of Sciences (India)

    Crystallization of -type hexagonal ferrites from mechanically activated mixtures of barium carbonate and goethite ... Abstract. -type hexagonal ferrite precursor was prepared by a soft mechanochemical ... Bulletin of Materials Science | News.

  8. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling

    International Nuclear Information System (INIS)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P.; Universidade Federal do Rio Grande do Norte

    2010-01-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  9. Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites

    International Nuclear Information System (INIS)

    Nathani, H.; Misra, R.D.K.

    2004-01-01

    The magnetization studies on nanocrystalline nickel ferrite as powder particles, and as diluted dispersion (10 wt.%) in polymer matrix (polymer nanocomposites) are presented. The two polymer-based nanocomposites were prepared via ball-milling and in situ polymerization, respectively. The magnetization measurements provide strong evidence of surface effects to magnetization, which explains the non-saturation of magnetization at high fields. The differences in the magnetization behavior of nickel ferrite as powder particles and in the ball-milled nanocomposite and the nanocomposite prepared via in situ polymerization are attributed to the different extent of interparticle interactions between the particles and the preparation route. The magnetization versus applied field behavior of the three ferrite systems show a similar jump in the initial part of the magnetization curve in all the cases which implies the existence of a core-shell like morphology of the particles over a large temperature range and its dominance over the interparticle interaction effects between the particles

  10. The role of praseodymium substituted ions on electrical and magnetic properties of Mg spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Muhammad Tahir, E-mail: tahirfaridbzu@gmail.com; Ahmad, Ishtiaq; Kanwal, Muddassara; Murtaza, Ghulam; Ali, Irshad; Khan, Sajjad Ahmad

    2017-04-15

    Spinel ferrites with composition MgPr{sub y}Fe{sub 2−y}O{sub 4} (y=0.0, 0.025, 0.05, 0.075, 0.10) were successfully synthesized using sol-gel auto-combustion technique. The structural prisoperties of a prepared sintered powder were characterized with the help of X-ray Diffraction (XRD) and then also by using Scanning electron microscopy (SEM). Electrical measurements demonstrate that resistivity and activation energy increases with the Praseodymium substitution while dc resistivity decreases with the rise of temperature showing the semiconductor nature of the synthesized ferrites. Remanence and the saturation magnetization (M{sub s}) decrease while coercivity (H{sub c}) also increases with the increase in praseodymium contents. Anisotropic constant is observed to exhibit similar behavior as H{sub C}. The above mentioned parameters suggest that the synthesized samples are favorable for microwave absorbing purposes. - Highlights: • Magnesium based spinel ferrites were successfully synthesized by sol-gel method. • The spinel phase has been observed in all samples. • The dc resistivity are found to increase with increasing Pr content • The samples with high resistivity have high values of activation energy. • The Ms Decreases with increasing Pr contents while Hc increases.

  11. Nonstoichiometric Zn Ferrite and ZnFe2O4/Fe2O3 Composite Spheres: Preparation, Magnetic Properties, and Chromium Removal

    Science.gov (United States)

    Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying

    2018-03-01

    Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.

  12. Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters

    International Nuclear Information System (INIS)

    Miao Chunlin; Zhou Ji; Cui Xuemin; Wang Xiaohui; Yue Zhenxing; Li Longtu

    2006-01-01

    The cofiring behavior, interfacial structure and cofiring migration between NiCuZn ferrite and lead magnesium niobate (PMN)-based relaxor ferroelectric materials were investigated via thermomechanical analyzer (TMA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Mismatched sintering shrinkage between NiCuZn ferrite and PMN was modified by adding an appropriate amount of sintering aids, Bi 2 O 3 , into NiCuZn ferrite. Pyrochlore phase appeared in the mixture of NiCuZn ferrite and PMN, which is detrimental to the final electric properties of LC filters. EDS results indicated that the interdiffusion at the heterogeneous interfaces in the composites, such as Fe, Pb, Zn, existed which can strengthen combinations between ferrite layers and ferroelectrics layers

  13. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity

    Energy Technology Data Exchange (ETDEWEB)

    Kaman, Ondřej, E-mail: kamano@seznam.cz [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Kuličková, Jarmila [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Herynek, Vít [Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4 (Czech Republic); Koktan, Jakub [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6 (Czech Republic); Maryško, Miroslav [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Dědourková, Tereza [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Pardubice, Doubravice 41, 532 10 Pardubice (Czech Republic); Knížek, Karel; Jirák, Zdeněk [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic)

    2017-04-01

    Hydrothermal synthesis of Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles followed by direct encapsulation of the as-grown material into silica is demonstrated as a fast and facile method for preparation of efficient negative contrast agents based on clusters of ferrite crystallites. At first, the hydrothermal procedure is optimized to achieve strictly single-phase magnetic nanoparticles of Mn-Zn ferrites in the compositional range of x≈0.2–0.6 and with the mean size of crystallites ≈10 nm. The products are characterized by powder X-ray diffraction, X-ray fluorescence spectroscopy, and SQUID magnetometry, and the composition close to x=0.4 is selected for the preparation of silica-coated clusters with the mean diameter of magnetic cores ≈25 nm. Their composite structure is studied by means of transmission electron microscopy combined with detailed image analysis and magnetic measurements in DC fields. The relaxometric studies, performed in the magnetic field of B{sub 0}=0.5 T, reveal high transverse relaxivity (r{sub 2}(20 °C)=450 s{sup −1} mmol(Me{sub 3}O{sub 4}){sup −1} L) with a pronounced temperature dependence, which correlates with the observed temperature dependence of magnetization and is ascribed to a mechanism of transverse relaxation similar to the motional averaging regime. - Highlights: • Mn-Zn ferrite particles with size of ≈10 nm are synthesized by hydrothermal method. • Their structure and magnetic properties are analysed in dependence on composition. • Silica-coated clusters with the size ≈26 nm are prepared as contrast agent for MRI. • Their transverse relaxivity shows strong temperature dependence.

  14. Polystyrene/magnesium hydroxide nanocomposite particles prepared by surface-initiated in-situ polymerization

    International Nuclear Information System (INIS)

    Liu Hui; Yi Jianhong

    2009-01-01

    In order to avoid their agglomeration and incompatibility with hydrophobic polystyrene substrate, magnesium hydroxide nanoparticles were encapsulated by surface-initiated in-situ polymerization of styrene. The process contained two steps: electrostatic adsorption of initiator and polymerization of monomer on the surface of magnesium hydroxide. It was found that high adsorption ratio in the electrostatic adsorption of initiator could be attained only in acidic region, and the adsorption belonged to typical physical process. Compared to traditional in-situ polymerization, higher grafting ratio was obtained in surface-initiated in-situ polymerization, which can be attributed to weaker steric hindrance. Both Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) indicated that polystyrene/magnesium hydroxide nanocomposite particles had been successfully prepared by surface-initiated in-situ polymerization. The resulting samples were also analyzed and characterized by means of contact angle testing, dispersibility evaluation and thermogravimetric analysis

  15. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method

    Directory of Open Access Journals (Sweden)

    Nejati Kamellia

    2012-03-01

    Full Text Available Abstract Background Nickel ferrite, a kind of soft magnetic materials is one of the most attracting class of materials due to its interesting and important properties and has many technical applications, such as in catalysis, sensors and so on. In this paper the synthesis of NiFe2O4 nanoparticles by the hydrothermal method is reported and the inhibition of surfactant (Glycerol or Sodium dodecyl sulfate on the particles growth is investigated. Methods For investigation of the inhibition effect of surfactant on NiFe2O4 particles growth, the samples were prepared in presence of Glycerol and Sodium dodecyl sulfate. The X-ray powder diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, vibrating sample magnetometer (VSM and inductively coupled plasma atomic emission spectrometer (ICP-AES techniques were used to characterize the samples. Results The results of XRD and ICP-AES show that the products were pure NiFe2O4 and also nanoparticles grow with increasing the temperature, while surfactant prevents the particle growth under the same condition. The average particle size was determined from the Scherrer's equation and TEM micrographs and found to be in the range of 50-60 nm that decreased up to 10-15 nm in presence of surfactant. The FT-IR results show two absorption bands near to 603 and 490 cm-1 for the tetrahedral and octahedral sites respectively. Furthermore, the saturated magnetization and coercivity of NiFe2O4 nanoparticles were in the range of 39.60 emu/g and 15.67 Qe that decreased for samples prepared in presence of surfactant. As well as, the nanoparticles exhibited a superparamagnetic behavior at room temperature. Conclusions Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The results show that with increasing of temperature, the crystallinity of nanoparticles is increased. In the presence of surfactants, the crystallinity of

  16. Sol-gel preparation of lead magnesium niobate (PMN) powders and thin films

    Science.gov (United States)

    Boyle, T.J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films. 3 figs.

  17. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    Science.gov (United States)

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  18. Preparation of porous nano barium ferrite and its adsorption properties on uranium

    International Nuclear Information System (INIS)

    Xiong Guoxuan; Huang Haiqing; Zhang Zhibin

    2012-01-01

    The porous nano barium ferrite was made of Fe(NO 3 ) 3 and Ba(NO 3 ) 2 as raw materials, CTAB as surfactant by method of sol-gel and self-propagating combustion. The composition, morphology and magnetic properties of nano-rod barium ferrite were characterized by XRD, SEM and vibrating sample magnetometer. The adsorption properties of porous nano barium ferrite on uranium were studied with static adsorption and the effects of pH, adsorption temperature and oscillation time on adsorption properties were discussed. The results indicate that the average particle size of porous nano barium ferrite is 45-65 nm, the saturation magnetization and coercivity are 62.83 emu/g and 5481.0 Oe, respectively. Under the condition of the porous nano barium ferrite amount of 0.02 g, pH of 6, adsorption temperature of 25℃ and oscillation time of 30 min, the adsorption capacity of uranium on the porous nano barium ferrite reaches 921 μg/g. (authors)

  19. Synthesis route and structural properties of nanoferrites

    International Nuclear Information System (INIS)

    Zaharieva, Katerina; Cherkezova-Zheleva, Zara; Kunev, Boris; Shopska, Maya; Mitov, Ivan

    2013-01-01

    The nano dimensional magnesium ferrite materials Mg 0.25 Fe 2.75 O 4 , Mg 0.5 Fe 2.5 O 4 and MgFe 2 O 4 with different stoichiometry were prepared by co-precipitation procedure using MgCl 2 •6H 2 O, FeCl 2 •4H 2 O and FeCl 3 •6H 2 O and NaOH as precipitant. The physicochemical methods - X-ray diffraction analysis, Moessbauer spectroscopy and FTIR spectroscopy were performed to investigate the structural properties of obtained nano size magnesium ferrite type samples. The registered experimental data were determined the presence of spinel ferrites and additional precursor phases as iron oxihydroxides and double layered hydroxides in ferrite materials MgxFe 3-x O 4 (x=0.5;1). In the case of magnesium ferrite sample Mg x Fe 3-x O 4 (x=0.25) the existence of non-stoichiometric spinel ferrite and intermediate phase - iron oxihydroxides were observed only. Key words: magnesium ferrites, co-precipitation, physicochemical methods

  20. A randomized prospective triaI comparing oral sodium phosphate with magnesium citrate in preparing of patients for double contrast barium enema

    International Nuclear Information System (INIS)

    Lee, Eun Joo; Lee, Sung Woo; Lee, Hyeon Kyeong; Yang, Chang Hun; Kim, Soon; Oh, Yoen Hee; Kim, Seung Hyeon

    2004-01-01

    The purpose of this study was to compare two bowel preparation agents, sodium phosphate solution with magnesium citrate solution. A total of 94 subjects that underwent a double-contrast barium enema were included in this study. Bowel preparation before performing the barium study was done by using a sodium phosphate solution in 47 subjects and by using a magnesium citrate solution in the other 47 subjects. We evaluated the presence or absence of side effects when using these bowel preparation agents. Two radiologist who were blinded to the type of bowel preparation evaluated the quality of bowel preparation at the colonic segments (ascending, descending, and sigmoid colon) on the radiographs obtained by double-contrast barium enema, with regard to stool cleansing, water retention, barium coating and bubble formation. The side effects, such as abdominal clamping pain, nausea, hunger pain and chill occurred more frequently in the sodium phosphate group than in the magnesium citrate group (p< 0.001). Stool retention was more frequently found in the magnesium citrate group (p< 0.001). However, no statistical difference was noted on the status of water retention and barium coating between two groups. Gas bubble formation was more commonly seen in the sodium phosphate group (p< 0.001). The sodium phosphate solution appeared to be more effective in cleansing the right colon (p=0.001). Sodium phosphate solution appears to be more effective for colonic cleansing, with a lower incidence of side effects, than when using magnesium citrate solution

  1. Synthesis route and structural properties of nanoferrites

    Energy Technology Data Exchange (ETDEWEB)

    Zaharieva, Katerina; Cherkezova-Zheleva, Zara; Kunev, Boris; Shopska, Maya; Mitov, Ivan [Institute of Catalysis, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2013-07-01

    The nano dimensional magnesium ferrite materials Mg{sub 0.25}Fe{sub 2.75}O{sub 4} , Mg{sub 0.5}Fe{sub 2.5}O{sub 4} and MgFe{sub 2}O{sub 4} with different stoichiometry were prepared by co-precipitation procedure using MgCl{sub 2} •6H{sub 2}O, FeCl{sub 2} •4H{sub 2}O and FeCl{sub 3} •6H{sub 2}O and NaOH as precipitant. The physicochemical methods - X-ray diffraction analysis, Moessbauer spectroscopy and FTIR spectroscopy were performed to investigate the structural properties of obtained nano size magnesium ferrite type samples. The registered experimental data were determined the presence of spinel ferrites and additional precursor phases as iron oxihydroxides and double layered hydroxides in ferrite materials MgxFe{sub 3-x}O{sub 4} (x=0.5;1). In the case of magnesium ferrite sample Mg{sub x}Fe{sub 3-x}O{sub 4} (x=0.25) the existence of non-stoichiometric spinel ferrite and intermediate phase - iron oxihydroxides were observed only. Key words: magnesium ferrites, co-precipitation, physicochemical methods.

  2. A solution for the preparation of hexagonal M-type SrFe{sub 12}O{sub 19} ferrite using egg-white: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingting; Li, Yang; Wu, Ruonan; Zhou, Han; Fang, Xiaochen [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Su, Shubing [School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315016 (China); Xia, Ailin, E-mail: alxia@126.com [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Jin, Chuangui; Liu, Xianguo [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China)

    2015-11-01

    A new sol–gel route using egg-white as the binder of metal ions, is developed to prepare hexagonal M-type SrFe{sub 12}O{sub 19} ferrite in this study, and the effects of different atomic ratio of Sr and Fe (Sr/Fe), sintering temperature (T{sub s}) and usage of egg-white (M{sub ew}) on the phase formation, morphology and magnetic properties of specimens are studied. It is found that the single-phase SrFe{sub 12}O{sub 19} ferrite only can be obtained under a Sr/Fe of 1:8 and a T{sub s} between 1000 °C and 1300 °C. The magnetic properties of specimens are also obviously affected by the different Sr/Fe and T{sub s}, primarily due to the emergency of impurities. The M{sub ew} has an obvious impact on the crystallinity of specimens, which consequently affects their magnetic properties. In our study, the optimum conditions to prepare the single-phase SrFe{sub 12}O{sub 19} ferrite are Sr/Fe=1:8, M{sub ew}= 3 g and T{sub s} =1200 °C. - Highlights: • Single-phase SrM ferrite was obtained via a novel sol–gel method using egg-white. • Single-phase SrM ferrite was obtained under Sr/Fe=1:8 and T{sub s} between 1000 and 1300 °C. • The usage of egg-white affects the crystallinity and magnetic properties markedly.

  3. Preparation and characterization of complex ferrite nanoparticles by a polymer-pyrolysis route

    International Nuclear Information System (INIS)

    Liu Xianming; Fu Shaoyun; Xiao Hongmei; Zhu Luping

    2007-01-01

    The polymer-pyrolysis route used in this work was to synthesize the copolymeric precursor of the mixed metallic ions and then to pyrolyze the precursor into complex spinel ferrite nanoparticles. Thermogravimetric analysis (TGA) showed that the complex ferrite nanoparticles could be obtained by calcination of their precursors at 500 deg. C. The structures, elemental analyses and particle morphology of the as-calcined products were characterized by powder X-ray diffraction (XRD), ICP-AES, transmission electron microscope (TEM) and electron diffraction (ED) pattern. The results revealed that the as-calcined powders were complex spinel ferrites and the size of those nanoparticles ranged from 10 to 20 nm. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer (VSM). The saturation magnetization of the Mn-Zn ferrites was related to the molar ratio of Mn to Zn and increased with the increase of Mn. The complex Co-Mn-Zn ferrite nanoparticles showed a high magnetization of 58 emu/g at the applied field of 10 kOe and a low coercivity of 30 Oe, which indicated that this materials exhibited characteristics of soft ferromagnetism

  4. Structural and magnetic properties of Ni0.15Mg0.1Cu0.3Zn0.45Fe2O4 ferrite prepared by NaOH-precipitation method

    International Nuclear Information System (INIS)

    Hou, Wei-xiao; Wang, Zhi

    2015-01-01

    Highlights: • NiMgCuZn ferrites were successfully prepared by low-temperature sintering. • NiMgCuZn ferrites have the advantages of both NiCuZn and MgCuZn ferrites. • NiMgCuZn ferrites exhibit high Curie temperature & high stability of permeability. - Abstract: The Ni 0.15 Mg 0.1 Cu 0.3 Zn 0.45 Fe 2 O 4 ferrite powders have been prepared by NaOH co-precipitation method and characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The XRD patterns confirm the single phase spinel structure of synthesized nanoparticles. The average crystallite size of the particles increases from 12 to 36 nm with calcining temperature (T a ) from 500 to 800 °C. The saturation magnetization (M s ) of the superparamagnetic particles was deduced by Langevin theory. Subsequently, the densification characteristics and magnetic properties of the low-temperature 950 °C-sintered ferrite bulk samples were also investigated. The magnetic measurement showed that the sintered bulk sample of T a = 600 °C has the highest initial permeability (μ i ), lowest coercivity (H c ), largest saturation magnetization (M s ) and satisfactory thermal stability of μ i . The microstructures of sintered samples were examined using field emission scanning electric microscope (FESEM). The T a has significant influence on the bulk density, initial permeability, saturation magnetization and coercivity of Ni 0.15 Mg 0.1 Cu 0.3 Zn 0.45 Fe 2 O 4 ferrite

  5. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  6. Microstructure and Properties of Selected Magnesium-Aluminum Alloys Prepared for SPD Processing Technology

    Directory of Open Access Journals (Sweden)

    Cizek L.

    2017-12-01

    Full Text Available A growing interest in wrought magnesium alloys has been noticed recently, mainly due to development of various SPD (severe plastic deformation methods that enable significant refinement of the microstructure and – as a result – improvement of various functional properties of products. However, forming as-cast magnesium alloys with the increased aluminum content at room temperature is almost impossible. Therefore, application of heat treatment before forming or forming at elevated temperature is recommended for these alloys. The paper presents the influence of selected heat treatment conditions on the microstructure and the mechanical properties of the as-cast AZ91 alloy. Deformation behaviour of the as-cast AZ61 alloy at elevated temperatures was analysed as well. The microstructure analysis was performed by means of both light microscopy and SEM. The latter one was used also for fracture analysis. Moreover, the effect of chemical composition modification by lithium addition on the microstructure of the AZ31-based alloy is presented. The test results can be helpful in preparation of the magnesium-aluminum alloys for further processing by means of SPD methods.

  7. Synthesis and dissolution studies of nickel ferrite in PDCA based formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Raghavan, P.S.; Gopalan, R.; Srinivasan, M.P.; Narasimhan, S.V.

    2000-01-01

    Nickel ferrite is one of the important corrosion product in the pipeline surfaces of water cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to nature of the chelant, nature of the reductant used in the formulation and the temperature at which the dissolution studies have been performed. The dissolution is dominated by the adsorption of the complexing agent at the oxide surface, but mainly controlled by the reductive dissolution of the ferrite particles. This is due to the in situ release of Fe 2+ ions or the generation of Fe 2+ ions by the reduction of Fe 3+ ions by the reductants in the solution. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid state method. The prepared nickel ferrite samples are characterised by XRD to confirm the ferrite formation. The dissolution studies are performed in PDCA formulations containing organic reductants like ascorbic acid and LOMI reductants like Fe(II)-PDCA. The dissolution rate of nickel ferrite at 85degC increased with the increase of Fe 2+ ion content in the crystal lattice. Fe(II)-PDCA was found to be better reductants in dissolving the nickel ferrite in comparison with ascorbic acid. (author)

  8. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3 O 4 and SrFe 12 O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic

  9. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    International Nuclear Information System (INIS)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-01-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating

  10. Manufacturing of Mn-Zn ferrite transformer cores

    International Nuclear Information System (INIS)

    Waqas, H.; Qureshi, A.H.; Hussain, N.; Ahmed, N.

    2012-01-01

    The present work is related to the development of soft ferrite transformer cores, which are extensively used in electronic devices such as switch mode power supplies, electromagnetic devices, computers, amplifiers etc. Mn-Zn Ferrite (soft ferrite) powders were prepared by conventional mixed oxide and auto combustion routes. These powders were calcined and then pressed in toroid shapes. Sintering was done at different temperatures to develop desired magnetic phase. Impedance resistance of sintered toroid cores was measured at different frequencies. Results revealed that Mn-Zn Ferrite cores synthesized by auto combustion route worked more efficiently in a high frequency range i.e. > 2MHz than the cores developed by conventional mixed oxide method. It was noticed that compact size, light weight and high impedance resistance are the prime advantages of auto combustion process which supported the performance of core in MHz frequency range. Furthermore, these compact size cores were successfully tested in linear pulse amplifier circuit of Pakistan Atomic Research Reactor-I. The fabrication of soft ferrite (Mn-Zn Ferrite) cores by different processing routes is an encouraging step towards indigenization of ferrite technology. (Orig./A.B.)

  11. Preparation of hollow microspheres of Ce{sup 3+} doped NiCo ferrite with high microwave absorbing performance

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hong-zhen, E-mail: duanhz2000@163.com; Zhou, Fang-ling; Cheng, Xia; Chen, Guo-hong; Li, Qiao-ling

    2017-02-15

    Hollow microspheres of Ce{sup 3+} doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method with carbon sphere as the template. The phase structure, morphology, magnetic properties and wave absorbing properties of the sample were characterized by X-ray powder diffraction(XRD), Scanning electronic microscopy(SEM), Vibration sample magnetometer (VSM) and a network vector analyzer (NVA), respectively. The results indicated that the particle size of the carbon sphere sample prepared by hydrothermal method was about 0.5 µm and the particle size of the Ni{sub 0.5}Co{sub 0.5}Fe{sub 2}O{sub 4} sample prepared by template-based method was about 300 nm. The influence of the amount of rare earth element on the magnetic and absorbing properties of sample was studied. The saturation magnetization and coercivity decreased gradually with the increase of the content of Ce. When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu• g{sup −1} and 789.88 Oe, respectively. The associated ferrite hollow spheres have good absorbing performance, and the return loss value was −18.8 dB at 5500 MHz. - Highlights: • Hollow microspheres of Ce{sup 3+} doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method. • The influence of rare earth Ce{sup 3+} on the magnetic and absorbing properties of sample was studied. • When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu• g{sup −1} and 789.88 Oe, respectively.

  12. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hyun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Lee, Se-Ho [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Shim, In-Bo [Department of Electronic Physics, Kookmin University, Seoul 136-702 (Korea, Republic of); Lee, Yong-Keun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of) and Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of)]. E-mail: leeyk@yumc.yonsei.ac.kr

    2005-05-15

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe{sub 3}O{sub 4} and SrFe{sub 12}O{sub 19} ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.

  13. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Torres C.

    2013-01-01

    Full Text Available Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer’s formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  14. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  15. Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites

    Science.gov (United States)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2018-02-01

    This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.

  16. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?

    Science.gov (United States)

    Uysal, Nazan; Kizildag, Servet; Yuce, Zeynep; Guvendi, Guven; Kandis, Sevim; Koc, Basar; Karakilic, Aslı; Camsari, Ulas M; Ates, Mehmet

    2018-04-21

    Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.

  17. A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing

    Science.gov (United States)

    Qian, Bingnan; Peng, Huabei; Wen, Yuhua

    2018-04-01

    To improve the corrosion resistance of high strength Fe-Mn damping alloys, we fabricated a novel sandwich Fe-17.5Mn damping alloy with Mn-depleted ferrite shell by vacuum annealing at 1100 °C. The formation behavior of the ferrite shell obeys the parabolic law for the vacuum annealed Fe-17.5Mn alloy at 1100 °C. The sandwich Fe-17.5Mn alloy with ferrite shell exhibits not only better corrosion resistance but also higher damping capacity than the conventional annealed Fe-17.5Mn alloy under argon atmosphere. The existence of only ferrite shell on the surface accounts for the better corrosion in the sandwich Fe-17.5Mn alloy. The better damping capacity in the sandwich Fe-17.5Mn alloy is owed to more stacking faults inside both ɛ martensite and γ austenite induced by the stress from ferrite shell. Vacuum annealing is a new way to improve the corrosion resistance and damping capacity of Fe-Mn damping alloys.

  18. Structural investigation of chemically synthesized ferrite magnetic nanomaterials

    Science.gov (United States)

    Uyanga, E.; Sangaa, D.; Hirazawa, H.; Tsogbadrakh, N.; Jargalan, N.; Bobrikov, I. A.; Balagurov, A. M.

    2018-05-01

    In recent times, interest in ferrite magnetic nanomaterials has considerably grown, mainly due to their highly promising medical and biological applications. Spinel ferrite powder samples, with high heat generation abilities in AC magnetic fields, were studied for their application to the hyperthermia treatment of cancer tumors. These properties of ferrites strongly depend on their chemical composition, ion distribution between crystallographic positions, magnetic structure and method of preparation. In this study, crystal and magnetic structures of several magnetic spinels were investigated by neutron diffraction. The explanation of the mechanism triggering the heat generation ability in the magnetic materials, and the electronic and magnetic states of ferrite-spinel type structures, were theoretically defined by a first-principles method. Ferrites with the composition of CuxMg1-xFe2O4 have been investigated as a heat generating magnetic nanomaterial. Atomic fraction of copper in ferrite was varied between 0 and 100% (that is, x between 0 and 1.0 with 0.2 steps), with the copper dope limit corresponding to appear a tetragonal phase.

  19. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  20. Effect of Cu-Cr co-substitution on magnetic properties of nanocrystalline magnesium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Ahmad, Zahoor [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Melikhov, Yevgen [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom); Nlebedim, Ikenna Cajetan [Ames Laboratory of US Department of Energy, Ames, IA 50011 (United States)

    2012-03-15

    This study deals with the temperature and composition dependence of magnetization and magnetic anisotropy of Cu{sup 2+}-Cr{sup 3+} co-substituted magnesium ferrite, Mg{sub 1-x}Cu{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x=0.0-0.5). The synthesized materials are characterized using thermo gravimetric analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray fluorescence, Moessbauer spectrometer, superconducting quantum interference device magnetometer and vibrating sample magnetometer. The M-H loops measured up to 50 kOe at 300, 200 and 100 K, revealed narrow hysteresis curves with a coercive field and saturation magnetization varying for different compositions. The high field regimes of these loops are modeled using the Law of Approach to saturation to extract anisotropy information and saturation magnetization. Both the saturation magnetization and the anisotropy constant are observed to increase with the decrease in temperature while decrease with the Cu-Cr co-substituents for all the samples. Explanation of the observed behavior is proposed in terms of the preference of the co-substituent ions of Cu{sup 2+} and Cr{sup 3+} and their predominant choice to substitute into the octahedral sites of the cubic spinel lattice. - Highlights: Black-Right-Pointing-Pointer Mg{sub 1-x}Cu{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} was synthesized by novel PEG assisted microemulsion method. Black-Right-Pointing-Pointer Present paper dealt with magnetic properties of Mg{sub 1-x}Cu{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4}. Black-Right-Pointing-Pointer XRD patterns revealed tetragonal distorted cubic structure of Mg{sub 1-x}Cu{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4}. Black-Right-Pointing-Pointer Mossbauer spectroscopy confirmed that Cu-Cr occupy octahedral sites. Black-Right-Pointing-Pointer High field regime of M-H loops was modeled using Law of Approach to saturation.

  1. Optimization principles for preparation methods and properties of fine ferrite materials

    Science.gov (United States)

    Borisova, N. M.; Golubenko, Z. V.; Kuz'micheva, T. G.; Ol'khovik, L. P.; Shabatin, V. P.

    1992-08-01

    The paper is devoted to the problems of development of fine materials based on Ba-ferrite for vertical magnetic recording in particular. Taking an analogue — BaFe 12-2 xCo xTe xO 19 — we have optimized the melt co-precipitation method and shown a new opportunity to provide chemical homogeneity of microcrystallites by means of cryotechnology. Magnetic characteristics of the magnetic tape experimental sample for digital video recording are presented. A series of principles of consistent control of ferrite powder properties are formulated and illustrated with specific developments.

  2. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    International Nuclear Information System (INIS)

    Chandra Babu Naidu, K.; Madhuri, W.

    2016-01-01

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni–Mg ferrites of general chemical formula Ni_1_−_xMg_xFe_2O_4 (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K–873 K and 42 Hz–5 MHz. - Highlights: • First article on microwave processed NiMgFe_2O_4 giving. • The article gives systematic magnetic studies. • Cation distribution is discussed based on magnetic moments from VSM. • Promising candidates for transformer core and soft magnet manufacturing.

  3. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Babu Naidu, K.; Madhuri, W., E-mail: madhuriw12@gmail.com

    2016-12-15

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni–Mg ferrites of general chemical formula Ni{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K–873 K and 42 Hz–5 MHz. - Highlights: • First article on microwave processed NiMgFe{sub 2}O{sub 4} giving. • The article gives systematic magnetic studies. • Cation distribution is discussed based on magnetic moments from VSM. • Promising candidates for transformer core and soft magnet manufacturing.

  4. Influence of calcium, magnesium, or potassium ions on the formation and stability of emulsions prepared using highly hydrolyzed whey proteins.

    Science.gov (United States)

    Ramkumar, C; Singh, H; Munro, P A; Singh, A M

    2000-05-01

    Oil-in-water emulsions (4 wt % soy oil) containing 4 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis) and different levels of calcium, magnesium, or potassium chloride were prepared in a two-stage homogenizer. Other emulsions containing 4 wt % WPH but including 0.35 wt % hydroxylated lecithin and different levels of the above minerals were similarly prepared. The formation and stability of these emulsions were determined by measuring oil droplet size distributions using laser light scattering and by confocal scanning laser microscopy and a gravity creaming test. Both lecithin-free and lecithin-containing emulsions showed no change in droplet size distributions with increasing concentration of potassium in the range 0-37.5 mM. In contrast, the diameter of emulsion droplets increased with increasing calcium or magnesium concentration >12.5 mM. Emulsions containing hydroxylated lecithin were more sensitive to the addition of calcium or magnesium than the lecithin-free emulsions. Storage of emulsions at 20 degrees C for 24 h further increased the diameter of droplets and resulted in extensive creaming in emulsions containing >25 mM calcium or magnesium. It appears that both flocculation and coalescence processes were involved in the destabilization of emulsions induced by the addition of divalent cations.

  5. Ziegler-Natta catalysts for the preparation of polypropylene clay nanocomposites from magnesium ethoxide

    International Nuclear Information System (INIS)

    Marques, Maria de Fatima V.; Silva, Micheli G. da; Ferreira, Ana Luiza R.

    2009-01-01

    In the present work, the process for the preparation of Ziegler-Natta catalysts based on MgCl 2 /TiCl 4 was evaluated on the synthesis of isotactic polypropylene. The catalysts were produced by the chemical activation process aiming the morphology control, in order to obtain catalyst particles with spherical form. The synthesis of the catalytic support was accomplished from magnesium ethoxide at different preparation conditions. Commercial clays were also added in the preparation of ZN catalysts, which were employed in propylene polymerization. The purpose was to synthesizing polypropylene nanocomposites by in situ polymerization technique. The results indicated that the developed methods of catalyst preparation were effective, since they have shown high activities and they produced PP with high melting temperatures. It was possible to verify by XRD that the catalytic components were inserted in the clays galleries and the polymers obtained by means of those catalysts are possibly exfoliated nanocomposites. (author)

  6. Synthesis, structure and electromagnetic properties of Mn-Zn ferrite by sol-gel combustion technique

    Science.gov (United States)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn-Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn1-xZnxFe2O4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol-gel combustion method. The microstructure and surface morphology of Mn-Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field.

  7. Magnetic properties of cobalt ferrite-silica nanocomposites prepared by a sol-gel autocombustion technique

    DEFF Research Database (Denmark)

    Cannas, C.; Musinu, A.; Piccaluga, G.

    2006-01-01

    The magnetic properties of cobalt ferrite-silica nanocomposites with different concentrations (15, 30, and 50 wt %) and sizes (7, 16, and 28 nm) of ferrite particles have been studied by static magnetization measurements and Mossbauer spectroscopy. The results indicate a superparamagnetic behavio...

  8. Residual stress studies of austenitic and ferritic steels

    International Nuclear Information System (INIS)

    Chrenko, R.M.

    1978-01-01

    Residual studies have been made on austenitic and ferritic steels of the types used as structural materials. The residual stress results presented here will include residual stress measurements in the heat-affected zone on butt welded Type 304 stainless steel pipes, and the stresses induced in Type 304 austenitic stainless steel and Type A508 ferritic steel by several surface preparations. Such surface preparation procedures as machining and grinding can induce large directionality effects in the residual stresses determined by X-ray techniques and some typical data will be presented. A brief description is given of the mobile X-ray residual stress apparatus used to obtain most of the data in these studies. (author)

  9. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  10. Synthesis, structure and electromagnetic properties of Mn–Zn ferrite by sol–gel combustion technique

    International Nuclear Information System (INIS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2014-01-01

    The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn–Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn 1−x Zn x Fe 2 O 4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol–gel combustion method. The microstructure and surface morphology of Mn–Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field. - Highlights: • We designed and synthesized Mn 1−x Zn x Fe 2 O 4 (x=0.2, 0.5 and 0.8), with citrate acid as complex agent by the sol–gel combustion method. • Citrate acid as the complex agent overcomes the aggregation of ferrite resulting in high purity and homogeneous particles. • We investigated the electromagnetic absorbing performance of a fabricated thin coating by introducing Mn–Zn ferrite into epoxy resin (EP). • The Mn 0.8 Zn 0.2 Fe 2 O 4 composite coatings could achieve the satisfactory absorbing value of −17 dB at 800 MHz. • The prepared composites can potentially be used for the application in electromagnetic microwave absorbing field

  11. Oriented Y-typehexagonal ferrite thin films prepared by chemical

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Kužel, R.; Knížek, Karel; Drbohlav, Ivo

    2013-01-01

    Roč. 203, JULY (2013), s. 100-105 ISSN 0022-4596 R&D Projects: GA ČR GA13-03708S Institutional support: RVO:61388980 ; RVO:68378271 Keywords : Y-type hexagonal ferrites * chemical solution deposition * thin films * epitaxial growth Subject RIV: CA - Inorganic Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.200, year: 2013

  12. Characterization of Ni ferrites powders prepared by plasma arc discharge process

    Science.gov (United States)

    Safari, A.; Gheisari, Kh.; Farbod, M.

    2017-01-01

    The aim of this work was to synthesize a single-phase spinel structure from a mixture of zinc, iron and nickel powders by plasma arc discharge method. A mixture of zinc, iron and nickel powders with the appropriate molar ratio was prepared and formed into a cylindrical shape. The synthesis process was performed in air, oxygen and argon atmospheres with the applied arc current of 400 A and pressure of 1 atm. After establishing an arc between the electrodes, the produced powders were collected and their structure and magnetic properties were examined by XRD and VSM, respectively. ZnO as an impurity was appeared in the as-produced powders owing to the high reactivity of zinc atoms, preventing the formation of Ni-Zn ferrite. A pure spinel structure with the highest saturation magnetization (43.8 emu/g) was observed as zinc powders removed completely from the initial mixture. Morphological evaluations using field emission scanning electron microscopy showed that the mean size of fabricated nanoparticles was in the range 100-200 nm and was dependent on the production conditions.

  13. Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lingamdinne, Lakshmi Prasanna; Choi, Yu-Lim [Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Kim, Im-Soon [Graduate School of Environmental Studies, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Yang, Jae-Kyu [Ingenium College of Liberal Arts, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Koduru, Janardhan Reddy, E-mail: reddyjchem@gmail.com [Graduate School of Environmental Studies, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Chang, Yoon-Young, E-mail: yychang@kw.ac.kr [Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (Korea, Republic of)

    2017-03-15

    Highlights: • Novel porous Ferromagnetic, GONF and Superparamagnetic, rGONF preparation. • The nanosize particles GONF (41.14 nm) and rGONF (32.16 nm) preparation. • Adsorption mechanism and modeling developments for radionuclides. • Zeta potential and surface site density of nanocomposites for comparison. - Abstract: For the removal of uranium(VI) (U(VI)) and thorium(IV) (Th(IV)), graphene oxide based inverse spinel nickel ferrite (GONF) nanocomposite and reduced graphene oxide based inverse spinel nickel ferrite (rGONF) nanocomposite were prepared by co-precipitation of GO with nickel and iron salts in one pot. The spectral characterization analyses revealed that GONF and rGONF have a porous surface morphology with an average particle size of 41.41 nm and 32.16 nm, respectively. The magnetic property measurement system (MPMS) studies confirmed the formation of ferromagnetic GONF and superparamagnetic rGONF. The adsorption kinetics studies found that the pseudo-second-order kinetics was well tune to the U(VI) and Th(IV) adsorption. The results of adsorption isotherms showed that the adsorption of U(VI) and Th(IV) were due to the monolayer on homogeneous surface of the GONF and rGONF. The adsorptions of both U(VI) and Th(IV) were increased with increasing system temperature from 293 to 333 ± 2 K. The thermodynamic studies reveal that the U(VI) and Th(IV) adsorption onto GONF and rGONF was endothermic. GONF and rGONF, which could be separated by external magnetic field, were recycled and re-used for up to five cycles without any significant loss of adsorption capacity.

  14. Phase controlled synthesis of (Mg, Ca, Ba)-ferrite magnetic nanoparticles with high uniformity

    International Nuclear Information System (INIS)

    Wang, S.F.; Li, Q.; Zu, X.T.; Xiang, X.; Liu, W.; Li, S.

    2016-01-01

    (Mg, Ca, Ba)-ferrite magnetic nanoparticles were successfully synthesized through modifying the atomic ratio of polysaccharide and chelating agent at an optimal sintering temperature. In the process, the polysaccharide plays an important role in drastically shrinking the precursor during the gel drying process. In the metal-complex structure, M"2"+ ion active sites were coordinated by −OH of the water molecules except for EDTA anions. The MFe_2O_4 magnetic nanoparticles exhibited enhanced magnetic properties when compared with nano-MFe_2O_4 of similar particle size synthesized by other synthesis route reported in the literature. In particular, the sintering temperature improves the crystallinity and increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles significantly. - Graphical abstract: Schematic representation of the proposed model for MFe_2O_4 nanoparticle synthesis, starting from EDTA-chelated M"2"+ (M=Mg, Ca, or Ba) cations (left). High dispersion (Mg, Ca, Ba)-ferrite magnetic nanoparticles were prepared by a modified polyacrylamide gel route. Optimized utilization of polysaccharide, chelating agent, and sintering temperature allowed the formation of (Mg, Ca, Ba)-ferrite nanoparticles with a narrow diameter distribution. - Highlights: • We report a modified polyacrylamide gel route to synthesize (Mg, Ca, Ba)-ferrite magnetic nanoparticles. • Chelate mechanism of metal ions (Mg, Ca, Ba) and EDTA has been discussed. • Phase transformation process of (Mg, Ca, Ba)-ferrites has been discussed. • The preparation method increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles.

  15. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering; Srinivasan, M.P. [Bhabha Atomic Research Centre (BARC) (India). Water and Steam Chemistry Laboratory; Raghavan, P.S. [Madras Christian College, Chennai (India); Narasimhan, S.V. [Bhabha Atomic Research Centre, Bombay (India); Gopalan, R. [Madras Christian College, Chennai (India). Department of Chemistry

    2004-09-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  16. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Narasimhan, S.V.; Gopalan, R.

    2004-01-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  17. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy

    Science.gov (United States)

    Wang, Hui-Long; Liu, Ling-Yun; Dou, Yong; Zhang, Wen-Zhu; Jiang, Wen-Feng

    2013-12-01

    In this paper, the protective electroless Ni-P/SiC gradient coatings on AZ91D magnesium alloy substrate were successfully prepared. The prepared Ni-P/SiC gradient coatings were characterized for its microstructure, morphology, microhardness and adhesion to the substrate. The deposition reaction kinetics was investigated and an empirical rate equation for electroless Ni-P/SiC plating on AZ91D magnesium alloy was developed. The anticorrosion properties of the Ni-P/SiC gradient coatings in 3.5 wt.% NaCl solution were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The potentiodynamic polarization measurements revealed that the SiC concentration in the bath and heat treatment can influence the corrosion protection performance of electroless deposited Ni-P/SiC gradient coatings. EIS studies indicated that higher charge transfer resistance and slightly lower capacitance values were obtained for Ni-P/SiC gradient coatings compared to Ni-P coatings. The corrosion resistance of the Ni-P/SiC gradient coatings increases initially and decreases afterwards with the sustained increasing of immersion time in the aggressive medium. The electroless Ni-P/SiC gradient coatings can afford better corrosion protection for magnesium alloy substrate compared with Ni-P coatings.

  18. Influence of the preparation route on the magnetic and structural properties of cobalt ferrites

    International Nuclear Information System (INIS)

    Revoredo Junior, Frederico Alves; Silva Junior, Jose Holanda da; Hernandez, Eduardo Padron

    2014-01-01

    Cobalt ferrite nanoparticles were produced using two methods of preparation, co-precipitation and reaction in the solid state. In synthesis made by solid state reaction was performed by heat treatment at 1200 ° C for four hours alternating with triturations to increase the efficiency of the process. The synthesis by coprecipitation was made with different flows of addition of alkali (NaOH). All samples were structurally characterized by X-ray diffraction and the average size of the crystals was obtained by Scherrer's formula and the Williamson-Hall method. The magnetic measurements were made as a function of applied magnetic field and temperature. Qualitative analyzes of energy dispersive spectroscopy defined the elements of sampling and analysis. Finally, Mössbauer spectroscopy analysis defined the magnetic character of the samples. (author)

  19. Synthesis of lithium ferrites from polymetallic carboxylates

    Directory of Open Access Journals (Sweden)

    STEFANIA STOLERIU

    2008-10-01

    Full Text Available Lithium ferrite was prepared by the thermal decomposition of three polynuclear complex compounds containing as ligands the anions of malic, tartaric and gluconic acid: (NH42[Fe2.5Li0.5(C4H4O53(OH4(H2O2]×4H2O (I, (NH46[Fe2.5Li0.5(C4H4O63(OH8]×2H2O (II and (NH42[Fe2.5Li0.5(C6H11O73(OH7] (III. The polynuclear complex precursors were characterized by chemical analysis, IR and UV–Vis spectra, magnetic measurements and thermal analysis. The obtained lithium ferrites were characterized by XRD, scanning electron microscopy, IR spectra and magnetic measurements. The single α-Li0.5Fe2.5O4 phase was obtained by thermal decomposition of the tartarate complex annealed at 700 °C for 1 h. The magnetization value ≈ 50 emu g-1 is lower than that obtained for the bulk lithium ferrite due to the nanostructural character of the ferrite. The particle size was smaller than 100 nm.

  20. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  1. The Corrosion of Magnesium and of the Magnesium Aluminum Alloys Containing Manganese

    Science.gov (United States)

    Boyer, J A

    1927-01-01

    The extensive use of magnesium and its alloys in aircraft has been seriously handicapped by the uncertainties surrounding their resistance to corrosion. This problem has been given intense study by the American Magnesium Corporation and at the request of the Subcommittee on Materials for Aircraft of the National Advisory Committee for Aeronautics this report was prepared on the corrosion of magnesium. The tentative conclusions drawn from the experimental facts of this investigation are as follows: the overvoltage of pure magnesium is quite high. On immersion in salt water the metal corrodes with the liberation of hydrogen until the film of corrosion product lowers the potential to a critical value. When the potential reaches this value it no longer exceeds the theoretical hydrogen potential plus the overvoltage of the metal. Rapid corrosion consequently ceases. When aluminum is added, especially when in large amounts, the overvoltage is decreased and hydrogen plates out at a much lower potential than with pure magnesium. The addition of small amount of manganese raises the overvoltage back to practically that of pure metal, and the film is again negative.

  2. Modified ferrite core-shell nanoparticles magneto-structural characterization

    Science.gov (United States)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  3. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    Science.gov (United States)

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Structural and magnetic properties of Ni{sub 0.15}Mg{sub 0.1}Cu{sub 0.3}Zn{sub 0.45}Fe{sub 2}O{sub 4} ferrite prepared by NaOH-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wei-xiao; Wang, Zhi, E-mail: zhiwang@tju.edu.cn

    2015-09-15

    Highlights: • NiMgCuZn ferrites were successfully prepared by low-temperature sintering. • NiMgCuZn ferrites have the advantages of both NiCuZn and MgCuZn ferrites. • NiMgCuZn ferrites exhibit high Curie temperature & high stability of permeability. - Abstract: The Ni{sub 0.15}Mg{sub 0.1}Cu{sub 0.3}Zn{sub 0.45}Fe{sub 2}O{sub 4} ferrite powders have been prepared by NaOH co-precipitation method and characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The XRD patterns confirm the single phase spinel structure of synthesized nanoparticles. The average crystallite size of the particles increases from 12 to 36 nm with calcining temperature (T{sub a}) from 500 to 800 °C. The saturation magnetization (M{sub s}) of the superparamagnetic particles was deduced by Langevin theory. Subsequently, the densification characteristics and magnetic properties of the low-temperature 950 °C-sintered ferrite bulk samples were also investigated. The magnetic measurement showed that the sintered bulk sample of T{sub a} = 600 °C has the highest initial permeability (μ{sub i}), lowest coercivity (H{sub c}), largest saturation magnetization (M{sub s}) and satisfactory thermal stability of μ{sub i}. The microstructures of sintered samples were examined using field emission scanning electric microscope (FESEM). The T{sub a} has significant influence on the bulk density, initial permeability, saturation magnetization and coercivity of Ni{sub 0.15}Mg{sub 0.1}Cu{sub 0.3}Zn{sub 0.45}Fe{sub 2}O{sub 4} ferrite.

  5. Phase controlled synthesis of (Mg, Ca, Ba)-ferrite magnetic nanoparticles with high uniformity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.F., E-mail: wangshifa2006@yeah.net [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Science and technology on vacuum technology and physics laboratory, Lanzhou Institute of Physics, Lanzhou 730000, Gansu (China); Li, Q. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Zu, X.T., E-mail: xtzu@uestc.edu.cn [Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Xiang, X.; Liu, W. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Li, S., E-mail: sean.li@unsw.edu.au [School of Material Science and Engineering, University of New South Wales, Sydney 2052 (Australia)

    2016-12-01

    (Mg, Ca, Ba)-ferrite magnetic nanoparticles were successfully synthesized through modifying the atomic ratio of polysaccharide and chelating agent at an optimal sintering temperature. In the process, the polysaccharide plays an important role in drastically shrinking the precursor during the gel drying process. In the metal-complex structure, M{sup 2+} ion active sites were coordinated by −OH of the water molecules except for EDTA anions. The MFe{sub 2}O{sub 4} magnetic nanoparticles exhibited enhanced magnetic properties when compared with nano-MFe{sub 2}O{sub 4} of similar particle size synthesized by other synthesis route reported in the literature. In particular, the sintering temperature improves the crystallinity and increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles significantly. - Graphical abstract: Schematic representation of the proposed model for MFe{sub 2}O{sub 4} nanoparticle synthesis, starting from EDTA-chelated M{sup 2+} (M=Mg, Ca, or Ba) cations (left). High dispersion (Mg, Ca, Ba)-ferrite magnetic nanoparticles were prepared by a modified polyacrylamide gel route. Optimized utilization of polysaccharide, chelating agent, and sintering temperature allowed the formation of (Mg, Ca, Ba)-ferrite nanoparticles with a narrow diameter distribution. - Highlights: • We report a modified polyacrylamide gel route to synthesize (Mg, Ca, Ba)-ferrite magnetic nanoparticles. • Chelate mechanism of metal ions (Mg, Ca, Ba) and EDTA has been discussed. • Phase transformation process of (Mg, Ca, Ba)-ferrites has been discussed. • The preparation method increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles.

  6. Solubility of nickel-cadmium ferrite in acids

    International Nuclear Information System (INIS)

    Vol'ski, V.; Vol'ska, Eh.; Politan'ska, U.

    1977-01-01

    The solubility of a solid solution of nickel-cadmium ferrite containing an excess of ferric oxide, (CdO)sub(0.5), (NiO)sub(0.5) and (Fe 2 O 3 )sub(1.5), in hydrochloric and nitric acids at 20, 40 and 60 deg C, was determined colorimetrically and chelatometrically, as well as by studying the x-ray diffraction patterns of the preparations prior to dissolution and their residues after dissolution. It is shown that cadmium passes into the solution faster than iron and nickel; after 800 hours, the solution contains 40% of iron ions and more than 80% of cadmium ions. The kinetics of ferrite dissolution is studied

  7. Results of a Community-based, Randomized Study Comparing a Clear Liquid Diet With a Low-residue Diet Using a Magnesium Citrate Preparation for Screening and Surveillance Colonoscopies.

    Science.gov (United States)

    Thukral, Chandrashekhar; Tewani, Sumeet K; Lake, Adam J; Shiels, Aaron J; Geissler, Kathy; Popejoy, Sara; Stafford, Megan; Vicari, Joseph J

    2017-11-03

    Current bowel preparations for colonoscopy include a clear liquid diet (CLD) along with consumption of a laxative. This dietary restriction along with large volume bowel preparations are barriers to compliance and willingness among patients in scheduling screening examinations. The aim of our study was to compare the efficacy and tolerability of a low-volume split dose magnesium citrate bowel preparation in patients on a low-residue diet (LRD) with those on a CLD. In this single center, single blinded, randomized controlled trial, patients scheduled for outpatient colonoscopies were assigned to either a CLD or a LRD 1 day before the examination. Both groups received a split dose magnesium citrate preparation. The quality of the preparation was rated using the Boston Bowel Preparation Scale (BBPS). Patient satisfaction and side effects were evaluated using a questionnaire. We were unable to detect a significant difference in the BBPS scores between the LRD and CLD groups (P=0.581). A significantly higher percentage of patients in the LRD group rated the diet as easy compared with the CLD group (PCLD group (PCLD in patients using a magnesium citrate bowel preparation for screening and surveillance colonoscopies. Patient satisfaction scores were higher with a LRD compared with a CLD. We believe the LRD should be the recommended diet in patients using a standard bowel preparation for screening and surveillance colonoscopy.

  8. Layer-by-Layer Self-Assembled Ferrite Multilayer Nanofilms for Microwave Absorption

    Directory of Open Access Journals (Sweden)

    Jiwoong Heo

    2015-01-01

    Full Text Available We demonstrate a simple method for fabricating multilayer thin films containing ferrite (Co0.5Zn0.5Fe2O4 nanoparticles, using layer-by-layer (LbL self-assembly. These films have microwave absorbing properties for possible radar absorbing and stealth applications. To demonstrate incorporation of inorganic ferrite nanoparticles into an electrostatic-interaction-based LbL self-assembly, we fabricated two types of films: (1 a blended three-component LbL film consisting of a sequential poly(acrylic acid/oleic acid-ferrite blend layer and a poly(allylamine hydrochloride layer and (2 a tetralayer LbL film consisting of sequential poly(diallyldimethylammonium chloride, poly(sodium-4-sulfonate, bPEI-ferrite, and poly(sodium-4-sulfonate layers. We compared surface morphologies, thicknesses, and packing density of the two types of ferrite multilayer film. Ferrite nanoparticles (Co0.5Zn0.5Fe2O4 were prepared via a coprecipitation method from an aqueous precursor solution. The structure and composition of the ferrite nanoparticles were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. X-ray diffraction patterns of ferrite nanoparticles indicated a cubic spinel structure, and energy dispersive X-ray spectroscopy revealed their composition. Thickness growth and surface morphology were measured using a profilometer, atomic force microscope, and scanning electron microscope.

  9. Magnesium-Molybate Compounds as Matrix for 99Mo/99mTc Generators

    Directory of Open Access Journals (Sweden)

    Fabiola Monroy-Guzman

    2011-01-01

    Full Text Available This work reports the preparation of a 99mTc generator based on conversion of 99Mo produced by neutron irradiation, into insoluble magnesium 99Mo-molybdates compounds as matrix. The effect of magnesium salt types and concentration, Mg:Mo molar ratios, pH of molybdate solutions, eluate volume as well as the addition order of molybdate and magnesium solutions’ influences on the final 99mTc were evaluated. Polymetalates and polymolybdates salts either crystallized or amorphous were obtained depending on the magnesium salt and Mg:Mo molar ratio used in matrix preparation. 99Mo/99mTc generator production based on magnesium-99Mo molybdate compounds allow reduction of preparation time and eliminates the use of specialized installations. The best generator performances were attained using matrices prepared from 0.1 mol/L MgCl2·6H2O solutions, ammonium molybdate solutions at pH 7 and at a Mg:Mo molar ratio of 1:1.

  10. Effectiveness of Sodium Picosulfate/Magnesium Citrate (PICO) for Colonoscopy Preparation

    Science.gov (United States)

    Suh, Wu Seok; Jeong, Jin Sik; Kim, Dong Sik; Kim, Sang Woo; Kwak, Dong Min; Hwang, Jong Seong; Kim, Hyun Jin; Park, Man Woo; Shim, Min Chul; Koo, Ja-Il; Kim, Jae Hwang; Shon, Dae Ho

    2014-01-01

    Purpose Bowel preparation with sodium phosphate was recently prohibited by the U.S. Food and Drug Administration. Polyethylene glycol (PEG) is safe and effective; however, it is difficult to drink. To identify an easy bowel preparation method for colonoscopy, we evaluated three different bowel preparation regimens regarding their efficacy and patient satisfaction. Methods In this randomized, comparative study, 892 patients who visited a secondary referral hospital for a colonoscopy between November 2012 and February 2013 were enrolled. Three regimens were evaluated: three packets of sodium picosulfate/magnesium citrate (PICO, group A), two packets of PICO with 1 L of PEG (PICO + PEG 1 L, group B), and two packets of PICO with 2 L of PEG (PICO + PEG 2 L, group C). A questionnaire survey regarding the patients' preference for the bowel preparation regimen and satisfaction was conducted before the colonoscopies. The quality of bowel cleansing was scored by the colonoscopists who used the Aronchick scoring scale and the Ottawa scale. Results The patients' satisfaction rate regarding the regimens were 72% in group A, 64% in group B, and 45.9% in group C. Nausea and abdominal bloating caused by the regimens were more frequent in group C than in group A or group B (P < 0.01). Group C showed the lowest preference rate compared to the other groups (P < 0.01). Group C showed better right colon cleansing efficacy than group A or group B. Conclusion Group A exhibited a better result than group B or group C in patient satisfaction and preference. In the cleansing quality, no difference was noted between groups A and C. PMID:25360429

  11. A novel rhombohedron-like nickel ferrite nanostructure: Microwave combustion synthesis, structural characterization and magnetic properties

    Directory of Open Access Journals (Sweden)

    G. Suresh Kumar

    2016-09-01

    Full Text Available Research on nickel ferrite nanostructures has drawn a great interest because of its inherent chemical, physical and electronic properties. In this study, we have synthesized rhombohedron – like nickel ferrite nanostructure by a rapid microwave assisted combustion method using ethylenediamminetetraacetic acid as a chelating agent. X-ray diffraction, Fourier transform infrared spectrometer, transmission electron microscope and energy dispersive X-ray microanalyser were used to characterize the prepared sample. The magnetic behaviour was analysed by means of field dependent magnetization measurement which indicates that the prepared sample exhibits a soft ferromagnetic nature with saturation magnetization of 63.034 emu/g. This technique can be a potential method to synthesize novel nickel ferrite nanostructure with improved magnetic properties.

  12. Structure and magnetic properties of granular NiZn-ferrite - SiO2

    Directory of Open Access Journals (Sweden)

    Albuquerque Adriana Silva de

    1999-01-01

    Full Text Available Granular systems composed by nanostructured magnetic materials embedded in a non-magnetic matrix present unique physical properties that depend crucially on their nanostructure. In this work, we have studied the structural and magnetic properties of NiZn-ferrite nanoparticles embedded in SiO2, a granular system synthesized by sol-gel processing. Samples with ferrite volumetric fraction x ranging from 6% to 78% were prepared, and characterized by X-ray diffraction, Mössbauer spectroscopy and vibrating sample magnetometry. Our results show the formation of pure stoichiometric NiZn-ferrite in the SiO2 matrix for x < 34%. Above these fraction, our samples presented also small amounts of Fe2O3. Mössbauer spectroscopy revealed the superparamagnetic behaviour of the ferrimagnetic NiZn-ferrite nanoparticles. The combination of different ferrite concentration and heat treatments allowed the obtaintion of samples with saturation magnetization between 1.3 and 68 emu/g and coercivity ranging from 0 to 123 Oe, value which is two orders of magnitude higher than the coercivity of bulk NiZn-ferrite.

  13. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  14. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  15. Calcium ferrite formation from the thermolysis of calcium tris (maleato)

    Indian Academy of Sciences (India)

    For preparing calcium ferrite, calcium tris (maleato) ferrate(III) precursor was prepared by mixing aqueous solutions of iron(III) maleate, calcium maleate and maleic acid. Various physico-chemical techniques i.e. TG, DTG, DTA, Mössbauer, XRD, IR etc have been used to study the decomposition behaviour from ambient to ...

  16. In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites

    International Nuclear Information System (INIS)

    Fu, Min; Jiao, Qingze; Zhao, Yun

    2013-01-01

    Cobalt ferrite nanorods/graphene composites were prepared by a one-step hydrothermal process using NaHSO 3 as the reducing agent and 1-propyl-3-hexadecylimidazolium bromide as the structure growth-directing template. The reduction of graphene oxide and the in situ formation of cobalt ferrite nanorods were accomplished in a one-step reaction. The structure and morphology of as-obtained composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, atomic force microscope, X-ray diffractometer, Fourier transform infrared spectra, X-ray photoelectron spectroscopy and Raman spectroscopy. Uniform rod-like cobalt ferrites with diameters of about 100 nm and length of about 800 nm were homogeneously distributed on the graphene sheets. The hybrid materials showed a saturation magnetization of 42.5 emu/g and coercivity of 495.1 Oe at room temperature. The electromagnetic parameters were measured using a vector network analyzer. A minimum reflection loss (RL) of − 25.8 dB was observed at 16.1 GHz for the cobalt ferrite nanorods/graphene composites with a thickness of 2 mm, and the effective absorption frequency (RL < − 10 dB) ranged from 13.5 to 18.0 GHz. The composites exhibited better absorbing properties than the cobalt ferrite nanorods and the mixture of cobalt ferrite nanorods and graphene. - Highlights: • Reduction of GO and formation of ferrites were accomplished in a one-step reaction. • Ionic liquid was used to control 1D growth of ferrite nanorods for the first time. • Cobalt ferrite nanorods/graphene composites showed dielectric and magnetic loss. • Cobalt ferrite nanorods/graphene composites exhibited better absorbing properties

  17. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Science.gov (United States)

    Ranjith Kumar, E.; Siva Prasada Reddy, P.; Sarala Devi, G.; Sathiyaraj, S.

    2016-01-01

    Spinel ferrite (MnZnFe2O4, MnCuFe2O4, MnNiFe2O4 and MnCoFe2O4) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe2O4 ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG).

  18. Lithium ferrite: The study on magnetic and complex permittivity characteristics

    Directory of Open Access Journals (Sweden)

    Madhavaprasad Dasari

    2017-03-01

    Full Text Available Lithium ferrite (Li0.5Fe2.5O4 powder was prepared by solid state reaction method, which was finally pressed and sintered at 1150 °C. The spinel structure of the lithium ferrite was confirmed by X-ray diffraction and grain size estimation was obtained from scanning electron microscope (SEM. Fourier transform infrared spectroscopy (FTIR confirmed the presence of primary and secondary absorption bands characteristic for spinel structure. The force constants were estimated using absorption bands for the lithium ferrite. Magnetization and dielectric studies were carried out for the sintered sample. Saturation magnetization (Ms of 59.6 emu/g was achieved and variation of magnetization with temperature was used to identify the Curie temperature. The complex permittivity (ε∗ for the lithium ferrite sample was obtained for wide frequency range up to 3 GHz and discussed based on available models. The Curie temperature was estimated around 480 °C and verified from both magnetization versus temperature and dielectric constant versus temperature measurements.

  19. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  20. Ferrites and ceramic composites

    CERN Document Server

    Jotania, Rajshree B

    2013-01-01

    The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component. Ferrites are very attractive materials because they simultaneously show high resistivity and high saturation magnetization, and attract now considerable attention, because of the interesting physics involved. Typical ferrite material possesses excellent chemical stability, high corrosion resistivity, magneto-crystalline anisotropy, magneto-striction, and magneto-optical properties. Ferrites belong to the group of ferrimagnetic oxides, and include rare-earth garnets and ortho-ferrites. Several

  1. Removal of phosphate from water by amine-functionalized copper ferrite chelated with La(III).

    Science.gov (United States)

    Gu, Wei; Li, Xiaodi; Xing, Mingchao; Fang, Wenkan; Wu, Deyi

    2018-04-01

    Eutrophication has become a worldwide environmental problem and removing phosphorus from water/wastewater before discharge is essential. The purpose of our present study was to develop an efficient material in terms of both phosphate adsorption capacity and magnetic separability. To this end, we first compared the performances of four spinel ferrites, including magnesium, zinc, nickel and copper ferrites. Then we developed a copper ferrite-based novel magnetic adsorbent, by synthesizing 1,6-hexamethylenediamine-functionalized copper ferrite(CuFe 2 O 4 ) via a single solvothermal synthesis process followed by LaCl 3 treatment. The materials were characterized with X-ray diffraction, transmission electron microscope, vibrating sample magnetometer, Fourier transform infrared spectra and N 2 adsorption-desorption. The maximum adsorption capacity of our material, calculated from the Langmuir adsorption isotherm model, attained 32.59mg/g with a saturation magnetization of 31.32emu/g. Data of adsorption kinetics were fitted well to the psuedo-second-order model. Effects of solution pH and coexisting anions (Cl - , NO 3 - , SO 4 2- ) on phosphate adsorption were also investigated, showing that our material had good selectivity for phosphate. But OH - competed efficiently with phosphate for adsorption sites. Furthermore, increasing both NaOH concentration and temperature resulted in an enhancement of desorption efficiency. Thus NaOH solution could be used to desorb phosphate adsorbed on the material for reuse, by adopting a high NaOH concentration and/or a high temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Structural characterization of ferrite nanoparticles and composite materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Albuquerque, A.S.; Macedo, W.A.A.; Plivelic, T.; Torriani, I.L.; Jimenez, J.A.L.; Saitovich, E.B.

    2001-01-01

    During the last decade nanocrystalline magnetic materials have been widely studied due to the multiple technological applications. Amongst the magnetic materials of major technological interest are the soft magnetic ferrites and the granular solids formed by ferrites dispersed in non-magnetic matrices. It is a well known fact that the magnetic properties of these materials, such as coercivity, magnetic saturation and magnetization, depend on the shape, size and size distribution of the nanoparticles. For this reason, the general purpose of this work was to obtain structural information on ferrite nanoparticles (NiFe 2 O 4 and NiZnFe 2 O 4 ) and granular solids obtained by dispersion of these particles in non magnetic matrices, like SiO 2 and SnO 2 . The ferrite samples were prepared by co-precipitation and heat treated between 300 and 600 deg. C at the Applied Physics Laboratory of tile CDTN. The granular solids, with 30% in volume concentration of ferrite, were obtained by mechanical alloying with milling times (t m ) varying between 1.25 and 10 h, at the CBPF

  3. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Avazpour, L.; Toroghinejad, M.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 13876-71557 (Iran, Islamic Republic of)

    2016-11-30

    Highlights: • The nanostructured rare earth doped Co-ferrite thin film was synthesized by the sol–gel method. • The coercivity of as high as 1.8 kOe is achieved for 20% substituted cobalt ferrite. • The average particle diameter of particulate film is decreasing by increasing substitute content. • Kerr spectra of films shifted to higher energies. • Kerr rotation angle increased to 1.65° for 0.1 Eu doped thin film. - Abstract: A series of rare-earth (RE)-doped nanocrystalline Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol–gel process, and the influences of different RE{sup 3+} ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300–850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2–3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced

  4. Self-standing elastomeric composites based on lithium ferrites and their dielectric behavior

    Energy Technology Data Exchange (ETDEWEB)

    Soreto Teixeira, S.; Graça, M. P. F.; Costa, L. C. [I3N and Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal); Dionisio, M. [REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Ilcíkova, M.; Mosnacek, J.; Spitalsky, Z. [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava (Slovakia); Krupa, I. [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava (Slovakia); Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha (Qatar)

    2014-12-14

    Lithium ferrite (LiFe{sub 5}O{sub 8}) is an attractive material for technological applications due to its physical properties, which are significantly dependent on the preparation method and raw materials. In this work, LiFe{sub 5}O{sub 8} crystallites were obtained by controlled heat-treatment process at 1100 °C, of a homogeneous mixture of Li{sub 2}O-Fe{sub 2}O{sub 3} powders, prepared by wet ball-milling and using lithium and iron nitrates as raw materials. The main goal was the preparation of a flexible and self-standing tick composite film by embedding lithium ferrite particles in a polymeric matrix, taking advantage of the good mechanical properties of the polymer and of the electrical and dielectric properties of the ferrite. The selected polymer matrix was styrene-b-isoprene-b-styrene copolymer. To prepare the composites, the lithium ferrite particles were chemically modified in order to functionalize their surface. To analyse the influence of the particles surface modification, different composites were made, with modified and unmodified particles. The structure of the obtained composites was studied by FTIR, XRD, TGA, and DSC techniques. The dielectric properties were analysed, in the frequency range between 10 Hz and 1 MHz and in function of temperature in the range between −73 °C and 127 °C. These properties were related with the structure and concentration of the particles in the matrix network. The composites with the modified particles present higher dielectric constant, maintaining values of loss tangent sufficiently low (<10{sup −2}) that can be considered interesting for technological applications.

  5. Preparation and characterization of inorganic and organic coatings on AZ91D magnesium alloy with electroless plating pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Y.; Li, Q.; Zhang, H.X.; Wang, S.Y.; Liu, F. [School of Chemistry and Chemical Engineering, Southwest University Chongqing, 400715 (China); Yang, X.K. [School of Materials Science and Engineering, Southwest University Chongqing, 400715 (China)

    2011-09-15

    In this paper, a protective coating scheme was applied for the corrosion protection of AZ91D magnesium alloy. Electroless Ni coating (EN coating) as bottom layer, electrodeposited Ni coating (ENN coating), and silane-based coating (ENS coating) as top layer, respectively, were successfully prepared on AZ91D magnesium alloy by combination techniques. Scanning electron microscopy and X-ray diffraction were employed to investigate the surface and phase structure of coatings, respectively. The electrochemical corrosion behaviors of coatings in neutral 3.5 wt% NaCl solution were evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The corrosion testing showed that the three kinds of coatings all could provide corrosion protection for AZ91D magnesium alloy to a certain extent, and the corrosion resistance of ENN and ENS was superior to EN. In order to further study the corrosion protection properties of ENN and ENS, a comparative investigation on the evolution of EIS of ENN and ENS was carried out by dint of immersion test in neutral 3.5 wt% NaCl solution. The results indicated that, compared with ENN, the ENS could provide longer corrosion protection for AZ91D magnesium alloy. It is significant to determine the barrier effect of each coating, which could provide reference for industry applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Investigation of magnesium oxychloride cement at the initial hardening stage

    Directory of Open Access Journals (Sweden)

    Averina Galina

    2018-01-01

    Full Text Available The paper investigates the process of variation of magnesium oxychloride cement deformations at the initial hardening stage depending on the activity of magnesium oxide powder which is determined by the parameters of the source material burning. Investigation is focused on magnesium cements obtained from pure magnesium hydroxide. Source materials were burnt at various temperatures with the purpose to obtain magnesium oxide powder with different activity. Regular content of hydrated phases was determined in hardened magnesium cement prepared on the basis of binders with different activity. The study reveals the influence of magnesium oxide powder activity on the process of deformation occurrence in hardened magnesium cement and its tendency to crack formation.

  7. Synthesis, electrical and magnetic properties of sodium borosilicate glasses containing Co-ferrites nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Othman, H.A. [Department of Physics, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Menoufia (Egypt); Eltabey, M.M. [Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shibin El-Kom, Menoufia (Egypt); Department of Physics, Faculty of Science, Jazan University (Saudi Arabia); Ibrahim, Samia E.; El-Deen, L.M. Sharaf; Elkholy, M.M. [Department of Physics, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Menoufia (Egypt)

    2017-02-01

    Co-ferrites nanoparticles that have been prepared by the co-precipitation method were added to sodium borosilicate (Na{sub 2}O–B{sub 2}O{sub 3}–SiO{sub 2}) glass matrix by the solid solution method and they were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and magnetization measurements. (XRD) revealed the formation of the Co-ferrite magnetic crystalline phase embedded in an amorphous matrix in all the samples. The investigated samples by (TEM) showed the formation of the cobalt ferrite nanoparticles with a spherical shape and highly monodispersed with an average size about 13 nm. IR data revealed that the BO{sub 3} and BO{sub 4} are the main structural units of these samples network. IR spectra of the investigated samples showed the characteristic vibration bands of Co-ferrite. Composition and frequency dependent dielectric properties of the prepared samples were measured at room temperature in the frequency range 100–100 kHz. The conductivity was found to increase with increasing cobalt ferrite content. The variations of conductivity and dielectric properties with frequency and composition were discussed. Magnetic hysteresis loops were traced at room temperature using VSM and values of saturation magnetization M{sub S} and coercive field H{sub C} were determined. The obtained results revealed that a ferrimagnetic behavior were observed and as Co-ferrite concentration increases the values of M{sub S} and H{sub C} increase from 2.84 to 8.79 (emu/g) and from 88.4 to 736.3 Oe, respectively.

  8. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    Science.gov (United States)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. Ca-Al precursor (C3A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO4 LDH product. Ca-Al-CrO4 LDH phase occurred preferentially to Ca-Al-MCl2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist.

  9. Determination of ferrite formation coefficient of tin in an austenitic stainless steel by the diffusion couple method

    International Nuclear Information System (INIS)

    Marchive, Daniel; Treheux, Daniel; Guiraldenq, Pierre

    1976-01-01

    The ferritic action of tin for a 18-10 stainless steel has been measured by two different methods: the first is based on the diffusion couple method and the graphical representation of compositions in a diagram α/α + γ/γ corresponding to ferrite and austenitic elements of the steel. In the second method, ferrite formation is analyzed in small ingots prepared with different chromium and tin concentrations. Ferrite coefficient of tin, compared to chromium is 0.25 with diffusion couples and this value is in good agreement with the classical method [fr

  10. Formation of oxides particles in ferritic steel by using gas-atomized powder

    International Nuclear Information System (INIS)

    Liu Yong; Fang Jinghua; Liu Donghua; Lu Zhi; Liu Feng; Chen Shiqi; Liu, C.T.

    2010-01-01

    Oxides dispersion strengthened (ODS) ferritic steel was prepared by using gas-atomized pre-alloyed powder, without the conventional mechanical alloying process. By adjusting the volume content of O 2 in the gas atmosphere Ar, the O level in the ferritic powder can be well controlled. The O dissolves uniformly in the ferritic powder, and a very thin layer of oxides forms on the powder surface. After hot deformation, the primary particle boundaries, which retain after sintering, can be disintegrated and near fully dense materials can be obtained. The oxide layer on the powder surface has a significant effect on the microstructural evolution. It may prevent the diffusion in between the primary particles during sintering, and may dissolve and/or induce the nucleation of new oxides in the ferritic matrix during recrystallization. Two kinds of oxide particles are found in the ferritic steel: large (∼100 nm) Ti-rich and fine (10-20 nm) Y-Ti-rich oxides. The hardness of the ferritic steel increases with increasing annealing temperatures, however, decreases at 1400 deg. C, due to the coarsening of precipitates and the recrystallization microstructure.

  11. Synthesis and Characterization of Cobalt Ferrite Nanoparticles ...

    African Journals Online (AJOL)

    prepared material. It was observed that surface modification such as with silica coating on the cobalt ferrite will have significant effect on the structural and magnetic properties. It is also observed that, silica coated nanoparticles could be used in biomedical applications (Hong et al., 2013). In this work we have chosen sol-gel ...

  12. Study on Magnetic Responsibility of Rare Earth Ferrite/Polyacrylamide Magnetic Microsphere

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Wang Zhifeng; Zhang Hong; Dai Shaojun; Qiu Guanming; Okamoto Hiroshi

    2005-01-01

    In inverse microemulsion, rare earth ferrite/polyacrylamide magnetic microsphere were prepared and their magnetic responsibility were studied by magnetic balance. Results indicate that the magnetic responsibility of microsphere relates to magnetic moment of rare earth ion, and it can be improved by the addition of dysprosium ion of high magnetic moment. Dysprosium content has an effect on magnetic responsibility of dysprosium ferrite/polyacrylamide magnetic microsphere. The microsphere displays strong magnetic responsibility when the molar ratio of Dy3+/iron is 0.20.

  13. Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel−hydrothermal route using spent Li-ion battery

    International Nuclear Information System (INIS)

    Yao, Lu; Xi, Yuebin; Xi, Guoxi; Feng, Yong

    2016-01-01

    The combination of a sol–gel method and a hydrothermal method was successfully used for synthesizing the nano-crystalline cobalt ferrite powders with a spinel structure using spent Li-ion batteries as the raw materials. The phase composition, microstructure, magnetic properties and magnetostriction coefficient of cobalt ferrite were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), magnetometer and magnetostrictive measurement instrument. The microstructure of the products exhibited hedgehog-like microspheres with particle size of approximately 5 μm. The different crystalline sizes and the microstructure of cobalt ferrites precursor were controlled by varying the hydrothermal time, which significantly affected the super-exchange and the deflection direction of the magnetic domain, and led to the change of the magnetic properties of sintered cylindrical samples. The saturation magnetization and maximum magnetostriction coefficient were 81.7 emu/g and −158.5 ppm, respectively, which was larger than that of products prepared by the sol-gel sintered method alone. - Graphical abstract: The magnetostriction of cobalt ferrites with a spinel structure was successfully prepared using the sol–gel–hydrothermal route using spent Li-ion batteries. On the basis of the aforementioned SEM observation, the formation of a hedgehog-like microsphere structure might involve two important steps: Ostwald ripening and self-assembly. - Highlights: • The cobalt ferrites were prepared by the sol–gel–hydrothermal route. • The cobalt ferrites show hedgehog-like microsphere particles in shape. • The microspheres size increased with increasing hydrothermal time. • The magnetostriction properties of the cobalt ferrite were enhanced.

  14. XXIst Century Ferrites

    International Nuclear Information System (INIS)

    Mazaleyrat, F; Zehani, K; Pasko, A; Loyau, V; LoBue, M

    2012-01-01

    Ferrites have always been a subject of great interest from point of view of magnetic application, since the fist compass to present date. In contrast, the scientific interest for iron based magnetic oxides decreased after Oersted discovery as they where replaced by coil as magnetizing sources. Neel discovery of ferrimagnetism boosted again interest and leads to strong developments during two decades before being of less interest. Recently, the evolution of power electronics toward higher frequency, the down sizing of ceramics microstructure to nanometer scale, the increasing price of rare-earth elements and the development of magnetocaloric materials put light again on ferrites. A review on three ferrite families is given herein: harder nanostructured Ba 2+ Fe 12 O 19 magnet processed by spark plasma sintering, magnetocaloric effect associated to the spin transition reorientation of W-ferrite and low temperature spark plasma sintered Ni-Zn-Cu ferrites for high frequency power applications.

  15. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, A., E-mail: debnathanimesh@gmail.com [Department of Civil Engineering, National Institute of Technology Agartala, Jirania, West Tripura, 799046 India (India); Bera, A.; Saha, B. [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Chattopadhyay, K. K. [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-05-23

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl{sub 3}) and Calcium chloride dihydrate (CaCl{sub 2}.2H{sub 2}O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  16. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    International Nuclear Information System (INIS)

    Debnath, A.; Bera, A.; Saha, B.; Chattopadhyay, K. K.

    2016-01-01

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl_3) and Calcium chloride dihydrate (CaCl_2.2H_2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  17. Ferrite-guided cyclotron-resonance maser

    International Nuclear Information System (INIS)

    Jerby, Eli; Kesar, A.; Aharony, A.; Breitmeier, G.

    2002-01-01

    The concept of a cyclotron-resonance maser (CRM) with a ferrite loading incorporated in its waveguide is proposed. The CRM interaction occurs between the rotating electron beam and the em wave propagating along a longitudinally magnetized ferrite medium. The ferrite anisotropic permeability resembles the CRM susceptibility in many aspects, and particularly in their similar response to the axial magnetic field (the ferrite susceptibility can be regarded as a passive analog of the active CRM interaction). The ferrite loading slows down the phase velocity of the em wave and thus the axial (Weibel) mechanism of the CRM interaction dominates. The ferrite loading enables also a mechanism of spectral tunability for CRM's. The ferrite loading is proposed, therefore, as a useful ingredient for high-power CRM devices. A linear model of the combined ferrite-guided CRM interaction reveals its useful features. Future schemes may also incorporate ferrite sections functioning as isolators, gyrators, or phase shifters within the CRM device itself for selective suppression of backward waves and spurious oscillations, and for gain and efficiency enhancement

  18. Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation

    International Nuclear Information System (INIS)

    Kwak, Jun Young; Lee, Choong Sub; Kim, Don; Kim, Yeong Il

    2012-01-01

    Ba-ferrite (BaFe 12 O 19 ) nanoparticles were synthesized by chemical coprecipitation method in an aqueous solution. The particle size and the crystallization temperature of the Ba-ferrite nanoparticles were controlled varying the precipitation temperature. The precipitate that was prepared at 0 .deg. C showed the crystal structure of Ba-ferrite in X-ray diffraction when it was calcined at the temperature above 580 .deg. C, whereas what was prepared at 50 .deg. C showed the crystallinity when it was calcined at the temperature higher than about 700 .deg. C. The particle sizes of the synthesized Ba-ferrite were in a range of about 20-30 nm when it was prepared by being precipitated at 0 .deg. C and calcined at 650 .deg. C. When the precipitation temperature increased, the particle size also increased even at the same calcination temperature. The magnetic properties of the Ba-ferrite nanoparticles were also controlled by the synthetic condition of precipitation and calcination temperature. The coercive force could be appreciably lowered without a loss of saturation magnetization when the Ba-ferrite nanoparticles were prepared by precipitation and calcination both at low temperatures

  19. TiO2 on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    International Nuclear Information System (INIS)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-01-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO 2 ) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO 2 powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO 2 aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO 2 powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO 2 sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC 3 H 7 ) 4 ) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO 2 powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO 2 active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified

  20. Lithium/magnesium oxide catalyst and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, J.H.; Hinson, P.G.

    1991-07-16

    This patent describes a method for preparing a catalyst which is effective for converting methane to ethane and ethylene. It comprises mixing a solution of a magnesium alkoxide in an alcohol with a solution containing a source of lithium in an alcohol, to obtain a ratio of magnesium metal to lithium metal; hydrolyzing the magnesium alkoxide in the solution to form a gel; and calcining the gel to form a catalyst which is effective for converting methane to ethane and ethylene.

  1. Corrosion resistance of multilayered magnesium phosphate/magnesium hydroxide film formed on magnesium alloy using steam-curing assisted chemical conversion method

    International Nuclear Information System (INIS)

    Ishizaki, Takahiro; Kudo, Ruriko; Omi, Takeshi; Teshima, Katsuya; Sonoda, Tsutomu; Shigematsu, Ichinori; Sakamoto, Michiru

    2012-01-01

    Anticorrosive multilayered films were successfully prepared on magnesium alloy AZ31 by chemical conversion treatment, followed by steam curing treatment. The crystal structures, chemical composition, surface morphologies, chemical bonding states of the film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscope (FE-SEM) measurements. All the films had thicknesses of ranging from 24 to 32 μm. The film had two layers that were composed of crystalline NH 4 MgPO 4 ·H 2 O, Mg 2 PO 4 OH·3H 2 O, Mg(OH) 2 and amorphous MgO. The outer layers include magnesium, oxygen, and phosphorous, and the inner layers include magnesium and oxygen. The corrosion resistant performances of the multilayered films in 5 wt% NaCl aqueous solution were investigated by electrochemical and gravimetric measurements. The potentiodynamic polarization curves revealed that the corrosion current density (j corr ) of all the film coated magnesium alloys decreased by more than four orders of magnitude as compared to that of the bare magnesium alloy, indicating that all the films had an inhibiting effect of corrosion reaction. Gravimetric measurements showed that the average corrosion rates obtained from the weight loss rates were estimated to be in the ranges of ca. 0.085–0.129 mm/y. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test revealed that the adhesion of our anticorrosive multilayered film to the magnesium alloy surface was very good.

  2. Study of LiTiMg-ferrite radome for the application of satellite communication

    International Nuclear Information System (INIS)

    Saxena, Naveen Kumar; Kumar, Nitendar; Pourush, P.K.S.

    2010-01-01

    In this paper the characteristics of LiTiMg-ferrite radome are presented. A thin layer of LiTiMg-ferrite is used as superstrate or radome, which controls the radiation, reception, and scattering from a printed antenna or array by applying a dc magnetic bias field in the plane of the ferrite, orthogonal to the RF magnetic field. In this analysis absorbing and transmission power coefficients are calculated to obtain the power loss and transmitted power through the radome layer respectively. The absorbing power coefficient verifies the switching behavior of radome for certain range of applied external magnetic field (Ho), which depends on the resonance width parameter (ΔH) of ferrite material. By properly choosing the bias field, electromagnetic wave propagation in the ferrite layer can be made zero or negligible over a certain frequency range, resulting in switching behavior of the ferrite layer. In this communication we also show precise preparation of radome layer and present its electric and magnetic properties along with its Curie temperature, which shows the working efficiency of layer under extreme situation. This radome layer can be very useful for the sensitive and smart communication systems.

  3. Preparation of cobalt-zinc ferrite (Co0.8Zn0.2Fe2O4) nanopowder via combustion method and investigation of its magnetic properties

    International Nuclear Information System (INIS)

    Yousefi, M.H.; Manouchehri, S.; Arab, A.; Mozaffari, M.; Amiri, Gh. R.; Amighian, J.

    2010-01-01

    Research highlights: → Cobalt-zinc ferrite was prepared by combustion method. → Properties of the sample were characterized by several techniques. → Curie temperature was determined to be 350 o C. -- Abstract: Cobalt-zinc ferrite (Co 0.8 Zn 0.2 Fe 2 O 4 ) was prepared by combustion method, using cobalt, zinc and iron nitrates. The crystallinity of the as-burnt powder was developed by annealing at 700 o C. Crystalline phase was investigated by XRD. Using Williamson-Hall method, the average crystallite sizes for nanoparticles were determined to be about 27 nm before and 37 nm after annealing, and residual stresses for annealed particles were omitted. The morphology of the annealed sample was investigated by TEM and the mean particle size was determined to be about 30 nm. The final stoichiometry of the sample after annealing showed good agreement with the initial stoichiometry using atomic absorption spectrometry. Magnetic properties of the annealed sample such as saturation magnetization, remanence magnetization, and coercivity measured at room temperature were 70 emu/g, 14 emu/g, and 270 Oe, respectively. The Curie temperature of the sample was determined to be 350 o C using AC-susceptibility technique.

  4. Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules

    Directory of Open Access Journals (Sweden)

    Ioannis L. Liakos

    2016-04-01

    Full Text Available Cellulose acetate (CA nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs, with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  5. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    Science.gov (United States)

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-04-20

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  6. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process

    Energy Technology Data Exchange (ETDEWEB)

    Das, C.R., E-mail: chitta@igcar.gov.in [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Albert, S.K. [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar (India); Mastanaiah, P. [Defense Research and Development Laboratory, Hyderabad (India); Chaitanya, G.M.S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Center for Atomic Research, Kalpakkam 603102 (India); Murthy, C.V.S. [Defense Research and Development Laboratory, Hyderabad (India); Kumar, E. Rajendra [Institute for Plasma Research, Gandhinagar (India)

    2014-11-15

    Highlights: • Width of HAZ is smaller in the 9Cr–1W RAFM weldment prepared by EB process compared to that reported for TIG weldments in literature. • Weld joint is stronger than that of the base metal. • Toughness of weld metal prepared by EB welding process is comparable to that (in PWHT condition) prepared by TIG process. • DBTT of as-welded 9Cr–1W RAFM weldment prepared by EB process is comparable to that reported for TIG weld metal in PWHT condition. - Abstract: Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition.

  7. Mechanical properties of 9Cr–1W reduced activation ferritic martensitic steel weldment prepared by electron beam welding process

    International Nuclear Information System (INIS)

    Das, C.R.; Albert, S.K.; Sam, Shiju; Mastanaiah, P.; Chaitanya, G.M.S.K.; Bhaduri, A.K.; Jayakumar, T.; Murthy, C.V.S.; Kumar, E. Rajendra

    2014-01-01

    Highlights: • Width of HAZ is smaller in the 9Cr–1W RAFM weldment prepared by EB process compared to that reported for TIG weldments in literature. • Weld joint is stronger than that of the base metal. • Toughness of weld metal prepared by EB welding process is comparable to that (in PWHT condition) prepared by TIG process. • DBTT of as-welded 9Cr–1W RAFM weldment prepared by EB process is comparable to that reported for TIG weld metal in PWHT condition. - Abstract: Microstructure and mechanical properties of the weldments prepared from 9Cr–1W reduced activation ferritic martensitic (RAFM) steel using electron beam welding (EBW) process were studied. Microstructure consists of tempered lath martensite where precipitates decorating the boundaries in post weld heat treated (PWHT) condition. Lath and precipitate sizes were found to be finer in the weld metal than in base metal. Accordingly, hardness of the weld metal was found to be higher than the base metal. Tensile strength of the cross weldment specimen was 684 MPa, which was comparable with the base metal tensile strength of 670 MPa. On the other hand, DBTT of 9Cr–1W weld metal in as-welded condition is similar to that reported for TIG weld metal in PWHT condition

  8. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    "Properties of Magnesium Composites for Material Scientists, Engineers and Selectors is the first book-length reference to provide an insight into current and future magnesium-based materials in terms...

  9. Fe-based soft magnetic composites coated with NiZn ferrite prepared by a co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yuandong; Yi, Yi; Li, Liya; Ai, Hengyu; Wang, Xiaoxu [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chen, Lulu [Jiangsu Eagle-globe Group Co., Ltd., Nantong 226600 (China)

    2017-04-15

    Fe powder was coated with NiZn ferrite by a co-precipitation method using chlorate as the raw material. Soft magnetic composites were manufactured via compaction and heat treatment of the coated powder. The coated powder and heat treated powder were analysed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy. Their magnetic properties were determined using a Quantum Design-Vibrating Sample Magnetometer (QD-VSM). The composites were analysed with SEM and EDS. The permeability and magnetic loss of the composites were measured with a B-H curve analyzer. The results show that, using the co-precipitation method, the raw precipitate was successfully prepared and coated the pure Fe powder and turned into spinel NiZn ferrite treated at 600 ℃ for 1 h. After heat treatment at 500 ℃ under air, the insulation coating layer of soft magnetic composite (SMC) was not destroyed and containing Fe, Ni, Zn and oxygen. The permeabilities of the SMC are stable at edge of the 2–200 kHz frequency range and the total loss was lower. - Graphical abstract: Scanning electron microscopy (SEM) images of Fe/(NiZn)Fe{sub 2}O{sub 4} composite powder heated at 600 ℃ for 1 h. - Highlights: • Fe particles were coated with (NiZn)Fe{sub 2}O{sub 4} via a co-precipitation and calcined method. • Coating layers were uniform and dense. • The permeabilities of the SMC are stable at edge of the 2–200 kHz frequency range.

  10. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    Science.gov (United States)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  11. Structural, dielectric and magnetic properties of cobalt ferrite prepared using auto combustion and ceramic route

    International Nuclear Information System (INIS)

    Murugesan, C.; Perumal, M.; Chandrasekaran, G.

    2014-01-01

    Cobalt ferrite is synthesized by using low temperature auto combustion and high temperature ceramic methods. The prepared samples have values of lattice constant equal to 8.40 Å and 8.38 Å for auto combustion and ceramic methods respectively. The FTIR spectrum of samples of the auto combustion method shows a high frequency vibrational band at 580 cm −1 assigned to tetrahedral site and a low frequency vibrational band at 409 cm −1 assigned to octahedral site which are shifted to 590 cm −1 and 412 cm −1 for the ceramic method sample. SEM micrographs of samples show a substantial difference in surface morphology and size of the grains between the two methods. The frequency dependent dielectric constant and ac conductivity of the samples measured from 1 Hz to 2 MHz at room temperature are reported. The room temperature magnetic hysteresis parameters of the samples are measured using VSM. The measured values of saturation magnetization, coercivity and remanent magnetization are 42 emu/g, 1553 Oe, 18.5 emu/g for the auto combustion method, 66.7 emu/g, 379.6 Oe, and 17.3 emu/g for the ceramic method, respectively. The difference in preparation methods and size of the grains causes interesting changes in electrical and magnetic properties

  12. Preparation of MgFe2O4 nanoparticles by microemulsion method and their characterization

    Czech Academy of Sciences Publication Activity Database

    Holec, Petr; Plocek, Jiří; Nižňanský, D.; Vejpravová, J.P.

    2009-01-01

    Roč. 51, č. 3 (2009), s. 301-305 ISSN 0928-0707 R&D Projects: GA ČR GA106/07/0949 Institutional research plan: CEZ:AV0Z40320502 Keywords : magnesium ferrite * microemulsion * nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.393, year: 2009

  13. Severe selective magnesium malabsorption: tests of tolerance of oral magnesium supplements.

    Science.gov (United States)

    Mettey, R; Guillard, O; Merle, P; Maillet-Picker, F

    1990-12-01

    Since his birth, we have been monitoring a 12-year-old boy suffering from selective severe magnesium malabsorption. Our essential problem is to prepare a form of galena with acceptable taste, tolerated by the digestive tract and well absorbed; also, the carrier compound must not cause short- or long-term side effects. An additional factor is the steadily increasing need for magnesium from 1 mmol/kg.d at 1 year to 14 mmol/kg.d at present age (345 mg/kg.d). The galena forms currently on sale were, with the exception of lactate and pyrollidone carboxylate, immediately rejected since they contain insufficient Mg2+. Following short trials resulting in diarrhoea, the other two preparations were also rejected. We then constituted - and also abandoned - our own galena compounds: aspartate (bitterness), aspartate + glycerophosphate (GLP) (bitterness), glutamate + GLP ('Chinese restaurant syndrome' and fear of the long term toxic effect of the glutamate), gluconate (excessive volume: 11/1 proportion with Mg2+). A recent test featuring GLP of Mg 40 g + cocoa butter 40 g + cocoa 10 g, brought about vomiting and diarrhoea, and was not adequately absorbed. The best tolerated formula is: Mg GLP 21.33 g; saccharose 6 g; aspartam 1 g; gelatin 0.5 g; citric acid, conserving agent, fruity aroma; water: qs 100 g. Such composition yields a caramel cream absorbed in five small portions, at a daily quantity of 375 g (80 g GLP Mg, 10 g Mg2+). Vitamin B6, which promotes intestinal absorption of magnesium, must be given separately in tablet form at a dose of 1 g/d, since it causes nausea if it is included in the Mg preparation.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys

    Science.gov (United States)

    Guo, Lian; Zhang, Fen; Lu, Jun-Cai; Zeng, Rong-Chang; Li, Shuo-Qi; Song, Liang; Zeng, Jian-Min

    2018-04-01

    The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3 -(MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x -(MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.

  15. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe{sub 2}O{sub 4} (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India); Siva Prasada Reddy, P.; Sarala Devi, G. [Inorganic and Physical Chemistry Division, Indian Institute Chemical Technology, Hyderabad 500607 (India); Sathiyaraj, S. [Department of Chemistry, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India)

    2016-01-15

    Spinel ferrite (MnZnFe{sub 2}O{sub 4}, MnCuFe{sub 2}O{sub 4}, MnNiFe{sub 2}O{sub 4} and MnCoFe{sub 2}O{sub 4}) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe{sub 2}O{sub 3} after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe{sub 2}O{sub 4} ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG). - Highlights: • The egg white support to achieve sample with shorter reaction time. • Manganese plays a significant role in sensor response. • Nature of the ferrites was affected with increasing annealing temperature.

  16. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Balapanova, B.S.; Zhajmina, R.E.; Serazetdinov, D.Z.

    1988-01-01

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  17. Effect of Cu-doping on structural and electrical properties of Ni0.4-xCu0.3+xMg0.3Fe2O4 ferrites prepared using sol-gel method

    Science.gov (United States)

    Dhaou, Mohamed Houcine

    2018-06-01

    Ni0.4-xCu0.3+xMg0.3Fe2O4 spinel ferrites were prepared by sol-gel technique. X-ray diffraction results indicate that ferrite samples have a cubic spinel-type structure with ? space group. The electrical properties of the studied samples using complex impedance spectroscopy technique have been investigated as a function of frequency at different temperatures. We found that the addition of copper in Ni0.4-xCu0.3+xMg0.3Fe2O4 ferrite system can improve its conductivity. Dielectric properties have been discussed in terms of hopping of charge carriers between Fe2+ and Fe3+ ions. For all samples, frequency dependence of the imaginary part of impedance (Z") shows the existence of relaxation phenomenon. The appropriate equivalent circuit configuration for modeling the Nyquist plots of impedance is of the type of (Rg + Rgb//Cgb).

  18. Effects of crystallite structure and interface band alignment on the photocatalytic property of bismuth ferrite/ (N-doped) graphene composites

    International Nuclear Information System (INIS)

    Li, Pai; Chen, Qiang; Lin, Yinyin; Chang, Gang; He, Yunbin

    2016-01-01

    Bismuth ferrite/graphene (N-doped graphene) photocatalysts are successfully prepared by a facile and effective two-step hydrothermal method. Bismuth ferrite/graphene shows superior photocatalytic activity compared with bismuth ferrite/N-doped graphene and pure BiFeO 3 . X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy analyses indicate that Bi 25 FeO 40 crystalline phase is obtained with the addition of graphene, while BiFeO 3 is formed under the same hydrothermal conditions in the presence of N-doped graphene. Core-level and valence-band X-ray photoelectron spectroscopy analyses reveal a downward band bending of bismuth ferrite (∼0.5 eV) at the interface of the bismuth ferrite/(N-doped) graphene composites, which facilitates the electron transfer from bismuth ferrite to (N-doped) graphene and suppresses the recombination of photo-generated electron–hole pairs. This downward bending band alignment at the interface supposes to be the main mechanism underlying the enhanced photocatalytic activity of the bismuth ferrite/graphene composites that are currently of great interest in the photocatalysis field. - Highlights: • Bismuth ferrite/(N-doped) graphene composites were prepared by a hydrothermal method. • Bi 25 FeO 40 and BiFeO 3 were obtained with presence of graphene and N-graphene, respectively. • Bi 25 FeO 40 /graphene shows superior photocatalytic activity over BiFeO 3 and BiFeO 3 /N-graphene. • A downward band bending (∼0.5 eV) of bismuth ferrite exists at the composites interface. • The downward band bending supposes to be the mechanism for the enhanced photocatalytic activity.

  19. Dielectric behaviour of sodium and potassium doped magnesium

    Indian Academy of Sciences (India)

    Pure phase of magnesium titanate (MgTiO3) was obtained at 1100°C by both the conventional solid-state method as well as by the flux method starting from hexahydrated magnesium nitrate and titanium dioxide as the reactants. MgTiO3 doped with Na or K was also prepared by the solid-state route. Na and K doped ...

  20. The role of matching thickness on the wideband electromagnetic wave suppresser using single layer doped barium ferrite

    International Nuclear Information System (INIS)

    Shams Alam, Reza; Kavosh Tehrani, Masoud; Moradi, Mahmood; Hosseinpour, Ehsaneh; Sharbati, Ali

    2011-01-01

    The effect of Mg 2+ , Co 2+ and Ti 4+ substitution on microwave absorption has been studied for BaMg 0.5 Co 0.5 Ti 1.0 Fe 10 O 19 ferrite-acrylic resin composite in frequency range from 13 to 20 GHz. X-ray diffraction (XRD), scanning electron microscopy (SEM), vector network analysis and vibrating sample magnetometry (VSM) were employed to analyze structure, electromagnetic and microwave absorption properties of prepared ferrite. The obtained results of reflectivity demonstrate that by varying matching thickness along with weight percentage of ferrite to acrylic resin, the bandwidth coupled with reflection loss values of prepared composites can be easily tuned. Based on microwave measurement on reflectivity, it is found that BaMg 0.5 Co 0.5 Ti 1.0 Fe 10 O 19 is a good candidate for wideband electromagnetic compatibility and other practical applications at high frequency. - Research highlights: → In our previous paper, the microwave attenuation properties of doped ferrites were evaluated. → Here we deal with the new substitution in barium ferrite which can easily tune the bandwidth of the reflection loss properties. → To the best of knowledge, this is a so simple composition which can offer practical applications in the field.

  1. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    International Nuclear Information System (INIS)

    Velinov, N.; Petrova, T.; Tsoncheva, T.; Genova, I.; Koleva, K.; Kovacheva, D.; Mitov, I.

    2016-01-01

    Spinel ferrites with nominal composition Cu _0_._5Mn _0_._5Fe _2O_4 and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe _5C_2 were observed by the influence of the reaction medium.

  2. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Velinov, N., E-mail: nikivelinov@ic.bas.bg; Petrova, T. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Tsoncheva, T.; Genova, I. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences (Bulgaria); Koleva, K. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Kovacheva, D. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences (Bulgaria); Mitov, I. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria)

    2016-12-15

    Spinel ferrites with nominal composition Cu {sub 0.5}Mn {sub 0.5}Fe {sub 2}O{sub 4} and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe {sub 5}C{sub 2} were observed by the influence of the reaction medium.

  3. Corrosion and protection of magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghali, E. [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining and Metallurgy

    2000-07-01

    The oxide film on magnesium offers considerable surface protection in rural and some industrial environments and the corrosion rate lies between that of aluminum and low carbon steels. Galvanic coupling of magnesium alloys, high impurity content such as Ni, Fe, Cu and surface contamination are detrimental for corrosion resistance of magnesium alloys. Alloying elements can form secondary particles which are noble to the Mg matrix, thereby facilitating corrosion, or enrich the corrosion product thereby possibly inhibiting the corrosion rate. Bimetallic corrosion resistance can be increased by fluxless melt protection, choice of compatible alloys, insulating materials, and new high-purity alloys. Magnesium is relatively insensible to oxygen concentration. Pitting, corrosion in the crevices, filiform corrosion are observed. Granular corrosion of magnesium alloys is possible due to the cathodic grain-boundary constituent. More homogeneous microstructures tend to improve corrosion resistance. Under fatigue loading conditions, microcrack initiation in Mg alloys is related to slip in preferentially oriented grains. Coating that exclude the corrosive environments can provide the primary defense against corrosion fatigue. Magnesium alloys that contain neither aluminum nor zinc are the most SCC resistant. Compressive surface residual stresses as that created by short peening increase SCC resistance. Cathodic polarization or cladding with a SCC resistant sheet alloy are good alternatives. Effective corrosion prevention for magnesium alloy components and assemblies should start at the design stage. Selective surface preparation, chemical treatment and coatings are recommended. Oil application, wax coating, anodizing, electroplating, and painting are possible alternatives. Recently, it is found that a magnesium hydride layer, created on the magnesium surface by cathodic charging in aqueous solution is a good base for painting. (orig.)

  4. Water-assisted and surfactant-free synthesis of cobalt ferrite nanospheres via solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Yiqing [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Ren, Yanan [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); Bi, Feng [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); He, Tao, E-mail: het@nanoctr.cn [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-10-15

    With ethylene glycol as the solvent, monodispersed cobalt ferrite nanospheres were prepared via a solvothermal method assisted by water. The samples were mainly characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope. The size of as-prepared products ranges from 10 nm to 200 nm. Size distribution and chemical composition were controlled by the amount of water and pH value in the reaction system. More important, suitable amount of water can avoid the use of surfactant. - Highlights: • Cobalt ferrite nanospheres were synthesized via solvothermal method assisted by water. • An introduction of suitable amount of water can avoid the use of surfactant. • The pH value of the precursor can be used to adjust the product composition.

  5. Preparation of zinc ferrite nano powders by high energy wet-milling method and investigation of Crystallites size variation during this process

    International Nuclear Information System (INIS)

    Masoudi, H.; Aftabi, A.; Mozafari, M.; Amighian, J.

    2007-01-01

    In this research work ZnFe 2 O 4 nano powders were prepared by high-energy wet-milling process, using metallic Fe and Zn powders. The process was investigated by XRD technique. 10% of the zinc ferrite was formed after 10 h milling. The as-milled sample was annealed at 500, 550 and 600 d egree C . Ultimately a single sample was obtained at 600 d egree C . Using sherrer's formula, the mean crystallite size of the as-milled and annealed powders were calculated. These were in the range of 17.9 to 20.4 nm.

  6. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  7. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  8. TiO{sub 2} on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-05-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO{sub 2}) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO{sub 2} powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO{sub 2} aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO{sub 2} powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO{sub 2} sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC{sub 3}H{sub 7}){sub 4}) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO{sub 2} powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO{sub 2} active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified.

  9. Optimization of multiroute synthesis for polyaniline-barium ferrite composites

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ghzaiel, Tayssir, E-mail: tayssir.ben-ghzaiel@satie.ens-cachan.fr [Université de Tunis El Manar Faculté des Sciences de Tunis, UR11ES18 Unité de Recherche de Chimie Minérale Appliquée, 2092, Tunis (Tunisia); SATIE, ENS Cachan, CNRS, Université Paris-Saclay, 61 av du Président Wilson, F-94230, Cachan (France); Dhaoui, Wadia [Université de Tunis El Manar Faculté des Sciences de Tunis, UR11ES18 Unité de Recherche de Chimie Minérale Appliquée, 2092, Tunis (Tunisia); Pasko, Alexander; Mazaleyrat, Frédéric [SATIE, ENS Cachan, CNRS, Université Paris-Saclay, 61 av du Président Wilson, F-94230, Cachan (France)

    2016-08-15

    A comparative study of physicochemical and magnetic properties of Polyaniline-BaFe{sub 12}O{sub 19} composites prepared by Solid-Based Polymerization (SBP) and by Aqueous-Based Polymerization (ABP) is carried out. The composites obtained by the latter method underwent a grinding to study the influence of shear stress. Thus, in a systematic approach, an investigation of stirring effect was done by synthesizing these composites using aqueous-based polymerization but without mechanical stirring. Different mass ratio of BaFe{sub 12}O{sub 19} was used to explore their impact on composites properties. X-ray diffraction, FTIR, SEM, TGA, conductivity and vibrating sample magnetometer measurements were performed. Structural and morphological investigations confirmed the presence of polyaniline and barium hexaferrite phase, which were in interaction in the composites regardless the polymerization route. The powder obtained by solid-based pathway revealed distinct particles with uniform distribution for various compositions (wt. %) of BaFe{sub 12}O{sub 19} in Pani, while the composites obtained by aqueous-based polymerization presented agglomerated nanostructures. Thermogravimetric analysis exhibited an improved thermal stability for Pani-BaFe{sub 12}O{sub 19} obtained by solid-based route. The electric conductivity has displayed decreasing trend of DC conductivity with the increase of BaFe{sub 12}O{sub 19} particles in the polymer matrix. Magnetic studies showed a ferromagnetic behaviour for all composites. The saturation magnetization monotonously increased with the increasing of BaFe{sub 12}O{sub 19} amount. The magnetic properties of the powders were mainly related to the hexaferrite loading which was determined using measured magnetic data. These results revealed that magnetization saturation was dependant of volume fraction of ferrite in the composites which was significantly affected by the reaction medium and mechanical stirring. The powders obtained by solid

  10. Oxide films on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Shih, T.-S.; Liu, J.-B.; Wei, P.-S.

    2007-01-01

    Magnesium alloys are very active and readily ignite during heating and melting. In this study, we discuss the combustion of magnesium and magnesium alloys and propose prospective anti-ignition mechanisms for magnesium alloys during the heating process. When magnesium and magnesium alloys were heated in air, the sample surfaces produced layers of thermally formed oxides. These thermally formed oxides played an important role in affecting the combustion of the magnesium and magnesium alloys. When magnesium was heated in air, brucite that formed in the early stage was then transformed into periclase by dehydroxylation. By extending the heating time, more periclase formed and increased in thickness which was associated with microcracks formation. When magnesium was heated in a protective atmosphere (SF 6 ), a film of MgF 2 formed at the interface between the oxide layer and the Mg substrate. This film generated an anti-ignition behavior which protected the substrate from oxidation. When solution-treated AZ80 alloy was heated, spinel developed at the interface between the thermally formed oxide layer and the Mg substrate, improving the anti-ignition properties of the substrate. In addition, we also explain the effects of beryllium in an AZB91 alloy on the ignition-proofing behavior

  11. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    Science.gov (United States)

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  12. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  13. Mössbauer studies of Sn /Nb substituted Mn–Zn ferrites

    Indian Academy of Sciences (India)

    Unknown

    communications, devices like computers, microprocessor and VCR systems, the use of above said types of power supplies highly increased. Though studies on Mn–Zn ... Hence, the aim of the present paper is to bring out the. Mössbauer studies of Sn/Nb substituted Mn–Zn ferrites. 2. Sample preparation and experimental.

  14. Effect of alloying element partitioning on ferrite hardening in a low alloy ferrite-martensite dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimian, A., E-mail: ebrahimiana@yahoo.com; Ghasemi Banadkouki, S.S.

    2016-11-20

    In this paper, the effect of carbon and other alloying elements partitioning on ferrite hardening behavior were studied in details using a low alloy AISI4340 ferrite-martensite dual phase (DP) steel. To do so, various re-austenitised samples at 860 °C for 60 min were isothermally heated at 650 °C from 3 to 60 min and then water–quenched to obtain the final ferrite-martensite DP microstructures containing different ferrite and martensite volume fractions. Light and electron microscopic observations were supplemented with electron dispersive spectroscopy (EDS) and nanoindentation tests to explore the localized compositional and hardening variations within ferrite grains in DP samples. The experimental results showed that the ferrite hardness was varied with progress of austenite to ferrite phase transformation in DP samples. In the case of a particular ferrite grain in a particular DP sample, despite a homogeneous distribution of carbon concentration, the ferrite hardness was significantly increased by increasing distance from the central location toward the interfacial α/γ areas. Beside a considerable influence of martensitic phase transformation on adjacent ferrite hardness, these results were rationalized in part to the significant level of Cr and Mo pile-up at α/γ interfaces leading to higher solid solution hardening effect of these regions. The reduction of potential energy developed by attractive interaction between C-Cr and C-Mo couples toward the carbon enriched prior austenite areas were the dominating driving force for pile-up segregation.

  15. Effect of Mg substitution on the magnetic properties of Ni–Zn ferrites

    Indian Academy of Sciences (India)

    Y Ramesh Babu

    2017-05-31

    May 31, 2017 ... C for 6h in air to investigate their structural and magnetic properties. X-ray diffraction ... The tetrava- lent substitutions have been found to improve the .... ducted on ferrites prepared by ceramic method [11] and wet chemical ...

  16. Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Poorbafrani, A., E-mail: a.poorbafrani@gmail.com; Kiani, E.

    2016-10-15

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were investigated. Cobalt–zinc ferrite powders, synthesized through PVA sol–gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt–zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were measured in the frequency range of 1–18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than –10 dB in the whole C-band and 30% of the X-band frequencies. - Highlights: • We enhanced the magnetic properties of cobalt–zinc Ferrite nanocomposites. • The samples showed absorption in the whole C-band and 30% of the X-band frequencies. • We tried to solve the problem of the spinel ferrite utilized as efficient absorber. • We enhanced the microwave reflection loss over extended frequency ranges.

  17. Ferrite materials for memory applications

    CERN Document Server

    Saravanan, R

    2017-01-01

    The book discusses the synthesis and characterization of various ferrite materials used for memory applications. The distinct feature of the book is the construction of charge density of ferrites by deploying the maximum entropy method (MEM). This charge density gives the distribution of charges in the ferrite unit cell, which is analyzed for charge related properties.

  18. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite

    Indian Academy of Sciences (India)

    Piezoelectric 3–0 composite ceramics are prepared from a mixture of barium titanate and lithium ferrite phase constituents. Dielectric properties of composites are affected by a number of parameters that include electrical properties, size, shape and amount of constituent phases. The frequency dependent measurements ...

  19. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Piezoelectric 3–0 composite ceramics are prepared from a mixture of barium titanate and lithium ferrite phase constituents. Dielectric properties of composites are affected by a number of parameters that include electrical properties, size, shape and amount of constituent phases. The frequency dependent measure-.

  20. Evidence for polaron conduction in nanostructured manganese ferrite

    International Nuclear Information System (INIS)

    Gopalan, E Veena; Anantharaman, M R; Malini, K A; Saravanan, S; Kumar, D Sakthi; Yoshida, Yasuhiko

    2008-01-01

    Nanoparticles of manganese ferrite were prepared by the chemical co-precipitation technique. The dielectric parameters, namely, real and imaginary dielectric permittivity (ε' and ε-prime), ac conductivity (σ ac ) and dielectric loss tangent (tanδ), were measured in the frequency range of 100 kHz-8 MHz at different temperatures. The variations of dielectric dispersion (ε') and dielectric absorption (ε-prime) with frequency and temperature were also investigated. The variation of dielectric permittivity with frequency and temperature followed the Maxwell-Wagner model based on interfacial polarization in consonance with Koops phenomenological theory. The dielectric loss tangent and hence ε-prime exhibited a relaxation at certain frequencies and at relatively higher temperatures. The dispersion of dielectric permittivity and broadening of the dielectric absorption suggest the possibility of a distribution of relaxation time and the existence of multiple equilibrium states in manganese ferrite. The activation energy estimated from the dielectric relaxation is found to be high and is characteristic of polaron conduction in the nanosized manganese ferrite. The ac conductivity followed a power law dependence σ ac = Bω n typical of charge transport assisted by a hopping or tunnelling process. The observed minimum in the temperature dependence of the frequency exponent n strongly suggests that tunnelling of the large polarons is the dominant transport process

  1. Mössbauer and magnetic studies of nanocrystalline zinc ferrites synthesized by microwave combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Mohamed, E-mail: mamdouh-2000-2000@yahoo.com [Assiut University, Department of Physics (Egypt); Hassan, Azza Mohamed [Asuite University, Physics Department, Faculty of Sciences (Egypt); Ahmed, Mamdouh Abdel aal [Al Azhar University, Physics Department, Faculty of Science (Egypt); Zhu, Kaixin; Ganeshraja, Ayyakannu Sundaram; Wang, Junhu, E-mail: Wangjh@dicp.ac.cn [Chinese Academy Sciences, Mössbauer Effect Data Center & Laboratory of Catalysts and New Materials for Aerospace, Dalian Institute of Chemical Physics (China)

    2016-12-15

    Zinc ferrite nano-crystals were synthesized by a microwave assisted combustion route with varying the urea to metal nitrates (U/N) molar ratio The process takes only a few minutes to obtain Zinc ferrite powders. The Effect of U/N ratio on the obtained phases, particle size, magnetization and structural properties has been investigated. The specimens were characterized by XRD, Mössbauer and VSM techniques. The sample prepared with urea/metal nitrate ratio of 1/1 was a poorly crystalline phase with very small crystallite size. A second phase is also detected in the sample. The crystallite size increases while the second phase decrease with increasing the urea ratio. The saturation magnetization and coercivity of the as prepared nano-particles changed with the change of the U/N ratio. The powder with the highest U/N ratio showed the presence of an unusually high saturation magnetization of 16 emu/g at room temperature. The crystallinity of the as prepared powder was developed by annealing the samples at 700 {sup ∘}C and 900 {sup ∘}C. Both the saturation magnetization (Ms) and the remnant magnetization (Mr) were found to be highly dependent upon the annealing temperature. Mössbauer studies show magnetic ordering in the powder even at room temperature. The Mössbauer and the magnetic parameters of this fraction are different from the standard values for bulk zinc ferrite.

  2. Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels

    International Nuclear Information System (INIS)

    Li, D.Z.; Xiao, N.M.; Lan, Y.J.; Zheng, C.W.; Li, Y.Y.

    2007-01-01

    The mesoscale deterministic cellular automaton (CA) method and probabilistic Q-state Potts-based Monte Carlo (MC) model have been adopted to investigate independently the individual growth behavior of ferrite grain during the austenite (γ)-ferrite (α) transformation. In these models, the γ-α phase transformation and ferrite grain coarsening induced by α/α grain boundary migration could be simulated simultaneously. The simulations demonstrated that both the hard impingement (ferrite grain coarsening) and the soft impingement (overlapping carbon concentration field) have a great influence on the individual ferrite growth behavior. Generally, ferrite grains displayed six modes of growth behavior: parabolic growth, delayed nucleation and growth, temporary shrinkage, partial shrinkage, complete shrinkage and accelerated growth in the transformation. Some modes have been observed before by the synchrotron X-ray diffraction experiment. The mesoscopic simulation provides an alternative tool for investigating both the individual grain growth behavior and the overall transformation behavior simultaneously during transformation

  3. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu [School of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070 (China); Liu, Xinzhong [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 (China)

    2017-01-15

    Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.

  4. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    International Nuclear Information System (INIS)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH) 3 and Ca(OH) 2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C 3 A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C 3 A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO 4 LDH product. Ca-Al-CrO 4 LDH phase occurred preferentially to Ca-Al-MCl 2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl 2 LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.

  5. Multivariate regression models for the simultaneous quantitative analysis of calcium and magnesium carbonates and magnesium oxide through drifts data

    Directory of Open Access Journals (Sweden)

    Marder Luciano

    2006-01-01

    Full Text Available In the present work multivariate regression models were developed for the quantitative analysis of ternary systems using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS to determine the concentration in weight of calcium carbonate, magnesium carbonate and magnesium oxide. Nineteen spectra of standard samples previously defined in ternary diagram by mixture design were prepared and mid-infrared diffuse reflectance spectra were recorded. The partial least squares (PLS regression method was applied to the model. The spectra set was preprocessed by either mean-centered and variance-scaled (model 2 or mean-centered only (model 1. The results based on the prediction performance of the external validation set expressed by RMSEP (root mean square error of prediction demonstrated that it is possible to develop good models to simultaneously determine calcium carbonate, magnesium carbonate and magnesium oxide content in powdered samples that can be used in the study of the thermal decomposition of dolomite rocks.

  6. Structural, electrical and dielectric properties of nanocrystalline Mg-Zn ferrites

    International Nuclear Information System (INIS)

    Anis-ur-Rehman, M.; Malik, M.A.; Nasir, S.; Mubeen, M.; Khan, K.; Maqsood, A.

    2011-01-01

    The nanocrystalline Mg-Zn ferrites having general formula Mg/sub 1-x/Zn/sub x/Fe/sub 2/O/sub 4/ (x=0, 0.1, 0.2, 0.3, 0.4, 0. 5) were prepared by WOWS sol-gel route. All prepared samples were sintered at 700 deg. C for 2 h. X-ray powder diffraction (XRD) technique was used to investigate structural properties of the samples. The crystal structure was found to be spinel. The crystallite size, lattice parameters and porosity of samples were calculated by XRD data analysis as function of zinc concentration. The crystallite size for each sample was calculated using the Scherrer formula considering the most intense (3 1 1) peak and the range obtained was 34-68 nm. The dielectric constant, dielectric loss tangent and AC electrical conductivity of nanocrystalline Mg-Zn ferrites are investigated as a function of frequency. The dielectric constant, dielectric loss tangent increased with increase of Zn concentration. All the electrical properties are explained in accordance with Maxwell Wagner model and K/sub oops/ phenomenological theory. (author)

  7. Electrical transport properties of CoMn0.2−xGaxFe1.8O4 ferrites using complex impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Chien-Yie Tsay

    2016-05-01

    Full Text Available In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2−xGaxFe1.8O4 (x=0, 0.1, and 0.2 prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z’ and the imaginary part (Z” of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.

  8. Development of cobalt ferrite powder preparation employing the sol-gel technique and its structural characterization

    International Nuclear Information System (INIS)

    Sajjia, M.; Oubaha, M.; Prescott, T.; Olabi, A.G.

    2010-01-01

    Research highlights: This work focuses on the sol-gel process and the effects that the initial parameters have on the final product, which is the cobalt ferrite powder, in addition to the heat treatment. Particular interest is devoted to understand how the crosslinker and the chelating agent work and affect the final product. - Abstract: This work focuses on the development of a method to make cobalt ferrite powder using the sol-gel process. A particular emphasis is devoted to the understanding of the role of the chemical parameters involved in the sol-gel technique, and of the heat treatment on the structures and morphologies of the materials obtained. Several samples of cobalt ferrite powder were obtained by varying the initial parameters of the process in addition to the heat treatment temperature. X-ray diffraction and scanning electron microscopy were used to identify the structure and morphology of samples demonstrating the influence of the initial parameters. DTA/TGA was carried out on two standard samples to identify important reaction temperatures during the heat treatment. The average size of the nano crystallites was estimated for a sample by the full width at half maximum (FWHM) of the strongest X-ray diffraction (XRD) peak. It has been found that the chelating agent and the crosslinker have a critical influence on the resultant structure, the particle size and the particle size distribution.

  9. Synthesis and super-paramagnetic properties of neodymium ferrites nanorods

    Energy Technology Data Exchange (ETDEWEB)

    El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Mounkachi, O., E-mail: o.mounkachi@mascir.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid, BP 63, 46000 Safi (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2013-12-25

    Highlights: •Magnetic properties of Neodymium nanorods depend on calcination temperature. •The as-synthesized Nd ferrite nanorods are superparamagnetic at room temperature. •The blocking temperature is higher than room temperature. -- Abstract: In this work we report the microstructural characterization and the magnetic properties of neodymium ferrites (NdFe{sub 2}O{sub 4}) nanorods prepared by well controlled co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of NdFe{sub 2}O{sub 4} has been investigated. The transmission electron microscopy (TEM) observations revealed that the as-prepared nanoparticles have rods-like shape with the average diameter ranging from 5 to 14 nm and uniform length. The magnetic measurements show that the as-synthesized nanorods have a superparamagnetic behavior at room temperature, with a blocking temperature of 360 K and magnetic anisotropy constant of 2.8 × 10{sup 5} ergs/cm{sup 3}. The magnetization and coercitivity at room temperature are increased from 26 to 34 emu/g and from 151 to 171 Oe with increasing annealing temperature from 400 to 600 °C, respectively.

  10. Contribution to surface physicochemical factors to stress corrosion resistance in stainless steels

    International Nuclear Information System (INIS)

    Gras, Jean-Marie

    1974-01-01

    The author of this research thesis first presents and discusses the various aspects of stress corrosion cracking of Fe-Cr-Ni alloys of high purity: experimental conditions (alloy elaboration, sample preparation), corrosion results (Schaeffer diagram, crack morphology, intergranular corrosion), influence of addition elements in ferritic alloys. He reports an electrochemical study of stainless steels in magnesium chloride (experimental conditions, influence of metallurgic and environmental parameters on polarization resistance, current-voltage curves), and an analytical study of layers formed in the magnesium chloride

  11. The effect of solution heat treatments on the microstructure and hardness of ZK60 magnesium alloys prepared under low-frequency alternating magnetic fields

    International Nuclear Information System (INIS)

    Li, Caixia; Yu, Yan Dong

    2013-01-01

    The solidified structure of ZK60 magnesium alloys in the presence and absence of electromagnetic stirring during the solidification process was compared, and the precipitates of ZK60 magnesium alloys were analyzed after a solution heat treatment using optical microscopy, micro-hardness analysis, X-ray diffraction and scanning electron microscopy. The results showed that the microstructure of cast alloys under a low-frequency alternating magnetic field (LFAMF) was mainly composed of a primary crystalline Mg matrix and a non-equilibrium eutectic structure (Mg+MgZn+MgZn 2 ). In comparison with the microstructure observed in the absence of the electromagnetic field, the eutectic network structure on the grain boundary under low-frequency alternating magnetic field was finer and exhibited a more uniform grain distribution. The grains under the LFAMF were refined in comparison with those under no electromagnetic field before the solution heat treatment, and the former grain distribution was more uniform than the latter after the solution heat treatment. The more uniform grain distribution is because the solution heat treatment is conducive to the dissolution of the second phase particles. The hardness exhibited a downward trend with increasing solution heat treatment time. Under the same solution heat treatment, the hardness value of the samples prepared under the LFAMF was lower than those prepared in the absence of the electromagnetic field. In contrast, the mechanical properties of alloys prepared under the LFAMF were better than those prepared in the absence of the electromagnetic field.

  12. Magnesium Gluconate

    Science.gov (United States)

    Magnesium gluconate is used to treat low blood magnesium. Low blood magnesium is caused by gastrointestinal disorders, prolonged vomiting or ... disease, or certain other conditions. Certain drugs lower magnesium levels as well.This medication is sometimes prescribed ...

  13. Structural, magnetic and electrical properties of nickel doped Mn-Zn spinel ferrite synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Jalaiah, K., E-mail: kjalu4u@gmail.com [Department of Physics, Andhra University, Visakhapatnam 530003 (India); Vijaya Babu, K. [Advanced Analytical Laboratory, Andhra University, Visakhapatnam 530003 (India)

    2017-02-01

    Manganese ferrites (MnFe{sub 2}O{sub 4}) have been of great interest for their remarkable and soft-magnetic properties (low coercivity, moderate saturation magnetization) accompanied by good chemical stability and mechanical hardness. X-ray diffraction analysis confirmed the presence of single phase cubic spinel ferrite with space group Fm3m for all prepared samples. Structural parameters such as lattice constant, crystallite size were calculated from the studies of X-ray diffraction. The morphological analysis of all the compounds is studied using scanning electron microscope. The magnetic properties were measured using electron spin resonance (ESR) and vibrating sample magnetometer (VSM). The results obtained showed the formation of manganese ferrites with an average particle size are in good agreement with previous results and displayed good magnetic properties. The dielectric and impedance properties are studied over a frequency range 20 Hz–1 MHz at room temperature. - Highlights: • We prepared Mn{sub 0.85}Zn{sub 0.15}Ni{sub x}Fe{sub 2}O{sub 4} (x=0.03, 0.06, 0.09, 0.12 and 0.15) nano-ferrite materials by using sol-gel method. • All the compounds characterized by XRD, SEM, VSM, ESR and dielectric studies. • We get lower coercivity values. • We get good results from ESR spectra.

  14. Effect of microalloying on precipitate evolution in ferritic welds and implications for toughness

    International Nuclear Information System (INIS)

    Narayanan, Badri K.; Kovarik, L.; Sarosi, Peter M.; Quintana, Marie A.; Mills, M.J.

    2010-01-01

    Ferritic weld metal deposited with a self-shielded arc-welding process has intentional additions of aluminum, magnesium, titanium and zirconium. This results in a complex precipitation process that has been characterized with a combination of electron microscopy techniques. This work indicates that the formation of a spinel oxide is critical for the nucleation of nitrides of zirconium and titanium and prevents the agglomeration of aluminum rich oxides and the formation of large aluminum nitrides. High-resolution transmission electron microscopy has been used to characterize the core/shell structure of the precipitates with microalloying additions. Thermodynamic modeling of the precipitate formation during solidification is consistent with the microstructural observations. The evolution of precipitate formation is critical to limit large inclusions and improve weld metal toughness.

  15. The effect of magnesium sulfate concentration on the effective concentration of rocuronium, and sugammadex-mediated reversal, in isolated left phrenic nerve hemi-diaphragm preparations from the rat.

    Science.gov (United States)

    Cho, Choon-Kyu; Sung, Tae-Yun; Choi, Seok-Jun; Choi, Hey-Ran; Kim, Yong Beom; Lee, Jung-Un; Yang, Hong-Seuk

    2018-05-30

    Perioperative magnesium sulfate (MgSO4) is used for analgesic, anti-arrhythmic, and obstetric purposes. The effects of MgSO4 on the neuromuscular blockade (NMB) induced by rocuronium, and the sugammadex reversal thereof, have not been clearly quantified. We investigated the effect increase concentrations of MgSO4 on the NMB by rocuronium, and sugammadex reversal, in isolated left phrenic nerve hemi-diaphragm (PNHD) preparations from the rat. Rat PNHD preparations were randomly allocated to one of four groups varying in terms of MgSO4 concentration (1, 2, 3, and 4 mM, each n = 10, in Krebs solution). The train-of-four (TOF) and twitch height responses were recorded mechanomyographically. The preparations were treated with incrementally increasing doses of rocuronium and each group's effective concentration (EC)50, EC90, and EC95 of rocuronium were calculated via nonlinear regression. Then, sugammadex was administered in doses equimolar to rocuronium. The recovery index, time to T1 height >95% of control, and the time to a TOF ratio (TOFR) >0.9 after sugammadex administration were measured. The EC50, EC90, and EC95 of rocuronium fell significantly as the magnesium level increased. The EC50, EC90, and EC95 of rocuronium did not differ between the 3 and 4 mM groups. The recovery index, time to T1 height >95% of control, and time to a TOFR >0.9 after sugammadex administration did not differ among the four groups. Increases in the magnesium concentration in rat PNHD preparations proportionally enhanced the NMB induced by rocuronium but did not affect reversal by equimolar amounts of sugammadex.

  16. Synthesis, characterization and antistructure modeling of Ni nano ferrite

    Science.gov (United States)

    Kane, S. N.; Raghuvanshi, S.; Satalkar, M.; Reddy, V. R.; Deshpande, U. P.; Tatarchuk, T. R.; Mazaleyrat, F.

    2018-05-01

    We report the role played by cation distribution in determining magnetic properties by comparing dry gel, thermally annealed Ni ferrite prepared by sol-gel auto-combustion technique. X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Mössbauer spectroscopy were used to characterize the samples. Both XRD and Mössbauer measurements validate the formation of spinel phase with grain diameter 39.13-45.53 nm. First time antistructural modeling for Ni ferrite is reported to get information on active surface centers. Decrease of Debye temperature θD in annealed sample shows enhancement of lattice vibrations. With thermal annealing experimental and Néel magnetic moment (nBe, nBN) increases, suggesting migration of Ni2+ from B to A site with concurrent migration of Fe3+ from A to B site (non-equilibrium cationic distribution), affecting magnetic properties.

  17. Magnesium borate radiothermoluminescent detectors

    International Nuclear Information System (INIS)

    Kazanskaya, V.A.; Kuzmin, V.V.; Minaeva, E.E.; Sokolov, A.D.

    1974-01-01

    In the report the technology of obtaining polycrystalline magnesium borate activated by dysprosium is described briefly and the method of preparing the tabletted detectors from it is presented. The dependence of the light sum of the samples on the proportion of the components and on the sintering regime has shown that the most sensitive material is obtained at the proportion of boric anhydride and magnesium oxide 2.2-2.4 and at the dysprosium concentration about 1 milligram-atom per gram molecule of the base. The glow curve of such a material has a simple form with one peak the maximum of which is located at 190-200 0 C. The measurement of the main dosimetric characteristics of the magnesium borate tabletted detectors and the comparison with similar parmaeters of the lithium fluoride tabletted detectors have shown that at practically identical effective number the former detectors have the following substantial advantages: the sensitivity is ten-twenty times as large, they are substantially more technological on synthesis of the radiothermoluminophor and during the production of the tabletted detectors, they have a simple glow curve, they do not require the utilization of the thermocycling during the use. (author)

  18. Solar physical vapor deposition: A new approach for preparing magnesium titanate nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Apostol, Irina [S.C. IPEE Amiral Trading Impex S.A., 115300 Curtea de Arges (Romania); Saravanan, K. Venkata, E-mail: vsk@ua.pt [Department of Materials and Ceramic Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-093 Aveiro (Portugal); Monty, Claude J.A. [CNRS-PROMES Laboratory, Odeillo 66120, Font Romeu (France); Vilarinho, Paula M. [Department of Materials and Ceramic Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-093 Aveiro (Portugal)

    2013-11-15

    Solar energy is a major factor in the equation of energy, because of the unlimited potential of the sun that eclipses all other renewable sources of energy. Solar physical vapor deposition (SPVD) is a core innovative, original and environmentally friendly process to prepare nanocrystalline materials in a powder form. The principle of this process is to melt the material under concentrated solar radiation, which evaporates and condenses as nanopowders on a cold surface. We synthesized nanopowders of magnesium titanate by the SPVD process at PROMES Laboratory in Odeillo-Font Romeu, France. The SPVD system consists of a parabolic mirror concentrator, a mobile plane mirror (“heliostat”) tracking the sun and a solar reactor “heliotron”. The synthesized nanopowders were analyzed by X-ray diffraction (XRD) to know their crystalline structure and scanning electron microscopy (SEM) was used for determining the surface morphology. We have shown that the characteristics of obtained nanotitanates were determined by the targets’ composition and SPVD process parameters such as the working pressure inside the solar reactor and evaporation duration (process time).

  19. Synthesis of a low loss Mn–Zn ferrite for power applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsakaloudi, Vasiliki, E-mail: vikaki@cperi.certh.gr [Laboratory of Inorganic Materials, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 57001 Thermi-Thessaloniki (Greece); Zaspalis, Vassilios [Laboratory of Inorganic Materials, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 57001 Thermi-Thessaloniki (Greece); Laboratory of Materials Technology, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2016-02-15

    Current market trends of the switching power supplies industry require even lower energy losses in power conversion systems with maintenance of satisfactory initial permeability levels. Typical operation conditions refer to a frequency of 100 kHz, an induction level of 200 mT and a steady state temperature of 100° C. In this work the development of a polycrystalline Mn–Zn ferrite material that exhibits initial relative magnetic permeability above 2500 and very low power losses at 100 kHz, 200 mmT and 100° C is presented. The Mn–Zn ferrite samples were prepared by the conventional solid state reaction method. Sintering was performed under controlled atmosphere conditions. The combinatorial role of TiO{sub 2} and CoO together with Zn content, as well as the effects of the process parameters on the magnetic performance of the Mn–Zn ferrite was evaluated. It is shown that the development of the adequate polycrystalline microstructure that is characterized by (a) high sintered density, (b) homogenous grain size that is free of morphological or chemical pinning defects and (c) high resistivity grain boundary structure, can be achieved by means of appropriate compositional and dopant adjustment, anisotropy control and specific resistivity optimization. The newly developed Mn–Zn ferrite is characterized by high sintered density of 4.91 g/cm{sup 3}, initial magnetic permeability of 2512 (at 10 kHz, 0.1 mT, 25 °C), high saturation magnetic flux density of 560 mT (at 10 kHz, 1200 A/m, 25 °C) and very low power losses (Pv) of 224 mW/cm{sup 3} (at 100 kHz, 200 mT, 100 °C) combined with very low power losses of 470 mW/cm{sup 3} even at room temperature, establishing it as ideal for power applications. - Highlights: • Mn–Zn ferrites for power applications are prepared by solid state reaction. • Optimal doping levels of TiO{sub 2} and CoO for low power losses are determined. • A slow cooling rate during sintering improves the resistivity and power losses.

  20. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  1. Contribution to the structural study of austeno-ferritic steels. Morphological and analytical definition of the ferritic phase

    International Nuclear Information System (INIS)

    Bathily, Alassane.

    1977-07-01

    Conditions of fast and selective austenite dissolution were defined by means of current-voltage curves using AISI 316-type materials (welding beads). The ferritic phase was isolated and identified with X-rays. The percentages of ferrite were compared gravimetrically with those obtained by traditional methods. The ferrite isolated was chemically analysed by atomic absorption, the only doubtful value being carbon. It is shown by this method that a morphological study of the solidification of the ferritic lattice is possible, even for percentages around 1% [fr

  2. Synthesis and Characterization of Oxide Dispersion Strengthened Ferritic Steel via a Sol-Gel Route

    International Nuclear Information System (INIS)

    Sun Qinxing; Zhang Tao; Wang Xianping; Fang Qianfeng; Hu Jing; Liu Changsong

    2012-01-01

    Nanocrystalline oxide dispersion strengthened (ODS) ferritic steel powders with nominal composition of Fe-14Cr-3W-0.3Ti-0.4Y 2 O 3 are synthesized using sol-gel method and hydrogen reduction. At low reduction temperature the impurity phase of CrO is detected. At higher reduction temperature the impurity phase is Cr 2 O 3 which eventually disappears with increasing reduction time. A pure ODS ferritic steel phase is obtained after reducing the sol-gel resultant products at 1200°C for 3 h. The HRTEM and EDS mapping indicate that the Y 2 O 3 particles with a size of about 15 nm are homogenously dispersed in the alloy matrix. The bulk ODS ferritic steel samples prepared from such powders exhibit good mechanical performance with an ultimate tensile stress of 960 MPa.

  3. Modified voltammetric, impedimetric and optical behavior of polymer- assisted sol-gel MgFe2O4 nanostructured thin films

    International Nuclear Information System (INIS)

    Bazhan, Z.; Ghodsi, F.E.; Mazloom, J.

    2017-01-01

    Highlights: •Electrochemical properties of spinel PEG/PVP MgFe 2 O 4 thin films prepared by spin coating technique have been investigated. •PSD analysis indicated that spectral roughness of films decreased by polymer incorporation. •Optical calculations exhibited a blue shift on optical band gap by polymer addition. •CV curves revealed that ion storage capacitance of PEG/MgFe 2 O 4 is two times higher than MgFe 2 O 4 thin films. •EIS analysis confirmed that incorporation of appropriate amount of PEG reduced the charge transfer resistance. -- Abstract: The effect of polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) on physical properties of sol-gel prepared magnesium ferrite (MF) thin films was investigated. The X-ray diffraction (XRD) results showed the formation of cubic spinel magnesium ferrite for all samples. The surface morphology of films changed and average surface roughness decreased by polymer addition. The height-height correlation function and fractal dimension were evaluated using cube counting and triangulation methods from atomic force microscopy (AFM) images. The refractive index and extinction coefficient of MF thin films decreased by adding polymer while the band gap value increased from 2.24 to 2.72 eV. The PEG addition enhanced the electrochemical performance while PVP addition didn’t have significant effect on cyclic voltammetry (CV) of magnesium ferrite thin films. The sample with highest value of PEG showed the maximum specific capacitance (68.5 mF cm −2 ) and the smallest charge transfer resistance (565 Ω) among all samples.

  4. Moessbauer and magnetic susceptibility measurements on M-type hexagonal Ba - ferrite

    International Nuclear Information System (INIS)

    Lipka, J.; Gruskova, A.; Sitek, J.; Miglierini, M.; Groene, R.; Hucl, M.; Toth, I.; Orlicky, O.

    1990-01-01

    Samples of stoichiometric BaFe 12 O 19 and Co, Ti substituted barium ferrite were prepared by chemical wet method. Moessbauer spectroscopy, magnetic susceptibility measurements, X-ray diffraction, infrared spectroscopy were conducted to examine the mechanism of formation. The observed magnetic characteristics and electron scanning microscopy show that single domain coprecipitated powders were formed. (orig.)

  5. Microstructure and magnetic properties of M-type strontium hexagonal ferrites with Y-Co substitution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chaocheng [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Liu, Xiansong, E-mail: xiansongliu@ahu.edu.cn [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Engineering Technology Research Center of Magnetic Materials, School of Physics & Materials Science, Anhui University, Hefei 230601 (China); Feng, Shuangjiu; Rehman, Khalid Mehmood Ur; Li, Mingling; Zhang, Cong; Li, Haohao; Meng, Xiangyu [School of Physics and Materials Science, Anhui University, Hefei 230601 (China)

    2017-08-15

    Highlights: • Y-Co substitution in strontium hexaferrites have been prepared and investigated systematically for the first time. • Lattice constants a and c for all the samples are very different with that of unsubstituted ferrites. • The M{sub s} and H{sub c} are very high, from which may provide an important significance of research and development of high performance products. - Abstract: According to the formula Sr{sub 0.95}Y{sub 0.05}Fe{sub 12−x}Co{sub x}O{sub 19} (x = 0.00, 0.08, 0.16, 0.24, 0.32, 0.40), the replacement of Y-Co in M-type strontium hexagonal ferrites have been successfully prepared by ceramic process for the first time. The phase compositions of magnetic powders were examined by X-ray diffraction. The results of XRD showed that the single phase was obtained in magnetic powders with the increase of Co content (x), and α-Fe{sub 2}O{sub 3} occurred when x > 0.24. The morphology of the magnets was investigated by scanning electron microscopy (SEM). The micro-morphology of the particles exhibited the uniform plane hexagonal structures of M-type ferrites with different Co content. Magnetic properties of the ferrite magnets were measured by a physical property measurement system-vibrating sample magnetometer (PPMS-VSM). The M{sub s} increases constantly with the increase of Co content. The H{sub c} first increases and then decreases with the increase of Co content, and the value of coercivity (H{sub c}) is up to 3774 Oe when x = 0.24.

  6. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling; Sinterizacao a plasma de aco ferritico reforcado com carbeto de niobio preparado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P. [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Lab. de Materiais Ceramicos e Metais Especiais; Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Lab. de Processamento de Materiais por Plasma

    2010-07-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  7. High-Q perpendicular-biased ferrite-tuned cavity

    International Nuclear Information System (INIS)

    Carlini, R.D.; Thiessen, H.A.; Potter, J.M.

    1983-01-01

    Rapid-cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Modest power tests of a small (10-cm-dia) quarter-wave singly re-entrant cavity tuned by nickel-zinc ferrites and aluminum-doped garnets indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity at power levels from 2 to 200 watts

  8. Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chkoundali, S [ITODYS, UMR-CNRS 7086, Universite Paris 7, 2 Place Jussieu (case 7090), 75251 Paris (France); Ammar, S [ITODYS, UMR-CNRS 7086, Universite Paris 7, 2 Place Jussieu (case 7090), 75251 Paris (France); Jouini, N [ITODYS, UMR-CNRS 7086, Universite Paris 7, 2 Place Jussieu (case 7090), 75251 Paris (France); Fievet, F [ITODYS, UMR-CNRS 7086, Universite Paris 7, 2 Place Jussieu (case 7090), 75251 Paris (France); Molinie, P [Institut Jean Rouxel des Materiaux, 2 Chemin de la Houssiniere, 44072 Nantes (France); Danot, M [Institut Jean Rouxel des Materiaux, 2 Chemin de la Houssiniere, 44072 Nantes (France); Villain, F [LI2M, UMR-CNRS 7071, Universite Paris 6, 4 Place Jussieu (case 42), 75252 Paris (France); Greneche, J-M [LPEC, UMR-CNRS 6087, Universite du Maine, Avenue O Messiaen, 72085 Le Mans (France)

    2004-06-23

    Ultrafine magnetic nickel ferrite NiFe{sub 2}O{sub 4} particles of high crystallinity were directly prepared by forced hydrolysis of ionic iron (III) and nickel (II) solutions in 2-hydroxyethyl ether at about 478 K under atmospheric pressure. The resulting nickel ferrite particles exhibit very interesting magnetic properties: they are superparamagnetic at room temperature and have a saturation magnetization close to that of the bulk at low temperature. An in-field Moessbauer study shows clearly that this surprising behaviour is mainly due to: (i) a departure of the cation distribution from the classical distribution encountered in the bulk material and (ii) the absence of spin canting for both tetrahedral and octahedral cations.

  9. Significant reduction of saturation magnetization and microwave-reflection loss in barium-natural ferrite via Nd3+ substitution

    Science.gov (United States)

    Widanarto, W.; Ardenti, E.; Ghoshal, S. K.; Kurniawan, C.; Effendi, M.; Cahyanto, W. T.

    2018-06-01

    To minimize the signal degradation, many electronic devices require efficient microwave absorbers with very low reflection-losses within the X-band. We prepared a series of trivalent neodymium-ion (Nd3+) substituted barium-natural ferrite using a modified solid-state reaction method. The effect of the Nd3+-ion content on the structure, surface morphology, magnetic properties, and microwave reflection loss was studied. The composites were characterized using X-ray diffraction, a vibrating sample magnetometer, scanning electron microscopy, and a vector network analyzer. The XRD patterns of the sample without Nd3+ reveal the presence of BaFe12O19 (hexagonal) and BaFe2O4 (rhombohedral) phases. Furthermore, a new hexagonal crystal phase of Ba6Nd2Fe4O15 appeared after substituting Nd3+. The average size of the prepared barium-natural ferrite particles was estimated to be between 0.4 and 0.8 μm. Both saturation magnetization and microwave reflection losses of these barium-ferrites were significantly reduced by increasing the Nd3+ content.

  10. A study of NiZnCu-ferrite/SiO2 nanocomposites with different ferrite contents synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Yan Shifeng; Geng Jianxin; Chen Jianfeng; Yin Li; Zhou Yunchun; Liu Leijing; Zhou Enle

    2005-01-01

    Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of α-Fe 2 O 3 . The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%. The magnetic properties of the nanocomposites are closely related to the ferrite content. The saturation magnetization increases with the ferrite content, while the coercivity reaches a maximum when the ferrite is 80wt% in the silica matrix

  11. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steels

    International Nuclear Information System (INIS)

    Esmailian, M.

    2010-01-01

    The effect of different austenite grain size and different cooling rates on the austenite to ferrite transformation temperature and different ferrite morphologies in one Nb-microalloyed high strength low alloy steel has been investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been quenched, partially, for investigation on the microstructural evolution. In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature differences method is established and found to be a good way for detection of austenite to ferrite, pearlite and sometimes other ferrite morphologies transformation temperatures. The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence on decreasing of the ferrite transformation temperature. Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases, intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite transformation temperature decreases and volume fraction of intragranular ferrite increases.

  12. Structural and Magnetic Properties of Type-M Barium Ferrite - Thermoplastic Natural Rubber Nano composites

    International Nuclear Information System (INIS)

    Nurhidayaty Mokhtar

    2012-01-01

    Structural and magnetic properties of type-M barium ferrite (BaFe 12 O 19 ) nanoparticles (∼ 20 nm) embedded in non-magnetic thermoplastic natural rubber (TPNR) matrices were investigated. The TPNR matrices were prepared from high density polyethylene (HDPE) and natural rubber (NR) in the weight ratios of 80:20 and 60:40, respectively, with 10 wt % of NR in the form of liquid natural rubber (LNR) which act as a comparabilities. BaFe 12 O 19 - filled nano composites with 2 - 12 wt % BaFe 12 O 19 ferrite were prepared using a melt- blending technique. Magnetic hysteresis was measured using a vibrating sample magnetometer (VSM) in a maximum field of 10 kOe at room temperature (25 degree Celsius). The saturation magnetisation (MS), remanence (MR) and coercivity (Hc) were derived from the hysteresis loops. The results show that the structural and magnetic properties of nano composites depend on both the ferrite content and the composition of the natural rubber or plastic in the nano composites. All the nano composites exhibit an exchange bias-like phenomenon resulting from the exchange coupling of spins at the interface between the core ferrimagnetic region and the disordered surface region of the nanoparticles. (author)

  13. Production of magnesium metal

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  14. Some Structural Properties of the Mixed Lead-Magnesium Hydroxyapatites

    Science.gov (United States)

    Kaaroud, K.; Ben Moussa, S.; Brigui, N.; Badraoui, B.

    2018-02-01

    Lead-magnesium hydroxyapatite solid solutions Pb(10- x)Mg x (PO4)6(OH)2 have been prepared via a hydrothermal process. They were characterized by X-ray powder diffraction, Transmission Electron Microscopy (TEM), chemical and IR spectroscopic analyses. The results of the structural refinement indicated that the limits of lead-magnesium solid solutions ( x ≤ 1.5), a regular decrease of the lattice constant a and a preferential magnesium distribution in site S(I). Through the progressive replacement of Pb2+ ( r = 0.133 nm) by the smaller cation Mg2+ ( r = 0.072 nm), all interatomic distances decrease in accordance with the decrease of the cell parameters. According to what could be expected from the coordinance of the metallic sites S(I) (hexacoordination) and S(II) (heptacoordination), the small magnesium cation preferentially occupies the four sites S(I). The results of the TEM analysis confirm the presence of magnesium in the starting solution and reveals the decrease in the average size of crystals. The IR spectra show the presence of the absorption bands characteristic for the apatite structure.

  15. Effects of consolidation temperature, strength and microstructure on fracture toughness of nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Miao, P.; Odette, G.R.; Yamamoto, T.; Alinger, M.; Hoelzer, D.; Gragg, D.

    2007-01-01

    Fully consolidated nanostructured ferritic alloys (NFAs) were prepared by attritor milling pre-alloyed Fe-14Cr-3W-0.4Ti and 0.3 wt% Y 2 O 3 powders, followed by hot isostatic pressing (HIPing) at 1000 o C or 1150 o C at 200 MPa for 4 h. Transmission electron microscopy (TEM) revealed similar bimodal distributions of fine and coarse ferrite grains in both cases. However, as expected, the alloy microhardness decreased with increasing in HIPing temperature. Three point bend tests on single edge notched specimens, with a nominal root radius ρ = 0.15 mm, were used to measure the notch fracture toughness, K ρ , as a function of test temperature. The K ρ curves were found to be similar for both processing conditions. It appears that the coarser ferrite grains control cleavage fracture, in a way that is independent of alloy strength and HIPing temperature

  16. Effect of magnesium ions on the initial oxidation stages of carbon steel

    International Nuclear Information System (INIS)

    Subramanian, H.; Subramanian, Veena; Rangarajan, S.; Narasimhan, S.V.; Velmurugan, S.

    2012-09-01

    Metal Ion Passivation (MIP) is a technique in which passivating ions get into the oxide of structural materials and modifies the oxide in such a way as to reduce the corrosion and corrosion release rates. Magnesium ions are found to be efficient in passivating carbon steel. This study is an attempt to understand the role of magnesium ions during the early stage of film growth on carbon steel. The study reveals that in the presence of Mg, the initial oxide film formed by the application of potential had a different electrochemical property. The microstructure of the parent alloy of steel also interacted differently with Mg during the film formation. The ferrite film was grown on carbon steel by applying 0.1 V (vs SCE) in borate buffer (pH=9, 85 deg. C). The formation and coverage of film on the surface was ascertained by measuring the steady state current density as a function of time. The steady state current density was achieved faster when Mg was present in the solution. The thin film formed was characterized by both by electrochemical impedance spectroscopy and atomic force microscopy. The formation of a passive film (at 0.1 V vs SCE) was evident in both with and without Mg cases, with total impedance of the system increasing by an order of magnitude compared to the film formed at OCP (∼ - 0.825 V vs SCE). The data was fitted to an equivalent circuit representing a metal covered with a porous film. The fit parameters were significantly different for Mg containing system and the charge transfer resistance at oxide/solution interface was observed to be two times higher. The capacitance of the film was also higher in presence of Mg indicating a thinner film. The thin films on carbon steel were characterized by AFM in semi contact mode. The surfaces were found to be covered with fine oxide. Two morphologically different regions could be identified on the surface and they were assigned as pearlite and ferrite regions. One of the most notable observations was the

  17. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured.

  18. Effect of low cost iron oxide with Si additive on structural properties of Ni-Zn ferrite

    International Nuclear Information System (INIS)

    Ghazanfar, U.

    2010-01-01

    Mixed Ni-Zn ferrites (x = 0.66, 0.77, 0.88, 0.99) were prepared by double sintering ceramic method using locally available low cost Fe/sub 2/O/sub 3/ with 0.5% (by wt) of Si additive. The chemical phase analysis, carried out by X-ray powder diffraction method, confirms the major phase of Ni-Zn ferrite. Study of the effect of composition on structural properties of ferrite system revealed a decreasing trend of lattice parameters with increasing Ni content. X-ray density and mass density increase with increasing Ni content, which in turn decreases the porosity due to successive presence of Si in Fe/sub 2/O/sub 3/. This decrease in porosity along with chemical homogeneities, distribution of phases and grain formation were also observed in scanning electron micrographs. (author)

  19. The comparative study of the structural and the electrical properties of the nano spinel ferrites prepared by the soft mehanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Sekulić D.L.

    2014-01-01

    Full Text Available Nano spinel ferrites MFe2O4 (M=Ni, Mn, Zn were obtained by soft mechanochemical synthesis in a planetary ball mill. The appropriate mixture of oxide and hydroxide powders was used as initial compounds. All of this mixture of powders was mechanically activated, uniaxial pressed and sintered at 1100°C/2h. The phase composition of the powders and sintered samples were analyzed by XRD and Raman spectroscopy. Morphologies were examined by SEM. In this study, the AC-conductivity and DC-resistivity of sintered samples of MFe2O4 (M= Ni, Mn, Zn ferrites were measured at different frequencies and at room temperature. The values of the electrical conductivities show an increase with increasing temperature, which indicated the semiconducting behavior of the studied ferrites. The conduction phenomenon of the investigated samples could be explained on the basis of hopping model. The complex impedance spectroscopy analysis was used to study the effect of grain and grain boundary on the electrical properties of all three obtained ferrites [Projekat Ministarstva nauke Republike Srbije, br. III 45003

  20. Microstructural development of cobalt ferrite ceramics and its influence on magnetic properties

    Science.gov (United States)

    Kim, Gi-Yeop; Jeon, Jae-Ho; Kim, Myong-Ho; Suvorov, Danilo; Choi, Si-Young

    2013-11-01

    The microstructural evolution and its influence on magnetic properties in cobalt ferrite were investigated. The cobalt ferrite powders were prepared via a solid-state reaction route and then sintered at 1200 °C for 1, 2, and 16 h in air. The microstructures from sintered samples represented a bimodal distribution of grain size, which is associated with abnormal grain growth behavior. And thus, with increasing sintering time, the number and size of abnormal grains accordingly increased but the matrix grains were frozen with stagnant grain growth. In the sample sintered for 16 h, all of the matrix grains were consumed and the abnormal grains consequently impinged on each other. With the appearance of abnormal grains, the magnetic coercivity significantly decreased from 586.3 Oe (1 h sintered sample) to 168.3 Oe (16 h sintered sample). This is due to the magnetization in abnormal grains being easily flipped. In order to achieve high magnetic coercivity of cobalt ferrite, it is thus imperative to fabricate the fine and homogeneous microstructure.

  1. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    International Nuclear Information System (INIS)

    Li Siheng; Wang Enbo; Tian Chungui; Mao Baodong; Kang Zhenhui; Li Qiuyu; Sun Guoying

    2008-01-01

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag(MFe 2 O 4 ) (M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag(C) microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag(C) spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core. - Graphical abstract: MFe 2 O 4 (M=Ni, Co, Mg, Zn) hollow spheres with a noble metal nanoparticle core were successfully prepared by using colloidal metal(C) core-shell spheres as templates with no need of surface modification. The shell thickness and magnetic properties of the ferrite hollow spheres could be controlled by varying the synthetic parameters

  2. Specific heat of nano-ferrites modified composites

    Directory of Open Access Journals (Sweden)

    Muntenita Cristian

    2017-01-01

    Full Text Available The specific heat of nano-ferrites modified composites was studied using differential scanning calorimeter (DSC method in the temperature range of 30 to 150°C. Initially, nano-ferrites were introduced in epoxy systems in order to improve the electromagnetic properties of formed materials. Together with the changes in electromagnetic properties some modifications occur regarding thermal and mechanical properties. The materials were formed by placing 5g or 10g of ferrite into 250g polymer matrix leading to a very low weight ratio of modifying agent. At so low ratios the effect of ferrite presence should be insignificant according to mixing rule. Anyway there is possible to appear some chelation reaction with effects on thermal properties of materials. Three types of epoxy resins had been used as matrix and barium ferrite and strontium ferrite as modifying agents. The thermal analysis was developed on two heatingcooling cycles and the specific heat was evaluated for each segment of the cycle analysis.

  3. Structural and magnetic properties of Mg-Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method

    International Nuclear Information System (INIS)

    Reyes-Rodríguez, Pamela Yajaira; Cortés-Hernández, Dora Alicia; Escobedo-Bocardo, José Concepción; Almanza-Robles, José Manuel; Sánchez-Fuentes, Héctor Javier; Jasso-Terán, Argentina; De León-Prado, Laura Elena; Méndez-Nonell, Juan; Hurtado-López, Gilberto Francisco

    2017-01-01

    In this study, the Mg 1−x Zn x Fe 2 O 4 nanoparticles (x=0–0.9) were prepared by sol-gel method. These ferrites exhibit an inverse spinel structure and the lattice parameter increases as the substitution of Zn 2+ ions is increased. At lower Zn content (0.1≤x≤0.5), saturation magnetization (Ms) increases, while it decreases at higher Zn content (x≥6). The remnant magnetization (0.17–2.0 emu/g) and coercive field (6.0–60 Oe) indicate a ferrimagnetic behavior. The average core diameter of selected ferrites is around 15 nm and the nanoparticles morphology is quasi spherical. The heating ability of some Mg 0.9 Zn 0.1 Fe 2 O 4 and Mg 0.7 Zn 0.3 Fe 2 O 4 aqueous suspensions indicates that the magnetic nanoparticles can increase the medium temperature up to 42 °C in a time less than 10 min - Highlights: • Magnetic nanoparticles of Mg 1−x Zn x Fe 2 O 4 were synthesized by sol-gel method. • Nanoparticles showing a single spinel crystalline structure were obtained. • Aqueous suspensions of Mg 0.7 Zn 0.3 Fe 2 O 4 and Mg 0.9 Zn 0.1 Fe 2 O 4 show heating ability.

  4. Magnesium and Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ferda Özdemir

    2004-03-01

    Full Text Available Osteoporosis (OP is a condition of bone fragility resulting from micro-architectural deterioration and decreased bone mass. OP depends on the interaction of genetic, hormonal, environmental and nutritional factors. Chronic low intakes of vitamin D and possibly magnesium, zinc, fluoride and vitamins K, B12, B6 and folic acid may predispose to osteoporosis. Magnesium is a mineral needed by every cell of your body. It helps maintain normal muscle and nerve function, keeps heart rhythm steady, and bones strong. Mg serves as co-factors for enzymes that help build bone matrix. Magnesium deficiency occurs due to excessive loss of magnesium in urine, gastrointestinal system disorders that cause a loss of magnesium or limit magnesium absorption, or a chronic low intake of magnesium. Signs of magnesium deficiency include confusion, disorientation, loss of appetite, depression, muscle contractions and cramps, tingling, numbness, abnormal heart rhythms, coronary spasm, and seizures. Magnesium deficiency alters calcium metabolism and the hormones that regulates calcium. Several studies have suggested that magnesium supplementation may improve bone mineral density and prevent fractures.

  5. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery**

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  6. Structural and magnetic properties correlated with cation distribution of Mo-substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Abd-Elkader, Omar H. [Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Electron Microscope and Thin Films Department, National Research Center (NRC), El-Behooth Street, Dokki, Cairo 12622 (Egypt)

    2014-11-15

    Mo-substituted cobalt ferrite nanoparticles; CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by a one-step solution combustion synthesis technique. The reactants were metal nitrates and glycine as a fuel. The samples were characterized using an X-ray diffraction (XRD), a transmission electron microscope (TEM) and a vibrating sample magnetometer (VSM). XRD analysis revealed a pure single phase of cubic spinel ferrites for all samples with x up to 0.3. The lattice parameter decreases with Mo{sup 6+} substitution linearly up to x=0.15, then nonlinearly for x≥0.2. Rietveld analysis and saturation magnetization (M{sub s}) revealed that Mo{sup 6+} replaced Fe{sup 3+} in the tetrahedral A-sites up to x=0.15, then it replaced Fe{sup 3+} in both A-sites and B-sites for x≥0.2. The saturation magnetization (M{sub s}) increases with increasing Mo{sup 6+} substitution up to x=0.15 then decreases. The crystallite size decreased while the microstrain increased with increasing Mo{sup 6+} substitution. Inserting Mo{sup 6+} produces large residents of defects and cation vacancies. - Highlights: • Nano-sized Mo-substituted cobalt ferrite CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by solution combustion. • The change in M{sub s} with increasing Mo-substitution was investigated. • The cations distributions of ferrites were obtained from Rietveld analysis. • Inserting Mo{sup 6+} produces large residents of defects and cation vacancies.

  7. Low-Temperature Aging of Delta-Ferrite in 316L SS Welds; Changes in Mechanical Properties and Etching Properties

    Science.gov (United States)

    Abe, Hiroshi; Shimizu, Keita; Watanabe, Yutaka

    Thermal aging embrittlement of LWR components made of stainless cast (e.g. CF-8 and CF-8M) is a potential degradation issue, and careful attention has been paid on it. Although welds of austenitic stainless steels (SSs) have γ-δ duplex microstructure, which is similar to that of the stainless cast, examination on thermal aging characteristics of the SS welds is very limited. In order to evaluate thermal aging behavior of weld metal of austenitic stainless steel, the 316L SS weld metal has been prepared and changes in mechanical properties and in etching properties at isothermal aging at 335°C have been investigated. The hardness of the ferrite phase has increased with aging, while the hardness of austenite phase has stayed same. It has been suggested that spinodal decomposition has occurred in δ-ferrite by the 335°C aging. The etching rates of δ-ferrite at immersion test in 5wt% hydrochloric acid solution have been also investigated using an AFM technique. The etching rate of ferrite phase has decreased consistently with the increase in hardness of ferrite phase. It has been thought that this characteristic is also caused by spinodal decomposition of ferrite into chromium-rich (α') and iron-rich (α).

  8. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    Science.gov (United States)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  9. Preparation of porous magnesium oxide foam and study on its enrichment of uranium

    Science.gov (United States)

    Wang, Yunsheng; Chen, Yuantao; Liu, Chen; Yu, Fang

    2018-06-01

    Herein, we prepared porous magnesium oxide (MP-MgO) by in situ carbonization and using Mg(NO3)2 as precursor along with P123 as soft template. The BET surface area, and total pore volume of MP-MgO were found to be 14.76 m2 g, 0.15 cm3 g-1, respectively. The adsorption behavior of U (Ⅵ) by the porous MgO was studied by static adsorption experiments, and also the effects of adsorption time, pH of wastewater and U (Ⅵ) concentration were discussed. The results indicated that the optimum pH for MP-MgO was 3.0-4.5, the removal of uranium in this case was mainly due to surface complexation. Through the study, we found that the adsorption capacity of MP-MgO for uranium was more than 2500 mg g-1, the adsorption equilibrium time was about 150 min. Moreover, the kinetic study showed that the process followed the pseudo-first-order model, and the adsorption process was spontaneous and endothermic.

  10. Characterization of Austempered Ferritic Ductile Iron

    Science.gov (United States)

    Dakre, Vinayak S.; Peshwe, D. R.; Pathak, S. U.; Likhite, A. A.

    2018-04-01

    The ductile iron (DI) has graphite nodules enclose in ferrite envelop in pearlitic matrix. The pearlitic matrix in DI was converted to ferritic matrix through heat treatment. This heat treatment includes austenitization of DI at 900°C for 1h, followed by furnace cooling to 750°C & hold for 1h, then again furnace cooling to 690°C hold for 2h, then samples were allowed to cool in furnace. The new heat treated DI has graphite nodules in ferritic matrix and called as ferritic ductile iron (FDI). Both DIs were austenitized at 900°C for 1h and then quenched into salt bath at 325°C. The samples were soaked in salt bath for 60, 120, 180, 240 and 300 min followed by air cooling. The austempered samples were characterized with help of optical microscopy, SEM and X-ray diffraction analysis. Austempering of ferritic ductile iron resulted in finer ausferrite matrix as compared to ADI. Area fraction of graphite, ferrite and austenite were determining using AXIOVISION-SE64 software. Area fraction of graphite was more in FDI than that of as cast DI. The area fraction of graphite remains unaffected due to austempering heat treatment. Ausferritic matrix coarsened (feathered) with increasing in austempering time for both DI and FDI. Bulk hardness test was carried on Rockwell Hardness Tester with load of 150 kgf and diamond indenter. Hardness obtained in as cast DI is 28 HRC which decreased to 6 HRC in FDI due conversion of pearlitic matrix to ferritic matrix. Hardness is improved by austempering process.

  11. Preparation of nickel ferrite/carbon nanotubes composite by microwave irradiation technique for use as catalyst in photo-fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Foletto, E.L.; Rigo, C.; Severo, E.C.; Mazutti, M.A.; Dotto, G.L.; Jahn, S.L.; Sales, J.C. [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Chiavone-Filho, O. [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil); Gundel, A.; Lucchese, M. [Universidade Federal do Pampa (UNIPAMPA), Bage, RS (Brazil)

    2016-07-01

    Full text: Nickel ferrite/multi-walled carbon nanotubes (NiFe2O4/MWCNTs) composite has been rapidly synthesized via microwave irradiation technique. The structural properties of the formed product was investigated by X-ray diffraction (XRD), N2 adsorption/desorption isotherms, thermogravimetric analysis (TGA), Raman spectroscopy and, scanning electron microscopy (SEM). The catalytic behavior of composite material was evaluated by the degradation of Amaranth dye in the photo-Fenton reaction under visible light irradiation. The overall results showed that the prepared composite was successfully synthesized, demonstrating good performance in the dye degradation, with higher degradation rate compared to the NiFe2O4. The high efficiency in dye degradation can be attributed to synergism between NiFe2O4 and MWCNTs. Therefore, NiFe2O4/MWCNTs composite can be used as promising photo-Fenton catalyst to degrade Amaranth dye from aqueous solutions. (author)

  12. Magnetic Properties of Copper Doped Nickel Ferrite Nanoparticles Synthesized by Co Precipitation Method

    Science.gov (United States)

    Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan

    2018-02-01

    Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.

  13. Heat generation ability in AC magnetic field of nano MgFe2O4-based ferrite powder prepared by bead milling

    International Nuclear Information System (INIS)

    Hirazawa, Hideyuki; Aono, Hiromichi; Naohara, Takashi; Maehara, Tsunehiro; Sato, Mitsunori; Watanabe, Yuji

    2011-01-01

    Nanosized MgFe 2 O 4 -based ferrite powder having heat generation ability in an AC magnetic field was prepared by bead milling and studied for thermal coagulation therapy applications. The crystal size and the particle size significantly decreased by bead milling. The heat generation ability in an AC magnetic field improved with the milling time, i.e. a decrease in crystal size. However, the heat generation ability decreased for excessively milled samples with crystal sizes of less than 5.5 nm. The highest heat ability (ΔT=34 o C) in the AC magnetic field (370 kHz, 1.77 kA/m) was obtained for fine MgFe 2 O 4 powder having a ca. 6 nm crystal size (the samples were milled for 6-8 h using 0.1 mm φ beads). The heat generation of the samples was closely related to hysteresis loss, a B-H magnetic property. The reason for the high heat generation properties of the samples milled for 6-8 h using 0.1 mm φ beads was ascribed to the increase in hysteresis loss by the formation of a single domain. Moreover, the improvement in heating ability was obtained by calcination of the bead-milled sample at low temperature. In this case, the maximum heat generation (ΔT=41 o C) ability was obtained for a ca. 11 nm crystal size sample was prepared by crystal growth during the sample calcination. On the other hand, the ΔT value for Mg 0.5 Ca 0.5 Fe 2 O 4 was synthesized using a reverse precipitation method decreased by bead milling. - Research Highlights: →The crystal and particle size for MgFe 2 O 4 based ferrite were decreased by bead milling. →The highest heat ability was obtained for MgFe 2 O 4 having a ca. 6 nm crystal size. →This high heat generation ability was ascribed to the increase in hysteresis loss. →Hysteresis loss was increased by the formation of a single domain.

  14. Ferrite measurements for SNS accelerating cavities

    International Nuclear Information System (INIS)

    Bendall, R.G.; Church, R.A.

    1979-03-01

    The RF system for the SNS has six double accelerating cavities each containing seventy ferrite toroids. Difficulties experienced in obtaining toroids to the required specifications are discussed and the two toroid test cavity built to test those supplied is described. Ferrite measurements are reported which were undertaken to measure; (a) μQf as a function of frequency and RF field level and (b) bias current as a function of frequency for different ranges of ferrite permeability μ. (U.K.)

  15. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications.

    Science.gov (United States)

    Dezfuli, Sina Naddaf; Huan, Zhiguang; Mol, Arjan; Leeflang, Sander; Chang, Jiang; Zhou, Jie

    2017-10-01

    The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the composites, based on the hypothesis that the silicon- and magnesium-containing ceramic could protect magnesium from fast corrosion and at the same time stimulate cell proliferation. Methods to prepare composites with integrated microstructures - a prerequisite to achieve controlled biodegradation were developed. A systematic experimental approach was taken in order to elucidate the in vitro biodegradation mechanisms and kinetics of the composites. It was found that the composites with 20-40% homogenously dispersed bredigite particles, prepared from powders, could indeed significantly decrease the degradation rate of magnesium by up to 24 times. Slow degradation of the composites resulted in the retention of the mechanical integrity of the composites within the strength range of cortical bone after 12days of immersion in a cell culture medium. Cell attachment, cytotoxicity and bioactivity tests confirmed the stimulatory effects of bredigite embedded in the composites on the attachment, viability and differentiation of bone marrow stromal cells. Thus, the multiple benefits of adding bredigite to magnesium in enhancing degradation behavior, mechanical properties, biocompatibility and bioactivity were obtained. The results from this research showed the excellent potential of the bredigite-containing composites for bone implant applications, thus warranting further in vitro and in vivo research. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Two-stage preparation of magnetic sorbent based on exfoliated graphite with ferrite phases for sorption of oil and liquid hydrocarbons from the water surface

    Science.gov (United States)

    Pavlova, Julia A.; Ivanov, Andrei V.; Maksimova, Natalia V.; Pokholok, Konstantin V.; Vasiliev, Alexander V.; Malakho, Artem P.; Avdeev, Victor V.

    2018-05-01

    Due to the macropore structure and the hydrophobic properties, exfoliated graphite (EG) is considered as a perspective sorbent for oil and liquid hydrocarbons from the water surface. However, there is the problem of EG collection from the water surface. One of the solutions is the modification of EG by a magnetic compound and the collection of EG with sorbed oil using the magnetic field. In this work, the method of the two-stage preparation of exfoliated graphite with ferrite phases is proposed. This method includes the impregnation of expandable graphite in the mixed solution of iron (III) chloride and cobalt (II) or nickel (II) nitrate in the first stage and the thermal exfoliation of impregnated expandable graphite with the formation of exfoliated graphite containing cobalt and nickel ferrites in the second stage. Such two-stage method makes it possible to obtain the sorbent based on EG modified by ferrimagnetic phases with high sorption capacity toward oil (up to 45-51 g/g) and high saturation magnetization (up to 42 emu/g). On the other hand, this method allows to produce the magnetic sorbent in a short period of time (up to 10 s) during which the thermal exfoliation is carried out in the air atmosphere.

  17. Comparative Cytogenetic Study on the Toxicity of Magnetite and Zinc Ferrite Nanoparticles in Sunflower Root Cells

    Science.gov (United States)

    Foca-nici, Ecaterina; Capraru, Gabriela; Creanga, Dorina

    2010-12-01

    In this experimental study the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of Helianthus annuus cultivated in the presence of different volume fractions of magnetic nanoparticle suspensions, ranging between 20 and 100 microl/l. The aqueous magnetic colloids were prepared from chemically co-precipitated ferrites coated in sodium oleate. Tissue samples from the root meristeme of 2-3 day old germinated seeds were taken to prepare microscope slides following Squash method combined with Fuelgen techniques. Microscope investigation (cytogenetic tests) has resulted in the evaluation of mitotic index and chromosomal aberration index that appeared diminished and respectively increased following the addition of magnetic nanoparticles in the culture medium of the young seedlings. Zinc ferrite toxic influence appeared to be higher than that of magnetite, according to both cytogenetic parameters.

  18. Physicochemical, spectroscopic and electrochemical characterization of magnesium ion-conducting, room temperature, ternary molten electrolytes

    Science.gov (United States)

    Narayanan, N. S. Venkata; Ashok Raj, B. V.; Sampath, S.

    Room temperature, magnesium ion-conducting molten electrolytes are prepared using a combination of acetamide, urea and magnesium triflate or magnesium perchlorate. The molten liquids show high ionic conductivity, of the order of mS cm -1 at 298 K. Vibrational spectroscopic studies based on triflate/perchlorate bands reveal that the free ion concentration is higher than that of ion-pairs and aggregates in the melt. Electrochemical reversibility of magnesium deposition and dissolution is demonstrated using cyclic voltammetry and impedance studies. The transport number of Mg 2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.40. Preliminary studies on the battery characteristics reveal good capacity for the magnesium rechargeable cell and open up the possibility of using this unique class of acetamide-based room temperature molten electrolytes in secondary magnesium batteries.

  19. Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route

    International Nuclear Information System (INIS)

    Vinaykumar, R.; Mazumder, R.; Bera, J.

    2017-01-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo 1.5 Ti 1.5 Fe 9 O 19 ) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO 2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δ µ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route. - Highlights: • SrCo 1.5 Ti 1.5 Fe 9 O 19 ferrite was successfully prepared by sol–gel combustion process. • Sol-gel synthesis of the ferrite using titanyl nitrate has been reported first time. • Phase formation was easier in the titanyl nitrate based sol-gel process. • Better magneto-dielectric properties were observed in sol-gel processed ferrite.

  20. Magnesium borohydride: from hydrogen storage to magnesium battery.

    Science.gov (United States)

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    Science.gov (United States)

    Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.

    2017-03-01

    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.

  2. Preparation and characterization of polyol assisted ultrafine Cu–Ni–Mg–Ca mixed ferrite via co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Boobalan, T. [Park College of Engineering and Technology, Coimbatore (India); Pavithradevi, S. [Department of Physics, Government College of Technology, Coimbatore (India); Suriyanarayanan, N., E-mail: nsuri22@gmail.com [Department of Physics, PSG Polytechnic College, Coimbatore (India); Manivel Raja, M. [Defence Metallurgical Research Laboratory, Ministry of Defence, Govt. of India, Hyderabad (India); Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Dr. NGP Institute of Technology, Coimbatore (India)

    2017-04-15

    Nanocrystalline spinel ferrite of composition Cu{sub 0.2}Ni{sub 0.2}Mg{sub 0.2}Ca{sub 0.4}Fe{sub 2}O{sub 4} is synthesized by wet hydroxyl co-precipitation method in ethylene glycol as chelating agent and sodium hydroxide as precipitator at pH 8. Ethylene glycol is utilized as the medium which serves as the dissolvable and in addition a complexing specialist. The synthesized particles are annealed at various temperatures. Thermogravimetric investigation affirms that at 280 °C ethylene glycol is dissipated totally and stable phase arrangement happens over 680 °C. FTIR spectra of as synthesized and annealed at 1050 °C recorded between 400 cm{sup −1} and 4000 cm{sup −1}. Structural characterizations of all the samples are carried out by X-ray diffraction (XRD) technique. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) affirm that the particles are spherical and cubic shape with the crystallite size of 12 nm to 32 nm. Magnetic measurements are performed utilizing vibrating sample magnetometer at room temperature. - Highlights: • Polyol improves purity of the spinel ferrite. • TG curves confirm the single phase ferrite is obtained above 680 °C. • Super paramagnetic behavior is seen at lower annealing temperature. • Soft ferromagnetic behavior is obtained at 1050 °C.

  3. Antiresonance in (Ni,Zn) ferrite-carbon nanofibres nanocomposites

    International Nuclear Information System (INIS)

    Fernández-García, Lucía; Suárez, Marta; Luis Menéndez, Jose; Torrecillas, Ramón; Pecharromán, Carlos; Peretyagin, Pavel Y; Petzelt, Jan; Savinov, Maxim; Frait, Zdenek

    2015-01-01

    (NiZn)Fe 2 O 4 carbon nanofiber (CNF) nanocomposites with concentrations up to 5% in volume of CNFs were prepared by traditional ceramic processing and a subsequent spark plasma sintering at 860 °C with a holding time of 1 min. Low-frequency conductivity and magnetic properties were studied, revealing the appearance of a ferromagnetic antiresonance when a certain value of conductivity is reached due to the introduction of a conductive second-phase CNF in the ferromagnetic matrix (ferrite), thereby opening a route to induce magnetically tunable transparency in these composites. (paper)

  4. Microstructure and magnetic properties of MFe2O4 (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    Science.gov (United States)

    Wang, Wei; Ding, Zui; Zhao, Xiruo; Wu, Sizhu; Li, Feng; Yue, Ming; Liu, J. Ping

    2015-05-01

    Three kinds of spinel ferrite nanocrystals, MFe2O4 (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH4) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (Ms). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  5. Micromagnetic simulations of spinel ferrite particles

    International Nuclear Information System (INIS)

    Dantas, Christine C.; Gama, Adriana M.

    2010-01-01

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M 1 - n Zn n Fe 2 O 4 (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={Fe, Mn, Co, Ni, Mg, Cu }; (b) for n=0.1: M = {Fe, Mg} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {Mg, Cu} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe 3 O 4 (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe 3 O 4 one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  6. Microwave absorbing properties of rare-earth elements substituted W-type barium ferrite

    International Nuclear Information System (INIS)

    Wang Jing; Zhang Hong; Bai Shuxin; Chen Ke; Zhang Changrui

    2007-01-01

    W-type barium ferrites Ba(MnZn) 0.3 Co 1.4 R 0.01 Fe 15.99 O 27 with R=Dy, Nd and Pr were prepared by chemical coprecipitation method. Effects of rare-earth elements (RE) substitution on microstructural and electromagnetic properties were analyzed. The results show that a small amount of RE 3+ ions can replace Fe 3+ ions and adjust hyperfine parameters. An obvious increase in natural resonance frequency and high frequency relaxation, and a sharp decrease for complex permittivity have been observed. Furthermore, the matching thickness and the reflection loss (RL) of one-layer ferrite absorber were calculated. It reveals that thin and broad-band can be obtained by RE-substitution. But only when the magnetic moment of RE 3+ is higher than that of Fe 3+ , can substitution be effective for higher RL. Dy-substituted ferrite composite has excellent microwave absorption properties. The frequency (with respect to -10 dB RL) begins from 9.9 GHz, and the bandwidth reaches far more than 8.16 GHz. The peak value is -51.92 dB at a matching thickness of 2.1 mm

  7. Effect of chromium substitution on the dielectric properties of mixed Ni-Zn ferrite prepared by WOWS sol–gel technique

    International Nuclear Information System (INIS)

    Ashtar, M.; Munir, A.; Anis-ur-Rehman, M.; Maqsood, A.

    2016-01-01

    Graphical abstract: Variation of AC conductivity (σ AC ) as a function of natural log of angular frequency (lnω) for Ni 0.5 Zn 0.5 Fe 2-x Cr x O 4 nanoferrites at room temperature. - Highlights: • Cr doped mixed Ni-Zn ferrites were successfully synthesized by a newly developed WOWS sol gel technique. • The specific surface area and specific surface area to volume ratio increased with decrease in particle size. • The resonance peaks appeared in dielectric loss graphs, shifting towards low frequency with the increase in Cr concentration. • The prepared samples have the lowest values of the dielectric constant. • The dielectric constant were observed to be inversely proportional to square root of the AC resistivity. - Abstract: Cr +3 doped Ni-Zn nanoferrite samples with composition Ni 0.5 Zn 0.5 Fe 2-x Cr x O 4 (x = 0.1, 0.2, 0.3, 0.4) were synthesized With Out Water and Surfactant (WOWS) sol-gel technique. The structural, morphological and dielectric properties of the samples were investigated. The lattice constant, crystallite size, theoretical density and porosity of each sample were obtained from X-ray diffraction (XRD) data. The specific surface area and specific surface area to volume ratio increased with the decrease in the size of Cr +3 doped Ni-Zn ferrite nanoparticles, as the concentration of Cr +3 increased. The SEM analysis revealed that the particles were of nano size and of spherical shape. The dielectric parameters such as dielectric constant (ε′) and dielectric loss (tanδ) of all the samples as a function of frequency at room temperature were measured. The AC conductivity (σ AC ) was determined from the dielectric parameters, which showed increasing trend with the rise in frequency.

  8. Effect of weld metal properties on fatigue crack growth behaviour of gas tungsten arc welded AISI 409M grade ferritic stainless steel joints

    International Nuclear Information System (INIS)

    Shanmugam, K.; Lakshminarayanan, A.K.; Balasubramanian, V.

    2009-01-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on fatigue crack growth behaviour of the gas tungsten arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single 'V' butt welded joints. Centre cracked tensile (CCT) specimens were prepared to evaluate fatigue crack growth behaviour. Servo hydraulic controlled fatigue testing machine was used to evaluate the fatigue crack growth behaviour of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength, hardness and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  9. Simulation of non-linear coaxial line using ferrite beads

    International Nuclear Information System (INIS)

    Furuya, S.; Matsumoto, H.; Tachi, K.; Takano, S.; Irisawa, J.

    2002-01-01

    A ferrite sharpener is a non-linear coaxial line using ferrite beads, which produces high-voltage, high-dV/dt pulses. We have been examining the characteristics of ferrite sharpeners experimentally, varying various parameters. Also we have made the simulation of the ferrite sharpener and compared the predictions with the experimental results in detail to analyze the characteristics of the sharpener. In this report, calculating the magnetization M of the ferrite bead, we divide the bead into n sections radially instead of adopting M at the average radius in the previous report. (author)

  10. Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, A.V., E-mail: knyazevav@gmail.com [N.I. Lobachevsky State University of Nizhni Novgorod, Gagarin Prospekt 23/2, 603950 Nizhni Novgorod (Russian Federation); Zakharchuk, I.; Lähderanta, E. [Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland); Baidakov, K.V.; Knyazeva, S.S. [N.I. Lobachevsky State University of Nizhni Novgorod, Gagarin Prospekt 23/2, 603950 Nizhni Novgorod (Russian Federation); Ladenkov, I.V. [Joint-stock Company “Research and Production Company “Salut”, Nizhni Novgorod (Russian Federation)

    2017-08-01

    Highlights: • Ni-Zn and Ni-Zn-Co ferrite powders were prepared by the solid-state reaction at 1073 K. • The room temperature saturation magnetizations are 59.7 emu/g for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and 57.1 emu/g for Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4}. • The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. • The temperature dependences of magnetization exhibit large spin frustration and spin-glass-like behavior. - Abstract: Ni-Zn and Ni-Zn-Co ferrite powders with nominal compositions Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4} were prepared by the solid-state reaction synthesis with periodic regrinding during the calcination at 1073 K. The structure of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4} was refined assuming space group F d-3m. Scanning electron microscopy revealed the average sizes of the crystalline ferrite particles are 130–630 nm for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and 140–350 nm for Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4}. The room temperature saturation magnetizations are 59.7 emu/g for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and 57.1 emu/g for Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4}. The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. The Curie temperature tends to increase upon Zn substitution by Co, as well. The temperature dependences of magnetization measured using zero-field cooled and field cooled protocols exhibit large spin frustration and spin-glass-like behavior.

  11. Magnesium in pregnancy.

    Science.gov (United States)

    Dalton, Lynne M; Ní Fhloinn, Deirdre M; Gaydadzhieva, Gergana T; Mazurkiewicz, Ola M; Leeson, Heather; Wright, Ciara P

    2016-09-01

    Magnesium deficiency is prevalent in women of childbearing age in both developing and developed countries. The need for magnesium increases during pregnancy, and the majority of pregnant women likely do not meet this increased need. Magnesium deficiency or insufficiency during pregnancy may pose a health risk for both the mother and the newborn, with implications that may extend into adulthood of the offspring. The measurement of serum magnesium is the most widely used method for determining magnesium levels, but it has significant limitations that have both hindered the assessment of deficiency and affected the reliability of studies in pregnant women. Thus far, limited studies have suggested links between magnesium inadequacy and certain conditions in pregnancy associated with high mortality and morbidity, such as gestational diabetes, preterm labor, preeclampsia, and small for gestational age or intrauterine growth restriction. This review provides recommendations for further study and improved testing using measurement of red cell magnesium. Pregnant women should be counseled to increase their intake of magnesium-rich foods such as nuts, seeds, beans, and leafy greens and/or to supplement with magnesium at a safe level. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Preparation and characterization of poly(glycidyl methacrylate) grafted from magnesium hydroxide particles via SI-ATRP

    International Nuclear Information System (INIS)

    Liu Jianhui; Feng Na; Chang Suqin; Kang Hongliang

    2012-01-01

    In order to improve the compatibility of magnesium hydroxide particles [Mg(OH) 2 ] and polymer matrix, poly(glycidyl methacrylate) (PGMA) grafted from magnesium hydroxide particles were synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP). In this work, two approaches for the immobilization of ATRP initiator on the magnesium hydroxide particles surface were compared and selected. The density of initiator was significantly increased by the method of introducing more hydroxyl groups via ATRP of 2-hydroxyethyl methacrylate (HEMA) on the surface. The percentage of bromine atom for the initiator-functionalized magnesium hydroxide particles [Mg(OH) 2 -g-PHEMA-Br] reached to 1.75%, compared to 0.48% for Mg(OH) 2 -Br determined by XPS analysis. The surface-initiated ATRP of glycidyl methacrylate (GMA) can be conducted in a controlled manner, as revealed by the linear kinetic plot, linear increase of number average molecular weight (M n ) with monomer conversions, and the relatively narrow molecular weight distributions (M w /M n ∼ 1.4) of PGMA chains. The percentage of grafting PG (%) and the thickness of the grafted polymer layer increased with the increasing of polymerization time and reached to 116.6% and 197.6 nm after 300 min respectively. As for the polymerization with different initial monomer concentration, the number average molecular weights (M n ) and weight average molecular weights (M w ) of PGMA increased with the increasing of initial monomer concentration. TGA indicated that the initial decomposition temperature of Mg(OH) 2 -g-PHEMA-PGMA composite particles (253 °C) was much lower than that of unmodified magnesium hydroxide particles (337 °C).

  13. Preparation and characterization of poly(glycidyl methacrylate) grafted from magnesium hydroxide particles via SI-ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianhui [School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034 (China); Feng Na, E-mail: fengna12@163.com [School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034 (China); Chang Suqin [China Leather and Footwear Industry Research Institute, Beijing 100015 (China); Kang Hongliang [State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Material, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2012-06-01

    In order to improve the compatibility of magnesium hydroxide particles [Mg(OH){sub 2}] and polymer matrix, poly(glycidyl methacrylate) (PGMA) grafted from magnesium hydroxide particles were synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP). In this work, two approaches for the immobilization of ATRP initiator on the magnesium hydroxide particles surface were compared and selected. The density of initiator was significantly increased by the method of introducing more hydroxyl groups via ATRP of 2-hydroxyethyl methacrylate (HEMA) on the surface. The percentage of bromine atom for the initiator-functionalized magnesium hydroxide particles [Mg(OH){sub 2}-g-PHEMA-Br] reached to 1.75%, compared to 0.48% for Mg(OH){sub 2}-Br determined by XPS analysis. The surface-initiated ATRP of glycidyl methacrylate (GMA) can be conducted in a controlled manner, as revealed by the linear kinetic plot, linear increase of number average molecular weight (M{sub n}) with monomer conversions, and the relatively narrow molecular weight distributions (M{sub w}/M{sub n} {approx} 1.4) of PGMA chains. The percentage of grafting PG (%) and the thickness of the grafted polymer layer increased with the increasing of polymerization time and reached to 116.6% and 197.6 nm after 300 min respectively. As for the polymerization with different initial monomer concentration, the number average molecular weights (M{sub n}) and weight average molecular weights (M{sub w}) of PGMA increased with the increasing of initial monomer concentration. TGA indicated that the initial decomposition temperature of Mg(OH){sub 2}-g-PHEMA-PGMA composite particles (253 Degree-Sign C) was much lower than that of unmodified magnesium hydroxide particles (337 Degree-Sign C).

  14. Defect induced modification of structural, topographical and magnetic properties of zinc ferrite thin films by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Lisha [Department of Physics, Cochin University of Science and Technology, Cochin 682022 (India); Inter University Accelerator Center, New Delhi 110067 (India); Joy, P.A. [National Chemical Laboratory, Pune (India); Vijaykumar, B. Varma; Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University (Singapore); Anantharaman, M.R., E-mail: mraiyer@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022 (India)

    2017-04-01

    Highlights: • Zinc ferrite films exhibited room temperature ferrimagnetic property. • On ion irradiation amorphisation of films were observed. • The surface morphology undergoes changes with ion irradiation. • The saturation magnetisation decreases on ion irradiation. - Abstract: Swift heavy ion irradiation provides unique ways to modify physical and chemical properties of materials. In ferrites, the magnetic properties can change significantly as a result of swift heavy ion irradiation. Zinc ferrite is an antiferromagnet with a Neel temperature of 10 K and exhibits anomalous magnetic properties in the nano regime. Ion irradiation can cause amorphisation of zinc ferrite thin films; thus the role of crystallinity on magnetic properties can be examined. The influence of surface topography in these thin films can also be studied. Zinc ferrite thin films, of thickness 320 nm, prepared by RF sputtering were irradiated with 100 MeV Ag ions. Structural characterization showed amorphisation and subsequent reduction in particle size. The change in magnetic properties due to irradiation was correlated with structural and topographical effects of ion irradiation. A rough estimation of ion track radius is done from the magnetic studies.

  15. Microstructure and magnetic studies of Mg-Ni-Zn-Cu ferrites

    International Nuclear Information System (INIS)

    Bachhav, S.G.; Patil, R.S.; Ahirrao, P.B.; Patil, A.M.; Patil, D.R.

    2011-01-01

    Highlights: → Ni x Mg 0.5-x Cu 0.1 Zn 0.4 Fe 2 O 4 ferrite shows spinel structure. → Lattice parameter, X-ray density, porosity increase with increase in Ni content. → The IR spectra show tetrahedral and octahedral complexes. → Initial permeability remains constant with temperature and drops to zero at certain temperature which is in close agreement with Curie temperature. → The Curie temperature shows increasing trend with Ni content. - Abstract: Soft Mg-Ni-Zn-Cu spinel ferrites having general chemical formula Ni x Mg 0.5-x Cu 0.1 Zn 0.4 Fe 2 O 4 (where x 0.1, 0.2, 0.3, 0.4 and 0.5) were prepared by standard double sintering ceramic method. The samples were characterized by X-ray diffraction at room temperature. The X-ray diffraction (XRD) study revealed that lattice parameter decreases with increase in Ni content, resulting in a reduction in lattice strain. The electrical and magnetic properties of the synthesized ferrites have been investigated as a function of temperature. The variation of initial permeability and AC susceptibility with temperature exhibits normal ferrimagnetic behavior. The variation of initial permeability with frequency is studied. The Curie temperature (T C ) in the present work was determined from initial permeability and AC susceptibility. The Curie temperature increases with Ni content.

  16. Influence of the magnetic dead layer thickness of Mg-Zn ferrites nanoparticle on their magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, H.M. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Ali, I.A.; Azzam, A. [Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Sattar, A.A. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    2017-02-15

    Nanoparticle ferrite with chemical formula Mg{sub (1−x)}Zn{sub x}Fe{sub 2}O{sub 4} (where x=0.0, 0.2, 0.4, 0.6, 0.8 and 1) were prepared by sol-gel technique. Single phase structure of these ferrites was confirmed using X-ray diffraction (XRD). Transmission Electron Microscope (TEM) showed that the particle size of the samples in the range of (5.7–10.6 nm). The hysteresis studies showed superparamagnetic behaviour at room temperature. The magnetization behaviour with Zn-content is expressed in the light of Yafet-Kittel angles. The dead layer thickness (t) was calculated and its effect on the magnetization and magnetic losses was debated. The Specific Absorption Rate (SAR) in an alternating magnetic field with frequency 198 kHz for these ferrites has been studied. It is found that, the thickness of magnetic dead layer of the surface of the materials has greatly affected the SAR value of the samples. - Highlights: • Synthesis of Mg-Zn nanoparticle ferrite by sol-gel technique. • Methods of dead layer thickness calculation. • Magnetic behaviour explanation. • Relation between the Specific Absorption Rate, dead layer thickness and particle size.

  17. Effects of calcium and magnesium on strontium distribution coefficients

    Science.gov (United States)

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.; Hemming, C.H.; Welhan, J.

    1997-01-01

    The effects of calcium and magnesium on the distribution of strontium between a surficial sediment and simulated wastewater solutions were measured as part of an investigation to determine strontium transport properties of surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experimental techniques were used to determine strontium linear sorption isotherms and distribution coefficients (K(d)'s) using simulated wastewater solutions prepared at pH 8.0??0.1 with variable concentrations of calcium and magnesium. Strontium linear sorption isotherm K(d)'s ranged from 12??1 to 85??3 ml/g, increasing as the concentration of calcium and magnesium decreased. The concentration of sorbed strontium and the percentage of strontium retained by the sediment were correlated to aqueous concentrations of strontium, calcium, and magnesium. The effect of these cation concentrations on strontium sorption was quantified using multivariate least-squares regression techniques. Analysis of data from these experiments indicates that increased concentrations of calcium and magnesium in wastewater discharged to waste disposal ponds at the INEL increases the availability of strontium for transport beneath the ponds by decreasing strontium sorption to the surficial sediment.

  18. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M.A. [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Uddin, M.M., E-mail: mohi@cuet.ac.bd [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Khan, M.N.I. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh); Chowdhury, F.U.-Z. [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Haque, S.M. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh)

    2017-02-15

    The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant. - Highlights: • Sn-substituted Ni-Zn ferrites with cubic spinel structure have been synthesized. • a{sub th} is calculated and well compared with a{sub expt}. • Dielectric unusual behavior has been successfully explained by the Rezlescu model. • Long τ (ns) is determined, can be utilized for memory and spintronics devices.

  19. Magnesium stannide as a high-capacity anode for magnesium-ion batteries

    Science.gov (United States)

    Nguyen, Dan-Thien; Song, Seung-Wan

    2017-11-01

    Driven by the limited global resources of lithium, magnesium metal batteries are considered as potential energy storage systems. The battery chemistry of magnesium metal anode, however, limits the selection of electrolytes, cathode materials and working temperature, making the realization of magnesium metal batteries complicated. Herein, we report the development of a new magnesium-insertion anode, magnesium stannide (Mg2Sn), and demonstrate reversible electrochemical Mg2+-extraction and insertion of Mg2Sn anode at 0.2 V versus Mg, delivering discharge capacity of 270 mAhg-1 in a half-cell with the electrolyte of PhMgCl/THF and enabling of room temperature magnesium-ion batteries with Mg2Sn anode combined with Mg-free oxide cathode and conventional-type electrolyte of Mg(TFSI)2/diglyme. The combination of Mg2Sn anode with various cathodes and electrolytes holds great promise for enabling room temperature magnesium-ion batteries.

  20. Effect of magnesium deficiency on renal magnesium and calcium transport in the rat.

    OpenAIRE

    Carney, S L; Wong, N L; Quamme, G A; Dirks, J H

    1980-01-01

    Recollection of micropuncture experiments were performed on acutely thyroparathyroidectomized rats rendered magnesium deficient by dietary deprivation. Urinary magnesium excretion fell from a control of 15 to 3% of the filtered load after magnesium restriction. The loop of Henle, presumably the thick ascending limb, was the major modulator for renal magnesium homeostasis. The transport capacity for magnesium, however, was less in deficient rats than control animals. Absolute magnesium reabsor...

  1. Oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Asbroeck, P. van.

    1976-10-01

    The publication gives the available data on the DTO2 dispersion-strengthened ferritic alloy developed at C.E.N./S.C.K. Mol, Belgium. DTO2 is a Fe-Cr-Mo ferritic alloy, strengthened by addition of titanium oxide and of titanium leading to the formation of Chi phase. It was developed for use as canning material for fast breeder reactors. (author)

  2. Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications

    International Nuclear Information System (INIS)

    Mukhtar, Muhammad Waqas; Irfan, Muhammad; Ahmad, Ishtiaq; Ali, Ihsan; Akhtar, Majid Niaz; Khan, Muhammad Azhar; Abbas, Ghazanfar; Rana, M.U.; Ali, Akbar; Ahmad, Mukhtar

    2015-01-01

    A series of single phase spinel ferrites having chemical formula Mg 0.5 Zn 0.5 Pr x Fe 2−x O 4 (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared using the sol–gel technique after sintering at 700 °C. The thermal decomposition behavior of an as prepared powder was investigated by means of DTA/TGA analyses. The sintered powders were then characterized by Fourier transform infrared spectroscope, X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscope and vibrating sample magnetometer. X-ray diffraction patterns confirm the single phase spinel structure of prepared ferrites without the presence of any impurity phase. The value of lattice parameter (a) increases with the increase of Pr contents (x) into the spinel lattice. The grain size estimated from electron microscope images is in the range of 2.75–5.4 µm which confirms the spinel crystalline nature of the investigated samples. The saturation magnetization (M s ) decreases whereas coercivity (H c ) increases with the increase of Pr contents (x). The measured parameters suggest that these materials are favorable for high frequency applications and as core materials. - Highlights: • Pr-substituted spinel ferrites synthesized by autocombustion route have been investigated. • The average grain size was in the range of 2.75–5.4 µm estimated by SEM technique. • The (M s ) decreases whereas (H c ) increases with the increase of Pr contents (x). • These parameters are favorable for high frequency applications and as core materials

  3. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    .... With the popularity of magnesium-based materials in the automotive, aerospace, electronics, and sports equipment industries, and its unique role as a lightweight, energy-saving and high-performance...

  4. Carbon coated magnesium oxide based amperometric glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.L.; Mello, J.M.M.; Fiori, M.A.; Duarte, G.W. [Universidade Comunitaria Regional de Chapeco (UNICHAPECO), SC (Brazil); Fernandes, S.C. [Instituto Federal Catarinense (IFC), Blumenau, SC (Brazil); Riella, H.G. [Centro Universitario Barriga Verde (UNIBAVE), Orleans, SC (Brazil); Anzolin, C.; Figueiro, A.; Grando, M.C. [Universidade Federal de Santa Catarina (UFSC), SC (Brazil)

    2016-07-01

    Full text: Diabetes is a serious disease that is harmful to human health since it is related to cardiovascular and stroke events. Since the first glucose oxidase (GOx) sensor, different approaches have been explored. Carbon was used to cover nano-magnesium oxide (MgO-C) forming a core-shell which was used to improve its biocompatibility and chemical stability for the preparation of GOx biosensor. MgO nanostructures have been prepared by calcination of the gel formed by the reaction of magnesium acetate tetrahydrate dissolved in cetyltrimethylammonium with the addition of tartaric acid solution. MgO-C nanostructures were obtained by heating MgO nanoparticles previously prepared together with glucose and PEG dissolved in an aqueous suspension. Reaction conditions such as concentration of magnesium precursor, temperature and aging time show important roles in the size, morphology and growth process of the final products. The core-shell structure was evidenced by SEM/FEG and XRD and showed that the product appeared to have morphological forms of nanowires. GOx was spread onto the surface of a modified carbon paste electrode (CPE) doped with MgO-C and the effect on the biosensing properties investigated by comparing the electrochemical properties of the proposed biosensor with bare and modified CPEs by cyclic voltammetry. The amount of modifier in CPE (5-75 weight% with respect to graphite) influences the peak current and the influence of different experimental parameters (enzyme percentage, pH solution and amperometric methods) was also investigated. The results demonstrate that the GOx retains its biocatalytic activity and that the bioelectrode modified can be a possible use for other nanotechnological purposes including biomedical ones. (author)

  5. Carbon coated magnesium oxide based amperometric glucose biosensor

    International Nuclear Information System (INIS)

    Silva, L.L.; Mello, J.M.M.; Fiori, M.A.; Duarte, G.W.; Fernandes, S.C.; Riella, H.G.; Anzolin, C.; Figueiro, A.; Grando, M.C.

    2016-01-01

    Full text: Diabetes is a serious disease that is harmful to human health since it is related to cardiovascular and stroke events. Since the first glucose oxidase (GOx) sensor, different approaches have been explored. Carbon was used to cover nano-magnesium oxide (MgO-C) forming a core-shell which was used to improve its biocompatibility and chemical stability for the preparation of GOx biosensor. MgO nanostructures have been prepared by calcination of the gel formed by the reaction of magnesium acetate tetrahydrate dissolved in cetyltrimethylammonium with the addition of tartaric acid solution. MgO-C nanostructures were obtained by heating MgO nanoparticles previously prepared together with glucose and PEG dissolved in an aqueous suspension. Reaction conditions such as concentration of magnesium precursor, temperature and aging time show important roles in the size, morphology and growth process of the final products. The core-shell structure was evidenced by SEM/FEG and XRD and showed that the product appeared to have morphological forms of nanowires. GOx was spread onto the surface of a modified carbon paste electrode (CPE) doped with MgO-C and the effect on the biosensing properties investigated by comparing the electrochemical properties of the proposed biosensor with bare and modified CPEs by cyclic voltammetry. The amount of modifier in CPE (5-75 weight% with respect to graphite) influences the peak current and the influence of different experimental parameters (enzyme percentage, pH solution and amperometric methods) was also investigated. The results demonstrate that the GOx retains its biocatalytic activity and that the bioelectrode modified can be a possible use for other nanotechnological purposes including biomedical ones. (author)

  6. Myth or Reality-Transdermal Magnesium?

    Science.gov (United States)

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  7. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-04-01

    Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.

  8. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Wenqian [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Chen, Zhi, E-mail: zchen0@gmail.com [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Zhu, Yuxiang [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin (China); Qin, Laishun, E-mail: qinlaishun@yeah.net [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Wang, Jiangying; Huang, Yuexiang [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China)

    2016-06-01

    This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO{sub 3} could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO{sub 3} by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

  9. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

    International Nuclear Information System (INIS)

    Cao, Wenqian; Chen, Zhi; Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng; Zhu, Yuxiang; Qin, Laishun; Wang, Jiangying; Huang, Yuexiang

    2016-01-01

    This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO_3 could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO_3 by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

  10. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide

    Science.gov (United States)

    Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.

    2017-06-01

    The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

  11. Low magnesium level

    Science.gov (United States)

    Low magnesium level is a condition in which the amount of magnesium in the blood is lower than normal. The medical ... that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, ...

  12. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    Science.gov (United States)

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  13. Anticorrosive magnesium hydroxide coating on AZ31 magnesium alloy by hydrothermal method

    International Nuclear Information System (INIS)

    Zhu Yanying; Wu Guangming; Xing Guangjian; Li Donglin; Zhao Qing; Zhang Yunhong

    2009-01-01

    Magnesium alloys are potential biodegradable biomaterials in orthopedic surgery. However, the rapid degradation rate has limited their application in biomedical field. A great deal of studies have been done to improve the resistance of magnesium alloys. In this article, An anticorrosive magnesium hydroxide coating with a thickness of approximately 100μm was formed on an AZ31 magnesium alloy by hydrothermal method. The morphology of the coatings were observed by an optical microscope and SEM. And the samples were soaked in hank's solution (37 deg. C) to investigate the corrosion resistance. Magnesium alloy AZ31 with magnesium hydroxide coatings present superior corrosion resistance than untreated samples.

  14. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  15. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  16. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Khairy

    2015-07-01

    Full Text Available Polyaniline–NiFe2O4 nanocomposites (PANI–NiFe2O4 with different contents of NiFe2O4 (2.5, 5 and 50 wt% were prepared via in situ chemical oxidation polymerization, while the nanoparticles nickel ferrite were synthesized by sol–gel method. The prepared samples were characterized using some techniques such as Fourier transforms infrared (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and thermogravimetric analysis (TGA. Moreover, the electrical conductivity and optical properties of the nanocomposites were investigated. Pure (PANI and the composites containing 2.5 and 5 wt% NiFe2O4 showed amorphous structures, while the one with 50 wt% NiFe2O4 showed a spinel crystalline structure. The SEM images of the composites showed different aggregations for the different nickel ferrite contents. FTIR spectra revealed to the formation of some interactions between the PANI macromolecule and the NiFe2O4 nanoparticles, while the thermal analyses indicated an increase in the composites stability for samples with higher NiFe2O4 nanoparticles contents. The electrical conductivity of PANI–NiFe2O4 nanocomposite was found to increase with the rise in NiFe2O4 nanoparticle content, probably due to the polaron/bipolaron formation. The optical absorption experiments illustrate direct transition with an energy band gap of Eg = 1.0 for PANI–NiFe2O4 nanocomposite.

  17. Transport properties of microwave sintered pure and glass added MgCuZn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Madhuri, W., E-mail: madhuriw12@gmail.com [School of Advanced Sciences, VIT University, Vellore 632 014 (India); Penchal Reddy, M.; Kim, Il Gon [Department of Physics, Changwon National University, Changwon 641 773 (Korea, Republic of); Rama Manohar Reddy, N. [Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa 516 227 (India); Siva Kumar, K.V. [Ceramic Composites Materials Laboratory, Sri Krishnadevaraya University, Anantapur 515 055 (India); Murthy, V.R.K. [Microwave Laboratory, IIT Madras, Chennai 600 036 (India)

    2013-07-01

    Highlights: • MgCuZn ferrite was successfully prepared by novel microwave sintering (MS) method. • The sintering temperature was notably reduced from 1150 °C to 950 °C for MS. • Temperature dependence of DC conductivity and AC conductivity are studied. • 1 wt% PBS glass added MS MgCuZn ferrite samples are suitable for core materials in multilayer chip inductors (MLCI). -- Abstract: A series of pure stoichiometric and 1 wt% lead borosilicate (PBS) glass added MgCuZn ferrite with the general formula Mg{sub 0.5}Cu{sub x}Zn{sub 0.5−x}Fe{sub 2}O{sub 4} with x = 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 were synthesized by microwave sintering technique. Single phase spinel structure is exhibited by the XRD patterns of these ferrites. DC and AC conductivity were investigated as a function of composition, temperature and frequency. DC conductivities were also estimated using the impedance spectroscopy analysis of Cole–Cole plots. The DC conductivities thus obtained are in good agreement with the experimental results. All the investigated samples exhibited two regions of conductivity one in the low temperature and the second in the high temperature region. It is observed that PBS glass added samples have lower conductivities than pure samples. Due to their lower conductivities and sintering temperatures the 1 wt% PBS glass added samples are suitable for multilayer chip inductor (MLCI) and high definition TV deflection yoke material application.

  18. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    International Nuclear Information System (INIS)

    Wang, Shanshan; Zhang, Chao; Guo, Ruisong; Liu, Lan; Yang, Yuexia; Li, Kehang

    2015-01-01

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m 1/2 . - Abstract: The effects of substitution of Ba 2+ by Sr 2+ on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba 1−x Sr x Fe 12 O 19 , x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m 1/2 for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase

  19. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  20. Structural, magnetic and electrical characterization of Mg–Ni nano-crystalline ferrites prepared through egg-white precursor

    Energy Technology Data Exchange (ETDEWEB)

    Gabal, M.A., E-mail: mgabalabdonada@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al Angari, Y.M. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Zaki, H.M. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Physics Department, Faculty of Science, Zagazig University, Zagazig (Egypt)

    2014-08-01

    Soft Ni–Mg nano-crystalline ferrites with the general formula Ni{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} (0≤x≤1) were synthesized through egg-white method. The precursor decomposition was followed by thermal analysis techniques. The obtained ferrites were characterized by X-ray diffraction, Fourier transform infrared and transmission electron microscopy measurements. X-ray diffraction showed the cubic spinel structure with crystallite size variation within the range 20–45 nm. The different structural data obtained were discussed in the view of ionic radii of the entire ions and their distribution within the lattice. The appropriate suggested cation distribution was then confirmed through Fourier transform infrared as well as electrical and magnetic properties measurements. Transmission electron microscopy exhibited a nano-crystal aggregation phenomenon. The observed size of the spherical particles agrees well with that obtained by X-ray diffraction. Hysteresis loop measurements revealed dilution in the obtained magnetic parameters by Mg-substitution due to the preferential occupancy of Mg{sup 2+} ions by the octahedral sites. Ac-electrical conductivity as a function of temperature and frequency exhibited a semi-conducting behavior with conductivity decreases by increasing Mg-content. The change in the slope of the curve indicates the changing in the conduction mechanism from electron hopping to polaron mechanism by increasing temperature. The obtained structural, electrical and magnetic properties were explained based on the cation distribution among tetrahedral and octahedral sites. - Highlights: • Ni–Mg nano-crystalline ferrites were synthesized through egg-white method. • An appropriate cation distribution was suggested. • Conductivity revealed a change in conduction mechanism by increasing temperature. • The effect of Mg-substitution on different properties was studied.

  1. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: magnetic properties and transverse relaxivity

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Kuličková, Jarmila; Herynek, Vít; Koktan, Jakub; Maryško, Miroslav; Dědourková, T.; Knížek, Karel; Jirák, Zdeněk

    2017-01-01

    Roč. 427, Apr (2017), s. 251-257 ISSN 0304-8853 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : magnetic nanoparticles * Mn-Zn ferrite * hydrothermal synthesis * magnetic resonance imaging * transverse relaxivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  2. Moessbauer spectroscopic characterization of ferrite ceramics

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1999-01-01

    The principle of Moessbauer effect and the nature of hyperfine interactions were presented. The discovery of the Moessbauer effect was the basis of a new spectroscopic technique, called Moessbauer spectroscopy, which has already made important contribution to research in physics, chemistry, metallurgy, mineralogy and biochemistry. In the present work the selected ferrites such as spinel ferrite, NiFe 2 O 4 , and some rare earth orthoferrites and garnets were investigated using Moessbauer spectroscopy. X-ray powder diffraction and Fourier transform infrared spectroscopy were used as complementary techniques. The formation of NiFe 2 O 4 was monitored during the thermal decomposition of mixed salt (Ni(NO 3 ) 2 +2Fe(NO 3 ) 3 )nH 2 O. The ferritization of Ni 2+ ions was observed at 500 deg. C and after heating at 1300 deg. C the stoichiometric NiFe 2 O 4 was produced. The Moessbauer parameters obtained for NiFe 2 O 4 , d Fe = 0.36 mm s -1 and HMF = 528 kOe, can be ascribed to Fe 3+ ions in the octahedral sublattice, while parameters d Fe = 0.28 mm s -1 and HMF = 494 kOe can be ascribed to Fe 3+ ions in the tetrahedral lattice. The effect of ball-milling of NiFe 2 O 4 was monitored. The formation of oxide phases and their properties in the systems Nd 2 O 3 -Fe 2 O 3 , Sm 2 O 3 -Fe 2 O 3 , Gd 2 O 3 -Fe 2 O 3 , Eu 2 O 3 -Fe 2 O 3 and Er 2 O 3 -Fe 2 O 3 were also investigated. Quantitative distributions of oxide phases, a-Fe 2 O 3 , R 2 O 3 , R 3 Fe 5 O 12 and RFeO 3 , R = Gd or Eu, were determined for the systems xGd 2 O 3 +(1-x)Fe 2 O 3 and xEu 2 O 3 +(1-x)Fe 2 O 3 . The samples, prepared by chemical coprecipitation in the system xEu 2 O 3 +(1-x)Fe 2 O 3 , 0≤x≤1, were completely amorphous as observed by XRD, even at the relatively high temperature of the sample preparation (600 deg. C). Similar behavior was observed during the formation of Er 3 Fe 5 O 12 . Moessbauer spectroscopy indicated that this 'amorphous' phase is actually composed of very small and/or poor

  3. In vitro studies on magnesium uptake by rumen epithelium using magnesium-28

    International Nuclear Information System (INIS)

    Martens, H.; Harmeyer, J.; Breves, G.

    1976-01-01

    Magnesium-28 transfer across the rumen epithelium has been studied using surviving epithelia in an in vitro system. Net absorption of magnesium in the direction from lumen to blood could be observed as the result of two opposite unidirectional fluxes of different magnitude. Net uptake of magnesium occurred against an electrical potential difference, and was associated with the presence of an unaltered transmural potential difference in the mucosal tissue. Both the net transfer of magnesium and the transmural potential difference decreased during two hours of incubation. Unidirectional fluxes of magnesium and net efflux from the lumen were markedly reduced although not completely inhibited by the addition of ouabain (10 -4 mol/l). The findings suggest that the mechanism of magnesium absorption by the rumen epithelium can be considered as an active transport process, and that the rumen is the main area of magnesium absorption in the living animal. (author)

  4. Effects of Heat Treatment on the Microstructure and Mechanical Properties of Low-Carbon Steel with Magnesium-Based Inclusions

    Science.gov (United States)

    Zhang, Jian; Feng, Pei-Hsien; Pan, Yan-Chi; Hwang, Weng-Sing; Su, Yen-Hao; Lu, Muh-Jung

    2016-10-01

    The effects of heat treatment on the microstructure and mechanical properties of Mg-containing (7 ppm), low-carbon commercial steel (SS400) were investigated. Twenty different heat treatment paths were performed using a Gleeble 1500 thermomechanical simulator. It was observed by using an optical microscope that as the cooling rate increased and holding temperature decreased, the volume fractions of pearlite, Widmanstätten ferrite, and grain boundary allotriomorphs ferrite fell, whereas that of acicular ferrite (AF) increased. Quantifying the fractions of AF and other phases by using electron backscatter diffraction shows that the heat treatment path with a cooling rate of 20 K/s and holding temperature of 723 K (450 °C) induced the highest volume fraction (44 pct) of AF. As such, the toughness of the sample was increased 12.4 times compared with that observed in the sample containing 4 pct AF. Typical inclusions were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The results showed that the magnesium-based complex inclusions could act as nucleation sites of AF. Inclusions with a size of about 5 μm can serve as heterogeneous nucleation sites for AF. Mg-containing SS400 steel also has excellent hot-ductility in the temperature range of 973 K to 1273 K (700 °C to 1000 °C), and the minimum percentage reduction in area (R.A pct) value of around 63 pct at 1073 K (800 °C).

  5. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    ... of science, characteristics, and applications. It emphasizes the properties of magnesium-based composites and the effects of different types of reinforcements, from micron length to nanometer scale, on the properties of the resulting composites...

  6. Intragranular ferrite morphologies in medium carbon vanadium-microalloyed steel

    Directory of Open Access Journals (Sweden)

    Fadel A.

    2013-01-01

    Full Text Available The aim of this work was to determine TTT diagram of medium carbon V-N micro-alloyed steel with emphasis on the development of intragranular ferrite morphologies. The isothermal treatment was carried out at 350, 400, 450, 500, 550 and 600°C. These treatments were interrupted at different times in order to analyze the evolution of the microstructure. Metallographic evaluation was done using optical and scanning electron microscopy (SEM. The results show that at high temperatures (≥ 500°C polygonal intragranulary nucleated ferrite idiomorphs, combined with grain boundary ferrite and pearlite were produced and followed by an incomplete transformation phenomenon. At intermediate temperatures (450, 500°C an interloced acicular ferrite (AF microstructure is produced, and at low temperatures (400, 350°C the sheave of parallel acicular ferrite plates, similar to bainitic sheaves but intragranularly nucleated were observed. In addition to sheaf type acicular ferrite, the grain boundary nucleated bainitic sheaves are observed. [Projekat Ministartsva nauke Republike Srbije, br. OI174004

  7. Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Mukhtar, Muhammad Waqas; Irfan, Muhammad [Department of Physics, Federal Urdu University of Arts, Science and Technology, Islamabad 44000 (Pakistan); Ahmad, Ishtiaq; Ali, Ihsan [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Khan, Muhammad Azhar [Department of Physics, Islamia University, Bahawalpur (Pakistan); Abbas, Ghazanfar [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Rana, M.U. [Center of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan); Ali, Akbar [Department of Basic Sciences, Riphah International University, Islamabad-44000 (Pakistan); Ahmad, Mukhtar, E-mail: ahmadmr25@yahoo.com [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2015-05-01

    A series of single phase spinel ferrites having chemical formula Mg{sub 0.5}Zn{sub 0.5}Pr{sub x}Fe{sub 2−x}O{sub 4} (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared using the sol–gel technique after sintering at 700 °C. The thermal decomposition behavior of an as prepared powder was investigated by means of DTA/TGA analyses. The sintered powders were then characterized by Fourier transform infrared spectroscope, X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscope and vibrating sample magnetometer. X-ray diffraction patterns confirm the single phase spinel structure of prepared ferrites without the presence of any impurity phase. The value of lattice parameter (a) increases with the increase of Pr contents (x) into the spinel lattice. The grain size estimated from electron microscope images is in the range of 2.75–5.4 µm which confirms the spinel crystalline nature of the investigated samples. The saturation magnetization (M{sub s}) decreases whereas coercivity (H{sub c}) increases with the increase of Pr contents (x). The measured parameters suggest that these materials are favorable for high frequency applications and as core materials. - Highlights: • Pr-substituted spinel ferrites synthesized by autocombustion route have been investigated. • The average grain size was in the range of 2.75–5.4 µm estimated by SEM technique. • The (M{sub s}) decreases whereas (H{sub c}) increases with the increase of Pr contents (x). • These parameters are favorable for high frequency applications and as core materials.

  8. DARHT-II Injector Transients and the Ferrite Damper

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  9. Magnesium Hydroxide

    Science.gov (United States)

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  10. Research Progress in Plasma arc welding of Magnesium Alloys and Magnesium Matrix Composites

    Science.gov (United States)

    Hui, Li; Yang, Zou; Yongbo, Li; Lei, Jiao; Ruijun, Hou

    2017-11-01

    Magnesium alloys and magnesium matrix composites by means of its excellent performance have wide application prospect in electronics, automotive, biotechnology, aerospace field, and welding technology has become a key of restricting its application. This paper describes the welding characteristics of magnesium, the obvious advantages in the application and the domestic and foreign research advance technology of plasma arc welding of magnesium, and summarizes the existing problems and development trends of plasma arc welding technology of magnesium.

  11. Improvement of catalytic activity in selective oxidation of styrene with H{sub 2}O{sub 2} over spinel Mg–Cu ferrite hollow spheres in water

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Jinhui, E-mail: jinhuitong@126.com [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Cai, Xiaodong; Wang, Haiyan; Zhang, Qianping [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2014-07-01

    Graphical abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. Solid spinel Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods for comparison. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be magnetically separated easily for reuse and no obvious loss of activity was observed when reused in six consecutive runs. - Highlights: • Uniform spinel ferrite hollow spheres were prepared by a simple method. • The catalyst has been proved much more efficient for styrene oxidation than the reported analogues. • The catalyst can be easily separated by external magnetic field and has exhibited excellent reusability. • The catalytic system is environmentally friendly. - Abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. For comparison, solid Mg–Cu ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods. All the samples were characterized by Fourier transform infrared spectrophotometry (FT-IR), X-ray diffractometry (XRD), transmission electron microscopy (TEM) and N{sub 2} physisorption. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed, and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be

  12. Study of the optical and magnetostatic properties of thin platelets of dysprosium and holmium ortho-ferrites

    International Nuclear Information System (INIS)

    Challeton, Didier

    1970-07-01

    Device applications of cylindrical magnetic domains - sometimes referred to as 'bubbles' - was first demonstrated by A.H. Bobeck in the rare earth ortho-ferrites. General magnetic and optical properties of the rare earth ortho-ferrites are considered. The theoretical study of the cylindrical magnetic domains and their stability conditions are presented in this paper. The single crystals were grown by the PbO flux method. The thin platelets (≅ 50 microns thick) preparation is specified and the magneto-optical measurements are presented. Absorption, birefringence and Faraday rotation were measured in HoFeO 3 and DyFeO 3 . The utilisation conditions of these materials are characterized by the measurements of the smallest stable domain diameter. (author) [fr

  13. Microstructure and magnetic properties of MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wangwei@mail.buct.edu.cn; Ding, Zui; Zhao, Xiruo [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Wu, Sizhu [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Feng [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Yue, Ming [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022 (China); Liu, J. Ping [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2015-05-07

    Three kinds of spinel ferrite nanocrystals, MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH{sub 4}) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (M{sub s}). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  14. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B., E-mail: mychailo.toloczko@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States); Voyevodin, V.N.; Bryk, V.V.; Borodin, O.V.; Mel’nychenko, V.V.; Kalchenko, A.S. [Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2014-10-15

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high as 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr{sup +} ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No co-injection of helium or hydrogen was employed. It was shown that compared to several tempered ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450 °C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  15. Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis

    Czech Academy of Sciences Publication Activity Database

    Pulišová, Petra; Kováč, J.; Voigt, A.; Raschman, P.

    2013-01-01

    Roč. 341, september (2013), s. 93-99 ISSN 0304-8853 Institutional support: RVO:61388980 Keywords : Precipitation in microemulsion s * Ferrite nano-powder * Magnetic properties * ZFC * FC measurements Subject RIV: CA - Inorganic Chemistry Impact factor: 2.002, year: 2013

  16. Evaluation of heating conditions of Ni-Zn ferrite obtained by combustion in a microwave oven

    International Nuclear Information System (INIS)

    Santos, Rafaela L.P.; Diniz, Veronica Cristhina S.; Vieira, Debora A.; Costa, Ana Cristina F.M.; Kiminam, R.H.G.A.

    2011-01-01

    This paper aims the synthesis by combustion reaction using microwave energy as heating source to obtain ferrite powders of Ni-Zn and its structural, morphological characterization. The influence of power and exposure time in the microwave oven was also investigated. The powders were prepared according to the theory of propellants and explosives using a vitreous silica crucible and urea as fuel. The powders were characterized by: XRD, BET and SEM. The resulted of XRD show only the formation of inverse spinel phase of Ni- Zn ferrite in all samples. The exposure time and power of microwave oven slightly altered the final characteristics of the powders. However, increasing the exposure time was more prominent than the increase of microwave power in both structural and morphological parameters. (author)

  17. Recent advances in processing and applications of microwave ferrites

    International Nuclear Information System (INIS)

    Harris, Vincent G.; Geiler, Anton; Chen Yajie; Yoon, Soack Dae; Wu Mingzhong; Yang, Aria; Chen Zhaohui; He Peng; Parimi, Patanjali V.; Zuo Xu; Patton, Carl E.; Abe, Manasori; Acher, Olivier

    2009-01-01

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  18. FOCUS ON MAGNESIUM BASED DRUGS

    Directory of Open Access Journals (Sweden)

    I. I. Esenova

    2011-01-01

    Full Text Available Magnesium deficiency in the organism is one of the most common human deficiency states. The prevalence of magnesium deficiency is about 15%, and suboptimal magnesium level is observed more than in 30% of people in the general population. Clinical signs of hypomagnesaemia are observed in 40% of patients in general care hospitals, in 70% of patients - in intensive care units, and magnesium deficiency occurs in 90% of patients with acute coronary syndrome. Magnesium metabolic disorders in the organism accelerate significantly development of complications of coronary heart disease, hypertension, type 2 diabetes, asthma and a number of neurological and psychiatric diseases. The value of this macro in the body is well studied, and its daily need is identified depending on age and sex. It is known that magnesium intake with the food does not cover an organism need. It is a rationale for preventive and therapeutic use of magnesium based drugs in various diseases. Organic salts of magnesium are recommended for these purposes. Magnesium metabolic disorders, approaches to pharmacotherapeutic correction of magnesium deficiency, advantages of magnesium salts of orotic acid are reviewed.

  19. Influence of rare earth Ce3+ on structural, electrical and magnetic properties of Sr2+ based W-type hexagonal ferrites

    International Nuclear Information System (INIS)

    Sadiq, Imran; Khan, Imran; Aen, Faiza; Islam, M.U.; Rana, M.U.

    2012-01-01

    A series of single phase W-type Sr 3-x Ce x Fe 16 O 27 (x=0, 0.02, 0.04, 0.06, 0.08, 0.10) hexagonal ferrites prepared by the Sol-Gel method was sintered at 1050 °C for 5 h. The X-ray diffraction analysis reveals that all the samples belong to the family of W-type hexagonal ferrites. The c/a ratio falls in the range of W-type hexagonal ferrites. The grain size was measured by SEM varies from 0.7684 to 0.4366 μm which shows that the Ce 3+ substituted samples have smaller grain size than pure ferrite Sr 3 Fe 16 O 27 which results from the difference in ionic radii of Ce 3+ (1.034 Å) and Sr 2+ (1.12 Å). The room temperature resistivity of the present samples varies from 6.5×10 8 to 272×10 8 Ω-cm. The coercivity increases from 1370 to 1993 Oe which is consistent with the decrease in grain size. The coercivity values indicate that the present samples fall in the range of hard ferrites. The large value of H c may be due to domain wall pinning at the grain boundaries.

  20. Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles

    International Nuclear Information System (INIS)

    Raut, Anil V.; Kurmude, D.V.; Shengule, D.R.; Jadhav, K.M.

    2015-01-01

    Highlights: • Co–Zn ferrite nanoparticles were examined before and after γ-irradiation. • Single phase cubic spinel structure of Co–Zn was confirmed by XRD data. • The grain size was reported in the range of 52–62 nm after γ-irradiation. • Ms, Hc, n B were reported to be increased after gamma irradiation. - Abstract: In this work, the structural and magnetic properties of Co 1−x Zn x Fe 2 O 4 (0.0 ≤ x ≤ 1.0) ferrite nanoparticles were studied before and after gamma irradiation. The as-synthesized samples of Co–Zn ferrite nanoparticles prepared by sol–gel auto-combustion technique were analysed by XRD which suggested the single phase; cubic spinel structure of the material. Crystal defects produced in the spinel lattice were studied before and after Co 60 γ-irradiation in a gamma cell with a dose rate of 0.1 Mrad/h in order to report the changes in structural and magnetic properties of the Co–Zn ferrite nanoparticles. The average crystallite size (t), lattice parameter (α) and other structural parameters of gamma-irradiated and un-irradiated Co 1−x Zn x Fe 2 O 4 spinel ferrite system was calculated from XRD data. The morphological characterizations were performed using scanning electron microscopy (SEM). The magnetic properties were measured using pulse field hysteresis loop tracer by applying magnetic field of 1000 Oe, and the analysis of data obtained revealed that the magnetic property such as saturation magnetization (Ms), coecivity (Hc), magneton number (n B ) etc. magnetic parameters were increased after irradiation

  1. Strontium and magnesium substituted dicalcium phosphate dehydrate coating for carbon/carbon composites prepared by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shou-jie, E-mail: jlliushoujie@126.com; Li, He-jun, E-mail: lihejun@nwpu.edu.cn; Zhang, Lei-lei, E-mail: zhangleilei@nwpu.edu.cn; Feng, Lei, E-mail: fengleijinan@163.com; Yao, Pei, E-mail: 1113923884@qq.com

    2015-12-30

    Graphical abstract: The potentiodynamic polarization curve shows that the SM-DCPD coating can dramatically enhance the corrosion potential (E{sub corr}) value and meanwhile decrease the corrosion current density (I{sub corr}) of C/C composites. - Highlights: • Strontium and magnesium substituted dicalcium phosphate dehydrate coatings for carbon/carbon composites were synthesized by pulsed eletrodeposition. • Strontium and magnesium substituted dicalcium phosphate dehydrate coated carbon/carbon composites exhibited excellent bioactivity in vivo. • Strontium and magnesium substituted dicalcium phosphate dehydrate coated carbon/carbon composites showed lower corrosion rate with the comparison to pure carbon/carbon composites. - Abstract: Trace elements substituted apatite coatings have received a lot of interest recently as they have many benefits. In this work, strontium and magnesium substituted DCPD (SM-DCPD) coatings were deposited on carbon/carbon (C/C) composites by pulsed electrodeposition method. The morphology, microstructure, corrosion resistance and in vitro bioactivity of the SM-DCPD coatings are analyzed. The results show that the SM-DCPD coatings exhibit a flake-like morphology with dense and uniform structure. The SM-DCPD coatings could induce the formation of apatite layers on their surface in simulated body fluid. The electrochemical test indicates that the SM-DCPD coatings can evidently decrease the corrosion rate of the C/C composites in simulated body fluid. The SM-DCPD has potential application as the bioactive coatings.

  2. Magnesium Oxide

    Science.gov (United States)

    Magnesium is an element your body needs to function normally. Magnesium oxide may be used for different reasons. Some people use it as ... one to four times daily depending on which brand is used and what condition you have. Follow ...

  3. Effect of ferrite addition above the base ferrite on the coupling factor of wireless power transfer for vehicle applications

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik; Ahn, Seungyoung

    2015-01-01

    and reduce magnetic emissions to the surroundings. Effect of adding extra ferrite above the base ferrite at different physical locations on the self-inductance, mutual inductance and coupling factor is under investigation in this paper. The addition can increase or decrease the mutual inductance depending...

  4. Fabrication and electromagnetic properties of flake ferrite particles based on diatomite

    International Nuclear Information System (INIS)

    Zhang Deyuan; Zhang Wenqiang; Cai Jun

    2011-01-01

    Hexagonal ferrite BaZn 1.1 Co 0.9 Fe 16 O 27 coated surfaces of diatomite flakes of low density were synthesized by a sol-gel method. The phase structures, morphologies, particle size and chemical compositions of the composites were characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. The results show that hexagonal ferrite coated diatomite flakes can be achieved, and that the coating consisted of BaZn 1.1 Co 0.9 Fe 16 O 27 nanoparticles. The vibranting sample magnetometer results reveal that the flake ferrite particles have static magnetic properties. The complex permeability and permittivity of the composites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of these ferrite particles are discussed. The results indicate that the flake ferrites have the potential to be used as a lightweight broad band microwave absorber. - Highlights: → We synthesize the flake ferrite particles using diatomite as a template. → Flake ferrite particles' coating layers are constituted by BaZn 1.1 Co 0.9 Fe 16 O 27 nanoparticles. → Flake ferrite particles have good static magnetic properties.→ Flake ferrites are a kind lightweight broad band microwave absorber.

  5. Fabrication and electromagnetic properties of flake ferrite particles based on diatomite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Zhang Wenqiang, E-mail: zwqzwqzwqzwq@126.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Cai Jun, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China)

    2011-09-15

    Hexagonal ferrite BaZn{sub 1.1}Co{sub 0.9}Fe{sub 16}O{sub 27} coated surfaces of diatomite flakes of low density were synthesized by a sol-gel method. The phase structures, morphologies, particle size and chemical compositions of the composites were characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. The results show that hexagonal ferrite coated diatomite flakes can be achieved, and that the coating consisted of BaZn{sub 1.1}Co{sub 0.9}Fe{sub 16}O{sub 27} nanoparticles. The vibranting sample magnetometer results reveal that the flake ferrite particles have static magnetic properties. The complex permeability and permittivity of the composites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of these ferrite particles are discussed. The results indicate that the flake ferrites have the potential to be used as a lightweight broad band microwave absorber. - Highlights: > We synthesize the flake ferrite particles using diatomite as a template. > Flake ferrite particles' coating layers are constituted by BaZn{sub 1.1}Co{sub 0.9}Fe{sub 16}O{sub 27} nanoparticles. > Flake ferrite particles have good static magnetic properties. > Flake ferrites are a kind lightweight broad band microwave absorber.

  6. The Effect of Catalyst Type on The Microstructure and Magnetic Properties of Synthesized Hard Cobalt Ferrite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Shaima'a Jaber Kareem

    2018-02-01

    Full Text Available A sol-gel process prepared the nanoparticles of hard cobalt ferrite (CoFe2O4. Cobalt nitrate hexahydrate (Co (NO32⋅6H2O, iron nitrate nonahydrate (Fe (NO33⋅9H2O with using two catalysis acid (citric acid and alkaline (hydroxide ammonium were used as precursor materials. Crystallization behavior of the CoFe2O4 nanoparticles were studied by X-ray diffraction (XRD. Nanoparticles phases can change from amorphous to spinel ferrite crystalline depending on the calcinated temperature at 600°C, with using citric acid as a catalysis without finding forgone phase, while using hydroxide ammonium was shown second phase (α-Fe2O3 with CoFe2O4. Crystallite size was measured by Scherrer’s formula about (25.327 nm and (27.119 nm respectively. Structural properties were investigated by FTIR, which was appeared main bond of (Fe-O, (Co-O, (C-O, and (H-O. Scanning electron microscopy (FE- SEM was shown the microstructure observation of cobalt ferrite and the particle size at the range about (28.77-42.97 nm. Magnetization measurements were carried out on a vibrating sample magenometer (VSM that exhibited hard spinel ferrite.

  7. Preparation and characterization of graphite-dispersed styrene-acrylic emulsion composite coating on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Renhui [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000 (China); Lanzhou University of Technology, College of Science, Lanzhou 730050 (China); Liang Jun, E-mail: jliang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000 (China); Wang Qing [Lanzhou University of Technology, College of Science, Lanzhou 730050 (China)

    2012-03-01

    In this work, an electrically conductive, corrosion resistant graphite-dispersed styrene-acrylic emulsion composite coating on AZ91D magnesium alloy was successfully produced by the method of anodic deposition. The microstructure, composition and conductivity of the composite coating were characterized using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and four electrode volume resistivity instrument, respectively. The corrosion resistance of the coating was evaluated using potentiodynamic polarization measurements and salt spray tests. It is found that the graphite-dispersed styrene-acrylic emulsion composite coating was layered structure and displayed good electrical conductivity. The potentiodynamic polarization tests and salt spray tests reveal that the composite coating was successful in providing superior corrosion resistance to AZ91D magnesium alloy.

  8. Permanent magnetic ferrite based power-tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanqiao; Lan, Chuwen [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Gao, Rui [High Temperature Thermochemistry Laboratory, Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated. • It is observed that resonant frequency of the array shifts upon altering the output power. • This kind of power-tunable behavior is due to the temperature rise as a result of FMR-induced heat buildup. • This work offers a practical idea to tune ferrite metamaterials besides magneto-tunability and thermal-tunability. - Abstract: Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  9. Effect of annealing temperature on the structural, photoluminescence and magnetic properties of sol-gel derived Magnetoplumbite-type (M-type) hexagonal strontium ferrite

    International Nuclear Information System (INIS)

    Teh, Geok Bee; Wong, Yat Choy; Tilley, Richard D.

    2011-01-01

    Magnetoplumbite-type (M-type) hexagonal strontium ferrite particles were synthesized via sol-gel technique employing ethylene glycol as the gel precursor at two different calcination temperatures (800 and 1000 deg. C). Structural properties were systematically investigated via X-ray diffraction (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), photoluminescence spectrophotometry and superconducting quantum interference device magnetometer. XRD results showed that the sample synthesized at 1000 deg. C was of single-phase with a space group of P6 3 /mmc and lattice cell parameter values of a=5.882 A and c=23.048 A. EDS confirmed the composition of strontium ferrite calcined at 1000 deg. C being mainly of M-type SrFe 12 O 19 with HRTEM micrographs confirming the ferrites exhibiting M-type long range ordering along the c-axis of the crystal structure. The photoluminescence (PL) property of strontium ferrite was examined at excitation wavelengths of 260 and 270 nm with significant PL emission peaks centered at 350 nm being detected. Strontium ferrite annealed at higher temperature (1000 deg. C) was found to have grown into larger particle size, having higher content of oxygen vacancies and exhibited 83-85% more intense PL. Both the as-prepared strontium ferrites exhibited significant oxygen vacancies defect structures, which were verified via TGA. Higher calcination temperature turned strontium ferrite into a softer ferrite. - Highlights: → High annealing temperature produced M-type ferrite with higher oxygen vacancies. → Photoluminescence intensity is proportional to the existence of oxygen vacancies. → XRD data showed cell contraction well suited to the change of oxygen vacancies. → Shift in hysteresis loop due to defect-induced exchange bias was observed.

  10. Effect of annealing temperature on the structural, photoluminescence and magnetic properties of sol-gel derived Magnetoplumbite-type (M-type) hexagonal strontium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Teh, Geok Bee, E-mail: sharonteh2009@gmail.com [Division of Bioscience and Chemistry, School of Arts and Science, Tunku Abdul Rahman College, Jalan Genting Kelang, 53300 Kuala Lumpur (Malaysia); Wong, Yat Choy [Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122 (Australia); Tilley, Richard D. [School of Chemical and Physical Sciences, MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington (New Zealand)

    2011-09-15

    Magnetoplumbite-type (M-type) hexagonal strontium ferrite particles were synthesized via sol-gel technique employing ethylene glycol as the gel precursor at two different calcination temperatures (800 and 1000 deg. C). Structural properties were systematically investigated via X-ray diffraction (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), photoluminescence spectrophotometry and superconducting quantum interference device magnetometer. XRD results showed that the sample synthesized at 1000 deg. C was of single-phase with a space group of P6{sub 3}/mmc and lattice cell parameter values of a=5.882 A and c=23.048 A. EDS confirmed the composition of strontium ferrite calcined at 1000 deg. C being mainly of M-type SrFe{sub 12}O{sub 19} with HRTEM micrographs confirming the ferrites exhibiting M-type long range ordering along the c-axis of the crystal structure. The photoluminescence (PL) property of strontium ferrite was examined at excitation wavelengths of 260 and 270 nm with significant PL emission peaks centered at 350 nm being detected. Strontium ferrite annealed at higher temperature (1000 deg. C) was found to have grown into larger particle size, having higher content of oxygen vacancies and exhibited 83-85% more intense PL. Both the as-prepared strontium ferrites exhibited significant oxygen vacancies defect structures, which were verified via TGA. Higher calcination temperature turned strontium ferrite into a softer ferrite. - Highlights: > High annealing temperature produced M-type ferrite with higher oxygen vacancies. > Photoluminescence intensity is proportional to the existence of oxygen vacancies. > XRD data showed cell contraction well suited to the change of oxygen vacancies. > Shift in hysteresis loop due to defect-induced exchange bias was observed.

  11. First-principles study on ferrite/TiC heterogeneous nucleation interface

    International Nuclear Information System (INIS)

    Yang, Jian; Zhang, Pengfei; Zhou, Yefei; Guo, Jing; Ren, Xuejun; Yang, Yulin; Yang, Qingxiang

    2013-01-01

    Highlights: ► Interface stability of ferrite (1 0 0)/TiC (1 0 0) was studied. ► The effectiveness of TiC as the heterogeneous nuclei of ferrite was analyzed. ► Ti-termination and C-termination are the two binding modes for ferrite/TiC interface. ► Interfacial energy of the Ti-termination is larger than that of the C-termination. ► On C-termination, ability of TiC promotes ferrite heterogeneous nucleation is strong. -- Abstract: Interface atomic structure, bonding character, cohesive energy and interfacial energy of ferrite (1 0 0)/TiC (1 0 0) were studied using a first-principles density functional plane-wave ultrasoft pseudopotential method. Meanwhile, the effectiveness of TiC as the heterogeneous nuclei of ferrite was analyzed. The results indicated that, TiC bonding is dominated by the C-2p, C-2s and Ti-3d electrons, which exhibits high covalency. With increase of the atomic layers, the interfacial energies of ferrite and TiC are both declined rapidly and stabilized gradually. There are two binding modes for TiC as the heterogeneous nuclei of ferrite, which are Fe atoms above the Ti atoms (Ti-termination) and Fe atoms above the C atoms (C-termination). Interfacial energy of the Ti-termination is larger than that of the C-termination, which means that for Fe atoms above the C atoms, the ability of TiC promotes ferrite heterogeneous nucleation on its surface is larger than that for Fe atoms above the Ti atoms

  12. Y3Fe5O12 nanoparticulate garnet ferrites: Comprehensive study on the synthesis and characterization fabricated by various routes

    Science.gov (United States)

    Niaz Akhtar, Majid; Azhar Khan, Muhammad; Ahmad, Mukhtar; Murtaza, G.; Raza, Rizwan; Shaukat, S. F.; Asif, M. H.; Nasir, Nadeem; Abbas, Ghazanfar; Nazir, M. S.; Raza, M. R.

    2014-11-01

    The effects of synthesis methods such as sol-gel (SG), self combustion (SC) and modified conventional mixed oxide (MCMO) on the structure, morphology and magnetic properties of the (Y3Fe5O12) garnet ferrites have been studied in the present work. The samples of Y3Fe5O12 were sintered at 950 °C and 1150 °C (by SG and SC methods). For MCMO route the sintering was done at 1350 °C for 6 h. Synthesized samples prepared by various routes were investigated using X-ray diffraction (XRD) analysis, Field emission scanning electron microscopy (FESEM), Impedance network analyzer and transmission electron microscopy (TEM). The structural analysis reveals that the samples are of single phase structure and shows variations in the particle sizes and cells volumes, prepared by various routes. FESEM and TEM images depict that grain size increases with the increase of sintering temperature from 40 nm to 100 nm.Magnetic measurements reveal that garnet ferrite synthesized by sol gel method has high initial permeability (60.22) and low magnetic loss (0.0004) as compared to other garnet ferrite samples, which were synthesized by self combustion and MCMO methods. The M-H loops exhibit very low coercivity which enables the use of these materials in relays and switching devices fabrications. Thus, the garnet nanoferrites with low magnetic loss prepared by different methods may open new horizon for electronic industry for their use in high frequency applications.

  13. MnZn-ferrites: Targeted Material Design for New Emerging Application Products

    OpenAIRE

    Zaspalis V. T.; Tsakaloudi V.; Kogias G.

    2014-01-01

    In this article the main characteristics for emerging MnZn-ferrite applications are described on the basis of the new demands they possess on the ferrite material development. A number of recently developed MnZn-ferrite materials is presented together with the main scientific principles lying behind their development. These include: (i) high saturation flux density MnZn-ferrites (i.e. Bsat=550 mT at 10 kHz, 1200 A/m, 100°C), (ii) low power losses MnZn-ferrites (i.e. Pv~210 mW cm-3 at 100 kHz,...

  14. A novel magnesium-vanadium hydride synthesized by a gigapascal-high-pressure technique

    Energy Technology Data Exchange (ETDEWEB)

    Kyoi, Daisuke; Sato, Toyoto; Roennebro, Ewa; Tsuji, Yasufumi; Kitamura, Naoyuki; Ueda, Atsushi; Ito, Mikio; Katsuyama, Shigeru; Hara, Shigeta; Noreus, Dag; Sakai, Tetsuo

    2004-07-28

    A magnesium-based vanadium-doped hydride was prepared in a high-pressure anvil cell by reacting a MgH{sub 2}-25%V molar mixture at 8 GPa and 873 K. The new magnesium-vanadium hydride has a cubic F-centred substructure (a=4.721(1) Angst), with an additional superstructure, which could be described by a doubling of the cubic cell axis and a magnesium atom framework, including an ordered arrangement of both vanadium atoms and vacancies (a=9.437(3) Angst, space group Fm3-bar m (no. 225), Z=4, V=840.55 Angst{sup 3}). The metal atom structure is related to the Ca{sub 7}Ge type structure but the refined metal atom composition with vacancies on one of the magnesium sites corresponding to Mg{sub 6}V nearly in line with EDX analysis. The thermal properties of the new compound were also studied by TPD analysis and TG-DTA. The onset of the hydrogen desorption for the new Mg{sub 6}V hydride occurred at a 160 K lower temperature when compared to magnesium hydride at a heating rate of 10 K/min.

  15. Characterization of SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19} hexagonal ferrite synthesized by sol-gel combustion and solid state route

    Energy Technology Data Exchange (ETDEWEB)

    Vinaykumar, R., E-mail: vinaykumar.r1984@gmail.com; Mazumder, R., E-mail: ranabrata@nitrkl.ac.in; Bera, J., E-mail: jbera@nitrkl.ac.in

    2017-05-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19}) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO{sub 2} raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δ{sub µ} and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route. - Highlights: • SrCo{sub 1.5}Ti{sub 1.5}Fe{sub 9}O{sub 19} ferrite was successfully prepared by sol–gel combustion process. • Sol-gel synthesis of the ferrite using titanyl nitrate has been reported first time. • Phase formation was easier in the titanyl nitrate based sol-gel process. • Better magneto-dielectric properties were observed in sol-gel processed ferrite.

  16. Solidification of Magnesium (AM50A) / vol%. SiCp composite

    International Nuclear Information System (INIS)

    Zhang, X; Hu, H

    2012-01-01

    Magnesium matrix composite is one of the advanced lightweight materials with high potential to be used in automotive and aircraft industries due to its low density and high specific mechanical properties. The magnesium composites can be fabricated by adding the reinforcements of fibers or/and particles. In the previous literature, extensive studies have been performed on the development of matrix grain structure of aluminum-based metal matrix composites. However, there is limited information available on the development of grain structure during the solidification of particulate-reinforced magnesium. In this work, a 5 vol.% SiC p particulate-reinforced magnesium (AM50A) matrix composite (AM50A/SiC p ) was prepared by stir casting. The solidification behavior of the cast AM50A/SiC p composite was investigated by computer-based thermal analysis. Optical and scanning electron microscopies (SEM) were employed to examine the occurrence of nucleation and grain refinement involved. The results indicate that the addition of SiC p particulates leads to a finer grain structure in the composite compared with the matrix alloy. The refinement of grain structure should be attributed to both the heterogeneous nucleation and the restricted primary crystal growth.

  17. Magnesium substitution in brushite cements for enhanced bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejos-Azama, Jatsue, E-mail: jacaza@farm.ucm.es [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); Alkhraisat, Mohammad Hamdan; Rueda, Carmen [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Torres, Jesús [Facultad de Ciencias de la salud URJC, Alcorcón, Madrid (Spain); Blanco, Luis [Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); López-Cabarcos, Enrique [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain)

    2014-10-01

    We have synthesized calcium phosphate cements doped with different amounts of magnesium (Mg-CPC) with a twofold purpose: i) to evaluate in vitro the osteoblast cell response to this material, and ii) to compare the bone regeneration capacity of the doped material with a calcium cement prepared without magnesium (CPC). Cell proliferation and in vivo response increased in the Mg-CPCs in comparison with CPC. The Mg-CPCs have promoted higher new bone formation than the CPC (p < 0.05). The cytocompatibility and histomorfometric analysis performed in the rabbit calvaria showed that the incorporation of magnesium ions in CPC improves osteoblasts proliferation and provides higher new bone formation. The development of a bone substitute with controllable biodegradable properties and improved bone regeneration can be considered a step toward personalized therapy that can adapt to patient needs and clinical situations. - Highlights: • The Mg-CPCs promote higher new bone formation than the CPC. • The incorporation of magnesium ions in CPC improves osteoblasts proliferation. • Mg-CPC is a bone substitute with controllable biodegradable properties. • We suggest that the use of Mg ions could improve the clinical efficiency of CPCs.

  18. Nanophotonic Modulator with Bismuth Ferrite as Low-loss Switchable Material

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2015-01-01

    We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved.......We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved....

  19. Magnesium motorcycle applications

    International Nuclear Information System (INIS)

    Jianyong Cao; Zonghe Zhang; Dongxia Xiang; Jun Wang

    2005-01-01

    Magnesium, the lightest engineering structural metal, has been comprehensively used in castings of aviation and aerospace, communication and transportation, and IT components. This paper introduced the history, advantages and difficulties of magnesium castings for motorcycle application as well as its application state in China. It also indicated the production situation of magnesium motorcycle components in CQMST and difficulties need to overcome for further development. (orig.)

  20. Magnetization reversal processes in bonded magnets made from a mixture of Nd-(Fe,Co)-B and strontium ferrite powders

    Science.gov (United States)

    Dospial, M.; Plusa, D.

    2013-03-01

    Isotropic epoxy-resin bonded magnets composed of different amounts of Magnequench MQP-B and strontium ferrite powders have been prepared using a compression molding technique. The magnetic parameters for magnets with different amounts of strontium ferrite and magnetization reversal processes have been studied by the measurement of the initial magnetization curves, the major hysteresis loops measured at a field up to 14 T and sets of recoil loops. The enhancement of μ0MR and μ0HC is observed in comparison with the calculated values. From the recoil loops the field dependences of the reversible, irreversible and total magnetization components and the differential susceptibilities were derived. From the dependence of the irreversible magnetization component versus an applied field it was deduced that the main mechanism of magnetization reversal process is the pinning of domain walls in MQP-B and strontium ferrite grains. The interactions between the magnetic particles and grains have been examined by the analysis of the δM plot. The δM behavior of magnets with ferrite has been interpreted as being composed of magnetizing exchange coupling and demagnetizing dipolar interactions.

  1. Physical Compatibility of Magnesium Sulfate and Sodium Bicarbonate in a Pharmacy-compounded Bicarbonate-buffered Hemofiltration Solution

    Science.gov (United States)

    Moriyama, Brad; Henning, Stacey A.; Jin, Haksong; Kolf, Mike; Rehak, Nadja N.; Danner, Robert L.; Walsh, Thomas J.; Grimes, George J.

    2011-01-01

    PURPOSE To assess the physical compatibility of magnesium sulfate and sodium bicarbonate in a pharmacy-compounded bicarbonate-buffered hemofiltration solution used at the National Institutes of Health Clinical Center (http://www.cc.nih.gov). METHODS Two hemofiltration fluid formulations with a bicarbonate of 50 mEq/L and a magnesium of 1.5 mEq/L or 15 mEq/L were prepared in triplicate with an automated compounding device. The hemofiltration solution with a bicarbonate of 50 mEq/L and a magnesium of 1.5 mEq/L contains the maximum concentration of additives that we use in clinical practice. The hemofiltration solution of 15 mEq/L of magnesium and 50 mEq/L of bicarbonate was used to study the physicochemical properties of this interaction. The solutions were stored without light protection at 22 to 25 °C for 48 hours. Physical compatibility was assessed by visual inspection and microscopy. The pH of the solutions was assayed at 3 to 4 hours and 52 to 53 hours after compounding. In addition, electrolyte and glucose concentrations in the solutions were assayed at two time points after preparation: 3 to 4 hours and 50 to 51 hours. RESULTS No particulate matter was observed by visual and microscopic inspection in the compounded hemofiltration solutions at 48 hours. Electrolyte and glucose concentrations and pH were similar at both time points after solution preparation. CONCLUSION Magnesium sulfate (1.5 mEq/L) and sodium bicarbonate (50 mEq/L) were physically compatible in a pharmacy-compounded bicarbonate-buffered hemofiltration solution at room temperature without light protection at 48 hours. PMID:20237384

  2. Transversely-biased ferrite-tuned cavity for the SSC booster

    International Nuclear Information System (INIS)

    Carlini, R.D.; Friedrichs, C. Jr.; Thiessen, H.A.

    1985-01-01

    Ferrite tuning of rf cavities is used to provide the change in frequency necessary as the velocity of particles in synchrotrons increases. A new technique in which the ferrite bias field is applied in a direction perpendicular to the rf field offers the possibility of greatly reducing the rf power dissipation in the ferrite. A possible 60 MHz design is discussed for the SSC booster. The cavity design is based on a simple coaxial quarter-wave resonator. A brief discussion is given fo the theory of perpendicular biasing. The measured electric Q's of five different microwave-type ferrite samples are reported and compared with the manufacturer's specifications. 9 fig

  3. Magnesium sulfate reduces formalin-induced orofacial pain in rats with normal magnesium serum levels.

    Science.gov (United States)

    Srebro, Dragana P; Vučković, Sonja M; Dožić, Ivan S; Dožić, Branko S; Savić Vujović, Katarina R; Milovanović, Aleksandar P; Karadžić, Branislav V; Prostran, Milica Š

    2018-02-01

    In humans, orofacial pain has a high prevalence and is often difficult to treat. Magnesium is an essential element in biological a system which controls the activity of many ion channels, neurotransmitters and enzymes. Magnesium produces an antinociceptive effect in neuropathic pain, while in inflammatory pain results are not consistent. We examined the effects of magnesium sulfate using the rat orofacial formalin test, a model of trigeminal pain. Male Wistar rats were injected with 1.5% formalin into the perinasal area, and the total time spent in pain-related behavior (face rubbing) was quantified. We also spectrophotometrically determined the concentration of magnesium and creatine kinase activity in blood serum. Magnesium sulfate administered subcutaneously (0.005-45mg/kg) produced significant antinociception in the second phase of the orofacial formalin test in rats at physiological serum concentration of magnesium. The effect was not dose-dependent. The maximum antinociceptive effect of magnesium sulfate was about 50% and was achieved at doses of 15 and 45mg/kg. Magnesium did not affect increase the levels of serum creatine kinase activity. Preemptive systemic administration of magnesium sulfate as the only drug can be used to prevent inflammatory pain in the orofacial region. Its analgesic effect is not associated with magnesium deficiency. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  4. Function of magnesium aluminate hydrate and magnesium nitrate ...

    Indian Academy of Sciences (India)

    MgO was added both as spinel (MgAl2O4) forming precursor i.e. magnesium aluminate hydrate, and magnesium nitrate. Sintering investigations were conducted in the temperature range 1500–1600°C with 2 h soaking. Structural study of sintered pellets was carried out by extensive XRD analysis. Scanning electron mode ...

  5. Influence of Ni-Cr substitution on the magnetic and electric properties of magnesium ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, Zahoor [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Meydan, Turgut [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom); Nlebedim, Ikenna Cajetan [Ames Laboratory of US Department of Energy, Ames, IA 50011 (United States)

    2012-02-15

    Graphical abstract: Variation of saturation magnetization (M{sub S}) and magnetocrystalline anisotropy coefficient (K{sub 1}) with Ni-Cr content for Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x = 0.0-0.5). Highlights: Black-Right-Pointing-Pointer Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} are synthesized by novel PEG assisted microemulsion method. Black-Right-Pointing-Pointer High field regime of M-H loops are modeled using Law of Approach to saturation. Black-Right-Pointing-Pointer A considerable increase in the value of M{sub S} from 148 kA/m to 206 kA/m is achieved Black-Right-Pointing-Pointer {rho}{sup RT} enhanced to the order of 10{sup 9} {Omega}cm at potential operational range around 300 K. -- Abstract: The effect of variation of composition on the structural, morphological, magnetic and electric properties of Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x = 0.0-0.5) nanocrystallites is presented. The samples were prepared by novel polyethylene glycol (PEG) assisted microemulsion method with average crystallite size of 15-47 nm. The microstructure, chemical, and phase analyses of the samples were studied by the scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray fluorescence (ED-XRF), and X-ray diffraction (XRD). Compositional variation greatly affected the magnetic and structural properties. The high-field regimes of the magnetic loops are modelled using the Law of Approach (LOA) to saturation in order to extract information about their anisotropy and the saturation magnetization. Thermal demagnetization measurements are carried out using VSM and significant enhancement of the Curie temperature from 681 K to 832 K has been achieved by substitution of different contents of Ni-Cr. The dc-electrical resistivity ({rho}{sup RT}) at potential operational range around 300 K is increased from 7.5 Multiplication-Sign 10{sup 8} to 4.85 Multiplication-Sign 10{sup 9} {Omega}cm with the increase in Ni-Cr contents

  6. Microstructural Analysis of AM50/Mg2Si Cast Magnesium Composites

    Directory of Open Access Journals (Sweden)

    Malik M.A.

    2012-12-01

    Full Text Available AM50/Mg2Si composites containing 5.7 wt. % and 9.9 wt. %. of Mg2Si reinforcing phase were prepared successfully by casting method. The microstructure of the cast AM50/Mg2Si magnesium matrix composites was investigated by light microscopy and X-ray diffractometry (XRD. The microstructure of these composites was characterized by the presence of α-phase (a solid solution of aluminium in magnesium, Mg17Al12 (γ-phase, Al8Mn5 and Mg2Si. It was demonstrated that the Mg2Si phase was formed mainly as primary dendrites and eutectic.

  7. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  8. Ferritic steels for French LMFBR steam generators

    International Nuclear Information System (INIS)

    Aubert, M.; Mathieu, B.; Petrequin, P.

    1983-06-01

    Austenitic stainless steels have been widely used in many components of the French LMFBR. Up to now, ferritic steels have not been considered for these components, mainly due to their relatively low creep properties. Some ferritic steels are usable when the maximum temperatures in service do not exceed about 530 0 C. It is the case of the steam generators of the Phenix plant, where the exchange tubes of the evaporator are made of 2,25% Cr-1% Mo steel, stabilized or not by addition of niobium. These ferritic alloys have worked successfully since the first steam production in October 1973. For the SuperPhenix power plant, an ''all austenitic stainless alloy'' apparatus has been chosen. However, for the future, ferritic alloys offer potential for use as alternative materials in the evaporators: low alloys steels type 2,25% Cr-1% Mo (exchange tubes, tube-sheets, shells), or at higher chromium content type 9% Cr-2% Mo NbV (exchange tubes) or 12M Cr-1% Mo-V (tube-sheets). Most of these steels have already an industrial background, and are widely used in similar applications. The various potential applications of these steels are reviewed with regards to the French LMFBR steam generators, indicating that some points need an effort of clarification, for instance the properties of the heterogeneous ferritic/austenitic weldments

  9. Microstructure and Superparamagnetic Properties of Mg-Ni-Cd Ferrites Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. M. Eltabey

    2014-01-01

    Full Text Available Magnesium substituted nickel cadmium ferrite nanoparticles MgxNi0.6−xCd0.4Fe2O4 (from x = 0 to 0.6 with step 0.1 have been synthesized by the chemical coprecipitation route. X-ray diffraction (XRD and infrared spectroscopy (FTIR revealed that the obtained powders have a single phase of cubic spinel structure. The crystallite sizes calculated from XRD data have been confirmed using transmission electron microscopy (TEM showing that the powders are consisting of nanosized grains with an average size range 5–1.5 nm. Magnetic hysteresis loops were traced at 6.5 K as well as at room temperature using VSM. It was found that, due to the Mg2+-ions substitution, the values of saturation magnetization Ms for the investigated samples were decreased, whereas the coercive field Hc increased. Both zero field cooling (ZFC and field cooling (FC curves are measured in the temperature range (6.5–350 K and the values of blocking temperature TB were determined. No considerable variation in the values of TB was observed with increasing Mg-content, whereas the values of the effective anisotropy constant Keff were increased.

  10. Ferrite Nanoparticles, Films, Single Crystals, and Metamaterials: High Frequency Applications

    International Nuclear Information System (INIS)

    Harris, V.

    2006-01-01

    Ferrite materials have long played an important role in power conditioning, conversion, and generation across a wide spectrum of frequencies (up to ten decades). They remain the preferred magnetic materials, having suitably low losses, for most applications above 1 MHz, and are the only viable materials for nonreciprocal magnetic microwave and millimeter-wave devices (including tunable filters, isolators, phase shifters, and circulators). Recently, novel processing techniques have led to a resurgence of research interest in the design and processing of ferrite materials as nanoparticles, films, single crystals, and metamaterials. These latest developments have set the stage for their use in emerging technologies that include cancer remediation therapies such as magnetohyperthermia, magnetic targeted drug delivery, and magneto-rheological fluids, as well as enhanced magnetic resonance imaging. With reduced dimensionality of nanoparticles and films, and the inherent nonequilibrium nature of many processing schemes, changes in local chemistry and structure have profound effects on the functional properties and performance of ferrites. In this lecture, we will explore these effects upon the fundamental magnetic and electronic properties of ferrites. Density functional theory will be applied to predict the properties of these ferrites, with synchrotron radiation techniques used to elucidate the chemical and structural short-range order. This approach will be extended to study the atomic design of ferrites by alternating target laser-ablation deposition. Recently, this approach has been shown to produce ferrites that offer attractive properties not found in conventionally grown ferrites. We will explore the latest research developments involving ferrites as related to microwave and millimeter-wave applications and the attempt to integrate these materials with semiconductor materials platforms

  11. Electrochemical Impedance Spectroscopy Studies of Magnesium-Based Polymethylmethacrylate Gel Polymer Electroytes

    International Nuclear Information System (INIS)

    Osman, Z.; Zainol, N.H.; Samin, S.M.; Chong, W.G.; Md Isa, K.B.; Othman, L.; Supa’at, I.; Sonsudin, F.

    2014-01-01

    Magnesium-based rechargeable batteries might be an interesting future alternative to lithium-based batteries since magnesium compounds are highly abundant in the earth and are environmental friendly. In this work, we have prepared polymethylmethacrylate (PMMA) based gel polymer electrolyte (GPE) films containing two different magnesium salts, which is magnesium triflate, Mg(CF 3 SO 3 ) 2 and magnesium perchlorate, Mg(ClO 4 ) 2 using solution casting technique . The ionic conductivity of both gel polymer electrolyte systems was evaluated using a.c impedance spectroscopy. Results show that at room temperature, GPE-Mg(CF 3 SO 3 ) 2 system exhibits the highest conductivity value at 1.27 × 10 −3 S cm −1 for the film containing 20 wt.% of Mg(CF 3 SO 3 ) 2 salt, while the highest conductivity value for the GPE-Mg(ClO 4 ) 2 system is 3.13 × 10 −3 S cm −1 for the film containing 15 wt.% of Mg(ClO 4 ) 2 salt. The conductivity-temperature studies of both GPE systems follow the Arrhenius behavior. The activation energies for ionic conduction were determined to be in the range of 0.18–0.26 eV. The transport numbers of magnesium ions in both GPE systems were evaluated using the combination of a.c impedance spectroscopy and d.c polarization techniques. The results obtained indicate that the charge carriers in the GPE films for both systems are predominantly due to ions

  12. Water corrosion resistance of ODS ferritic-martensitic steel tubes

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasuji

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels have superior radiation resistance; it is possible to achieve a service temperature of up to around 973 K because of their superior creep strength. These advantages of ODS steels facilities their application to long-life cladding tubes in advanced fast reactor fuel elements. In addition to neutron radiation resistance, sufficient general corrosion resistance to maintain the strength of the cladding, and the stress corrosion cracking (SCC) resistance for spent-fuel-pool cooling systems and high-temperature oxidation for the fuel-clad chemical interaction (FCCI) of ODS ferritic steel are required. Although the addition of Cr to ODS is effective in preventing water corrosion and high-temperature oxidation, an excessively high amount of Cr leads to embrittlement due to the formation of a Cr-rich α' precipitate. The Cr content in 9Cr-ODS martensite and 12Cr-ODS ferrite, the ODS steels developed by the Japan Atomic Energy Agency (JAEA), is controlled. In a previous paper, it has been demonstrated that the resistances of 9Cr- and 12Cr-ODS ferritic-martensitic steels for high-temperature oxidation are superior to those of conventional 12Cr ferritic steel. However, the water corrosion data of ODS ferritic-martensitic steels are very limited. In this study, a water corrosion test was conducted on ODS steels in consideration of the spent-fuel-pool cooling condition, and the results were compared with those of conventional austenitic stainless steel and ferritic-martensitic stainless steel. (author)

  13. Effect of Ferrite Morphology on Sensitization of 316L Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hun; Lee, Jun Ho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The sensitization behaviors of L-grade SSs having predominant austenitic structure with small amount of ferrite have not been well understood. In this regard, the effect of ferrite morphology on sensitization was investigated in this study. The sensitization behaviors of three heats of 316L and 316LN SSs were investigated, Stringer type of ferrite (316L - heat A and B) showed the early sensitization by chromium depletion at ferrite. austenite interface. And, later sensitization is due to GB sensitization. On the other hand, blocky type of ferrite (316L - heat C) showed lower DOS and higher resistance to GB sensitization. It could be due to sufficient supply of chromium from relatively large ferrite phase. As a consequence, the sensitization of 316L SSs could be affected by their ferrite morphology rather than ferrite content. The sensitized region was distinguishable from results of DL-EPR tests. It can be used as an effective method for evaluation of type of sensitization.

  14. Dielectric properties of Al-substituted Co ferrite nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    The particle size, D, decreases with increase in Al-content. The lattice parameter, a ... a significant saving in time and energy consumption over the traditional methods. ... electrical, and magnetic properties of spinel ferrites. Cobalt ferrite based ...

  15. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  16. Progress in the preparation of magnetic nanoparticles for applications in biomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Roca, A G; Costo, R; Rebolledo, A F; Veintemillas-Verdaguer, S; Tartaj, P; Gonzalez-Carreno, T; Morales, M P; Serna, C J, E-mail: puerto@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain)

    2009-11-21

    This review summarizes recent advances in synthesis routes for quickly and reliably making and functionalizing magnetic nanoparticles for applications in biomedicine. We put special emphasis on describing synthetic strategies that result in the production of nanosized materials with well-defined physical and crystallochemical characteristics as well as colloidal and magnetic properties. Rather than grouping the information according to the synthetic route, we have described methods to prepare water-dispersible equiaxial magnetic nanoparticles with sizes below about 10 nm, sizes between 10 and 30 nm and sizes around the monodomain-multidomain magnetic transition. We have also described some recent examples reporting the preparation of anisometric nanoparticles as well as methods to prepare magnetic nanosized materials other than iron oxide ferrites, for example Co and Mn ferrite, FePt and manganites. Finally, we have described examples of the preparation of multicomponent systems with purely inorganic or organic-inorganic characteristics. (topical review)

  17. Corrosion of cast and non equilibrium magnesium alloys

    International Nuclear Information System (INIS)

    Mathieu, S.; Rapin, C.; Steinmetz, P.; Hazan, J.

    1999-01-01

    Due to their low density, magnesium alloys arc very promising as regards applications in the automotive or aeronautical industry. Their corrosion resistance has however to be increased, particularly for cast alloys which are very often two-phased and thus suffer from internal galvanic corrosion. With use of sputtering methods of elaboration, homogeneous magnesium alloys containing far from equilibrium Al, Zr or valve metals contents can be prepared. Corrosion data for Mg-Al-Zn-Sn alloys and MgZr alloys obtained by sputtering, have been determined and compared to those of cast and thixocast AZ91 alloy. Electrochemical tests have evidenced a significantly better behaviour of non equilibrium alloys which, thanks to XPS measurements, could be correlated to the composition of the superficial oxide scale formed on these alloys. (author)

  18. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification

    Science.gov (United States)

    Liu, Yichi; Liu, Debao; You, Chen; Chen, Minfang

    2015-09-01

    The aim of this study was to investigate the effect of grain size on the corrosion resistance of pure magnesium developed for biomedical applications. High-purity magnesium samples with different grain size were prepared by the cooling rate-controlled solidification. Electrochemical and immersion tests were employed to measure the corrosion resistance of pure magnesium with different grain size. The electrochemical polarization curves indicated that the corrosion susceptibility increased as the grain size decrease. However, the electrochemical impedance spectroscopy (EIS) and immersion tests indicated that the corrosion resistance of pure magnesium is improved as the grain size decreases. The improvement in the corrosion resistance is attributed to refine grain can produce more uniform and density film on the surface of sample.

  19. Initial Ferritic Wall Mode studies on HBT-EP

    Science.gov (United States)

    Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.

    2013-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  20. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  1. Targets on the basis of ferrites and high-temperature superconductors for ion-plasma sputtering

    International Nuclear Information System (INIS)

    Lepeshev, A.A.; Saunin, V.N.; Telegin, S.V.; Polyakova, K.P.; Seredkin, V.A.; Pol'skij, A.I.

    2000-01-01

    Paper describes a method to produce targets for ion-plasma sputtering using plasma splaying of the appropriate powders on a cooled metal basis. Application of the plasma process was demonstrated to enable to produce complex shaped targets under the controlled atmosphere on the basis of ceramic materials ensuring their high composition homogeneity, as well as, reliable mechanical and thermal contact of the resultant coating with the base. One carried out experiments in ion-plasma sputtering of targets to prepare ferrite polycrystalline films to be used in magnetooptics and to prepare high-temperature superconductor epitaxial films [ru

  2. Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Raut, Anil V., E-mail: nano9993@gmail.com [Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431004, (M.S.) India (India); Kurmude, D.V. [Milind College of Science, Aurangabad 431004, (M.S.) India (India); Shengule, D.R. [Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431004, (M.S.) India (India); Jadhav, K.M. [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, (M.S.) India (India)

    2015-03-15

    Highlights: • Co–Zn ferrite nanoparticles were examined before and after γ-irradiation. • Single phase cubic spinel structure of Co–Zn was confirmed by XRD data. • The grain size was reported in the range of 52–62 nm after γ-irradiation. • Ms, Hc, n{sub B} were reported to be increased after gamma irradiation. - Abstract: In this work, the structural and magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 1.0) ferrite nanoparticles were studied before and after gamma irradiation. The as-synthesized samples of Co–Zn ferrite nanoparticles prepared by sol–gel auto-combustion technique were analysed by XRD which suggested the single phase; cubic spinel structure of the material. Crystal defects produced in the spinel lattice were studied before and after Co{sup 60} γ-irradiation in a gamma cell with a dose rate of 0.1 Mrad/h in order to report the changes in structural and magnetic properties of the Co–Zn ferrite nanoparticles. The average crystallite size (t), lattice parameter (α) and other structural parameters of gamma-irradiated and un-irradiated Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite system was calculated from XRD data. The morphological characterizations were performed using scanning electron microscopy (SEM). The magnetic properties were measured using pulse field hysteresis loop tracer by applying magnetic field of 1000 Oe, and the analysis of data obtained revealed that the magnetic property such as saturation magnetization (Ms), coecivity (Hc), magneton number (n{sub B}) etc. magnetic parameters were increased after irradiation.

  3. Ferritic/martensitic steels: Promises and problems

    International Nuclear Information System (INIS)

    Klueh, R.L.; Ehrlich, K.; Abe, F.

    1992-01-01

    Ferritic/martensitic steels are candidate structural materials for fusion reactors because of their higher swelling resistance, higher thermal conductivity, lower thermal expansion, and better liquid-metal compatibility than austenitic steels. Irradiation effects will ultimately determine the applicability of these steels, and the effects of irradiation on microstructure and swelling, and on the tensile, fatigue, and impact properties of the ferritic/martensitic steels are discussed. Most irradiation studies have been carried out in fast reactors, where little transmutation helium forms. Helium has been shown to enhance swelling and affect tensile and fracture behavior, making helium a critical issue, since high helium concentrations will be generated in conjunction with displacement damage in a fusion reactor. These issues are reviewed to evaluate the status of ferritic/martensitic steels and to assess the research required to insure that such steels are viable candidates for fusion applications

  4. Effect of chip size on mechanical property and microstructure of AZ91D magnesium alloy prepared by solid state recycling

    International Nuclear Information System (INIS)

    Hu Maoliang; Ji Zesheng; Chen Xiaoyu; Zhang Zhenkao

    2008-01-01

    In this study, different kinds of AZ91D magnesium alloy chips were prepared by solid state recycling. Mechanical properties and microstructures of the recycled specimens were investigated. Various microstructural analyses were performed using the techniques of optical microscopy, scanning electron microscopy and oxygen-nitrogen analysis. Microstructural observations revealed that all the recycled specimens consisted of fine grains due to dynamic recrystallization. The oxide precipitate content is closely related to the recycled chip size. Accumulated oxygen concentration linearly increases with the total surface area of the machined chips in the recycled specimens. Ambient oxide in the recycled specimen contributes to a higher ultimate tensile strength and a higher elongation to failure; however, excessive oxide in the recycled specimen may adversely affect the elongation to failure

  5. Investigation of structural, optical, magnetic and electrical properties of tungsten doped Nisbnd Zn nano-ferrites

    Science.gov (United States)

    Pathania, Abhilash; Bhardwaj, Sanjay; Thakur, Shyam Singh; Mattei, Jean-Luc; Queffelec, Patrick; Panina, Larissa V.; Thakur, Preeti; Thakur, Atul

    2018-02-01

    Tungsten substituted nickel-zinc ferrite nanoparticles with chemical composition of Ni0.5Zn0.5WxFe2-xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 & 1.0) were successfully synthesized by a chemical co-precipitation method. The prepared ferrites were pre sintered at 850 °C and then annealed at 1000 °C in a muffle furnace for 3 h each. This sintered powder was inspected by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM) to study the structural, optical, and magnetic properties. XRD measurement revealed the phase purity of all the nanoferrite samples with cubic spinel structure. The estimated crystallite size by X-ray line broadening is found in the range of 49-62 nm. FTIR spectra of all the samples have observed two prominent absorption bands in the range 400-700 cm-1 arising due to tetrahedral and octahedral stretching vibrations. Vibrating sample magnetometer experiments showed that the saturation magnetizations (MS) decreased with an increase in non-magnetic tungsten ion doping. The electrical resistivity of tungsten doped Nisbnd Zn nano ferrites were examined extensively as a function of temperature. With an increase in tungsten composition, resistivity was found to decrease from 2.2 × 105 Ω cm to 1.9 × 105 Ω cm which indicates the semiconducting behavior of the ferrite samples. The activation energy also decreased from 0.0264 to 0.0221 eV at x = 0.0 to x = 1.0. These low coercive field tungsten doped Nisbnd Zn ferrites are suitable for hyperthermia and sensor applications. These observations are explained in detail on the basis of various models and theories.

  6. Solvent Influences on the Molecular Aggregation of Magnesium Aryloxides

    Energy Technology Data Exchange (ETDEWEB)

    ZECHMANN,CECILIA A.; BOYLE,TIMOTHY J.; RODRIGUEZ,MARK A.; KEMP,RICHARD A.

    2000-07-14

    Magnesium aryloxides were prepared in a variety of solvents through the reaction of dibutyl magnesium with sterically varied aryl alcohols: 2,6-dimethylphenol (H-DMP), 2,6-diisopropylphenol (H-DIP), and 2,4,6-trichlorophenol (H-TCP). Upon using a sufficiently strong Lewis-basic solvent, the monomeric species Mg(DMP){sub 2}(py){sub 3} (1, py = pyridine), Mg(DIP){sub 2}(THF){sub 3}, (2a, THF = tetrahydrofuran) Mg(TCP){sub 2}(THF){sub 3} (3) were isolated. Each of these complexes possesses a five-coordinate magnesium that adopts a trigonal bipyramidal geometry. In the absence of a Lewis base, the reaction with H-DIP yields a soluble trinuclear complex, [Mg(DIP){sub 2}]{sub 3} (2b). The Mg metal centers in 2b adopt a linear arrangement with a four-coordinate central metal while the outer metal centers are reduced to just three-coordinate. Solution spectroscopic methods suggest that while 2b remains intact, the monomeric species (1, 2a, and 3) are involved in equilibria, which facilitate intermolecular ligand transfer.

  7. Mechanism and experimental research on ultra-precision grinding of ferrite

    Science.gov (United States)

    Ban, Xinxing; Zhao, Huiying; Dong, Longchao; Zhu, Xueliang; Zhang, Chupeng; Gu, Yawen

    2017-02-01

    Ultra-precision grinding of ferrite is conducted to investigate the removal mechanism. Effect of the accuracy of machine tool key components on grinding surface quality is analyzed. The surface generation model of ferrite ultra-precision grinding machining is established. In order to reveal the surface formation mechanism of ferrite in the process of ultraprecision grinding, furthermore, the scientific and accurate of the calculation model are taken into account to verify the grinding surface roughness, which is proposed. Orthogonal experiment is designed using the high precision aerostatic turntable and aerostatic spindle for ferrite which is a typical hard brittle materials. Based on the experimental results, the influence factors and laws of ultra-precision grinding surface of ferrite are discussed through the analysis of the surface roughness. The results show that the quality of ferrite grinding surface is the optimal parameters, when the wheel speed of 20000r/mm, feed rate of 10mm/min, grinding depth of 0.005mm, and turntable rotary speed of 5r/min, the surface roughness Ra can up to 75nm.

  8. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    Science.gov (United States)

    Li, Siheng; Wang, Enbo; Tian, Chungui; Mao, Baodong; Kang, Zhenhui; Li, Qiuyu; Sun, Guoying

    2008-07-01

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag@ MFe 2O 4 ( M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag@C microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag@C spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core.

  9. Ferrite control--Measurement problems and solutions during stainless steel fabrication

    International Nuclear Information System (INIS)

    Pickering, E.W.

    1986-01-01

    Ferrite is one of the magnetic phases found in many grades of otherwise nonmagnetic austenitic stainless steel weldments. Control of ferrite during the fabrication of cryogenic component parts is necessary to produce a reliable product, free of cracking and microfissuring. This is accomplished by balancing compositions in order to produce a small amount of ferrite which is generally accompanied with reduced toughness. Control of ferrite is essential during the fabrication of component parts. The means to accomplish this will vary with the type of material being welded, thickness, welding process, method of measurement and fabrication procedures. An application used during the fabrication of component parts for the Fast Flux Test Facility (FFTF) required specially formulated shielded manual arc welding (SMAW) electrodes and consumable inserts. Control of ferrite measurements and shop welding procedures were essential. The special materials and techniques were used to weld Type 316 stainless steel pipe joints, 28 in. (0.71 m) in diameter. By using three lots of electrodes, each with a different ferrite level, a compatible range of ferrite was achieved throughout the layers of weld metal. By extensive use of the Schaeffler and DeLong modified constitution diagrams for stainless steel weld metal, E-16-8-2 SMAW electrodes were developed with ''0'' ferrite level. The electrodes were used during fabrication of the Liquid Metal Fast Breader Reactor (LMFBR) component parts of Type 316 stainless steel. Metallographic evaluation of laboratory specimens, control of shop welding techniques and individual laboratory training of shop welders combined to produce a quality product

  10. Structural and magnetic properties of nanocrystalline stannic substituted cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Y.M., E-mail: ymabbas@live.com [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Mansour, S.A. [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Physics Department, Faculty of Science, King AbdulAziz University, Rabegh (Saudi Arabia); Ibrahim, M.H. [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Physics Department, Faculty of Science, King AbdulAziz University (Saudi Arabia); Ali, Shehab. E., E-mail: shehab_ali@science.suez.edu.eg [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt)

    2012-09-15

    The structural and magnetic properties of the spinel ferrite system Co{sub 1+x}Fe{sub 2-2x}Sn{sub x}O{sub 4} (x=0.0-1.0) have been studied. Samples in the series were prepared by the ceramic technique. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. Far infrared absorption spectra show two significant absorption bands, around 600 cm{sup -1} and 425 cm{sup -1}, which are respectively attributed to tetrahedral (A) and octahedral [B] vibrations of the spinel. Scanning Electron Microscopy (SEM) was used to study surface morphology. SEM images reveal particles in the nanosize range. The transmission electronic microscope (TEM) reveals that the grains are spherical in shape. TEM analysis confirmed the X-ray results. The magnetic properties of the prepared samples were characterized by using a vibrating sample magnetometer. - Highlights: Black-Right-Pointing-Pointer The spinel ferrite system has been formed at 1000 Degree-Sign C by using ceramic techniques. Black-Right-Pointing-Pointer Structural and microstructural evolutions have been studied using XRD and the Rietveld method. Black-Right-Pointing-Pointer The refinement result showed cationic distribution in the lattice is partially an inverse spinel. Black-Right-Pointing-Pointer The transmission electronic microscope analysis confirmed the X-ray results. Black-Right-Pointing-Pointer Magnetic properties of the samples were characterized by using a vibrating sample magnetometer.

  11. Structural and magnetic properties of nanocrystalline stannic substituted cobalt ferrite

    International Nuclear Information System (INIS)

    Abbas, Y.M.; Mansour, S.A.; Ibrahim, M.H.; Ali, Shehab. E.

    2012-01-01

    The structural and magnetic properties of the spinel ferrite system Co 1+x Fe 2−2x Sn x O 4 (x=0.0–1.0) have been studied. Samples in the series were prepared by the ceramic technique. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. Far infrared absorption spectra show two significant absorption bands, around 600 cm −1 and 425 cm −1 , which are respectively attributed to tetrahedral (A) and octahedral [B] vibrations of the spinel. Scanning Electron Microscopy (SEM) was used to study surface morphology. SEM images reveal particles in the nanosize range. The transmission electronic microscope (TEM) reveals that the grains are spherical in shape. TEM analysis confirmed the X-ray results. The magnetic properties of the prepared samples were characterized by using a vibrating sample magnetometer. - Highlights: ► The spinel ferrite system has been formed at 1000 °C by using ceramic techniques. ► Structural and microstructural evolutions have been studied using XRD and the Rietveld method. ► The refinement result showed cationic distribution in the lattice is partially an inverse spinel. ► The transmission electronic microscope analysis confirmed the X-ray results. ► Magnetic properties of the samples were characterized by using a vibrating sample magnetometer.

  12. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    Science.gov (United States)

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys.

  13. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    Science.gov (United States)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  14. Dynamic magnetization of NiZn ferrite doped FeSiAl thin films fabricated by oblique sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xiaoxi, E-mail: xiaoxi.zhong@gmail.com [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China); Phuoc, Nguyen N. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore); Soh, Wee Tee [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Ong, C.K. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore); Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Li, Lezhong [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China)

    2017-06-15

    Highlights: • We prepared NiZn ferrite doped FeSiAl-based thin films using oblique deposition technique. • The magnetic properties of FeSiAl-based thin films were systematically studied. • Two ferromagnetic resonance peaks were observed in the permeability spectra. • The thermal stability of microwave properties of FeSiAl-based films was studied. • The thermal stability of properties we studied was relatively good. - Abstract: In this study, we comprehensively investigate the dynamic magnetic properties of FeSiAl-NiZnFeO thin films prepared by the oblique deposition method via a shorted microstrip perturbation technique. For the films with higher oblique angle and NiZn ferrite doping amount, there are two ferromagnetic resonance peaks observed in the permeability spectra, and both of the two peaks originate from FeSiAl. Furthermore, the magnetic anisotropy field H{sub K} of the ferromagnetic resonance peak at higher frequency is enhanced with increasing doping amount, which is interpreted in terms of the contribution of reinforced stress-induced anisotropy and shape anisotropy brought about by doping elements and oblique sputtering method. In addition, the thermal stability of the ferromagnetic resonance frequency f{sub FMR} of FeSiAl-NiZnFeO films with oblique angles of 35° and 45° with respect to temperature ranging from 300 K to 420 K is deteriorated with increasing ferrite doping amount, which is mainly ascribed to the influence of pair-ordering anisotropy and/or the reduction of the FeSiAl grain size.

  15. Investigation of Structural, Morphological, Magnetic Properties and Biomedical applications of Cu2+ Substituted Uncoated Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Margabandhu

    Full Text Available ABSTRACT In the present work, Cu2+ substituted cobalt ferrite (Co1-xCuxFe2O4, x = 0, 0.3, 0.5, 0.7 and 1 magnetic nanopowders were synthesized via chemical co-precipitation method. The prepared powders were investigated by various characterization methods such as X-ray diffraction analysis (XRD, scanning electron microscope analysis (SEM, vibrating sample magnetometer analysis (VSM and fourier transform infrared spectroscopy analysis (FTIR. The XRD analysis reveals that the synthesized nanopowders possess single phase centred cubic spinel structure. The average crystallite size of the particles ranging from 27-49 nm was calculated by using Debye-scherrer formula. Magnetic properties of the synthesized magnetic nanoparticles are studied by using VSM. The VSM results shows the magnetic properties such as coercivity, magnetic retentivity decreases with increase in copper substitution whereas the saturation magnetization shows increment and decrement in accordance with Cu2+ substitution in cobalt ferrite nanoparticles. SEM analysis reveals the morphology of synthesized magnetic nanoparticles. FTIR spectra of Cu2+ substituted cobalt ferrite magnetic nanoparticles were recorded in the frequency range 4000-400cm-1. The spectrum shows the presence of water adsorption and metal oxygen bonds. The adhesion nature of Cu2+ substituted cobalt ferrite magnetic nanoparticles with bacteria in reviewed results indicates that the synthesized nanoparticles could be used in biotechnology and biomedical applications.

  16. Hydrothermal synthesis and characterizations of Ti substituted Mn-ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Hessien, M.M. [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Advanced materials Division-Central metallurgical R and D Institute (CMRDI), P.O. Box 87 Helwan, Cairo (Egypt); Shaltout, Abdallah A. [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Spectroscopy Department, Physics Division, National Research Center, El Behooth Str., 12622 Dokki, Cairo (Egypt)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesized of well-crystallized Ti-substituted MnFe{sub 2}O{sub 4} nanoparticles at 180 Degree-Sign C without any calcination step. The chemical composition was represented by Mn{sub 1-2x}Ti{sub x}Fe{sub 2}O{sub 4} with x having values 0.0, 0.1, 0.2, 0.3 and 0.4. Black-Right-Pointing-Pointer The change in lattice parameter and saturation magnetization with increasing Ti-substitution was investigated and explained. Black-Right-Pointing-Pointer The change in microstructure due to Ti{sup 4+} ions substitutions was investigated using TEM analysis. - Abstarct: A series of well-crystallized Mn{sub 1-2x}Ti{sub x}Fe{sub 2}O{sub 4} nanoparticles with x values of 0.0, 0.1, 0.2, 0.3 and 0.4 have been synthesized by hydrothermal route at 180 Degree-Sign C in the presence of NaOH as mineralizer. The obtained ferrite samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The XRD analysis showed that pure single phases of cubic ferrites were obtained with x up to 0.2. However, samples with x > 0.2 showed traces of unreacted anatase. The increase in Ti-substitution up to x = 0.2 leads to an increase in the lattice parameter of the prepared ferrites. On the other hand, the increase in Ti-substitution over x = 0.2 leads to a decrease in the lattice parameter. The average crystallite size was in the range of 39-57 nm, where it is increased by increasing the Ti-substitution up to x = 0.3, then decreased for x = 0.4. According to VSM results, the saturation magnetization increased with Ti ion substitution of x = 0.1 and decreased for x > 0.1.

  17. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  18. Magnesium-based implants: a mini-review.

    Science.gov (United States)

    Luthringer, Bérengère J C; Feyerabend, Frank; Willumeit-Römer, Regine

    2014-01-01

    The goal of this review is to bring to the attention of the readership of Magnesium Research another facet of the importance of magnesium, i.e. magnesium-based biomaterials. A concise history of biomaterials and magnesium are thus presented. In addition, historical and current, clinical magnesium-based applications are presented.

  19. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    Science.gov (United States)

    Zhong, X. C.; Guo, X. J.; Zou, S. Y.; Yu, H. Y.; Liu, Z. W.; Zhang, Y. F.; Wang, K. X.

    2018-04-01

    Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  20. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    Directory of Open Access Journals (Sweden)

    X. C. Zhong

    2018-04-01

    Full Text Available Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  1. Y{sub 3}Fe{sub 5}O{sub 12} nanoparticulate garnet ferrites: Comprehensive study on the synthesis and characterization fabricated by various routes

    Energy Technology Data Exchange (ETDEWEB)

    Niaz Akhtar, Majid, E-mail: majidniazakhtar@ciitlahore.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi,Selangor (Malaysia); Azhar Khan, Muhammad [Department of Physics, The Islamia University of Bahawalpur, 63100 (Pakistan); Ahmad, Mukhtar [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Murtaza, G. [Centre for Advanced Studies in Physics, G.C. University, Lahore (Pakistan); Raza, Rizwan; Shaukat, S.F.; Asif, M.H. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Nasir, Nadeem [Fundamental and Applied Sciences Department, National Textile University, Faisalabad (Pakistan); Abbas, Ghazanfar [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Nazir, M.S. [Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Raza, M.R. [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi,Selangor (Malaysia)

    2014-11-15

    The effects of synthesis methods such as sol–gel (SG), self combustion (SC) and modified conventional mixed oxide (MCMO) on the structure, morphology and magnetic properties of the (Y{sub 3}Fe{sub 5}O{sub 12}) garnet ferrites have been studied in the present work. The samples of Y{sub 3}Fe{sub 5}O{sub 12} were sintered at 950 °C and 1150 °C (by SG and SC methods). For MCMO route the sintering was done at 1350 °C for 6 h. Synthesized samples prepared by various routes were investigated using X-ray diffraction (XRD) analysis, Field emission scanning electron microscopy (FESEM), Impedance network analyzer and transmission electron microscopy (TEM). The structural analysis reveals that the samples are of single phase structure and shows variations in the particle sizes and cells volumes, prepared by various routes. FESEM and TEM images depict that grain size increases with the increase of sintering temperature from 40 nm to 100 nm.Magnetic measurements reveal that garnet ferrite synthesized by sol gel method has high initial permeability (60.22) and low magnetic loss (0.0004) as compared to other garnet ferrite samples, which were synthesized by self combustion and MCMO methods. The M–H loops exhibit very low coercivity which enables the use of these materials in relays and switching devices fabrications. Thus, the garnet nanoferrites with low magnetic loss prepared by different methods may open new horizon for electronic industry for their use in high frequency applications. - Highlights: • Y{sub 3}Fe{sub 5}O{sub 12} garnet ferrites nanoparticles were synthesized by three different routes. • Impact of sintering temperature on the particle size of Y{sub 3}Fe{sub 5}O{sub 12} was evaluated. • The magnetic studies suggest the applications in relays and switching devices.

  2. hermo-Physical and Mechanical Properties of Unsaturated Polyester /Cobalt Ferrite Composites

    Directory of Open Access Journals (Sweden)

    Lamees Salam Faiq

    2017-04-01

    Full Text Available Unsaturated polyester was used as a matrix which was filled with different percentages of cobalt ferrite using hand lay-up method. Cobalt ferrite was synthesized using solid state ceramic method with reagent of CoO and Fe2O3. Mechanical properties such tensile strength, Young's modulus and shore D hardness of the composite have been studied. All these properties have increased by 10% with increasing cobalt ferrite contents. Also the thermal properties such thermal conductivity and specific heat capacity are highly increased as the ferrite content increased, while the thermal diffusivity increased by 22 %. On the other hand dielectric strength of composite has been measured which increased by 50% by increasing the cobalt ferrite content.

  3. Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites

    International Nuclear Information System (INIS)

    Concas, G.; Spano, G.; Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G.

    2009-01-01

    The inversion degree of a series of nanocrystalline samples of CoFe 2 O 4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57 Fe Moessbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Moessbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.

  4. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  5. Ionized magnesium in plasma and erythrocytes for the assessment of low magnesium status in alcohol dependent patients.

    Science.gov (United States)

    Ordak, Michal; Maj-Zurawska, Magdalena; Matsumoto, Halina; Bujalska-Zadrozny, Magdalena; Kieres-Salomonski, Ilona; Nasierowski, Tadeusz; Muszynska, Elzbieta; Wojnar, Marcin

    2017-09-01

    Studies on the homeostasis of magnesium in alcohol-dependent patients have often been characterized by low hypomagnesemia detection rates. This may be due to the fact that the content of magnesium in blood serum constitutes only 1% of the average magnesium level within the human body. However, the concentration of ionized magnesium is more physiologically important and makes up 67% of the total magnesium within a human organism. There are no data concerning the determination of the ionized fraction of magnesium in patients addicted to alcohol and its influence on mental health status. This study included 100 alcohol-dependent patients and 50 healthy subjects. The free magnesium fraction was determined using the potentiometric method by means of using ion-selective electrodes. The total magnesium level was determined by using a biochemical Indiko Plus analyzer. In this study, different psychometric scales were applied. Our results confirm the usefulness of ionized magnesium concentrations in erythrocytes and plasma as a diagnostic parameter of low magnesium status in alcohol-dependent patients. The lower the concentration of ionized magnesium, the worse the quality of life an alcohol-dependent person might experience. In the case of total magnesium, no such correlation was determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang Hui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yu Dezhen [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo Yan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wang Fuping, E-mail: hitth001@yahoo.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. Black-Right-Pointing-Pointer The corrosion resistance of the magnesium alloy has been enhanced by micro-arc oxidation and solution treatment. Black-Right-Pointing-Pointer The coating fabricated by micro-arc oxidation and solution treatment exhibits a high ability to form apatite. - Abstract: Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  7. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  8. Complex impedance spectra of chip inductor using Li-Zn-Cu-Mn ferrite

    International Nuclear Information System (INIS)

    Nakamura, Tatsuya; Naoe, Masayuki; Yamada, Yoshihiro

    2006-01-01

    A multi-layer chip inductor (MCI) was fabricated using polycrystalline Li-Zn-Cu-Mn ferrite and the green-sheet technique, and its complex impedance spectrum was evaluated with the help of numerical calculations. The complex impedance spectra of the MCI component using Ni-Zn-Cu ferrite, which have been widely used for this application, were very sensitive to the residual stress and deviated much from the calculated values; however, it was found that the complex impedance spectrum of the MCI component using Li-Zn-Cu-Mn ferrite is quite well reproduced by calculation, where the complex permittivity and permeability of the polycrystalline ferrite as well as the MCI dimensions, were used. It implied that the magneto-striction effect was negligible in case of MCI using Li-Zn-Cu-Mn ferrite, and that the difference was related to magneto-strictive coefficient of the polycrystalline ferrite. Consequently, utilization of Li-Zn-Cu-Mn ferrite enabled us to easily design the complex impedance of MCI component

  9. Structural, Magnetic and Microwave Properties of Nanocrystalline Ni-Co-Gd Ferrites

    Science.gov (United States)

    Nikzad, Alireza; Parvizi, Roghaieh; Rezaei, Ghasem; Vaseghi, Behrooz; Khordad, Reza

    2018-02-01

    A series of Co- and Gd-substituted NiFe2O4 ferrite nanoparticles with the formula Ni1- x Co x Fe2- y Gd y O4 (where x = 0.0-1.0 and y = 0.0-0.1) have been successfully synthesized using a hydrothermal method. X-ray diffraction and field emission scanning electron microscopy results indicated that a highly crystallized spherical ferrite nanoparticle structure was obtained along with an increase in the lattice parameters. Compositional analysis of the prepared nanoferrite powders has been carried out using energy-dispersive x-ray (EDX) spectra. The EDX analysis reveals the presence of Ni, Co, Gd and Fe elements in the specimens. Magnetization and the coercive field improved dramatically with an increase in the amount of cobalt and gadolinium added, attributed to the redistribution of cations in the spinel nanoferrite structure. Saturation magnetization and coercivity values up to 99 emu/g and 918 Oe, respectively, were measured using a vibration sample magnetometer at room temperature. Comparative microwave absorption experiments demonstrated that the reflection loss (RL) properties enhanced with increasing substitution of cations in the Ni-ferrite spinel structure for an absorber thickness of 1.8 mm. A maximum RL of - 26.7 dB was obtained for substituted Ni-Co-Gd nanoferrite with x = 1.0 and y = 0.1 at a frequency of 9.4 GHz with a bandwidth of 3.6 GHz (RL ≤ - 10 dB). Experimental results revealed that the synthesized nanoparticles possessed great potential in microwave absorption applications.

  10. Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application

    International Nuclear Information System (INIS)

    Kumbhar, V.S.; Jagadale, A.D.; Shinde, N.M.; Lokhande, C.D.

    2012-01-01

    Highlights: ► The first time preparation of cobalt ferrite material in thin film form, using chemical method at low temperature. ► A nano-flake like morphology of the cobalt ferrite thin film. ► An application of the film as an electrode in supercapacitor cell. - Abstract: The present paper reveals the formation of cobalt ferrite (CoFe 2 O 4 ) thin film on stainless steel substrate by simple chemical route from an alkaline bath containing Co 2+ and Fe 2+ ions. The films are characterised for structural, surface morphological and FT-IR properties. The XRD and FT-IR studies revealed formation of single phase of CoFe 2 O 4 . The formation of nano-flakes-like morphology is observed from scanning electron microscope. The electrochemical behaviour of CoFe 2 O 4 film has been studied using cyclic voltammetry in 1 M NaOH electrolyte. The maximum specific capacitance of 366 F g −1 is obtained at the scan rate of 5 mV s −1 . Using AC impedance technique equivalent series resistance (ESR) value is found to be 1.1 Ω.

  11. Gd3+ doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    International Nuclear Information System (INIS)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P.B.; Kumar, Manoj; Barman, Dipto; Katyal, S.C.; Sharma, Pankaj

    2017-01-01

    Highlights: • Superparamagnetic nanoparticles of Gd doped Mn-Zn spinel ferrites synthesized by co-precipitation. • XRD and FTIR studies justify the formation of cubical spinel structure. • Maximum saturation magnetization and magnetic moment at x = 0.025. • PL spectra shows blue shift for x = 0.025, 0.075 and may be attributed to quantum confinement. - Abstract: Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn 0.5 Zn 0.5 Gd x Fe 2-x O 4 (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd 3+ nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  12. Choline Magnesium Trisalicylate

    Science.gov (United States)

    Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis and painful ... used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal anti- ...

  13. The study of a Mg-rich epoxy primer for protection of AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiangyu [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.c [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zhao Xuhui; Tang Yuming; Feng Xingguo [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Research highlights: {yields} A Mg-rich epoxy primer was prepared by adding pure magnesium particles in epoxy coating. Cross scratch testing results showed that in 3% NaCl solution the Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. {yields} The open circuit potential of AZ91D alloy in NaCl solution decreased after coated with Mg-rich coating, suggesting that cathodic protection effect of the Mg-rich coating on AZ91D alloy was present. {yields} EIS studies showed that during the immersion tests of AZ91D alloy with Mg-rich coating the magnesium particles in coating dissolved with the charge-transfer resistance R{sub ct} at the magnesium particle/coating interface decreased and the double-layer capacitance Q{sub dl} increased. While the coating resistance remained stable for a long time and corrosion of the AZ91D alloy substrate was obviously delayed. - Abstract: A Mg-rich epoxy primer was prepared by adding pure magnesium particles to an epoxy coating. The coating properties were studied with electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. The open circuit potential measurements showed cathodic protection effect of the Mg-rich primer on AZ91D alloy. Cross scratch testing showed that the Mg-rich primer provided better protection for the substrate than original epoxy coating. The precipitation of Mg(OH){sub 2} in the coating also provided some degree of barrier protection.

  14. The study of a Mg-rich epoxy primer for protection of AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Lu Xiangyu; Zuo Yu; Zhao Xuhui; Tang Yuming; Feng Xingguo

    2011-01-01

    Research highlights: → A Mg-rich epoxy primer was prepared by adding pure magnesium particles in epoxy coating. Cross scratch testing results showed that in 3% NaCl solution the Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. → The open circuit potential of AZ91D alloy in NaCl solution decreased after coated with Mg-rich coating, suggesting that cathodic protection effect of the Mg-rich coating on AZ91D alloy was present. → EIS studies showed that during the immersion tests of AZ91D alloy with Mg-rich coating the magnesium particles in coating dissolved with the charge-transfer resistance R ct at the magnesium particle/coating interface decreased and the double-layer capacitance Q dl increased. While the coating resistance remained stable for a long time and corrosion of the AZ91D alloy substrate was obviously delayed. - Abstract: A Mg-rich epoxy primer was prepared by adding pure magnesium particles to an epoxy coating. The coating properties were studied with electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. The open circuit potential measurements showed cathodic protection effect of the Mg-rich primer on AZ91D alloy. Cross scratch testing showed that the Mg-rich primer provided better protection for the substrate than original epoxy coating. The precipitation of Mg(OH) 2 in the coating also provided some degree of barrier protection.

  15. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    Science.gov (United States)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  16. Methods of acicular ferrite forming in the weld bead metal (Brief analysis

    Directory of Open Access Journals (Sweden)

    Володимир Олександрович Лебедєв

    2016-11-01

    Full Text Available A brief analysis of the methods of acicular ferrite formation as the most preferable structural component in the weld metal has been presented. The term «acicular ferrite» is meant as a structure that forms during pearlite and martensite transformation and austenite decomposition. Acicular ferrite is a packet structure consisting of battens of bainitic ferrite, there being no cementite particles inside these battens at all. The chemical elements most effectively influencing on the formation of acicular ferrite have been considered and their combined effect as well. It has been shown in particular, that the most effective chemical element in terms of impact toughness and cost relation is manganese. Besides, the results of multipass surfacing with impulse and constant feed of low-alloy steel wire electrode have been considered. According to these results acicular ferrite forms in both cases. However, at impulse feed of the electrode wire high mechanical properties of surfacing layer were got in the first passes, the form of the acicular ferrite crystallite has been improved and volume shares of polygonal and lamellar ferrite have been reduced. An assumption has been made, according to which acicular ferrite in the surfacing layer may be obtained through superposition of mechanical low-frequency oscillation on the welding torch or on the welding pool instead of periodic thermal effect due to electrode wire periodic feed

  17. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions

    Science.gov (United States)

    Bansal, Narottam P.

    1988-01-01

    MgO-SiO2 glasses containing up to 15 mol pct MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol pct MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol pct MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol pct) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  18. Synthesis and hyperthermia property of hydroxyapatite-ferrite hybrid particles by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Inukai, Akihiro; Sakamoto, Naonori; Aono, Hiromichi; Sakurai, Osamu; Shinozaki, Kazuo; Suzuki, Hisao; Wakiya, Naoki

    2011-01-01

    Biocompatible hybrid particles composed of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) and ferrite (γ-Fe 2 O 3 and Fe 3 O 4 ) were synthesized using a two-step procedure. First, the ferrite particles were synthesized by co-precipitation. Second, the suspension, which was composed of ferrite particles by a co-precipitation method, Ca(NO 3 ) 2 , and H 3 PO 4 aqueous solution with surfactant, was nebulized into mist ultrasonically. Then the mist was pyrolyzed at 1000 o C to synthesize HAp-ferrite hybrid particles. The molar ratio of Fe ion and HAp was (Fe 2+ and Fe 3+ )/HAp=6. The synthesized hybrid particle was round and dimpled, and the average diameter of a secondary particle was 740 nm. The cross section of the synthesized hybrid particles revealed two phases: HAp and ferrite. The ferrite was coated with HAp. The synthesized hybrid particles show a saturation magnetization of 11.8 emu/g. The net saturation magnetization of the ferrite component was calculated as 32.5 emu/g. The temperature increase in the AC-magnetic field (370 kHz, 1.77 kA/m) was 9 o C with 3.4 g (the ferrite component was 1.0 g). These results show that synthesized hybrid particles are biocompatible and might be useful for magnetic transport and hyperthermia studies. - Research Highlights: → Biocompatible hybrid particles composed of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) and ferrite (γ-Fe 2 O 3 and Fe 3 O 4 ) were synthesized using a two-step synthesis, which is comprised of co-precipitation and ultrasonic spray pyrolysis. → Cross sectional TEM observation and X-ray diffraction revealed that synthesized hybrid particles showed two phases (HAp and ferrite), and the ferrite was coated with HAp. → The saturation magnetization of ferrite in the HAp-ferrite hybrid was 32.49 emu/g. → The increased temperature in the AC-magnetic field (370 kHz, 1.77 kA/m) was 9 o C with 3.4 g (the ferrite component was 1.0 g).

  19. Removal of radioactive materials from waste solutions via magnetic ferrites

    International Nuclear Information System (INIS)

    Boyd, T.E.; Kochen, R.L.; Price, M.Y.

    1982-01-01

    Ferrite waste treatment was found to be effective in removing actinides from simulated Rocky Flats process waste solutions. With a one-stage ferrite treatment, plutonium concentrations were consistently reduced from 10 -4 g/l to less than 10 -8 g/l, and americium concentrations were lowered from 10 -7 g/l to below 10 -10 g/l. In addition, siginficantly less solid was produced as compared with the flocculant precipitation technique now employed at Rocky Flats. Aging of ferrite solids and elevated beryllium and phosphate concentrations were identified as interferences in the ferrite treatment of process waste, but neither appeeared serious enough to prevent implementation in plant operations

  20. Study on Magnesium in Rainwater and Fertilizer Infiltration to Solidified Peat

    Science.gov (United States)

    Tajuddin, S. A. M.; Rahman, J. A.; Mohamed, R. M. S. R.

    2018-04-01

    Magnesium is a component of several primary and secondary minerals in the soil which are essentially insoluble for agricultural purpose. The presence of water infiltrate in the soil allows magnesium to dissolve together into the groundwater. In fertilizers, magnesium is categorized as secondary macronutrient which supplies food and encouraging for plants growth. The main objective of this study was to determine the concentration of magnesium in fibric peat when applied the solidification under different conditions. Physical model was used as a mechanism for the analysis of the experimental data using a soil column as an equipment to produce water leaching. In this investigation, there were four outlets in the soil column which were prepared from the top of the column to the bottom with the purpose of identifying the concentration of magnesium for each soil level. The water leaching of each outlet was tested using atomic absorption spectroscopy (AAS). The results obtained showed that the highest concentrations of magnesium for flush and control condition at outlet 4 was 12.50 ppm and 1.29 ppm respectively. Similarly, fibric with solidified peat under rainwater recorded the highest value of 3.16 at outlet 1 for wet condition while for dry condition at outlet 4 of 1.33 ppm. However, the difference in fibric with solidified peat under rainwater and fertilizer condition showed that the highest value for the wet condition was achieved at outlet 1 with 5.43 ppm while highest value of 1.26 ppm was obtained for the dry condition at the outlet 4. It was concluded that the outlets in the soil column gave a detailed analysis of the concentration of magnesium in the soil which was influenced by the environmental conditions.

  1. Effect of PVP as a capping agent in single reaction synthesis of nanocomposite soft/hard ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, H.A. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor (Malaysia); Saiden, N.M., E-mail: nlaily@upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor (Malaysia); Saion, E.; Azis, R.S.; Mamat, M.S. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor (Malaysia); Hashim, M. [Advanced Material and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor (Malaysia)

    2017-04-15

    Nanocomposite magnets consist of soft and hard ferrite phases are known as an exchange spring magnet when they are sufficiently spin exchange coupled. Hard and soft ferrites offer high value of coercivity, H{sub c} and saturation magnetization, M{sub s} respectively. In order to obtain a better permanent magnet, both soft and hard ferrite phases need to be “exchange coupled”. The nanoparticles were prepared by a simple one-pot technique of 80% soft phase and 20% hard phase. This technique involves a single reaction mixture of metal nitrates and aqueous solution of varied amounts of polyvinylpyrrolidone (PVP). The heat treatment applied was at 800 °C for 3 h. The synthesized composites were characterized by Transmission Electron Microscope (TEM), Fourier Transform Infra-red (FT-IR), Energy Dispersive X-Ray (EDX), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM). The coexistence of two phases, Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and SrFe{sub 12}O{sub 19} were observed by XRD patterns. It also verified by the EDX that no impurities detected. The magnetic properties of nanocomposite ferrites for 0.06 g/ml PVP gives a better properties of H{sub c} 932 G and M{sub s} 39.0 emu/g with average particle size obtained from FESEM was 49.2 nm. The concentration of PVP used gives effect on the magnetic properties of the samples. - Highlights: • Amount of PVP play important roles in controlling the particle size distribution and magnetic properties. • This is a novel technique to produce nanocomposite ferrites effectively. • This study contributes better understanding on magnetic properties in nanoparticle composite magnets.

  2. Enhancement of electrical conductivity in gamma irradiated cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Nawpute, Asha A.; Raut, A.V.; Babrekar, M.K.; Kale, C.M.; Jadhav, K.M.; Shinde, A.B.

    2014-01-01

    The cobalt ferrite nanoparticles were synthesized by sol-gel auto- combustion method, in which L-ascorbic acid was used as a fuel. The effect of gamma irradiation on the electrical resistivity of cobalt ferrite nanoparticles has been studied. The ferrite powder annealed at 550℃ was irradiated by gamma source 137 Cs. The synthesized nanoparticles were characterized by X-ray diffraction and DC resistivity. (author)

  3. Influence of the evaporation rate and the evaporation mode on the hydrogen sorption kinetics of air-exposed magnesium films

    International Nuclear Information System (INIS)

    Leon, A.; Knystautas, E.J.; Huot, J.; Schulz, R.

    2006-01-01

    It has been shown that the hydrogen sorption properties of air-exposed magnesium films are influenced by the deposition parameters such as the evaporation rate or the evaporation mode used during their preparation. As the evaporation rate increases, the structure of the film tends to be highly oriented along the [002] direction and the kinetics of hydrogen absorption and desorption are faster. Moreover, the hydrogen sorption kinetics of magnesium films prepared with an electron beam source under a high vacuum are faster by almost a factor of two compared to those prepared using resistive heating under low vacuum. These two parameters reduce drastically the activation and the incubation period during hydrogen absorption and desorption, respectively

  4. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2017-06-19

    Jun 19, 2017 ... In the present paper, we are reporting the synthesis of pure nickel and magnesium ferrite [ N i F e 2 O 4 , M g F e 2 O 4 ] and magnesium-substituted nickel ferrite ( N i 1 − x M g x / y F e 2 − y O 4 ; x = y = 0.60 ) on A/B sites withparticles size in nanometer range using autocombustion technique. In this study, it ...

  5. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  6. Microstructural changes and effect of variation of lattice strain on positron annihilation lifetime parameters of zinc ferrite nanocomposites prepared by high enegy ball-milling

    Directory of Open Access Journals (Sweden)

    Abhijit Banerjee

    2012-12-01

    Full Text Available Zn-ferrite nanoparticles were synthesized at room temperature by mechanical alloying the stoichiometric (1:1 mol% mixture of ZnO and α-Fe2O3 powder under open air. Formation of both normal and inverse spinel ferrite phases was noticed after 30 minutes and 2.5 hours ball milling respectively and the content of inverse spinel phase increased with increasing milling time. The phase transformation kinetics towards formation of ferrite phases and microstructure characterization of ball milled ZnFe2O4 phases was primarily investigated by X-ray powder diffraction pattern analysis. The relative phase abundances of different phases, crystallite size, r.m.s. strain, lattice parameter change etc. were estimated from the Rietveld powder structure refinement analysis of XRD data. Positron annihilation lifetime spectra of all ball milled samples were deconvoluted with three lifetime parameters and their variation with milling time duration was explained with microstructural changes and formation of different phases with increase of milling time duration.

  7. NewIn-situ synthesis method of magnesium matrix composites reinforced with TiC particulates

    Directory of Open Access Journals (Sweden)

    Zhang Xiuqing

    2006-12-01

    Full Text Available Magnesium matrix composites reinforced with TiC particulates was prepared using a new in-situ synthesis method of remelting and dilution technique. And measurements were performed on the composites. The results of x ray diffraction (XRD analysis confirmed that TiC particulates were synthesized during the sintering process, and they retained in magnesium matrix composites after the remelting and dilution processing. From the microstructure characterization and electron probe microanalysis (EPMA, we could see that fine TiC particulates distributed uniformly in the matrix material.

  8. Study of transport properties and conduction mechanism of pure and composite resorcinol formaldehyde aerogel doped with Co-ferrite

    International Nuclear Information System (INIS)

    Attia, S.M.; Sharshar, T.; Abd-Elwahed, A.R.; Tawfik, A.

    2013-01-01

    Highlights: • A novel composite RF aerogels with Co-ferrite were prepared by sol–gel process. • RF aerogels exhibit a semiconducting behavior. • The dielectric constant of RF aerogel is very low (4 times as that of air) and can be controlled by adding Co-ferrite. • Large overlapping polaron (OLP) was found to be the preferred conduction mechanism in these materials. -- Abstract: A series of resorcinol formaldehyde aerogels (RF aerogels) composite with nanoparticles of CoFe 2 O 4 have been prepared by sol–gel method. Four samples of pure RF aerogels were prepared at different concentrations of Na 2 CO 3 as catalyst (0.02, 0.025, 0.03, and 0.04 wt.%) and four samples of composite RF aerogels were prepared at different concentration of doped CoFe 2 O 4 (0.075, 0.1, 0.125, and 0.15 wt.%; Na 2 CO 3 concentration = 0.03 wt.%). DC electrical conductivity as a function of temperature was studied in the temperature range 25 °C–200 °C for all samples. AC electrical conductivity and dielectric properties were determined using RLC Bridge in the frequency range 100 Hz–1 MHz at different temperature (25–200 °C). The pore size of the samples was determined using positron annihilation lifetime spectroscopy (PALS). RF aerogels are found to exhibit a semiconducting behavior and characterized by two transition temperatures T 1 and T 2 . Also σ DC increases with increase of Co-ferrite contents. Pure RF aerogels posses a very low dielectric constant, where the lowest value of ε′ is ∼4 times as that of air. ε′ decreases with increase of frequency, and increases with increase of temperature. Large overlapping polaron (OLP) is found to be the preferred conduction mechanism in these materials. The results of PALS show that there are two types of pore size in these samples; the first ranges from 1.9 to 2.5 nm, while the second ranges from 3.2 to 5.3 nm

  9. Combustion and extinction of magnesium fires

    International Nuclear Information System (INIS)

    Malet, J.C.; Duverger de Cuy, G.

    1988-01-01

    The studies made in France on magnesium combustion and extinguishing means are associated at the nuclear fuel of the graphite-gas reactor. Safety studies are made for ameliorate our knowledge on: - magnesium combustion - magnesium fire propagation - magnesium fire extinguishing [fr

  10. Magnesium deficiency: What is our status

    Science.gov (United States)

    Low magnesium intake has been implicated in a broad range of cardiometabolic conditions, including diabetes, hypertension, and cardiovascular disease. Dietary magnesium and total body magnesium status have a widely-used but imperfect biomarker in serum magnesium. Despite serum magnesium’s limitation...

  11. Heating temperature effect on ferritic grain size of rotor steel

    International Nuclear Information System (INIS)

    Cheremnykh, V.G.; Derevyankin, E.V.; Sakulin, A.A.

    1983-01-01

    The heating temperature effect on ferritic grain size of two steels 13Kh1M1FA and 25Kh1M1FA is evaluated. It is shown that exposure time increase at heating temperatures below 1000 deg C up to 10h changes but slightly the size of the Cr-Mo-V ferritic grain of rotor steel cooled with 25 deg C/h rate. Heating up to 1000 deg C and above leads to substantial ferritic grain growth. The kinetics of ferritic grain growth is determined by the behaviour of phases controlling the austenitic grain growth, such as carbonitrides VCsub(0.14)Nsub(0.78) in 13Kh1M1FA steel and VCsub(0.18)Nsub(0.72) in 25Kh1M1FA steel. Reduction of carbon and alloying elements content in steel composition observed at the liquation over rotor length leads to a certain decrease of ferritic grain resistance to super heating

  12. Metal Injection Molding (MIM of Magnesium and Its Alloys

    Directory of Open Access Journals (Sweden)

    Martin Wolff

    2016-05-01

    Full Text Available Current research has highlighted that magnesium and its alloys as biodegradable material are highly suitable for biomedical applications. The new material fully degrades into nontoxic elements and offers material properties matching those of human bone tissue. As biomedical implants are rather small and complex in shape, the metal injection molding (MIM technique seems to be well suited for the near net shape mass production of such parts. Furthermore, MIM of Mg-alloys is of high interest in further technical fields. This study focusses on the performance of MIM-processing of magnesium alloy powders. It includes Mg-specific development of powder blending, feedstock preparation, injection molding, solvent and thermal debinding and final sintering. Even though Mg is a highly oxygen-affine material forming a stable oxide layer on each particle surface, the material can be sintered to nearly dense parts, providing mechanical properties matching those of as cast material. An ultimate tensile strength of 142 MPa, yield strength of 67 MPa, elastic modulus of 40 GPa and 8% elongation at fracture could be achieved using novel organic polymer binders for the feedstock preparation. Thus, first implant demonstrator parts could be successfully produced by the MIM technique.

  13. Influence of multiwalled carbon nanotube addition on the magnetic and reflection-loss characteristics of Mn–Sn–Ti substituted strontium ferrite nanoparticles

    International Nuclear Information System (INIS)

    Jamalian, Majid; Ghasemi, Ali; Paimozd, Ebrahim

    2014-01-01

    Highlights: • Structural properties of nanocomposites were investigated. • The microwave absorbing characteristics were studied. • The synthesized materials are proper candidates for electromagnetic wave absorber. - Abstract: In this work, Mn–Sn–Ti substituted strontium ferrite (Sr-ferrite:SrM) nanoparticles were attached on the outer surface of varied multi-walled carbon nanotubes volume fraction with the amount of 10, 15, 20, 25 and 30, by employing of the sol–gel method. The phase identification and morphologies of the nanocomposites were characterized by X-ray diffraction and field emission scanning microscopy respectively. The obtained results showed that the single phase SrFe 9.5 (Mn 1.25 Sn 0.625 Ti 0.625 ) O 19 nanoparticles were decorated on MWCNTs can be obtained at 900 °C. Fourier transform infrared revealed that both the stretching and the bending modes are formed in the citrate complex in the ferrite and hydroxyl and carboxyl groups on the external surface of MWCNTs. The Magnetic properties were measured by a vibrating sample magnetometer. It was found that saturation magnetization, remanent magnetization and coercivity decrease by an increase in the MWCNTs content from 10 to 30 vol%. The reflection loss measurement of the prepared absorber which contain the ratio of 70–30 mass% for the nanocomposite to the polyvinyl chloride, done by the vector network analyzer, proved that the prepared nanocomposites have the maximum reflection loss of −28 dB at the frequency of 8.8 GHz for Mn–Ti–Sn substituted strontium ferrite −30 vol% MWCNT nanocomposite with a bandwidth of 4 GHz (RL > −10 dB)

  14. Influence of multiwalled carbon nanotube addition on the magnetic and reflection-loss characteristics of Mn–Sn–Ti substituted strontium ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jamalian, Majid, E-mail: mjscience@yahoo.com; Ghasemi, Ali; Paimozd, Ebrahim

    2014-08-01

    Highlights: • Structural properties of nanocomposites were investigated. • The microwave absorbing characteristics were studied. • The synthesized materials are proper candidates for electromagnetic wave absorber. - Abstract: In this work, Mn–Sn–Ti substituted strontium ferrite (Sr-ferrite:SrM) nanoparticles were attached on the outer surface of varied multi-walled carbon nanotubes volume fraction with the amount of 10, 15, 20, 25 and 30, by employing of the sol–gel method. The phase identification and morphologies of the nanocomposites were characterized by X-ray diffraction and field emission scanning microscopy respectively. The obtained results showed that the single phase SrFe{sub 9.5} (Mn{sub 1.25}Sn{sub 0.625}Ti{sub 0.625}) O{sub 19} nanoparticles were decorated on MWCNTs can be obtained at 900 °C. Fourier transform infrared revealed that both the stretching and the bending modes are formed in the citrate complex in the ferrite and hydroxyl and carboxyl groups on the external surface of MWCNTs. The Magnetic properties were measured by a vibrating sample magnetometer. It was found that saturation magnetization, remanent magnetization and coercivity decrease by an increase in the MWCNTs content from 10 to 30 vol%. The reflection loss measurement of the prepared absorber which contain the ratio of 70–30 mass% for the nanocomposite to the polyvinyl chloride, done by the vector network analyzer, proved that the prepared nanocomposites have the maximum reflection loss of −28 dB at the frequency of 8.8 GHz for Mn–Ti–Sn substituted strontium ferrite −30 vol% MWCNT nanocomposite with a bandwidth of 4 GHz (RL > −10 dB)

  15. REGIOSELECTIVE REACTIONS OF 3-ALKYL-1-PHENYL-2-PYRAZOLIN-5-ONES WITH ACYL HALIDES IN THE PRECENCE OF NONOSIZED MAGNESIUM HYDROXIDE AS A HIGHLY EFFECTIVE HETEROGENOUS BASE CATALYST Regioselektive Reaktionen von 3-Alkyl-1-PHENYL-2-pyrazolin-5-ONES Mit Acylhalogeniden IN DER PRECENCE DER NONOSIZED MAGNESIUM HYDROXIDE als hochwirksame heterogene BASE CATALYST

    OpenAIRE

    Hassan Sheibani and Bahman Massomi Nejad

    2012-01-01

    4-Acyl-3-alkyl-1-phenyl-2-pyrazolin-5-one derivatives were prepared by the regioselective acylation of 3-alkyl-1-phenyl-2-pyrazolin-5-ones in the presence of base catalysts such as calcium hydroxide [Ca(OH)2], magnesium hydroxide [Mg(OH)2] and nanosized magnesium hydroxide. In the presence of nanosized magnesium hydroxide, excellent yields of products were obtained and reaction times were significantly reduced.

  16. Effects of dietary magnesium on sodium-potassium pump action in the heart of rats

    International Nuclear Information System (INIS)

    Fischer, P.W.; Giroux, A.

    1987-01-01

    Sprague-Dawley rats were fed a basal AIN-76 diet containing 80, 200, 350, 500 or 650 mg of magnesium per kilogram of diet for 6 wk. Ventricular slices, as well as microsomal fractions, were prepared from the hearts and were used to determine sodium-potassium pump activity. Sodium-potassium pump activity was assessed in the microsomal membranes by determining the ouabain-inhibitable Na+, K+-ATPase activity and [ 3 H]ouabain binding, and in the ventricular slices, by determining ouabain-sensitive 86 Rb uptake under K+-free conditions. The ATPase activity increased with increasing dietary magnesium, so that in the hearts of those animals that were fed 500 and 650 mg of magnesium/kg diet, it was significantly greater than the activity in the hearts of the animals fed 80 and 200 mg/kg diet. Similarly, 86 Rb uptake by heart slices from rats fed 500 and 650 mg of magnesium/kg diet was significantly greater than the uptake by heart slices from animals fed 80 and 200 mg/kg diet. [ 3 H]Ouabain binding did not change with increasing dietary magnesium. Thus, magnesium deficiency appears to have no effect on the number of sodium-potassium pump sites, but does decrease the activity of the pump. It is suggested that this leads to an increase in intracellular Na+, resulting in a change in the membrane potential, and may contribute to the arrhythmias associated with magnesium deficiency

  17. Synthesis, characterization and thermal analysis of polyimide-cobalt ferrite nanocomposites

    International Nuclear Information System (INIS)

    Mazuera, David; Perales, Oscar; Suarez, Marcelo; Singh, Surinder

    2010-01-01

    Research highlights: · Polyimide-cobalt ferrite nanocomposites were successfully produced. · Produced nanocomposites are suitable for use at temperatures below 80 deg. C. · Magnetic properties of nanocomposites were no sensitive to particle agglomeration. · Good distribution of clustered nanoparticles was achieved in produced composites. - Abstract: Cobalt ferrite nanocrystals were synthesized under size-controlled conditions in aqueous phase and incorporated into a polyimide matrix at various volumetric loads. Synthesized 20 nm cobalt ferrite single crystals, which exhibited a room-temperature coercivity of 2.9 kOe, were dispersed in polyimide precursor using two techniques: homogenizer and ball milling. These suspensions were then cured to develop the polyimide structure in the resulting nanocomposites. Produced films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometry, which confirmed the formation of the desired phases. As expected, the saturation magnetization in the nanocomposites varied according to the polyimide/ferrite weight ratio, while coercivity remained at the value corresponding to pure cobalt ferrite nanocrystals. Thermal degradation, thermal stability and dynamic mechanical analyses tests were also carried out to assess the effect of the concentration of the ferrite disperse phase on the thermo-mechanical behavior of the corresponding nanocomposites as well as the used dispersion techniques.

  18. Investigation of structural and magnetic properties of Zr-Co doped nickel ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Rajjab [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Manzoor, Alina [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Department of Physics, Government College University, Faisalabad 38000 (Pakistan); Shahid, Muhammad [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Haider, Sajjad [Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia); Malik, Abdul Sattar [Department of Electrical Engineering, University College of Engineering and Technology, Bahauddin Zakariya University, Multan 60800 Pakistan (Pakistan); Sher, Muhammad [Department of Chemistry, University of Sargodha, Sargodha 40100 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); FarooqWarsi, Muhammad, E-mail: farooq.warsi@iub.edu.pk [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2017-05-01

    Nano-sized Zr-Co doped nickel ferrites with nominal composition, NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} (x=0.0, 0.2, 0.4, 0.6, 0.8) were synthesized using the micro-emulsion route. The structural elucidation of the synthesized materials was carried out by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The XRD analysis confirmed face centered cubic (FCC) structure of all compositions of NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nanocrystallites. Crystallite size was calculated by Scherrer's formula found in the range 10–15 nm. The variation in lattice parameter as determined by XRD data agreed with size variation of host (Fe{sup 3+}) and guest (Zr{sup 4+} and Co{sup 2+}) cations. FTIR spectra of doped NiFe{sub 2}O{sub 4} exhibited the typical octahedral bands at 528.4 cm{sup −1} which is the characteristic feature of spinel structure of spinel ferrites. The characterized spinel NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nano-ferrites were evaluated for their potential applications by magnetic hysteresis loops and dielectric measurements. The value of saturation magnetization (M{sub s}) decreased from 47.9 to 13.09 emu/g up to x=0.8 with ups and downs fluctuations in between x=0.0 to x=0.8. The high values of Ms of some compositions predicted the potential applications in high density perpendicular recording media and microwave devices. The frequency dependent behavior of permittivity (ε') is recorded and discussed with the help of hopping mechanism of both holes and electrons. The dielectric and magnetic data of NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nano-ferrites suggested the potential applications of these ferrite nanoparticles in high frequency and magnetic data storage devices fabrication. - Graphical abstract: Zr-Co doped nickel nano-ferrites were prepared via micro-emulsion method. The crystallite size calculated by scherrer's formula lie in the range 10–15 nm. The saturation magnetization decreases from 47

  19. Spider silk as a template for obtaining magnesium oxide and magnesium hydroxide fibers

    Directory of Open Access Journals (Sweden)

    Dmitrović Svetlana

    2018-01-01

    Full Text Available Spider silk fibers, collected from Pholcus Phalangioides spider were used as a template for obtaining magnesium oxide (MgO, periclase as well as magnesium hydroxide (Mg(OH2, brucite fibers. Magnesium oxide fibers were obtained in a simple manner by heat induced decomposition of magnesium salt (MgCl2 in the presence of the spider silk fibers, while magnesium hydroxide fibers were synthesized by hydration of MgO fibers at 50, 70 and 90 C, for 48 and 96 h. According to Scanning electron microscopy (SEM, dimensions of spider silk fibers determined the dimension of synthesized MgO fibers, while for Mg(OH2 fibers, the average diameter was increased with prolonging the hydration period. The surface of Mg(OH2 fibers was noticed to be covered with brucite in a form of plates. X-Ray diffraction (XRD analysis showed that MgO fibers were single-phased (the pure magnesium oxide fibers were obtained, while Mg(OH2 fibers were two- or single-phased brucite depending on incubation period, and/or incubation temperature. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 45012

  20. Sigma phases in an 11%Cr ferritic/martensitic steel with the normalized and tempered condition

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Zhou, Xiaoling; Shi, Tiantian; Huang, Xi [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Shang, Zhongxia [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu, Wenwen; Ji, Bo; Xu, Zhiqiang [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-12-15

    At the present time 9–12% Cr ferritic/martensitic (F/M) steels with target operating temperatures up to 650 °C and higher are being developed in order to further increase thermal efficiency so as to reduce coal consumption and air pollution. An 11% Cr F/M steel was prepared by reference to the nominal chemical composition of SAVE12 steel with an expected maximum use temperature of 650 °C. The precipitate phases of the 11% Cr F/M steel normalized at 1050 °C for 0.5 h and tempered at 780 °C for 1.5 h were investigated by transmission electron microscopy. Except for Cr-/Cr-Fe-Co-rich M{sub 23}C{sub 6}, Nb-/V-/Ta-Nb-/Nd-rich MX, Fe-rich M{sub 5}C{sub 2}, Co-rich M{sub 3}C and Fe-Co-rich M{sub 6}C phases previously identified in the steel, two types of sigma phases consisting of σ-FeCr and σ-FeCrW were found to be also present in the normalized and tempered steel. Identified σ-FeCr and σ-FeCrW phases have a simple tetragonal crystal structure with estimated lattice parameters a/c = 0.8713/0.4986 and 0.9119/0.5053 nm, respectively. The compositions in atomic pct of the observed sigma phases were determined to be approximately 50Fe-50Cr for the σ-FeCr, and 30Fe-55Cr-10W in addition to a small amount of Ta, Co and Mn for the σ-FeCrW. The sigma phases in the steel exhibit various blocky morphologies, and appear to have a smaller amount compared with the dominant phases Cr-rich M{sub 23}C{sub 6} and Nb-/V-/Ta-Nb-rich MX of the steel. The σ-FeCr phase in the steel was found to precipitate at δ-ferrite/martensite boundaries, suggesting that δ-ferrite may rapidly induce the formation of sigma phase at δ-ferrite/martensite boundaries in high Cr F/M steels containing δ-ferrite. The formation mechanism of sigma phases in the steel is also discussed in terms of the presence of δ-ferrite, M{sub 23}C{sub 6} precipitation, precipitation/dissolution of M{sub 2}X, and steel composition. - Highlights: •Precipitate phases in normalized and tempered 11%Cr F/M steel are

  1. Thermodynamic and volumetric databases and software for magnesium alloys

    Science.gov (United States)

    Kang, Youn-Bae; Aliravci, Celil; Spencer, Philip J.; Eriksson, Gunnar; Fuerst, Carlton D.; Chartrand, Patrice; Pelton, Arthur D.

    2009-05-01

    Extensive databases for the thermodynamic and volumetric properties of magnesium alloys have been prepared by critical evaluation, modeling, and optimization of available data. Software has been developed to access the databases to calculate equilibrium phase diagrams, heat effects, etc., and to follow the course of equilibrium or Scheil-Gulliver cooling, calculating not only the amounts of the individual phases, but also of the microstructural constituents.

  2. The physic properties of Bi-Zn codoped Y-type hexagonal ferrite

    International Nuclear Information System (INIS)

    Bai Yang; Zhou Ji; Gui Zhilun; L, Longtu; Qiao Lijie

    2008-01-01

    The magnetic and dielectric properties of Bi-Zn codoped Y-type hexagonal ferrite was investigated. The samples with composition of Ba 2-x Bi x Zn 0.8+x Co 0.8 Cu 0.4 Fe 12-x O 22 (x = 0-0.4) were prepared by the solid-state reaction method. Phase formation was characterized by X-ray diffraction. The microstructure was observed via scanning electron microscopy. The magnetic and dielectric properties were measured using an impedance analyzer. Direct current (dc) electrical resistivity was measured using a pA meter/dc voltage source. Minor Bi doping (x = 0.05-0.25) will not destroy the phase formation of Y-type hexagonal ferrite, but lower the phase formation temperature distinctly. Bi substitution can also promote the sintering process. The Bi-containing samples (x > 0.05) can be sintered well under 900 deg. C without any other addition. The sintering temperature is about 200 deg. C lower than that of the Bi-free sample. The Bi-Zn codoped samples exhibit excellent magnetic and dielectric properties in hyper frequency. These materials are suitable for multi-layer chip-inductive components

  3. Magnesium Technology : Preface

    NARCIS (Netherlands)

    Sillekens, W.H.; Agnew, S.R.; Neelameggham, N.R.; Mathaudhu, S.N.

    2011-01-01

    The Magnesium Technology Symposium, which takes place every year at the TMS Annual Meeting & Exhibition, is one of the largest yearly gatherings of magnesium specialists in the world. Papers are presented in all aspects of the field, ranging from primary production to applications to recycling.

  4. New design concepts for ferrite-tuned low-energy-booster cavities

    International Nuclear Information System (INIS)

    Schaffer, G.

    1991-05-01

    The design concepts for ferrite-tuned accelerating cavities discussed in this paper differ from conventional solutions using thick ferrite toroids for frequency tuning. Instead, tuners consisting of an array of ferrite-loaded striplines are investigated. These promise more efficient cooling and higher operational reliability. Layout examples for the SSC-LEB rf system are presented (tuning range 47.5 to 59.8 MHz, repetition frequency 10 Hz). 15 refs., 4 figs., 1 tab

  5. Structural and magnetic properties of Mg-Zn ferrites (Mg{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4}) prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rodríguez, Pamela Yajaira, E-mail: pamela2244_4@hotmail.com [Cinvestav-Unidad Saltillo, Av. Industrial Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, México (Mexico); Cortés-Hernández, Dora Alicia; Escobedo-Bocardo, José Concepción; Almanza-Robles, José Manuel; Sánchez-Fuentes, Héctor Javier; Jasso-Terán, Argentina; De León-Prado, Laura Elena [Cinvestav-Unidad Saltillo, Av. Industrial Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, México (Mexico); Méndez-Nonell, Juan [Centro de Investigación en Materiales Avanzados, Ave. Miguel Cervantes #120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, México (Mexico); Hurtado-López, Gilberto Francisco [Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, CP 25294 Saltillo, Coahuila, México (Mexico)

    2017-04-01

    In this study, the Mg{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles (x=0–0.9) were prepared by sol-gel method. These ferrites exhibit an inverse spinel structure and the lattice parameter increases as the substitution of Zn{sup 2+} ions is increased. At lower Zn content (0.1≤x≤0.5), saturation magnetization (Ms) increases, while it decreases at higher Zn content (x≥6). The remnant magnetization (0.17–2.0 emu/g) and coercive field (6.0–60 Oe) indicate a ferrimagnetic behavior. The average core diameter of selected ferrites is around 15 nm and the nanoparticles morphology is quasi spherical. The heating ability of some Mg{sub 0.9}Zn{sub 0.1}Fe{sub 2}O{sub 4} and Mg{sub 0.7}Zn{sub 0.3}Fe{sub 2}O{sub 4} aqueous suspensions indicates that the magnetic nanoparticles can increase the medium temperature up to 42 °C in a time less than 10 min - Highlights: • Magnetic nanoparticles of Mg{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} were synthesized by sol-gel method. • Nanoparticles showing a single spinel crystalline structure were obtained. • Aqueous suspensions of Mg{sub 0.7}Zn{sub 0.3}Fe{sub 2}O{sub 4} and Mg{sub 0.9}Zn{sub 0.1}Fe{sub 2}O{sub 4} show heating ability.

  6. Gd3+ doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    Science.gov (United States)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P. B.; Kumar, Manoj; Barman, Dipto; Katyal, S. C.; Sharma, Pankaj

    2017-06-01

    Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn0.5Zn0.5GdxFe2-xO4 (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd3+ nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  7. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    Various ferrites (Fe-, Li-, Ni/Zn/Cu-, Co-, Co/Ni, Ba- and Sr-ferrites) were investigated with respect to their application for hyperthermia. Temperature changes under an alternating magnetic field were observed. The area of hysteresis loop was much larger in the Ba- and Sr-ferrites than for that of the Fe-, Ni/Zn/Cu-, Li-, Co- and Co/Ni-ferrites. Co-ferrite exhibited the most applicable temperature change ΔT=19.25K (29.62W/gs), in distilled water when the field was 110A/m

  8. Preparation and microstructure of hot-pressed YIG

    International Nuclear Information System (INIS)

    Abdul Halim Shaari; Mansor Hashim; Sidek Haji Abd Aziz

    1992-01-01

    Bulk magnetic ceramics such as yttrium-iron-garnet (YIG) and nickel-zinc ferrite were prepared by the conventional-firing and hot-press techniques. Pre-sintering and sintering, both in air, were carried out at temperature ≥ 1200 0 C. Initial density and microstructural measurements show that the high density samples with uniform grain size can be readily achieved by hot-pressing. The well-defined microstructures, the high density attained. The agreement of saturation magnetization 4πMs values and the high resistivities indicated that the optimized preparation conditions for conventional firing yielded yttrium-iron-garnet of good quality. Quenched and isochronally annealed, the YIG samples were also found to retain their room-temperature saturation-magnetization and resonance linewidth values after any single heat treatment. However, the electrical resistivity and the effective linewidth clearly exhibited isochronal recovery. A possible model to explain this behaviour and its implications on microwave applications are discussed. Ferrites of the type MFe 2 O 4 where M=Mg, Mn, Co, Fe, Cu, Zn and Cd and of the type Ni1-2xSnxFe 2 O4 have also been prepared and their properties are being studied

  9. Ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance and their application on energy-saving kettle

    International Nuclear Information System (INIS)

    Zhang, Jianyi; Fan, Xi’an; Lu, Lei; Hu, Xiaoming; Li, Guangqiang

    2015-01-01

    Highlights: • The ferrites based infrared radiation coating was prepared by HVOF for the first time. • The infrared radiation coatings were applied firstly on the household kettle. • The bonding strength between the coating and substrate could reach 30.7 MPa. • The coating kept intact when cycle reached 27 by quenching from 1000 °C using water. • The energy-saving efficiency of the kettle with coating could reach 30.5%. - Abstract: Starting from Fe 2 O 3 , MnO 2 , Co 2 O 3 and NiO powders, the ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance were successfully prepared on the surface of carbon steel by high velocity oxy-fuel spraying (HVOF). The coating thickness was about 120–150 μm and presented a typical flat lamellar structure. The coating surface was rough and some submicron grade grains distributed on it. The infrared emissivity of the ferrites based coating by HVOF was over 0.74 in 3–20 μm waveband at 800 °C, which was obviously higher than that of the coating by brushing process in the short waveband. The bonding strength was 30.7 MPa between the coating and substrate, which was five times more than that of conventional coatings by brushing process. The combined effect of the superior bonding strength, typical lamellar structure, pre-existing microcracks and newly generated pores made the cycle times reach 27 when the coating samples were quenched from 1000 °C using water. Lastly, the infrared radiation coatings were applied on the underside of household kettle, and the energy-saving efficiency could reach 30.5%. The ferrites based infrared radiation coatings obtained in this work are good candidates for saving energy in the field of cookware and industrial high temperature furnace

  10. Effect of Synthesis Parameters on the Structure and Magnetic Properties of Magnetic Manganese Ferrite/Silver Composite Nanoparticles Synthesized by Wet Chemistry Method

    DEFF Research Database (Denmark)

    Huy, L.T.; Tam, L.T.; Phan, V.N.

    2016-01-01

    In the present work, magnetic manganese ferrite/silver (MnFe2O4-Ag) composite nanoparticles were synthesized by wet chemistry method. This synthesis process consists of two steps: first, the seed of manganese ferrite nanoparticles (MnFe2O4 NPs) was prepared by a coprecipitationmethod; second......, growth of silver nanoparticles (AgNPs) on the MnFe2O4 seed by modified photochemical reaction. We have conducted systematically the effects of synthesis parameters such as pH value, synthesis time, precursor salts concentration, mass ratio and stabilizing agents on the structure and magnetic properties......-prepared MnFe2O4-Ag magnetic nanocomposites display excellent properties of high crystallinity, long-term aggregation stability in aqueous medium, large saturation magnetization in the range of 15-20 emu/g, and small sizes of Ag-NPs similar to 20 nm. These exhibited properties made the MnFe2O4-Ag...

  11. Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Amirabadizadeh, Ahmad; Salighe, Zohre; Sarhaddi, Reza, E-mail: reza.sarhaddi@birjand.ac.ir; Lotfollahi, Zahra

    2017-07-15

    Highlights: • Ferrofluids based on cobalt ferrite nanoparticles were synthesized by co-precipitation method. • The crystallite and particle size of cobalt ferrite can be controlled effectively by reaction time. • The ferrofluids have lower values of saturation magnetization and coercivity as compared to nanoparticles. • By increasing the size of nanoparticles, the narrower and sharper spikes of ferrofluids are formed. - Abstract: In this work, for first time the ferrofluids based on the cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared by the co-precipitation method at different reaction times (0.5–6.5 h). Crystal structure, morphology and magnetic properties of the cobalt ferrite nanoparticles and the ferrofluids based on the nanoparticles were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). The XRD patterns of CoFe{sub 2}O{sub 4} nanoparticles synthesized at different reaction times indicated that all samples are single phase in accordance with inverse cubic spinel structure with space group Fd-3m, and no impurity phase was observed. By increasing the reaction time to 3.5 h, the lattice parameter and the average crystallites size increased and then afterwards decreased by increasing the reaction time. The microscopic studies indicated the formation of nanosized particles with nearly spherical in shape, whereas the average particle size for all samples is found to be less than 50 nm. The results of VSM also showed that the saturation magnetization and coercivity field of the cobalt ferrite nanoparticles and the ferrofluids were influenced by reaction time, whereas the ferrofluids have lower values of magnetic parameters than that of nanoparticles.

  12. Synthesis and mechanical behavior of carbon nanotube-magnesium composites hybridized with nanoparticles of alumina

    International Nuclear Information System (INIS)

    Thakur, Sanjay Kumar; Srivatsan, T.S.; Gupta, Manoj

    2007-01-01

    Carbon nanotubes reinforced magnesium based composites were prepared with diligence and care using the powder metallurgy route coupled with rapid microwave sintering. Nanometer-sized particles of alumina were used to hybridize the carbon nanotubes reinforcement in the magnesium matrix so as to establish the intrinsic influence of hybridization on mechanical behavior of the resultant composite material. The yield strength, tensile strength and strain-to-failure of the carbon nanotubes-magnesium composites were found to increase with the addition of nanometer-sized alumina particles to the composite matrix. Scanning electron microscopy observations of the fracture surfaces of the samples deformed and failed in uniaxial tension revealed the presence of cleavage-like features on the fracture surface indicative of the occurrence of locally brittle fracture mechanism in the composite microstructure

  13. The analysis of magnesium oxide hydration in three-phase reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin, E-mail: ntp@dlmu.edu.cn

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.

  14. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... NUCLEAR REGULATORY COMMISSION [[NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in...

  15. Ferrite LTCC-based antennas for tunable SoP applications

    KAUST Repository

    Shamim, Atif

    2011-07-01

    For the first time, ferrite low temperature co-fired ceramic (LTCC) tunable antennas are presented. These antennas are frequency tuned by a variable magnetostatic field produced in a winding that is completely embedded inside the ferrite LTCC substrate. Embedded windings have reduced the typically required magnetic bias field for antenna tuning by over 95%. The fact that large electromagnets are not required for tuning makes ferrite LTCC with embedded bias windings an ideal platform for advanced tunable system-on-package applications. Measurements of rectangular microstrip patch antennas on a ferrite LTCC substrate display a maximum tuning range of 610 MHz near 12 GHz. Two different bias windings and their effect on the antenna performance are discussed, as is the effect of antenna orientation with respect to the bias winding. The antenna radiation patterns are measured under biased and unbiased conditions, showing a stable co-polarized linear gain. © 2011-2012 IEEE.

  16. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harzali, Hassen, E-mail: harzali@mines-albi.fr [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Saida, Fairouz; Marzouki, Arij; Megriche, Adel [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Baillon, Fabien; Espitalier, Fabienne [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT cedex 09 (France); Mgaidi, Arbi [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Taibah University, Faculty of Sciences & art, Al Ula (Saudi Arabia)

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P{sub diss}=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  17. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    International Nuclear Information System (INIS)

    Harzali, Hassen; Saida, Fairouz; Marzouki, Arij; Megriche, Adel; Baillon, Fabien; Espitalier, Fabienne; Mgaidi, Arbi

    2016-01-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P_d_i_s_s=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  18. Microstructure investigations of Ba-Sr mixed ferrites, using SEM technique

    International Nuclear Information System (INIS)

    Amighian, J.; Mozaffari, M.

    1996-01-01

    A series of isotropic Ba-Sr mixed ferrites were prepared, using a conventional dry technique. The starting materials were hematite by product of Isfahan steel factory, strontium carbonate from Merck company and barium carbonate obtained from local source. The principle phase of the samples was chosen to have a composition in the form of (BaO) sub 1-x (SrO) sub x nFe sub 2 O sub 3, in which x varied between 0 to l and n was varied between 5 to 6. The raw materials were thoroughly mixed and fired in an electrical furnace for 2 hours. They were then milled in an vibrating ball mill, in which the optimum milling time for each sample was obtained. After annealing at 750 degree C, the powders were compacted in a cylindrical die under 5 tons/cm sup 2. The compacts were then mixed with a binder and sintered in air for 10 minutes at their optimum temperatures. Using SEM technique, the microstructure of the samples were investigated. Using a permeameter, the coercive force Hc and remanent induction Br were measured. The microstructures obtained from SEM technique can be used to control the sintering stage in ferrite fabrication

  19. Influence of preparation method on structural and magnetic ...

    Indian Academy of Sciences (India)

    Administrator

    Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles. BINU P JACOB, ASHOK KUMAR†, R P PANT†, SUKHVIR SINGH† and. E M MOHAMMED*. Department of Physics, Maharaja's College, Ernakulam 681 011, India. †National Physical Laboratory, New Delhi 110 012, India.

  20. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: A novel solution to the exothermicity problem

    International Nuclear Information System (INIS)

    Zhou, Huan; Agarwal, Anand K.; Goel, Vijay K.; Bhaduri, Sarit B.

    2013-01-01

    There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions. - Highlights: • A microwave assisted system for bone cement manufacturing • A solution to exothermicity problem of acid–base reaction based bone cement

  1. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: A novel solution to the exothermicity problem

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: Huan.Zhou@rockets.utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606 (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH 43606 (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606 (United States); Division of Dentistry, The University of Toledo, Toledo, OH 43606 (United States)

    2013-10-15

    There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions. - Highlights: • A microwave assisted system for bone cement manufacturing • A solution to exothermicity problem of acid–base reaction based bone cement

  2. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the...

  3. Performance Variation of Ferrite Magnet PMBLDC Motor with Temperature

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    The price fluctuations of rare earth metals and the uncertainty in their availability has generated an increased interest in ferrite magnet machines. The influence of temperature on BH characteristics of the ferrite magnet differ considerably from that of the rare earth magnet and hence, requires...

  4. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    Science.gov (United States)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  5. Electrical and magnetic properties of MgGa_(_2_-_x_)Fe_xO_4 ferrite

    International Nuclear Information System (INIS)

    Ribeiro, Vander Alkmin dos Santos

    2005-01-01

    The ceramics of the type ferrites are materials that present important characteristics of electrical conduction and magnetic properties, as much as material magnetic hard, how much of soft magnetic materials. The cubic ferrites of the spinel structure are oxides with chemical formula MFe_2O_4, where M is a divalent metallic ion. Due to characteristic of the spinel, diverse magnetic configurations are a gotten, depending on the occupation tax of the magnetic ion (in general iron) in each sublattice. The diluted ferrites possess general formula given for: MD_2_-_xFe_xO4, where M and D are diamagnetic ions, being D the ion of substitution doping and x is the concentration of ions of iron (0,002 ≤ x ≤ 0,350). The sample was prepared using ceramics techniques in reaction of solid state and later they were submitted to a magnetic characterization, electric and X-ray diffraction. The results of the magnetic characterization were gotten by a magnetometer of vibrant sample (VSM) EG&G-Princeton Applied Research, model 4500; the characterization for X-ray was used one X-ray diffractometer, model URD 65; of the Seifert & with. Electrical measurements DC were carried through with the use of a unit high-voltage measuring source - Keithley, model 237, where the voltage applied in the samples varied of 0-40 V, the high temperatures. Two types of contacts were used: the arrangement type 'sandwich', being the inferior electrode the proper door-sample, and the superior electrode with ring geometry and a silver was pasted on both sides of the samples to ensure good electrical contact. The magnetic measurements confirm its ferrite characteristics and in the electrical measurements, the electrical conductivity indicated behavior of a semiconductor the high temperatures and the process of electrical conduction thermally presented to be activated. (author)

  6. Microstructural evaluation and magnetic Ni-Zn ferrite sintered by microwave energy

    International Nuclear Information System (INIS)

    Diniz, Veronica Cristhina S.; Vieira, Debora A.; Costa, Ana Cristina F.M.; Kiminami, R.H.G.A.; Cornejo, Daniel Reinaldo

    2011-01-01

    The present Ni-Zn ferrite magnetic properties sensitive to microstructure and obtain a ferrite with a uniform microstructure is the biggest challenge in the advancement of new technologies. This study proposes to evaluate the microstructure and magnetic properties of Ni-Zn ferrite sintered by microwave energy. The samples were previously synthesized by combustion reaction using urea and glycine, with 1200 deg C/2h sintered at a heating rate of 5 deg C/min, and characterized by density, XRD, SEM and magnetic measurements. The results show that the sample synthesized with glycine showed the formation of ferrite phase and traces of secondary phase hematite, grains with undefined format, and a high porosity and inter intragranular. The sample synthesized with urea gave only the ferrite phase, with hexagonal grains, and low intergranular porosity. The sample synthesized with urea showed better magnetic characteristics when compared with the samples synthesized with glycine. (author)

  7. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution ... Having tremendous load bearing capacity, it can withstand .... retention coefficients for similar concrete compositions.

  8. Performance of Periwinkle Shell Ash Blended Cement Concrete Exposed to Magnesium Sulphate

    Directory of Open Access Journals (Sweden)

    Umoh A.A.

    2013-01-01

    Full Text Available The study examined the compressive strength of periwinkle shell ash (PSA blended cement concrete in magnesium sulphate medium. Specimens were prepared from designed characteristics strength of 25 MPa. The cement replacement with PSA ranged between 0 and 40% by volume. A total of 180 cube specimens were cast and cured in water. At 28 days curing, 45 specimens each were transferred into magnesium sulphate of 1%, 3%, and 5% solution, while others were continuously cured in water and tested at 62, 92, and 152 days. The results revealed a higher loss in compressive strength with the control mix, and that it increases with increased in MgSO4 concentration and exposure period, whereas, the attack on the PSA blended cement concrete was less and the least value recorded by 10% PSA content. Therefore, the study concluded that the optimum percentage replacement of cement with 10% PSA could mitigate magnesium sulphate attack.

  9. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  10. Mineral resource of the month: magnesium

    Science.gov (United States)

    Kramer, Deborah A.

    2012-01-01

    Magnesium is the eighthmost abundant element in Earth’s crust, and the second-most abundant metal ion in seawater. Although magnesium is found in more than 60 minerals, only brucite, dolomite, magnesite and carnallite are commercially important for their magnesium content. Magnesium and its compounds also are recovered from seawater, brines found in lakes and wells, and bitterns (salts).

  11. 21 CFR 184.1431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium oxide. 184.1431 Section 184.1431 Food and... Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4... powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or carbonate...

  12. 21 CFR 184.1426 - Magnesium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... hydrochloric acid solution and crystallizing out magnesium chloride hexahydrate. (b) The ingredient meets the...

  13. Path E alloys: ferritic material development for magnetic fusion energy applications

    International Nuclear Information System (INIS)

    Holmes, J.J.

    1980-09-01

    The application of ferritic materials in irradiation environments has received greatly expanded attention in the last few years, both internationally and in the United States. Ferritic materials are found to be resistant to irradiation damage and have in many cases superior properties to those of AISI 316. It has been shown that for magnetic fusion energy applications the low thermal expansion behavior of the ferritic alloy class will result in lower thermal stresses during reactor operation, leading to significantly longer ETF operating lifetimes. The Magnetic Fusion Energy Program therefore now includes a ferritic alloy option for alloy selection and this option has been designated Path E

  14. Microstructure feature of friction stir butt-welded ferritic ductile iron

    International Nuclear Information System (INIS)

    Chang, Hung-Tu; Wang, Chaur-Jeng; Cheng, Chin-Pao

    2014-01-01

    Highlights: • Defect-free ferritic ductile iron joints is fabricated by FSW. • The welding nugget is composed of graphite, martensite, and recrystallized ferrite. • The graphite displays a striped pattern in the surface and advancing side. • The ferritic matrix transforms into martensite structure during welding. • High degree of plastic deformation is found on the advancing side. - Abstract: This study conducted friction stir welding (FSW) by using the butt welding process to join ferritic ductile iron plates and investigated the variations of microsturcture in the joined region formed after welding. No defects appeared in the resulting experimental weld, which was formed using a 3-mm thick ductile iron plate and tungsten carbide alloy stir rod to conduct FSW at a rotational speed of 982 rpm and traveling speed of 72 mm/min. The welding region was composed of deformed graphite, martensite phase, and dynamically recrystallized ferrite structures. In the surface region and on the advancing side (AS), the graphite displayed a striped configuration and the ferritic matrix transformed into martensite. On the retreating side (RS), the graphite surrounded by martensite remained as individual granules and the matrix primarily comprised dynamically recrystallized ferrite. After welding, diffusion increased the carbon content of the austenite around the deformed graphite nodules, which transformed into martensite during the subsequent cooling process. A micro Vickers hardness test showed that the maximum hardness value of the martensite structures in the weld was approximately 800 HV. An analysis using an electron probe X-ray microanalyzer (EPMA) indicated that its carbon content was approximately 0.7–1.4%. The peak temperature on the RS, 8 mm from the center of the weld, measured 630 °C by the thermocouple. Overall, increased severity of plastic deformation and process temperature near the upper stir zone (SZ) resulted in distinct phase transformation

  15. Synthesis, characterization, and hydrogen uptake studies of magnesium nanoparticles by solution reduction method

    International Nuclear Information System (INIS)

    Rather, Sami ullah

    2014-01-01

    Graphical abstract: X-ray diffraction (XRD) pattern of magnesium nanoparticles synthesized by solution reduction method with and without TOPO. - Highlights: • Simple and convenient method of preparing Mg nanoparticles. • Characterized by XRD, SEM, FESEM and TEM. • Trioctylphosphine oxide offers a greater control over the size of the particles. • Hydrogen uptake of samples at different temperatures and pressure of 4.5 MPa. - Abstract: Facile and simple, surfactant-mediated solution reduction method was used to synthesize monodisperse magnesium nanoparticles. Little amount of magnesium oxide nanoparticles were also formed due to the presence of TOPO and easy oxidation of magnesium, eventhough, all precautions were taken to avoid oxidation of the sample. Precise size control of particles was achieved by carefully varying the concentration ratio of two different types of surfactants, – trioctylphosphine oxide and hexadecylamine. Recrystallized magnesium nanoparticle samples with and without TOPO were analyzed by X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope. The peak diameters of particles were estimated from size distribution analysis of the morphological data. The particles synthesized in the presence and absence of TOPO found to have diameters 46.5 and 34.8 nm, respectively. This observed dependence of particle size on the presence of TOPO offers a convenient method to control the particle size by simply using appropriate surfactant concentrations. Exceptional enhancement in hydrogen uptake and kinetics in synthesized magnesium nanoparticles as compared to commercial magnesium sample was due to the smaller particle size and improved morphology. Overall hydrogen uptake not affected by the little variation in particle size with and without TOPO

  16. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Science.gov (United States)

    Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping

    2013-01-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  17. Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route

    International Nuclear Information System (INIS)

    Phumying, Santi; Labuayai, Sarawuth; Swatsitang, Ekaphan; Amornkitbamrung, Vittaya; Maensiri, Santi

    2013-01-01

    Graphical abstract: This figure shows the specific magnetization curves of the as-prepared MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders obtained from room temperature VSM measurement. These curves are typical for a soft magnetic material and indicate hysteresis ferromagnetism in the field ranges of ±500 Oe, ±1000 Oe, and ±2000 Oe for the CoFe 2 O 4 , MgFe 2 O 4 and MnFe 2 O 4 respectively, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 show a superparamagnetic behavior. Highlights: ► Nanocrystalline MFe 2 O 4 powders were synthesized by a novel hydrothermal method. ► Metal acetylacetonates and aloe vera plant-extracted solution are used. ► This biosynthetic route is very simple and provides high-yield oxide nanomaterials. ► XRD and TEM results indicate that the prepared samples have only spinel structure. ► The maximum M s of 68.9 emu/g at 10 kOe were observed for the samples of MnFe 2 O 4 . - Abstract: Nanocrystalline spinel ferrite MFe 2 O 4 (M = Ni, Co, Mn, Mg, Zn) powders were synthesized by a novel hydrothermal method using Fe(acac) 3 , M(acac) 3 (M = Ni, Co, Mn, Mg, Zn) and aloe vera plant extracted solution. The X-ray diffraction and selected-area electron diffraction results indicate that the synthesized nanocrystalline have only spinel structure without the presence of other phase impurities. The crystal structure and morphology of the spinel ferrite powders, as revealed by TEM, show that the NiFe 2 O 4 and CoFe 2 O 4 samples contain nanoparticles, whereas the MnFe 2 O 4 and MgFe 2 O 4 samples consist of many nanoplatelets and nanoparticles. Interestingly, the ZnFe 2 O 4 sample contains plate-like structure of networked nanocrystalline particles. Room temperature magnetization results show a ferromagnetic behavior of the CoFe 2 O 4 , MnFe 2 O 4 and MgFe 2 O 4 samples, whereas the samples of NiFe 2 O 4 and ZnFe 2 O 4 exhibit a superparamagnetic behavior

  18. Multifunctional metal ferrite nanoparticles for MR imaging applications

    International Nuclear Information System (INIS)

    Joshi, Hrushikesh M.

    2013-01-01

    Magnetic Resonance Imaging (MRI) is a very powerful non-invasive tool for in vivo imaging and clinical diagnosis. With rapid advancement in nanoscience and nanotechnology, there is rapid growth in nanoparticles-based contrast agents. Progress in synthetic protocols enable synthesis of multifunctional nanoparticles which facilitated efforts toward the development of multimodal contrast agents. In this review, recent developments in metal ferrite-based MR contrast agents have been described. Specifically, effect of size, shape, composition, assembly and surface modification of metal ferrite nanoparticles on their T 2 contrast have been discussed. The review further outlines the effect of leaching on MRI contrast and other various factors which affect the multimodal ability of the (T 1 –T 2 and T 2 -thermal activation) metal ferrite nanoparticles.

  19. Epitaxial growth of zinc on ferritic steel under high current density electroplating conditions

    International Nuclear Information System (INIS)

    Greul, Thomas; Comenda, Christian; Preis, Karl; Gerdenitsch, Johann; Sagl, Raffaela; Hassel, Achim Walter

    2013-01-01

    Highlights: •EBSD of electroplated Zn on Fe or steel was performed. •Zn grows epitaxially on electropolished ferritic steel following Burger's orientation relation. •Surface deformation of steel leads to multiple electroplated zinc grains with random orientation. •Zn grows epitaxially even on industrial surfaces with little surface deformation. •Multiple zinc grains on one steel grain can show identical orientation relations. -- Abstract: The dependence of the crystal orientation of electrodeposited zinc of the grain orientation on ferritic steel substrate at high current density deposition (400 mA cm −2 ) during a pulse-plating process was investigated by means of EBSD (electron backscatter diffraction) measurements. EBSD-mappings of surface and cross-sections were performed on samples with different surface preparations. Furthermore an industrial sample was investigated to compare lab-coated samples with the industrial process. The epitaxial growth of zinc is mainly dependent on the condition of the steel grains. Deformation of steel grains leads to random orientation while zinc grows epitaxially on non-deformed steel grains even on industrial surfaces

  20. Ferrite formation in the MeO – Fe2O3 (Me - Zn, Cd, Cu) systems and its impact for the zinc hydrometallurgy

    International Nuclear Information System (INIS)

    Boyanov, Boyan S.; Cherkezova-Zheleva, Zara

    2011-01-01

    Study on the solid state interactions between MeO (Me - Zn, Cd, Cu) and α-Fe 2 O 3 is very important for metallurgy as well as for the preparation of magnetic materials and new catalysts. Zinc, copper and cadmium ferrites are obtained by the conventional ceramic technology. Chemical, DTA and TG analyses, Mössbauer spectroscopy and X-ray phase analysis have been used in the study of intermediate and final products of solid state interactions. The kinetics of formation of MeFe 2 O 4 is investigated by different kinetics equations and the activation energy values are obtained. The ferrite formation process in the system ZnO - α-Fe 2 O 3 and the effectiveness of zinc extraction during the hydrometallurgical treatment of the zinc calcine and the fuming of zinc containing slags are discussed. Key words: ferrites, zinc, copper, cadmium, kinetics, zinc concentrate, Mössbauer spectroscopy, Xray phase analysis

  1. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    Energy Technology Data Exchange (ETDEWEB)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2016-01-22

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  2. Ziegler-Natta catalyst for polypropylene and polyethylene nanocomposites preparation

    International Nuclear Information System (INIS)

    Silvino, Alexandre C.; Dias, Marcos L.; Bezerra, Ana Beatriz F.

    2009-01-01

    Polypropylene and polyethylene nanocomposites are well known for their improved properties when compared with the neat polymers. In this work we report the preparation, characterization and the activity studies of a fourth generation Ziegler-Natta catalyst for the preparation of polyolefin/clay nanocomposites. The catalyst was prepared treating an organo-modified silicate with magnesium and titanium compounds. The content of titanium and that of the magnesium of the catalyst were determined by UV-vis spectroscopy and atomic absorption respectively. The first results show that the catalyst is active for propylene polymerization being suitable for polypropylene/clay nanocomposite preparation. The catalyst activity for ethylene polymerization was also investigated. The X-ray diffraction patterns of the polyethylene samples suggest the clay exfoliation occurs in the in situ polymerization, even with high clay loading (about 9 %) indicating that a nanocomposite was formed. (author)

  3. Achieving excellent thermal stability and very high activation energy in an ultrafine-grained magnesium silver rare earth alloy prepared by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Khan MD, F. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Panigrahi, S.K., E-mail: skpanigrahi@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-10-15

    Ultrafine-grained microstructure of a QE22 alloy prepared by Friction Stir processing (FSP) is isochronally annealed to study the thermal stability and grain growth kinetics. The FSPed microstructure of QE22 alloy is thermally stable under ultrafine-grained regime up to 300 °C and the activation energy required for grain growth is found to be exceptionally high as compared to conventional ultrafine-grained magnesium alloys. The high thermal stability and activation energy of the FSPed QE22 alloy is due to Zener pinning effect from thermally stable eutectic Mg{sub 12}Nd and fine precipitates Mg{sub 12}Nd{sub 2}Ag and solute drag effect from segregation of Neodymium (Nd) solute atoms at grain boundaries.

  4. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  5. 21 CFR 862.1495 - Magnesium test system.

    Science.gov (United States)

    2010-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of magnesium). (b) Classification. Class I. ...

  6. Radioactive 210Po in magnesium supplements

    International Nuclear Information System (INIS)

    Struminska-Parulska, Dagmara Ida

    2016-01-01

    The aim of this pioneer study was to determine polonium 210 Po in the most popular magnesium supplements in Poland and estimate the possible related dose assessment to the consumers. The analyzed magnesium pharmaceutics contained organic or inorganic magnesium compounds; some from natural sources. The objectives of this research were to investigate the naturally occurring 210 Po activity concentrations in magnesium supplements, find the correlations between 210 Po concentration in medicament and magnesium chemical form, and calculate the effective radiation dose connected to analyzed magnesium supplement consumption. The highest 210 Po activity concentrations were determined in mineral tablets made from sedimentary rocks, namely dolomite - 3.84 ± 0.15 mBq g -1 (sample Mg17). The highest annual radiation dose from 210 Po taken with 1 tablet of magnesium supplement per day or with 400 mg of pure Mg daily would come from sample Mg17 (dolomite) - 1.35 ± 0.5 and 8.44 ± 0.33 μSv year -1 respectively.

  7. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  8. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Science.gov (United States)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  9. Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4 and Zinc Ferrite (ZnFe2O4 Nanoparticles Synthesized by Sol-Gel Self-Combustion Method

    Directory of Open Access Journals (Sweden)

    Samikannu Kanagesan

    2016-08-01

    Full Text Available Spinel copper ferrite (CuFe2O4 and zinc ferrite (ZnFe2O4 nanoparticles were synthesized using a sol-gel self-combustion technique. The structural, functional, morphological and magnetic properties of the samples were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. XRD patterns conform to the copper ferrite and zinc ferrite formation, and the average particle sizes were calculated by using a transmission electron microscope, the measured particle sizes being 56 nm for CuFe2O4 and 68 nm for ZnFe2O4. Both spinel ferrite nanoparticles exhibit ferromagnetic behavior with saturation magnetization of 31 emug−1 for copper ferrite (50.63 Am2/Kg and 28.8 Am2/Kg for zinc ferrite. Both synthesized ferrite nanoparticles were equally effective in scavenging 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH free radicals. ZnFe2O4 and CuFe2O4 nanoparticles showed 30.57% ± 1.0% and 28.69% ± 1.14% scavenging activity at 125 µg/mL concentrations. In vitro cytotoxicity study revealed higher concentrations (>125 µg/mL of ZnFe2O4 and CuFe2O4 with increased toxicity against MCF-7 cells, but were found to be non-toxic at lower concentrations suggesting their biocompatibility.

  10. Nanostructured magnesium increases bone cell density.

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2012-12-07

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH(-) which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  11. Calcium and magnesium determination

    International Nuclear Information System (INIS)

    Bhattacharya, S.K.

    1982-01-01

    The roles of calcium and magnesium in human health and disease have been extensively studied. Calcium and magnesium have been determined in biological specimens by atomic absorption spectroscopy using stiochiometric nitrous oxide-acetylene flame

  12. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    Science.gov (United States)

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  13. Fast ferrite tuner for the BNL synchrotron light source

    International Nuclear Information System (INIS)

    Pivit, E.; Hanna, S.M.; Keane, J.

    1991-01-01

    A new type of ferrite tuner has been tested at the BNL. The ferrite tuner uses garnet slabs partially filling a stripline. One of the important features of the tuner is that the ferrite is perpendicularly biased for operation above FMR, thus reducing the magnetic losses. A unique design was adopted to achieve the efficient cooling. The principle of operation of the tuner as well as our preliminary results on tuning a 52 MHz cavity are reported. Optimized conditions under which we demonstrated linear tunability of 80 KHz are described. The tuner's losses and its effect on higher-order modes in the cavity are discussed. 2 refs., 8 figs

  14. A two-step superplastic forging forming of semi-continuously cast AZ70 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Pan Wang

    2015-03-01

    Full Text Available A two-step technology combined forging with superplastic forming has been developed to enhance the forgeability of semi-continuously cast AZ70 magnesium alloy and realize the application of the as-cast magnesium alloy in large deformation bullet shell. In the first step, fine-grained microstructure preforms that are suitable for superplastic forming were obtained by reasonably designing the size of the initial blanks with the specific height-to-diameter ratio, upsetting the blanks and subsequent annealing. In the second step, the heat treated preforms were forged into the end products at the superplastic conditions. The end products exhibit high quality surface and satisfied microstructure. Consequently, this forming technology that not only avoids complicating the material preparation but also utilizes higher strain rate superplastic provides a near net-shaped novel method on magnesium forging forming technology using as-cast billet.

  15. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Abstract. Synthesis of non-collinear (spin canted) ferrites having the formula, CoCdFe2−O4 ( = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), has been carried out using the sol–gel auto combustion method. The ferrite samples show an interesting magnetic transition from Neel to Yafet–Kittel configuration, as the Cd2+ ...

  16. Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60

    Directory of Open Access Journals (Sweden)

    Xuezhi Zhang

    2012-05-01

    Full Text Available The development of alternative casting processes is essential for the high demand of light weight magnesium components to be used in the automotive industry, which often contain different section thicknesses. Squeeze casting with its inherent advantages has been approved for the capability of minimizing the gas porosity in magnesium alloys. For advanced engineering design of light magnesium automotive applications, it is critical to understand the effect of section thickness on mechanical properties of squeeze cast magnesium alloys. In this study, magnesium alloy AM60 with different section thicknesses of 6, 10 and 20 mm squeeze cast under an applied pressure of 30 MPa was investigated. The prepared squeeze cast AM60 specimens were tensile tested at room termperature. The results indicate that the mechanical properties including yield strength (YS, ultimate tensile strength (UTS and elongation (A decrease with an increase in section thickness of squeeze cast AM60. The microstructure analysis shows that the improvement in the tensile behavior of squeeze cast AM60 is primarily attributed to the low-gas porosity level and fine grain strucuture which result from the variation of cooling rate of different section thickness. The numerical simulation (Magmasoft? was employed to determine the solidification rates of each step, and the simulated results show that the solidification rate of the alloy decreases with an increase in the section thickness. The computed solidification rates support the experimental observation on grain structural development.

  17. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    International Nuclear Information System (INIS)

    Hörst, S. M.; Brown, M. E.

    2013-01-01

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

  18. Novel low temperature synthesis of spinel nano-magnesium chromites from secondary resources

    Energy Technology Data Exchange (ETDEWEB)

    El-Sheikh, S.M., E-mail: selsheikh2001@gmail.com [Nanostructured Materials Laboratory, Advanced Material Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt); Rabbah, M., E-mail: mahmoud.rabah@ymail.com [Electrochemical and Chemical Treatment Laboratory, Minerals Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt)

    2013-09-20

    Graphical abstract: FE-SEM micrograph and TEM image of magnesium chromite sample heated at 500 °C. - Highlights: • No study has been reported to prepare spinel magnesium chromite form waste resources. • Novel low synthesis temperature of magnesium chromite. • Selective removal of Ca ions from industrial waste tannery solution is rarely reported. • The method applied is simple and safe. - Abstract: A novel low temperature method for synthesis of nano-crystalline magnesium chromites from the tannery waste solution was investigated. Magnesium and chromium hydroxides gel was co-precipitated at pH 8.5 using ammonia solution. MgCr{sub 2}O{sub 4} was obtained by heating the gel formed at different temperatures 300–500 °C for to 8 h. FT-IR, TG-DTG-DTA, FE-SEM and TEM were used to investigate the produced materials. XRD patterns of the primary oxides revealed the formation of amorphous oxide phase by heating at 300 °C. Heating at 400 °C produces nano-crystallite magnesium chromites partly having the structure MgCrO{sub 4} and mainly MgCr{sub 2}O{sub 4} and traces of Cr{sub 2}O{sub 3}{sup +} 500 °C MgCrO{sub 4} mostly decomposed into MgCr{sub 2}O{sub 4} structure{sub .} After 8 h of heating at 500 °C, Cr{sub 2}O{sub 3} completely disappeared. A high surface area about 42.6 m{sup 2}/g and mesoporous structure was obtained for the produced sample at 500 °C for 8 h. A thermodynamic model has been suggested to explain the findings.

  19. Characterization of chitosan-magnesium aluminum silicate nanocomposite films for buccal delivery of nicotine

    DEFF Research Database (Denmark)

    Pongjanyakul, Thaned; Khunawattanakul, Wanwisa; Strachan, Clare J

    2013-01-01

    The objective of this study was to prepare and characterize chitosan-magnesium aluminum silicate (CS-MAS) nanocomposite films as a buccal delivery system for nicotine (NCT). The effects of the CS-MAS ratio on the physicochemical properties, release and permeation, as well as on the mucoadhesive...

  20. Hydrogen interaction with ferrite/cementite interface: ab initio calculations and thermodynamics

    Science.gov (United States)

    Mirzoev, A. A.; Verkhovykh, A. V.; Okishev, K. Yu.; Mirzaev, D. A.

    2018-02-01

    The paper presents the results of ab initio modelling of the interaction of hydrogen atoms with ferrite/cementite interfaces in steels and thermodynamic assessment of the ability of interfaces to trap hydrogen atoms. Modelling was performed using the density functional theory with generalised gradient approximation (GGA'96), as implemented in WIEN2k package. An Isaichev-type orientation relationship between the two phases was accepted, with a habit plane (101)c ∥ (112)α. The supercell contained 64 atoms (56 Fe and 8 C). The calculated formation energies of ferrite/cementite interface were 0.594 J/m2. The calculated trapping energy at cementite interstitial was 0.18 eV, and at the ferrite/cementite interface - 0.30 eV. Considering calculated zero-point energy, the trapping energies at cementite interstitial and ferrite/cementite interface become 0.26 eV and 0.39 eV, respectively. The values are close to other researchers' data. These results were used to construct a thermodynamic description of ferrite/cementite interface-hydrogen interaction. Absorption calculations using the obtained trapping energy values showed that even thin lamellar ferrite/cementite mixture with an interlamellar spacing smaller than 0.1 μm has noticeable hydrogen trapping ability at a temperature below 400 K.

  1. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    Science.gov (United States)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  2. Microwave left-handed composite material made of slim ferrite rods and metallic wires

    International Nuclear Information System (INIS)

    Fang, Xu; Yang, Bai; Li-Jie, Qiao; Hong-Jie, Zhao; Ji, Zhou

    2009-01-01

    This paper reports on experimental study of the microwave properties of a composite material consisting of ferrite and copper wires. It finds that the slim ferrite rods can modify the magnetic field distribution through their anisotropy, so that the ferrite's negative influence on the copper wires' plasma will be reduced. Left-handed properties are observed even in the specimen with close stuck ferrite rods and copper wires. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Jiang, Xiao; Guo, Ruiguang; Jiang, Shuqin

    2015-01-01

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E corr by 157 mV and decrease the i corr by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy

  4. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiao, E-mail: xiaoxiao217@126.com; Guo, Ruiguang; Jiang, Shuqin

    2015-06-30

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E{sub corr} by 157 mV and decrease the i{sub corr} by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy.

  5. The mechanism of nickel ferrite formation by glow discharge effect

    Science.gov (United States)

    Frolova, L. A.

    2018-04-01

    The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4-NiSO4-NaOH-H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11-12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.

  6. Corrosion of magnesium and some magnesium alloys in gas cooled reactors

    International Nuclear Information System (INIS)

    Caillat, R.; Darras, R.

    1958-01-01

    The results of corrosion tests on magnesium and some magnesium alloys (Mg-Zr and Mg-Zr-Zn) in moist air (like G1 reactor) and in CO 2 : (like G2, G3, EDF1 reactors) are reported. The maximum temperature for exposure of magnesium to moist air without any risk of corrosion is 350 deg. C. Indeed, the oxidation rate follows a linear law above 350 deg. C although it reaches a constant level and keeps on very low under 350 deg. C. However, as far as corrosion is concerned this temperature limit can be raised up to 500 deg. C if moist air is very slightly charged with fluorinated compounds. Under pressure of CO 2 , these three materials oxidate much more slowly even if 500 deg. C is reached. The higher is the temperature, the higher is the constant level of the weight increase and the quicker is reached this one. However, Mg-Zr alloy behaves quite better than pure magnesium and especially than Mg-Zr-Zn alloy. (author) [fr

  7. Assessment of delta ferrite in multipass TIG welds of 40 mm thick SS 316L: A comparative study of ferrite number (FN) prediction and measurements

    Science.gov (United States)

    Buddu, Ramesh Kumar; Raole, P. M.; Sarkar, B.

    2017-04-01

    Austenitic stainless steels are widely used in the fabrication of fusion reactor major systems like vacuum vessel, divertor, cryostat and other structural components development. Multipass welding is used for the development of thick plates for the structural components fabrication. Due to the repeated weld thermal cycles, the microstructure adversely alters owing to the presence of complex phases like austenite, ferrite and delta ferrite and subsequently influences the mechanical properties like tensile and impact toughness of joints. The present paper reports the detail analysis of delta ferrite phase in welded region of 40 mm thick SS316L plates welded by special design multipass narrow groove TIG welding process under three different heat input conditions. The correlation of delta ferrite microstructure of different type structures acicular and vermicular is observed. The chemical composition of weld samples was used to predict the Ferrite Number (FN), which is representative form of delta ferrite in welds, with Schaeffler’s, WRC-1992 diagram and DeLong techniques by calculating the Creq and Nieq ratios and compared with experimental data of FN from Feritescope measurements. The low heat input conditions (1.67 kJ/mm) have produced higher FN (7.28), medium heat input (1.72 kJ/mm) shown FN (7.04) where as high heat input (1.87 kJ/mm) conditions has shown FN (6.68) decreasing trend and FN data is compared with the prediction methods.

  8. High temperature dissolution of ferrites, chromites and bonaccordite in chelating media

    Energy Technology Data Exchange (ETDEWEB)

    Sathyaseelan, V.S.; Subramanian, H.; Anupkumar, B.; Rufus, A.L.; Velmurugan, S.; Narasimhan, S.V., E-mail: snv@igcar.gov.in [BARC Facilities, Water and Steam Chemistry Div., Tamilnadu (India)

    2010-07-01

    by the reagents used in chemical decontamination processes. Sample of bonaccordite was prepared by solid state route by heating stoichiometric mixtures of Hematite, Nickel Oxide and Boric acid at 900{sub o}C for 24 Hours. The phase purity of Bonaccordite formed was confirmed by XRD and Laser Raman Spectroscopy. Studies carried out in the Teflon lined autoclave indicated that boron and zinc containing oxides/ ferrites can be dissolved more easily at elevated temperatures (>140{sub o}C) as compared to normal temperatures (80 - 100{sub o}C). The effect of variation of temperature, concentration of chelating agent, presence of reducing agents has also been studied. High temperature corrosion study of carbon steel (CS) and stainless steel in all the above chelating medium in the presence and the absence of reductants has been carried out. About 60% reduction in corrosion rate was observed for CS in NTA medium in the presence of N{sub 2}H{sub 4} at 160{sup o}C and at pH 6.5. However, at the same temperature and pH, in the absence of N{sub 2}H{sub 4}, corrosion rate of CS was decreased drastically. With increase in temperature, dissolution rate of chromium oxide also increased considerably. The effectiveness of high temperature process was substantiated by using oxide covered specimen prepared under simulated BWR water chemistry conditions. (author)

  9. Comparing of 5-Nonylsalicylaldoxime and Salicylaldehyde Characterization Using Magnesium Salt Formylation Process

    International Nuclear Information System (INIS)

    Pouramini, Zeinab; Moradi, Ali

    2012-01-01

    5-Nonylsalicylaldoxime and salicylaldehyde are two derivatives of phenolic compounds which are very applicable materials in industries. Formerly the formylation of phenolic derivatives were carried out by Rimer-Tiemann method. In this work both of these two materials were synthesized by magnesium meditated formylation technique and their structural characterizations were compared by instrumental analysis technique. In order to achieve a selectively orthoformylated product, the hydroxyl group of nonylphenol (or phenol) was first modified by magnesium methoxide. The nonylphenol magnesium salt was then formylated by paraformaldehyde. The oximation reaction was finally applied to the prepared non-ylsalicylaldehyde magnesium salt by liquid extracting via water and acid washing and other extractions. The solvent was finally removed by evaporation under reduced pressure. Some instrumental analysis such as 1 H-NMR, GC/MS and FT-IR spectra were taken on the product in order to interpret the reaction characterization quantitatively and qualitatively. The formaldehyde and oxime functional groups of two compounds were investigated through 1 H-NMR and FT-IR spectra and were compared. The yield of methoxilation was very good and the yields of formylation and oximation reactions were about 90% and 85% respectively. The orthoselectivity of formylation reaction were evaluated by comparing of the relevant spectra. The GC/MS spectra also confirmed the obtained results

  10. Influences of Ti4+ and Mg2+ substitutions on the properties of lithium ferrites

    International Nuclear Information System (INIS)

    Su Hua; Zhang Huaiwu; Tang Xiaoli; Liu Baoyuan

    2009-01-01

    The Ti 4+ and Mg 2+ co-substituted lithium ferrites with different compositions of Zn 0.1 Li 0.45 Mn 0.1 Fe 2.35-2x (TiMg) x O 4 (x=0.0-0.5) were prepared by the ceramic standard processing. The magnetic properties and microstructure of the samples were investigated. A single phase spinel structure was confirmed by XRD in substituting range. Sintering densities continuously decreased with the increase at x value, which was attributed to the fact that the heavier Fe 3+ ions were replaced by the relatively lighter Ti 4+ and Mg 2+ ions. However, relative density of the samples had no obvious relationship with the substituting value. Saturation magnetization continuously decreased with x value, which was attributed to the decrease of resultant magnetic moment between A and B sub-lattice. Remanence decreased monotonously with x value due to the decrease of saturation magnetization and magnetocrystalline anisotropy constant. But the effect of Ti 4+ and Mg 2+ substitutions on the Br/Bs ratio values was not obvious. Coercive force was mainly determined by the microstructure and magnetocrystalline anisotropy constant of the ferrites. In this research, with the increase of Ti 4+ and Mg 2+ substitutions, the advantageous influence by the decrease of magnetocrystalline anisotropy constant was more significant than the disadvantageous influence caused by the increase of closed pores. As a result, coercive force of the ferrites also decreased monotonously with the increase at x value.

  11. Effect of sintering temperature on magnetization and Mössbauer parameters of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Grish, E-mail: grishphysics@gmail.com [Department of Physics, DSB Campus Kumaun University, Nainital 263002, Uttarakhand (India); Srivastava, R.C. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India); Reddy, V.R. [UGC-DAE CSR, Khandwa Road, DAVV Campus, Indore 452017, Madhya Pradesh (India); Agrawal, H.M. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    2017-04-01

    Nanoparticles of cobalt ferrite of different particle size were prepared using sol-gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy techniques were employed for characterization of nanoparticles for structural and magnetic properties. The particle size and saturation magnetization increase with the increase of sintering temperature. The saturation magnetization increases from 53 to 85 emu/g as the sintering temperature increases from 300 to 900 °C. The remanence increases while the coercivity decreases slightly with the increase of sintering temperature. Mössbauer spectra show the ferrimagnetic nature of all the samples and the cation distribution strictly depends on the sintering temperature. The stoichiometry of the cobalt ferrite formed was estimated to be (Co{sup 2+}{sub x}Fe{sup 3+}{sub 1−x})[Co{sup 2+}{sub 1−x}Fe{sup 3+}{sub 1+x}]O{sub 4}, based on our Mössbauer analysis. The inverse spinel structure gradually transforms towards the normal spinel structure as the sintering temperature increases. - Highlights: • After 500 °C sintering the cobalt ferrite shows complete crystallization. • An inversion sintering temperature between 900 °C and 1200 °C is proposed where the Fe{sup +3} again starts migration from B site to A site. • Sintering temperature is one of the prime factors which effect the magnetization and cation distribution between two sites A and B.

  12. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye.

    Science.gov (United States)

    Cao, Zhenbang; Zhang, Jia; Zhou, Jizhi; Ruan, Xiuxiu; Chen, Dan; Liu, Jianyong; Liu, Qiang; Qian, Guangren

    2017-05-15

    A zinc-dominant ferrite catalyst for efficient degradation of organic dye was prepared by the calcination of electroplating sludge (ES). Characterizations indicated that zinc ferrite (ZnFe 2 O 4 ) coexisted with Fe 2 O 3 structure was the predominant phase in the calcined electroplating sludge (CES). CES displayed a high decolorization ratio (88.3%) of methylene blue (MB) in the presence of H 2 O 2 combined with UV irradiation. The high efficiency could be ascribed to the photocatalytic process induced by ZnFe 2 O 4 and the photo-Fenton dye degradation by ferrous content, and a small amount of Al and Mg in the sludge might also contribute to the catalysis. Moreover, the degradation capability of dye by CES was supported by the synthetic ZnFe 2 O 4 with different Zn to Fe molar ratio (n(Zn): n(Fe)), as 84.81%-86.83% of dye was removed with n(Zn): n(Fe) ranged from 1:0.5 to 1:3. All synthetic ferrite samples in the simulation achieved adjacent equilibrium decolorization ratio, the flexible proportioning of divalent metal ions (M 2+ ) to trivalent metal ions (M 3+ ) applied in the synthesis indicated that the catalyst has a high availability. Therefore, an efficacious catalyst for the degradation of dye can potentially be derived from heavy metal-containing ES, it's a novel approach for the reutilization of ES. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    K. Nadeem

    2015-04-01

    Full Text Available A comparison of structural and magnetic properties of as-prepared and annealed (900 °C Mg doped Zn ferrite nanoparticles (Zn1−xMgxFe2O4, with x=0, 0.1, 0.2, 0.3, 0.4 and 0.5 is presented. X-ray diffraction (XRD studies confirmed the cubic spinel structure for both the as-prepared and annealed nanoparticles. The average crystallite size and lattice parameter were increased by annealing. Scanning electron microscopy (SEM images also showed that the average particle size increased after annealing. Fourier transform infrared spectroscopy (FTIR also confirmed the spinel structure for both series of nanoparticles. For both annealed and as-prepared nanoparticles, the O–Mtet.–O vibrational band shifts towards higher wave numbers with increased Mg concentration due to cationic rearrangement on the lattice sites. Magnetization studies revealed an anomalous decreasing magnetization for the annealed nanoparticles which is also ascribed to cationic rearrangement on the lattice sites after annealing. The measurement of coercivity showed a decreasing trend by annealing due to the increased nanoparticle size and better crystallinity.

  14. Magnesium-molybdenum compounds as matrices of generators of 99m Tc

    International Nuclear Information System (INIS)

    Jimenez M, T.S.; Monroy G, F.

    2004-01-01

    The generator system of radionuclides more diffused, and used in the world, it is the 99 Mo / 99m Tc. These use 99 Mo, product of fission of the 235 U of very high specific activity, adsorbed on alumina (0.2% of 99 Mo/gram of alumina). An alternative for the production of generators of low activity specifies, via the reaction 98 Mo(n, γ) 99 Mo, it is based on the use of compounds with molybdates base, as matrices of the generators 99 Mo / 99m Tc. In this work is proposed to develop a generator at base of compounds of magnesium molybdates that could be irradiated after its synthesis, given the short half life of the only radioisotope produced by magnesium: 27 Mg (t 1/2 = 9.46 m). In this work two parameters were studied, fundamental in the preparation of the magnesium molybdates, matrices of the generators 99 Mo / 99m Tc, and their influence in the efficiency and radionuclide purity: the washing of the gels previous to its irradiation and the molar ratio Mo:Mg. The magnesium molybdates non washing presents bigger efficiencies (72%), but they don't fulfill a smaller percentage to 0.015% of 99 Mo, neither with a radiochemical purity of 90%, except when the molar ratio Mo: Mg of 1:1.08 which provide the best results. (Author)

  15. Assessment of delta ferrite in multipass TIG welds of 40 mm thick SS 316L plates: a comparative study of ferrite number (FN) prediction and experimental measurements

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Shaikh, Shamsuddin; Raole, Prakash M.; Sarkar, Biswanath

    2015-01-01

    Austenitic stainless steels are widely used in the fabrication of fusion reactor major systems like vacuum vessel, divertor, cryostat and other major structural components development. AISI SS316L materials of different thicknesses are utilized due to the superior mechanical properties, corrosion resistance, fatigue and stability at high temperature operation. The components are developed by using welding techniques like TIG welding with suitable filler material. Like in case of vacuum vessel, the multipass welding is unavoidable due to the use of high thickness plates (like in case of ITER and DEMO reactors). In general austenitic welds contains fraction of delta ferrite phase in multipass welds. The quantification depends on the weld thermal cycles like heat input and cooling rates associated with process conditions and chemical composition of the welds. Due to the repeated weld thermal passes, the microstructure adversely alters due to the presence of complex phases like austenite, ferrite and delta ferrite and subsequently influence the mechanical properties like tensile and impact toughness of joints. Control of the delta ferrite is necessary to hold the compatible final properties of the joints and hence its evaluation vital before the fabrication process. The present paper reports the detail analysis of delta ferrite phase in welded region and heat affected zones of 40 mm thick SS316L plates welded by special design multipass narrow groove TIG welding process under three different heat input conditions (1.67 kJ/mm, 1.78 kJ/mm, 1.87 kJ/mm). The correlation of delta ferrite microstructure with optical microscope and high resolution SEM has been carried out and different type of acicular and vermicular delta ferrite structures is observed. This is further correlated with the non destructive magnetic measurement using Ferrite scope. The measured ferrite number (FN) is correlated with the formed delta ferrite phase. The chemical composition of weld samples is

  16. Permanent magnetic ferrite based power-tunable metamaterials

    Science.gov (United States)

    Zhang, Guanqiao; Lan, Chuwen; Gao, Rui; Zhou, Ji

    2017-08-01

    Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  17. Nanostructured magnesium increases bone cell density

    International Nuclear Information System (INIS)

    Weng, Lucy; Webster, Thomas J

    2012-01-01

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH − which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied. (paper)

  18. on the magnetic properties of ultra-fine zinc ferrites

    NARCIS (Netherlands)

    Anantharaman, M.R.; Jagatheesan, S.; Malini, K.A.; Sindhu, S.; Narayanasamy, A.; Chinnasamy, C.N.; Jacobs, J.P.; Reijne, S.; Seshan, Kulathuiyer; Smits, R.H.H.; Smits, R.H.H.; Brongersma, H.H.

    1998-01-01

    Zinc ferrite belongs to the class of normal spinels where it is assumed to have a cation distribution of Zn2+(Fe3+)2(O2−)4, and it is purported to be showing zero net magnetisation. However, there have been recent reports suggesting that zinc ferrite exhibits anomaly in its magnetisation. Zinc

  19. In situ microemulsion synthesis of hydroxyapatite-MgFe{sub 2}O{sub 4} nanocomposite as a magnetic drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Foroughi, Firoozeh [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Hassanzadeh-Tabrizi, S.A., E-mail: tabrizi1980@gmail.com [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Bigham, Ashkan [Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of)

    2016-11-01

    In this study, an innovative synthesis process has been developed to produce hydroxyapatite-magnesium ferrite (HA-MgFe{sub 2}O{sub 4}) nanocomposite. In addition, the effect of calcination temperature on drug delivery behavior of produced samples was investigated. HA-MgFe{sub 2}O{sub 4} nanocomposite was prepared via one-step modified reverse microemulsion synthesis route. The resulting products were characterized by X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and Brunauer–Emmett–Teller surface area analysis (BET). The calcined samples at 500 and 700 °C demonstrated mesoporous characteristics and large specific surface areas of 88 and 32 m{sup 2}/g, respectively. TEM and VSM results showed that the nanocomposite calcined at 700 °C has core–shell morphology and a maximum saturation magnetization of 9.47 emu g{sup −1}. - Highlights: • A one-step modified reverse microemulsion method has been used to produce hydroxyapatite-magnesium ferrite. • Nanocomposites were loaded with ibuprofen as a magnetic drug delivery system. • The drug release behavior of nanocomposites were studied at different calcination temperature.

  20. X-ray diffraction and Moessbauer studies on superparamagnetic nickel ferrite (NiFe{sub 2}O{sub 4}) obtained by the proteic sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, N.A.S. [Departamento de Engenharia Metalúrgica e de Materiais, Centro de Tecnologia, Campus do Pici, Universidade Federal do Ceará – UFC, 60455-760 Fortaleza, CE (Brazil); Utuni, V.H.S.; Silva, Y.C. [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil); Kiyohara, P.K. [Instituto de Física, Universidade de São Paulo – USP, 05315-970 São Paulo, SP (Brazil); Vasconcelos, I.F. [Departamento de Engenharia Metalúrgica e de Materiais, Centro de Tecnologia, Campus do Pici, Universidade Federal do Ceará – UFC, 60455-760 Fortaleza, CE (Brazil); Miranda, M.A.R., E-mail: marcus.a.r.miranda@gmail.com [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil); Sasaki, J.M. [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil)

    2015-08-01

    Nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles were synthesized by the proteic sol–gel method at synthesis temperature of 250 °C, 300 °C and 400 °C, with the objective of obtaining superparamagnetic nanoparticles. Thermogravimetric analysis (TGA) and temperature-programed oxidation (TPO) presented peaks around 290 °C indicating that nickel ferrite was forming at this temperature. X-ray powder diffraction (XRPD) confirmed that the polycrystalline sample was single phased NiFe{sub 2}O{sub 4} with space group Fd3m. Scherrer equation applied to the diffraction patterns and transmission electron microscopy (TEM) images showed that the size of the nanoparticles ranged from 9 nm to 13 nm. TEM images also revealed that the nanoparticles were agglomerated, which was supported by the low values of surface area provided by the Brunauer-Emmet-Teller (BET) method. Moessbauer spectroscopy presented spectra composed of a superposition of three components: a sextet, a doublet and a broad singlet pattern. The sample synthetized at 300 °C had the most pronounced doublet pattern characteristic of superparamagnetic nanoparticles. In conclusion, this method was partially successful in obtaining superparamagnetic nickel ferrite nanoparticles, in which the synthetized samples were a mixture of nanoparticles with blocking temperature above and below room temperature. Magnetization curves revealed a small hysteresis, supporting the Moessbauer results. The sample with the higher concentration of superparamagnetic nanoparticles being the one synthetized at 300 °C. - Highlights: • Superparamagnetic nickel ferrite nanoparticles were grown by the proteic sol–gel method. • The proteic sol–gel method provided superparamagnetic nickel ferrite nanoparticles with sizes in the range of 9–13 nm. • Nickel ferrite nanoparticles were prepared at temperatures as low as 250 °C. • The nickel ferrite nanoparticles were studied by x-ray diffraction and Moessbauer.