WorldWideScience

Sample records for magnesia-zirconia ceramics doped

  1. Investigations on thermoluminescent dosimetry (TLD) with doped alumina ceramics

    International Nuclear Information System (INIS)

    Janas, R.; Huebner, K.

    1976-01-01

    Alumina ceramics doped and burned under various conditions have been investigated with regard to their suitability for thermoluminescent dosimetry. The production of ceramics is described. The properties essential for dosimetric purposes, such as glow curve, energy dose characteristics, fading, recoverability, lower detection limit and energy dependence, are indicated. The advantages and disadvantages of alumina ceramics are compared. (author)

  2. Phase composition of yttrium-doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2017-06-01

    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  3. Synthesis and characterization of tungsten or calcium doped PZT ceramics

    International Nuclear Information System (INIS)

    Santos, D.M.; Caracas, L.B.; Noronha, R.G.; Santos, M.M.T. dos; Paiva-Santos, C.O.

    2009-01-01

    Pure and doped (tungsten or calcium) PZT ceramics were prepared by association of the polymeric precursor and partial oxalate method. The phase formation was investigated by thermal analysis (TG/DSC) and X-ray diffraction (XRD). The affect of W or Ca doping PZT and their electrical properties was evaluated. Substitution of W by Ti and Ca by Pb leads to an increase of Curie temperature and broadening of dielectric constant. A typical hysteresis loop was observed at room temperature and the remnant polarization was increased with the content of W and Ca. (author)

  4. Synthesis, characterization and potential utility of doped ceramics based catalysts

    Science.gov (United States)

    Sharma, Ritika; Yadav, Deepshikha; Singh, G. P.; Vyas, G.; Bhojak, N.

    2018-05-01

    Excessive utilization of petrol, diesel and other fossil fuels, continuous increase in their prices, and the big problem of carbon dioxide mission have encouraged scientists and technologist to find either new sources of energy or to develop technologies for the sustainable utilization of fuel. Biofuels are the only energy technologies that can resolve the problem of carbon dioxide emission in the atmosphere as well as reduce the amount of fossil fuel burned. Bio ethanol and biodiesel are the most common types of biofuel which are being used at present. Biodiesel has become more interesting for all the researchers in present scenario. Various feedstock viz. edible, nonedible oils, waste cooking oil, animal fat, algae etc, are using for the production of biodiesel worldwide according to their availability. Selection of efficient heterogeneous catalysts for biodiesel preparation still needs more attention of researchers. The present investigation deals with determination of synthesis, characterization and applications of doped ceramic based materials in different medium. Two of doped ceramic based catalysts which has been potentially used for the production of biodiesel. The Engine performance of biodiesel samples, made from industrial waste oils and ceramic based catalyst, have also been investigated and found up to satisfactory levels.

  5. Characteristics of F doped PZT ceramics using different fluorine sources

    Energy Technology Data Exchange (ETDEWEB)

    Guiffard, B. [Laboratory of Electrical Engineering and Ferroelectricity, LGEF INSA-Lyon, Bat. Gustave Ferrie, 8 rue de la Physique, F-69621 Villeurbanne Cedex (France)]. E-mail: benoit.guiffard@insa-lyon.fr; Boucher, E. [SPCTS, UMR 6638, Faculte des Sciences et Techniques, Universite de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); Lebrun, L. [Laboratory of Electrical Engineering and Ferroelectricity, LGEF INSA-Lyon, Bat. Gustave Ferrie, 8 rue de la Physique, F-69621 Villeurbanne Cedex (France); Guyomar, D. [Laboratory of Electrical Engineering and Ferroelectricity, LGEF INSA-Lyon, Bat. Gustave Ferrie, 8 rue de la Physique, F-69621 Villeurbanne Cedex (France)

    2007-02-25

    In this study, some structural and electrical properties of a PZT base composition Pb{sub 0.89}(Ba, Sr){sub 0.11}(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} co-doped with 1 mol% manganese and 2 mol% fluorine have been studied. Two different fluorine sources were used: lead fluoride PbF{sub 2} and manganese fluoride MnF{sub 2}. These fluoride salts are added to the co-precipitated precursors powder. Mn dopant was added to the solution as manganese acetate (MnAc) before co-precipitation, when PbF{sub 2} was used. The structural analysis of the sintered ceramics revealed that MnF{sub 2} doping makes the volume of the cubic unit cell (V {sub c}) and the grain size decrease, whereas (MnAc, PbF{sub 2}) co-doping makes the apparent density increase and keeps the average grain size and V {sub c} unchanged. Both types of doping reagents largely enhance the piezoelectric activity (high d {sub 33} and k {sub 33} coefficients, well saturated Polarization-Electric field loops) but MnF{sub 2} induces both combinatory soft and hard characteristics compared to (MnAc, PbF{sub 2}) co-doping. Impedance spectroscopy showed that both types of doping reagents strongly reduce the electrical conductivity with the same conducting species, i.e. the same defect chemistry, confirmed by optical absorption data. Finally, this study shows that in the semi-wet process used, PbF{sub 2} is added homogeneously to the co-precipitated powder. Whatever the fluorine source, only the coexistence of Mn and F dopants is necessary to improve the piezoelectric response.

  6. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    International Nuclear Information System (INIS)

    Wang, Shanshan; Zhang, Chao; Guo, Ruisong; Liu, Lan; Yang, Yuexia; Li, Kehang

    2015-01-01

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m 1/2 . - Abstract: The effects of substitution of Ba 2+ by Sr 2+ on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba 1−x Sr x Fe 12 O 19 , x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m 1/2 for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase

  7. Optical properties of ytterbium-doped yttrium oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, V.I.; Maksimov, R.N. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation); Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira 19, 620002 Ekaterinburg (Russian Federation); Osipov, V.V.; Shitov, V.A.; Lipchak, A.I. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation)

    2017-05-15

    Ytterbium-doped yttrium oxide (Yb:Y{sub 2}O{sub 3}) transparent ceramics with different sintering additives (Lu{sub 2}O{sub 3}, Sc{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2}, or HfO{sub 2}) were fabricated using nanopowders produced by laser ablation. Transmission and photoluminescence spectra of the obtained ceramics were investigated at room temperature. Highest in-line transmittance was over 80% at the wavelength of 1060 nm for 2 mm thick Yb:Y{sub 2}O{sub 3} ceramics with zirconium and hafnium. Divalent Yb ions with the ground state electron configuration 4f{sup 13}6s were revealed. The absorption and emission bands caused by s <-> s transitions of these ions were observed in the IR spectral range of Yb{sup 3+} ions. The superposition of both Yb{sup 3+} and Yb{sup 2+} emission bands leads to an effective broadening of the whole luminescence band. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Ferroelectric properties of bismuth-doped PMT-PT ceramics

    International Nuclear Information System (INIS)

    Hyun, June Won; Kim, Yeon Jung; Kim, Gang Bae

    2010-01-01

    This study examined the ferroelectric properties of Bi-doped 0.66(Pb (1-3x/2) Bi x )(Mg 1/3 Ta 2/3 )O 3 - 0.34PbTiO 3 ceramics for use as a piezoelectric transformer. The optimum conditions for obtaining samples with high density and improved electrical properties were a sintering temperature of 1200 .deg. C/4 h and the addition of 3 mol% Bi. The temperature dependent dielectric constant of the ceramics was examined at frequencies ranging from 1 kHz to 100 kHz. The broad dielectric constant anomaly coupled with a shift in the dielectric maximum towards higher temperature with increasing frequency indicates a relaxor-type behavior in the ceramics. The piezoelectric coefficient (d 33 ) and the planar coupling factor (K p ) increase with the addition of 3 mol% Bi, and then decrease with further addition of Bi. The dielectric constant and the dissipation factor at room temperature could be improved by the addition of 3 mol% Bi.

  9. Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Arai, Yusuke; Ohishi, Yasutake

    2008-01-01

    A systematic method to evaluate potentials of Ni 2+ -doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni 2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa 2 O 4 and LiGa 5 O 8 at room temperature. Transparent glass-ceramics containing Ni 2+ :LiGa 5 O 8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media

  10. Effect of CASP glass doping on sintering and dielectric properties of SBN ceramics

    International Nuclear Information System (INIS)

    Chen Guohua; Qi Bing

    2009-01-01

    16CaO-29Al 2 O 3 -34SiO 2 -13PbO-4B 2 O 3 -2ZnO-2P 2 O 5 (CASP) glass doped-Sr 0.5 Ba 0.5 Nb 2 O 6 (SBN50) ceramics have been synthesized by solid-state ceramic route. The effects of CASP glass on the firing, microstructure and dielectric characterization of SBN50 ceramics are investigated. The densities of the ceramic samples firstly increase and then slightly decrease with increasing CASP glass content. The appropriate amount of doping glass is 2%. The SBN50 ceramics doped with CASP glass can be sintered at a relatively low temperature, 1200 deg. C. X-ray diffraction analysis shows the single phase (tetragonal tungsten bronze type structure) is preserved for all the samples. The diffuse character of the ceramic system increases and the dielectric constant at phase transition temperature (T c ) markedly decreases as CASP glass content increases. Interestingly, the CASP glass addition drastically alters the microstructure of the sintered ceramics. The isotropic grains in the pure SBN50 ceramics transform to rod like grains after the addition of CASP glass. The grain size of SBN phase is found to obviously increase with increase in CASP glass doping level

  11. Optical properties and laser oscillations of highly neodymium-doped YAG ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Ichiro; Kurimura, Sunao; Sato, Yoichi; Taira, Takunori [Laser Research Center, Institute for Molecular Science, Okazaki, Aichi (Japan); Ikesue, Akio [Japan Fine Ceramics Center, Nagoya, Aichi (Japan); Yoshida, Kunio [Institute of Laser Engineering, Osaka Institute of Technology, Osaka (Japan)

    2000-03-01

    Diode-pumped microchip laser oscillation of highly Nd{sup 3+}-doped polycrystalline YAG ceramics has been succeeded. It is found that the loss of a 2.4 at. % neodymium-doped ceramic YAG is as low as that of a 0.9 at. % Nd:YAG single crystal. From a 4.8 at. % Nd:YAG ceramic microchip, 2.3 times higher laser output power is obtained than that from a 0.9 at. % Nd:YAG single crystal microchip. (author)

  12. Optical properties and laser oscillations of highly neodymium-doped YAG ceramics

    International Nuclear Information System (INIS)

    Shoji, Ichiro; Kurimura, Sunao; Sato, Yoichi; Taira, Takunori; Ikesue, Akio; Yoshida, Kunio

    2000-01-01

    Diode-pumped microchip laser oscillation of highly Nd 3+ -doped polycrystalline YAG ceramics has been succeeded. It is found that the loss of a 2.4 at. % neodymium-doped ceramic YAG is as low as that of a 0.9 at. % Nd:YAG single crystal. From a 4.8 at. % Nd:YAG ceramic microchip, 2.3 times higher laser output power is obtained than that from a 0.9 at. % Nd:YAG single crystal microchip. (author)

  13. Spectroscopic Properties of Neodymium and Erbium-Doped Magnesium Oxide Ceramics

    Science.gov (United States)

    2015-09-01

    universally >99% of theoretical. Powder x-ray diffraction (XRD) analysis was employed to determine the crystalline phases in doped MgO ceramics after the...different sintering steps. Powders of sintered pellets were prepared by grinding fragments in a glass mortar and pestle to avoid crystalline...than anticipated for the doped MgO. Somewhat more conclusive information on the extent of successful RE doping was derived from the XRD analysis

  14. Introducing the fluorine doped natural hydroxyapatite-titania nanobiocomposite ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Karamian, Ebrahim [Advanced Materials Research Center, Faculty of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Abdellahi, Majid, E-mail: M.Abdellahi@Pa.iut.ac.ir [Advanced Materials Research Center, Faculty of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Khandan, Amirsalar [Young Researchers and Elite Club, Khomeinishahr Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Abdellah, Sana [Advanced Materials Research Center, Faculty of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of)

    2016-09-15

    In the present research, natural hydroxyapatite (NHA) was synthesized from bovine bones and then fluorine was doped into the NHA matrix to produce fluorine doped NHA (FNHA; natural fluor-hydroxyapatite) in optimum conditions. At the end an FNHA-TiO{sub 2} nanobiocomposite ceramic with excellent biocompatibility and good chemical stability was synthesized through a mechanochemical route and a subsequent two step sintering (TSS) process. Thermal gravimetric analysis (TGA), Differential scanning calorimetry (DSC), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), inductive coupled plasma (ICP), and energy-dispersive X-ray spectroscopy (EDX) were used as the means for gathering and analysis of the results. According to the obtained results, TiO{sub 2} can prevent early decomposition of FNHA by the formation of the CaTiO{sub 3} phases and hence strengthen the interactions between the apatite particles which results in the increase of the mechanical properties. Besides, TiO{sub 2} provides more Si−OH nucleation sites for the formation of the apatite layers and hence more bioactivity. - Highlights: • This work begins with preparing natural hydroxyapatite from bovine bones via a simple method. • With increasing the TiO{sub 2} content reinforced in FNHA matrix, the compaction increases. • TiO{sub 2} can prevent early decomposition of FNHA by the formation of CaTiO{sub 3} phase. • TiO{sub 2} can strengthen the interactions between the apatite particles and increase of compaction. • With increasing TiO{sub 2} content, the Si−OH nucleation sites increases lead to more bioactivity.

  15. Enhanced Luminescent Properties in Tm3+/Dy3+ Co-doped Transparent Phosphate Glass Ceramic

    OpenAIRE

    Yao L. Q.; Chen G. H.; Zhong H. J.; Cui S. C.; Li F.; Gan J.Y.

    2016-01-01

    Novel Tm3+/Dy3+ co-doped phosphate glass and glass ceramic samples for white light emitting diodes were prepared by melt quenching method. Under 353 nm excitation, the colors of the luminescence of the glass and glass ceramic samples are white. The CIE chromaticity coordinates (0.338, 0.328) of the emission from the glass ceramic is close to the standard white-light illumination (0.333, 0.333). Compared to the glass, the fluorescence intensity in the glass ceramic is greatly enhanced.

  16. Impedance spectroscopy of Li2CO3 doped (Ba,Sr)TiO3 ceramic

    Science.gov (United States)

    Ham, Yong-Su; Koh, Jung-Hyuk

    2013-02-01

    (BaxSr1-x)TiO3-based ceramic has been considered as one of the most important electronic materials widely employed in microwave passive device applications. Many researches have been performed to lower the high sintering temperature, by adding various dopants such as B2O3, La2O3, etc. In our previous study, by adding Li2CO3 to (Ba0.5,Sr0.5)TiO3 ceramics, the sintering temperature of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics decreased from 1350 to 900 °C. This study observed the crystalline structure and electrical properties of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics. In scanning the crystalline structure of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics, no pyro phase was observed by X-ray diffraction analysis. To investigate the electrical properties of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics, real and imaginary parts of the impedances were analyzed. Complex impedance data were measured from 100 Hz to 1 MHz at various temperature ranges.

  17. Scandium doped Strontium Titanate Ceramics: Structure, Microstructure, and Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Tkach, Alexander

    2008-08-01

    Full Text Available Sc-doped strontium titanate (ST ceramics were synthesised by solid state reaction, according to the composition Sr1-1.5xScxTiO3 with x = 0-0.01. Structural properties and microstructure development was examined by XRD and SEM. The dielectric properties were evaluated as a function of the temperature and frequency in the radio frequency range. Lattice parameter, density and grain size, were found to decrease slightly with increasing Sc content. The dielectric permittivity and losses decrease also. Sc-doping has only a weak effect on the quantum paraelectric behaviour of ST and no dielectric anomaly was observed, what is probably related to the limited solubility of Sc on the Sr site of the perovskite lattice of ST.

    Se sintetizaron materiales cerámicos de titanato de estroncio dopado con escandio mediante reacción en estado sólido De acuerdo a la composición Sr1-1.5xScxTiO3 con x= 0-0.1. Las propiedades estructurales y el desarrollo microestructural se estudiaron mediante XRD y SEM. La propiedades dieléctricas se estudiaron como función de la temperatura y de la frecuencia en el rango de la frecuencias de radio. Se observó que los parámetros de red, la densidad y el tamaño del grano disminuyen ligeramente con el contenido en Sc. La permitividad dieléctrica y las perdidas también disminuyen. El dopado con Sc tiene un efecto muy ligero sobre el comportamiento paraeléctrico cuántico del titanato de estroncio y no se observó anomalías dioeléctricas , lo que está probablemente relacionado con la baja solubilidad del Sc en posiciones del Sr en la estructura tipo perovskita del titanato de estroncio.

  18. Synthesis, characterization, bioactivity and antibacterial studies of silver doped calcium borosilicate glass-ceramics

    Science.gov (United States)

    Kumar, Alesh; Mariappan, C. R.

    2018-04-01

    Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.

  19. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Science.gov (United States)

    Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  20. Kinetics of dissolution of thorium and uranium doped britholite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Dacheux, N., E-mail: nicolas.dacheux@univ-montp2.f [Groupe de Radiochimie, Institut de Physique Nucleaire d' Orsay, Bat. 100, Universite Paris-Sud-11, 91406 Orsay (France); Institut de Chimie Separative de Marcoule, UMR 5257 (Universite Montpellier 2/CNRS/CEA/ENSCM), Bat. 426, Centre de Marcoule, BP 17171, 30207 Bagnols sur ceze cedex (France); Du Fou de Kerdaniel, E. [Groupe de Radiochimie, Institut de Physique Nucleaire d' Orsay, Bat. 100, Universite Paris-Sud-11, 91406 Orsay (France); Clavier, N. [Groupe de Radiochimie, Institut de Physique Nucleaire d' Orsay, Bat. 100, Universite Paris-Sud-11, 91406 Orsay (France); Institut de Chimie Separative de Marcoule, UMR 5257 (Universite Montpellier 2/CNRS/CEA/ENSCM), Bat. 426, Centre de Marcoule, BP 17171, 30207 Bagnols sur ceze cedex (France); Podor, R. [Institut de Chimie Separative de Marcoule, UMR 5257 (Universite Montpellier 2/CNRS/CEA/ENSCM), Bat. 426, Centre de Marcoule, BP 17171, 30207 Bagnols sur ceze cedex (France); Institut Jean Lamour - Departement CP2S - Equipe 206, Faculte des Sciences et Techniques - Nancy Universite, BP 70239, 54506 Vandoeuvre les Nancy cedex (France); Aupiais, J. [CEA DAM DIF, 91297 Arpajon (France); Szenknect, S. [Institut de Chimie Separative de Marcoule, UMR 5257 (Universite Montpellier 2/CNRS/CEA/ENSCM), Bat. 426, Centre de Marcoule, BP 17171, 30207 Bagnols sur ceze cedex (France)

    2010-09-01

    In the field of immobilization of actinides in phosphate-based ceramics, several thorium and uranium doped britholite samples were submitted to leaching tests. The normalized dissolution rates determined for several pH values, temperatures and acidic media from the calcium release range from 4.7 x 10{sup -2} g m{sup -2} d{sup -1} to 21.6 g m{sup -2} d{sup -1}. Their comparison with that determined for phosphorus, thorium and uranium revealed that the dissolution is clearly incongruent for all the conditions examined. Whatever the leaching solution considered, calcium and phosphorus elements were always released with higher R{sub L} values than the other elements (Nd, Th, U). Simultaneously, thorium was found to quickly precipitate as alteration product, leading to diffusion phenomena for uranium. For all the media considered, the uranium release is higher than that of thorium, probably due to its oxidation from tetravalent oxidation state to uranyl. Moreover, the evaluation of the partial order related to proton concentration and the apparent energy of activation suggest that the reaction of dissolution is probably controlled by surface chemical reactions occurring at the solid/liquid interface. Finally, comparative leaching tests performed in sulphuric acid solutions revealed a significant influence of such media on the chemical durability of the leached pellets, leading to higher normalized dissolution rates for all the elements considered. On the basis of the results of chemical speciation, this difference was mainly explained in the light of higher complexion constants by sulfate ions compared to nitrate, chloride and phosphate.

  1. Synthesis and characterization of nickel oxide doped barium strontium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M. [Dept. of Electrical Engineering, Bengal Institute of Technology Kolkata (India); Mukherjee, S. [Dept. of Metallurgical Engineering, Jadavpur University, Kolkata (India); Maitra, S. [Govt. College of Engg. and Ceramic Technology, Kolkata (India)

    2012-01-15

    Barium strontium titanate (BST) ceramics (Ba{sub 0.6}Sr{sub 0.4})TiO{sub 3} were synthesized by solid state sintering using barium carbonate, strontium carbonate and rutile as the precursor materials. The samples were doped with nickel oxide in different proportions. Different phases present in the sintered samples were determined from X-ray diffraction investigation and the distribution of different phases in the microstructure was assessed from scanning electron microscopy study. It was observed that the dielectric properties of BST were modified significantly with nickel oxide doping. These ceramics held promise for applications in tuned circuits. (author)

  2. The biological properties of the silver- and copper-doped ceramic biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Lysenko, Oleksandr, E-mail: dr.alex.lysenko@gmail.com [Bogomolets National Medical University, Department of Therapeutic Stomatology (Ukraine); Dubok, Oleksii [Institute for Problems of Material Science NASU, Department of Analytical Chemistry and Functional Ceramics (Ukraine); Borysenko, Anatolii [Bogomolets National Medical University, Department of Therapeutic Stomatology (Ukraine); Shinkaruk, Oleksandr [Institute for Problems of Material Science NASU, Department of Analytical Chemistry and Functional Ceramics (Ukraine)

    2015-04-15

    The biological properties of nanostructured bioactive ceramic composite (BCC) granules doped with 0.1–10 at.% silver and 0.05–5 at.% copper have been investigated both in vitro and in vivo to develop effective alloplastic material for infected bone defect substitute. It is assumed that the granules consisting of biphasic calcium phosphate and bioactive glass ceramics due to their nanoscale (15–40 nm) and multiphase structure, bioelement placement in different ceramic phases as well as antimicrobial effect should improve osteogenic properties and biocompatibility. Tests in vitro have been conducted with multipotent mesenchymal stromal cells (MSCs) and test strains of microorganisms. The same biocomposite has been used in vivo to study the repair of bone defects in animal model. The findings indicate that doped BCC leads to antimicrobial activity. Inhibition of MSCs growth has been observed for granules doped with ions of more than 1 at.% silver and 0.5 at.% copper. The results of the in vivo study reveal that BCC implantation significantly improves bone reparation. Differences between bone repair with undoped and doped, with 1 at.% silver and 0.5 at.% copper, ceramic samples were not observed. The BCC doped within 0.5–1 at.% silver and 0.25–0.5 at.% copper stimulates bone tissue repair and has satisfactory biocompatibility and antimicrobial properties.

  3. The biological properties of the silver- and copper-doped ceramic biomaterial

    International Nuclear Information System (INIS)

    Lysenko, Oleksandr; Dubok, Oleksii; Borysenko, Anatolii; Shinkaruk, Oleksandr

    2015-01-01

    The biological properties of nanostructured bioactive ceramic composite (BCC) granules doped with 0.1–10 at.% silver and 0.05–5 at.% copper have been investigated both in vitro and in vivo to develop effective alloplastic material for infected bone defect substitute. It is assumed that the granules consisting of biphasic calcium phosphate and bioactive glass ceramics due to their nanoscale (15–40 nm) and multiphase structure, bioelement placement in different ceramic phases as well as antimicrobial effect should improve osteogenic properties and biocompatibility. Tests in vitro have been conducted with multipotent mesenchymal stromal cells (MSCs) and test strains of microorganisms. The same biocomposite has been used in vivo to study the repair of bone defects in animal model. The findings indicate that doped BCC leads to antimicrobial activity. Inhibition of MSCs growth has been observed for granules doped with ions of more than 1 at.% silver and 0.5 at.% copper. The results of the in vivo study reveal that BCC implantation significantly improves bone reparation. Differences between bone repair with undoped and doped, with 1 at.% silver and 0.5 at.% copper, ceramic samples were not observed. The BCC doped within 0.5–1 at.% silver and 0.25–0.5 at.% copper stimulates bone tissue repair and has satisfactory biocompatibility and antimicrobial properties

  4. Microstructures and luminescent properties of Ce-doped transparent mica glass-ceramics

    International Nuclear Information System (INIS)

    Taruta, Seiichi; Iwasaki, Yoshitomo; Nishikiori, Hiromasa; Yamakami, Tomohiko; Yamaguchi, Tomohiro; Kitajima, Kunio; Okada, Kiyoshi

    2012-01-01

    Highlights: ► Ce-doped transparent glass-ceramics and their parent glasses. ► TEM and STEM images for the microstructures. ► Each mica crystal did not contain Ce uniformly. ► Emission due to Ce 3+ ions in the glass phase and/or Ce 3+ ions in the mica crystals. - Abstract: Transparent mica glass-ceramics were prepared by heating parent glasses that had been doped with 0.5–15 mol% CeO 2 . During the melting and heat treatment, Ce 4+ ions in the specimens were reduced to Ce 3+ ions, and one or both of these ion species were then replaced with Li + ions in the interlayers of the separated mica crystals. However, scanning transmission electron microscope (STEM) and Z-contrast imaging revealed that the mica crystals did not contain the same amount of Ce. On excitation at 254 nm, the parent glasses and glass-ceramics emitted blue light, which originated from the 5d to 4f transition of the Ce 3+ ions. The emission of the glass-ceramic containing a smaller amount of Ce was attributed to the Ce 3+ ions in both the glass phase and the mica crystals, whereas that of the glass-ceramics containing a larger amount of Ce was caused mainly by Ce 3+ ions in the mica crystals. The dependence of the emission band of the parent glasses on the amount of Ce was a unique feature of the Ce-doped transparent mica glass-ceramics and was not observed in previous studies of Eu-doped parent glasses and mica glass-ceramics.

  5. Ceramic Composites of 3Y-TZP Doped with CuO: Processing, Microstructure and Tribology

    NARCIS (Netherlands)

    Ran, S.

    2006-01-01

    The work described in this thesis is about processing, microstructure and tribology of CuO doped 3Y-TZP (3 mol% yttria stabilised tetragonal zirconia polycrystals) composite ceramics. This group of materials has shown attractive properties such as superplastic behaviour at elevated temperature and a

  6. Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics

    International Nuclear Information System (INIS)

    Li, Yiming; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua; Zhao, Lijuan

    2016-01-01

    Tm 3+ ions doped β-PbF 2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm 3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O h to D 4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm 3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field

  7. Investigation of holmium-doped zirconium oxide ceramic phosphor as an ultraviolet wavelength-discriminating laser beam viewer

    Science.gov (United States)

    Yamanoi, Kohei; Hori, Tatsuhiro; Minami, Yuki; Empizo, Melvin John F.; Luong, Mui Viet; Shiro, Atsushi; Watanabe, Jun; Iwano, Keisuke; Iwasa, Yuki; Cadatal-Raduban, Marilou; Gabayno, Jacque Lynn; Shimizu, Toshihiko; Sarukura, Nobuhiko; Norimatsu, Takayoshi

    2018-01-01

    We report the fluorescence spectra of ZrO2 and trivalent Ho-doped ZrO2 ceramics under ultraviolet (UV) excitation at 213, 266, and 355 nm wavelengths. The Ho3+-doped ZrO2 ceramics exhibited varying fluorescence color tones depending on the excitation wavelength used. The different color tones match the fluorescence spectrum characteristics at each excitation wavelength. Our results demonstrate that Ho3+-doped ZrO2 ceramics can discriminate between UV light, specifically the third, fourth, and fifth harmonics of a Nd:YAG laser. It can potentially be used for developing UV laser beam viewers to aid laser alignment.

  8. Luminescent Eu3+-doped transparent alumina ceramics with high hardness

    Czech Academy of Sciences Publication Activity Database

    Drdlíková, K.; Klement, R.; Hadraba, Hynek; Drdlík, D.; Galusek, D.; Maca, K.

    2017-01-01

    Roč. 37, č. 14 (2017), s. 4271-4277 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : Aluminia * Europium * Photoluminescence (PL) spectra * Submicrocrystalline powders Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass OBOR OECD: Ceramic s Impact factor: 3.411, year: 2016

  9. Effect of Nb doping on sintering and dielectric properties of PZT ceramics

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2016-09-01

    Full Text Available The extensive use of piezoelectric ceramics such as lead zirconate titanate (PZT in different applications became possible with the development of donor or acceptor dopants. Therefore, studies on the effect of dopants on the properties of PZT ceramics are highly demanded. In this study undoped and 2.4 mol% Nb-doped PZT (PZTN powders were successfully obtained by a solid-state reaction and calcination at 850 °C for 2 h. Crystallinity and phase formation of the prepared powders were studied using X-ray diffraction (XRD. In order to study morphology of powders, scanning electron microscopy (SEM was performed. The crystalline PZT and Nb-doped PZT powders were pelleted into discs and sintered at 1100, 1150 and 1200 °C, with a heating rate of 10 °C/min, and holding time of 1–6 h to find the optimum combination of temperature and time to produce high density ceramics. Microstructural characterization was conducted on the fractured ceramic surfaces using SEM. Density measurements showed that maximal density of 95% of the theoretical density was achieved after sintering of PZT and PZTN ceramics at 1200 °C for 2 h and 4 h, respectively. However, the results of dielectric measurements showed that PZTN ceramics have higher relative permittivity (εr ∼17960 with lower Curie temperature (∼358 °C relative to PZT (εr = 16000 at ∼363 °C as a result of fine PZTN structure as well as presence of vacancies. In addition, dielectric loss (at 1 kHz of PZT and PZTN ceramics with 95% theoretical density was 0.0087 and 0.02, respectively. The higher dielectric loss in PZTN was due to easier domain wall motions in PZTN ceramics.

  10. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions

    Science.gov (United States)

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2018-01-01

    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  11. Investigation of the additive induced doping effects in gelcast soft lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    Guo Dong; Cai Kai; Li Longtu; Gui Zhilun

    2009-01-01

    Due to the high sensitivity of the electrical properties of electronic ceramics to various factors, knowledge about the possible influence of the processing procedure on their electrical performance is critical for applying a new technique to the fabrication of the materials. In this study, various electrical parameters, complex impedance spectra, ferroelectric hysteresis loops, and microstructures of soft lead zirconate titanate (PZT) ceramics formed by the gelcasting technique from suspensions with various dispersants were investigated in comparison with those of the conventional dry pressed ones. We found that the sodium ion, which is the main cation in many commercial surfactants, exhibited obvious hard doping effects; thus causing deteriorated performance of the gelcast PZT ceramics. While a certain impurity ion introduced by a dispersant was also found to induce soft doping characteristics and improve the electrical performance of the materials. The results suggest that the doping effects of the metal ions or impurities introduced by the dispersants, or other additives, should be generally considered for applying a wet processing technique to forming multicomponent electronic ceramics.

  12. Preparation and leaching property of Nd-doped zirconolite-based glass-ceramic

    International Nuclear Information System (INIS)

    Wu Lang; Xu Dong; Teng Yuancheng; Li Yuxiang; Liu Zongqiang

    2014-01-01

    Nd-doped zirconolite-based glass-ceramics were prepared by melting-heat treatment technique. The effects of heat treatment processing on phase structure of the glass-ceramics were investigated. The leaching properties of the glass-ceramics were also evaluated by static leaching experiments (product consistency test, PCT). The results show that glass transformation temperature (T g ) and crystallization temperature of the glass-ceramics are about 580℃ and 740℃, respectively. CaTiO 3 phase forms easily when the glass-ceramics were prepared by two-step method, i.e. the glass was prepared first, and then it was heat-treated at the crystallization temperatures. 2M-zirconolite phase can be obtained by one-step method, i.e. the heat-treatment immediately followed by the melting process. In addition, the zirconolite crystals exhibit a dendritic shape. The normalized mass loss of B and Na in the glass-ceramics remains almost unchanged (about 1 mg/m 2 ) after 14 days, while the normalized mass loss of Nd reaches stable value (about 0.2 mg/m 2 ) after 28 days. The normalized mass loss of B, Na, and Nd in the glass-ceramics is an order of magnitude lower than that of borosilicate glasses, respectively. (authors)

  13. Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics

    International Nuclear Information System (INIS)

    Stambouli, W.; Elhouichet, H.; Gelloz, B.; Férid, M.

    2013-01-01

    Tellurite glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (85−x) TeO 2 +5La 2 O 3 +10TiO 2 +xEu 2 O 3 by varying the concentration of the rare-earth ion in the order 0.5, 1 and 1.5 mol%. Using Judd–Ofelt analysis, we calculated intensity parameters (Ω 2 and Ω 4 ), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross-sections for 5 D 0 → 7 F 2 transition. The change in optical properties with the variation of Eu 3+ ion concentration have been discussed and compared with other glasses. The luminescence intensity ratio, quantum efficiency and emission cross-section values support that the TeEu1.5 tellurite glass is a suitable candidate for red laser source applications. Optical properties for Eu 3+ doped tellurite glass, heated for different temperature, were investigated. Crystalline phases for α-TeO 2 , γ-TeO 2 and TiTe 3 O 8 system were determined by the XRD method. The effect of heat treatment on luminescence properties in the tellurite glass was discussed. By using Eu 3+ as a probe, the local structure of rare-earth ion in tellurite glass, vitro-ceramic and ceramic glass has been investigated. The evaluated J–O intensity parameters have been used to calculate different radiative and laser characteristic parameters of the 5 D 0 excited level. The large magnitudes of stimulated emission cross-section (σ e ), branching ratio (β) and Gain bandwidth (σ e ×Δλ eff ) obtained for 5 D 0 → 7 F 2 (613 nm) transition for ceramic glass indicate that the present glass ceramic is promising host material for Eu 3+ doped fiber amplifiers. The measured lifetime of 5 D 0 excited state increases with increase of the heat treatment which further indicate that some Eu 3+ ions were successfully embedded in the crystal phase and prove the low phonon energy environment of Eu 3+ ions

  14. Dielectric, ferroelectric and piezoelectric properties of Nb{sup 5+} doped BCZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Parjansri, Piewpan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand); Intatha, Uraiwan [School of Science, Mae Fah Luang University, 57100 Chiang Rai (Thailand); Eitssayeam, Sukum, E-mail: sukum99@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand)

    2015-05-15

    Highlights: • Average grain size of BCZT ceramic decreased with the increasing Nb{sup 5+} doping. • Dielectric constant value is enhanced with Nb{sup 5+} doping. • Dielectric loss of BCZT − x Nb{sup 5+} ceramics was less than 0.03 at room temperature (1 kHz). • Piezoelectric coefficient decreased with the increasing Nb{sup 5+} doping. • The relaxation behavior is enhanced with the doping of Nb{sup 5+}. - Abstract: This work investigated the electrical properties of Nb{sup 5+} (0.0–1.0 mol%) doped with Ba{sub 0.90}Ca{sub 0.10}Zr{sub 0.10}Ti{sub 0.90}O{sub 3} while adding 1 mol% of Ba{sub 0.90}Ca{sub 0.10}Zr{sub 0.10}Ti{sub 0.90}O{sub 3} seeds. The mixed powder was ball milled for 24 h, calcined and sintered at 1200 °C for 2 h and 1450 °C for 4 h, respectively. The XRD patterns of the ceramic samples were investigated by X-ray diffraction. The electrical properties of ceramics were measured and the results indicated that all samples show a pure perovskite phase with no secondary phase. Density and average grain size values were in the range of 5.60–5.71 g/cm{sup 3} and 12.62–1.86 μm, respectively. The highest dielectric constant, ϵ{sub r} at room temperature (1 kHz) was 4636 found at 1.0 mol% Nb. The dielectric loss, tan δ was less than 0.03 for all samples at room temperature (1 kHz). Other electrical properties, P{sub r}, d{sub 33} and k{sub p} values were decreased with Nb doped relates to the decreasing grain size in BCZT ceramics. Moreover, the degrees of phase transition diffuseness and relaxation behavior were observed in the higher Nb doping.

  15. Thermoelectric Properties of the Yttrium-Doped Ceramic Oxide SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Tamal Tahsin; Ur, Soon-Chul [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-01-15

    The doping dependence of the thermoelectric figure of merit, ZT, of the ceramic oxide SrTiO{sub 3} at high temperature has been studied. In this study, yttrium was used as the doping element. A conventional solid-state reaction method was used for the preparation of Y-doped SrTiO{sub 3}. The doping level in SrTiO{sub 3} was controlled to be in the doping range of 2 - 10 mole%. Almost all the yttrium atoms incorporated into the SrTiO{sub 3} provided charge carriers, as was observed by using X-ray diffraction pattern. The relative densities of all the samples varied from 98.53% to 99.45%. The thermoelectric properties, including the electrical conductivity σ, Seebeck coefficient S, thermal conductivity k, and the figure of merit, ZT, were investigated at medium temperatures. The ZT value showed an obvious doping level dependence, in which a value as high as 0.18 is realized at 773 K for a doping of 8 mole%.

  16. Large recoverable electrostrain in Mn-doped (Ba,Sr) TiO3 ceramics

    International Nuclear Information System (INIS)

    Zhang, L.X.; Chen, W.; Ren, X.

    2004-01-01

    In this letter we demonstrate that with a different principle, BaTiO 3 ceramics, so far considered as inferior piezoelectrics compared with Pb(Zr,Ti)O 3 (PZT), can show a large recoverable electrostrain. This principle utilizes a point-defect-mediated reversible domain switching mechanism, which can in theory generate 0.368% strain for BaTiO 3 ceramics at the best condition. Experimental results showed that, after aging at room temperature, 1.0 mol % Mn-doped (Ba 0.95 Sr 0.05 )TiO 3 ceramics generate a large recoverable nonlinear strain of about 0.12%-0.15% at a field of 3 kV/mm. This value exceeds that of conventional hard PZT piezoelectric ceramics. A microscopic model for the domain-related electrostrain effect in ceramics is proposed. It is also found that the large electrostrain effect is quite stable with respect to both changing frequency and fatigue cycles. Large electrostrain remains recoverable down to 0.05 Hz and after 10 000 cycles. These results demonstrate the potential of our approach in achieving large recoverable electrostrain in environmental-friendly (Pb-free) ceramics

  17. Light up conversion effects in Erbium doped CaBi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Bokolia, Renuka; Sreenivas, K.

    2013-01-01

    In recent years the rare earth doped bismuth layered structured ferroelectric (BLSF) compositions such as CaBi 4 Ti 4 O 15 , SrBi 4 Ti 4 O 15 and BaBi 4 Ti 4 O 15 ceramics have shown interesting light up-conversion emission effects. The observation of such novel effects has generated a lot of scientific interest, and there is a need to further improve their dielectric, piezoelectric and light up-conversion properties. In the present study, Erbium doped CaBi 4 Ti 4 O 15 (CBT), and SrBi 4 Ti 4 O 15 (SBT) ferroelectric ceramic have been prepared by the conventional solid state reaction method. Formation of single phase material is confirmed by X-Ray Diffraction (XRD), and changes occurring in the lattice parameters with Erbium dopant are analysed. Room temperature dielectric studies and ferroelectric studies will be discussed. (author)

  18. Solid-state reaction synthesis and aqueous durability of Ce-doped zirconolite-rich ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Guanjun [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Zhang, Kuibao, E-mail: xiaobao320@163.com [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Yin, Dan [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Zhang, Haibin, E-mail: hbzhang@imr.ac.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    In this study, Ce-doped zirconolite-rich ceramics were prepared by solid-state reaction process using cerium as the surrogate of tetravalence actinide nuclide. The occupancy of Ce in the waste forms was investigated. The aqueous durability of Ce-doped zirconolite-rich ceramic was examined as well. The results show that zirconolite and pseudobrookite coexisted after being sintered at 1200 °C for 6 h. Meanwhile, perovskite is inevitable generated during the process. CeO{sub 2} can be successfully incorporated into the lattice structure of the zirconolite-rich ceramics. The maximum containing capacity of CeO{sub 2} is up to 14.95 wt% or y = 0.4. The normalized elemental leaching rates of Ce and Ca are fairly constant in low values of 1.2 × 10{sup −6} and 2.3 × 10{sup −2} g m{sup −2} d{sup −1} after 28 days. The normalized leaching rate of Fe is also in a low value of 2.9 × 10{sup −4} g m{sup −2} d{sup −1} after 7 days. - Highlights: • Ce-doped zirconolite-rich ceramic was produced at 1200 °C. • Pseudobrookite-type Fe{sub 2}TiO{sub 5} was employed to incorporate Fe element. • Ce{sup 3+} and Ce{sup 4+} coexisted in the Ce-doped zirconolite-rich waste form after being sintered at 1200 °C for 6 h. • The leaching rate of Ca was relatively higher than that of borosilicate glasses.

  19. Microstructural and dielectrical characterization of Ho doped BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Marjanović Miloš

    2014-01-01

    Full Text Available The Ho doped BaTiO3 ceramics, with different Ho2O3 content, ranging from 0.01 to 1.0 wt % Ho, were investigated regarding their microstructural and dielectric characteristics. Doped BaTiO3 were prepared using conventional solid state reaction and sintered at 1380°C for four hours. SEM analysis of Ho/BaTiO3 doped ceramics showed that the low doped samples exhibit mainly fairly uniform and homogeneous microstructure with the grain size ranged from 20-40 μm. In the samples with the higher dopant concentration the abnormal grain growth is inhibited and the grain size ranged between 2-10 μm. Measurements of dielectric properties were carried out as a function of temperature up to 180 °C at different frequencies. The samples doped with 0.01wt % of Ho, exhibit the high value of dielectric permittivity (εr = 2160 at room temperature. A nearly flat permittivity-response was obtained in specimens with higher additive content. Using a Curie-Weiss law and modified Curie-Weiss law the Curie constant (C, Curie temperature (Tc and a critical exponent of nonlinearity (g were calculated. The Curie temperature of doped samples were ranged from 128 to 130°C. The Curie constant for all series of samples decrease with increase of dopant concentration and the lowest values were observed on samples doped with 0.01 wt % of holmium. [Projekat Ministarstva nauke Republike Srbije, br. OI 172057: Directed synthesis, structure and properties of multifunctional materials i br. TR 32026

  20. Corrosion of a Pu-doped zirconolite-rich ceramic

    International Nuclear Information System (INIS)

    Bakel, A.J.; Buck, E.C.; Wolf, S.F.; Chamberlain, D.B.; Bates, J.K.; Ebbinghaus, B.B.

    1997-01-01

    As part of a large Pu disposition program, a zirconolite-rich titanate ceramic is being developed at Lawrence Livermore National Laboratory (LLNL) as a possible immobilization material. This same material is being tested at Argonne National Laboratory (ANL). The goal of this study is to describe the corrosion behavior of this ceramic, particularly the release of Pu and Gd, using results from several static corrosion tests (MCC-1, PCT-A, and PCT-B). The release of relatively large amounts of Al, Ba, and Ca in short-term tests (3 day MCC-1 and 7 day PCT-A) indicates that these elements are released from grain boundaries or from highly soluble phases. Results from long-term (28, 98, and 182 day) PCT-B show that the releases of Al, Ba, and Ca decrease with time, the releases of U and Zr increase with time, and that the releases of Cs, Gd, Mo, and Pu remain fairly constant. Formation of alteration phases may lead to the decrease of Ba and Ca in leachate solutions. Due to the heterogeneous nature of the material, the formation of alteration phases, and the inherently low solubility of several elements, no element(s) could be recommended as good markers for the overall corrosion of this ceramic. Data show that, due to the complex nature of this material, the release of each element should be considered separately

  1. High-temperature thermoelectric properties of La-doped BaSnO3 ceramics

    International Nuclear Information System (INIS)

    Yasukawa, Masahiro; Kono, Toshio; Ueda, Kazushige; Yanagi, Hiroshi; Hosono, Hideo

    2010-01-01

    To elucidate the thermoelectric properties at high temperatures, perovskite-type La-doped BaSnO 3 ceramics were fabricated by a polymerized complex (PC) method and subsequent spark plasma sintering (SPS) technique. Fine powders of Ba 1-x La x SnO 3 (x = 0.00-0.07) were prepared by the PC method using citrate complexes, and SPS treatment converted the powders into dense ceramics with relative densities of 93-97%. The La content dependence of the lattice parameter suggested that the solubility of La for Ba sites was approximately x = 0.03. The temperature dependence of the electrical conductivity σ and Seebeck coefficient S showed that each La-doped ceramic was an n-type degenerate semiconductor in the measured temperature range of 373-1073 K. The La content dependence of the S values indicated that the electron carrier concentration increased successively up to x = 0.03, which was the solubility limit of the La atoms. The thermoelectric power factors S 2 σ increased drastically with La doping, and reached a maximum for x = 0.01 with values of 0.8 x 10 -4 W m -1 K -2 at 373 K to 2.8 x 10 -4 W m -1 K -2 at 1073 K.

  2. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; Goldner, Philippe, E-mail: philippe.goldner@chimie-paristech.fr [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Ferrier, Alban [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonnes Universités, UPMC Univ Paris 06, 75005 Paris (France); Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Ramírez, Mariola O.; Bausá, Luisa E. [Departamento Física de Materiales and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Ikesue, Akio [World Laboratory, Mutsuno, Atsuta-ku, Nagoya 456-0023 (Japan)

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu{sup 3+} doped Y {sub 2}O{sub 3} transparent ceramics. This result is obtained on the {sup 7}F{sub 0}→{sup 5}D{sub 0} transition in Eu{sup 3+} doped Y {sub 2}O{sub 3} ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu{sup 3+} concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  3. Comparative study of transparent ceramic and single crystal Ce doped LuAG scintillators

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei; Yanagida, Satoko; Yoshikawa, Akira; Yagi, Hideki; Yanagitani, Takagimi

    2011-01-01

    Transparent ceramic Ce 0.5% doped Lu 3 Al 5 O 12 (LuAG) scintillator grown by the sintering method and single crystalline Ce doped LuAG grown by the Czochralski method are prepared. They are cut to the physical dimensions 4 × 4 × 2 mm 3 . Their transmittance and radio luminescence spectra are evaluated. They are both transmissive in wavelength longer than 500 nm and intense Ce 3+ 5d–4f emission appears around 520 nm. When 137 Cs γ-ray is irradiated, 662 keV photo-absorption peaks are clearly observed in each sample. The transparent ceramic one shows higher light yield than that of the single crystalline one. The absolute light yield of the ceramic sample is turned out to be 14800 ± 1500 ph/MeV. The decay time constants are evaluated under pulse X-ray excitation. The main component of the decay time of ceramic and single crystalline one are determined as 37 and 46 ns, respectively.

  4. The thermoluminescence and optically stimulated luminescence properties of Cr-doped alpha alumina transparent ceramics

    International Nuclear Information System (INIS)

    Liu, Qiang; Yang, Qiu Hong; Zhao, Guang Gen; Lu, Shen Zhou; Zhang, Hao Jia

    2013-01-01

    Highlights: •Polycrystalline Cr:α-Al 2 O 3 transparent ceramics were obtained with vacuum sintering method. •The influence of different concentration of Cr 2 O 3 on the thermoluminescence and optical stimulated luminescence properties of Cr:α-Al 2 O 3 transparent ceramics was studied. •It had a main peak at 503 K of very high intensity and linear concentration dependence up to high concentration. •It showed so interesting results with high TL sensitivity and high stability of OSL signal that Cr:α-Al 2 O 3 transparent ceramics might be a promising material in TL dosimetry and replace Cr:α-Al 2 O 3 crystals. -- Abstract: Polycrystalline Cr:α-Al 2 O 3 transparent ceramics were fabricated by conventional solid-state processing under vacuum condition. The SEM microstructure photographs of Cr:α-Al 2 O 3 transparent ceramics doped with different content of Cr 2 O 3 were investigated. The absorption, emission spectra, thermoluminescence and optical stimulated luminescence of Cr:α-Al 2 O 3 transparent ceramics were comparable to those of Cr:α-Al 2 O 3 crystals. The influence of different concentration of Cr 2 O 3 on the thermoluminescence and optical stimulated luminescence properties of Cr:α-Al 2 O 3 transparent ceramics was discussed. It showed so interesting results with high TL sensitivity and high stability of OSL signal that Cr:α-Al 2 O 3 transparent ceramics might be a promising material in TL dosimetry and replace Cr:α-Al 2 O 3 crystals

  5. Fabrication and electrical investigations of Pb-doped BaTiO_3 ceramics

    International Nuclear Information System (INIS)

    Sareecha, N.; Shah, W.A.; Maqsood, A.; Anis-ur-Rehman, M.; Latif Mirza, M.

    2017-01-01

    Electrical properties of Pb doped BaTiO_3; PBT are investigated in the wide range of temperatures (40–700 °C) at 1 kHz frequency. PBT ceramics were fabricated through solid state sintering method. Pre fired BaTiO_3 prepared with Ba/Ti molar ratio of 0.98 was doped with PbCO_3 (<1 mole %). XRD patterns indicated perovskite phase with tetragonal structures (P4mm). Morphological studies (SEM) revealed grain development with increasing lead contents. With lead doping and its variation, Curie temperature (T_C) was shifted from 120 to 200 °C with broad dielectric constant peaks and dielectric anomalies with relaxor behavior were observed. Resistivity decreased with increasing temperature, all specimens showed semiconductor behavior with negative temperature coefficient of resistivity (NTCR) characteristics. Mobility of electrons increased with thermal activation due to hopping of charge carriers from one site to another. Ohmic conductivities and associated activation energies were evaluated by impedance spectroscopy. Conductivity followed the Arrhenius law with E_a = 1.187–1.169 eV which can be attributed to the ionic conduction owning to doubly ionized oxygen vacancies. Well-defined hysteresis P-E loops measured at room temperature depicted ferroelectric properties of the materials. - Graphical abstract: Temperature dependence of dielectric constant (Ɛ′) and resistivity (ρ) for pure and Pb-doped BaTiO_3 ceramics at 1 k Hz frequency. - Highlights: • Pb-doped BaTiO_3ceramics were fabricated through solid state sintering. • Electrical properties were studied at the temperatures 40–700 °C at 1 kHz. • Specimens showed negative temperature coefficient of resistivity characteristics. • Conductivity followed the Arrhenius law with E_a = 1.187–1.169 eV. • Ionic conduction was supposed to be responsible for conduction process.

  6. Fabrication and electrical investigations of Pb-doped BaTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sareecha, N., E-mail: nsareecha@hotmail.com [Laboratory of Physical Chemistry, Department of Chemistry, Islamia University of Bahawalpur (Pakistan); Shah, W.A. [Glass and Ceramics Research Centre, PCSIR Laboratories Complex, Ferozpur Road, Lahore 54600 (Pakistan); Maqsood, A. [Nano Scale Physics Laboratory, Department of Physics, Air University, PAF Complex E-9, Islamabad (Pakistan); Anis-ur-Rehman, M. [Applied Thermal Physics Laboratory, COMSATS Institute of Information and Technology, Park Road, Islamabad 44000 (Pakistan); Latif Mirza, M. [Laboratory of Physical Chemistry, Department of Chemistry, Islamia University of Bahawalpur (Pakistan)

    2017-06-01

    Electrical properties of Pb doped BaTiO{sub 3}; PBT are investigated in the wide range of temperatures (40–700 °C) at 1 kHz frequency. PBT ceramics were fabricated through solid state sintering method. Pre fired BaTiO{sub 3} prepared with Ba/Ti molar ratio of 0.98 was doped with PbCO{sub 3} (<1 mole %). XRD patterns indicated perovskite phase with tetragonal structures (P4mm). Morphological studies (SEM) revealed grain development with increasing lead contents. With lead doping and its variation, Curie temperature (T{sub C}) was shifted from 120 to 200 °C with broad dielectric constant peaks and dielectric anomalies with relaxor behavior were observed. Resistivity decreased with increasing temperature, all specimens showed semiconductor behavior with negative temperature coefficient of resistivity (NTCR) characteristics. Mobility of electrons increased with thermal activation due to hopping of charge carriers from one site to another. Ohmic conductivities and associated activation energies were evaluated by impedance spectroscopy. Conductivity followed the Arrhenius law with E{sub a} = 1.187–1.169 eV which can be attributed to the ionic conduction owning to doubly ionized oxygen vacancies. Well-defined hysteresis P-E loops measured at room temperature depicted ferroelectric properties of the materials. - Graphical abstract: Temperature dependence of dielectric constant (Ɛ′) and resistivity (ρ) for pure and Pb-doped BaTiO{sub 3} ceramics at 1 k Hz frequency. - Highlights: • Pb-doped BaTiO{sub 3}ceramics were fabricated through solid state sintering. • Electrical properties were studied at the temperatures 40–700 °C at 1 kHz. • Specimens showed negative temperature coefficient of resistivity characteristics. • Conductivity followed the Arrhenius law with E{sub a} = 1.187–1.169 eV. • Ionic conduction was supposed to be responsible for conduction process.

  7. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO_3) ceramics

    International Nuclear Information System (INIS)

    Billah, Masum; Ahmed, A.; Rahman, Md. Miftaur; Mahbub, Rubbayat; Gafur, M. A.; Bashar, M. Shahriar

    2016-01-01

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La_2O_3) doped Barium Titanate (BaTiO_3) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO_3 with 0.3, 0.5 and 0.7 mole% La_2O_3 under different sintering parameters. The raw materials used were La_2O_3 nano powder of ~80 nm grain size and 99.995% purity and BaTiO_3 nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanning Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO_3 ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La_2O_3) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La_2O_3 with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La"3"+ concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO_3 ceramics.

  8. Dielectric properties of Ga{sub 2}O{sub 3}-doped barium iron niobate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoom, Kachaporn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok, 10400 (Thailand); Pengpat, Kamonpan; Eitssayeam, Sukum; Tunkasiri, Tawee [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Rujijanagul, Gobwute [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok, 10400 (Thailand)

    2014-08-15

    Ga-doped BaFe{sub 0.5}Nb{sub 0.5}O{sub 3} (Ba(Fe{sub 1-x}Ga{sub x}){sub 0.5}Nb{sub 0.5}O{sub 3}) ceramics were fabricated and their properties were investigated. All ceramics showed perovskite structure with cubic symmetry and the solubility of Ga in BFN ceramics had a limit at x = 0.2. Examination of the dielectric spectra indicated that all ceramic samples presented high dielectric constants that were frequency dependent. The x = 0.2 ceramic showed a very high dielectric constant (ε{sub r} > 240 000 at 1 kHz) while the x = 0.4 sample exhibited high thermal stability of dielectric constant with low loss tangent from room temperature (RT) to 100 C with ε{sub r} > 28 000 (at 1 kHz) when compared to other samples. By using a complex impedance analysis technique, bulk grain, grain boundary, and electrode response were found to affect the dielectric behavior that could be related to the Maxwell-Wagner polarization mechanism. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Dielectric properties of Ga2O3-doped barium iron niobate ceramics

    International Nuclear Information System (INIS)

    Sanjoom, Kachaporn; Pengpat, Kamonpan; Eitssayeam, Sukum; Tunkasiri, Tawee; Rujijanagul, Gobwute

    2014-01-01

    Ga-doped BaFe 0.5 Nb 0.5 O 3 (Ba(Fe 1-x Ga x ) 0.5 Nb 0.5 O 3 ) ceramics were fabricated and their properties were investigated. All ceramics showed perovskite structure with cubic symmetry and the solubility of Ga in BFN ceramics had a limit at x = 0.2. Examination of the dielectric spectra indicated that all ceramic samples presented high dielectric constants that were frequency dependent. The x = 0.2 ceramic showed a very high dielectric constant (ε r > 240 000 at 1 kHz) while the x = 0.4 sample exhibited high thermal stability of dielectric constant with low loss tangent from room temperature (RT) to 100 C with ε r > 28 000 (at 1 kHz) when compared to other samples. By using a complex impedance analysis technique, bulk grain, grain boundary, and electrode response were found to affect the dielectric behavior that could be related to the Maxwell-Wagner polarization mechanism. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Synthesis of Doped and non-Doped Nano MgO Ceramic Membranes

    Directory of Open Access Journals (Sweden)

    Shiraz Labib

    2013-12-01

    Full Text Available Doped and non-doped MgO coated thin films on alumina substrates were prepared using a chelating sol-gel method under controlled conditions to prepare nanomaterials with unprecedented properties. The effect of doping of ZnO on thermal, surface and structural properties was investigated using DTA-TG, BET and XRD respectively. Also microstructural studies and coating thickness measurements of MgO thin film were conducted using SEM. An increase in the thermal stability of MgO with increasing ZnO doping percent was observed. The increase of ZnO doping percent showed a marked decrease in the average particle size of MgO powder as a result of the replacement of some Mg2+ by Zn2+ which has similar ionic radius as Mg2+. This decrease in particle size of MgO was also related to the decrease of the degree of MgO crystalinity. The increase of ZnO doping also showed a marked decrease in coating thickness values of the prepared membranes. This decrease was related to the  mechanism of ZnO doping into a MgO crystal lattice.

  11. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Darroudi, Taghi; Zeng, Xiaoyu; Alshareef, Husam N.; Tritt, Terry M.

    2015-01-01

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  12. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash

    2015-08-15

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  13. Fabrication and characterization of nanostructured Ba-doped BiFeO3 porous ceramics

    Directory of Open Access Journals (Sweden)

    Mostafavi E.

    2016-03-01

    Full Text Available Nanostructured barium doped bismuth ferrite, Bi₀.₈Ba₀.₂FeO₃ porous ceramics with a relatively high magnetic coercivity was fabricated via sacrificial pore former method. X-ray diffraction results showed that 20 wt.% Ba doping induces a structural phase transition from rhombohedral to distorted pseudo-cubic structure in the final porous samples. Moreover, utilizing Bi₀.₈Ba₀.₂FeO₃ as the starting powder reduces the destructive interactions between the matrix phase and pore former, leading to an increase in stability of bismuth ferrite phase in the final porous ceramics. Urea-derived Bi₀.₈Ba₀.₂FeO₃ porous ceramic exhibits density of 4.74 g/cm³ and porosity of 45 % owing the uniform distribution of interconnected pores with a mean pore size of 7.5 μm. Well defined nanostructured cell walls with a mean grain size of 90 nm were observed in the above sample, which is in a good accordance with the grain size obtained from BET measurements. Saturation magnetization decreased from 2.31 in the Bi₀.₈Ba₀.₂FeO₃ compact sample to 1.85 A m²/kg in urea-derived Bi₀.₈Ba₀.₂FeO₃ porous sample; moreover, coercivity increased from 284 to 380 kA/m.

  14. Preparation and luminescence properties of Eu{sup 2+}doped {gamma}-aluminum oxynitride transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fang; Yuan, Xianyuan; Wang, Shaohua [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai (China); Wang, Shiwei, E-mail: swwang51@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai (China)

    2013-01-15

    Eu{sup 2+} doped {gamma}-AlON transparent ceramics have been prepared by the solid-state reaction sintering method. The influences of Eu concentration on both strength, transparency and luminescence properties of the as-prepared samples were discussed. The strength and transparency decreased as Eu content increased. Two bands were observed in the emission spectrum of each sample. One (B{sub 1}) was narrow and centered at around 401 nm, the other (B{sub 2}) was comparatively broader, and the location of its center as well as the intensity ratio of peak values of B{sub 2} to that of B{sub 1} varied with Eu content. - Highlights: Black-Right-Pointing-Pointer Eu{sub 2}O{sub 3} was an effective sintering aid in fabrication of transparent {gamma}-AlON ceramics. Black-Right-Pointing-Pointer Eu-doped transparent {gamma}-AlON ceramics exhibited broad emission spectra composed of two bands. Black-Right-Pointing-Pointer The relationship between crystal position of Eu{sup 2+} ions and luminescent properties was given.

  15. Preparation of new composite ceramics based on gadolinium-doped ceria and magnesia nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingying; Schelter, Matthias; Zosel, Jens; Oelssner, Wolfram [Kurt-Schwabe-Institut fuer Mess- und Sensortechnik e.V. Meinsberg, Waldheim (Germany); Mertig, Michael [Kurt-Schwabe-Institut fuer Mess- und Sensortechnik e.V. Meinsberg, Waldheim (Germany); Physikalische Chemie, Mess- und Sensortechnik, Technische Universitaet Dresden (Germany)

    2017-09-15

    To achieve solid electrolyte materials for electrochemical energy storage devices with very high oxygen ion conductivity, composites of gadolinium-doped ceria (GDC) and magnesia (MgO) are developed in this study. Three different preparation methods are used to prepare nanoparticles from these two components. According to the characterization results, the self-propagating high-temperature synthesis is best suited for the preparation of both nanometer-sized GDC powder as solid electrolyte and MgO powder as insulator. The structures of the prepared nanometer-sized powders have been characterized by X-ray diffraction and transmission electron microscopy. They show narrow size distributions in the lower nanometer range. Then, dense composite ceramics are prepared from a MgO-GDC mixture by sintering. The size of the crystallite domains in the sintered ceramic is in the upper nanometer range. TEM and TEM-EDX images of a new composite ceramic based on gadolinium-doped ceria and magnesia nanoparticles. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Preparation of new composite ceramics based on gadolinium-doped ceria and magnesia nanoparticles

    International Nuclear Information System (INIS)

    Yao, Jingying; Schelter, Matthias; Zosel, Jens; Oelssner, Wolfram; Mertig, Michael

    2017-01-01

    To achieve solid electrolyte materials for electrochemical energy storage devices with very high oxygen ion conductivity, composites of gadolinium-doped ceria (GDC) and magnesia (MgO) are developed in this study. Three different preparation methods are used to prepare nanoparticles from these two components. According to the characterization results, the self-propagating high-temperature synthesis is best suited for the preparation of both nanometer-sized GDC powder as solid electrolyte and MgO powder as insulator. The structures of the prepared nanometer-sized powders have been characterized by X-ray diffraction and transmission electron microscopy. They show narrow size distributions in the lower nanometer range. Then, dense composite ceramics are prepared from a MgO-GDC mixture by sintering. The size of the crystallite domains in the sintered ceramic is in the upper nanometer range. TEM and TEM-EDX images of a new composite ceramic based on gadolinium-doped ceria and magnesia nanoparticles. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  18. Synthesis, characterization of CaF2 doped silicate glass-ceramics.

    Science.gov (United States)

    Riaz, Madeeha; Zia, Rehana; Mirza, Ambreen; Hussain, Tousif; Bashir, Farooq; Anjum, Safia

    2017-06-01

    This paper reports the fabrication and characterization of silicate glass-ceramics doped with (0-12mol%) CaF 2 . TGA-DSC analysis was carried out to determine the crystallization temperature and stability of glass measured by two glass parameters; Hruby parameter K H =(T x -T g )/(T L -T x ) and Weinberg parameter K W =(T c -T g )/T L . It was found that with CaF 2 doping improved sinterability at low temperature and provided stability to the glass. The XRD pattern exhibits a single phase of combeite and doping of CaF 2 cause increase in crystallite size. Microstructure of samples was also improved with CaF 2 addition, pores were significantly reduced. After 15days immersion in simulated body fluid all samples developed apatite layer onto its surface. Hence, the addition of CaF 2 provided bioactive glass-ceramic material having a low processing temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao

    2014-04-03

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  20. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2014-01-01

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  1. Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes

    Science.gov (United States)

    No, Young Jung; Li, Jiao Jiao; Zreiqat, Hala

    2017-01-01

    Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants. PMID:28772513

  2. The temperature dependence of thermooptical properties of magnetooptical TAG ceramics doped with silicon and titanium

    Science.gov (United States)

    Starobor, Aleksey; Palashov, Oleg

    2018-04-01

    Thermal effects in terbium aluminum garnet (TAG) ceramics (thermal lens and thermally induced depolarization) doped with silicon and titanium were investigated in temperature range of 79-293K. Samples with low dopant concentrations shows decreasing of negative thermal effects with cooling to 79 K. However for most part of samples thermal depolarization starts increasing after initial decreasing with cooling. Apparently it is connected with defects in media. Best sample (0.4 at% of Si) as pure TAG shows monotonous decreasing of thermally induced depolarization and 3.5 times Verdet constant increasing with cooling to 79 K, that leads to 1.8-times advantage over common magnetooptical media - terbium gallium garnet. It allows to provide an isolation of 30 dB at a radiation power of more than 6 kW as estimated. However, the procedure for creating ceramics samples obviously needs improvement because of the large scatter in the quality of the samples.

  3. Structure, dielectric and electrical properties of cerium doped barium zirconium titanate ceramics

    International Nuclear Information System (INIS)

    Feng Hongjun; Hou Jungang; Qu Yuanfang; Shan Dan; Yao Guohua

    2012-01-01

    Highlights: ► Rare-earth doped barium zirconate titanate (BZT) ceramics, Ba(Zr 0.25 Ti 0.75 )O 3 + xCeO 2 , (x = 0–1.5 at%) were obtained by a solid state reaction route. ► Morphological analysis on sintered samples by scanning electron microscopy shows that the addition of rare-earth ions affects the growth of the grain and remarkably changes the grain morphology. ► The effect of rare-earth addition to BZT on dielectric and electrical properties is analyzed, demonstrating that the samples with x = 0.4 and x = 0.6 could be semiconducting in air atmosphere. - Abstract: Rare-earth doped barium zirconium titanate (BZT) ceramics, Ba(Zr 0.25 Ti 0.75 )O 3 + xCeO 2 , (x = 0–1.5 at%) were obtained by a solid state reaction route. Perovskite-like single-phase compounds were confirmed from X-ray diffraction data and the lattice parameters were refined by the Rietveld method. It is found that, integrating with the lattice parameters and the distortion of crystal lattice, there is an alternation of substitution preference of cerium ions for the host cations in perovskite lattice. Morphological analysis on sintered samples by scanning electron microscopy shows that the addition of rare-earth ions affects the growth of the grain and remarkably changes the grain morphology. The effect of rare-earth addition to BZT on dielectric and electrical properties is analyzed. High values of dielectric tunability are obtained for cerium doped BZT. Especially, the experimental results on the effect of the contents of rare-earth addition on the resistivity of BZT ceramics were investigated, demonstrating that the samples with x = 0.4 and x = 0.6 could be semiconducting in air atmosphere.

  4. Grain growth kinetics for B2O3-doped ZnO ceramics

    Directory of Open Access Journals (Sweden)

    Yuksel Berat

    2015-06-01

    Full Text Available Grain growth kinetics in 0.1 to 2 mol % B2O3-added ZnO ceramics was studied by using a simplified phenomenological grain growth kinetics equation Gn = K0 · t · exp(-Q/RT together with the physical properties of sintered samples. The samples, prepared by conventional ceramics processing techniques, were sintered at temperatures between 1050 to 1250 °C for 1, 2, 3, 5 and 10 hours in air. The kinetic grain growth exponent value (n and the activation energy for the grain growth of the 0.1 mol % B2O3-doped ZnO ceramics were found to be 2.8 and 332 kJ/mol, respectively. By increasing B2O3 content to 1 mol %, the grain growth exponent value (n and the activation energy decreased to 2 and 238 kJ/mol, respectively. The XRD study revealed the presence of a second phase, Zn3B2O6 formed when the B2O3 content was > 1 mol %. The formation of Zn3B2O6 phase gave rise to an increase of the grain growth kinetic exponent and the grain growth activation energy. The kinetic grain growth exponent value (n and the activation energy for the grain growth of the 2 mol % B2O3-doped ZnO ceramics were found to be 3 and 307 kJ/mol, respectively. This can be attributed to the second particle drag (pinning mechanism in the liquid phase sintering.

  5. Structural, thermal, and optical properties of Er3+/Yb3+ co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Joshi, C.; Rai, R.N.; Rai, S.B.

    2012-01-01

    Glass-ceramics and ceramics containing nano-crystals of different phases doped with Er 3+ /Yb 3+ ions have been successfully prepared by heat treatment of the precursor oxyhalide glasses synthesized by the melt-quench method. X-ray diffraction patterns and transmission electron microscopy (TEM) images verify the precipitation of nano-crystals. Emission of Er 3+ enhances several times when Yb 3+ ion is added with the matrix. The Stark splitting and the intensity of different emission bands increase to a great extent when we approach to ceramics from glasses via glass-ceramics. The intensity of the blue and green emission bands increases much faster than the red and NIR emission bands. Intense upconversion emission observed by the naked eye has been quantified in terms of standard chromaticity diagram (CIE). Power dependence study shows that the upconversion of NIR radiation to visible radiation takes place mainly via photon avalanche (PA) process.

  6. Preparation and spectral analysis of a new Tb3+-doped CaO-MgO-SiO2 glass ceramics

    International Nuclear Information System (INIS)

    Cheng Jinshu; Tian Peijing; Zheng Weihong; Xie Jun; Chen Zhenxia

    2009-01-01

    Tb 3+ -doped CaO-MgO-SiO 2 glass ceramics have been prepared and characterized. The structure and optical properties of the glass ceramics were studied by XRD, SEM, Raman, and fluorescence spectra. The precipitated crystalline phase in the glass ceramics was columnar CaMgSi 2 O 6 . Raman spectra showed the introduction of rare earth nearly had no influence on the sample structure. Fluorescence measurements showed that Tb 3+ ions entered into the diopside crystalline phase and induced a much stronger emission in the glass ceramics than that in the corresponding glass. With increase of Tb 3+ content and the introduction of Gd 3+ , the fluorescence intensity of the luminescent glass ceramic increased

  7. Laser sintering of ceramics of Y2O3 pure e doped

    International Nuclear Information System (INIS)

    Oliveira, T.C. de; Goncalves, R.S.; Silva, R.S. da

    2012-01-01

    The Yttria (Y 2 O 3 ) is one of the most promising materials for refractory and optical applications due mainly to its high corrosion resistance, wide range of optical transmission and high melting point. However, due to its high melting point, ceramic bodies to obtain high density Y 2 O 3 high temperatures and require special sintering. Recently it has been proposed in the literature a new method of sintering in which a CO 2 laser, in continuous mode, is employed as the primary source of heat during sintering. Irradiation with laser light produces heating surface at elevated temperatures in a time interval of a few seconds, allowing to obtain dense ceramic bodies at elevated temperatures and with different properties from those sintered by conventional methods. In this paper, Y 2 O 3 powders of pure and doped with Mn, Ca and Zn were synthesized by the polymeric precursors and after calcination at 600 ° C/4h showed single phase. For the production and characterization of the samples used techniques DTA / TG, XRD Dilatometry, SEM and Radioluminescence. The sintered ceramics had a high relative density and strong dependence on the dopant used, which accelerate the densification process. Measures Radioluminescence showed characteristic peaks of Y 2 O 3 and dependence on the dopant used. (author)

  8. Low Friction in CuO-Doped Yttria-Stabilized Tetragonal Zirconia Ceramics: A Complementary Macro- and Nanotribology Study

    NARCIS (Netherlands)

    Tocha, E.; Pasaribu, H.R.; Schipper, Dirk J.; Schönherr, Holger; Vancso, Gyula J.

    2008-01-01

    The tribological behavior of CuO-doped yttria-stabilized tetragonal zirconia (3Y-TZP) ceramics in the absence of additional lubricants was characterized by macroscale pin-on-disk measurements and nanoscale atomic force microscopy (AFM) for a broad range of velocities. The previously observed low

  9. Effect of Mg.sup.2+./sup. co-doping on the scintillation performance of LuAG:Ce ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Feng, X.; Zhou, Z.; Nikl, Martin; Shi, Y.; Pan, Y.

    2014-01-01

    Roč. 8, č. 1 (2014), s. 105-109 ISSN 1862-6254 R&D Projects: GA MŠk LH12185 Institutional support: RVO:68378271 Keywords : Lu 3 Al 5 O 12 ceramics * cerium doping * acceptor levels * luminescence centers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.142, year: 2014

  10. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition

    DEFF Research Database (Denmark)

    Bodea, M. A.; Sbarcea, G.; Naik, G. V.

    2013-01-01

    Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass...

  11. Improved dielectric and ferroelectric properties of Mn doped barium zirconium titanate (BZT) ceramics for energy storage applications

    Science.gov (United States)

    Sangwan, Kanta Maan; Ahlawat, Neetu; Kundu, R. S.; Rani, Suman; Rani, Sunita; Ahlawat, Navneet; Murugavel, Sevi

    2018-06-01

    Lead free Mn doped barium zirconium titanate ceramic of composition BaZr0.045 (MnxTi1-x)0.955O3 (x = 0.00, 0.01, 0.02) were prepared by solid state reaction method. Tetragonal perovskite structure was confirmed by Rietveld refinement of X-ray diffraction pattern. Analysis of Scanning electron microscope (SEM) micrographs revealed that addition of Mn up to a certain limit accelerates grain growth of BZT ceramic. Static dielectric constant was successfully extended up to high frequencies with an appreciable decrease in dielectric loss about 70% for Mn doped BZT ceramics. The experimental data fitted with Curie Weiss Law and Power Law confirmed first order transition and diffusive behavior of the investigated system. The shifting of Curie temperature (Tc) from 387 K to 402 K indicated tendency for sustained ferroelectricity in doped BZMT ceramics. High value of percentage temperature coefficient of capacitance TCC >10% near Tc was observed for all the compositions and increases with Mn content in pure BZT. At room temperature, BZT modified ceramic corresponding to x = 0.01 composition shows better values of remnant polarization (Pr = 5.718 μC/cm2), saturation polarization (Ps = 14.410 μC/cm2), low coercive field (Ec = 0.612 kV/cm), and highest value of Pr/Ps = 0.396.

  12. Spectroscopic properties of Er3+ and Yb3+ co-doped glass ceramics containing SrF2 nanocrystals

    International Nuclear Information System (INIS)

    Qiao Xvsheng; Fan Xianping; Wang Minquan; Zhang Xianghua

    2009-01-01

    The spectroscopic properties of Er 3+ /Yb 3+ co-doped 50SiO 2 -10Al 2 O 3 -20ZnF 2 -20SrF 2 glass and glass ceramic containing SrF 2 nanocrystals were investigated. The formation of SrF 2 nanocrystals in the glass ceramic was confirmed by XRD. The oscillator strengths for several transitions of the Er 3+ ions in the glass ceramic have been obtained and the Judd-Ofelt parameters were then determined. The XRD result and Judd-Ofelt parameters suggested that Er 3+ and Yb 3+ ions had efficiently enriched in the SrF 2 nanocrystals in the glass ceramic. The lifetime of excited states has been used to reveal the surroundings of luminescent Er 3+ and Yb 3+ and energy transfer (ET) mechanism between Er 3+ and Yb 3+ . Much stronger upconversion luminescence and longer lifetime of the Er 3+ /Yb 3+ co-doped glass ceramic were observed in comparison with the Er 3+ /Yb 3+ co-doped glass, which could be ascribed to more efficient ET from Yb 3+ to Er 3+ due to the enrichment of Yb 3+ and Er 3+ and the shortening of the distance between lanthanide ions in the precipitated SrF 2 nanocrystals.

  13. Synthesis of ceramic powder of TiO_2 doped with Zr by the Pechini Method applied in ceramic membranes for water treatment

    International Nuclear Information System (INIS)

    Farias, R.F.V.; Fernandes, M.S.M.; Silva, R.S.; Franca, K.B.; Lira, H.L.; Bonifacio, M.A.R.

    2016-01-01

    This paper describes the synthesis of ceramic powder of TiO2 doped with Zr by the polymeric precursor method, also known as Pechini method applied in ceramic membranes for water treatment. Three compositions were synthesized according to the molar ratio Ti_x-1Zr_xO_2 (x = 0.25, 0.50 and 0.75 moles), calcined at 700° C/1h. The samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and microbiological analysis. The presence of the doping element was not decisive in the average size of crystallite, which ranged from 5.5 to 11.3 nm. The SEM images showed clusters with uniform surface and granular aspect, it is still possible to see a clearly porous structure formed by clusters of uniform size for all samples. The microbiological analyses of powders have revealed that they have bactericidal properties. (author)

  14. Phase segregation and dielectric, ferroelectric, and piezoelectric properties of MgO-doped NBT-BT lead-free ferroelecric ceramics

    Science.gov (United States)

    Liu, Gang; Wang, Ziyang; Zhang, Leiyang; Shi, Wenjing; Jing, Jiayi; Chen, Yi; Liu, Hongbo; Yan, Yan

    2018-03-01

    MgO doped NBT-BT ceramics were prepared by the conventional electroceramic processing. The effects of MgO on the phase, microstructures and electrical properties of NBT-BT ceramics were systematically investigated. When doping content is more than 1%, a second phase appeared, which has great effect on dielectric, ferroelectric, and piezoelectric properties, such as the T F-R peak weakened, moved to the higher temperature, and eventually disappeared. When the doping content is above 1.5%, the ceramic samples show a strong relaxation. The detailed analysis and discussion can be found within this study.

  15. Enhanced green upconversion by controlled ceramization of Er3+–Yb3+ co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    International Nuclear Information System (INIS)

    Suresh Kumar, J.; Pavani, K.; Graça, M.P.F.; Soares, M.J.

    2014-01-01

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na 1.4 Nb 3 Te 4.9 O 18 ) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er 3+ –Yb 3+ co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er 3+ ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied

  16. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics

    Science.gov (United States)

    Mu, Chunhong; Song, Yuanqiang; Wang, Haibin; Wang, Xiaoning

    2015-05-01

    CaCu3Ti4-xCoxO12 (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the presence of Cu and Co rich phase at grain boundaries of Co-doped ceramics. Scanning electron microscopy micrographs of Co-doped samples showed a striking change from regular polyhedral particle type in pure CaCu3Ti4O12 (CCTO) to sheet-like grains with certain growth orientation. Undoped CaCu3Ti4O12 is well known for its colossal dielectric constant in a broad temperature and frequency range. The dielectric constant value was slightly changed by 5 at. % and 10 at. % Co doping, whereas the second relaxation process was clearly separated in low frequency region at room temperature. A multirelaxation mechanism was proposed to be the origin of the colossal dielectric constant. In addition, the permeability spectra measurements indicated Co-doped CCTO with good magnetic properties, showing the initial permeability (μ') as high as 5.5 and low magnetic loss (μ″ < 0.2) below 3 MHz. And the interesting ferromagnetic superexchange coupling in Co-doped CaCu3Ti4O12 was discussed.

  17. Multifold polar states in Zn-doped Sr0.9Ba0.1TiO3 ceramics

    Science.gov (United States)

    Guo, Yan-Yan; Guo, Yun-Jun; Wei, Tong; Liu, Jun-Ming

    2015-12-01

    We investigate the effect of Zn doping on the dielectricity and ferroelectricity of a series of polycrystalline Sr0.9-xZnxBa0.1TiO3 (0.0% ≤ x ≤ 5.0%) ceramics. It is surprisingly observed that the Zn doping will produce the multifold polar states, i.e., the Zn-doped ceramic will convert a reduced polar state into an enhanced polar state, and eventually into a stabilized polar state with increasing the doping level x. It is revealed that in the background of quantum fluctuations, the competition between the Zn-doping-induced lattice contraction and the Ba-doping-induced lattice expansion is responsible for both the reduced polar state and the enhanced polar state coming into being. Also, the addition of the antiferrodistortive effect, which is the antipolar interaction originating from the opposite tilted-TiO6 octahedra rotation, represents the core physics behind the stabilized polar state. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304158, 51431006, 51102277, and 11104118), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY213020), and the Qing Lan Project of Jiangsu Province, China.

  18. Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics for capacitor applications

    Directory of Open Access Journals (Sweden)

    Zhang Chen

    2018-03-01

    Full Text Available Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics, prepared by solid state method, were investigated with non-stoichiometric level and various La2O3 content, using XRD, SEM and LCR measuring system. With an increase of non-stoichiometric level, the unit cell volumes of perovskite lattices for the single phase Ti-rich barium strontium titanate ceramics increased due to the decreasing A site vacancy concentration V″A. The unit cell volume increased and then decreased slightly with the increasing La2O3 content. Relatively high non-stoichiometric level and high La2O3 content in Ti-rich barium strontium titanate ceramics contributed to the decreased average grain size as well as fine grain size distribution, which correspondingly improved the temperature stability of the relative dielectric constant. The relative dielectric constant єrRT, dielectric loss tanδRT and the maximum relative dielectric constant єrmax decreased and then increased with the increasing non-stoichiometric level. With the increase of La2O3 doping content, the relative dielectric constant єrRT increased initially and then decreased. The maximum relative dielectric constant єrmax can be increased by applying low doping content of La2O3 in Ti-rich barium strontium titanate ceramics due to the increased spontaneous polarization.

  19. THE STUDY OF HIGH DIELECTRIC CONSTANT MECHANISM OF La-DOPED Ba0.67Sr0.33TiO3 CERAMICS

    Science.gov (United States)

    Xu, Jing; He, Bo; Liu, Han Xing

    It is a common and effective method to enhance the dielectric properties of BST ceramics by adding rare-earth elements. In this paper, it is important to analyze the cause of the high dielectric constant behavior of La-doped BST ceramics. The results show that proper rare earth La dopant (0.2≤x≤0.7) may greatly increase the dielectric constant of BST ceramics, and also improve the temperature stability, evidently. According to the current-voltage (J-V) characteristics, the proper La-doped BST ceramics may reach the better semiconductivity, with the decrease and increase in La doping, the ceramics are insulators. By using the Schottky barrier model and electric microstructure model to find the surface or grain boundary potential barrier height, the width of the depletion layer and grain size do play an important role in impacting the dielectric constant.

  20. A novel zincum-doped perovskite-type ceramic membrane for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xinzhi; Liu Hongfei; Wei Yanying [School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, 510640 Guangzhou (China); Caro Juergen [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3-3A D-30179 Hannover (Germany); Wang Haihui, E-mail: hhwang@scut.edu.c [School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, 510640 Guangzhou (China)

    2009-09-18

    Zincum-doped ceramic membrane materials based on BaCo{sub 0.4}Fe{sub 0.4}Zn{sub x}Zr{sub (0.2-x)}O{sub 3-delta} with 0 <= x <= 0.2 were synthesized by combining citric acid and ethylene-diamine-tetraacetic acid (EDTA) complexing method. X-ray diffraction (XRD) patterns show that the BaCo{sub 0.4}Fe{sub 0.4}Zn{sub 0.2}O{sub 3-delta} ceramic oxide exhibits a pure cubic perovskite structure. Oxygen temperature-programmed desorption (O{sub 2}-TPD) profile indicates that BaCo{sub 0.4}Fe{sub 0.4}Zn{sub 0.2}O{sub 3-delta} possesses a good phase reversibility. An oxygen permeation flux of 0.65 ml/min cm{sup 2} was obtained at 950 deg. C and a single activation energy of 67 kJ/mol was observed for the oxygen permeation in the temperature range of 600-950 deg. C. No decline was found during more than 100 h oxygen permeation.

  1. Formation of nanostructures in Eu3+ doped glass-ceramics: an XAS study.

    Science.gov (United States)

    Pellicer-Porres, J; Segura, A; Martínez-Criado, G; Rodríguez-Mendoza, U R; Lavín, V

    2013-01-16

    We describe the results of x-ray absorption experiments carried out to deduce structural and chemical information in Eu(3+) doped, transparent, oxyfluoride glass and nanostructured glass-ceramic samples. The spectra were measured at the Pb and Eu-L(III) edges. The Eu environment in the glass samples is observed to be similar to that of EuF(3). Complementary x-ray diffraction experiments show that thermal annealing creates β-PbF(2) type nanocrystals. X-ray absorption indicates that Eu ions act as seeds in the nanocrystal formation. There is evidence of interstitial fluorine atoms around Eu ions as well as Eu dimers. X-ray absorption at the Pb-L(III) edge shows that after the thermal treatment most lead atoms form a PbO amorphous phase and that only 10% of the lead atoms remain available to form β-PbF(2) type nanocrystals. Both x-ray diffraction and absorption point to a high Eu content in the nanocrystals. Our study suggests new approaches to the oxyfluoride glass-ceramic synthesis in order to further improve their properties.

  2. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  3. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics

    Science.gov (United States)

    Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K

    2009-03-01

    Bi2O3-doped barium zirconate titanate ceramics, Ba1-xBix(Zr0.05Ti0.95)O3, have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi3+ substitutes A-site ion, and thereafter with higher Bi3+ content, it enters the B-site sub lattice. Substitution of Bi3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.

  4. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics

    International Nuclear Information System (INIS)

    Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K

    2009-01-01

    Bi 2 O 3 -doped barium zirconate titanate ceramics, Ba 1-x Bi x (Zr 0.05 Ti 0.95 )O 3 , have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi 3+ substitutes A-site ion, and thereafter with higher Bi 3+ content, it enters the B-site sub lattice. Substitution of Bi 3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.

  5. Synthesis of Cr-doped CaTiSiO5 ceramic pigments by spray drying

    International Nuclear Information System (INIS)

    Lyubenova, T. Stoyanova; Matteucci, F.; Costa, A.L.; Dondi, M.; Ocana, M.; Carda, J.

    2009-01-01

    Cr-doped CaTiSiO 5 was synthesized by spray drying and conventional ceramic method in order to assess its potential as ceramic pigment. The evolution of the phase composition with thermal treatment was investigated by X-ray powder diffraction (XRPD) and thermal analyses (DTA-TGA-EGA). Powder morphology and particle size distribution were analyzed by scanning electron microscopy (SEM) and laser diffraction, respectively. The color efficiency of pigments was evaluated by optical spectroscopy (UV-vis-NIR) and colorimetric analysis (CIE Lab). Results proved that spray drying is an efficient procedure to prepare highly reactive pigment precursors. The spray-dried powders consist of hollow spherical particles with aggregate size in the 1-10 μm range, developing a brown coloration. Optical spectra reveal the occurrence of Cr(III) and Cr(IV), both responsible for the brown color of this pigment. The former occupies the octahedral site of titanite, in substitution of Ti(IV), while the latter is located at the tetrahedral site, where replaces Si(IV)

  6. Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials

    Science.gov (United States)

    Waqar, Moaz; Rafiq, Muhammad Asif; Mirza, Talha Ahmed; Khalid, Fazal Ahmad; Khaliq, Abdul; Anwar, Muhammad Sabieh; Saleem, Murtaza

    2018-04-01

    M-type barium hexaferrite ceramics have emerged as important materials both for technological and commercial applications. However, limited work has been reported regarding the investigation of nanocrystalline Ni-doped barium hexaferrites. In this study, nanocrystalline barium hexaferrite ceramics with the composition BaFe12- x Ni x O19 (where x = 0, 0.3 and 0.5) were synthesized by sol-gel method and characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer and precision impedance analyzer. All the synthesized samples had single magnetoplumbite phase having space group P63/mmc showing the successful substitution of Ni in BaFe12O19 without the formation of any impurity phase. Average grain size of undoped samples was around 120 nm which increased slightly with the addition of Ni. Saturation magnetization ( M s) and remnant magnetization ( M r) increased with the addition of Ni, however, coercivity ( H c) decreased with the increase in Ni from x = 0 to x = 0.5. Real and imaginary parts of permittivity decreased with the increasing frequency and increased with Ni content. Dielectric loss and conductivity showed slight variation with the increase in Ni concentration.

  7. High temperature dielectric relaxation anomaly of Y3+ and Mn2+ doped barium strontium titanate ceramics

    International Nuclear Information System (INIS)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin

    2014-01-01

    Relaxation like dielectric anomaly is observed in Y 3+ and Mn 2+ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysis reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.

  8. Low-frequency zone boundary phonons in Li doped ZnO ceramics

    Science.gov (United States)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Katiyar, R. S.

    2008-09-01

    Room temperature Raman spectra of Li doped ZnO (Zn1-xLixO) ceramics with varying Li concentrations (x =0.0, 0.05, 0.10, and 0.15) are investigated in this study. Four peaks were identified at 96.6, 127, 157, and 194 cm-1 in the Li doped samples. The peaks at 127, 157, and 194 cm-1 are assigned to zone boundary phonons in ZnO [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)], and appear due to disorder in ZnO lattice with Li incorporation. Lithium, owing to its smaller radius, adjusts itself anywhere in the ZnO lattice and breaks the crystal translational symmetry to a large extent, compared to other dopants. Disorder in the lattice is seen to be finely modulated with varying Li content. The peak at 96.6 cm-1 is hypothesized to be a projection of the vibrational motion of Li atoms at lower frequencies, which contributes in a major fashion at higher frequencies, due to its lighter mass than Zn or O atoms.

  9. Microstructure evolution and phase transition in La/Mn doped barium titanate ceramics

    Directory of Open Access Journals (Sweden)

    Vesna Paunović

    2010-12-01

    Full Text Available La/Mn codoped BaTiO3 with different La2O3 content, ranging from 0.1 to 5.0 at% La, was investigated regarding their microstructural and dielectric characteristics. The content of 0.05 at% Mn was constant in all investigated samples. The samples were sintered at 1320°C and 1350°C for two hours. Microstructural studies were done using SEM and EDS analysis. The fine-grained microstructure was obtained even for low content of La. The appearance of secondary abnormal grains with serrated features along grain boundaries was observed in 1.0 at% La-BaTiO3 sintered at 1350°C. Nearly flat permittivity-temperature response was obtained in specimens with 2.0 and 5.0 at% La. Using the modified Curie-Weiss law a critical exponent γ and C’were calculated. The obtained values of γ pointed out the diffuse phase transformation in heavily doped BaTiO3 and great departure from the Curie-Weiss law for low doped ceramics.

  10. The effect of point defects on ferroelastic phase transition of lanthanum-doped calcium titanate ceramics

    International Nuclear Information System (INIS)

    Ni, Yan; Zhang, Zhen; Wang, Dong; Wang, Yu; Ren, Xiaobing

    2013-01-01

    Highlights: ► The effect of point defects on phase transitions in Ca (1−x) La 2x/3 TiO 3 was studied. ► When x = 0.45, normal ferroelastic phase transition happens. ► When x = 0.7, a “glassy-like” frozen process appears. ► Point defects weaken the thermodynamic stability of ferroelastic phase. ► Point defects induce a “glassy-like” frozen process. -- Abstract: In the present paper, La-doped CaTiO 3 is studied to investigate the effect of point defects on ferroelastic phase transition of the ceramics. The dynamic mechanical measurements show that the transition temperature of the orthorhombic to tetragonal phase transition of Ca (1−x) La 2x/3 TiO 3 decreases with increasing dopant (La) concentration x. The samples with the dopant content of x = 0.45 and 0.7 exhibit different structure evolution features during their transition processes as revealed by in situ powder X-ray diffraction (XRD) measurement. Moreover, when x = 0.7, the storage modulus shows a frequency-dependent minimum at T g , which can be well fitted with the Vogel–Fulcher relation, and the corresponding internal friction also exhibits a frequency-dependent peak within the same temperature regime. These results thus indicate that doping La suppresses ferroelastic phase transition in CaTiO 3 and induces a “glassy-like” behavior in Ca (1−x) La 2x/3 TiO 3 , which is similar to “strain glass” in Ni-doped Ti 50−x Ni 50+x

  11. Upconversion studies of Er3+/Yb3+ doped SrO.TiO2 borosilicate glass ceramic system

    International Nuclear Information System (INIS)

    Maheshwari, Aditya; Om Prakash; Kumar, Devendra; Rai, S.B.

    2011-01-01

    Upconversion behaviour has been studied in various matrices and fine powders of SrTiO 3 by previous workers. In present work, Er 3+ /Yb 3+ were doped in appropriate ratio in SrO.TiO 2 borosilicate glass ceramic system to study the upconversion phenomenon. Dielectric properties of this class of glass ceramic system have been extensively investigated by Thakur et al. It has been observed that both upconversion efficiency and dielectric constant increases with transformation of glass into glass ceramic. Therefore, present investigation is based upon the study of optical as well as the electrical properties of same glass ceramic system. In order to prepare different crystalline matrices, two different Er 3+ /Yb 3+ :SrO.TiO 2 borosilicate glasses with same amount of Er 2 O 3 and Yb 2 O 3 were prepared by melt quench method. Glasses were transparent with light-wine colour. Glass ceramics were prepared from the glasses by heat treatment based on DTA (Differential thermal analysis) results. Glass ceramics were fully opaque with brownish-cream colour. Powder X-ray diffraction (XRD) patterns confirmed that two different crystalline matrices, Sr 3 Ti 2 O 7 , Ti 10 O 19 and SrTiO 3 , TiO 2 were present in two glass ceramic samples respectively. Luminescence properties of glass and glass ceramic samples with 976nm laser irradiation showed that the intensities of the green and red emission increased multiple times in glass ceramic than that of the glass. Possible mechanisms responsible for upconversion eg. Energy Transfer (ET) and Excited State Absorption (ESA), were studied through laser pumping power log dependence

  12. Synthesis and characterization of tungsten or calcium doped PZT ceramics; Sintese e caracterizacao do PZT dopado com W ou Ca

    Energy Technology Data Exchange (ETDEWEB)

    Santos, D.M.; Caracas, L.B.; Noronha, R.G.; Santos, M.M.T. dos [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Dept. de Desenho e Tecnologia. Curso de Desenho Industrial; Paiva-Santos, C.O., E-mail: denilson@ufma.b [Universidade Estadual Paulista (IQ/UNESP), Araraquara, SP (Brazil). Inst. de Quimica

    2009-07-01

    Pure and doped (tungsten or calcium) PZT ceramics were prepared by association of the polymeric precursor and partial oxalate method. The phase formation was investigated by thermal analysis (TG/DSC) and X-ray diffraction (XRD). The affect of W or Ca doping PZT and their electrical properties was evaluated. Substitution of W by Ti and Ca by Pb leads to an increase of Curie temperature and broadening of dielectric constant. A typical hysteresis loop was observed at room temperature and the remnant polarization was increased with the content of W and Ca. (author)

  13. Characterization and spectroscopic studies of multi-component calcium zinc bismuth phosphate glass ceramics doped with iron ions

    Science.gov (United States)

    Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, M. V. Sambasiva; Tirupataiah, Ch.; Rao, D. Krishna

    2018-04-01

    Glass ceramics with the composition 10CaF2-20ZnO-(15-x)Bi2O3-55P2O5:x Fe2O3(0≤x≤2.5) were synthesized by melt-quenching technique and heat treatment. These glass ceramics were characterized by XRD and SEM. Spectroscopic studies such as optical absorption, EPR were also carried out on these glass ceramics. From the absorption spectra the observed bands around 438 and 660nm are the octahedral transitions of Fe3+ (d5) ions and another band at about 536 nm is the tetrahedral transition of Fe3+ (d5) ions. The absorption spectrum also consist of a band around 991 nm and is attributed to the octahedral transition of Fe2+ ions. The EPR spectra of the prepared glass ceramics have exhibited two resonance signals one at g1=4.32 and another signal at g2=2.008. The observed decrease in band gap energy up to 2 mol% Fe2O3 doped glass ceramics is an evidence for the change of environment around iron ions and ligands from more covalent to less covalent (ionic) and induces higher concentration of NBOs which causes the depolymerization of the glass ceramic network.

  14. Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

    Science.gov (United States)

    Huss, Rafael; Wilhelm, Ralf; Kolleck, Christian; Neumann, Jörg; Kracht, Dietmar

    2010-06-07

    The onset of parasitic oscillations limits the extraction efficiency and therefore energy scaling of Q-switched lasers. A solid-state laser was end pumped with a fiber-coupled diode laser and operated in q-cw as well as in passively Q-switched operation. For Q-switched operation, we demonstrate the suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

  15. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO{sub 3}) ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd [Department of Materials & Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Mahbub, Rubbayat, E-mail: rubayyatm@gce.buet.ac.bd [Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Gafur, M. A., E-mail: d-r-magafur@bcsir.gov.bd [Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka-1205 (Bangladesh); Bashar, M. Shahriar, E-mail: bashar@agni.com [Institute of Fuel Research & Development, Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka-1205 (Bangladesh)

    2016-07-12

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanning Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.

  16. Influence of SrF_2-doping in AlN ceramics on scintillation and dosimeter properties

    International Nuclear Information System (INIS)

    Kojima, Kaori; Okada, Go; Fukuda, Kentaro; Yanagida, Takayuki

    2016-01-01

    In this study, we synthesized undoped AlN and SrF_2-doped AlN (AlN-SrF_2) ceramics by Spark Plasma Sintering (SPS), and we characterized their optical, scintillation and dosimeter properties. The prepared undoped AlN ceramic had gray color and visually non-transparent whereas, with an addition of SrF_2, the transparency improved and became translucent. The measured in-line transmittance was approximately 0.2% at wavelengths longer than 500 nm. While the addition of SrF_2 decreased the scintillation intensity, the decay time was significantly fastened, which is a great advantage for fast photon counting-based measurements. Both the thermally-stimulated luminescence (TSL) and optically-stimulated luminescence (OSL) showed good linear response from the milli-gray range to over 10 Gy. The sensitivity seems to decrease by an addition of SrF_2 as it suppresses structural defect centers which are responsible for dosimeter properties. However, the main TSL glow peak position shifts to higher temperature with the addition of SrF_2, which indicates that inclusion of SrF_2 improves the TSL signal stability. - Highlights: • We synthesized undoped and SrF_2-doped AlN ceramics by Spark Plasma Sintering. • We evaluated scintillator and dosimeter properties of undoped and SrF_2-doped AlN. • By doping with SrF_2, the decay time is shortened. • By doping with SrF_2, the stability of TSL and OSL is improved.

  17. Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Venkata Ramana, E.; Graça, M.P.F.; Valente, M.A.; Bhima Sankaram, T.

    2014-01-01

    Highlights: • Sr 1−x Pb x Bi 4 Ti 4 O 15 (SPBT, x = 0 − 0.4) ceramics were synthesized by soft chemical method. • X-ray diffraction analysis confirmed the formation of bismuth layered structure. • SEM images showed plate like grain morphology with random orientation of plate faces. • Pb-doping resulted in improved ferroelectricity of SrBi 4 Ti 4 O 15 ceramics. • Pb-doped SrBi 4 Ti 4 O 15 exhibited improved pyroelectric properties with high T C . -- Abstract: Ferroelectric properties of Pb-modified strontium bismuth titanate ceramics with chemical formula Sr 1−x Pb x Bi 4 Ti 4 O 15 (x = 0–0.4) were investigated. Polycrystalline ceramics were synthesized by soft chemical method to study the effect of Pb-doping on its physical properties. X-ray diffraction analysis revealed a bismuth layered structure for all the compounds. The doping resulted in an increased tetragonal strain and improved ferroelectric properties. Scanning electron microscope images showed plate like grain morphology with random orientation of platelets. The ferroelectric transition temperature of the ceramics increased systematically from 525 °C to 560 °C with the increase of doping concentration. The piezoelectric coefficient (d 33 ) of the ceramics was enhanced significantly with Pb doping, exhibiting a maximum value of 21.8 pC/N for 40 mol.% Pb-doped SBT. Pyroelectric studies carried out using the Byer–Roundy method indicated that the modified SBT ceramics are promising candidates for high temperature pyroelectric applications

  18. Spectroscopic properties of Er/Nd co-doped yttrium lanthanum oxide transparent ceramics pumped at 980 nm

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yingjie; Yang, Qiuhong, E-mail: yangqiuhong@shu.edu.cn; Gui, Yan; Yuan, Ye; Lu, Qing

    2016-05-15

    (Er{sub 0.01}Nd{sub x}Y{sub 0.89-x}La{sub 0.1}){sub 2}O{sub 3} (x = 0, 0.001, 0.002, 0.005, 0.01) transparent ceramics were prepared by conventional ceramic processing. The Nd{sup 3+} content dependencies of mid-infrared, near infrared and up-conversion emission of Er{sup 3+} pumped at 980 nm were fully presented. Mechanism of energy transfer between Er{sup 3+} and Nd{sup 3+} was also demonstrated. The results showed that co-doping 0.1 at% Nd{sup 3+} into 1 at% Er{sup 3+} doped yttrium lanthanum oxide transparent ceramic enhanced the 2.7 μm emission significantly and meanwhile suppressed the 1.5 μm emission effectively which indicated an improvement in population inversion between Er:{sup 4}I{sub 11/2} and Er:{sup 4}I{sub 13/2}. Moreover, green up-conversion emission of Er{sup 3+} ion also showed a great improvement by co-doping 0.1 at% Nd{sup 3+}. Those great results were attributed to energy recycle from Er:{sup 4}I{sub 13/2} to Er:{sup 4}I{sub 11/2}. The energy recycle was mainly built by the two energy transfer between Er{sup 3+} and Nd{sup 3+} (one is from Er to Nd, another is in opposite way). So, Er/Nd co-doped yttrium lanthanum oxide transparent ceramic with Nd in low concentration can be considered as a promising laser material for ∼3 μm and up-conversion laser application. - Highlights: • (Er{sub 0.01}Nd{sub x}Y{sub 0.89-x}La{sub 0.1}){sub 2}O{sub 3} transparent ceramics were prepared. • The emission of 2.7 μm of Er{sup 3+} ion was significantly enhanced as x was 0.001. • The emission of 1.5 μm of Er{sup 3+} ion was suppressed greatly by co-doping Nd{sup 3+} ion. • Mechanism of Er–Nd energy transfer was discussed by the energy sketch.

  19. Gamma Radiation Damage Evaluation Studies on Ferroelectric La and Nb doped PZT Related Ceramics

    International Nuclear Information System (INIS)

    Cruz, Carlos M.; Pinnera, Ibrahin; Rodriguez, Arturo; Durruti, Ma. Dolores; Hernandez, Moises; Yannez-Limon, J. M.

    2015-01-01

    It is reported the research results of the gamma radiation damage evaluation on La (crystalline sites A) and / or Nb (crystalline sites B) doped ferroelectric PZT ceramics, which were irradiated with 60 Co gamma rays by applying two irradiation regimes: up to 125 lGy (irradiation steps of 25 kGy) and up to 700 kGy (irradiation steps of 100 kGy) exposition doses. The X Ray Diffraction pattern profiles of the irradiated sample were analyzed and the induced crystalline structure changes are reported and correlated with the observed irradiation induced changes on their ferroelectric properties on regard of the irradiation doses. Through the application of the MCCM atom displacements calculations algorithm and code, total dpa profiles were calculated for the studied samples, as well as, the dpa contributions of the different atomics species, where the atom displacements threshold energies were extrapolated from the values calculated by Molecular Dynamic methods for BaTiO 3 system. An evaluation of the reported dpa calculated values on regard of the observed crystal structure and radiation response of the ferroelectric properties is presented. (Author)

  20. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O3 lead-free ceramics

    International Nuclear Information System (INIS)

    Chen, Xiaoming; Ruan, Xuezheng; Zhao, Kunyun; He, Xueqing; Zeng, Jiangtao; Li, Yongsheng; Zheng, Liaoying; Park, Chul Hong; Li, Guorong

    2015-01-01

    Highlights: • Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d 33 (512 pC/N) and a planar electromechanical coupling factor k p (0.49), which have the characteristics of soft Pb(Zr,Ti)O 3 (PZT) piezoceramic, on the other hand, the mechanical quality factor Q m is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature

  1. Enhancement of Dielectric Breakdown Strength and Energy Conversion Efficiency of Niobate Glass-Ceramics by Sc2O3 Doping

    Science.gov (United States)

    Xiao, Shi; Xiu, Shaomei; Yang, Ke; Shen, Bo; Zhai, Jiwei

    2018-01-01

    Niobate glass-ceramics K2O-SrO-Nb2O5-B2O3-Al2O3-SiO2 (KSN-BAS) doped with different amounts of Sc2O3 have been prepared through a melt quenching/controlled crystallization method, and the influence of the Sc2O3 content on their phase composition, microstructure, dielectric performance, and charge-discharge properties investigated. X-ray powder diffraction results showed that the peak positions of the KSr2Nb5O15 phase shifted to higher angle and the glass-ceramic microstructures were significantly improved by Sc2O3 addition. Based on these results, 0.5 mol.% Sc2O3 doping was found to achieve remarkable enhancement in energy storage density, which reached 9.63 ± 0.39 J/cm3 at dielectric breakdown strength of 1450.38 ± 29.01 kV/cm with high conversion efficiency of ˜ 92.1%. For pulsed power applications, discharge speed of 17 ns and power density of 0.48 MW/cm3 were obtained in the glass-ceramic with 0.5 mol.% Sc2O3. These results could provide a new design strategy for high-performance dielectric capacitors.

  2. Luminescent properties of Eu2+-doped BaGdF5 glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    International Nuclear Information System (INIS)

    Zhang, Weihuan; Zhang, Yuepin; Ouyang, Shaoye; Zhang, Zhixiong; Wang, Qian; Xia, Haiping

    2015-01-01

    Eu 2+ doped transparent oxyfluoride glass ceramics containing BaGdF 5 nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd 3+ ions at 312 nm excited with 275 nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu 2+ doped glass ceramics showed an excellent overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd 3+ to Eu 2+ ions, the energy transfer efficiency from Gd 3+ to Eu 2+ ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu 2+ doped BaGdF 5 glass ceramics may be used as a potential blue-emitting phosphor for UV-LED

  3. NIR optimized dual mode photoluminescence in Nd doped Y{sub 2}O{sub 3} ceramic phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sukul, Prasenjit Prasad; Mahata, Manoj Kumar; Kumar, Kaushal, E-mail: kumar.bhu@gmail.com

    2017-05-15

    Authors here report the dual mode photo luminescence emission in neodymium doped yttrium oxide ceramic phosphor upon 808 nm diode laser excitation. Single cubic phase Nd{sup 3+} doped Y{sub 2}O{sub 3} phosphor was synthesized using urea assisted combustion route. Nd{sup 3+} doped Y{sub 2}O{sub 3} ceramic phosphor has given photoluminescence in a wide wavelength range covering near infrared window (850–1100 nm) to the visible region i.e. green (525 nm) and red (680 nm) upon 808 nm diode laser excitation. The two most intense bands on 808 nm excitation were observed at 750 nm and 1064 nm due to the upconversion and downconversion emission processes. The sample was also tested for emission using 980 nm and intense green emission due to the trace presence of Er{sup 3+} in the raw materials was seen in the sample. The excitation power dependent upconversion measurements have shown that transitions {sup 4}F{sub 9/2}→{sup 4}I{sub 9/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 9/2} are thermally coupled and can be used to estimate the sample temperature using Boltzmann relation.

  4. Effects of improved process for CuO-doped NKN lead-free ceramics on high-power piezoelectric transformers.

    Science.gov (United States)

    Yang, Song-Ling; Tsai, Cheng-Che; Liou, Yi-Cheng; Hong, Cheng-Shong; Li, Bing-Jing; Chu, Sheng-Yuan

    2011-12-01

    In this paper, the effects of the electrical proper- ties of CuO-doped (Na(0.5)K(0.5))NbO(3) (NKN) ceramics prepared separately using the B-site oxide precursor method (BO method) and conventional mixed-oxide method (MO method) on high-power piezoelectric transformers (PTs) were investigated. The performances of PTs made with these two substrates were compared. Experimental results showed that the output power and temperature stability of PTs could be enhanced because of the lower resonant impedance of the ceramics prepared using the BO method. In addition, the output power of PTs was more affected by the resonant impedance than by the mechanical quality factor (Q(m)) of the ceramics. The PTs fabricated with ceramics prepared using the BO method showed a high efficiency of more than 94% and a maximum output power of 8.98 W (power density: 18.3 W/cm(3)) with temperature increase of 3°C under the optimum load resistance (5 kΩ) and an input voltage of 150 V(pp). This output power of the lead-free disk-type PTs is the best reported so far.

  5. EFFECTS OF NEODYMIUM DOPING ON DIELECTRIC AND OPTICAL PROPERTIES OF Ba(1-xNdxTi1.005O3 CERAMICS

    Directory of Open Access Journals (Sweden)

    Zhang W.

    2013-06-01

    Full Text Available This paper investigated the optical properties and dielectric properties of neodymium doped BaTiO3 ceramics prepared by Ba(1-xNdxTi1.005O3 powders synthesized via a hydrothermal method. The effects of Nd3+ ions content on the structure, dielectric properties and optical properties of the ceramics were studied. The structural analysis performed on the X-ray diffractometer shows that the phase compositions of all ceramics are tetragonal phase structure. The red shift of the absorption edge indicates the presence of defect energy levels which was proved by the UV-Vis-NIR diffuse reflection spectra. Dielectric property measurements show that Nd-doped BaTiO3 ceramics possess improved dielectric properties at low Nd3+ contents (x = 0.001 and 0.002, as demonstrated by decreased dependence to frequency for both the dielectric constant and dielectric loss.

  6. Mechanical stability of a Cm-doped celsian glass-ceramic

    International Nuclear Information System (INIS)

    Routbort, J.L.; Offermann, P.; Matzke, H.

    1983-01-01

    Radiation damage due to a α-decay of actinides will modify the material used to store nuclear wastes. For example, ionization-induced processes can fragment the oxide bonds of a glass thereby creating gas bubbles. Phase decomposition, swelling, and disordering of crystalline phases are other possibilities. The self-irradiation damage could also affect the fracture properties of the storage materials. Spontaneous failure and fragmentation of some brittle materials have been observed during storage. The fracture toughness, K/sub Ic/, of a material is of technological and scientific interest. The ease with which a material can be handled and transported depends partially on K/sub Ic/. The resistance to fracture caused by unavoidable thermoelastic stresses is determined by K/sub Ic/. Cracking may, in the presence of water, lead to accelerated material degradation since the amount of leaching is proportional to the available surface area under non-stagnant conditions. This is especially important when the storage time is expected to be very long. From a scientific viewpoint, K/sub Ic/ is a fundamental parameter which characterizes the stress intensity factor at the onset of rapid crack growth resulting in failure. The Hertzian indentation technique was used to measure the fracture properties of a celsian glass-ceramic (B1-3) developed for high-level waste storage. Spontaneous failure due to radiation was not observed, on the contrary, the self-radiation damage caused by recoiling Pu atoms resulting from α-decay of a Cm-244 doped sample to a dose of congruent to 1.5 x 10 19 α-decays/cm 3 increases K/sub Ic/ by at least 25%. This increase in toughness is probably caused by the internal stresses which result from disordering due to the radiation damage. This is confirmed by the broadening of the x-ray spectra as the result of self-radiation

  7. Magnetic properties of Y3+ doped Bi4-xTi2FeO12 aurivillius phase ceramics

    Science.gov (United States)

    Tirupathi, Patri; Reddy, H. Satish Kumar; Babu, P. D.

    2018-05-01

    In the present paper reports a comprehensive investigation of structural, microstructural and magnetic phase transition in Y3+ doped BITF Aurivillius phase compounds. The study of surface morphology by scanning electron microscope reveals the growth of plate-like grains and further the grain size increase with increasing Y3+ composition. Low temperature magnetic studies reveals enhanced magnetic property with doping of Y3+ in BITF. It was explained by considering exchange interaction between the neighboring Fe+3 ions via electron trapped electrons at oxygen vacancies. Temperature dependent dc-magnetic studies exhibit a magnetic transitions TC = 750 K for x=0.0 TC ˜ 674 K for x=1.0 & TC ˜ 645 K for x=1.50 ceramics respectively in high temperature magnetization studies

  8. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States); Lin, Jerry [Arizona State Univ., Tempe, AZ (United States); Romero, Van [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  9. An investigation of vacancy-like defects in differently doped and treated Pb(ZrxTi1-x)O3 ceramics

    International Nuclear Information System (INIS)

    Puff, W.; Balogh, A.G.; Balke, N.; Gottschalk, S.

    2006-01-01

    Full text: Important macroscopic properties of lead zirconate-titanate (PZT) ceramics are strongly affected by defect structure and diffusivity. In this study we discuss vacancy like defects in ferroelectric Pb(Zr x Ti 1-x )O 3 ceramics doped either with Fe or Ni and Sb. The investigations were performed with positron lifetime and Doppler broadening spectroscopy. The undoped samples show one defect lifetime component with a value of about 250 and 270 ps in dependence of the sintering atmosphere and sintering temperature. After doping this defect lifetime increases to about 290 to 300 ps. The Fe doped samples, Fe concentration from 0.1 to 1.0 mol-%, were measured also at low temperature to study the charge state of the observed defects. To study the aging behaviour of the Ni and Sb doped samples measurements were performed either after dc loading for 24 hours or ac loading up to 3 x 10 7 cycles. (author)

  10. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-10-01

    Full Text Available The intensive up-conversion (UC photoluminescence and temperature sensing behavior of Er3+-doped Bi7Ti4NbO21(BTN ferroelectric ceramics prepared by a conventional solid-state reaction technique have been investigated. The X-ray diffraction and field emission scanning electron microscope analyses demonstrated that the Er3+-doped BTN ceramics are single phase and uniform flake-like structure. With the Er3+ ions doping, the intensive UC emission was observed without obviously changing the properties of ferroelectric. The optimal emission intensity was obtained when Er doping level was 15 mol.%. The temperature sensing behavior was studied by fluorescence intensity ratio (FIR technique of two green UC emission bands, and the experimental data fitted very well with the function of temperature in a range of 133–573 K. It suggested that the Er3+-doped BTN ferroelectric ceramics are very good candidates for applications such as optical thermometry, electro-optical devices and bio-imaging ceramics.

  11. Preparation and properties of porous PMN-PZT ceramics doped with strontium

    International Nuclear Information System (INIS)

    Zeng Tao; Dong Xianlin; Mao Chaoliang; Chen Shutao; Chen Heng

    2006-01-01

    The piezoelectric and dielectric properties of lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramics were investigated as a function of density for transducer applications. A decrease in density increased elastic compliance and improved acoustic impedance matching between PMN-PZT ceramics and ambient media. The reduced dielectric constant (ε 33 ) and enhanced hydrostatic figure of merit (d h g h ) of PMN-PZT were observed with decreased density. The results showed the d h g h of PMN-PZT ceramic with density of about 5.4 g/cm 3 reached 4000 x 10 -15 m 2 /N, and the ε 33 was very close to 2000, which demonstrates that porous PMN-PZT ceramic is a promising material for transducer applications. Moreover, the low density PMN-PZT ceramics exhibited lower dielectric loss than high density PMN-PZT ceramics during the temperature from 250 deg. C to 500 deg. C

  12. Dielectric behavior of samarium-doped BaZr0.2Ti0.8O3 ceramics

    International Nuclear Information System (INIS)

    Li, Yuanliang; Wang, Ranran; Ma, Xuegang; Li, Zhongqiu; Sang, Rongli; Qu, Yuanfang

    2014-01-01

    Graphical abstract: - Highlights: • We investigate dielectric properties and phase transition of Sm 3+ -doped BaZr 0.2 Ti 0.8 O 3 ceramics. • The additive amount of Sm 2 O 3 can greatly affect the dielectric properties. • The materials undergo a diffuse type ferroelectric phase transition. • There is an alternation of substitution preference of Sm 3+ ion for the host cations in perovskite lattice. - Abstract: The dielectric properties and phase transition of Sm 3+ -doped BaZr 0.2 Ti 0.8 O 3 (BZT20) ceramics were investigated. Room temperature X-ray diffraction study suggested that the compositions had single-phase cubic symmetry. Microstructure studies showed that the grain size decreased and that the Sm 2 O 3 amount markedly affected the dielectric properties of BZT20. A dielectric constant of 5700 at 0.2 mol% Sm 2 O 3 and a dissipation factor of only 0.0011 at 2 mol% Sm 2 O 3 were observed, indicating that BZT20 had significant potential applications. Moreover, the dielectric constant, dissipation factor, phase-transition temperature, and maximum dielectric constant increased with increased Sm 2 O 3 amount at ≤0.2 mol% Sm 2 O 3 but decreased with increased Sm 2 O 3 amount at >0.2 mol% Sm 2 O 3

  13. Crystal structure, dielectric, ferroelectric and energy storage properties of La-doped BaTiO3 semiconducting ceramics

    Directory of Open Access Journals (Sweden)

    Venkata Sreenivas Puli

    2015-09-01

    Full Text Available Polycrystalline La-doped BaTiO3 (Ba(1-xLax\tTiO3 [x=0,0.0005,0.001,0.003] ceramics (denoted as BTO,BLT1,BLT2,BLT3 were synthesized by conventional solid-state reaction method and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Raman spectroscopy. XRD and Raman spectra revealed single-phase tetragonal perovskite crystalline structure. Well-saturated polarization–electric field (P–E hysteresis loops were observed with the measurement frequency of 50 Hz at room temperature and confirmed ferroelectric nature of these ceramics and a high recoverable electrical energy storage density of 0.350 J/cm3 with energy efficiency (n∼9%, which is useful in energy storage capacitor applications. Dielectric studies revealed anomalies around 415–420 K and near the Curie temperature. The latter is attributed to the ferroelectric to paraelectric phase transition. Better dielectric performances were obtained for La-doped samples sintered at 1350°C for 4 h. Grain growth is inhibited with lanthanum (La incorporation into the BTO lattice. Room temperature semiconducting behavior with positive temperature coefficient of resistivity (PTCR behavior at TC is attributed to electron compensation mechanism.

  14. The effect of CTAB on synthesis in butanol of samaria and gadolinia doped ceria - nickel oxide ceramics

    International Nuclear Information System (INIS)

    Arakaki, A.R.; Cunha, S.M.; Yoshito, W.K.; Ussui, V.; Lazar, D.R.R.

    2011-01-01

    In this work it was synthesized doped ceria and Samaria gadolinia - nickel oxide ceramics, mainly applied as anodes Fuel Cells Solid Oxide. Powders of composition Ce 0,8 (SmGd) 0,2 O 1,9 /NiO and mass ratio of 40: 60% were initially synthesized by hydroxides coprecipitation and then treated solvo thermically in butanol. Cerium samarium, gadolinium and nickel chlorides and CTAB with molar ratio metal / CTAB ranging from 1 to 3, were used as raw materials Powders were treated in butanol at 150 deg C for 16h. The powders were analyzed by X-ray diffraction, scanning electron microscopy, specific surface area for adsorption of nitrogen and particle size distribution by laser beam scattering. The ceramics were analyzed by scanning electron microscopy and density measurements by immersion technique in water. The results showed that the powders had the characteristic crystalline structures of ceria and nickel hydroxide, and high specific surface area (80 m 2 / g). The characterizations of ceramics demonstrated high chemical homogeneity and porosity values of 30%. (author)

  15. Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tu, C. S. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Hung, C.-M.; Anthoninappen, J. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Xu, Z.-R.; Ting, Y.; Peng, Y.-T. [Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Schmidt, V. H.; Chien, R. R. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)

    2013-09-28

    Photovoltaic (PV) effects, power-conversion efficiencies, and structures have been systematically measured in (Bi{sub 1−x}Ca{sub x})FeO{sub 3−δ} ceramics for x = 0.05, 0.10, and 0.15. The heterostructures of indium tin oxide (ITO) film/(Bi{sub 1−x}Ca{sub x})FeO{sub 3−δ} ceramics/Au film exhibit significant PV effects under illumination of λ = 405 nm. The maximum power-conversion efficiency in the ITO/(Bi{sub 0.90}Ca{sub 0.10})FeO{sub 2.95} (BFO10C)/Au can reach 0.0072%, which is larger than 0.0025% observed in the graphene/polycrystalline BFO/Pt films [Zang et al., Appl. Phys. Lett. 99, 132904 (2011)]. A theoretical model based on optically excited current in the depletion region between ITO film and Ca-doped BFO ceramics is used to describe the I-V characteristic, open-circuit voltage, and short-circuit current density as a function of illumination intensity. This work suggests that the Ca-substitution can reduce the rhombohedral distortion and stabilize the single-phase structure.

  16. Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Qu, Haiyun; Wang, Juntao; Liu, Jiao; Dai, Jiawei; Zhou, Zhiwei; Liu, Binglong; Kou, Huamin; Shi, Yun; Wang, Zheng; Pan, Yubai; Gao, Qingsong; Guo, Jingkun

    2016-10-01

    The sintering behavior and doping concentration profile of the planar waveguide YAG/Nd:YAG/YAG ceramics by the tape casting and solid-state reaction method were investigated on the basis of densification trajectory, microstructure evolution, and Nd3+ ions diffusion. The porosity of the green body by tape casting and cold isostatic pressing is about 38.6%. And the green bodies were consolidated from 1100 °C to 1800 °C for 0.5-20 h to study the densification and the doping diffusion behaviors. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. With the increase of temperature, two sintering stages occur, corresponding to remarkable densification and significant grain growth, respectively. The mechanism controlling densification at 1550 °C is grain boundary diffusion. The diffusion of Nd3+ ions is more sensitive to temperature than the sintering time, and the minimum temperature required for the obvious diffusion of Nd3+ ions is higher than 1700 °C. Finally, planar waveguide YAG/1.5 at.%Nd:YAG/YAG transparent ceramics with in-line transmittance of 84.8% at 1064 nm were obtained by vacuum-sintering at 1780 °C for 30 h. The fluorescence lifetime of 4F3/2 state of Nd3+ in the specimen is about 259 μs. The prepared ceramic waveguide was tested in a laser amplifier and the laser pulse was amplificated from 87 mJ to 238 mJ, with the pump energy of 680 mJ.

  17. Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites

    International Nuclear Information System (INIS)

    Lyubushkin, R.A.; Ivanov, O.N.; Chuev, V.P.; Buzov, A.A.

    2011-01-01

    At present, zirconia-based ceramics are gaining popularity in dentistry, particularly in fixed prosthodontics. clinically, it is important that ceramic restorations reproduce the translucency and color of natural teeth. Zirconia based ceramics is a high performance material with excellent biocompatibility and mechanical properties, which suggest its suitability for posterior fixed partial dentures. Y 2 O 3 -stabilized tetragonal zirconia polycrystalline (YTZ/Al 2 O 3 ) and CeO 2 -stabilized tetragonal zirconia polycrystalline (CZA) ceramics with high-performance were prepared for dental application by use the wet chemical route, consolidated by cold isostatic pressing, and two-step sintering method. Physical and mechanical properties test results show that the bending strength, fracture toughness, and the density of full sintered ceramics suggest that the material is relatively suitable for dental restoration.

  18. Microstructure and thermal properties of dysprosium and thulium co-doped barium titanate ceramics for high performance multilayer ceramic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinseong; Kim, Dowan; Noh, Taimin [School of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Ahn, Byungmin [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States); Lee, Heesoo, E-mail: heesoo@pusan.ac.kr [School of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2011-09-15

    Highlights: > Dy/Tm co-doping method in BaTiO{sub 3} was suggested to improve electrical properties and temperature stability simultaneously. > We examined these properties in terms of microstructural analysis and substitution rate. > Increase of Dy{sub 2}O{sub 3} addition enhanced dielectric constant. > Increase of Tm{sub 2}O{sub 3} addition enhanced temperature stability. > Improved electrical properties and temperature stability through Dy/Tm co-doping were deduced from formation of electrons and core-shell structure. - Abstract: The co-doping characteristics on microstructure and thermal properties of barium titanate (BaTiO{sub 3}) were investigated to elucidate formation of core-shell structure by dysprosium (Dy) and thulium (Tm) addition in the BaTiO{sub 3}-Dy{sub 2}O{sub 3}-Tm{sub 2}O{sub 3} system. The dielectrics co-doped with 0.7 mol% Dy{sub 2}O{sub 3} and 0.3 mol% Tm{sub 2}O{sub 3} had the dielectric constant up to 2200 as a function of temperature, which was 30% higher than that of specimen containing only Tm{sub 2}O{sub 3} at the room temperature. It could be explained by the fact that the increase of Dy{sub 2}O{sub 3} addition contributed to the improvement of dielectric constant. On the other hand, the rapid diffusion rate of Dy{sup 3+} ions in BaTiO{sub 3} showed an adverse effect on temperature stability caused by destruction of core-shell. As the compensation for shell expansion in BaTiO{sub 3}, the reinforcement of the core-shell structure through the addition of Tm{sub 2}O{sub 3} was confirmed by TEM-EDS analysis and attributed the temperature coefficient of capacitance (TCC) in a reliability condition (-55 deg. C to 125 deg. C, {Delta}C = {+-}15% or less). The enhanced electrical properties and temperature stability could be deduced from the generation of electrons and the formation core-shell structure in co-doped BaTiO{sub 3} system respectively.

  19. Eu-doped ZnO-HfO2 hybrid nanocrystal-embedded low-loss glass-ceramic waveguides

    Science.gov (United States)

    Ghosh, Subhabrata; N, Shivakiran Bhaktha B.

    2016-03-01

    We report on the sol-gel fabrication, using a dip-coating technique, of low-loss Eu-doped 70SiO2 -(30-x) HfO2-xZnO (x = 2, 5, 7 and 10 mol%) ternary glass-ceramic planar waveguides. Transmission electron microscopy and grazing incident x-ray diffraction experiments confirm the controlled growth of hybrid nanocrystals with an average size of 3 nm-25 nm, composed of ZnO encapsulated by a thin layer of nanocrystalline HfO2, with an increase of ZnO concentration from x = 2 mol% to 10 mol% in the SiO2-HfO2 composite matrix. The effect of crystallization on the local environment of Eu ions, doped in the ZnO-HfO2 hybrid nanocrystal-embedded glass-ceramic matrix, is studied using photoluminescence spectra, wherein an intense mixed-valence state (divalent as well as trivalent) emission of Eu ions is observed. The existence of Eu2+ and Eu3+ in the SiO2-HfO2-ZnO ternary matrix is confirmed by x-ray photoelectron spectroscopy. Importantly, the Eu{}2+,3+-doped ternary waveguides exhibit low propagation losses (0.3 ± 0.2 dB cm-1 at 632.8 nm) and optical transparency in the visible region of the electromagnetic spectrum, which makes ZnO-HfO2 nanocrystal-embedded SiO2-HfO2-ZnO waveguides a viable candidate for the development of on-chip, active, integrated optical devices.

  20. Influence of La doping on structural and dielectric properties of SrBi2Nb2O9 ceramics

    International Nuclear Information System (INIS)

    Verma, Maya; Sreenivas, K.; Gupta, Vinay

    2009-01-01

    Lanthanum doped SrBi 2 Nb 2 O 9 ceramics with the chemical formula SrBi 2-x La x Nb 2 O 9 (SBLN) (x=0-0.5) have been prepared through conventional solid state route. X-ray diffraction reveals the shrinkage of unit cell of strontium bismuth niobate with incorporation of La 3+ dopant, having no lone pair electrons. Shifting of Raman phonon modes indicates the reduced rattling space of NbO 6 octahedra with increase in La doping concentration. Further, the softening of lowest frequency phonon mode with increasing x in SBLN shows the transition from ferroelectric to paraelectric at room temperature. The dielectric properties for all the compositions are studied as a function of temperature (25 to 500 deg. C) over the frequency range of 10 kHz-1 MHz. With increase in lanthanum doping concentration the phase transition becomes diffused and transition temperature gets shifted toward lower temperature. A phase transition from normal ferroelectric to paraelectric has been observed via relaxor-type ferroelectrics with increase in x. The frequency dependence of transition temperature was studied in terms of Vogel-Fulcher relation for SBLN (x=0.4)

  1. Influence of La doping on structural and dielectric properties of SrBi2Nb2O9 ceramics

    Science.gov (United States)

    Verma, Maya; Sreenivas, K.; Gupta, Vinay

    2009-01-01

    Lanthanum doped SrBi2Nb2O9 ceramics with the chemical formula SrBi2-xLaxNb2O9 (SBLN) (x =0-0.5) have been prepared through conventional solid state route. X-ray diffraction reveals the shrinkage of unit cell of strontium bismuth niobate with incorporation of La3+ dopant, having no lone pair electrons. Shifting of Raman phonon modes indicates the reduced rattling space of NbO6 octahedra with increase in La doping concentration. Further, the softening of lowest frequency phonon mode with increasing x in SBLN shows the transition from ferroelectric to paraelectric at room temperature. The dielectric properties for all the compositions are studied as a function of temperature (25 to 500 °C) over the frequency range of 10 kHz-1 MHz. With increase in lanthanum doping concentration the phase transition becomes diffused and transition temperature gets shifted toward lower temperature. A phase transition from normal ferroelectric to paraelectric has been observed via relaxor-type ferroelectrics with increase in x. The frequency dependence of transition temperature was studied in terms of Vogel-Fulcher relation for SBLN (x =0.4).

  2. Structural, electric and dielectric properties of Eu-doped SrBi2Nb2O9 ceramics obtained by co-precipitation route

    Directory of Open Access Journals (Sweden)

    Mohamed Afqir

    2018-03-01

    Full Text Available This paper presents a study of the structure and dielectric properties of Eu-doped SrBi2Nb2O9 ceramics prepared by co-precipitation route and sintered at 850 °C. The materials were examined using XRD and FTIR methods. XRD data indicated the formation of well crystallized structure of the pure and doped SrBi2Nb2O9, without the presence of undesirable phases. FTIR spectra do not bring a significant shift in the band positions. Moreover, the AC conductivity, dielectric constant and dielectric loss of the ceramics were determined through the frequency range [50 kHz–1 MHz]. In particular, the dielectric constant (ε′ and dielectric losses (tan δ of the SrBi2Nb2O9 and SrBi1.6Eu0.4Nb2O9 ceramics were measured as a function of temperature at various frequencies.

  3. Synthesis and characterization of 10%Gd doped ceria (GDC) deposited on NiO-GDC anode-grade-ceramic substrate as half cell for IT-SOFC

    DEFF Research Database (Denmark)

    Chourashiya, M. G.; Jadhav, L. D.

    2011-01-01

    In the present research work spray pyrolysis technique (SPT) is employed to synthesize GDC (10%Gd doped ceria) thin films on anode-grade-ceramic substrate (porous NiO-GDC). The film/substrate structure was characterized for their micro-structural and electrical properties along with their interfa......In the present research work spray pyrolysis technique (SPT) is employed to synthesize GDC (10%Gd doped ceria) thin films on anode-grade-ceramic substrate (porous NiO-GDC). The film/substrate structure was characterized for their micro-structural and electrical properties along...... with their interfacial-quality. By optimization of preparative parameters of SPT and modification of surface of anode-grade ceramic substrate, we were able to prepare the GDC films having thickness of the order of 13 μm on NiO-GDC substrate. Further to improve the interfacial quality and densification of film, annealing...

  4. Optical, mechanical and fractographic response of transparent alumina ceramics on erbium doping

    Czech Academy of Sciences Publication Activity Database

    Drdlík, D.; Drdlíková, K.; Hadraba, Hynek; Máca, K.

    2017-01-01

    Roč. 37, č. 14 (2017), s. 4265-4270 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : Alumina * Erbia * Fractography * Hardness * Transparency Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 3.411, year: 2016

  5. Influence of interface point defect on the dielectric properties of Y doped CaCu3Ti4O12 ceramics

    Directory of Open Access Journals (Sweden)

    Jianming Deng

    2016-03-01

    Full Text Available CaCu3Ti4−xYxO12 (0≤x≤0.12 ceramics were fabricated with conventional solid-state reaction method. Phase structure and microstructure of prepared ceramics were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. The impedance and modulus tests both suggested the existence of two different relaxation behavior, which were attributed to bulk and grain boundary response. In addition, the conductivity and dielectric permittivity showed a step-like behavior under 405K. Meanwhile, frequency independence of dc conduction became dominant when above 405K. In CCTO ceramic, rare earth element Y3+ ions as an acceptor were used to substitute Ti sites, decreasing the concentration of oxygen vacancy around grain-electrode and grain boundary. The reason to the reduction of dielectric behavior in low frequencies range was associated with the Y doping in CCTO ceramic.

  6. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoming [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Ruan, Xuezheng; Zhao, Kunyun [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); He, Xueqing [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zeng, Jiangtao, E-mail: zjt@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Li, Yongsheng [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zheng, Liaoying [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Park, Chul Hong [Department of Physics Education, Pusan National University, Pusan 609735 (Korea, Republic of); Li, Guorong [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-05-25

    Highlights: • Li-doped Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1}O{sub 3} (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1}O{sub 3} (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d{sub 33} (512 pC/N) and a planar electromechanical coupling factor k{sub p} (0.49), which have the characteristics of soft Pb(Zr,Ti)O{sub 3} (PZT) piezoceramic, on the other hand, the mechanical quality factor Q{sub m} is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature.

  7. Combined mode I-mode II fracture of 12-mol%-ceria-doped tetragonal zirconia polycrystalline ceramic

    International Nuclear Information System (INIS)

    Tikare, V.; Choi, S.R.

    1997-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ceria-doped tetragonal zirconia polycrystalline (Ce-TZP) ceramic was studied. The single-edge-precracked-beam (SEPB) samples were fractured using the asymmetric four-point-bend geometry. The ratio of mode I to mode II loading was varied by varying the degree of asymmetry in the four-point-bend geometry. The minimum strain energy density theory best described the mixed-mode fracture behavior of Ce-TZP with the mode I fracture toughness, K IC = 8.2 ± 0.6 MPa·m 1/2 , and the mode II fracture toughness, K IIC = 8.6 ± 1.3 MPa·m 1/2

  8. Effect of processing routes on microstructure, electrical and dielectric behavior of Mg-doped CaCu3Ti4O12 electro-ceramic

    Science.gov (United States)

    Singh, Laxman; Rai, U. S.; Mandal, K. D.; Rai, Alok Kumar

    2013-09-01

    In the present communication, data on magnesium-doped calcium copper titanate CaCu2.90Mg0.10Ti4O12 (CCMTO) electro-ceramic, synthesized by the semi-wet route (SWR), ball-milled route (BMR) and solid-state route (SSR), is characterized by TG-DTA, XRD, SEM, EDX and TEM techniques. XRD confirmed the formation of single phase in CCMTO ceramic. The CuO phase present at grain boundaries in SWR ceramic was shown by the SEM micrograph, which was verified by EDX. The TEM image of SWR ceramic shows nanocrystalline particles in the range 80±20 nm. The value of the dielectric constant of SWR ( ɛ r ˜20091) ceramic is higher than those of BMR and SSR ( ɛ r ˜1247) ceramics at 1 kHz at 450 K. A dielectric relaxation has been observed in the frequency range 100 Hz-100 kHz. The high-temperature dielectric dispersion shows one large low-frequency response and two Debye-type relaxations. The impedance and modulus studies show the highest grain-boundary resistance for BMR ceramic.

  9. Synthesis and Dielectric Properties of Mn-Doped BaTi2O5 Ceramics

    Science.gov (United States)

    Akishige, Yukikuni; Honda, Kazuo; Tsukada, Shinya

    2011-09-01

    High-density ceramics of BaTi2O5 have been fabricated by a conventional sintering method using both sol-gel-derived BaTi2O5 powders and MnO2 additives of 0.2-0.8 wt %. The effects of sintering conditions on the densification, microstructural evolution and dielectric properties are investigated. As the effect of Mn addition, the BaTi2O5 phase becomes stable at least up to 1250 °C, and a significant densification is achieved at temperatures as low as 1200-1250 °C. The dielectric constant ɛ' vs temperature T curve of the MnO2-added ceramics exhibits a broad maximum ɛ'max at the ferroelectric phase transition temperature TC, which is 140 °C lower than that of the nondoped ceramics. Among the ceramics with different Mn contents, the 0.2 wt % MnO2-added ceramics have the largest ɛ'max of 470 at 328 °C and the smallest tan δ of <0.05 at a high temperature of around 520 °C at 1 MHz. We observed a ferroelectric D-E hysteresis loop for the first time in the polycrystalline form of BaTi2O5.

  10. αTCP ceramic doped with dicalcium silicate for bone regeneration applications prepared by powder metallurgy method: in vitro and in vivo studies.

    Science.gov (United States)

    Velasquez, Pablo; Luklinska, Zofia B; Meseguer-Olmo, Luis; Mate-Sanchez de Val, Jose E; Delgado-Ruiz, Rafael A; Calvo-Guirado, Jose L; Ramirez-Fernandez, Ma P; de Aza, Piedad N

    2013-07-01

    This study reports on the in vitro and in vivo behavior of α-tricalcium phosphate (αTCP) and also αTCP doped with either 1.5 or 3.0 wt % of dicalcium silicate (C2 S). The ceramics were successfully prepared by powder metallurgy method combined with homogenization and heat treatment procedures. All materials were composed of a single-phase, αTCP in the case of a pure material, or solid solution of C2 S in αTCP for the doped αTCP, which were stable at room temperature. The ceramics were tested for bioactivity in simulated body fluid, cell culture medium containing adult mesenchymal stem cells of human origin, and in animals. Analytical scanning electron microscopy combined with chemical elemental analysis was used and Fourier transform infrared and conventional histology methods. The in vivo behavior of the ceramics matched the in vitro results, independently of the C2 S content in αTCP. Carbonated hydroxyapatite (CHA) layer was formed on the surface and within the inner parts of the specimens in all cases. A fully mineralized new bone growing in direct contact with the implants was found under the in vivo conditions. The bioactivity and biocompatibility of the implants increased with the C2 S content in αTCP. The C2 S doped ceramics also favoured a phase transformation of αTCP into CHA, important for full implant integration during the natural bone healing processes. αTCP ceramic doped with 3.0 wt % C2 S showed the best bioactive in vitro and in vivo properties of all the compositions and hence could be of interest in specific applications for bone restorative purposes. Copyright © 2012 Wiley Periodicals, Inc.

  11. Fabrication, phase, microstructure and electrical properties of BNT-doped (Sr,La)TiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Eaksuwanchai, Preeyakarn; Promsawat, Methee; Jiansirisomboon, Sukanda; Watcharapasorn, Anucha [Chiang Mai University, Chiang Mai (Thailand)

    2014-08-15

    This research studied the effects of Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} (BNT) doping on the phase, density, microstructure and electrical properties of (Sr,La)TiO{sub 3} (SLTO) ceramics. Separately calcined SLTO and BNT powders were mixed together to form (1-x)SLTO-xBNT (where x = 0, 0.01, 0.03, 0.05 and 0.07 mol fraction) compounds that were pressed into pellets and then sintered at 1500 .deg. C for 3 h under ambient atmosphere. The relative bulk densities of all the ceramics were greater than 95% their theoretical values which were confirmed by their nearly zero-porosity microstructure. X-ray diffraction patterns indicated complete solid solutions with a cubic structure and a slight lattice contraction when BNT was added. The electrical conductivity was found to decrease with BNT addition, suggesting a reduced number of mobile charges. The dielectric constant also showed limited polarization due to defect dipoles formed by aliovalent ionic substitution of BNT. Further optimization in terms of composition and defect chemistry could lead to a compound suitable for thermoelectric applications.

  12. Highly matched spectrum needed for photosynthesis in Ce{sup 3+}/Er{sup 3+}/Yb{sup 3+} tri-doped oxyfluoride glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weirong; Gao, Huiping [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute for Computational Materials Science, Henan University, Kaifeng 475004 (China); Mao, Yanli, E-mail: ylmao@henu.edu.cn [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute for Computational Materials Science, Henan University, Kaifeng 475004 (China)

    2015-11-05

    A series of oxyfluoride glass ceramics containing CaF{sub 2} nano-crystals tri-doped with Ce{sup 3+}/Er{sup 3+}/Yb{sup 3+} ions were prepared by high temperature melting method and subsequent heat treatment. The structural properties were examined by X-ray diffraction measurements. The absorption, excitation, and emission spectra of the glass ceramics were investigated. Difference in erbium emission spectra between glass and glass ceramics had been studied. The emission bands originating from the {sup 4}F{sub 9/2} state of Er{sup 3+} were enhanced when the CaF{sub 2} nano-crystal created. By down-converting the ultraviolet wavelength region (280∼400 nm) light and up-converting the near-infrared wavelength region (900∼1100 nm) light, the glass ceramics can also emit strong reddish orange emission. The emission spectra consisting of bluish violet (400∼500 nm) and reddish orange (640∼680 nm) bands match well with the action spectrum of photosynthesis and absorption spectra of chlorophylls. Our materials will be favored to promote the development of glass greenhouses for green plant. - Highlights: • Ce{sup 3+}/Er{sup 3+}/Yb{sup 3+} tri-doped oxyfluoride glass ceramics were prepared by high temperature melting method. • 668 nm red emission was obtained under 320 nm, 380 nm and 980 nm excitation, respectively. • The emission of samples matched well with the spectrum for photosynthesis.

  13. Cerium-doped single crystal and transparent ceramic lutetium aluminum garnet scintillators

    International Nuclear Information System (INIS)

    Cherepy, Nerine J.; Kuntz, Joshua D.; Tillotson, Thomas M.; Speaks, Derrick T.; Payne, Stephen A.; Chai, B.H.T.; Porter-Chapman, Yetta; Derenzo, Stephen E.

    2007-01-01

    For rapid, unambiguous isotope identification, scintillator detectors providing high-resolution gamma ray spectra are required. We have fabricated Lutetium Aluminum Garnet (LuAG) using transparent ceramic processing, and report a 2-mm thick ceramic exhibiting 75% transmission and light yield comparable to single-crystal LuAG:Ce. The LuAG:Ce luminescence peaks at 550 nm, providing an excellent match for Silicon Photodiode readout. LuAG is dense (6.67 g/cm 3 ) and impervious to water, exhibits good proportionality and a fast decay (∼40 ns), and we measure light yields in excess of 20,000 photons/MeV

  14. Microstructure and enhanced dielectric properties of yttrium and zirconium co-doped CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zunping, E-mail: xzp16213@163.com [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qiang, Hua [College of Electromechanical Engineering, Chongqing College of Humanities, Science and Technology, Chongqing 401524 (China); Chen, Yi; Chen, Zhiqian [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China)

    2017-04-15

    CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics doped with Y{sub 2}O{sub 3}, ZrO{sub 2}, and (Y{sub 2}O{sub 3}+ZrO{sub 2}) were prepared by the citrate-nitrate combustion derived powders in order to investigate the effect of dopants on the microstructure and electrical properties. The results showed that giant dielectric response was enhanced by co-doping of Y{sup 3+} and Zr{sup 4+} ions at the Ti site. Y{sub 2}O{sub 3} and ZrO{sub 2} additive can inhibit the grain growth. Compared with other samples, (Y{sub 2}O{sub 3}+ZrO{sub 2}) co-doped ceramics exhibit a dense and homogenous fine-grained microstructure. A much better temperature and frequency stability of dielectric properties were realized in these ceramics. The dielectric loss (tan δ) < 0.05 in the frequency range of 200 Hz–60 kHz at room temperature, and in the temperature range of 15–72 °C at 10 kHz was successfully accomplished in (Y{sub 2}O{sub 3}+ZrO{sub 2}) co-doped CCTO ceramics. Low tan δ ∼0.039 and high dielectric constant (ε{sub r} ∼10196) were observed at room temperature and 10 kHz for the above ceramic samples, and the characteristic frequency shifts to higher frequency with increasing measuring temperature. The present results indicate that (Y{sub 2}O{sub 3}+ZrO{sub 2}) co-doping may improve the dielectric properties and increase the grain boundary resistance of CCTO. - Highlights: • Y and Zr co-doped CCTO exhibits a dense and homogenous fine-grained microstructure. • Y and Zr co-doped CCTO performs a lower dielectric loss in wide-range of frequency. • Temperature and frequency stability of dielectric properties were greatly enhanced.

  15. Thermal Properties of Transparent Yb-Doped YAG Ceramics at Elevated Temperatures

    Czech Academy of Sciences Publication Activity Database

    Hostaša, J.; Matějíček, Jiří; Nait-Ali, B.; Smith, D.S.; Pabst, W.; Esposito, L.

    2014-01-01

    Roč. 97, č. 8 (2014), s. 2602-2606 ISSN 0002-7820 Institutional support: RVO:61389021 Keywords : yttrium aluminium garnet * Yb:YAG * thermal diffusivity Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.610, year: 2014 http://onlinelibrary.wiley.com/doi/10.1111/jace.13015/abstract

  16. High efficiency laser action in mildly doped Yb:LuYAG ceramics

    Czech Academy of Sciences Publication Activity Database

    Pirri, A.; Toci, G.; Li, J.; Xie, T.; Pan, Y.; Babin, Vladimir; Beitlerová, Alena; Nikl, Martin; Vannini, M.

    2017-01-01

    Roč. 73, Nov (2017), s. 312-318 ISSN 0925-3467 Institutional support: RVO:68378271 Keywords : laser ceramic s * Yb laser * mixed garnets * LuYAG Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.238, year: 2016

  17. Al2O3 doped TiO2 ceramic waste forms

    International Nuclear Information System (INIS)

    Uno, Masayoshi; Kinoshita, Hajime; Sakai, Etsuro; Ikeda, Akira; Matsumoto, Y.; Yamanaka, Shinsuke

    1999-01-01

    Melting of the mixture of Nd 2 O 3 , CeO 2 , SrO, TiO 2 and Al 2 O 3 at 1673 K for 1 hour produced one RE 2 Ti 3 O 9 phase compound. Differential Scanning Calorimetry (DSC) measurement showed that the melting temperature of this compound was 1646 K. Density of the alumina doped oxide was higher than that of the oxide obtained by the pressing and sintering without alumina. Vickers hardness of the oxide obtained by the pressing and sintering was 5.3 GPa and nearly same as that of glass waste. That of the alumina doped oxide was around 7 GPa. 7 days Soxhlet leach test (MCC-5) followed by Inductively Coupled Plasma Spectrometry (ICP) showed that normalized leaching rate of Ti for the oxide obtained by the pressing and sintering was 5.54 x 10 -3 kg/m 2 and that for the alumina doped oxide was 2.24 x 10 -3 kg/m 2 . The value of Sr for the pressed and sintered sample was 0.034 x 10 -3 kg/m 2 but that for alumina doped sample was below the detection limit (0.01 x 10 -3 kg/m 2 ). Al was not detected from the leachate of the alumina doped sample. (author)

  18. Enhanced green upconversion by controlled ceramization of Er{sup 3+}–Yb{sup 3+} co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Suresh Kumar, J., E-mail: suresh@ua.pt; Pavani, K.; Graça, M.P.F.; Soares, M.J.

    2014-12-25

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na{sub 1.4}Nb{sub 3}Te{sub 4.9}O{sub 18}) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er{sup 3+}–Yb{sup 3+} co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er{sup 3+} ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied.

  19. Effect of lithium doping in BaTiO3 ceramics for vibration sensor application

    Science.gov (United States)

    Praveen, E.; Murugan, S.; Jayakumar, K.

    2018-04-01

    Phase pure undoped and Lithium doped BaTiO3 particles have been synthesized by high temperature solid-state reaction method. Substitution of Lithium at the Ba2+ site in BaTiO3 lattice has been investigated. The structural, vibrational, electrical and mechanical characterization have been carried out. The poled samples were used as a sensing element for the detection of mechanical oscillations and the presence of 80 Hz pulse in the output spectrum manifest the response of the sensor element to the applied mechanical stress. In comparison with pure BaTiO3 the sensitivity of Li doped BaTiO3 is 14 times greater than the pure BaTiO3. This confirms that Li doped BaTiO3 could be an efficient candidate for the functionalization of vibration sensors in space application.

  20. CoO-doped MgO-Al2O3-SiO2-colored transparent glass-ceramics with high crystallinity

    Science.gov (United States)

    Tang, Wufu; Zhang, Qian; Luo, Zhiwei; Yu, Jingbo; Gao, Xianglong; Li, Yunxing; Lu, Anxian

    2018-02-01

    To obtain CoO-doped MgO-Al2O3-SiO2 (MAS)-colored transparent glass-ceramics with high crystallinity, the glass with the composition 21MgO-21Al2O3-54SiO2-4B2O3-0.2CoO (in mol %) was prepared by conventional melt quenching technique and subsequently thermal treated at several temperatures. The crystallization behavior of the glass, the precipitated crystalline phases and crystallinity were analyzed by X-ray diffraction (XRD). The microstructure of the glass-ceramics was characterized by field emission scanning electron microscopy (FSEM). The transmittance of glass-ceramic was measured by UV spectrophotometer. The results show that a large amount of α-cordierite (indianite) with nano-size was precipitated from the glass matrix after treatment at 1020 °C for 3 h. The crystallinity of the transparent glass-ceramic reached up to 97%. Meanwhile, the transmittance of the glass-ceramic was 74% at 400 nm with a complex absorption band from 450 nm to 700 nm. In addition, this colored transparent glass-ceramic possessed lower density (2.469 g/cm3), lower thermal expansion coefficient (1.822 × 10-6 /℃), higher Vickers hardness (9.1 GPa) and higher bending strength (198 MPa) than parent glass.

  1. Luminescent properties of Eu{sup 3+}-doped glass ceramics containing BaCl{sub 2} nanocrystals under NUV excitation for White LED

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Han; Mo, Zhaojun, E-mail: mzjmzj163@163.com; Zhang, Xiaosong; Yuan, Linlin; Yan, Ming; Li, Lan, E-mail: lilan@tjut.edu.cn

    2016-07-15

    Eu{sup 3+} doped fluorozirconate glass ceramics containing BaCl{sub 2} nanocrystals were successfully fabricated by melt quenching method, and their structural and luminous properties were investigated. The existence of BaCl{sub 2} nanocrystals in the glass ceramics plays an important role on the improvement of luminescent properties. The emission intensity in glass ceramics was remarkably enhanced, which attributes to the phonon energy decrease by Eu{sup 3+} ions into BaCl{sub 2} nanocrystals. Meanwhile, the extended average fluorescence decay lifetime from 4.60 ms to 5.42 ms and the decreased Red/Orange ratio and spark splitting of {sup 7}F{sub 1} energy level also confirmed this view. Additionally, the excitation spectra showed that glass ceramics could be effectively excited by NUV light. The CIE chromaticity coordinates of glass ceramics (GC320) were calculated as (0.611, 0.371), which was close to the NTSC standard values for red (0.67, 0.33). The results suggested that the glass ceramics may be used as potential red phosphors under UV light excitation for white light-emitting diodes.

  2. Effects of La{sub 2}O{sub 3}-doping and sintering temperature on the dielectric properties of BaSrTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hong Wei; Chang, Chun Rui [College of Science, North China University of Science and Technology, Hebei Province (China); Li, Yuan Liang [Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, North China University of Science and Technology, Hebei Province (China); Yan, Chun Liang [Analysis and Testing Center, North China University of Science and Technology, Hebei Province (China)

    2016-03-15

    Using BaCO{sub 3}, SrCO{sub 3} and TiO{sub 2}, et al as crude materials, La{sub 2}O{sub 3} as dopant, Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} (BST) Ceramics of perovskite structure were prepared by solid state reaction method. We investigated the effects of La{sub 2}O{sub 3} -doping and sintering temperature on the dielectric properties of BaSrTiO{sub 3} ceramics. The experiment results show that: The amount of La{sub 2}O{sub 3} can increase the dielectric constant of the sample, with the doping amount increasing, the dielectric constant increases. The sintering temperature has also significant impact on the dielectric properties. The dielectric constant of the sample reaches its highest point at 1280 °C. (author)

  3. The role of air annealing on the optical and scintillation properties of Mg co-doped Pr:LuAG transparent ceramics

    Czech Academy of Sciences Publication Activity Database

    Hu, Z.; Cao, M.; Chen, H.; Shi, Y.; Kou, H.; Xie, T.; Wu, L.; Pan, Y.; Feng, X.; Vedda, A.; Beitlerová, Alena; Nikl, Martin; Li, J.

    2017-01-01

    Roč. 72, Oct (2017), s. 201-207 ISSN 0925-3467 R&D Projects: GA ČR GA16-15569S Institutional support: RVO:68378271 Keywords : Mg co-doped Pr:LuAG * transparent ceramics * annealing effect * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.238, year: 2016

  4. Synthesis and optical properties of Pr and Ti doped BiFeO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vikash, E-mail: vikash.singh@abes.ac.in [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida (U.P.), India-201307 (India); Applied Science and Humanities, ABES EC, Ghaziabad (U.P), India-201009 (India); Sharma, Subhash; Dwivedi, R. K. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida (U.P.), India-201307 (India)

    2016-05-23

    Bi{sub 1-x}Pr{sub x}Fe{sub 1-x}Ti{sub x}O{sub 3} ceramics with x = 0.00, 0.10 and 0.20 were synthesized by solid state reaction method. Rietveld fitting of diffraction data reveals structural transition from rhombohedral phase (R{sub 3C}) for x ≤ 0.10 to orthorhombic phase (P{sub nma}) for x = 0.20. FTIR spectra exhibit broad absorption bands, which may be due to the overlapping of Fe-O and Bi-O vibrations in these ceramics. UV-visible spectroscopy results show strong absorption of light in the spectral range of 400-600 nm, indicating optical band gap in the visible region for these samples.

  5. Study on electrical properties of Ni-doped SrTiO3 ceramics using ...

    Indian Academy of Sciences (India)

    Unknown

    concentration of acceptor doping. Fine-grained ST cera- mics are desirable for higher GB resistivity. References. Daniels J, Hardl K H and Wernicke R 1978 Philips Tech. Rev. 38 73. Denk J, Claus J and Maier J 1997 J. Electrochem. Soc. 144 3526. Dedyk A I, Karmanenko S F, Leppavuori S and Sakharov V I. 1998 J. Phys.

  6. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang; Liu, Wenchao; Mak, C. L.

    2012-01-01

    . This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased

  7. Electrical characterization and impedance response of lanthanum doped barium titanate ceramics

    Directory of Open Access Journals (Sweden)

    Mančić D.

    2008-01-01

    Full Text Available The dielectric permittivity and dissipation factor of La-doped and undoped BaTiO3 were investigated as a function of frequency and temperature. The impedance response was used to study the electrical properties of La-doped BaTiO3 over the temperature range from room temperature (RT to 350°C. La-doped and undoped BaTiO3, obtained by a modified Pechini method, were sintered in air at 1300°C for 2 and 16 hours. The impedance spectra were analyzed in terms of equivalent circuits involving resistors, capacitors and constant phase elements (CPE. The most suitable electrical circuit for the interpretation of experimental results is found to be the equivalent circuit consisting of resistors and CPE elements which replace the capacitor elements. The contribution of grain boundary resistance to the total resistance of a system is remarkable at low temperature. Dielectric permittivity of doped BaTiO3 was in the range of 8000 to 12000 at 1 kHz and the dissipation factor was less than 1%.

  8. Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramics

    International Nuclear Information System (INIS)

    Pršić, S.; Savić, S.M.; Branković, Z.; Vrtnik, S.; Dapčević, A.; Branković, G.

    2015-01-01

    Highlights: • Sodium cobaltite was synthesized by mechanochemically assisted solid-state reaction and citric acid complex (CAC) method. • We investigated effect of Cu-doping in NaCo 2−x Cu x O 4 (x = 0, 0.01, 0.03, 0.05). • ICP analysis showed that the controlling of the samples composition is easier by the CAC method. • The Seebeck coefficient in Cu-doped samples was higher compared to the undoped one. • The highest figure of merit was observed in the sample with the lowest Cu concentration. - Abstract: In the last decade, the sodium cobaltite ceramic became a promising candidate for potential thermoelectric applications, because of its large thermopower and low resistivity. In this work, polycrystalline samples of NaCo 2−x Cu x O 4 (x = 0, 0.01, 0.03, 0.05) were prepared using mechanochemically assisted solid-state reaction method (MASSR) and the citric acid complex method (CAC). Bulk samples were prepared by pressing into disc-shaped pellets and subsequently subjected to a thermal treatment at 880 °C in inert argon atmosphere. Changes in structural and microstructural characteristics of the samples, caused by the substitution of Cu for Co, were characterized using X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), respectively. The results of inductively coupled plasma (ICP) analysis showed that the compositions of the final products correspond to γ-NaCo 2 O 4 and confirmed that desired compound was obtained in both syntheses procedures. The advantages and disadvantages of these two syntheses procedures have been observed and discussed: the CAC method enabled obtaining samples with higher density and fine microstructure compared to the MASSR method, thus better thermoelectric properties. The Cu 2+ substitution led to the increase in Seebeck coefficient in both synthesis routes. The highest figure of merit of 0.022 at 300 K was observed for the sample doped with 1 mol% Cu, obtained by the CAC method, and it was almost twice

  9. Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pršić, S., E-mail: sanjaprsic@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Savić, S.M., E-mail: slavicas@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Branković, Z., E-mail: zorica.brankovic@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Vrtnik, S., E-mail: stane.vrtnik@ijs.si [Institute Jožef Stefan, Condensed Matter Physics, Jamova cesta 39, 1000 Ljubljana (Slovenia); Dapčević, A., E-mail: hadzi-tonic@tmf.bg.ac.rs [Department of General and Inorganic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Branković, G., E-mail: goran.brankovic@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia)

    2015-08-15

    Highlights: • Sodium cobaltite was synthesized by mechanochemically assisted solid-state reaction and citric acid complex (CAC) method. • We investigated effect of Cu-doping in NaCo{sub 2−x}Cu{sub x}O{sub 4} (x = 0, 0.01, 0.03, 0.05). • ICP analysis showed that the controlling of the samples composition is easier by the CAC method. • The Seebeck coefficient in Cu-doped samples was higher compared to the undoped one. • The highest figure of merit was observed in the sample with the lowest Cu concentration. - Abstract: In the last decade, the sodium cobaltite ceramic became a promising candidate for potential thermoelectric applications, because of its large thermopower and low resistivity. In this work, polycrystalline samples of NaCo{sub 2−x}Cu{sub x}O{sub 4} (x = 0, 0.01, 0.03, 0.05) were prepared using mechanochemically assisted solid-state reaction method (MASSR) and the citric acid complex method (CAC). Bulk samples were prepared by pressing into disc-shaped pellets and subsequently subjected to a thermal treatment at 880 °C in inert argon atmosphere. Changes in structural and microstructural characteristics of the samples, caused by the substitution of Cu for Co, were characterized using X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), respectively. The results of inductively coupled plasma (ICP) analysis showed that the compositions of the final products correspond to γ-NaCo{sub 2}O{sub 4} and confirmed that desired compound was obtained in both syntheses procedures. The advantages and disadvantages of these two syntheses procedures have been observed and discussed: the CAC method enabled obtaining samples with higher density and fine microstructure compared to the MASSR method, thus better thermoelectric properties. The Cu{sup 2+} substitution led to the increase in Seebeck coefficient in both synthesis routes. The highest figure of merit of 0.022 at 300 K was observed for the sample doped with 1 mol% Cu, obtained by

  10. Temperature stability and electrical properties in La-doped KNN-based ceramics

    KAUST Repository

    Lv, Xiang; Wu, Jiagang; Zhu, Jianguo; Xiao, Dingquan; Zhang, Xixiang

    2018-01-01

    To improve the temperature stability and electrical properties of KNN‐based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3‐0.04(Bi1‐xLax)0.5Na0.5ZrO3 (0 ≤ x ≤ 1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral‐tetragonal (R‐T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (x = 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with x = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue‐free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R‐T phase boundary and the appropriate addition of La3+.

  11. Temperature stability and electrical properties in La-doped KNN-based ceramics

    KAUST Repository

    Lv, Xiang

    2018-04-16

    To improve the temperature stability and electrical properties of KNN‐based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3‐0.04(Bi1‐xLax)0.5Na0.5ZrO3 (0 ≤ x ≤ 1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral‐tetragonal (R‐T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (x = 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with x = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue‐free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R‐T phase boundary and the appropriate addition of La3+.

  12. Silver Niobate Lead-Free Antiferroelectric Ceramics: Enhancing Energy Storage Density by B-Site Doping.

    Science.gov (United States)

    Zhao, Lei; Gao, Jing; Liu, Qing; Zhang, Shujun; Li, Jing-Feng

    2018-01-10

    Lead-free dielectric ceramics with high recoverable energy density are highly desired to sustainably meet the future energy demand. AgNbO 3 -based lead-free antiferroelectric ceramics with double ferroelectric hysteresis loops have been proved to be potential candidates for energy storage applications. Enhanced energy storage performance with recoverable energy density of 3.3 J/cm 3 and high thermal stability with minimal energy density variation (<10%) over a temperature range of 20-120 °C have been achieved in W-modified AgNbO 3 ceramics. It is revealed that the W 6+ cations substitute the B-site Nb 5+ and reduce the polarizability of B-site cations, leading to the enhanced antiferroelectricity, which is confirmed by the polarization hysteresis and dielectric tunability. It is believed that the polarizability of B-site cations plays a dominant role in stabilizing the antiferroelectricity in AgNbO 3 system, in addition to the tolerance factor, which opens up a new design approach to achieve stable antiferroelectric materials.

  13. Fabrication and characterization of Er+3 doped SiO2/SnO2 glass-ceramic thin films for planar waveguide applications

    Science.gov (United States)

    Guddala, S.; Chiappini, A.; Armellini, C.; Turell, S.; Righini, G. C.; Ferrari, M.; Narayana Rao, D.

    2015-02-01

    Glass-ceramics are a kind of two-phase materials constituted by nanocrystals embedded in a glass matrix and the respective volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramics. Among these properties transparency is crucial in particular when confined structures, such as, dielectric optical waveguides, are considered. Moreover, the segregation of dopant rare-earth ions, like erbium, in low phonon energy crystalline medium makes these structures more promising in the development of waveguide amplifiers. Here we are proposing a new class of low phonon energy tin oxide semiconductor medium doped silicate based planar waveguides. Er3+ doped (100-x) SiO2-xSnO2 (x= 10, 20, 25 and 30mol%), glass-ceramic planar waveguide thin films were fabricated by a simple sol-gel processing and dip coating technique. XRD and HRTEM studies indicates the glass-ceramic phase of the film and the dispersion of ~4nm diameter of tin oxide nanocrystals in the amorphous phase of silica. The spectroscopic assessment indicates the distribution of the dopant erbium ions in the crystalline medium of tin oxide. The observed low losses, 0.5±0.2 dB/cm, at 1.54 μm communication wavelength makes them a quite promising material for the development of high gain integrated optical amplifiers.

  14. Synthesis and luminescent properties of Eu{sup 3+}/Eu{sup 2+} co-doped calcium aluminosilicate glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bouchouicha, H. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Panczer, G., E-mail: gerard.panczer@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Ligny, D. de [Universität Erlangen-Nürnberg, Department Werkstoffwissenschaften, Lehrstuhl für Glas und Keramik, D-91058 Erlangen (Germany); Guyot, Y. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Baesso, M.L. [Departemento de Fisica, Universidade Estadual de Maringa, 87020-900 Maringa, PR (Brazil); Andrade, L.H.C.; Lima, S.M. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul – UEMS, C.P. 351, Dourados, MS (Brazil); Ternane, R. [Laboratoire d' Application de la Chimie aux Ressources et Substances Naturelles et à l' Environnement (LACReSNE), Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte (Tunisia)

    2016-01-15

    Eu{sup 3+} and Eu{sup 2+} co-doped calcium aluminosilicate glass–ceramics have been prepared by devitrification of calcium aluminosilicate glass using heat-treatment. Control of crystallization in the glass–ceramics was studied by X-ray diffraction (XRD) and Raman spectroscopy. The results showed that crystalline phases in glass–ceramic belong to the family of melilite Ca{sub 2}Mg{sub 0.25}Al{sub 1.5}Si{sub 1.25}O{sub 7} as the major phase and anorthite CaAl{sub 2}Si{sub 2}O{sub 8} as the minor phase. Luminescent properties were investigated by emission; lifetime and the color points were calculated. Emission spectra showed that Eu{sup 2+} entered into the crystalline phase in a two steps mechanism: first as Eu{sup 3+} which is then reduced to Eu{sup 2+}. This incorporation in the crystal enhanced Eu{sup 2+} emission with increasing time of heat-treatment and therefore crystallization. - Highlights: • Crystallization of doped glass–ceramics by heat-treatment controlled by microRaman. • Crystalline phases consist of melilite and anorthite. • Eu{sup 3+} and Eu{sup 2+} emissions characterized by their lifetime and color indexes. • Crystallization process modified efficiently the emission color point.

  15. Bulk and Interface Thermodynamics of Calcia-, and Yttria-doped Zirconia Ceramics: Nanograined Phase Stability

    Science.gov (United States)

    Drazin, John Walter

    Calcia-, and yttria- doped zirconia powders and samples are essential systems in academia and industry due to their observed bulk polymorphism. Pure zirconia manifests as Baddeleyite, a monoclinic structured mineral with 7-fold coordination. This bulk form of zirconia has little application due to its asymmetry. Therefore dopants are added to the grain in-order to induce phase transitions to either a tetragonal or cubic polymorph with the incorporation of oxygen vacancies due to the dopant charge mis-match with the zirconia matrix. The cubic polymorph has cubic symmetry such that these samples see applications in solid oxide fuel cells (SOFCs) due to the high oxygen vacancy concentrations and high ionic mobility at elevated temperatures. The tetragonal polymorph has slight asymmetry in the c-axis compared to the a-axis such that the tetragonal samples have increased fracture toughness due to an impact induced phase transformation to a cubic structure. These ceramic systems have been extensively studied in academia and used in various industries, but with the advent of nanotechnology one can wonder whether smaller grain samples will see improved characteristics similar to their bulk grain counterparts. However, there is a lack of data and knowledge of these systems in the nano grained region which provides us with an opportunity to advance the theory in these systems. The polymorphism seen in the bulk grains samples is also seen in the nano-grained samples, but at slightly distinct dopant concentrations. The current theory hypothesizes that a surface excess, gamma (J/m 2), can be added to the Gibbs Free energy equation to account for the additional free energy of the nano-grain atoms. However, these surface energies have been difficult to measure and therefore thermodynamic data on these nano-grained samples have been sparse. Therefore, in this work, I will use a well established water adsorption microcalorimetry apparatus to measure the water coverage isotherms

  16. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi{sub 2}O{sub 3}-doped barium zirconium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K [Electroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi-110054 (India); Sreenivas, K, E-mail: omprakasht@hotmail.co [Department of Physics and Astrophysics, University of Delhi- 110007 (India)

    2009-03-21

    Bi{sub 2}O{sub 3}-doped barium zirconate titanate ceramics, Ba{sub 1-x}Bi{sub x}(Zr{sub 0.05}Ti{sub 0.95})O{sub 3}, have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi{sup 3+} substitutes A-site ion, and thereafter with higher Bi{sup 3+} content, it enters the B-site sub lattice. Substitution of Bi{sup 3+} ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.

  17. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance.

    Science.gov (United States)

    Kose, Nusret; Otuzbir, Ali; Pekşen, Ceren; Kiremitçi, Abdurrahman; Doğan, Aydin

    2013-08-01

    Despite progress in surgical techniques, 1% to 2% of joint arthroplasties become complicated by infection. Coating implant surfaces with antimicrobial agents have been attempted to prevent initial bacterial adhesion to implants with varying success rates. We developed a silver ion-containing calcium phosphate-based ceramic nanopowder coating to provide antibacterial activity for orthopaedic implants. We asked whether titanium prostheses coated with this nanopowder would show resistance to bacterial colonization as compared with uncoated prostheses. We inserted titanium implants (uncoated [n = 9], hydroxyapatite-coated [n = 9], silver-coated [n = 9]) simulating knee prostheses into 27 rabbits' knees. Before implantation, 5 × 10(2) colony-forming units of Staphylococcus aureus were inoculated into the femoral canal. Radiology, microbiology, and histology findings were quantified at Week 6 to define the infection, microbiologically by increased rate of implant colonization/positive cultures, histologically by leukocyte infiltration, necrosis, foreign-body granuloma, and devitalized bone, and radiographically by periosteal reaction, osteolysis, or sequestrum formation. Swab samples taken from medullary canals and implants revealed a lower proportion of positive culture in silver-coated implants (one of nine) than in uncoated (eight of nine) or hydroxyapatite-coated (five of nine) implants. Silver-coated implants also had a lower rate of colonization. No cellular inflammation or foreign-body granuloma was observed around the silver-coated prostheses. Silver ion-doped ceramic nanopowder coating of titanium implants led to an increase in resistance to bacterial colonization compared to uncoated implants. Silver-coated orthopaedic implants may be useful for resistance to local infection but will require in vivo confirmation.

  18. Thermoelectric Properties of SnO2 Ceramics Doped with Sb and Zn

    DEFF Research Database (Denmark)

    Yanagiya, S.; Van Nong, Ngo; Xu, Jianxiao Jackie

    2011-01-01

    Polycrystalline SnO2-based samples (Sn0.97−x Sb0.03Zn x O2, x = 0, 0.01, 0.03) were prepared by solid-state reactions. The thermoelectric properties of SnO2 doped with Sb and Zn were investigated from 300 K to 1100 K. X-ray diffraction (XRD) analysis revealed all XRD peaks of all the samples...

  19. Laser sintering of doped strontium aluminate via modified sol-gel for use as a ceramic pigment

    International Nuclear Information System (INIS)

    Soares, F.M. dos S.; Valerio, M.E.G.

    2017-01-01

    Powder of Dy"3"+ co-doped SrAl_2O_4 :Eu"3"+ was produced via proteic sol-gel method, a modified sol-gel route which allows the formation of oxides at lower temperatures than other methods. CO_2 laser sintering was used as a method for heat treatment, effective in reducing trivalent europium ions in doped samples. Thermal analysis of the precursors, performed by TG and DTA, revealed that the crystallization of SrAl_2O_4 phase occurred at approximately 1060 °C. X-ray diffraction showed that the samples, before and after sintering, had monoclinic and hexagonal phases formation. DLS technique revealed the presence of nanosized and micrometric particles, and particle agglomerates, confirmed by SEM images. Micrographs of the fracture surface of a sintered pellet revealed a high degree of densification caused by heat treatment. Photoluminescence measurements showed that the samples after synthesis and before heat treatment with laser had reddish emission, composed of characteristic narrow emission lines from Eu"3"+ and more intense emission when the samples were excited at 265 nm. The laser treatment promoted the reduction of Eu"3"+ to Eu"2"+ and this effect was confirmed by the presence of a wide emission band in the green region of the spectrum with a maximum emission obtained after excitation at 350 nm. The luminescent decay time of the thermally treated sample was approximately 100 min. Via XRF measurements of acquired frit and DTA and TG of the frit, pigment and mixtures of both, it was noticed good compatibility in terms of thermal processes, that indicated that the pigment has a potential to be used in ceramic tiles. (author)

  20. N-Doped TiO₂-Coated Ceramic Membrane for Carbamazepine Degradation in Different Water Qualities.

    Science.gov (United States)

    Luster, Enbal; Avisar, Dror; Horovitz, Inna; Lozzi, Luca; Baker, Mark A; Grilli, Rossana; Mamane, Hadas

    2017-07-31

    The photocatalytic degradation of the model pollutant carbamazepine (CBZ) was investigated under simulated solar irradiation with an N-doped TiO₂-coated Al₂O₃ photocatalytic membrane, using different water types. The photocatalytic membrane combines photocatalysis and membrane filtration in a single step. The impact of each individual constituent such as acidity, alkalinity, dissolved organic matter (DOM), divalent cations (Mg 2+ and Ca 2+ ), and Cl - on the degradation of CBZ was examined. CBZ in water was efficiently degraded by an N-doped TiO₂-coated Al₂O₃ membrane. However, elements added to the water, which simulate the constituents of natural water, had an impact on the CBZ degradation. Water alkalinity inhibited CBZ degradation mostly due to increase in pH while radical scavenging by carbonate was more dominant at higher values (>200 mg/L as CaCO₃). A negative effect of Ca 2+ addition on photocatalytic degradation was found only in combination with phosphate buffer, probably caused by deposition of CaHPO₄ or CaHPO₄·2H₂O on the catalyst surface. The presence of Cl - and Mg 2+ ions had no effect on CBZ degradation. DOM significantly inhibited CBZ degradation for all tested background organic compounds. The photocatalytic activity of N-doped TiO₂-coated Al₂O₃ membranes gradually decreased after continuous use; however, it was successfully regenerated by 0.1% HCl chemical cleaning. Nevertheless, dissolution of metals like Al and Ti should be monitored following acid cleaning.

  1. Ionic conductivity of co-doped Sc2O3-ZrO2 ceramics

    DEFF Research Database (Denmark)

    Omar, Shobit; bin Najib, Waqas; Chen, Weiwu

    2012-01-01

    The oxide ionic conductivity of Sc0.18Zr0.82O1.91 doped with 0.5 mol.% of both Yb2O3 and In2O3 is evaluated at various temperatures in air. Among various co-doped compositions, In0.02Sc0.18Zr0.80O1.90 exhibits the highest grain ionic conductivity followed by Yb0.02Sc0.18Zr0.80O1.90 at 500°C....... However, it also possesses phase transformation from c- to β-phase at 475°C on cooling. In the present work, an attempt is made to completely stabilize the cphase in In0.02Sc0.18Zr0.80O1.90 by substituting 0.5 mol.% of In2O3 with Yb2O3, which can enhance the ionic conductivity in co-doped compositions....

  2. Enhanced proton conductivity of yttrium-doped barium zirconate with sinterability in protonic ceramic fuel cells

    International Nuclear Information System (INIS)

    Park, Ka-Young; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young

    2015-01-01

    Highlights: • Report effects of ceramic processing methods on the electrical conductivity of BZY. • Present effects of sintering aids on the conductivity and density of BZY. • CuO is the most effective sintering aid for the BZY. • Polymer gelation is the most effective method in terms of conductivity of BZY. • Grain boundary conductivity of the polymer gelation BZY is higher than others. - Abstract: In this study, we report the effects of various ceramic processing methods with different sintering aids on the relative density, crystallinity, microstructure, and electrical conductivity of proton conducting BaZr 0.85 Y 0.15 O 3−δ (BZY) pellets in details. First, the BZY ceramic pellets are fabricated by the solid-state reactive sintering by adding diverse sintering aids including CuO, NiO, ZnO, SnO, MgO, and Al 2 O 3 . Among these, CuO is found to be the most effective sintering aid in terms of the sintering temperature and total conductivity. However, transition metals as sintering aids have detrimental effects on the electrical conductivity of the BZY electrolytes. Second, the BZY electrolytes have been synthesized by four different methods: the solid-state, combustion, hydrothermal, and polymer gelation methods. The BZY pellets synthesized by the polymer gelation method exhibit dense microstructure with a high relative density of 95.3%. Moreover, the electrical conductivity of the BZY pellets synthesized by the polymer gelation method is higher than those prepared by the solid-state methods under the same test conditions: 1.28 × 10 −2 S cm −1 (by the polymer gelation method) vs. 0.53 × 10 −2 S cm −1 by the solid-state method at 600 °C in wet 5% H 2 in Ar

  3. Electronic structure of Pr doped into superconducting Bi-Pb-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Egorov, A.I.; Karazhanova, G.I.; Smirnov, Yu.P.; Sovestnov, A.E.; Tyunis, A.V.; Shaburov, V.A.

    1992-07-01

    The shift of K α 1 and K β 1 X-ray lines of Pr in HTS-ceramic Bi 1.7 Pb 0.3 Sr 2-x Pr x Ca 2 Cu 3 O y (0,10≤x≤0,50, refer to PrF 3 ) are measured experimentally. The valence m(x), the charge q(x) and the 4f(x)-, 5d(x)-levels population of Pr are determined from experimental shifts. It is found that the Pr valence is near 3; the small valence increasing m≅3,04 at x=0,1 is observed. The small of Pr 5d-electron localization in ceramics in comparison with PrF 3 is revealed (∼0,1-0,2 5d-electron per Pr-atom). The probable cause of the superconductivity suppression in Y 1-x Pr xB a 2 Cu 3 O 7-δ system is discussed. 26 refs.; 6 figs.; 1 tab

  4. Luminescence properties of the Mg co–doped Ce:SrHfO_3 ceramics prepared by the Spark Plasma Sintering Method

    International Nuclear Information System (INIS)

    Chiba, Hiroyuki; Kurosawa, Shunsuke; Harata, Koichi; Murakami, Rikito; Yamaji, Akihiro; Ohashi, Yuji; Pejchal, Jan; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira

    2016-01-01

    1300 or 1400 °C pre–sintered Al/Ce/Mg:SrHfO_3 and Al/Ce:SrHfO_3 ceramics were prepared by the Spark Plasma Sintering (SPS) in order to search for a new scintillation material with a high–effective atomic number(Z_e_f_f) and good light output. The SrHfO_3 has a high Z_e_f_f of 60, and high gamma–ray detection efficiency is expected. Meanwhile it has a high melting point of over 2500 °C, and single crystal is hard to be grown. On the other hand, high melting materials can be prepared as ceramics, and the SPS method is a simple process to fabricate the ceramics within a few hours. Thus, we prepared the samples using the SPS method, and their optical and scintillation properties were investigated. We found that Al/Ce/Mg:SrHfO_3 and Al/Ce:SrHfO_3 ceramics had an emission wavelength at around 400 nm originating from 5d–4f transition of Ce"3"+. Moreover, Al/Ce/Mg:SrHfO_3 pre-sintered at a temperature of 1400 °C had a light output of approximately 5,000 ph/MeV. In this paper, the light output of Mg-co-doped samples was improved compared with the Mg-free ones. The light output also depends on the pre-sintering temperature. - Highlights: • Luminescence Properties of Al/Ce/Mg:SrHfO_3 ceramics scintillator was investigated. • These ceramics were prepared by the Spark Plasma Sintering Method. • Light output of the Al/Ce/Mg:SrHfO_3 ceramics was approximately 5,000 ph/MeV.

  5. Effect of Ga2O3 addition on the properties of Y2O3-doped AlN ceramics

    Directory of Open Access Journals (Sweden)

    Shin H.

    2015-01-01

    Full Text Available Effect Ga2O3 addition on the densification and properties of Y2O3-doped AlN ceramics was investigated under the constraint of total sintering additives (Y2O3 and Ga2O3 of 4.5 wt%. Ga was detected in the AlN grain as well as the grain boundary phases. YAlO3 and Y4Al2O9 were observed as the secondary crystalline phases in all of the investigated compositions. As the substitution of Ga2O3 for Y2O3 increased, the quantity of the Y4Al2O9 phase decreased while that of YAlO3 was more or less similar. Neither additional secondary phases was identified, nor was the sinterability inhibited by the Ga2O3 addition; the linear shrinkage and apparent density were above 20 percent and 3.34-3.37 g/cm3, respectively. However, the optical reflectance and the elastic modulus generally decreased whereas the Poisson ratio increased significantly. The dielectric constant and the loss tangent of 4.0Y2O3-0.5Ga2O3-95.5Y2O3 at the resonant frequency of 8.22 GHz were 8.63 and 0.003, respectively.

  6. Dielectric Relaxation Behavior of Bismuth Doped (Ba0.2Sr0.8 TiO3 Ceramics

    Directory of Open Access Journals (Sweden)

    Baptista, J. L.

    1999-12-01

    Full Text Available The dielectric properties of bismuth doped (Ba0.2Sr0.8TiO3 ceramics are investigated. The temperature dependence of the dielectric permittivity and loss factor were measured from 102 to 106Hz in the temperature range 12-320K. As the amount of Bi increases, the ferroelectric-paraelectric phase transition gets diffused and relaxed. In addition to this ferroelectric-paraelectric phase transition, other two sets of dielectric anomalies, located at 50-100K and 200-300K respectively, are also found. The possible relaxation mechanisms are briefly discussed.Las propiedades dieléctricas de cerámicos dopados con bismuto son investigadas. La dependencia con la temperatura de la permitividad dieléctrica y el factor de pérdidas se midieron entre 02 y 106Hz en el rango de temperatura 12-320K. Con el aumento del contenido en Bi, la transición de fase ferroeléctrica-paraléctrica se hace difusa y reloja. Junto a esta transición de fase los conjuntos de anomalías dieléctricas, localizados a 50-100k y 200-300k respectivamente, también se encontraron. Se discute brevemente los posibles mecanismos de relajación.

  7. Improved dielectric properties and grain boundary response in neodymium-doped Y_2_/_3Cu_3Ti_4O_1_2 ceramics

    International Nuclear Information System (INIS)

    Liang, Pengfei; Yang, Zupei; Chao, Xiaolian

    2016-01-01

    Rare earth element neodymium was adopted to refine grain and in turn increase the volume of grain boundary of Y_2_/_3Cu_3Ti_4O_1_2 ceramics, which could strongly increase the resistance of grain boundary. Proper amount of Nd substitution in Y_2_/_3_−_xNd_xCu_3Ti_4O_1_2 ceramics could significantly depress the low-frequency dielectric loss. When the doping level is 0.06 and 0.09, the samples exhibited a relatively low dielectric loss (below 0.050 between 0.3 and 50 kHz) and high dielectric constant above 11000 over a wide frequency range from 40 Hz to 100 kHz. Based on the ε′-T plots, dielectric relaxation intensity was substantially weakened by Nd doping so that the temperature stability of dielectric constant was improved obviously. The correlations between low-frequency dielectric loss and the resistance of grain boundary were revealed. After Nd doping, the activation energies for the conduction behavior in grain boundaries were significantly enhanced, and the activation energies for the dielectric relaxation process in grain boundaries were slightly influenced. - Highlights: • Significant decrease in dielectric loss of Y_2_/_3_−_xNd_xCu_3Ti_4O_1_2 ceramics was realized. • The enhanced grain boundary density is responsible for the lowered dielectric loss. • Nd doping could improve the temperature stability of dielectric constant. • Oxygen vacancies contribute to conduction and relaxation process of grain boundaries.

  8. Synthesis and characterization of ceramic powders of pure and doped with trivalent erbium barium tungstate

    International Nuclear Information System (INIS)

    Sousa, R.B. de; Nascimento, V.A. do; Matos, J. M.E. de; Santos, M.R.M.C.

    2014-01-01

    This research proposes the synthesis and characterization of pure and doped with Er"3"+ (1 and 2 %) barium tungstate powders prepared by the coprecipitation method. In order to characterize the obtained powders were used X-Ray Diffractometry, Raman Spectroscopy and Fourier Transform Infrared Spectroscopy. According to the standard XRD spectra, the crystals exhibited the presence of tetragonal scheelite structure without the presence of secondary phases. Raman spectra showed the presence of eleven vibrational modes and two modes were observed in the infrared spectra. The synthesized oxides showed good crystallinity and structurally ordered at short and long-range. (author)

  9. Direct Observation of Surface Potential Distribution in Insulation Resistance Degraded Acceptor-Doped BaTiO3 Multilayered Ceramic Capacitors

    Science.gov (United States)

    Hong, Kootak; Lee, Tae Hyung; Suh, Jun Min; Park, Jae-Sung; Kwon, Hyung-Soon; Choi, Jaeho; Jang, Ho Won

    2018-05-01

    Insulation resistance (IR) degradation in BaTiO3 is a key issue for developing miniaturized multilayer ceramic capacitors (MLCCs) with high capacity. Despite rapid progress in BaTiO3-based MLCCs, the mechanism of IR degradation is still controversial. In this study, we demonstrate the Al doping effect on IR degradation behavior of BaTiO3 MLCCs by electrical measurements and scanning Kelvin probe microscopy (SKPM). As the Al doping concentration in BaTiO3 increases, IR degradation of MLCCs seems to be suppressed from electrical characterization results. However, SKPM results reveal that the conductive regions near the cathode become lager with Al doping after IR degradation. The formation of conducting regions is attributed to the migration of oxygen vacancies, which is the origin of IR degradation in BaTiO3, in dielectric layers. These results imply that acceptor doping in BaTiO3 solely cannot suppress the IR degradation in MLCC even though less asymmetric IR characteristics and IR degradation in MLCCs with higher Al doping concentration are observed from electrical characterization. Our results strongly suggest that observing the surface potential distribution in IR degraded dielectric layers using SKPM is an effective method to unravel the mechanism of IR degradation in MLCCs.

  10. Dielectric-Spectroscopic and ac Conductivity Investigations on Manganese Doped Layered Na1.9Li0.1Ti3O7 Ceramics

    International Nuclear Information System (INIS)

    Pal, Dharmendra; Pandey, J. L.; Pal, Shri

    2009-01-01

    The dielectric-spectroscopic and ac conductivity studies firstly carried out on layered manganese doped Sodium Lithium Trititanates (Na 1.9 Li 0.1 Ti 3 O 7 ). The dependence of loss tangent (Tanδ), relative permittivity (ε r ) and ac conductivity (σ ac ) in temperature range 373-723K and frequency range 100Hz-1MHz studied on doped derivatives. Various conduction mechanisms are involved during temperature range of study like electronic hopping conduction in lowest temperature region, for MSLT-1 and MSLT-2. The hindered interlayer ionic conduction exists with electronic hopping conduction for MSLT-3. The associated interlayer ionic conduction exists in mid temperature region for all doped derivatives. In highest temperature region modified interlayer ionic conduction along with the polaronic conduction, exist for MSLT-1, MSLT-2, and only modified interlayer ionic conduction for MSLT-3. The loss tangent (Tanδ) in manganese-doped derivatives of layered Na 1.9 Li 0.1 Ti 3 O 7 ceramic may be due to contribution of electric conduction, dipole orientation, and space charge polarization. The corresponding increase in the values of relative permittivity may be due to increase in number of dipoles in the interlayer space while the corresponding decrease in the values of relative permittivity may be due to the increase in the leakage current due to the higher doping

  11. Characterization of composite metal-ceramic of nickel-oxide cerium doped gadolinium

    International Nuclear Information System (INIS)

    Silva, M.L.A. da; Varela, M.C.R.S.

    2016-01-01

    Composite nickel doped cerium oxide are used in SOFC anode materials. In this study we evaluated the effect of the presence of gadolinium on the properties of composite nickel and ceria and. The supports were synthesized by sol-gel method. The impregnation with nickel nitrate was taken sequentially, followed by calcination. The materials were characterized by X-ray diffraction, measurement of specific surface area, temperature programmed reduction, Raman spectroscopy. The presence of gadolinium retained the fluorite structure of ceria by forming a solid solution, also not influencing significantly on the specific surface area of the support. On the other hand, there was a decrease in the area catalysts, which can be attributed to sintering of nickel. Furthermore, addition of gadolinium favored the formation of intrinsic and extrinsic vacancies in cerium oxide, which leads to an increase in the ionic conductivity of the solid, desirable property for an SOFC anode catalyst. (author)

  12. Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopants

    KAUST Repository

    Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; He, Jian; Alshareef, Husam N.; Tritt, Terry M.

    2014-01-01

    Recently, we have reported a significant enhancement ( >70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO3 ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO3. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr1− x Pr x TiO3 ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.

  13. Ho-doped SrBi{sub 2}Nb{sub 2}O{sub 9} multifunctional ceramics with bright green emission and good electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lei; Hao, Jigong; Li, Wei [College of Materials Science and Engineering, Liaocheng University, Liaocheng (China); Xu, Zhijun; Chu, Ruiqing [School of Environmental and Materials Engineering, Yantai University, Yantai (China)

    2017-10-15

    Ho{sup 3+}-doped SrBi{sub 2}Nb{sub 2}O{sub 9} multifunctional ferroelectric ceramics with bright green light emission and good electrical properties were fabricated in this work. Under blue light excitation, samples showed bright green light with two typical emission bands: a strong green emission centered at 545 nm corresponding to the intra f-f transition from the excited {sup 5}S{sub 2} to the ground state {sup 5}I{sub 8} and a relatively weak red emission located 653 nm induced by the {sup 5}F{sub 5} → {sup 5}I{sub 8} transition of Ho{sup 3+}. Due to the concentration quenching effect, the intensity of emission was strongly dependent on the doping concentration. Furthermore, the electrical properties have improved by Ho{sup 3+} doping. At x = 0.004, samples exhibit optimal electrical properties with high Curie temperature (T{sub c} = 441 C) and large 2P{sub r} and d{sub 33} values (2P{sub r} = 15.54 μC cm{sup -2}, d{sub 33} = 19 pC/N). These results demonstrate that the SBN-xHo ceramics possess excellent multifunctional properties to achieve a variety of applications. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopants

    KAUST Repository

    Dehkordi, Arash Mehdizadeh

    2014-05-12

    Recently, we have reported a significant enhancement ( >70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO3 ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO3. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr1− x Pr x TiO3 ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.

  15. Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia

    Directory of Open Access Journals (Sweden)

    Francesco Baino

    2018-01-01

    Full Text Available This work deals with the synthesis and characterization of novel Fe-containing sol-gel materials obtained by modifying the composition of a binary SiO2-CaO parent glass with the addition of Fe2O3. The effect of different processing conditions (calcination in air vs. argon flowing on the formation of magnetic crystalline phases was investigated. The produced materials were analyzed from thermal (hot-stage microscopy, differential thermal analysis, and differential thermal calorimetry and microstructural (X-ray diffraction viewpoints to assess both the behavior upon heating and the development of crystalline phases. N2 adsorption–desorption measurements allowed determining that these materials have high surface area (40–120 m2/g and mesoporous texture with mesopore size in the range of 18 to 30 nm. It was assessed that the magnetic properties can actually be tailored by controlling the Fe content and the environmental conditions (oxidant vs. inert atmosphere during calcination. The glasses and glass-ceramics developed in this work show promise for applications in bone tissue healing which require the use of biocompatible magnetic implants able to elicit therapeutic actions, such as hyperthermia for bone cancer treatment.

  16. Electronic and surface properties of Ga-doped In{sub 2}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Regoutz, A., E-mail: a.regoutz@imperial.ac.uk [Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Egdell, R.G. [Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Morgan, D.J. [Cardiff Catalysis Institute (CCI), School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT (United Kingdom); Palgrave, R.G. [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Téllez, H.; Skinner, S.J.; Payne, D.J. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Watson, G.W. [School of Chemistry and CRANN, Trinity College Dublin, Dublin 2 (Ireland); Scanlon, D.O. [University College London, Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-09-15

    Graphical abstract: - Highlights: • The solubility limit of Ga in In{sub 2}O{sub 3} was established to be around 6%. • Ga doping causes a reduction in band gap although the band gap of Ga{sub 2}O{sub 3} is larger than that of In{sub 2}O{sub 3}. • The reduction in band gap is attributed to the role of lone pairs at surfaces and grain boundaries. • A pronounced surface segregation of Ga is observed. - Abstract: The limit of solubility of Ga{sub 2}O{sub 3} in the cubic bixbyite In{sub 2}O{sub 3} phase was established by X-ray diffraction and Raman spectroscopy to correspond to replacement of around 6% of In cations by Ga for samples prepared at 1250 °C. Density functional theory calculations suggest that Ga substitution should lead to widening of the bulk bandgap, as expected from the much larger gap of Ga{sub 2}O{sub 3} as compared to In{sub 2}O{sub 3}. However both diffuse reflectance spectroscopy and valence band X-ray photoemission reveal an apparent narrowing of the gap with Ga doping. It is tentatively concluded that this anomaly arises from introduction of Ga{sup +} surface lone pair states at the top of the valence band and structure at the top of the valence band in Ga-segregated samples is assigned to these lone pair states. In addition photoemission reveals a broadening of the valence band edge. Core X-ray photoemission spectra and low energy ion scattering spectroscopy both reveal pronounced segregation of Ga to the ceramic surface, which may be linked to both relief of strain in the bulk and the preferential occupation of surface sites by lone pair cations. Surprisingly Ga segregation is not accompanied by the development of chemically shifted structure in Ga 2p core XPS associated with Ga{sup +}. However experiments on ion bombarded Ga{sub 2}O{sub 3}, where a shoulder at the top edge of the valence band spectra provide a clear signature of Ga{sup +} at the surface, show that the chemical shift between Ga{sup +} and Ga{sup 3+} is too small to be

  17. Grain boundary defect compensation in Ti-doped BaFe{sub 0.5}Nb{sub 0.5}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaojun; Deng, Jianming; Liu, Saisai; Yan, Tianxiang; Fang, Liang; Liu, Laijun [Guilin University of Technology, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, College of Materials Science and Engineering, Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, Guilin (China); Peng, Biaolin [Guangxi University, School of Physical Science and Technology and Guangxi Key Laboratory for Relativistic Astrophysics, Nanning (China); Jia, Wenhao [Shanghai Getong Enterprise Co., Ltd., Shanghai (China); Mei, Zaoming [Henan LiHeng Building Materials Co., Ltd., Zhengzhou (China); Su, Hongbo [Henan Province Product Quality Supervision and Inspection Center, Zhengzhou (China)

    2016-09-15

    Giant dielectric ceramics Ba(Nb{sub 0.5}Fe{sub 0.5-x}Ti{sub x})O{sub 3} (BNFT) have been fabricated by a conventional solid-state reaction. According to X-ray diffraction analysis, the crystal structure of these ceramics can be described by the cubic centrosymmetric with Pm-3m space group. The real part (ε') of dielectric permittivity and dielectric loss (tan δ) of the BNFT ceramics was measured in a frequency range from 40 Hz to 100 MHz at room temperature. The (ε') of all these samples displays a high value (∝6500) and a small frequency-dependence from 1 kHz to 1 MHz. We have established a link between conductivity activation energy and defect compensation at grain boundaries. The Ti{sup 4+}-doped Ba(Nb{sub 0.5}Fe{sub 0.5})O{sub 3} as a donor makes a great influence on the grain boundary behavior, which restricts the migration of oxygen vacancy and depresses dielectric loss factor for Ba(Nb{sub 0.5}Fe{sub 0.5})O{sub 3} ceramics. (orig.)

  18. Preparation and dielectric properties of Dy, Er-doped BaZr0.2Ti0.8O3 ceramics

    International Nuclear Information System (INIS)

    Hao Sue; Sun Liang; Huang Jinxiang

    2008-01-01

    Ba(Zr x Ti 1-x )O 3 nanopowders and ceramics with different Zr/Ti ratios of 1:9; 2:8; 2.5:7.5; 3.5:6.5 and 4:6 (x = 0.1, 0.2, 0.25, 0.35, 0.4) have been prepared by sol-gel technology using inorganic zirconium as raw materials, and Zr/Ti ratio of 2:8 is determined as the best one according to the measurements of dielectric properties. So the modified Ba(Zr 0.2 ,Ti 0.8 )O 3 ceramics doped by Dy and Er (the additive content is 0.10%, 0.15%, 0.20%, 0.30% and 0.50% molar ratio, respectively) have been prepared, and the effects of rare earth on the microstructure and dielectric properties of Ba(Zr 0.2 ,Ti 0.8 )O 3 ceramics have been studied. The experimental results show that the effect of Er is better than that of Dy in improving the dielectric properties of BaZr 0.2 Ti 0.8 O 3 ceramics. When the content of Er is 0.15 mol%, the dielectric constant is the highest of 12767, while the dielectric loss is lowered to 0.011; the frequency stabilities and the temperature dependence are also better, which is suitable for application in condenser field

  19. New Ce{sup 3+} doped Ca{sub 2}YMgScSi{sub 3}O{sub 12} garnet ceramic phosphor for white LED converters

    Energy Technology Data Exchange (ETDEWEB)

    Khaidukov, N. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Zorenko, Yu.; Zorenko, T.; Iskaliyeva, A.; Paprocki, K. [Institute of Physics, Kazimierz Wielki University Bydgoszcz (Poland); Zhydachevskii, Y.; Suchocki, A. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Deun, R. van [L3 - Luminescent Lanthanide Lab, Department of Inorganic and Physical Chemistry, Ghent University (Belgium); Batentschuk, M. [Department of Materials Science and Engineering VI, Institute of Materials for Energy and Electronic Technology (i-IMEET), University of Erlangen-Nuremberg, Erlangen (Germany)

    2017-05-15

    The results on crystallization and investigation of the luminescent properties of a new prospective ceramic phosphor based on the Ce{sup 3+} doped Ca{sub 2}YMgScSi{sub 3}O{sub 12} silicate garnet are presented for the first time in this work. The luminescent properties of Ca{sub 2}YMgScSi{sub 3}O{sub 12}:Ce were compared with the properties of the reference Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Ce ceramic sample. Without any doubt, the results of this research can be suitable for the development of a new generation of white converters based on the Ca{sup 2+}-Si{sup 4+} garnet compounds. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Effect of paramagnetic manganese ions doping on frequency and high temperature dependence dielectric response of layered Na1.9Li0.1Ti3O7 ceramics

    International Nuclear Information System (INIS)

    Pal, Dharmendra; Pandey, J.L.

    2010-01-01

    The manganese doped layered ceramic samples (Na 1.9 Li 0.1 )Ti 3 O 7 : XMn (0.01 ≤ X ≤ 0.1) have been prepared using high temperature solid state reaction. The room temperature electron paramagnetic resonance (EPR) investigations exhibit that at lower percentage of doping the substitution of manganese ions occur as Mn 3+ at Ti 4+ sites, whereas for higher percentage of doping Mn 2+ ions occupy the two different interlayer sodium/lithium sites. In both cases, the charge compensation mechanism should operate to maintain the overall charge neutrality of the lattice. The manganese doped derivatives of layered Na 1.9 Li 0. 1Ti 3 O 7 (SLT) ceramics have been investigated through frequency dependence dielectric spectroscopy in this work. The results indicate that the dielectric losses in these ceramics are the collective contribution of electric conduction, dipole orientation and space charge polarization. Smeared peaks in temperature dependence of permittivity plots suggest diffuse nature of high temperature ferroelectric phase transition. The light manganese doping in SLT enhances the dielectric constant. However, manganese doping decreases dielectric loss due to inhibition of domain wall motion, enhances electron-hopping conduction, and impedes the interlayer ionic conduction as well. Manganese doping also gives rise to contraction of interlayer space. (author)

  1. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3-0.33BaTiO3 multiferroic ceramics

    KAUST Repository

    Hang, Qiming

    2013-09-07

    0.67BiFeO3-0.33BaTiO3 multiferroic ceramics doped with x mol% MnO2 (x = 2–10) were synthesized by solid-state reaction. The formation of a perovskite phase with rhombohedral symmetry was confirmed by X-ray diffraction (XRD). The average grain sizes were reduced from 0.80 μm to 0.50 μm as increasing the Mn-doped levels. Single crystalline nature of the grains was revealed by high-resolution transmission electron microscopy (HRTEM) images and electron diffraction patterns. Polar nano-sized ferroelectric domains with an average size of 9 nm randomly distributed in the ceramic samples were revealed by TEM images. Ferroelectric domain lamellae (71° ferroelectric domains) with an average width of 5 nm were also observed. Vibrational modes were examined by Raman spectra, where only four Raman peaks at 272 cm−1 (E-4 mode), 496 cm−1 (A 1-4 mode), 639 cm−1, and 1338 cm−1 were observed. The blue shifts in the E-4 and A 1-4 Raman mode frequencies were interpreted by a spring oscillator model. The dieletric constants of the present ceramics as a function of the Mn-doped levels exhibited a V-typed curve. They were in the range of 350–700 measured at 103 Hz, and the corresponding dielectric losses were in range of 0.43–0.96, approaching to 0.09 at 106 Hz.

  2. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3-0.33BaTiO3 multiferroic ceramics

    KAUST Repository

    Hang, Qiming; Zhou, Wenke; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2013-01-01

    0.67BiFeO3-0.33BaTiO3 multiferroic ceramics doped with x mol% MnO2 (x = 2–10) were synthesized by solid-state reaction. The formation of a perovskite phase with rhombohedral symmetry was confirmed by X-ray diffraction (XRD). The average grain sizes were reduced from 0.80 μm to 0.50 μm as increasing the Mn-doped levels. Single crystalline nature of the grains was revealed by high-resolution transmission electron microscopy (HRTEM) images and electron diffraction patterns. Polar nano-sized ferroelectric domains with an average size of 9 nm randomly distributed in the ceramic samples were revealed by TEM images. Ferroelectric domain lamellae (71° ferroelectric domains) with an average width of 5 nm were also observed. Vibrational modes were examined by Raman spectra, where only four Raman peaks at 272 cm−1 (E-4 mode), 496 cm−1 (A 1-4 mode), 639 cm−1, and 1338 cm−1 were observed. The blue shifts in the E-4 and A 1-4 Raman mode frequencies were interpreted by a spring oscillator model. The dieletric constants of the present ceramics as a function of the Mn-doped levels exhibited a V-typed curve. They were in the range of 350–700 measured at 103 Hz, and the corresponding dielectric losses were in range of 0.43–0.96, approaching to 0.09 at 106 Hz.

  3. Effects of Sr2+ doping on the electrical properties of (Bi0.5Na0.50.94Ba0.06TiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Amrita Singh

    2015-03-01

    Full Text Available The influence of SrTiO3 addition on the microstructure and various electrical properties of (Bi0.5Na0.50.94Ba0.06TiO3 (BNTBT6 ceramics, fabricated by a conventional high temperature solid state reaction, was investigated. Analysis of X-ray diffraction patterns revealed the formation of phase pure materials with tetragonal unit cell structure, tetragonality parameter c/a in the interval from 0.9940 to 1.0063 and crystallite sizes ranging from 33–76 nm for addition of 0.2 to 1 wt.% of SrTiO3. SEM studies indicated that Sr2+ doping led to decrease in grain size and non-homogeneity of grain distribution for higher SrTiO3 amount (>0.6 wt.%. Complex impedance, modulus, and conductivity studies indicated the presence of grains and grain boundary contribution, non-Debye type of relaxation and NTCR behaviour of the test ceramic samples. Temperature dependent real part of complex permittivity showed peaks at 475 °C and the dielectric loss tangent showed peaks corresponding to 125 °C and 475 °C for almost all compositions. AC activation energies, computed using Arrhenius relation in the temperature range of 325–500 °C for the BNTBT6 ceramic compositions having SrTiO3 concentration from 0.2 to 1.0 wt.%, were seen to have maximal values at the lowest measurement frequency. Amongst the different chosen doped BNTBT6 ceramic compositions, the composition having 0.6 wt.% of SrTiO3 showed the best ferroelectric and piezoelectric response with maximum value of Pr (8.24 µC/cm2, minimum value of Ec (5.73 kV/mm and maximum d33 value (∼46 pC/N.

  4. Defect structure in lithium-doped polymer-derived SiCN ceramics characterized by Raman and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Erdem, Emre; Mass, Valentina; Gembus, Armin; Schulz, Armin; Liebau-Kunzmann, Verena; Fasel, Claudia; Riedel, Ralf; Eichel, Rüdiger-A

    2009-07-21

    Lithium-doped polymer-derived silicon carbonitride ceramics (SiCN:Li) synthesized at various pyrolysis temperatures, have been investigated by means of multifrequency and multipulse electron paramagnetic resonance (EPR) and Raman spectroscopy in order to determine different defect states that may impact the materials electronic properties. In particular, carbon- and silicon-based 'dangling bonds' at elevated, as well as metallic networks containing Li0 in the order of 1 microm at low pyrolysis temperatures have been observed in concentrations ranging between 10(14) and 10(17) spins mg(-1).

  5. Synthesis and characterization of electrolyte-grade 10%Gd-doped ceria thin film/ceramic substrate structures for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Chourashiya, M. G.; Bharadwaj, S. R.; Jadhav, L. D.

    2010-01-01

    In the present research, spray pyrolysis technique is employed to synthesize 10%Gd-doped ceria (GDC) thin films on ceramic substrates with an intention to use the "film/substrate" structure in solid oxide fuel cells. GDC films deposited on GDC substrate showed enhanced crystallite formation....... In case of NiO-GDC composite substrate, the thickness of film was higher (∼ 13 μm) as compared to the film thickness on GDC substrate (∼ 2 μm). The relative density of the films deposited on both the substrates was of the order of 95%. The impedance measurements revealed that ionic conductivity of GDC...

  6. Large thermoelectric power factor in Pr-doped SrTiO3-δ ceramics via grain-boundary-induced mobility enhancement

    KAUST Repository

    Mehdizadeh Dehkordi, Arash

    2014-04-08

    We report a novel synthesis strategy to prepare high-performance bulk polycrystalline Pr-doped SrTiO3 ceramics. A large thermoelectric power factor of 1.3 W m-1 K-1 at 500 °C is achieved in these samples. In-depth investigations of the electronic transport and microstructure suggest that this significant improvement results from a substantial enhancement in carrier mobility originating from the formation of Pr-rich grain boundaries. This work provides new directions to higher performance oxide thermoelectrics as well as possibly other properties and applications of this broadly functional perovskite material. © 2014 American Chemical Society.

  7. Large thermoelectric power factor in Pr-doped SrTiO3-δ ceramics via grain-boundary-induced mobility enhancement

    KAUST Repository

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna K.; Darroudi, Taghi; Graff, Jennifer W.; Schwingenschlö gl, Udo; Alshareef, Husam N.; Tritt, Terry M.

    2014-01-01

    We report a novel synthesis strategy to prepare high-performance bulk polycrystalline Pr-doped SrTiO3 ceramics. A large thermoelectric power factor of 1.3 W m-1 K-1 at 500 °C is achieved in these samples. In-depth investigations of the electronic transport and microstructure suggest that this significant improvement results from a substantial enhancement in carrier mobility originating from the formation of Pr-rich grain boundaries. This work provides new directions to higher performance oxide thermoelectrics as well as possibly other properties and applications of this broadly functional perovskite material. © 2014 American Chemical Society.

  8. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    Science.gov (United States)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  9. Stable glass-ceramic sealants for solid oxide fuel cells: Influence of Bi{sub 2}O{sub 3} doping

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Ashutosh; Ferreira, Jose M.F. [Department of Ceramics and Glass Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); Pascual, Maria J. [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain)

    2010-07-15

    Diopside (CaMgSi{sub 2}O{sub 6}) based glass-ceramics in the system SrO-CaO-MgO-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-La{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-SiO{sub 2} have been synthesized for sealing applications in solid oxide fuel cells (SOFC). The parent glass composition in the primary crystallization field of diopside has been doped with different amounts of Bi{sub 2}O{sub 3} (1, 3, 5 wt.%). The sintering behavior by hot-stage microscopy (HSM) reveals that all the investigated glass compositions exhibit a two-stage shrinkage behavior. The crystallization kinetics of the glasses has been studied by differential thermal analysis (DTA) while X-ray diffraction adjoined with Rietveld-R.I.R. analysis have been employed to quantify the amount of crystalline and amorphous phases in the glass-ceramics. Diopside and augite crystallized as the primary crystalline phases in all the glass-ceramics. The coefficient of thermal expansion (CTE) of the investigated glass-ceramics varied between (9.06-10.14) x 10{sup -6} K{sup -1} after heat treatment at SOFC operating temperature for a duration varying between 1 h and 200 h. Further, low electrical conductivity, good joining behavior and negligible reactivity with metallic interconnects (Crofer22 APU and Sanergy HT) in air indicate that the investigated glass-ceramics are suitable candidates for further experimentation as sealants in SOFC. (author)

  10. Effects of surrounding powder in sintering process on the properties of Sb and Mn- doped barium-strontium titanate PTCR ceramics

    Directory of Open Access Journals (Sweden)

    Pornsuda Bomlai

    2006-05-01

    Full Text Available In this research, the effects of surrounding powder used during sintering of Sb and Mn doped bariumstrontium titanate (BST ceramics were studied. The ceramic samples were prepared by a conventional mixed-oxide method and placed on different powders during sintering. Phase formation, microstructure and PTCR behavior of the samples were then observed. Microstructures and PTCR behavior varied with the type of surrounding powder, whereas the crystal structure did not change. The surrounding powder has more effects on the shape of the grain than on the size. The grain size of samples was in the range of 5-20 μm. The most uniform grain size and the highest increase of the ratio of ρmax/ρRT were found to be about 106 for samples which had been sintered on Sb-doped BST powder. This value was an order of magnitude greater than for samples sintered on a powder of the equivalent composition to that of the sample pellet.

  11. Dy3+-doped nano-glass ceramics comprising NaAlSiO4 and NaY9Si6O26 nanocrystals for white light generation

    International Nuclear Information System (INIS)

    Bagga, Ruchika; Achanta, Venu Gopal; Goel, Ashutosh; Ferreira, José M.F.; Singh, Narinder Pal; Singh, Davinder Paul; Falconieri, Mauro; Sharma, Gopi

    2013-01-01

    Highlights: ► Environment safe glass ceramics were fabricated via heat treatment. ► Optical and structural properties were studied before and after heat treatment. ► White light generation with single RE 3+ ion-doping was observed under UV excitation. ► Emission color temperature was between fluorescent tube and daylight values. - Abstract: The radiative emission properties of the Dy 3+ ions in oxyfluoride glasses and glass ceramics have been investigated for the generation of white light. The X-ray diffraction pattern of the glass ceramics reveals the presence of NaAlSiO 4 nanocrystals along with secondary phase of NaY 9 Si 6 O 26 in the glass matrix after a suitable thermal treatment of the pristine glasses. Intense white light emission has been observed when the samples are excited with 350 nm light. Yellow to blue emission intensity ratios and chromaticity color coordinates have been determined from the visible luminescence spectra. All color coordinates are found to lie in the white region of the chromaticity color diagram proposing the suitability of the present studied materials for color display devices.

  12. Temperature-controlled down-conversion luminescence behavior of Eu3+ -doped transparent MF2 (M = Ba, Ca, Sr) glass ceramics.

    Science.gov (United States)

    Zhou, B; E, C Q; Bu, Y Y; Meng, L; Yan, X H; Wang, X F

    2017-03-01

    Eu 3 + -doped transparent glass ceramics containing MF 2 (M = Ba, Ca, Sr) nanocrystals were fabricated using a melt-quenching method, and the resulting structures were studied using X-ray diffraction. Levels 5 D 1 and 5 D 0 of Eu 3 + ions were verified as thermally coupled levels using the fluorescence intensity ratio method. The fluorescence intensity ratios, optical temperature sensitivity and thermal quenching ratios of the transparent glass ceramics were studied as a function of temperature. With an increase in temperature, the relative sensitivity (S R ) decreased sharply at first, then slowly increased, before finally decreasing. The minimum S R values of GCBaF 2 (GCB), GCCaF 2 (GCC) and GCSrF 2 (GCS) were 2.8 × 10 -4 , 0.8 × 10 -4 and 1.9 × 10 - 4  K -1 at 360, 269 and 319 K, respectively. Glass ceramics with an intense emission intensity can be used to convert the measured spectrum into temperature and may have an important role in temperature detectors. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Dielectric and magnetic properties of Ba-, La- and Pb-doped Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3 perovskite ceramics

    Directory of Open Access Journals (Sweden)

    Radheshyam Rai

    2014-04-01

    Full Text Available The multiferroic Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3, (where M = Ba (DB, La (DL and Pb (DP has been synthesized by using solid-state reaction technique. Effects of Ba, La and Pb substitution on the structure, electrical and ferroelectric properties of Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3 samples have been studied by performing X-ray diffraction, dielectric and magnetic measurements. The crystal structures of the ceramic samples have a tetragonal phase. The vibrating sample magnetometer (VSM measurement shows a significant change in the magnetic properties of Ba-doped Bi0.8Gd0.1M0.1Fe0.9Ti0.1O3 as compared to La- and Pb-doped ceramics. It is seen that coercive field (HC and remanent magnetization (MR increases with Ba-doped ceramics but decreases for La- and Pb-doped ceramics.

  14. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  15. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  16. Electro-caloric effect in lead-free Sn doped BaTiO3 ceramics at room temperature and low applied fields

    International Nuclear Information System (INIS)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra; Bag, Pallab; Rawat, R.; Gupta, S. M.; Gupta, Ajay

    2014-01-01

    Structural, dielectric, ferroelectric (FE), 119 Sn Mössbauer, and specific heat measurements of polycrystalline BaTi 1–x Sn x O 3 (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and 119 Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phase transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.

  17. Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity

    Directory of Open Access Journals (Sweden)

    Oguzhan Avciata

    2018-02-01

    Full Text Available In this work, Ag doped nano TiO2 photocatalysts were synthesized in powder form by hydrothermal method at 180 ºC in 120 min using different reduction agents. The synthesized powders were characterized by powder X-ray diffraction (XRD, Energydispersive X-ray spectroscopy (EDS, Surface area measurements (BET, Transmission electron microscopy (TEM and scanning electron microscopy (SEM analyses. The effect of reduction agents on the morphological properties of Ag doped nano TiO2 has been studied. We have been observed that the use of different reduction agents affects the particle size and surface area. Ag doped nano TiO2 photocatalysts were coated to the ceramic pellets by dip coating technique for photocatalytic study. Photocatalytic properties of the synthesized powder were examined in a circulating aquarium filled with indigo blue (IB solution under UV irradiation. Periodical UV spectrophotometric analysis showed that indigo blue (IB has been degraded and its concentration has decreased under UV irradiation by time.

  18. Nd3+-doped TeO2-Bi2O3-ZnO transparent glass ceramics for laser application at 1.06 μm

    Science.gov (United States)

    Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian

    2017-04-01

    The high crystallinity transparent glass ceramics based on Nd3+-doped 70TeO2-15Bi2O3-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd2O3 content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd2O3 enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi2Te4O11 in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd2O3 content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd2O3 content due to the obvious energy migration among Nd3+. According to the extreme strong emission band around 1062 nm and the optimum Nd2O3 content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications.

  19. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part I: screening of doping oxidants

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Lithium silicate-based glass-ceramics with high coefficients of thermal expansion, designed to form matched hermetic seals in 304L stainless steel housing, show little evidence of interfacial chemical bonding, despite extensive inter-diffusion at the glass-ceramic-stainless steel (GC-SS) interface. A series of glass-ceramic compositions modified with a variety of oxidants, AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO3 and WO3, are examined for the feasibility of forming bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The oxidants were selected according to their Gibbs free energy to allow for oxidation of Cr/Mn/Si from stainless steel, and yet to prevent a reduction of P2O5 in the glass-ceramic where the P2O5 is to form Li3PO4 nuclei for growth of high expansion crystalline SiO2 phases. Other than the CuO and CoO modified glass-ceramics, bonding from interfacial redox reactions were not achieved in the modified glass-ceramics, either because of poor wetting on the stainless steel or a reduction of the oxidants at the surface of glass-ceramic specimens rather than the GC-SS interface.

  20. Scintillation properties of transparent Lu{sub 3}Al{sub 5}O{sub 12} (LuAG) ceramics doped with different concentrations of Pr{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki; Fukabori, Akihiro; Fujimoto, Yutaka; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira; Chani, Valery [IMRAM, Tohoku University, 2-1-1 Katahira Aoba-ku, 980-8577 Sendai (Japan); Ikesue, Akio [World Labo, Co. Ltd., Mutsuno 2-4-1, Atsuta, 456-0023 Nagoya (Japan); Kataoka, Jun [School of Advanced Science and Engineering,Waseda University, Ohkubo 3-4-1, Shinjuku, 169-0072 Tokyo (Japan)

    2011-01-15

    Transparent ceramics of Pr-doped (0.2 mol%, 0.6 mol%, 1 mol%, and 2 mol%) Lu{sub 3}Al{sub 5}O{sub 12} (LuAG) scintillators produced by the sintering method are discussed. These materials were cut to the specimens with physical dimensions of 5 x 5 x 2 mm{sup 3}. Similar size specimens were also prepared from Czochralski grown Pr:LuAG single crystals to compare scintillation properties. Their transmittance and radio luminescence spectra were evaluated. All specimens were highly transparent in wavelength range above 300 nm, and intense Pr{sup 3+} 5d-4f emission was detected around 310 and 370 nm under excitation with X-ray. Under {sup 137}Cs {gamma}-ray is irradiation, 2 keV photo-absorption peaks were also clearly observed in each sample. The Pr 0.6 mol% doped LuAG ceramics demonstrated highest light yield achievable among the ceramics, and it was half of that observed in the single crystals. Under pulse X-ray excitation, the decay time constants became faster when Pr concentration increased, and. the fastest decay ({proportional_to}5.7 ns time constant) was noticed in the 2 mol% doped ceramic. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Dual-enhancement of ferro-/piezoelectric and photoluminescent performance in Pr{sup 3+} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yongbin; Jia, Yanmin, E-mail: wuzheng@zjnu.cn, E-mail: ymjia@zjnu.edu.cn; Wu, Jiang; Shen, Yichao [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Wu, Zheng, E-mail: wuzheng@zjnu.cn, E-mail: ymjia@zjnu.edu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 (China); Luo, Haosu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-07-28

    A mutual enhancement action between the ferro-/piezoelectric polarization and the photoluminescent performance of rare earth Pr{sup 3+} doped (K{sub 0.5}Na{sub 0.5})NbO{sub 3} (KNN) lead-free ceramics is reported. After Pr{sup 3+} doping, the KNN ceramics exhibit the maximum enhancement of ∼1.2 times in the ferroelectric remanent polarization strength and ∼1.25 times in the piezoelectric coefficient d{sub 33}, respectively. Furthermore, after undergoing a ferro-/piezoelectric polarization treatment, the maximum enhancement of ∼1.3 times in photoluminescence (PL) was observed in the poled 0.3% Pr{sup 3+} doped sample. After the trivalent Pr{sup 3+} unequivalently substituting the univalent (K{sub 0.5}Na{sub 0.5}){sup +}, A-sites ionic vacancies will occur to maintain charge neutrality, which may reduce the inner stress and ease the domain wall motions, yielding to the enhancement in ferro-/piezoelectric performance. The polarization-induced enhancement in PL is attributed to the decrease of crystal symmetry abound the Pr{sup 3+} ions after polarization. The dual-enhancement of the ferro-/piezoelectric and photoluminescent performance makes the Pr{sup 3+} doped KNN ceramic hopeful for piezoelectric/luminescent multifunctional devices.

  2. Inter-granular glassy phases in the low-CaO-doped HIPed Si{sub 3}N{sub 4} ceramics. A review

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Hui [State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Inst. of Ceramics, Chinese Academy of Sciences, SH (China); Tanaka, Isao [Dept. of Materials Science and Engineering, Kyoto Univ. (Japan); Cannon, Rowland M. [Materials Science Div., Lawrence Berkeley National Lab., CA (United States); Pan, Xiaoqing [Dept. of Materials Science and Engineering, Michigan Univ., Ann Arbor (United States); Ruehle, Manfred [Max Planck Inst. for Metals Research, Stuttgart (Germany)

    2010-01-15

    This review outlines the essence of a progressive study on the glassy inter-granular film (IGF) in a model ceramic system, the low-CaO-doped HIPed high-purity Si{sub 3}N{sub 4}. This was initiated from the finding of a systematic variation of equilibrium IGF thickness following the dopant chemistry, manifesting its fundamental important to ceramic processing. By employing analytical transmission electron microscopy to measure the local chemistry in IGF, however, significant discrepancy was found between trends of local IGF chemistry and thickness. A stable IGF composition was revealed in this system, while a bi-level distribution of Ca segregation establishes a correspondence between the IGF structure and the surface crystallography. The detection of similar levels of nitrogen in IGF through the whole series further supports the presence of a rather stable IGF chemistry. After the saturation of dopants in the stable IGF, extra CaO was found to re-distribute in pockets by enrichment at tips, leading to a liquid phase separation with the Ca-rich phase wetting the entrance zone contacting IGF. The perspective for establishing a comprehensive correlation between the inter-granular phases and the bi-modal microstructure induced by faster growth of basal facets is briefly discussed to pave the way for future work. (orig.)

  3. Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization

    Science.gov (United States)

    Kumar, Manoj; Yadav, K. L.

    2007-12-01

    Single-phase BiFe1-xMnxO3 multiferroic ceramics have been synthesized by rapid liquid phase sintering method to study the influence of Mn substitution on their crystal structure, dielectric, magnetic, and ferroelectric behaviors. From XRD analysis it is seen that Mn substitution does not affect the crystal structure of the BiFe1-xMnxO3 system. An enhancement in magnetization was observed for BiFe1-xMnxO3 ceramics. However, the ferooelectric hysteresis loops were not really saturated, we observed a spontaneous polarization of 10.23μC /cm2 under the applied field of 42kV/cm and remanent polarization of 3.99μC/cm2 for x =0.3 ceramic.

  4. The effect of secondary abnormal grain growth on the dielectric properties of La/Mn co-doped BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Živković Lj.M.

    2006-01-01

    Full Text Available La/Mn-codoped BaTiO3 systems, obtained by solid state reactions, were investigated regarding their microstructure characteristics and ferroelectric properties. Different concentrations of La2O3 were used for doping, ranging from 0.1 to 5.0 at% La, while a content of Mn was constant at 0.05 at%. For all samples sintered below the eutectic temperature (1332°C, a uniform microstructure was formed with average grain size from 1-3 μm. The appearance of secondary abnormal grains with (111 double twins grains with curved or faceted grain boundaries were observed in La/Mn BaTiO3 ceramics after sintering at temperatures above the eutectic temperature. All sintered samples exhibited a high electrical resistivity. Better dielectric performances were obtained for low doped samples (0.1 at% La sintered at 1350°C. For samples with La content above 1.0 at% a lower value in dielectric permittivity at higher sintering temperature is due to secondary abnormal grain growth, and to the presence of a non-ferroelectric phase rich in La. The Curie constant together with other dielectric parameters were also calculated.

  5. Indium–tin-oxide coatings for applications in photovoltaics and displays deposited using rotary ceramic targets: Recent insights regarding process stability and doping level

    International Nuclear Information System (INIS)

    Lippens, Paul; Büchel, Michal; Chiu, David; Szepesi, Chris

    2013-01-01

    Several aspects related to high power sputtering with industrial scale sintered ceramic rotary indium–tin-oxide (ITO) targets are presented in the first part of this paper. In particular, the process stability and target integrity upon sputtering with ≥ 20 kW/m power load and the influence of the gap size between cylindrical segments are discussed. Results show that, in order to avoid nodule formation and deposition rate fluctuations, direct current (DC) power load needs to be limited well below 20 kW/m over long sputter runs. Additional work demonstrates that at a gap size at or below 0.15 mm, strongly adhering deposits form readily between cylindrical segments which are not observed with standard 0.35 mm gaps. The influence of Sn doping level on electro-optical properties of thin films targeting an application such as hetero-junction c-Si solar cells is also investigated. Again, rotary targets operated at high power (10 kW/m) are used, including standard grade ITO containing 10 wt.% SnO 2 and another composition with only 3 wt.% SnO 2 . The influence of H 2 and different concentrations of O 2 in the sputter gas is analysed for both target materials. Results indicate that although coatings derived from the lower-doped ITO exhibit considerably less absorption in the NIR due to lower carrier concentrations, their resistivity is nearly 30% higher than that from the standard ITO coating

  6. Sol-Gel Derived Mg-Based Ceramic Scaffolds Doped with Zinc or Copper Ions: Preliminary Results on Their Synthesis, Characterization, and Biocompatibility

    Directory of Open Access Journals (Sweden)

    Georgios S. Theodorou

    2016-01-01

    Full Text Available Glass-ceramic scaffolds containing Mg have shown recently the potential to enhance the proliferation, differentiation, and biomineralization of stem cells in vitro, property that makes them promising candidates for dental tissue regeneration. An additional property of a scaffold aimed at dental tissue regeneration is to protect the regeneration process against oral bacteria penetration. In this respect, novel bioactive scaffolds containing Mg2+ and Cu2+ or Zn2+, ions known for their antimicrobial properties, were synthesized by the foam replica technique and tested regarding their bioactive response in SBF, mechanical properties, degradation, and porosity. Finally their ability to support the attachment and long-term proliferation of Dental Pulp Stem Cells (DPSCs was also evaluated. The results showed that conversely to their bioactive response in SBF solution, Zn-doped scaffolds proved to respond adequately regarding their mechanical strength and to be efficient regarding their biological response, in comparison to Cu-doped scaffolds, which makes them promising candidates for targeted dental stem cell odontogenic differentiation and calcified dental tissue engineering.

  7. Effect of MnO2 doping and temperature treatment on optical energy band gap properties in Zn-Bi-Ti-O varistor ceramics

    International Nuclear Information System (INIS)

    Ghazali, M. S. M.; Abdullah, W. R. W.; Zakaria, A.; Kamari, H. M.; Rizwan, Z.

    2016-01-01

    In this study, the optical band-gap energy ( Eg ) was investigated with respect to MnO 2 and sintering temperatures on ZnO based varistor ceramics. Eg of the ceramic (99-x) mol% ZnO + 0.5 mol% Bi 2 O 3 + 0.5 mol% TiO 2 + × MnO 2 where × = 0, 0.2, 0.4, 0.6 and 0.8 mol%, were determined using UV-Vis spectrophotometer. The samples was prepared through solid-state route and sintered at the sintering temperature from 1110, 1140 and 1170 °C for 45 and 90 min in open air. At no doping of MnO 2 , the values of Eg are 2.991 ± 0.001, 2.989 ± 0.001 eV for 45 and 90 min sintering time; respectively. Eg was decreased to 2.192 ± 0.001 eV at 1140 °C at 45 min sintering time. Similar result of Eg was observed at longer heat treatment. Further addition of dopant causing the Eg decreases rapidly to 2.099 and 2.106 ± 0.001 eV at 45 and 90 min sintering time; respectively. XRD analysis indicates that there is hexagonal ZnO and secondary phases, Zn 2 MnO 4 , Bi 4 Ti 3 O 12 and Zn 2 Ti 3 O 8 . The relative density of the sintered ceramics decreased or remain constant with the increase of MnO 2 concentration for 45 min sintering time, however, further prolong sintering time; the relative density decreases form 90.25 to 88.35%. This indicates the pores are increasing with the increase of heat treatment. The variation of sintering temperatures to the optical band gap energy of based ZnO varistor doped with MnO 2 due to the formation of interface states. (paper)

  8. Electrical properties of Sb and Cr-doped PbZrO3-PbTiO3-PbMg1/3Nb2/3O3 ceramics

    OpenAIRE

    Whatmore, Roger W.; Molter, O.; Shaw, Christopher P.

    2003-01-01

    The pyroelectric, dielectric and DC resistive properties of Sb and Cr-doped ceramics with a base composition of Pb(Mg1/3Nb2/3)0.025(Zr0.825Ti0.175)0.975O3 have been studied. Sb doping has been shown to produce a linear reduction in Curie temperature (TC=−22z+294 °C) with concentration (z) and to give an increase in pyroelectric coefficient from 250 to 310 μCm−2 K−1 for z increasing from 0 to 3 at.%. It also produces first a reduction and then an increase in both dielectric constant and loss, ...

  9. Gd2O3 doped 0.82Bi0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Fu, Peng; Xu, Zhijun; Chu, Ruiqing; Li, Wei; Wang, Wei; Liu, Yong

    2012-01-01

    Highlights: ► Gd 2 O 3 doped BNKT18 piezoelectric ceramics were designed and prepared. ► The electrical properties of the BNKT18 ceramics are improved with the addition of Gd 2 O 3 . ► The BNKT18 ceramics doped with 0.4 wt.% Gd 2 O 3 has better electrical properties. -- Abstract: Gd 2 O 3 (0–0.8 wt.%)-doped 0.82Bi 0.5 Na 0.5 TiO 3 –0.18Bi 0.5 K 0.5 TiO 3 (BNKT18) lead-free piezoelectric ceramics were synthesized by a conventional solid-state process. The effects of Gd 2 O 3 on the microstructure, the dielectric, ferroelectric and piezoelectric properties were investigated. X-ray diffraction (XRD) data shows that Gd 2 O 3 in an amount of 0.2–0.8 wt.% can diffuse into the lattice of BNKT18 ceramics and form a pure perovskite phase. Scanning electron microscope (SEM) images indicate that the grain size of BNKT18 ceramics decreases with the increase of Gd 2 O 3 content; in addition, all the modified ceramics have a clear grain boundary and a uniformly distributed grain size. At room temperature, the ferroelectric and piezoelectric properties of the BNKT18 ceramics have been improved with the addition of Gd 2 O 3 , and the BNKT18 ceramics doped with 0.4 wt.% Gd 2 O 3 have the highest piezoelectric constant (d 33 = 137 pC/N), highest relative dielectric constant (ε r = 1023) and lower dissipation factor (tan δ = 0.044) at a frequency of 10 kHz. The BNKT18 ceramics doped with 0.2 wt.% Gd 2 O 3 have the highest planar coupling factor (k p = 0.2463).

  10. Structural and optical properties of Tb-doped Na-Gd metaphosphate glasses and glass-ceramics

    Czech Academy of Sciences Publication Activity Database

    Moretti, F.; Vedda, A.; Nikl, Martin; Nitsch, Karel

    2009-01-01

    Roč. 21, č. 15 (2009), 155103/1-155103/7 ISSN 0953-8984 R&D Projects: GA AV ČR IAA200100626 Institutional research plan: CEZ:AV0Z10100521 Keywords : Na-Gd metaphosphate glass * glass -ceramics * NaGd(PO 3 ) 4 * optical properties * structural properties * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  11. Incipient ferroelectric to a possible ferroelectric transition in Te4+ doped calcium copper titanate (CaCu3Ti4O12 ceramics at low temperature as evidenced by Raman and dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Nabadyuti Barman

    2017-03-01

    Full Text Available Partial replacement of Ti4+ by Te4+ ions in calcium copper titanate lattice improved its dielectric behaviour mostly due to cubic-to-tetragonal structural transformation and associated distortion in TiO6 octahedra. The relative permittivity values (23–30 x 103 of Te4+ doped ceramics is more than thrice that of un-doped ceramics (8 x 103 at 1 kHz. A decreasing trend in relative permittivity with increasing temperature (50–300 K is observed for all the samples. Barrett’s formula, as a signature of incipient ferroelectricity, is invoked to rationalize the relative permittivity variation as a function of temperature. A systematic investigation supported by temperature dependent Raman studies reveal a possible ferroelectric transition in Te4+ doped ceramic samples below 120 K. The possible ferroelectric transition is attributed to the interactions between quasi-local vibrations associated with the micro-clusters comprising TiO6 and TeO6 structural units and indirect dipole-dipole interactions of off-center B–cations (Ti4+ and Te4+ in double perovskite lattice.

  12. Synthesis of ceramic powder of TiO{sub 2} doped with Zr by the Pechini Method applied in ceramic membranes for water treatment; Sintese de pos ceramicos de TiO{sub 2} dopado com Zr obtido pelo Metodo Pechini aplicados em membranas ceramicas para tramento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Farias, R.F.V.; Fernandes, M.S.M.; Silva, R.S.; Franca, K.B.; Lira, H.L.; Bonifacio, M.A.R., E-mail: raissavenuto@gmail.com, E-mail: maniza-f@hotmail.com, E-mail: raquel.ssb@hotmail.com, E-mail: kepler@labdes.ufcg.edu.br, E-mail: helio.lira@ufcg.edu.br, E-mail: m_aparecidaribeiro@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2016-07-01

    This paper describes the synthesis of ceramic powder of TiO2 doped with Zr by the polymeric precursor method, also known as Pechini method applied in ceramic membranes for water treatment. Three compositions were synthesized according to the molar ratio Ti{sub x}-1Zr{sub x}O{sub 2} (x = 0.25, 0.50 and 0.75 moles), calcined at 700° C/1h. The samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and microbiological analysis. The presence of the doping element was not decisive in the average size of crystallite, which ranged from 5.5 to 11.3 nm. The SEM images showed clusters with uniform surface and granular aspect, it is still possible to see a clearly porous structure formed by clusters of uniform size for all samples. The microbiological analyses of powders have revealed that they have bactericidal properties. (author)

  13. Removal of H2S from Biogas by Iron (Fe3+ Doped MgO on Ceramic Honeycomb Catalyst using Double Packed Columns System

    Directory of Open Access Journals (Sweden)

    Juntima Chungsiriporn

    2010-03-01

    Full Text Available Hydrogen sulfide is a toxic and corrosive in nature, gas should be safely removed from the biogas streams before subjecting into the fuel cell. Fe3+ doped magnesium oxide was synthesized using sol-gel technique and dip coating process of Fe3+ doped MgO on foam ceramic honeycomb. XRD and SEM indicate that Fe3+ in Fe3+ doped MgO on foam ceramic honeycomb catalyst is finely dispersed in the MgO support. Performance of the synthesized Fe3+ doped magnesium oxide on the honeycomb catalyst was examined for hydrogen sulfide (H2S oxidation by double packed column scrubbers. The absorption column was used for H2S scrubbing from biogas by deionized water absorption and catalytic column was used as catalyst bed for degradation of absorbed H2S in scrubbing water. In the catalytic column, counter current flow of the scrubbing water and air through the catalyst pack was performed for H2S oxidation accompany with catalyst regeneration. System capacity for H2S removal from gas stream showed 98% constant along 3 hr testing time at room temperature.

  14. Raman, dielectric and variable range hopping nature of Gd2O3-doped K0.5N0.5NbO3 piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Mahesh Peddigari

    2015-10-01

    Full Text Available (K0.5Na0.5NbO3 (KNN + x wt% Gd2O3 (x = 0 -1.5 ceramics have been prepared by conventional solid state reaction method. The effect of Gd2O3 on the structural, microstructural and dielectric properties of KNN ceramics were studied systematically. The effect of Gd2O3 on phase transformation from orthorhombic to psuedocubic structure is explained interms of changes in the internal vibration modes of NbO6 octahedra. The Raman intensity of the stretching mode v1 enhanced and shifted toward higher wavenumber with Gd2O3 concentration, which is attributed to the increase in polarizability and change in the O-Nb-O bond angles. Microstructural analysis revealed that the grain size of the KNN ceramics decreases from 2.26 ± 1.07 μm to 0.35 ± 0.13 μm and becomes homogenous with an increase in Gd2O3 concentration. The frequency dependent dielectric spectra are analyzed by using Havriliak-Negami function. The fitted symmetry parameter and relaxation time (τ are found to be 0.914 and 8.78 × 10−10 ± 5.5 × 10−11 s, respectively for the sample doped with x = 1.0. The addition of Gd2O3 to the KNN shifted the polymorphic phase transition orthorhombic to tetragonal transition temperature (TO-T from 199oC to 85oC with enhanced dielectric permittivity (ε′ = 1139 at 1 MHz. The sample with x = 1.0, shown a high dielectric permittivity (ε′ = 879 and low dielectric loss (<5% in the broad temperature range (-140oC – 150oC with the Curie temperature 307 oC can have the potential for high temperature piezoelectric and tunable RF circuit applications. The temperature dependent AC-conductivity follows the variable range hopping conduction mechanism by obtaining the slope -0.25 from the ln[ln(ρac] versus ln(T graph in the temperature range of 133 K-308 K. The effect of Gd2O3 on the Mott’s parameters such as density of states (N(EF, hopping length (RH, and hopping energy (WH have been discussed.

  15. Giant strain with low cycling degradation in Ta-doped [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2]TiO_3 lead-free ceramics

    International Nuclear Information System (INIS)

    Liu, Xiaoming; Tan, Xiaoli

    2016-01-01

    Non-textured polycrystalline [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2](Ti_1_−_xTa_x)O_3 ceramics are fabricated and their microstructures and electrical properties are characterized. Transmission electron microscopy reveals the coexistence of the rhombohedral R3c and tetragonal P4bm phases in the form of nanometer-sized domains in [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2]TiO_3 with low Ta concentration. When the composition is x = 0.015, the electrostrain is found to be highly asymmetric under bipolar fields of ±50 kV/cm. A very large value of 0.62% is observed in this ceramic, corresponding to a large-signal piezoelectric coefficient d_3_3* of 1240 pm/V (1120 pm/V under unipolar loading). These values are greater than most previously reported lead-free polycrystalline ceramics and can even be compared with some lead-free piezoelectric single crystals. Additionally, this ceramic displays low cycling degradation; its electrostrain remains above 0.55% even after undergoing 10 000 cycles of ±50 kV/cm bipolar fields at 2 Hz. Therefore, Ta-doped [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2]TiO_3 ceramics show great potential for large displacement devices.

  16. Crystallization and spectroscopic properties investigations of Er3+ doped transparent glass ceramics containing CaF2

    International Nuclear Information System (INIS)

    Hu Zhongjian; Wang Yuansheng; Ma En; Bao Feng; Yu Yunlong; Chen Daqin

    2006-01-01

    Transparent oxyfluoride glass ceramics with composition of 45SiO 2 -25Al 2 O 3 -5CaCO 3 -10NaF-15CaF 2 -0.5ErF 3 (in mol%) were developed through controlled crystallization of melt-quenched glass. Non-isothermal crystallization kinetics investigation showed that the average apparent activation energy E a and Avrami exponent n are about 283 kJ/mol and 2.22, respectively, indicating the crystallization a three dimensional crystal growth process controlled by the diffusion with a decreasing nucleation rate. X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) observation revealed the precipitation of CaF 2 crystallites sized about 15 nm among the glass matrix after heat-treatment at 650 deg. C for 2 h. For as-made glass, no upconversion signals were detected when excited with a 30 mW diode laser at 980 nm, while strong upconversion emissions at 545, 660 and 800 nm were obtained for transparent glass ceramic under similar excitation condition

  17. Humidity sensitive electrical responce of K2CrO4 doped ZnCr2O4 ceramic sensors

    International Nuclear Information System (INIS)

    Kavasoglu, N.

    2005-01-01

    The effects of the addition of various percentages of potassium chromate as a sintering aid on the response to air moisture of ZnCr 2 O 4 ceramic body along with its crystalline structure and surface morphology were studied. The fired ceramic body, which proved to be mainly constructed from about 1μm sized ZnCr 2 O 4 spinel grains, was porous. The humidity sensing behaviour of the sensors reveals that the electrical conduction is due mainly to protonic and is controlled through the thin layers of water, adsorbed on the surface of the grains, with charge transfer to the electrodes. Only the material containing 20% K 2 CrO 4 in ZnCr 2 O 4 exhibited an exponential behaviour to humidity, which shows about three orders change in the d.c. resistance over the relative humidity in the range between 25 and 90%. The addition of CuO resulted in an increase in the conductivity but had a deleterious effect on the humidity. Based on a.c. impedance measurements, an equivalent circuit associated with a net work of RC parallel circuit in series with constant phase elements (CPEs) has been suggested. It can be therefore assumed that such equivalent circuit model of the sensor under moderate moist condition indicates the charge transport processes mediated by proton hopping and diffusion. A homemade prototype of such a humidity sensor has also been successfully demonstrated in door

  18. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    Science.gov (United States)

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-03-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 °C) and Curie temperature (TC of 234 °C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol. % BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling factor (k31) of T-5BT ceramic started to degrade from 75 °C while the random counterpart showed a very stable tendency up to 180 °C. This degradation was associated with the "interface region" formed in the vicinity of BT template. MnO2 doped PMN-PZT ceramics textured with 3 vol. % BT and subsequently poled at 140 °C (T-3BT140) exhibited very stable and high k31 (>0.53) in a wide temperature range from room temperature to 130 °C through reduction in the interface region volume. Further, the T-3BT140 ceramic exhibited excellent hard and soft combinatory piezoelectric properties of d33 = 720 pC/N, k31 = 0.53, Qm = 403, tan δ = 0.3% which are very promising for high power and magnetoelectric applications.

  19. Advances in spectral conversion for photovoltaics: up-converting Er3+ doped YF3 nano-crystals in transparent glass ceramic

    Science.gov (United States)

    Marques-Hueso, Jose; Chen, Daqin; MacDougall, Sean K. W.; Wang, Yuansheng; Richards, Bryce S.

    2011-09-01

    Up- and down-conversion (UC, DC) constitute two singular routes to achieve improved energy harvesting of sunlight by changing its shape of the solar spectrum. To obtain a significant conversion rate two main challenges have to be overcome: i) the excited lanthanide ions have to emit efficiently, a target which has been better accomplished for DC materials; ii) the absorption in the lanthanide-based UC and DC layers has to be high to ensure a sizeable fraction of photons can be harvested. In this paper, we review such materials and their use as spectral converters for photovoltaics (PV), paying special attention to the UC and DC processes in lanthanide glasses in fluoride matrices. We discuss the challenges that need to be overcome in order to implement these materials in real PV devices. Finally, we will present the synthesis of erbium (Er3+) doped YF3 nano-crystals embedded in transparent glass ceramic (TGC) by melt quenching. This material presents a low phonon energy environment for the Er3+ ions due to the fluoride crystals, while the silica glass provides chemical and mechanical stability to the compound.

  20. Preparation of textured CaBi4Ti4O15 based ceramics and dielectric properties optimized with La3+ doping

    Directory of Open Access Journals (Sweden)

    ZHENG Qianqian

    2012-12-01

    Full Text Available A batch of 001>textured CaBi4Ti4O15(x=0,0.1,0.2,0.3,0.4 (CBLT-x ceramics were fabricated by a two-step sintering method:synthesizing seed-crystal platelets by molten-salt method with oxide mixture as precursor,and then sintering the platelets via grain orientation technique (OCAP.Microstructural characterization by SEM was performed to establish the effect of increased doping of La3+ and sintering temperature on grain growth and texture development.Increasing La3+(to x=0.4 resulted in dielectric constant improvement up to 570 sintered at 1150℃ in the direction perpendicular to the tapecasting plan.The dielectric constant as well as loss of CBLT-x samples in the perpendicular direction is higher than that of parallel plane.The mechanism controlling the texture and grain growth in CBLT-xceramics is firstly discussed by 3D patterns in this letter.

  1. N-Doped TiO2-Coated Ceramic Membrane for Carbamazepine Degradation in Different Water Qualities

    Science.gov (United States)

    Luster, Enbal; Avisar, Dror; Horovitz, Inna; Lozzi, Luca; Baker, Mark A.; Grilli, Rossana; Mamane, Hadas

    2017-01-01

    The photocatalytic degradation of the model pollutant carbamazepine (CBZ) was investigated under simulated solar irradiation with an N-doped TiO2-coated Al2O3 photocatalytic membrane, using different water types. The photocatalytic membrane combines photocatalysis and membrane filtration in a single step. The impact of each individual constituent such as acidity, alkalinity, dissolved organic matter (DOM), divalent cations (Mg2+ and Ca2+), and Cl− on the degradation of CBZ was examined. CBZ in water was efficiently degraded by an N-doped TiO2-coated Al2O3 membrane. However, elements added to the water, which simulate the constituents of natural water, had an impact on the CBZ degradation. Water alkalinity inhibited CBZ degradation mostly due to increase in pH while radical scavenging by carbonate was more dominant at higher values (>200 mg/L as CaCO3). A negative effect of Ca2+ addition on photocatalytic degradation was found only in combination with phosphate buffer, probably caused by deposition of CaHPO4 or CaHPO4·2H2O on the catalyst surface. The presence of Cl− and Mg2+ ions had no effect on CBZ degradation. DOM significantly inhibited CBZ degradation for all tested background organic compounds. The photocatalytic activity of N-doped TiO2-coated Al2O3 membranes gradually decreased after continuous use; however, it was successfully regenerated by 0.1% HCl chemical cleaning. Nevertheless, dissolution of metals like Al and Ti should be monitored following acid cleaning. PMID:28758982

  2. Structural, thermal, electrical and magnetic properties of pure and 50% La doped BiFeO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jangid, S.; Barbar, S.K.; Bala, Indu [Department of Physics, M.L. Sukhadia University, Durga Nursery Road, Udaipur, Rajasthan 313001 (India); Roy, M., E-mail: mroy1959@yahoo.co.in [Department of Physics, M.L. Sukhadia University, Durga Nursery Road, Udaipur, Rajasthan 313001 (India)

    2012-09-15

    Polycrystalline ceramic samples of pure and 50% La substituted BiFeO{sub 3} have been prepared by standard solid state reaction method using high purity oxides and carbonates. The formation of the single phase compound as well as its chemical analysis has been checked by X-ray diffraction and energy dispersive X-ray microanalysis (EDAX) techniques. A better agreement between observed and calculated X-ray powder diffraction patterns was obtained by performing the Rietveld refinement with a structural model using the non-centrosymmetric space group R3c. The lattice parameters in both the cases have been refined but the over-all structure remains the same. The microstructural studies have been carried out using scanning electron microscopy (SEM). Modulated differential scanning calorimetry (MDSC) has been used to detect the Neel/transition temperature in the compounds. The activation energies calculated from log {sigma} vs 1/T curve are 0.81 eV and 1.13 eV respectively. Vibrating sample magnetometer (VSM) has been used to study the magnetic behaviour of the compounds. It has been observed that by 50% La substitution the insulating behaviour of the material has been improved and showing the antiferromagnetic to weak ferromagnetic behaviour.

  3. The effect of micro-structure on upconversion luminescence of Nd3+/Yb3+ co-doped La2O3-TiO2-ZrO2 glass-ceramics

    Science.gov (United States)

    Zhang, Minghui; Wen, Haiqin; Pan, Xiuhong; Yu, Jianding; Jiang, Meng; Yu, Huimei; Tang, Meibo; Gai, Lijun; Ai, Fei

    2018-03-01

    Nd3+/Yb3+ co-doped La2O3-TiO2-ZrO2 glasses have been prepared by aerodynamic levitation method. The glasses show high refractive index of 2.28 and Abbe number of 18.3. Glass-ceramics heated at 880 °C for 50 min perform the strongest upconversion luminescence. X-ray diffraction patterns of glass-ceramics with different depths indicate that rare earth ions restrain crystallization. Body crystallization mechanism mixed with surface crystallization is confirmed in the heat treatment. Surface crystals achieve priority to grow, resulting in important effects on upconversion luminescence. The results of atomic force microscope and scanning electron microscope indicate that crystal particles with uniform size distribute densely and homogenously on the surface and large amount of glass matrix exists in the glass ceramics heated at 880 °C for 50 min. Crystals in the glass-ceramics present dense structure and strong boundaries, which can reduce the mutual nonradiative relaxation rate among rare earth ions and then improve upconversion luminescence effectively. Based on micro-structural study, the mechanism that upconversion luminescence can be improved by heat treatment has been revealed. The results of micro-structural analysis agree well with the spectra.

  4. Ceramic solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  5. Electrical Properties Of Indium And Yttrium-Doped Barium Cerate-Based Compounds For Use As Ceramic Fuel Cell Electrolytes

    Directory of Open Access Journals (Sweden)

    Gawel R.

    2015-06-01

    Full Text Available The aim of this work is to compare the electrical properties of BaCe0.85Y0.15O3−δ (BCY15, BaCe0.70In0.30O3−δ (BCI30 and a composite material consisting of 30%vol. BCY15 and 70%vol. Ce0.85Y0.15O2−δ (YDC15. BCY15 and YDC15 were synthesized by co-precipitation, whereas BCI30 was obtained using the solid-state reaction method. Pellets were initially formed from powders at 5 MPa, after which they were isostatically pressed at 250 MPa and sintered at 1500°C. Electrochemical impedance spectroscopy (EIS was used to determine the electrical properties of the samples in both air (pO2 = 0.021 MPa and Ar-5%H2 atmospheres. In the temperature range 200-400°C in air atmosphere the highest conductivity values were determined for BCY15 (5,22·10−5 − 2.74·10−3 S/cm. On the other hand, the electrical conductivity values obtained for Y70B30 in both atmospheres between 200 and 550°C are in the order of magnitude of 10−7 − 10−3 S/cm. Consequently, it can be concluded that the compounds exhibit significant H+ and O2− electrical conductivity at temperatures above 500°C, which indicates the possibility for their potential use as ceramic fuel cell electrolytes.

  6. Microstructure, optical, and scintillation characteristics of Pr.sup.3+./sup. doped Lu.sub.3./sub.Al.sub.5./sub.O.sub.12./sub. optical ceramics

    Czech Academy of Sciences Publication Activity Database

    Shi, Y.; Nikl, Martin; Feng, X.; Mareš, Jiří A.; Shen, Y.; Beitlerová, Alena; Kučerková, Romana; Pan, Y.; Liu, Q.

    2011-01-01

    Roč. 109, č. 1 (2011), "013522-1"-"013522-7" ISSN 0021-8979 R&D Projects: GA AV ČR KAN300100802; GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : Pr 3+ doped Lu 3 Al 5 O 12 , * optical ceramics * microstructure * radio-luminescence * scintillation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.168, year: 2011 http://link.aip.org/link/?JAP/109/013522

  7. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    OpenAIRE

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-01-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3) O-3-0.25PbZrO(3)-0.35PbTiO(3) (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 degrees C) and Curie temperature (T-C of 234 degrees C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol.% BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling f...

  8. Preparation and characterization of Mn-doped Li{sub 0.06}(Na{sub 0.5}K{sub 0.5}){sub 0.94}NbO{sub 3} lead-free piezoelectric ceramics with surface sol-gel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ae Ri; Lee, Seong Eui; Lee, Hee Chul [Korea Polytechnic University, Shiheung (Korea, Republic of)

    2014-08-15

    This study investigated the effects of Mn doping and sol-gel surface coating on the structural and the electrical properties of lead-free Li{sub 0.06}(K{sub 0.5}Na{sub 0.5}){sub 0.94}NbO{sub 3}(LNKN) ceramics in disc form for use as eco-friendly piezoelectric devices. The 1-mol% Mn-doped LNKN ceramic showed a relatively high piezoelectric constant owing to its high density in the case of its being annealed at a temperature of 1010 .deg. C. A Mn-doped LNKN sol-gel solution with the same composition as that of the ceramics was spin-coated and sintered on both sides of the ceramic surfaces to acquire improved electrical properties. The sol-gel surface coating could play a decisive role in filling the pores, resulting in flat and stable interfaces between the electrodes and the piezoelectric elements. As a result, the highest piezoelectric constant, d{sub 33}, of 173 pC/N could be obtained for the Mn-doped LNKN ceramics with 420-nm-thick sol-gel surface coatings.

  9. Effects of MnO{sub 2} doping on structure, dielectric and piezoelectric properties of 0.825NaNbO{sub 3}-0.175Ba{sub 0.6}(Bi{sub 0.5}K{sub 0.5}){sub 0.4}TiO{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ximing; Lin, Dunmin; Zheng, Qiaoji; Sun, Hailing; Wan, Yang; Wu, Xiaochun [College of Chemistry and Materials Science, and Visual Computing and Virtual Reality Key Laboratory of Sichuan Province, Sichuan Normal University, Chengdu 610066 (China); Wu, Lang [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2012-12-15

    Lead-free ceramics 0.825NaNbO{sub 3}-0.175Ba{sub 0.6}(Bi{sub 0.5}K{sub 0.5}){sub 0.4}TiO{sub 3} + xmol% MnO{sub 2} were prepared by an ordinary sintering technique and the effects of MnO{sub 2} doping on the structure, dielectric, and piezoelectric properties of the ceramics were studied. The ceramics with perovskite structure are transformed from tetragonal to pseudocubic phases by increasing the doping level of MnO{sub 2}. After the addition of MnO{sub 2}, the Curie temperature T{sub C} of the ceramics decreases and the ferroelectric-paraelectric phase transition at T{sub C} becomes more diffusive. Because of the donor and acceptor doping effects of Mn ions simultaneously, the piezoelectric constant d{sub 33}, electromechanical coupling coefficient k{sub p}, relative permittivity {epsilon}{sub r}, and mechanical quality factor Q{sub m} are enhanced considerably after the addition of 1 mol% MnO{sub 2}. The ceramic with 1 mol% MnO{sub 2} doping possesses the optimum piezoelectricity (d{sub 33} = 131 pC/N and k{sub p} = 21.8%) and relatively high Q{sub m} = 627. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Improved ferroelectric/piezoelectric properties and bright green/UC red emission in (Li,Ho)-doped CaBi4Ti4O15 multifunctional ceramics with excellent temperature stability and superior water-resistance performance.

    Science.gov (United States)

    Xiao, Ping; Guo, Yongquan; Tian, Mijie; Zheng, Qiaoji; Jiang, Na; Wu, Xiaochun; Xia, Zhiguo; Lin, Dunmin

    2015-10-21

    Multifunctional materials based on rare earth ion doped ferro/piezoelectrics have attracted considerable attention in recent years. In this work, new lead-free multifunctional ceramics of Ca1-x(LiHo)x/2Bi4Ti4O15 were prepared by a conventional solid-state reaction method. The great multi-improvement in ferroelectricity/piezoelectricity, down/up-conversion luminescence and temperature stability of the multifunctional properties is induced by the partial substitution of (Li0.5Ho0.5)(2+) for Ca(2+) ions in CaBi4Ti4O15. All the ceramics possess a bismuth-layer structure, and the crystal structure of the ceramics is changed from a four layered bismuth-layer structure to a three-layered structure with the level of (Li0.5Ho0.5)(2+) increasing. The ceramic with x = 0.1 exhibits simultaneously, high resistivity (R = 4.51 × 10(11)Ω cm), good piezoelectricity (d33 = 10.2 pC N(-1)), high Curie temperature (TC = 814 °C), strong ferroelectricity (Pr = 9.03 μC cm(-2)) and enhanced luminescence. These behaviours are greatly associated with the contribution of (Li0.5Ho0.5)(2+) in the ceramics. Under the excitation of 451 nm light, the ceramic with x = 0.1 exhibits a strong green emission peak centered at 545 nm, corresponding to the transition of the (5)S2→(5)I8 level in Ho(3+) ions, while a strong red up-conversion emission band located at 660 nm is observed under the near-infrared excitation of 980 nm at room temperature, arising from the transition of (5)F5→(5)I8 levels in Ho(3+) ions. Surprisingly, the excellent temperature stability of ferroelectricity/piezoelectricity/luminescence and superior water-resistance behaviors of piezoelectricity/luminescence are also obtained in the ceramic with x = 0.1. Our study suggests that the present ceramics may have potential applications in advanced multifunctional devices at high temperature.

  11. Structural characteristics of Mg-doped (1-x)(K0.5Na0.5)NbO3-xLiSbO3 lead-free ceramics as revealed by Raman spectroscopy

    International Nuclear Information System (INIS)

    Zhu, W L; Meng, Y; Pezzotti, G; Zhu, J L; Wang, M S; Zhu, B; Zhu, X H; Zhu, J G; Xiao, D Q

    2011-01-01

    This paper presents a Raman spectroscopic study of compositional-change-induced structure variation and of the related mechanism of Mg doping in LiSbO 3 (LS)-modified (K 0.5 Na 0.5 )NbO 3 (KNN) ceramics. With increasing LS content from 0 to 0.06, a discontinuous shift towards higher wavenumbers was found for the band position of the A 1g (v 1 ) stretching mode of KNN, accompanied by a clearly nonlinear broadening of this band and a decrease in its intensity. Such morphological changes in the Raman spectrum result from two factors: (i) changes in polarizability/binding strength of the O-Nb-O vibration upon incorporation of Li ions in the KNN perovskitic structure and (ii) a polymorphic phase transition (PPT) from orthorhombic to tetragonal (O → T) phase at x > 0.04. Upon increasing the amount, w, of Mg dopant incorporated into the (1-x)KNN-xLS ceramic structure, the intensity of the Raman bands are enhanced, while the peak position and the full width at half maximum of the A 1g (v 1 ) mode was found to experience a clear dependence on both w and x. Raman characterization revealed that the mechanism of Mg doping is strongly correlated with the concentration of Li in the perovskite structure: Mg 2+ ions will preferentially replace Li + ions for low Mg doping while replace K/Na ions for higher doping of Mg. The PPT O → T was also found to be altered by the introduction of Mg and the critical value of LS concentration, x O-T , for incipient O → T transition in the KNN-xLS-wMT system was strongly dependent on Mg content, with x O→T being roughly equal to 0.04 + 2w, for the case of dilute Mg alloying. (paper)

  12. Enhanced electrical properties, color-tunable up-conversion luminescence, and temperature sensing behaviour in Er-doped Bi3Ti1.5W0.5O9 multifunctional ferroelectric ceramics

    Science.gov (United States)

    Zhang, Ying; Li, Jun; Chai, Xiaona; Wang, Xusheng; Li, Yongxiang; Yao, Xi

    2017-03-01

    Er-doped Bi3Ti1.5W0.5O9 (BTW-x) ferroelectric ceramics were prepared by a conventional solid-state reaction synthesis method, and their structure, electrical properties, up-conversion (UC) luminescence, and temperature sensing behaviour were investigated. A high piezoelectric coefficient d33 (9.6 pC/N), a large remnant polarization Pr (12.75 μC/cm2), a high Curie temperature Tc (730.2 °C), and the optimal luminescent intensity are obtained for the samples at x = 0.05. By changing the Er doped concentration, the BTW-x ceramics are capable of generating various UC spectra and the color could be tunable from green to yellow. According to the fluorescence intensity ratio of green emissions at 532.6 nm and 549.2 nm in the temperature range from 83 K to 423 K, optical temperature sensing properties are investigated and the maximum sensing sensitivity is found to be 0.00314 K-1 at 423 K. The results conclude that BTW-x would be a candidate in high temperature sensor, fluorescence thermometry, and opto-electronic integration applications.

  13. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  14. Nd{sup 3+}-doped TeO{sub 2}-Bi{sub 2}O{sub 3}-ZnO transparent glass ceramics for laser application at 1.06 μm

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian [Central South of University, School of Materials Science and Engineering, Changsha (China)

    2017-04-15

    The high crystallinity transparent glass ceramics based on Nd{sup 3+}-doped 70TeO{sub 2}-15Bi{sub 2}O{sub 3}-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd{sub 2}O{sub 3} content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd{sub 2}O{sub 3} enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi{sub 2}Te{sub 4}O{sub 11} in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd{sub 2}O{sub 3} content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd{sub 2}O{sub 3} content due to the obvious energy migration among Nd{sup 3+}. According to the extreme strong emission band around 1062 nm and the optimum Nd{sub 2}O{sub 3} content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications. (orig.)

  15. In vitro solubility and bioactivity of Sr and Mg co-doped calcium phosphate glass-ceramics derived from different heat-treatment temperatures

    International Nuclear Information System (INIS)

    Cai Shu; Li Jianxin; Xu Guohua; Li, Xudong; Ye Xiaojian; Jiang Wei

    2011-01-01

    Highlights: ► Porous glass ceramics were prepared by controlled heat treatment process. ► A fast release of Mg ions has a great influence on the Ca/P ratio of the deposits. ► The chemical stability of the deposited apatite directly affects cell behavior. ► The glass ceramics heat-treated at 760 °C and 780 °C show less glass. ► The degradation rates are both compatible with cell growth and differentiation. - Abstract: CaO–P 2 O 5 –Na 2 O–SrO–MgO glass–ceramic system was prepared by controlled heat treatment process. Solubility and bioactivity of glass-ceramics were measured and evaluated in simulated body fluid (SBF) and cell culture medium respectively. The dissolution behavior of these glass-ceramics strongly depends on the amount and microstructure of the crystals precipitated by sintering treatment. Concerning the bioactivity, the onset of the apatite formation on the glass–ceramic system was directly dependent on the amount of bioactive glass amount which can be controlled using different temperatures of heat treatment. After immersing glass–ceramic in SBF, Mg ion as one of system composition can be released from residual glass and provides a high impact on the Ca/P ratio and chemical stability of the deposited apatite layer that directly affects cell attachment and proliferation in in vitro cell culture system. The glass ceramics heat-treated at 760 °C and 780 °C show less glass amount, and their degradation rates are both compatible with cell growth and differentiation.

  16. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  17. Sol–gel glass-ceramics comprising rare-earth doped SnO2 and LaF3 nanocrystals: an efficient simultaneous UV and IR to visible converter

    International Nuclear Information System (INIS)

    Yanes, A. C.; Castillo, J. del; Méndez-Ramos, J.; Rodríguez, V. D.

    2011-01-01

    We report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO 2 semiconductor nanocrystal (quantum dot), and LaF 3 , presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO 2 quantum dot and subsequent efficient energy transfer to Eu 3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb 3+ –Er 3+ partitioned into low phonon LaF 3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.Graphical AbstractWe report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO 2 semiconductor nanocrystal (quantum dot) and LaF 3 , presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO 2 quantum dot and subsequent efficient energy transfer to Eu 3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb 3+ –Er 3+ partitioned into low phonon LaF 3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.

  18. Electric Field-Induced Large Strain in Ni/Sb-co Doped (Bi0.5Na0.5) TiO3-Based Lead-Free Ceramics

    Science.gov (United States)

    Li, Liangliang; Hao, Jigong; Xu, Zhijun; Li, Wei; Chu, Ruiqing

    2018-02-01

    Lead-free piezoelectric ceramics (Bi0.5Na0.5)0.935Ba0.065Ti1- x (Ni0.5Sb0.5) x O3 (BNBT6.5- xNS) have been fabricated using conventional solid sintering technique. The effect of (Ni, Sb) doping on the phase structure and electrical properties of BNBT6.5 ceramics were systematically investigated. Results show that the addition of (Ni, Sb) destroyed the ferroelectric long-range order of BNBT6.5 and shifted the ferroelectric-relaxor transition temperature ( T F-R) down to room temperature. Thus, this process induced an ergodic relaxor phase at zero field in samples with x = 0.005. Under the electric field, the ergodic relaxor phase could reversibly transform to ferroelectric phase, which promotes the strain response with peak value of 0.38% (at 80 kV/cm, corresponding to d 33 * = 479 pm/V) at x = 0.005. Temperature-dependent measurements of both polarization and strain confirmed that the large strain originated from a reversible field-induced ergodic relaxor to ferroelectric phase transformation. The proposed material exhibits potential for nonlinear actuators.

  19. Piezoelectric properties and diffusion phase transition around PPT of La-doped (Na{sub 0.52}K{sub 0.44}Li{sub 0.04}) Nb{sub 0.8}Ta{sub 0.2}O{sub 3} lead-free piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenlong, E-mail: yangwenlong1983@163.com; Wang, Li; Li, Haidong; Han, Junsheng; Xiu, Hanjiang; Zhou, Zhongxiang

    2016-10-01

    Lead-free ceramics (Na{sub 0.52}K{sub 0.44}Li{sub 0.04}){sub 1−3x}La{sub x}Nb{sub 0.8}Ta{sub 0.2}O{sub 3} (KNLNT-Lax, x=0.00, 0.25, 0.5, 0.75, 1.00, 1.25 mol%) as non-polluting materials were prepared by solid state reaction method. The structure, piezoelectric proprieties and temperature stability of KNLNT ceramic with different La doping concentrations were investigated. The results show a transition from orthorhombic-tetragonal mix phase to tetragonal single phase with the variation of La{sup 3+} concentrations. The SEM micrographs of surface and fractured surface show a dense microstructure with few micropores. The La-doped KNLTN ceramic will be an alternative candidate contributes to excellent piezoelectric properties, which are found in the 0.75 mol% La-doped KNLNT ceramics, with d{sub 33}=215pC/N, k{sub p}=42.8%and Q{sub m}=89. It has been remarkably improved that the temperature stability of KNLTN-Lax piezoelectric properties at room temperature, and the dielectric relaxation can be observed obviously. The mechanism of La doping was analyzed in terms of valence compensation and polymorphic phase transition (PPT) diffusion. The orthorhombic-tetragonal phase transition around room temperature and the relaxation transition were considered contributing to the excellent piezoelectric performance and improved temperature stability of La{sup 3+}-doped KNLTN.

  20. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    Wintec

    nese doped BaTiO3 ceramics, sintered at 1400°C in air, changes from tetragonal to hexagonal between 0⋅5 and. 1⋅7 mole% of manganese (Langhammer et al 2000). As a driving force of the transformation from the cubic to the hexagonal crystal structure, the influence of the Jahn–. Teller distortion is proposed. The grain ...

  1. Electrical Degradation in Ceramic Dielectrics

    Science.gov (United States)

    1988-09-09

    and D. M. Smyth, " Positron Annihilation in Calcium-Doped Barium Titanate", in Electro- Ceramics and Solid State Ionsi, H. L. Tuller and D. M. Smyth...2 with the formation of ompensating oxygen vacancies, and this causes an increase in the ioni conductivity: 2CaO CaC + Call + 20 + (5) TiO2 --- V

  2. Fundamental optical constants of Nd-doped Y.sub.2./sub.O.sub.3./sub. ceramic and its scintillation characteristics

    Czech Academy of Sciences Publication Activity Database

    Fukabori, A.; Chani, V.; Pejchal, Jan; Kamada, K.; Yoshikawa, A.; Ikegami, T.

    2011-01-01

    Roč. 34, č. 2 (2011), s. 452-456 ISSN 0925-3467 Institutional research plan: CEZ:AV0Z10100521 Keywords : Nd:Y 2 O 3 ceramic * fundamental optical constant * scintillator * scintillation properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.023, year: 2011

  3. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  4. White phosphor using Yb3+-sensitized Er3+-and Tm3+-doped sol-gel derived lead-fluorosilicate transparent glass ceramic excited at 980 nm

    Science.gov (United States)

    Tavares, M. C. P.; da Costa, E. B.; Bueno, L. A.; Gouveia-Neto, A. S.

    2018-01-01

    Generation of primary colors and white light through frequency upconversion using sol-gel derived 80SiO2:20PbF2 vitroceramic phosphors doped with Er3+, Er3+/Yb3+, Tm3+/Yb3+, and Er3+/Tm3+/Yb3+ excited at 980 nm is demonstrated. For Er3+ and Er3+/Yb3+ doped samples emissions were obtained in the blue (410 nm), green (530, and 550 nm) and red (670 nm) regions, corresponding to the 2H9/2 → 4I15/2,2H11/2 → 4I15/2, 4S3/2 → 4I152 and 4F9/2 → 4I15/2 transitions of Er3+, respectively. The codoping with Yb3+ ions altered the spectral profile of most of the emissions compared to the single doped samples, resulting in changes in the emitted color, in addition to a significant increase in the emission intensity. In Tm3+/Yb3+ co-doped samples visible emissions in the blue (480 nm), and red (650 nm), corresponding to transitions 1G4 → 3H6 and 1G4 → 3F4 of Tm3+, respectively, were obtained. The emission intensity around 480 nm overcome the red emission, and luminescence showed a predominantly blue tone. White light with CIE-1931 coordinates (0.36; 0.34) was produced by homogeneously mixing up powders of heat treated at 400 °C co-doped samples 5.0Er3+/5.0Yb3+ and 0.5Tm3+/2.5Yb3+ in the mass ratio of 13%, and 87%, respectively. The measured emission spectrum for a sample resulting from the mixture showed a profile with very good agreement with the spectrum found from the superimposition of the spectra of the co-doped samples.

  5. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  6. Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Murugan, Ganapathy Senthil; Ohishi, Yasutake

    2005-01-01

    Transparent Li 2 O-Ga 2 O 3 -SiO 2 (LGS) glass-ceramics embedding Ni:LiGa 5 O 8 nanocrystals were fabricated. An intense emission centered around 1300 nm with the width of more than 300 nm was observed by 976 nm photoexcitation of the glass-ceramics. The lifetime was more than 900 μs at 5 K and 500 μs at 300 K. The emission could be attributed to the 3 T 2g ( 3 F)→ 3 A 2g ( 3 F) transition of Ni 2+ in distorted octahedral sites in LiGa 5 O 8 . The product of stimulated emission cross section and lifetime for the emission was about 3.7x10 -24 cm 2 s and was a sufficiently practical value

  7. BiFeO3-doped (Na0.5K0.5NbO3 lead-free piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Xueyi Sun et al

    2008-01-01

    Full Text Available Lead-free piezoelectric ceramics (1−x(Na0.5K0.5NbO3-xBiFeO3 (x=0~0.07 were synthesized by the solid-state reaction. Differential scanning calorimetry (DSC measurements revealed that an increase in the amount of BiFeO3 dopant resulted in a decrease in the orthorhombic-tetragonal and tetragonal-cubic phase transition temperature of the material. One percent BiFeO3 additive suppressed grain growth, which not only benefits the sintering of ceramics but also enhances the piezoelectric and ferroelectric properties, where d33=145pC/N, kp=0.31, Qm=80, Pr=11.3 μC cm−2 and Ec=16.5 kV cm−1. As xBF>0.01, both piezoelectric and ferroelectric properties decreased rapidly with an increasing amount of dopant.

  8. Influence of rare-earth additives (La, Sm and Dy on the microstructure and dielectric properties of doped BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Paunović Vesna

    2010-01-01

    Full Text Available A series of La/Mn, Sm/Mn and Dy/Mn codoped BaTiO3 samples were prepared by the conventional solid state procedure with dopant concentrations ranging from 0.1 up to 2.0 at%. The specimens were sintered at 1320°C and 1350°C in an air atmosphere for two hours. The low doped samples demonstrated a mainly uniform and homogeneous microstructure with average grain sizes ranging from 0.3 μm to 5.0 μm. The appearance of secondary abnormal grains in the fine grain matrix and core-shell structure were observed in highly doped La/BaTiO3 and Dy/BaTiO3 sintered at 1350°C. The low doped samples, sintered at 1350°C, display a high value of dielectric permittivity at room temperature, 6800 for Sm/BaTiO3, 5900 for Dy/BaTiO3 and 3100 for La/BaTiO3. A nearly flat permittivity-response was obtained in specimens with 2.0 at% additive content. Using a modified Curie-Weiss law the Curie-like constant C⁄ and a critical exponent γ were calculated. The obtained values of γ pointed out the diffuse phase transformation in heavily doped BaTiO3 samples.

  9. Luminescence properties of the Mg co-doped Ce:SrHfO.sub.3./sub. ceramics prepared by the Spark Plasma Sintering Method

    Czech Academy of Sciences Publication Activity Database

    Chiba, H.; Kurosawa, S.; Harata, K.; Murakami, R.; Yamaji, A.; Ohashi, Y.; Pejchal, Jan; Kamada, K.; Yokota, Y.; Yoshikawa, A.

    2016-01-01

    Roč. 90, Jul (2016), s. 287-291 ISSN 1350-4487. [International Conference on Luminescent Detectors and Transformers of Ionizing Radiation (LUMDETR). Tartu (Estonsko), 20.09.2015-25.09.2015] R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : ceramics scintillator * high effective atomic number material Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016

  10. Tuning into single-band red upconversion luminescence in Yb(3+)/Ho(3+) activated nano-glass-ceramics through Ce(3+) doping.

    Science.gov (United States)

    Chen, Daqin; Zhou, Yang; Wan, Zhongyi; Ji, Zhenguo; Huang, Ping

    2015-03-28

    Yb(3+)/Ho(3+) activated glass ceramics containing β-YF3 nanocrystals were successfully fabricated. The green ((5)S2/(5)F4→(5)I8) upconversion emission is dominant in the glass ceramics and is about 160 times stronger than that of the precursor glass, resulting from the partition of lanthanide activators into a low-phonon-energy crystalline lattice and the subsequent low probability of multi-phonon nonradiative relaxation from the (5)S2/(5)F4 and (5)I6 states to the lower ones. Upon the introduction of Ce(3+) ions into nano-glass-ceramics, two efficient cross-relaxation processes between Ho(3+) and Ce(3+), i.e., Ho(3+):(5)S2/(5)F4 + Ce(3+):(2)F5/2→Ho(3+):(5)F5 + Ce(3+):(2)F7/2 and Ho(3+):(5)I6 + Ce(3+):(2)F5/2→Ho(3+):(5)I7 + Ce(3+):(2)F7/2, are demonstrated to greatly suppress the population of the green-emitting (5)S2/(5)F4 state and to enhance the population of the red-emitting (5)F5 one, leading to the intense single-band red UC radiation of Ho(3+).

  11. Bifunctional behavior of Er3+ ions as the sintering additive and the fluorescent agent in Er3+ single doped γ-AlON transparent ceramics

    International Nuclear Information System (INIS)

    Wang, Ying; Xie, Xiumin; Qi, Jianqi; Wang, Shanshan; Wei, Nian; Lu, Zhongwen; Chen, Xingtao; Lu, Tiecheng

    2016-01-01

    We report on the sintering promoting and fluorescent activator roles of Er 3+ in AlON:Er 3+ transparent ceramics prepared by pressureless sintering with Er 2 O 3 and AlON powder. There shows that the transparency of samples varied with the content of Er 2 O 3 additive. The AlON:Er 3+ ceramics showed upconversion luminescence peaking at 546 nm, 662 nm and 840 nm under the 980 nm excitation due to transition of 4 S 3/2 / 2 H 11/2 → 4 I 15/2 , 4 F 9/2 → 4 I 15/2 and 4 S 3/2 / 2 H 11/2 → 4 I 13/2 of Er 3+ ions, respectively. The infrared spectra exhibited strong emission at 1534 nm corresponds to 4 I 13/2 → 4 I 15/2 transition. The mechanism of the IR and visible emission bands in AlON:Er 3+ ceramics are discussed, which suggest it should be attractive for lighting and display devices applications.

  12. Electrical and optical characteristics of ITO films by pulsed laser deposition using a 10 wt.% SnO2-doped In2O3 ceramic target

    International Nuclear Information System (INIS)

    Kim, Sang Hyeob; Park, Nae-Man; Kim, TaeYoub; Sung, GunYong

    2005-01-01

    We have investigated the effect of the oxygen pressure and the deposition temperature on the electrical and optical properties of the Sn-doped indium oxide (ITO) films on quartz glass substrate by pulsed laser deposition (PLD) using a 10 wt.% SnO 2 -doped In 2 O 3 target. The resistivity and the carrier concentration of the films were decreased due to the decrease of the oxygen vacancy while increasing the oxygen pressure. With increasing deposition temperature, the resistivity of the films was decreased and the carrier concentration was increased due to the grain growth and the enhancement of the Sn diffusion. We have optimized the PLD process to deposit a highly conductive and transparent ITO film, which shows the optical transmittance of 88% and the resistivity of 2.49x10 -4 Ω cm for the film thickness of 180 nm

  13. Investigations on Raman and X-ray photoemission scattering patterns of vanadium-doped SrBi4Ti4O15 ferroelectric ceramics

    International Nuclear Information System (INIS)

    Zhu, Jun; Chen, Xiao-Bing; He, Jun-hui; Shen, Jian-Cang

    2007-01-01

    Vanadium incorporation in SrBi 4 Ti 4 O 15 results in an improvement of electric properties. Raman scattering reveals that V-addition brings about the local disorders of structure, charge, and internal stress. The chemical valence of Bi and Ti does not increase after V-doping. The electric property improvement is originated from the restraint of oxygen vacancies, mobility weakening of the defects, and the vacancies produced at A-site

  14. Laser sintering of doped strontium aluminate via modified sol-gel for use as a ceramic pigment; Sinterizacao a laser do aluminato de estroncio dopado via sol-gel modificado para aplicacao como pigmento ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Soares, F.M. dos S.; Valerio, M.E.G. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil)

    2017-01-15

    Powder of Dy{sup 3+} co-doped SrAl{sub 2}O{sub 4} :Eu{sup 3+} was produced via proteic sol-gel method, a modified sol-gel route which allows the formation of oxides at lower temperatures than other methods. CO{sub 2} laser sintering was used as a method for heat treatment, effective in reducing trivalent europium ions in doped samples. Thermal analysis of the precursors, performed by TG and DTA, revealed that the crystallization of SrAl{sub 2}O{sub 4} phase occurred at approximately 1060 °C. X-ray diffraction showed that the samples, before and after sintering, had monoclinic and hexagonal phases formation. DLS technique revealed the presence of nanosized and micrometric particles, and particle agglomerates, confirmed by SEM images. Micrographs of the fracture surface of a sintered pellet revealed a high degree of densification caused by heat treatment. Photoluminescence measurements showed that the samples after synthesis and before heat treatment with laser had reddish emission, composed of characteristic narrow emission lines from Eu{sup 3+} and more intense emission when the samples were excited at 265 nm. The laser treatment promoted the reduction of Eu{sup 3+} to Eu{sup 2+} and this effect was confirmed by the presence of a wide emission band in the green region of the spectrum with a maximum emission obtained after excitation at 350 nm. The luminescent decay time of the thermally treated sample was approximately 100 min. Via XRF measurements of acquired frit and DTA and TG of the frit, pigment and mixtures of both, it was noticed good compatibility in terms of thermal processes, that indicated that the pigment has a potential to be used in ceramic tiles. (author)

  15. Effect of Li.sup.+./sup. ions co-doping on luminescence, scintillation properties and defects characteristics of LuAG:Ce ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.-P.; Feng, X. Q.; Mareš, Jiří A.; Babin, Vladimir; Hu, C.; Kou, H.; D'Ambrosio, C.; Li, J.; Pan, Y.; Nikl, Martin

    2017-01-01

    Roč. 64, Feb (2017), s. 245-249 ISSN 0925-3467 R&D Projects: GA ČR GA16-15569S Grant - others:AV ČR(CZ) CAS-17-02 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : LuAG:Ce * Li ceramic s * scintillator * Li + codoping * Ce 4+ and Ce 3+ centers Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.238, year: 2016

  16. Dielectric and AC-conductivity studies of Dy2O3 doped (K0.5Na0.5NbO3 ceramics

    Directory of Open Access Journals (Sweden)

    Mahesh Peddigari

    2014-08-01

    Full Text Available (K0.5Na0.5NbO3 + x wt.% Dy2O3 (x = 0–1.5 ferroelectric ceramics were prepared by conventional solid state reaction method. XRD patterns revealed that orthorhombic symmetry has transformed into psuedocubic symmetry with increasing the substitution of Dy3+ in the Na+ site. Temperature and frequency dependences of relative dielectric permittivity maximum conforms the transformation from normal ferroelectric to relaxor ferroelectric behaviour. Frequency dependence of the relative dielectric permittivity maximum temperature observed for the samples with x ≥ 1.0 and satisfied the Vogel–Fulcher law. The diffuseness exponent γ (1.27–1.95 estimated from the high temperature slopes of the diffused dielectric permittivity data reveals that the degree of relaxor behavior increases with increasing the amount of Dy2O3. The temperature dependence of AC-conductivity σAC (T analysis in the range 310 K < T < 470 K reveals the existence of variable range hopping of charge carriers with average hopping length RH and hopping energy EH are in the range 8.5–27 Å and 48–153 meV, respectively. Voltage dependent dielectric constant measurements confirm the ferroelectric nature of KNN+ x wt% Dy2O3 ceramics.

  17. Stable proton-conducting Ca-doped LaNbO4 thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    International Nuclear Information System (INIS)

    Lin Bin; Wang Songlin; Liu Xingqin; Meng Guangyao

    2009-01-01

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La 0.99 Ca 0.01 NbO 4 (LCN) thin electrolyte was fabricated on a porous NiO-La 0.5 Ce 0.5 O 1.75 (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La 2 O 3 , CaCO 3 and Nb 2 O 5 instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 μm was obtained. A single cell was assembled with (La 0.8 Sr 0.2 ) 0.9 MnO 3-δ -La 0.5 Ce 0.5 O 1.75 (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm -2 at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  18. Stable proton-conducting Ca-doped LaNbO{sub 4} thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    Energy Technology Data Exchange (ETDEWEB)

    Lin Bin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China)], E-mail: bin@mail.ustc.edu.cn; Wang Songlin; Liu Xingqin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China); Meng Guangyao [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China)], E-mail: mgym@ustc.edu.cn

    2009-06-10

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La{sub 0.99}Ca{sub 0.01}NbO{sub 4} (LCN) thin electrolyte was fabricated on a porous NiO-La{sub 0.5}Ce{sub 0.5}O{sub 1.75} (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La{sub 2}O{sub 3}, CaCO{sub 3} and Nb{sub 2}O{sub 5} instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 {mu}m was obtained. A single cell was assembled with (La{sub 0.8}Sr{sub 0.2}){sub 0.9}MnO{sub 3-{delta}}-La{sub 0.5}Ce{sub 0.5}O{sub 1.75} (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm{sup -2} at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  19. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  20. First-principles calculation of the effects of Li-doping on the structure and piezoelectricity of (K0.5Na0.5)NbO3 lead-free ceramics.

    Science.gov (United States)

    Yang, D; Wei, L L; Chao, X L; Yang, Z P; Zhou, X Y

    2016-03-21

    The crystal structures of the lead-free piezoelectric ceramics (K0.5Na0.5)NbO3 and (K0.5Na0.5)0.94Li0.06NbO3 prepared by a solid-state method were investigated using first-principles calculations. The calculated values of piezoelectricity were in good agreement with the experimental data. We found that the primary contribution to piezoelectricity in this material comes from the hybridization of the O 2p and Nb 4d orbitals, which causes a change in the Nb-O bond length and the distortion of the Nb-O octahedral structure. Analysis of the band structure and the total density of states revealed that Li-doped (K0.5Na0.5)NbO3 enhances hybridization of the O 2p and Nb 4d orbitals. This hybridization enhancement further reduces the Nb-O1 bond length and enhances the distortion of the Nb-O octahedron along the [001] direction, which may be the main reason for the improvement of the piezoelectric properties. In addition, the piezoelectric coefficients are calculated here, which show the same trend as the experimental results.

  1. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  2. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    Science.gov (United States)

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  3. Towards atomic scale engineering of rare-earth-doped SiAlON ceramics through aberration-corrected scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Yurdakul, Hilmi; Idrobo, Juan C.; Pennycook, Stephen J.; Turan, Servet

    2011-01-01

    Direct visualization of rare earths in α- and β-SiAlON unit-cells is performed through Z-contrast imaging technique in an aberration-corrected scanning transmission electron microscope. The preferential occupation of Yb and Ce atoms in different interstitial locations of β-SiAlON lattice is demonstrated, yielding higher solubility for Yb than Ce. The triangular-like host sites in α-SiAlON unit cell accommodate more Ce atoms than hexagonal sites in β-SiAlON. We think that our results will be applicable as guidelines for many kinds of rare-earth-doped materials.

  4. Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2012-01-01

    Potentiometric oxygen sensors with an internal reference electrode, which uses the equilibrium pO2 of the binary mixture of Ni/NiO as the reference, are demonstrated. The cells employ Pt or composite ceramics as the sensing electrode. The cells are fabricated by a flexible and potentially low cost...... and performance are highly reproducible. The composite ceramics, based on strontium doped manganite and yttria doped zirconia, are proven superior over Pt to serve as the electrode material....

  5. Structural and chemical analysis of silica-doped β-TCP ceramic coatings on surgical grade 316L SS for possible biomedical application

    Directory of Open Access Journals (Sweden)

    Karuppasamy Prem Ananth

    2015-09-01

    Full Text Available We have developed a novel approach to introduce silica-doped β-tricalcium phosphate (Si-β-TCP on 316L SS substrates for enhanced biological properties. Doping of β-TCP with silica loadings ranging from 0 to 8 mol% was carried out using chemical precipitation method. Si-β-TCP powder was sintered at 800 °C followed by coating it on 316L SS substrate using electrophoretic deposition. The coated and uncoated samples were investigated by various characterization techniques such as X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, field emission scanning electron microscopy (FESEM and X-ray fluorescence spectroscopy (XRF. Biomineralization ability of the coatings was evaluated by immersing in simulated body fluid (SBF solution for different number of days such as 7, 14, 21 and 28 days. The results obtained in our study have shown that the apatite formation ability was high for the 8 mol% of Si-β-TCP. This will promote better biomineralization ability compared to the other coatings.

  6. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  7. Effects of Y{sub 2}O{sub 3}/CeO{sub 2} co-doping on microwave dielectric properties of Ba(Co{sub 0.6}Zn{sub 38}){sub 1/3}Nb{sub 2/3}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuqin; Zhou, Xiaohua, E-mail: 1250590698@qq.com; Yang, Xinshi; Sun, Chengli; Yang, Fan; Chen, Hetuo

    2016-09-15

    The effects of CeO{sub 2}/Y{sub 2}O{sub 3} co-doping on the microstructure and microwave dielectric properties of Ba(Co{sub 0.6}Zn{sub 0.38}){sub 1/3}Nb{sub 2/3}O{sub 3}-xA-xB (x = 0,1,2,3,4,6; A = 0.1204 wt%Y{sub 2}O{sub 3}; B = 0.1 wt%CeO{sub 2}) ceramics prepared by the conventional solid-state route technique were investigated. The X-ray diffraction (XRD) results presented that all the well sintered samples exhibited the main phase BaZn{sub 0.33}Nb{sub 0.67}O{sub 3}−Ba{sub 3}CoNb{sub 2}O{sub 9}. A certain amount of Ba{sub 8}CoNb{sub 6}O{sub 24} surface secondary phase and minority phase of Ba{sub 5}Nb{sub 4}O{sub 15} were also observed in all sintered ceramics. The 1:2 B-site cation ordering degree was found to influenced by the substitution of Y{sup 3+} and Ce{sup 4+} in the crystal lattice, especially for x = 0.02. Then the scanning electron microscopy (SEM) picture of the optimally well-sintered (1350 °C for 20 h) ceramic has shown a dense microstructure. Although the ε{sub r} almost kept unchanged, appropriate doping content would greatly improve the Q × f value. Meanwhile, the τ{sub f} value first declined and then increased with increasing x. At last, the excellent microwave dielectric properties of ε{sub r} = 36.09, Q × f = 72006 GHz, τ{sub f} = 3.35 ppm/ºC were obtained for the ceramic with x = 0.02 sintered in air at 1350 °C for 20 h. - Graphical abstract: Fig. SEM images of as-sintered Ba(Co{sub 0.6}Zn{sub 0.38}){sub 1/3}Nb{sub 2/3}O{sub 3}-xA-Xb (A = 0.1204 wt%Y{sub 2}O{sub 3}; B = 0.1 wt%CeO{sub 2)}ceramics: (a) x = 0,(b) x = 0.01,(c) x = 0.02,(d) x = 0.03, (e) x = 0.04,(f) x = 0.06. The images confirmed the presences of two phases on the surface of the ceramics, plate-shaped grains (Ba{sub 8}(C{sub O},Zn){sub 1}Nb{sub 6}O{sub 24}phase) and needle-shaped grains (Ba{sub 3}(Co{sub 0.6}Zn{sub 0.38}){sub 1}Nb{sub 2}O{sub 9} phase). As a small content of CeO{sub 2}/Y{sub 2}O{sub 3} (x = 0.01–0.04) was codoped into the BCZN ceramics, the

  8. Characterization of composite metal-ceramic of nickel-oxide cerium doped gadolinium; Caracterizacao de compositos ceramica-metal de niquel e oxido de cerio dopado com gadolinio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.L.A. da, E-mail: maria.andrade@pro.unifacs.br [Universidade Salvador (UNIFACS), BA (Brazil). Escola de Engenharia, Arquitetura e TI; Universidade Federal da Bahia (UFBA), BA (Brazil); Varela, M.C.R.S. [Universidade Federal da Bahia (UFBA), BA (Brazil)

    2016-07-01

    Composite nickel doped cerium oxide are used in SOFC anode materials. In this study we evaluated the effect of the presence of gadolinium on the properties of composite nickel and ceria and. The supports were synthesized by sol-gel method. The impregnation with nickel nitrate was taken sequentially, followed by calcination. The materials were characterized by X-ray diffraction, measurement of specific surface area, temperature programmed reduction, Raman spectroscopy. The presence of gadolinium retained the fluorite structure of ceria by forming a solid solution, also not influencing significantly on the specific surface area of the support. On the other hand, there was a decrease in the area catalysts, which can be attributed to sintering of nickel. Furthermore, addition of gadolinium favored the formation of intrinsic and extrinsic vacancies in cerium oxide, which leads to an increase in the ionic conductivity of the solid, desirable property for an SOFC anode catalyst. (author)

  9. Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics.

    Science.gov (United States)

    Placek, L M; Keenan, T J; Wren, A W

    2016-08-01

    The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces. © The Author(s) 2016.

  10. Up-conversion and near infrared luminescence in Er3+/Yb3+ co-doped glass-ceramic containing MgGa2O4 nano-crystals

    International Nuclear Information System (INIS)

    Sun, Jiaju; Yu, Lixin; Li, Fuhai; Wei, Shuilin; Li, Songchu

    2016-01-01

    The MgO–Ga 2 O 3 –SiO 2 (MG-S) glasses and nanocrystalline glass-ceramics (GCs) containing MgGa 2 O 4 nanocrystals codoped with Er 3+ and Yb 3+ were prepared by a simple sol–gel method. The formation of MgGa 2 O 4 nanocrystals in the GCs was confirmed by the X-ray diffraction (XRD). Their morphology was investigated applying high-resolution transmission electron microscopy (HRTEM). Stark splitting of near infrared (NIR) and up-conversion (UC) emission implies that the Er 3+ is incorporated into MgGa 2 O 4 nanocrystals. The effect of the MgO, Ga 2 O 3 content and sintering temperature on the structure of the prepared samples was systematically studied. Under 980 nm excitation, intense UC and NIR emission (1530 nm) were observed in the MG-S GCs by efficient energy transfer from Yb 3+ to Er 3+ . The two-photon process was confirmed to be responsible for both the green and red UC emissions. - Highlights: • It is interesting that the CIE chromaticity coordinates of the several prepared CaMO 4 :Eu samples by a hydrothermal method are very close to the standard of white light.

  11. Síntese e caracterização da cerâmica PZT dopada com íons bário Synthesis and characterization of barium-doped PZT ceramics

    Directory of Open Access Journals (Sweden)

    G. Gasparotto

    2003-04-01

    Full Text Available Pós de titanato zirconato de chumbo (PZT puros e dopados com bário foram obtidos pelo método de precursores poliméricos, conformados uniaxialmente, na forma de cilindros, utilizando 15 MPa, e prensados isostaticamente à 210MPa. Com o objetivo de estudar o comportamento de sinterização os compactos foram divididos em dois lotes. Sendo um sinterizado em um forno acoplado a um dilatômetro até a temperatura de 1300 °C e o outro sinterizado em forno tipo mufla, em sistema fechado, na temperatura de 1100 °C por 4 horas. Verificou-se que a adição do íon bário influencia na cinética de sinterização, na densificação final, na microestrutura e nas propriedades elétricas da cerâmica. A adição de bário aumenta a concentração da fase tetragonal no PZT, em função da substituição do chumbo por bário na rede perovskita. As amostras dopadas com concentrações maiores que 5,0 mol % em bário apresentaram segregação de PbO no contorno de grão, inibindo seu crescimento.Pure and barium doped lead zirconate titanate powders were obtained by the polymeric precursor method, uniaxially conformed in cylinders form using 15 MPa and pressing isostatically at 210 MPa. In order to study the sintering behaviour, the compacts were divided in two parts. One part was sintered in a dilatometer furnace till 1300 °C and the other one sintered in muffle furnace in the temperature of 1100 °C for 4 hours. It was verified that the addition of barium influences on the sintering kinetics, on the final density, microstructure and electric properties of the ceramics. The addition of barium increases the concentration of the tetragonal phase of PZT due to the substitution of lead by barium in the perovskite lattice. The samples doped with barium concentrations higher than 5.0 mol % leads to the segregation of PbO in the grain boundary, inhibiting grain growth.

  12. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  13. Aqueous Synthesis of Technetium-Doped Titanium Dioxide by Direct Oxidation of Titanium Powder, a Precursor for Ceramic Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, Wayne W. [Chemical; Saslow, Sarah A. [Earth

    2017-11-17

    Technetium-99 (Tc) is a problematic fission product that complicates the long-term disposal of nuclear waste due to its long half-life, high fission yield, and the environmental mobility of pertechnetate, its stable form in aerobic environments. One approach to preventing Tc contamination is through incorporation into durable waste forms based on weathering-resistant minerals such as rutile (titanium dioxide). Here, the incorporation of technetium into titanium dioxide by means of simple, aqueous chemistry is presented. X-ray absorption fine structure spectroscopy and diffuse reflectance spectroscopy indicate that Tc(IV) replaces Ti(IV) within the structure. Rather than being incorporated as isolated Tc(IV) ions, Tc is present as pairs of edge-sharing Tc(IV) octahedra similar to molecular Tc(IV) complexes such as [(H2EDTA)TcIV](u-O)2. Technetium-doped TiO2 was suspended in deionized water under aerobic conditions, and the Tc leached under these conditions was followed for 8 months. The normalized release rate of Tc (LRTc) from the TiO2 particles is low (3×10-6 g m-2 d-1), which illustrates the potential utility of TiO2 as waste form. However, the small size of the as-prepared TiO2 nanoparticles results in estimated retention of Tc for 104 years, which is only a fraction of the half-life of Tc (2×10-5 years).

  14. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties.

    Science.gov (United States)

    Wang, Xu; Gu, Zhipeng; Jiang, Bo; Li, Li; Yu, Xixun

    2016-04-01

    For bioceramic scaffolds employed in clinical applications, excellent bioactivity and tenacity were of great importance. Modifying inorganic SCPP scaffolds with biological macromolecules could obviously improve its bioactivity and eliminate its palpable brittleness. However, it was hard to execute directly due to extremely bad interfacial compatibility between them. In this research, dopamine (DOPA) was introduced onto strontium-doped calcium polyphosphate (SCPP) scaffolds, subsequently the preliminary material was successfully further modified by silk fibroin (SF). SCPP/D/SF possessed suitable biomechanical properties, ability to stimulate angiogenic factor secretion and excellent biocompatibility. Biomechanical examination demonstrated that SCPP/D/SF scaffolds yielded better compressive strength because of improved interfacial compatibility. MTT assay and CLSM observation showed that SCPP/D/SF scaffolds had good cytocompatibility and presented better inducing-cell-migration potential than pure SCPP scaffolds. Meanwhile, its ability to stimulate angiogenic factor secretion was measured through the ELISA assay and immunohistological analysis in vitro and in vivo respectively. The results revealed, superior to SCPP, SCPP/D/SF could effectively promote VEGF and bFGF expression, possibly leading to enhancing angiogenesis and osteogenesis. In a word, SCPP/D/SF could serve as a potential bone tissue engineering scaffold for comparable biomechanical properties and excellent bioactivity. It provided a novel idea for modification of inorganic materials to prepare promising bone tissue engineering scaffolds with the ability to accelerate bone regeneration and vascularization.

  15. Transport properties of Pb-doped Bi4Sr3Ca3Cu4Ox semiconducting glasses and glass-ceramic superconductors

    International Nuclear Information System (INIS)

    Chatterjee, S.; Banerjee, S.; Mollah, S.; Chaudhuri, B.K.

    1996-01-01

    Electrical conductivity and thermoelectric power (TEP) of the as-quenched and annealed (at 500 degree C for 10 h and 840 degree C for 24 h) Bi 4-n Pb n Sr 3 Ca 3 Cu 4 O x (x = 0 endash 1.0) glasses have been measured. The dc conductivity data of the as-quenched and the partially annealed (at 500 degree C) glasses can be explained by considering the small-polaron hopping conduction mechanism which is found to change from the nonadiabatic to the adiabatic regime with annealing the glasses at 500 degree C. This change over is due to the presence of microcrystals in the partially annealed glasses as observed from x-ray-diffraction and scanning electron microscopic studies. This adiabatic behavior is also visualized even for some as-quenched glasses having a very small amount of the more conducting microcrystalline phase. All the 840 degree C annealed glasses are superconductors with T c between 110 and 115 K. The Seebeck coefficient (S) of the partially annealed glass system is found to be positive and increases linearly with temperature. The S values of the corresponding glass-ceramic superconductors showing broad peaks around T c . A change over in the values of S from positive (below ∼290 K) to negative (above ∼290 K) indicates the coexistence of both electrons and holes in these superconductors. The TEP data can be fitted with both the two-band model of Forro et al. [Solid State Commun. 73, 501 (1990)] and the Nagaosa-Lee model [Phys. Rev. Lett. 64, 2450 (1990)]. Therefore, the bosonic contribution in the transport properties of these superconductors, as suggested by the Nagaosa-Lee model, is supported. copyright 1996 The American Physical Society

  16. Transmission of Er:YAG laser through different dental ceramics.

    Science.gov (United States)

    Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert

    2014-01-01

    The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (pCeramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.

  17. Synthesis of crystalline ceramics for actinide immobilisation

    International Nuclear Information System (INIS)

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-01-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  18. Giant strain with low cycling degradation in Ta-doped [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}]TiO{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming; Tan, Xiaoli, E-mail: xtan@iastate.edu [Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2016-07-21

    Non-textured polycrystalline [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}](Ti{sub 1−x}Ta{sub x})O{sub 3} ceramics are fabricated and their microstructures and electrical properties are characterized. Transmission electron microscopy reveals the coexistence of the rhombohedral R3c and tetragonal P4bm phases in the form of nanometer-sized domains in [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}]TiO{sub 3} with low Ta concentration. When the composition is x = 0.015, the electrostrain is found to be highly asymmetric under bipolar fields of ±50 kV/cm. A very large value of 0.62% is observed in this ceramic, corresponding to a large-signal piezoelectric coefficient d{sub 33}* of 1240 pm/V (1120 pm/V under unipolar loading). These values are greater than most previously reported lead-free polycrystalline ceramics and can even be compared with some lead-free piezoelectric single crystals. Additionally, this ceramic displays low cycling degradation; its electrostrain remains above 0.55% even after undergoing 10 000 cycles of ±50 kV/cm bipolar fields at 2 Hz. Therefore, Ta-doped [Bi{sub 1/2}(Na{sub 0.8}K{sub 0.2}){sub 1/2}]TiO{sub 3} ceramics show great potential for large displacement devices.

  19. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    International Nuclear Information System (INIS)

    Cherepy, N.J.; Kuntz, J.D.; Roberts, J.J.; Hurst, T.A.; Drury, O.B.; Sanner, R.D.; Tillotson, T.M.; Payne, S.A.

    2008-01-01

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed

  20. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  1. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  2. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03(Ti0.96Sn0.04O3 lead-free piezoelectric ceramics with high Curie temperature

    Directory of Open Access Journals (Sweden)

    Cheng-Che Tsai

    2016-12-01

    Full Text Available In this work, the process of two-stage modifications for (Ba0.97Ca0.03(Ti0.96Sn0.04-xHfxO3 (BCTS4-100xH100x ceramics was studied. The trade-off composition was obtained by Hf substitution for Sn and MnO2 doping (two-stage modification which improves the temperature stability and piezoelectric properties. The phase structure ratio, microstructure, and dielectric, piezoelectric, ferroelectric, and temperature stability properties were systematically investigated. Results showed that BCTS4-100xH100x piezoelectric ceramics with x=0.035 had a relatively high Curie temperature (TC of about 112 °C, a piezoelectric charge constant (d33 of 313 pC/N, an electromechanical coupling factor (kp of 0.49, a mechanical quality factor (Qm of 122, and a remnant polarization (Pr of 19μC/cm2. In addition, the temperature stability of the resonant frequency (fr, kp, and aging d33 could be tuned via Hf content. Good piezoelectric temperature stability (up to 110 °C was found with x =0.035. BCTS0.5H3.5 + a mol% Mn (BCTSH + a Mn piezoelectric ceramics with a = 2 had a high TC of about 123 °C, kp ∼ 0.39, d33 ∼ 230 pC/N, Qm ∼ 341, and high temperature stability due to the produced oxygen vacancies. This mechanism can be depicted using the complex impedance analysis associated with a valence compensation model on electric properties. Two-stage modification for lead-free (Ba0.97Ca0.03(Ti0.96Sn0.04O3 ceramics suitably adjusts the compositions for applications in piezoelectric motors and actuators.

  3. Enhanced room temperature multiferroicity in Gd doped BFO

    CSIR Research Space (South Africa)

    Pradhan, SK

    2009-01-01

    Full Text Available deficient Gd doped multiferroic BFO system. At particular doping level of Gd, this bulk ceramics showed spectacular M~H behavior at room temperature which is likely to open a new avenue for the potential applications in information storing technology as well...

  4. Measurement of temperature fields in specimens of quartz ceramic during surface ablation

    Science.gov (United States)

    Frolov, G. A.; Pasichnyi, V. V.; Suzdal'Tsev, E. I.; Tsyganenko, V. S.

    1989-08-01

    The authors propose a method of mounting thermocouples and have obtained temperature fields within specimens of pure and doped quartz ceramic. The linearity of the dependenceΔ * = fleft( {sqrt tau } right) for deep isotherms has been proved experimentally.

  5. Industrial ceramics

    International Nuclear Information System (INIS)

    Mengelle, Ch.

    1999-04-01

    After having given the definition of the term 'ceramics', the author describes the different manufacturing processes of these compounds. These materials are particularly used in the fields of 1)petroleum industry (in primary and secondary reforming units, in carbon black reactors and ethylene furnaces). 2)nuclear industry (for instance UO 2 and PuO 2 as fuels; SiC for encapsulation; boron carbides for control systems..)

  6. Nanosecond Tm:Y2O3 ceramic laser passively Q-switched by a Ho:LuAG ceramic

    Science.gov (United States)

    Wang, Hui; Huang, Haitao; Wang, Shiqiang; Shen, Deyuan

    2018-02-01

    A passively Q-switched 2.05-μm Tm:Y2O3 ceramic laser, employing Ho:LuAG ceramic as a saturable absorber, was demonstrated for the first time. Under the absorbed pump power of 20.5 W, a maximum output power of 497 mW was obtained. Pulses with a minimum pulse width of 642 ns under the repetition rate of 33 kHz were achieved. Our works validate that Ho-doped materials have good potential for passive Q-switching of Tm-doped lasers at 2-μm wavelength region.

  7. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    Science.gov (United States)

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  8. Quantitative description of yttrium aluminate ceramic composition by means of Er+3 microluminescence spectrum

    Science.gov (United States)

    Videla, F. A.; Tejerina, M. R.; Moreira-Osorio, L.; Conconi, M. S.; Orzi, D. J. O.; Flores, T.; Ponce, L. V.; Bilmes, G. M.; Torchia, G. A.

    2018-05-01

    The composition of erbium-doped yttrium aluminate ceramics was analyzed by means of confocal luminescence spectroscopy, EDX, and X-ray diffraction. A well-defined linear correlation was found between a proposed estimator computed from the luminescence spectrum and the proportion of ceramic phases coexisting in different samples. This result shows the feasibility of using erbium luminescence spectroscopy to perform a quantitative determination of different phases of yttrium aluminates within a micrometric region in nanograined ceramics.

  9. Effects of PbO-B2O3 Glass Doping on the Sintering Temperature and Piezoelectric Properties of 0.35Pb (Ni1/3Nb2/3)O3-0.65Pb(Zr0.41Ti0.59)O3 Ceramics

    Science.gov (United States)

    Yi, Jinqiao; Shen, Meng; Liu, Sisi; Jiang, Shenglin

    2015-12-01

    0.35Pb(Ni1/3Nb2/3)O3-0.65Pb(Zr0.41Ti0.59)O3 (PNN-PZT) ceramics doped with 0.5PbO-0.5B2O3 glass have been synthesized by the conventional solid-state sintering technique. The effects of 0.5PbO-0.5B2O3 glass on the sintering temperature and piezoelectric properties of PNN-PZT ceramics were studied. The results indicated that the sintering temperature of PNN-PZT was significantly reduced due to the incorporation of 0.5PbO-0.5B2O3 glass dopant. When the content of 0.5PbO-0.5B2O3 glass was 0.5 wt.%, the sintering temperature of PNN-PZT was observed to reduce from above 1200°C to 920°C while the samples maintained high density (7.91 g/cm3), excellent piezoelectric constant ( d 33 = 479 pC/N), large electromechanical coupling coefficient ( K p = 0.55), and relatively low electromechanical quality factor ( Q m = 79). Moreover, large dielectric constant ( ɛ 33 T / ɛ 0 = 2904) and low dielectric loss (tan δ = 0.0166) were obtained in this work.

  10. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  11. Eu-activated fluorochlorozirconate glass-ceramic scintillators

    International Nuclear Information System (INIS)

    Johnson, J. A.; Schweizer, S.; Henke, B.; Chen, G.; Woodford, J.; Newman, P. J.; MacFarlane, D. R.

    2006-01-01

    Rare-earth-doped fluorochlorozirconate (FCZ) glass-ceramic materials have been developed as scintillators and their properties investigated as a function of dopant level. The paper presents the relative scintillation efficiency in comparison to single-crystal cadmium tungstate, the scintillation intensity as a function of x-ray intensity and x-ray energy, and the spatial resolution (modulation transfer function). Images obtained with the FCZ glass-ceramic scintillator and with cadmium tungstate are also presented. Comparison shows that the image quality obtained using the glass ceramic is close to that from cadmium tungstate. Therefore, the glass-ceramic scintillator could be used as an alternative material for image formation resulting from scintillation. Other inorganic scintillators such as single crystals or polycrystalline films have limitations in resolution or size, but the transparent glass-ceramic can be scaled to any shape or size with excellent resolution

  12. Lutetium oxide-based transparent ceramic scintillators

    Science.gov (United States)

    Seeley, Zachary; Cherepy, Nerine; Kuntz, Joshua; Payne, Stephen A.

    2016-01-19

    In one embodiment, a transparent ceramic of sintered nanoparticles includes gadolinium lutetium oxide doped with europium having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YEu.sub.YO.sub.3, where X is any value within a range from about 0.05 to about 0.45 and Y is any value within a range from about 0.01 to about 0.2, and where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm. In another embodiment, a transparent ceramic scintillator of sintered nanoparticles, includes a body of sintered nanoparticles including gadolinium lutetium oxide doped with a rare earth activator (RE) having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YRE.sub.YO.sub.3, where RE is selected from the group consisting of: Sm, Eu, Tb, and Dy, where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm.

  13. Solution combustion synthesis of (La, K) FeO3 orthoferrite ceramics ...

    Indian Academy of Sciences (India)

    Administrator

    Fourier transform infrared spectroscopy (FTIR), and magnetic and optical property ... Among many perovskite ceramics, LaFeO3 is of cur- ... example, in anode-supported SOFCs, doped LaFeO3 used ... doped with K+, synthesized by a simple combustion ... single phase formation was limited to ... magnetic field of 1000 Oe.

  14. The Oxidation States of Cooper in Sb, Cu Doped Ba.sub.0.9./sub.Sr.sub.0.1./sub. TiO.sub.3./sub. Ceramics

    Czech Academy of Sciences Publication Activity Database

    Medvecký, L.; Briančin, J.; Trpcevská, J.; Pelikan, P.; Bastl, Zdeněk

    2001-01-01

    Roč. 20, - (2001), s. 419-422 ISSN 0261-8028 Institutional research plan: CEZ:AV0Z4040901 Keywords : BaTiO3 ceramics * conductivity * trap centers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.489, year: 2001

  15. Airplane dopes and doping

    Science.gov (United States)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  16. Investigation of thermoelectric SiC ceramics for energy harvesting ...

    Indian Academy of Sciences (India)

    Utilizing thermoelectric technology to aerodynamic heat harvesting on the ... in terms of the computational fluid dynamics and the thermal conduction theory. ... It is shown that doping elements with good ... ous SiC materials, yet few experimental studies have been ... polymer-derived consolidated SiC-based ceramics, which.

  17. Understanding and control of optical performance from ceramic materials

    International Nuclear Information System (INIS)

    Barbour, J.C.; Knapp, J.A.; Potter, B.G.; Jennison, D.R.; Verdozzi, C.A.; Follstaedt, D.M.; Bendale, R.D.; Simmons, J.H.

    1998-06-01

    This report summarizes a two-year Laboratory-Directed Research and Development (LDRD) program to gain understanding and control of the important parameters which govern the optical performance of rare-earth (RE) doped ceramics. This LDRD developed the capability to determine stable atomic arrangements in RE doped alumina using local density functional theory, and to model the luminescence from RE-doped alumina using molecular dynamic simulations combined with crystal-field calculations. Local structural features for different phases of alumina were examined experimentally by comparing their photoluminescence spectra and the atomic arrangement of the amorphous phase was determined to be similar to that of the gamma phase. The luminescence lifetimes were correlated to these differences in the local structure. The design of both high and low-phonon energy host materials was demonstrated through the growth of Er-doped aluminum oxide and lanthanum oxide. Multicomponent structures of rare-earth doped telluride glass in an alumina and silica matrix were also prepared. Finally, the optical performance of Er-doped alumina was determined as a function of hydrogen content in the host matrix. This LDRD is the groundwork for future experimentation to understand the effects of ionizing radiation on the optical properties of RE-doped ceramic materials used in space and other radiation environments

  18. Fabrication and spectral properties of Nd, La: CaF2 transparent ceramics

    Science.gov (United States)

    Xie, Xiaoyu; Mei, Bingchu; Song, Jinghong; Li, Weiwei; Su, Liangbi

    2018-02-01

    1 at.% Nd: CaF2 nanoparticles doped with different concentrations of La3+ ions (from 0 to 5 at.%) were synthesized by co-precipitation method. Phase identification, morphology of the nanoparticles were investigated by XRD and SEM measurements. The Nd, La: CaF2 ceramics were fabricated by hot-pressed method in the vacuum environment. The transmittance of all the ceramics reached 88% at the wavelength of 1400 nm. The luminescence intensities and decay lifetimes enhanced significantly with the increasing of La3+ concentration. The Nd, La: CaF2 ceramics have broad and flat emission band at 1050 nm with the largest FWHM of 28.16 nm. In addition, the spectrum results indicated that the fluorescence lifetime of Nd, La: CaF2 ceramics was longer than that of the Nd, Y: CaF2 ceramics with the same doping concentration.

  19. Progress in development of a source term for sphene glass-ceramic dissolution under vault conditions

    International Nuclear Information System (INIS)

    Hayward, P.J.; Tait, J.C.; George, I.M.; Carmichael, A.A.; Ross, J.M.P.

    1986-01-01

    This report describes the results of ongoing leaching experiments, involving aluminosilicate glass and sphene (CaTiSiO/sub 5/) ceramics, doped with /sup 22/Na or /sup 45/Ca, and leached in a simulated Ca-NA-Cl brine at 25 0 or 100 0 C. The experiments are designed to aid development of separate models for the dissolution of the glass and the ceramic phase in a sphene glass-ceramic, and to help evaluate a composite model for the dissolution of the glass-ceramic

  20. The effects of PbZn1/3Nb2/3O3-doping on structural, thermal, optical, dielectric, and ferroelectric properties of BaTiO3 ceramics

    Science.gov (United States)

    Suchanicz, J.; Świerczek, K.; Sitko, D.; Czaja, P.; Marchet, P.; Czternastek, H.; Majda, D.

    2017-09-01

    Low-lead (1-x)BT-xPZN (x = 0, 0.025, 0.05, 0.075, 0.10, 0.125, and 0.15) ceramics were successfully synthesized by the spark-plasma-sintering method for the first time. Their phase transition behavior as well as structural, thermal, optical, and electrical properties was investigated. These materials exhibit the structure of perovskite-type solid solutions and undergo a sequence of phase transitions, typical of pure BaTiO3 (BT). The dielectric test results revealed that with the increase in the PbZn1/3Nb2/3O3 (PZN) content, the frequency dispersion of electric permittivity increases, whilst the dielectric/ferroelectric properties tend to deteriorate, which is characteristic of relaxor-type behavior. Therefore, it is reasonable to suppose that these ceramics progressively lack long-range ordering. These effects are due to the competition between lone-pair electrons' induced changes in the A-O band upon Pb2+ addition and ionic size differences. In general, the transition temperatures observed by dielectric analyses are in good agreement with those obtained from X-ray diffraction and differential scanning calorimetry measurements. The BT-PZN system may help to understand why relaxor behavior appears in perovskite-based materials. It appears that these materials can become a good starting point for the development of new low-lead electronic ceramics.

  1. Manufacturing of planar ceramic interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  2. An investigation on phase transition behaviors in MgO-doped Pb{sub 0.99}(Zr{sub 0.95}Ti{sub 0.05}){sub 0.98}Nb{sub 0.02}O{sub 3} ferroelectric ceramics by Raman and dielectric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junxia, E-mail: wjunxia2002@163.com [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Genshui; Chen, Xuefeng [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Hu, Zhigao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Nie, Hengchang; Cao, Fei [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Dong, Xianlin, E-mail: xldong@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-03-15

    Highlights: • The phase transition behaviors were strongly dependent on MgO concentration. • The F{sub R(LT)}–F{sub R(HT)} phase transition temperature obviously shifted toward a lower temperature with increasing MgO addition. • The F{sub R(HT)}–cubic paraelectric (P{sub C}) phase transition changed to a higher temperature with increasing MgO addition. • The distortion of BO{sub 6} oxygen octahedron caused by B-site replacement of Mg{sup 2+} ions is proposed to explain the observed behaviors. • Superior room-temperature pyroelectric properties were obtained in 0.1 wt% MgO-modified PZTN 95/5 ceramics during F{sub R(LT)}–F{sub R(HT)} phase transition. - Abstract: The phase transition behaviors of Pb{sub 0.99}(Zr{sub 0.95}Ti{sub 0.05}){sub 0.98}Nb{sub 0.02}O{sub 3} ferroelectric ceramics doped with different MgO concentrations (0–0.2 wt%) were systematically investigated by Raman and dielectric measurements. Raman results showed that the phase transitions were strongly dependent on MgO concentration. It was found that the low temperature rhombohedral (F{sub R(LT)})–high temperature rhombohedral (F{sub R(HT)}) ferroelectric phase transition shifted toward a lower temperature with increasing MgO concentration up to 0.1 wt%, while the F{sub R(HT)}–cubic paraelectric (P{sub C}) phase transition changed to a higher temperature. The Raman results were in good agreement with phase transition determined by dielectric measurements. Moreover, it was indicated that the changes of Raman active modes were related to distortion of BO{sub 6} octahedra during the phase transitions. Then, the distortion of BO{sub 6} octahedron caused by B-site replacement of Mg{sup 2+} ions was proposed to explain the observed behaviors. In addition, the effects of MgO doping on the dielectric, ferroelectric and pyroelectric properties were also discussed.

  3. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  4. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  5. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  6. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  7. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  8. Ceramic Hosts for Fission Products Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  9. Doping droops.

    Science.gov (United States)

    Chaturvedi, Aditi; Chaturvedi, Harish; Kalra, Juhi; Kalra, Sudhanshu

    2007-01-01

    Drug abuse is a major concern in the athletic world. The misconception among athletes and their coaches is that when an athlete breaks a record it is due to some "magic ingredient" and not because of training, hard work, mental attitude and championship performance. The personal motivation to win in competitive sports has been intensified by national, political, professional and economic incentives. Under this increased pressure athletes have turned to finding this "magic ingredient". Athlete turns to mechanical (exercise, massage), nutritional (vitamins, minerals), pharmacological (medicines) or gene therapies to have an edge over other players. The World Anti-Doping Agency (WADA) has already asked scientists to help find ways to prevent gene therapy from becoming the newest form of doping. The safety of the life of athletes is compromised with all forms of doping techniques, be it a side effect of a drug or a new technique of gene doping.

  10. Efficient photoemission from robust ferroelectric ceramics

    International Nuclear Information System (INIS)

    Boscolo, I.; Castellano, M.; Catani, L.; Ferrario, M.; Tazzioli, F.; Giannessi, L.

    1999-01-01

    Experimental results on photoemission by ferroelectric ceramic disks, with a possible interpretation, are present. Two types of lead zirconate titanate lanthanum doped, PLZT, ceramics have been used for tests. 25 ps light pulses of 532 and 355 nm were used for excitation. The intensity ranged within the interval 0.1-3 GW/cm 2. The upper limit of the intensity was established by the damage threshold tested by the onset of ion emission. At low value of the intensity the yield was comparable at the two wavelengths. At the highest intensity of green light the emitted charge was 1 nC per 10 mm 2, but it was limited by the space charge effect. In fact, the applied field was only 20 kV/cm, allowed both by the mechanical design of the apparatus and the poor vacuum, 10 - 4 mbar. No surface processing was required. The measurement of the electron pulse length under way

  11. Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Suchea, M.; Christoulakis, S.; Katsarakis, N.; Kitsopoulos, T.; Kiriakidis, G.

    2007-01-01

    Pure and aluminum (Al) doped zinc oxide (ZnO and ZAO) thin films have been grown using direct current (dc) magnetron sputtering from pure metallic Zn and ceramic ZnO targets, as well as from Al-doped metallic ZnAl2at.% and ceramic ZnAl2at.%O targets at room temperature (RT). The effects of target composition on the film's surface topology, crystallinity, and optical transmission have been investigated for various oxygen partial pressures in the sputtering atmosphere. It has been shown that Al-doped ZnO films sputtered from either metallic or ceramic targets exhibit different surface morphology than the undoped ZnO films, while their preferential crystalline growth orientation revealed by X-ray diffraction remains always the (002). More significantly, Al-doping leads to a larger increase of the optical transmission and energy gap (E g ) of the metallic than of the ceramic target prepared films

  12. Evolution of the structural and multiferroic properties of PbFe{sub 2/3}W{sub 1/3}O{sub 3} ceramics upon Mn-doping

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.A. [Center of Materials Science, Karpov' Institute of Physical Chemistry, Vorontsovo Pole 10, Moscow, 105064 (Russian Federation); Department of Engineering Sciences, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Bush, A.A. [Moscow State University of Information Technologies, RadioEngineering and Electronics, pr.Vernadskogo 78, Moscow, 119454 (Russian Federation); Ritter, C. [Institute Laue-Langevin, BP 156, F-38042, Grenoble (France); Behtin, M.A. [Moscow State University of Information Technologies, RadioEngineering and Electronics, pr.Vernadskogo 78, Moscow, 119454 (Russian Federation); Cherepanov, V.M. [National Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 (Russian Federation); Autieri, C.; Kvashnin, Y.O.; Di Marco, I.; Sanyal, B.; Eriksson, O. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20, Uppsala (Sweden); Kumar, P. Anil; Nordblad, P. [Department of Engineering Sciences, Uppsala University, Box 534, 751 21, Uppsala (Sweden); Mathieu, R., E-mail: roland.mathieu@angstrom.uu.se [Department of Engineering Sciences, Uppsala University, Box 534, 751 21, Uppsala (Sweden)

    2017-02-01

    The perovskite system Pb(Fe{sub 1-x}Mn{sub x}){sub 2/3}W{sub 1/3}O{sub 3} (0 ≤ x ≤ 1, PFMWO) has been prepared by conventional solid-state reaction under different sintering conditions. Structures and phase composition as well as thermal, magnetic and dielectric properties of the compounds have been systematically investigated experimentally and by first-principles density functional calculations. A clean perovskite phase is established at room temperature for compositions 0 ≤ x ≤ 0.4. Rietveld refinements of X-ray and neutron powder diffraction patterns demonstrate that the compounds crystallize in space group Pm-3m (0 ≤ x ≤ 0.4). The degree of ordering of the Fe and W/Mn cations was found to depend on the concentration of Mn. First-principles calculations suggest that the structural properties of PFMWO are strongly influenced by the Jahn-Teller effect. The PFMWO compounds behave as relaxor ferroelectrics at weak Mn-doping with a dielectric constant that rapidly decreases with increasing Mn content. A low temperature antiferromagnetic G-type order with propagation vector k = (1/2,1/2,1/2) is derived from neutron powder diffraction data for the samples with x ≤ 0.4. However with increasing doping concentration, the magnetic order is perturbed. First-principles calculations show that the dominant exchange coupling is antiferromagnetic and occurs between nearest neighbor Fe atoms. When the system is doped with Mn, a relatively weak ferromagnetic (FM) interaction between Fe and Mn atoms emerges. However, due to the presence of this FM interaction, the correlation length of the magnetic order is greatly shortened already at rather low doping levels. - Highlights: • The perovskite system Pb(Fe{sub 1−x}Mn{sub x}){sub 2/3}W{sub 1/3}O{sub 3} (0 ≤ x ≤ 1, PFMWO) has been synthesized. • The structural, magnetic, and dielectric properties of PFMWO have been investigated. • The degree of ordering of the Fe and W/Mn cations was found to depend on x.

  13. Ceramic superconductivity research at Alfred Univ

    International Nuclear Information System (INIS)

    Snyder, R.L.

    1990-01-01

    A survey of the science and technology advances made by the research groups at Alfred will be presented. These ranges on the technology side from the first melt-textured and glass ceramic superconductors to recently demonstrating that 123 thin films can be deposited below the superconducting transition at atmospheric pressure using an aerosol plasma deposition technique. On the science side advances in understanding have come from looking at the crystal structures, high and low temperature reactions, phase equilibria, effects of doping and XRD standards. Recent advances will be summarized

  14. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  15. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  16. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  17. Bioactivity analysis of the Ta (V doped SiO2–CaO–Na2O–P2O5 ceramics prepared by solid state sintering method

    Directory of Open Access Journals (Sweden)

    Rehana Zia

    2016-02-01

    Full Text Available The main objective of the study was to control the degradation rate of material at a higher degradation rate improving the chemical stability of the material. Ta is known to have good chemical resistance, biocompatibility and show no adverse biological response. In the present study, SiO2–Na2O–CaO–P2O5 bioceramics with different Ta2O5 contents was prepared by solid state sintering method at 1000 °C. The as-sintered ceramics were subjected to immersion studies in stimulated body fluid (SBF for 21 days under static condition and characterized by XRD, FTIR, SEM, and AAS. The findings of the research indicate that the addition of Ta2O5 controlled degradability, and all samples showed sufficient bioactivity.

  18. Ferroelectric and dielectric properties of Sr2-x(Na, K)xBi4Ti5O18 lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Chen Qian; Xu Zhijun; Chu Ruiqing; Hao Jigong; Zhang Yanjie; Li Guorong; Yin Qingrui

    2010-01-01

    (Na, K)-doped Sr 2 Bi 4 Ti 5 O 18 (SBTi) bismuth layer structure ferroelectric ceramics were prepared by the solid-state reaction method. Pure bismuth-layered structural Sr 2-x (Na, K) x Bi 4 Ti 5 O 18 (x=0.1, 0.2, 0.3, and 0.4) ceramics with uniform grain size were obtained in this work. The effects of (Na, K)-doping on the dielectric, ferroelectric and piezoelectric properties of SBTi ceramics were investigated. Results showed that (Na, K)-doping caused the Curie temperature of SBTi ceramics to shift to higher temperature and enhanced the ferroelectric and piezoelectric properties. At x=0.2, the ceramics exhibited optimum properties with d 33 =20 pC/N, P r =10.3 μC/cm 2 , and T c =324 o C.

  19. Ferroelectric and dielectric properties of BaTi0.9Zr0.1O3 doped with Li0.5Fe2.5O4 ceramics

    Science.gov (United States)

    Gajula, Ganapathi Rao; Buddiga, Lakshmi Rekha; Chidambara Kumar, K. N.; Ch, Arun Kumar; Samatha, K.; Kokkiragadda, Sreeramachandra Murthy; Dasari, Madhava Prasad

    2018-06-01

    We have prepared a composite BaTi0.9Zr0.1O3 (BTZr) doped with Li0.5Fe2.5O4 (LF) having chemical formulae (1- x) BTZr + (x) LF (x=0, 0.05, 0.1 and 0.15) conventional solid state reaction technique. We have sintered the grown composites at 1150 °C for 3 h. We have characterized the grown composites using XRD, FESEM, P-E loop tracer and LCR meter. The XRD measurements reveal the tetragonal nature of the composites. The morphological studies reveal that the composite exhibits dense microstructure with small pores. The P-E loops confirm that the composites exhibit remnant polarization and the coercive field increases with increasing concentration of Lithium Ferrite (LF). We have studied dielectric property of the composites by varying the temperature of the sample from 30 °C to 500 °C at 1 kHz, 10 kHz and also by varying the frequency from 1 Hz to 10 MHz at 30 °C. The dielectric property of BTZr has increased after doping LF in BTZr which reveals the enhancement of electrical properties of the grown composite.

  20. [Ceramic inlays and onlays].

    Science.gov (United States)

    van Pelt, A W; de Kloet, H J; van der Kuy, P

    1996-11-01

    Large direct composite restorations can induce shrinkage related postoperative sensitivity. Indirect resin-bonded (tooth colored) restorations may perhaps prevent these complaints. Indirect bonded ceramics are especially attractive because of their biocompatibility and esthetic performance. Several procedures and techniques are currently available for the fabrication of ceramic restorations: firing, casting, heat-pressing and milling. In this article the different systems are described. Advantages, disadvantages and clinical performance of ceramic inlays are compared and discussed.

  1. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  2. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  3. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  4. Piezo-electrostrictive ceramics

    International Nuclear Information System (INIS)

    Kim, Ho Gi; Shin, Byeong Cheol

    1991-09-01

    This book deals with principle and the case of application of piezo-electrostrictive ceramics, which includes definition of piezoelectric materials and production and development of piezoelectric materials, coexistence of Pb(zr, Ti)O 3 ceramics on cause of coexistence in MPB PZT ceramics, electrostrictive effect of oxide type perovskite, practical piezo-electrostrictive materials, and breaking strength, evaluation technique of piezoelectric characteristic, and piezoelectric accelerometer sensor like printer head, ink jet and piezoelectric relay.

  5. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  6. Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1−xLaxFeO3 ceramics

    International Nuclear Information System (INIS)

    Zhang, Qiang; Zhu, Xiaohong; Xu, Yunhui; Gao, Haobin; Xiao, Yunjun; Liang, Dayun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2013-01-01

    Highlights: ► Structural properties of Bi 1−x La x FeO 3 ceramics are improved by La 3+ substitution. ► Significant magnetoelectric responses are observed in Bi 1−x La x FeO 3 ceramics. ► T C is lowered while T N is enhanced in the La-doped BiFeO 3 ceramics. ► Much higher dielectric constant is obtained in the La-doped BiFeO 3 ceramics. ► The ferroelectric properties are enhanced in the La-doped BiFeO 3 ceramics. - Abstract: Multiferroic Bi 1−x La x FeO 3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) (represented as B 1−x L x FO) ceramics were prepared using the conventional solid state reaction route. The effects of La 3+ doping on the density, phase structure, morphology, dielectric and ferroelectric properties were investigated. Judging from X-ray diffraction patterns, all the B 1−x L x FO ceramic samples were well crystallized in a pure perovskite phase while the crystal structure changed from rhombohedral to orthorhombic with increasing the La 3+ substitution. SEM observations clearly revealed that the grain size was remarkably decreased by La 3+ doping. As a result, the ferroelectric Curie temperature was lowered in the La-doped ceramics. However, the abnormal dielectric responses near the antiferromagnetic Néel temperature (T N ) demonstrated the existence of remarkable magnetoelectric coupling in the Bi 1−x La x FeO 3 ceramics, and the T N was shown to increase substantially with the increase in La 3+ doping content. It was found that the dielectric permittivity of the ceramics was significantly increased and the dielectric loss was slightly increased with the increase in La 3+ content. The dielectric constant ε r of the Bi 0.85 La 0.15 FeO 3 ceramic at 10 kHz reached as high as 1008, 20 times larger than that for pure BiFeO 3 . In addition, the ferroelectric properties of the B 1−x L x FO ceramics were improved and the remanent polarization was increased by La 3+ doping. This is probably because the A-site doping with more stable La 3+ could

  7. Review on dielectric properties of rare earth doped barium titanate

    International Nuclear Information System (INIS)

    Ismail, Fatin Adila; Osman, Rozana Aina Maulat; Idris, Mohd Sobri

    2016-01-01

    Rare earth doped Barium Titanate (BaTiO_3) were studied due to high permittivity, excellent electrical properties and have wide usage in various applications. This paper reviewed on the electrical properties of RE doped BaTiO_3 (RE: Lanthanum (La), Erbium (Er), Samarium (Sm), Neodymium (Nd), Cerium (Ce)), processing method, phase transition occurred and solid solution range for complete study. Most of the RE doped BaTiO_3 downshifted the Curie temperature (T_C). Transition temperature also known as Curie temperature, T_C where the ceramics had a transition from ferroelectric to a paraelectric phase. In this review, the dielectric constant of La-doped BaTiO_3, Er-doped BaTiO_3, Sm-doped BaTiO_3, Nd-doped BaTiO_3 and Ce-doped BaTiO_3 had been proved to increase and the transition temperature or also known as T_C also lowered down to room temperature as for all the RE doped BaTiO_3 except for Er-doped BaTiO_3.

  8. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  9. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  10. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  11. Fabrication of Nd:YAG transparent ceramics with both TEOS and MgO additives

    International Nuclear Information System (INIS)

    Yang Hao; Qin Xianpeng; Zhang Jian; Wang Shiwei; Ma Jan; Wang Lixi; Zhang Qitu

    2011-01-01

    Research highlights: → It is well known that the use of TEOS as sintering aid is required to reach fully dense and transparent Nd:YAG ceramics. However, it is difficult to produce high quality transparent Nd:YAG ceramics only using TEOS as sintering aid. In this present work, high quality transparent Nd:YAG ceramic was fabricated using both TEOS and MgO as sintering aids. There have been few reports that both TEOS and MgO were co-added as sintering aids in YAG or Nd:YAG transparent ceramics to date. The transmittance of Nd:YAG ceramic is 83.8% at 1064 nm. The effect of MgO on the optical properties of transparent ceramics was also studied. - Abstract: Neodymium doped YAG transparent ceramics were fabricated by vacuum reactive sintering method using commercial α-Al 2 O 3 , Y 2 O 3 and Nd 2 O 3 powders as the starting materials with both tetraethyl orthosilicate (TEOS) and MgO as sintering aids. The morphologies and microstructure of the powders and Nd:YAG transparent ceramics were investigated. Fully dense Nd:YAG ceramics with average grain size of ∼10 μm were obtained by vacuum sintering at 1780 deg. C for 8 h. No pores and grain-boundary phases were observed. The in-line transmittance of the ceramic was 83.8% at 1064 nm.

  12. Photoluminescence properties of Er-doped Ge–In(Ga)–S glasses modified by caesium halides

    Czech Academy of Sciences Publication Activity Database

    Ivanova, Z.G.; Zavadil, Jiří; Kostka, P.; Djouama, T.; Reinfelde, M.

    2017-01-01

    Roč. 254, č. 6 (2017), č. článku 1600662. ISSN 0370-1972 Institutional support: RVO:67985882 Keywords : caesium halides * chalcohalide glasses * erbium doping * transmission spectroscopy * photoluminiscence Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 1.674, year: 2016

  13. Photoluminescence properties of Er-doped Ge–In(Ga)–S glasses modified by caesium halides

    Czech Academy of Sciences Publication Activity Database

    Ivanova, Z.G.; Zavadil, Jiří; Kostka, Petr; Djouama, T.; Reinfelde, M.

    2017-01-01

    Roč. 254, č. 6 (2017), č. článku 1600662. ISSN 0370-1972 Institutional support: RVO:67985891 Keywords : caesium halides * chalcohalide glasses * erbium doping * transmission spectroscopy * photoluminiscence Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 1.674, year: 2016

  14. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  15. Effect of yttrium doping on structural and electrical properties of Bi2Sr1.9Ca0.1−xYxCu2O7+δ (Bi-2202 cuprate ceramics

    Directory of Open Access Journals (Sweden)

    Yazid Boudjadja

    2016-09-01

    Full Text Available In this work, we report on the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1−xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.10 are elaborated in air by conventional solid state reaction and characterized by X-ray diffraction (XRD, scanning electronic microscopy (SEM combined with EDS spectroscopy, density, Vickers microhardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers microhardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.10, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed.

  16. New ceramic materials

    International Nuclear Information System (INIS)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-01-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  17. Gene doping.

    Science.gov (United States)

    Haisma, H J; de Hon, O

    2006-04-01

    Together with the rapidly increasing knowledge on genetic therapies as a promising new branch of regular medicine, the issue has arisen whether these techniques might be abused in the field of sports. Previous experiences have shown that drugs that are still in the experimental phases of research may find their way into the athletic world. Both the World Anti-Doping Agency (WADA) and the International Olympic Committee (IOC) have expressed concerns about this possibility. As a result, the method of gene doping has been included in the list of prohibited classes of substances and prohibited methods. This review addresses the possible ways in which knowledge gained in the field of genetic therapies may be misused in elite sports. Many genes are readily available which may potentially have an effect on athletic performance. The sporting world will eventually be faced with the phenomena of gene doping to improve athletic performance. A combination of developing detection methods based on gene arrays or proteomics and a clear education program on the associated risks seems to be the most promising preventive method to counteract the possible application of gene doping.

  18. Mounting for ceramic scroll

    Science.gov (United States)

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  19. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  20. Antibacterial Functionalization of PVD Coatings on Ceramics

    Directory of Open Access Journals (Sweden)

    Javier Osés

    2018-05-01

    Full Text Available The application of surface treatments that incorporate silver or copper as antibacterial elements has become a common practice for a wide variety of medical devices and materials because of their effective activity against nosocomial infections. Ceramic tiles are choice materials for cladding the floors and walls of operation rooms and other hospital spaces. This study is focused on the deposition of biocide physical vapor deposition (PVD coatings on glazed ceramic tiles. The objective was to provide antibacterial activity to the surfaces without worsening their mechanical properties. Silver and copper-doped chromium nitride (CrN and titanium nitride (TiN coatings were deposited on samples of tiles. A complete characterization was carried out in order to determine the composition and structure of the coatings, as well as their topographical and mechanical properties. The distribution of Ag and Cu within the coating was analyzed using glow discharge optical emission spectrometry (GD-OES and field emission scanning electron microscope (FE-SEM. Roughness, microhardness, and scratch resistance were measured for all of the combinations of coatings and dopants, as well as their wettability. Finally, tests of antibacterial efficacy against Staphylococcus aureus and Escherichia coli were carried out, showing that all of the doped coatings had pronounced biocide activity.

  1. Sintering and annealing effects on undoped yttria transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Letue, Laetitia; Petit, Johan, E-mail: johan.petit@onera.fr; Ritti, Marie-Hélène; Lalanne, Sylvie; Landais, Stéphane

    2017-06-15

    Transparent yttrium oxide (Y{sub 2}O{sub 3}) ceramics were processed by several densifications steps without any doping species. The green bodies were obtained by the aqueous way and sintered at high temperature under vacuum and then under high pressure. We studied the effects of different sintering cycles and air annealing at different steps of the process on the density and the grain growth. We also focused on the reaction between yttria ceramics and BN-coated graphite crucible which occurs during HIP. We noted that a low heating rate and two annealing steps are necessary to improve our samples’ transparency. - Highlights: • The quality of transparent ceramics is compared with the tested process parameters. • Air annealing is critical when using a carbon environment in the process. • Intra-granular pores, and so the final transparency, are directly linked to the sintering heating rates.

  2. Structural Characterization and Absolute Luminescence Efficiency Evaluation of Gd2O2S High Packing Density Ceramic Screens Doped with Tb3+ and Eu3+ for further Applications in Radiology

    Science.gov (United States)

    Dezi, Anna; Monachesi, Elenasophie; D'Ignazio, Michela; Scalise, Lorenzo; Montalto, Luigi; Paone, Nicola; Rinaldi, Daniele; Mengucci, Paolo; Loudos, George; Bakas, Athanasios; Michail, Christos; Valais, Ioannis; Fountzoula, Christine; Fountos, George; David, Stratos

    2017-11-01

    Rare earth activators are impurities added in the phosphor material to enhance probability of visible photon emission during the luminescence process. The main activators employed are rare earth trivalent ions such as Ce+3, Tb+3, Pr3+ and Eu+3. In this work, four terbium-activated Gd2O2S (GOS) powder screens with different thicknesses (1049 mg/cm2, 425.41 mg/cm2, 313 mg/cm2 and 187.36 mg/cm2) and one europium-activated GOS powder screen (232.18 mg/cm2) were studied to investigate possible applications for general radiology detectors. Results presented relevant differences in crystallinity between the GOS:Tb doped screens and GOS:Eu screens in respect to the dopant agent present. The AE (Absolute efficiency) was found to rise (i) with the increase of the X-ray tube voltage with the highest peaking at 110kVp and (ii) with the decrease of the thickness among the four GOS:Tb. Comparing similar thickness values, the europium-activated powder screen showed lower AE than the corresponding terbium-activated.

  3. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    International Nuclear Information System (INIS)

    Selling, J.

    2007-01-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl 2 nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI 2 is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu 2+ /Eu 3+ ratio in the glass ceramics should be determined and optimize favor of the Eu 2+ . We also want to distinguish between Eu 2+ in the glass matrix and Eu 2+ in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF 2 host lattice were carried

  4. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  5. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  6. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  7. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  8. Applications of Piezoelectric Ceramics

    Indian Academy of Sciences (India)

    Applications of Piezoelectric Ceramics. Piezoelectric Actuators. Nano and Micropositioners. Vibration Control Systems. Computer Printers. Piezoelectric Transformers,Voltage Generators, Spark Plugs, Ultrasonic Motors,. Ultrasonic Generators and Sensors. Sonars, Medical Diagnostic. Computer Memories. NVFRAM ...

  9. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  10. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  11. Effects of Pb concentration on phase, microstructure and electrical properties of Bi3.25La0.75Ti3O12 ceramics

    International Nuclear Information System (INIS)

    Lawita, P.; Siriprapa, P.; Watcharapasorn, A.; Jiansirisomboon, S.

    2012-01-01

    In this work, effects of Pb-doping concentration on phase, microstructure and electrical properties of bismuth lead lanthanum titanate (Bi 1−x Pb x ) 3.25 La 0.75 Ti 3 O 12 or BPLT ceramics when x = 0, 0.01, 0.03, 0.05, 0.07, 0.09 and 0.1 were investigated. Phase analysis by X-ray diffraction indicated the existence of orthorhombic phase for all BPLT powders and ceramics. Microstructural investigation using scanning electron microscope showed that all ceramics composed mainly of plate-like grains. An increase in PbO doping content reduced not only diameter and thickness of the grains but also density of the ceramics. Electrical conductivity was found to decrease while dielectric constant increased with Pb-doping concentration. Small reduction of remanent polarization and coercive field was observed in Pb-doped samples. - Highlights: ► We prepared bismuth lead lanthanum titanate ceramics by a solid state mixed-oxide method. ► The optimum sintering temperature was found to be 1150 °C. ► BPLT ceramic was identified by X-ray diffraction method to possess an orthorhombic structure. ► All samples shows plate-like morphology with varying grain size and orientation. ► Increasing Pb-doping content tended to decrease electrical conductivity values.

  12. Selecting Ceramics - Introduction

    OpenAIRE

    Cassidy, M.

    2002-01-01

    AIM OF PRESENTATION: To compare a number of materials for extracoronal restoration of teeth with particular reference to CAD-CAM ceramics. CASE DESCRIPTION AND TREATMENT CARRIED OUT: This paper will be illustrated using clinical examples of patients treated using different ceramic restorations to present the advantages and disadvantages and each technique. The different requirements of tooth preparation, impression taking and technical procedures of each system will be presented and compar...

  13. Cavitation damage of ceramics

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Marinin, V.G.

    1988-01-01

    Consideration is given to results of investigation of ceramic material damage under the effect of cavitation field on their surface, formed in water under the face of exponential concentrator, connected with ultrasonic generator UZY-3-0.4. Amplitude of vibrations of concentrator face (30+-2)x10 -6 m, frequency-21 kHz. It was established that ceramics resistance to cavitation effect correlated with the product of critical of stress intensity factor and material hardness

  14. CVD of solid oxides in porous substrates for ceramic membrane modification

    NARCIS (Netherlands)

    Lin, Y.S.; Lin, Y.S.; Burggraaf, Anthonie; Burggraaf, A.J.

    1992-01-01

    The deposition of yttria-doped zirconia has been experimented systematically in various types of porous ceramic substrates by a modified chemical vapor deposition (CVD) process operating in an opposing reactant geometry using water vapor and corresponding metal chloride vapors as reactants. The

  15. Luminescence properties of YAG:Nd nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    Abstract. Nano-sized ceramic powders with weaker aggregation of Nd3+-doped yttrium aluminum garnet. (YAG:Nd3+) were synthesized via co-microemulsion and microwave heating. This method provides a limited small space in a micelle for the formation of nano-sized precursors. It also requires a very short heating time, ...

  16. Large ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1979-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development. Ceramic-to-ceramic sealing has applications for several technologies that require large and/or complex vacuum-tight ceramic shapes. Information is provided concerning the assembly of complex monolithic ceramic shapes by bonding of subassemblies at temperatures ranging from 450 to 1500 0 C. Future applications and fabrication techniques for various materials are presented

  17. Clinical application of bio ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com [Department of Chemistry, Govt. College of Engineering & Technology, Bikaner, Rajasthan (India)

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  18. The history of ceramic filters.

    Science.gov (United States)

    Fujishima, S

    2000-01-01

    The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.

  19. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  20. Low temperature sintering of fluorapatite glass-ceramics

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A.

    2014-01-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disc-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. PMID:24252652

  1. Preparation, characterization and application of novel proton conducting ceramics

    Science.gov (United States)

    Wang, Siwei

    Due to the immediate energy shortage and the requirement of environment protection nowadays, the efficient, effective and environmental friendly use of current energy sources is urgent. Energy conversion and storage is thus an important focus both for industry and academia. As one of the hydrogen energy related materials, proton conducting ceramics can be applied in solid oxide fuel cells and steam electrolysers, as well as high temperature hydrogen separation membranes and hydrogen sensors. For most of the practical applications, both high proton conductivity and chemical stability are desirable. However, the state-of-the-art proton conducting ceramics are facing great challenges in simultaneously fulfilling conductivity and stability requirements for practical applications. Consequently, understanding the properties for the proton conducting ceramics and developing novel materials that possess both high proton conductivity and enhanced chemical stability have both scientific and practical significances. The objective of this study is to develop novel proton conducting ceramics, either by evaluating the doping effects on the state-of-the-art simple perovskite structured barium cerates, or by investigating novel complex perovskite structured Ba3Ca1.18Nb1.82O 9-delta based proton conductors as potential proton conducting ceramics with improved proton conductivity and enhanced chemical stability. Different preparation methods were compared, and their influence on the structure, including the bulk and grain boundary environment has been investigated. In addition, the effects of microstructure on the electrical properties of the proton conducting ceramics have also been characterized. The solid oxide fuel cell application for the proton conducting ceramics performed as electrolyte membranes has been demonstrated.

  2. Low temperature sintering of fluorapatite glass-ceramics.

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  4. Effect of iron doping on Y-Ba-Cu-O

    International Nuclear Information System (INIS)

    Abd Halim Shaari; Mansor Hashim; Sidek Hj Abd Aziz; Laily Rafiah Abdullah

    1991-01-01

    Study on the effect of iron doping at different values of doping percentage (0.00< x<0.06) and hence the influence of magnetic iron on Y-Ba-Cu-O superconductor has been carried out. The conventional technique of sintering is used in preparing the ceramic materials. The crystal structure and their lattice parameters are determined from X-ray diffraction measurements. Observation on the dependence of resistance on temperature is made between room temperature to the boiling point of liquid nitrogen, using four-probe techniques. Magnetisation properties namely the Meissner Effect is also observed by levitating a small piece of permanent magnet on the cooled sample. The X-ray diffraction data show that the phase transitions have been observed; from orthorhombic to tetragonal when the iron doping exceeded ∼0.02. Transition temperature, Tc decrease from ∼87.7K to ∼83K. Meissner Effect is observed for sample doped up to 2% only

  5. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  6. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  7. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  8. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia

    2012-04-06

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  9. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia; Wang, Lei; Chen, Yao; Wang, Dongliang; Yao, Yingbang; Ma, Yanwei

    2012-01-01

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  10. Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui; Yoshikawa, Akira; Yagi, Hideki; Yanagitani, Takagimi

    2011-01-01

    Nd 0.1, 1.1, 2, 4, and 6 mol% doped YAG transparent ceramics are manufactured by the sintering method and their scintillation properties are compared with those of single crystalline Nd 1 mol% doped YAG grown by the micro-pulling down method. They show ∼80% transmittance at wavelengths longer than 300 nm and strong emission lines due to Nd 3+ 4f-4f emission in their radio-luminescence spectra. Among them, the single crystalline sample shows the highest light yield of 11,000 ph/MeV under γ-ray excitation and the second highest one is from Nd 1.1 mol% doped transparent ceramic, which shows 6000 ph/MeV. In these scintillators, dominant decay time constant is around 2-3 μs due to Nd 3+ 4f-4f transitions.

  11. Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yagi, Hideki; Yanagitani, Takagimi [Konoshima Chemical Co., Ltd., 80 Kouda, Takuma, Mitoyo-gun, Kagawa 769-1103 (Japan)

    2011-03-01

    Nd 0.1, 1.1, 2, 4, and 6 mol% doped YAG transparent ceramics are manufactured by the sintering method and their scintillation properties are compared with those of single crystalline Nd 1 mol% doped YAG grown by the micro-pulling down method. They show {approx}80% transmittance at wavelengths longer than 300 nm and strong emission lines due to Nd{sup 3+} 4f-4f emission in their radio-luminescence spectra. Among them, the single crystalline sample shows the highest light yield of 11,000 ph/MeV under {gamma}-ray excitation and the second highest one is from Nd 1.1 mol% doped transparent ceramic, which shows 6000 ph/MeV. In these scintillators, dominant decay time constant is around 2-3 {mu}s due to Nd{sup 3+} 4f-4f transitions.

  12. Development of crystalline ceramic for immobilization of TRU wastes in V.G. Khlopin Radium Institute

    International Nuclear Information System (INIS)

    Burakov, B.E.; Anderson, E.B.

    1999-01-01

    This paper discusses the Radium Institute's experience in the synthesis of crystalline ceramics based on two groups of actinide host-phases: 1) Zircon/zirconia-(Zn, Ac)SiO 4 /(Zr, Ac)O 2 , where Ac=Pu, Np, Am, Cm; 2) Garnet/perovskite-(Y, Gd, Ac) 3 (Al, Ga, Ac,..) 5 O 12 /(Y, Gd, Ac)(Al, Ga)O 3 . The zircon/zirconia ceramic was suggested as an universal waste form for the immobilization of TRU as well as weapon-grade Pu. Because the position of the Russian Ministry of Atomic Energy (Minatom) does not consider weapons Pu as a waste', the Radium Institute proposed the use of the same ceramic (mainly monophase zirconia ) as a Pu-fuel. The garnet/perovskite ceramic was suggested for the immobilization of military TRU wastes of complex chemical composition. The advantage of this ceramic is that Garnet and Perovskite host-phases can incorporate in their lattices not only actinides, but also other elements including neutron absorbers in a broad range of concentration and in different valence state. Sample of zircon/zirconia ceramic were prepared by hot uniaxial pressing (at temperature T=1300, 1400, 1500degC and pressure P=25 MPa) and sintering (at T=1450, 1490, 1500, 1600degC) methods using different types of initial precursor. Samples of garnet/perovskite ceramic were synthesized by melting method at T=2000degC. Ce, U, Gd were used as TRU stimulants for both types of ceramic. One sample of zircon/zirconia ceramic was doped with 10 wt.% of Pu 239 . Physico-chemical features of these ceramics are described. In conclusion we propose that the pressureless technology based on sintering or melting methods be used for the synthesis of ceramics for the immobilization of all types of TRU wastes. (author)

  13. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  14. Fatigue of dental ceramics.

    Science.gov (United States)

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Ceramic combustor mounting

    Science.gov (United States)

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  16. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  17. Ceramic impregnated superabrasives

    Science.gov (United States)

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  18. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  19. High flow ceramic pot filters

    NARCIS (Netherlands)

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more

  20. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  1. New insights on the synthesis and electronic transport in bulk polycrystalline Pr-doped SrTiO3−δ

    KAUST Repository

    Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; Darroudi, Taghi; Alshareef, Husam N.; Tritt, Terry M.

    2015-01-01

    versus Pr6O11) on the synthesis and electronic transport in Pr-doped SrTiO3 ceramics. It was observed that the high-temperature electronic transport properties are independent of the choice of praseodymium doping source for samples prepared following our

  2. Ceramic membrane technologies for gas separation

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Ciacchi, F.T.

    2000-01-01

    Solid state electrochemical cells based on oxygen-ion or proton conduction (pure ionic or mixed ionic/electronic conductors) allow selective transport of oxygen (oxygen-ion conducting materials) or hydrogen (for proton conducting materials) in the form of ionic flux at high temperatures. Thus these systems can act as filters for molecular oxygen or hydrogen and can be used for both generation or removal of these gases selectively. The usage of such devices are numerous including control of atmosphere in industrial environments to production of power and chemicals, in petroleum and medical industries, and in combustion processes. In this paper, a brief overview of the technology has been given and various doped materials for construction of such devices, such as zirconia, ceria, bismuth oxides or lanthanum gallates have been briefly reviewed. Copyright (2000) The Australian Ceramic Society

  3. Mechanical properties of porous PNZT polycrystalline ceramics

    International Nuclear Information System (INIS)

    Biswas, D.R.; Fulrath, R.M.

    1977-08-01

    Niobium-doped lead zirconate-titanate (PNZT) was used to investigate the effect of porosity on the mechanical properties of a polycrystalline ceramic. Spherical pores (110 to 150 μm diameter) were introduced by using organic materials in the initial specimen fabrication. The matrix grain size (2 to 5 μm) was kept constant. Small pores (2 to 3 μm diameter) of the order of the grain size were formed by varying the sintering conditions. The effect of porosity on strength was predicted quite well by Weibull's probabilistic approach. The Young's modulus showed a linear relationship with increase in porosity. A decrease in fracture toughness with increase in porosity was also observed. It was found that at equivalent porosities, small pore specimens gave higher strength, Young's modulus and fracture toughness compared to specimens containing large pores. Fracture surface analysis, by scanning electron microscopy, showed fracture originated either at the tensile surface or at the edge of the specimen

  4. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT).

    Science.gov (United States)

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-11-22

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La 3+ donor-doped, Fe 3+ acceptor-doped and La 3+ /Fe 3+ -co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  5. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available The different properties of acceptor-doped (hard and donor-doped (soft lead zirconate titanate (PZT ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  6. Verification of Ceramic Structures

    Science.gov (United States)

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  7. A wear-resistant zirconia ceramic for low friction application

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.; Ran, S.; Wiratha, K.W.; Blank, D.H.A.; Pasaribu, H.R.; Sloetjes, J.W.; Schipper, D.J.

    2004-01-01

    A high wear-resistant ceramic/ceramic couple is described associated with low friction. By adding a small amount CuO to yttria-doped tetragonal zirconia (Y-TZP) the (dry) coefficient of friction against alumina is only 0.2 during a sliding distance of 3-5 km after which the coefficient drastically increases and a transition from mild to sever wear occurs. Pure Y-TZP exhibits a coefficient of friction of 0.7 under the same experimental conditions but wear remains mild during the test (upto 10 km of sliding distance). These small amounts of CuO also strongly influence the densification behaviour. Sintering of this system occurs in several steps where among other things dissolution of CuO in the Y-TZP matrix as well as liquid phase sintering takes place. Non-uniform shrinkage of the CuO-doped system resulting in relative large microcracks in the ceramic can explain its sudden drastic increase in coefficient of friction and wear rate after 3-5 km of operation. (orig.)

  8. Preparation and electrical properties of (1 - x)Sr(Fe1/2Nb1/2)O3-xPbTiO3 ferroelectric ceramics

    International Nuclear Information System (INIS)

    Fang Bijun; Cheng Zhenquan; Sun Renbing; Ding Chenlu

    2009-01-01

    (1 - x)Sr(Fe 1/2 Nb 1/2 )O 3 -xPbTiO 3 (SFN-PT) ferroelectric ceramics were prepared by conventional solid-state reaction method via the wolframite precursor route. X-ray diffraction (XRD) measurement confirmed that the synthesized SFN-PT ceramics are of pure perovskite structure. With the increase of the concentration of PbTiO 3 (PT), crystal structure of the sintered SFN-PT ceramics changes from rhombohedral phase to tetragonal phase. Dielectric response of the SFN-PT ceramics changes from diffused and broad dielectric peaks to relatively sharp ones accompanied by the increase of the temperature of dielectric maximum (T m ). Small content of MnO 2 or Li 2 CO 3 doping can greatly decrease the dielectric loss of the SFN-PT ceramics, furthermore, the abnormal increase of dielectric constant and loss tangent in the paraelectric phase is suppressed accordingly. Typical P-E hysteresis loops are observed in the SFN-PT ceramics, however, the saturate polarization (P s ) is small. MnO 2 or Li 2 CO 3 doping can greatly decrease the coercive field (E c ) of the SFN-PT ceramics accompanied by large increase of P s . Piezoelectric constant d 33 of the SFN-PT ceramics is small except for SFN30-PT70 ceramics, which reaches 22pC/N

  9. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  10. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics

    CERN Document Server

    Mihóková, E; Mareš, J A; Beitlerová, A; Vedda, A; Nejezchleb, K; Blažek, K; D’Ambrosio, C

    2007-01-01

    We use various techniques to study optical and scintillation properties of Ce-doped yttrium aluminum garnet, Y3Al5O12 (YAG:Ce), in the form of a high-quality industrial single crystal. This was compared to optical ceramics prepared from YAG:Ce nanopowders. We present experimental data in the areas of optical absorption, radioluminescence, scintillation decay, photoelectron yield, thermally stimulated luminescence and radiation-induced absorption. The results point to an interesting feature—the absence of antisite (YAl, i.e. Y at the Al site) defects in optical ceramics. The scintillation decay of the ceramics is faster than that of the single crystal, but its photoelectron yield (measured with 1 μs integration time) is about 30–40% lower. Apart from the photoelectron yield value the YAG:Ce optical ceramic is fully comparable to a high quality industrial YAG:Ce single crystal and can become a competitive scintillator material.

  11. Krypton irradiation damage in Nd-doped zirconolite and perovskite

    International Nuclear Information System (INIS)

    Davoisne, C.; Stennett, M.C.; Hyatt, N.C.; Peng, N.; Jeynes, C.; Lee, W.E.

    2011-01-01

    Understanding the effect of radiation damage and noble gas accommodation in potential ceramic hosts for plutonium disposition is necessary to evaluate their long-term behaviour during geological disposal. Polycrystalline samples of Nd-doped zirconolite and Nd-doped perovskite were irradiated ex situ with 2 MeV Kr + at a dose of 5 x 10 15 ions cm -2 to simulate recoil of Pu nuclei during alpha decay. The feasibility of thin section preparation of both pristine and irradiated samples by Focused Ion Beam sectioning was demonstrated. After irradiation, the Nd-doped zirconolite revealed a well defined amorphous region separated from the pristine material by a thin (40-60 nm) damaged interface. The zirconolite lattice was lost in the damaged interface, but the fluorite sublattice was retained. The Nd-doped perovskite contained a defined irradiated layer composed of an amorphous region surrounded by damaged but still crystalline layers. The structural evolution of the damaged regions is consistent with a change from orthorhombic to cubic symmetry. In addition in Nd-doped perovskite, the amorphisation dose depended on crystallographic orientation and possibly sample configuration (thin section or bulk). Electron Energy Loss Spectroscopy revealed Ti remained in the 4+ oxidation state but there was a change in Ti coordination in both Nd-doped perovskite and Nd-doped zirconolite associated with the crystalline to amorphous transition.

  12. Rare earth ion controlled crystallization of mica glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2016-09-05

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO{sub 2}, Nd{sub 2}O{sub 3}, Sm{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} doped K{sub 2}O−MgO−B{sub 2}O{sub 3}−Al{sub 2}O{sub 3}−SiO{sub 2}−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm{sup −3}) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T{sub g}) and crystallization temperature (T{sub c}). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg{sub 3}(AlSi{sub 3}O{sub 10})F{sub 2} by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10{sup −6}/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque

  13. Rare earth ion controlled crystallization of mica glass-ceramics

    International Nuclear Information System (INIS)

    Garai, Mrinmoy; Karmakar, Basudeb

    2016-01-01

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO_2, Nd_2O_3, Sm_2O_3 and Gd_2O_3 doped K_2O−MgO−B_2O_3−Al_2O_3−SiO_2−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm"−"3) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T_g) and crystallization temperature (T_c). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg_3(AlSi_3O_1_0)F_2 by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10"−"6/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque fluorophlogopite mica glass-ceramics by single-step heat treatment. • Nanocrystalline glass-ceramic

  14. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  15. Electrical behaviour of strontium-doped lanthanum manganite interfaces

    DEFF Research Database (Denmark)

    Koch, Søren; Hendriksen, P.V.; Jacobsen, Torben

    2005-01-01

    The contact resistance of strontium-doped lanthanum manganite (LSM) contact pairs is investigated by polarisation analysis at different temperatures and atmospheres. The ceramic contacts have a high contact resistance, and strongly nonlinear current–voltage behaviour is observed at low temperatur....... The nonlinear behaviour is ascribed to the presence of energy barriers at the contact interface. Generally, point contacts showed a more linear behaviour than plane contact interfaces....

  16. Piezoelectric displacement in ceramics

    International Nuclear Information System (INIS)

    Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This Good Practice Guide is intended to aid a user to perform displacement measurements on piezoelectric ceramic materials such as PZT (lead zirconium titanate) in either monolithic or multilayer form. The various measurement issues that the user must consider are addressed, and good measurement practise is described for the four most suitable methods. (author)

  17. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  18. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  19. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  20. Ceramic analysis in Greece

    NARCIS (Netherlands)

    Hilditch, J.

    2016-01-01

    Scientific, analytical or ‘archaeometric’ techniques for investigating ceramic material have been used within archaeology for over 50 years and now constitute an indispensable tool for archaeologists in the Aegean world (see Jones 1986 for a detailed summary of early work in Greece and Italy) and

  1. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  2. Ultrahigh piezoelectricity in ferroelectric ceramics by design

    Science.gov (United States)

    Li, Fei; Lin, Dabin; Chen, Zibin; Cheng, Zhenxiang; Wang, Jianli; Li, ChunChun; Xu, Zhuo; Huang, Qianwei; Liao, Xiaozhou; Chen, Long-Qing; Shrout, Thomas R.; Zhang, Shujun

    2018-03-01

    Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d33 of up to 1,500 pC N-1 and dielectric permittivity ɛ33/ɛ0 above 13,000 in a Sm-doped PMN-PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.

  3. Advanced ceramics for nuclear heat utilization and energy harvesting

    International Nuclear Information System (INIS)

    Prakash, Deep; Purohit, R.D.; Sinha, P.K.

    2015-01-01

    In recent years concerns related to global warming and green house gas emissions have focused the attention towards lowering the carbon foot print of energy generation. In this scenario, nuclear energy is considered as one of the strongest options to take on the challenges. Further, the nuclear heat, originated from the fission of nuclear fuels may be utilized not only by conversion to electricity using conventional techniques, but also may be used for production of hydrogen by splitting water. In the endeavor of realizing sustainable energy generation technologies, ceramic materials find key role as critical components. This paper covers an overview of various ceramic materials which are potential candidates for energy and hydrogen generation devices. These include solid oxide fuel cells, thermoelectric oxides and sodium conducting beta-alumina for alkali metal thermoelectric converters (AMTEC). The materials, which are generally complex oxides often need to be synthesized using chemical methods for purity and compositional control. Further, ceramic materials offer advantages in terms of doping different cations to engineer defects and maneuver properties. Nonetheless, shaping of ceramics to complex components is a challenging task, due to which various techniques such as isopressing, tape-casting, extrusion, slurry coating, spray deposition etc. are employed. The paper also provides a highlight of fabrication techniques and demonstration of miniature devices which are at various stages of development. (author)

  4. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  5. Investigation of saturation effects in ceramic phosphors for laser lighting

    DEFF Research Database (Denmark)

    Krasnoshchoka, Anastasiia; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    We report observation of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion....... It is shown, that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on incident power and spot size diameter...... of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser based lighting systems....

  6. Summary of ceramic pigments by polymer precursors Pechini method

    International Nuclear Information System (INIS)

    Silva, E.M. da; Galvao, S.B.; Paskocimas, C.A.

    2010-01-01

    In this work were synthesized nitrate chromium nitrate and iron-doped titanium oxide by the polymeric precursor method, for application as ceramic pigments. The stains were developed between the temperatures 700 deg C to 1000 deg C, in green for chromium oxide and orange for iron. Noticing an increase of its opacity by increasing temperature. Characterization by thermogravimetry (TG) showed strong thermo decomposition from 355 deg C for the chromium oxide and thermo decomposition gradual for the iron. By analysis of X-ray diffraction revealed the formation of crystalline phases as Iron Titanate (FeTiO3) and Chrome Titanate (CrTiO3), respectively. The scanning electron microscopy showed the formation of rounded particles for both oxides. Thus, the synthesized oxides were within the requirements to be applied as pigments and shown to be possible to propose its use in ceramic materials. (author)

  7. Doped Organic Transistors.

    Science.gov (United States)

    Lüssem, Björn; Keum, Chang-Min; Kasemann, Daniel; Naab, Ben; Bao, Zhenan; Leo, Karl

    2016-11-23

    Organic field-effect transistors hold the promise of enabling low-cost and flexible electronics. Following its success in organic optoelectronics, the organic doping technology is also used increasingly in organic field-effect transistors. Doping not only increases device performance, but it also provides a way to fine-control the transistor behavior, to develop new transistor concepts, and even improve the stability of organic transistors. This Review summarizes the latest progress made in the understanding of the doping technology and its application to organic transistors. It presents the most successful doping models and an overview of the wide variety of materials used as dopants. Further, the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed, and a concise overview on the influence of doping on transistor behavior and performance is given. In particular, recent progress in the understanding of contact doping and channel doping is summarized.

  8. Reliability improvement of PMZNT relaxor ferroelectrics through surface modification by MnO2 doping against electroplating-induced degradation

    International Nuclear Information System (INIS)

    Cao Jiangli; Li Longtu; Gui Zhilun

    2003-01-01

    Electroplating treatment, scanning electron microscopy (SEM) observation, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses were conducted to investigate the reliability improvement of lead magnesium niobate-based ceramics (PMZNT) through MnO 2 vaporous doping against hydrogen reduction during electroplating. The results showed that manganese dopant was reduced to be +3 oxidation state during the sintering and Mn 3+ was incorporated into the perovskite lattice; however, only the outermost ceramics surface was doped while 50 μm beneath kept unchanged. This technique proved to enhance the reliability of PMZNT against electroplating significantly without changing the dielectric properties of ceramics body. Based on the above results, the modification mechanism of MnO 2 vaporous doping was analyzed from the viewpoint of defect chemistry

  9. High energy transmission of Al2O3 doped with light transition metals

    KAUST Repository

    Schuster, Cosima

    2012-01-31

    The transmission of transparent colored ceramics based on Al2O3doped with light transition metals is measured in the visible and infrared range. To clarify the role of the dopands we perform ab initiocalculations. We discuss the electronic structure and present optical spectra obtained in the independent particle approximation. We argue that the gross spectral features of Co- and Ni-doped Al2O3 samples are described by our model, while the validity of the approach is limited for Cr-doped Al2O3.

  10. High energy transmission of Al2O3 doped with light transition metals

    KAUST Repository

    Schuster, Cosima; Klimke, J.; Schwingenschlö gl, Udo

    2012-01-01

    The transmission of transparent colored ceramics based on Al2O3doped with light transition metals is measured in the visible and infrared range. To clarify the role of the dopands we perform ab initiocalculations. We discuss the electronic structure and present optical spectra obtained in the independent particle approximation. We argue that the gross spectral features of Co- and Ni-doped Al2O3 samples are described by our model, while the validity of the approach is limited for Cr-doped Al2O3.

  11. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  12. Tuning into blue and red luminescence in dual-phase nano-glass–ceramics

    International Nuclear Information System (INIS)

    Chen, Daqin; Wan, Zhongyi; Zhou, Yang; Zhong, Jiasong; Ding, Mingye; Yu, Hua; Lu, Hongwei; Xiang, Weidong; Ji, Zhenguo

    2015-01-01

    Highlights: • Ga 2 O 3 and YF 3 dual-phase embedded glass ceramics were fabricated. • RE 3+ and Cr 3+ dopants incorporated into YF 3 and Ga 2 O 3 lattice respectively. • Intense blue and red emissions are simultaneously achieved in the sample. • Such glass ceramics had possible application in photosynthesis of plants. - Abstract: A series of γ-Ga 2 O 3 and β-YF 3 nanocrystals embedded dual-phase glass ceramics co-doped with rare earth (Eu 3+ or Tm 3+ ) and transition metal (Cr 3+ ) activators were successfully prepared by high-temperature melt-quenching to explore blue/red luminescent materials for potential application in photosynthesis of green plants. It is experimentally verified that Eu 3+ (or Tm 3+ ) ions partitioned into the crystallized orthorhombic YF 3 nanophases, while Cr 3+ ones entered into the precipitated cubic Ga 2 O 3 nanocrystals after glass crystallization. Such spatial separation of the different active ions in the dual-phase glass ceramics can effectively suppress adverse energy transfers between rare earth and transition metal ions, resulting in their independent and efficient luminescence. As an example, it is experimentally demonstrated that both intense Tm 3+ blue and Cr 3+ deep-red emissions are easily achieved in the Tm 3+ /Cr 3+ co-doped dual-phase glass ceramics

  13. Cytotoxicity evaluation of polymer-derived ceramics for pacemaker electrode applications.

    Science.gov (United States)

    Grossenbacher, Jonas; Gullo, Maurizio R; Dalcanale, Federico; Blugan, Gurdial; Kuebler, Jakob; Lecaudé, Stéphanie; Tevaearai Stahel, Hendrik; Brugger, Juergen

    2015-11-01

    Ceramics are known to be chemically stable, and the possibility to electrically dope polymer-derived ceramics makes it a material of interest for implantable electrode applications. We investigated cytotoxic characteristics of four polymer-derived ceramic candidates with either electrically conductive or insulating properties. Cytotoxicity was assessed by culturing C2C12 myoblast cells under two conditions: by exposing them to material extracts and by putting them directly in contact with material samples. Cell spreading was optically evaluated by comparing microscope observations immediately after the materials insertion and after 24 h culturing. Cell viability (MTT) and mortality (LDH) were quantified after 24-h incubation in contact with the materials. Comparison was made with biocompatible positive references (alumina, platinum, biocompatible stainless steel 1.4435), negative references (latex, stainless steel 1.4301) and controls (no material present in the culture wells). We found that the cytotoxic properties of tested ceramics are comparable to established reference materials. These ceramics, which are reported to be very stable, can be microstructured and electrically doped to a wide range of conductivity and are thus excellent candidates for implantable electrode applications including pacemakers. © 2015 Wiley Periodicals, Inc.

  14. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  15. Properties of Nb-doped ZnO transparent conductive thin films ...

    Indian Academy of Sciences (India)

    Administrator

    by rf magnetron sputtering using a high quality ceramic target ... Guangxi Key Laboratory of Information Materials, Guilin University of Electronic ... films are highly textured along the c axis and perpendicular to the surface of the substrate. ... ZnO films; Nb-doped; magnetron sputtering; optical and electrical properties. 1.

  16. Materials and ceramics on the base of aluminium titanate

    International Nuclear Information System (INIS)

    Gulamova, D.

    1997-01-01

    The influence of the doping and technological parameters on the thermodynamical stability of the aluminium titanate is investigated. The condition necessary to make aluminium titanate stable and established. it is shown, how the condition of the synthesis and the content of the admixture phases affect the stability of the solid solutions. The technology of obtaining the ceramics stable with respect to decay (with thermal expansion coefficient CTE = 26x10/sup -6/ grad/sup -1/ and thermoresistancy > 80 heating cycles, sigma curve equal or greater than 80 Mpa) is worked out. (author)

  17. Neodymium ion diffusion during sintering of Nd : YAG transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Joel P; Kuntz, Joshua D; Soules, Thomas F [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)

    2009-03-07

    Using an electron microprobe, we measured and characterized the Nd{sup 3+} ion diffusion across a boundary between Nd doped and undoped ceramic yttrium aluminium garnet (YAG) for different temperature ramps and hold times and temperatures. The results show significant Nd ion diffusion on the order of micrometres to tens of micrometres depending on the time and temperature of sintering. The data fit well a model including bulk diffusion, grain boundary diffusion and grain growth. Grain boundary diffusion dominates and grain growth limits grain boundary diffusion by reducing the total cross-sectional area of grain boundaries. (fast track communication)

  18. Characterization of TRUW ceramics in relation to geological disposal in clay

    International Nuclear Information System (INIS)

    Iseghem, P. van

    1985-01-01

    Various waste forms are being studied in Belgium for their suitability for geological disposal, such as high-level waste glasses, alpha waste ceramics, medium level waste bitumen, and hulls incorporated in lead or concrete. In this paper, attention will be focussed on ceramics, resulting from the high temperature slagging incineration of both combustible and non-combustible alpha waste. Test runs were carried out with either simulated or Pu doped alpha waste, and with simulated or real βγ active waste. (orig./PW)

  19. Synthesis and characterization of tricalcium phosphate ceramics doped with zinc

    International Nuclear Information System (INIS)

    Kai, K.C.; Marchi, J.; Ussui, V.; Bressiani, A.H.A.

    2011-01-01

    Due to its biocompatibility, the tricalcium phosphate (TCP) is used as a biomaterial for bone replacement and reconstruction. Zinc (Zn) can replace calcium in the crystal structure of TCP to be added in small quantities, can result in stimulatory effects on bone formation in vitro and in vivo. In this work, pure TCP and Zn-TCP, with general formula (Ca_1_-_xZn_x)_3 (PO_4)_2 and 0 ≤ x ≤ 0.0225, were prepared by wet synthesis, from precursors Ca(OH)_2, H_3PO_4 and ZnO, after calcinated at 800 deg C and characterized by X-ray diffraction, specific surface area, agglomerate size distribution, differential thermal analysis and scanning electron microscopy. The results showed that the addition of small amounts of Zn resulted in TCP with suitable densification and higher specific surface area, may be promising as biomaterial due to the stimulatory effects of zinc associated with suitable mechanical properties of the final material. (author)

  20. Positron annihilation in transparent ceramics

    Science.gov (United States)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  1. Positron annihilation in transparent ceramics

    International Nuclear Information System (INIS)

    Husband, P; Selim, F A; Bartošová, I; Slugeň, V

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics. (paper)

  2. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  3. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  4. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1987-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying responses to the fusion environment. Materials can be identified today that will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications. (author)

  5. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications

  6. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  7. Advanced ceramic in structural engineering

    OpenAIRE

    Alonso Rodea, Jorge

    2012-01-01

    The work deals with "Advanced Ceramics in Structural Engineering”. Throughout this work we present the different types of ceramic that are currently in wider use, and the main research lines that are being followed. Ceramics have very interesting properties, both mechanical and electrical and refractory where we can find some of the most interesting points of inquiry. Through this work we try tounderstand this complex world, analyzing both general and specific properties of ...

  8. The technical ceramics (second part)

    International Nuclear Information System (INIS)

    Auclerc, S.; Poulain, E.

    2004-01-01

    This work deals with ceramics used in the nuclear and the automotive industries. Concerning the nuclear sector, ceramics are particularly used in reactors, in the treatment of radioactive wastes and for the storage of the ultimate wastes. Details are given about the different ceramics used. In the automobile sector, aluminium is principally used for its lightness and cordierite, basic material of catalyst supports is especially used in the automobile devices of cleansing. (O.M.)

  9. Ceramic superconductors II

    International Nuclear Information System (INIS)

    Yan, M.F.

    1988-01-01

    This volume compiles papers on ceramic superconductors. Topics include: structural patterns in High-Tc superconductors, phase equilibria of barium oxide superconductors, localized electrons in tetragonal YBa/sub 2/Cu/sub 3/O/sub 7-δ/, lattice and defect structure and properties of rare earth/alkaline earth-copper-oxide superconductors, alternate candidates for High-Tc superconductors, perovskite-structure superconductors; superconductive thin film fabrication, and superconductor/polymer composites

  10. Piezoelectric Ceramics Characterization

    National Research Council Canada - National Science Library

    Jordan, T

    2001-01-01

    ... the behavior of a piezoelectric material. We have attempted to cover the most common measurement methods as well as introduce parameters of interest. Excellent sources for more in-depth coverage of specific topics can be found in the bibliography. In most cases, we refer to lead zirconate titanate (PZT) to illustrate some of the concepts since it is the most widely used and studied piezoelectric ceramic to date.

  11. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  12. Photocatalysis of Yttrium Doped BaTiO3 Nanofibres Synthesized by Electrospinning

    Directory of Open Access Journals (Sweden)

    Zhenjiang Shen

    2015-01-01

    Full Text Available Yttrium doped barium titanate (BT nanofibres (NFs with significant photocatalytic effect were successfully synthesized by electrospinning. Considering the necessary factors for semiconductor photocatalysts, a well-designed procedure was carried out to produce yttrium doped BT (BYT NFs. In contrast to BYT ceramics powders and BT NFs, BYT NFs with pure perovskite phase showed much enhanced performance of photocatalysis. The surface modification in electrospinning and subsequent annealing, the surface spreading of transition metal yttrium, and the narrowed band gap energy in yttrium doping were all contributed to the final novel photocatalytic effect. This work provides a direct and efficient route to obtain doped NFs, which has a wide range of potential applications in areas based on complex compounds with specific surface and special doping effect.

  13. Microwave dielectric properties of low-fired Li_2TiO_3–MgO ceramics for LTCC applications

    International Nuclear Information System (INIS)

    Ma, Jian-Li; Fu, Zhi-Fen; Liu, Peng; Wang, Bing; Li, Yang

    2016-01-01

    Graphical abstract: This figure gives the Q × f and τ_f of Li_2TiO_3–MgO ceramics sintered at various temperatures with different LiF contents. Addition of LiF enhanced the sinterability and optimized the microwave dielectric properties of Li_2TiO_3–MgO ceramics. The excellent microwave dielectric properties (ε_r = 15.8, Q × f = 64,500 GHz, and τ_f = −0.2 ppm/°C) of Li_2TiO_3–MgO ceramics sintered at 850 °C illustrated that LiF is a simple effective sintering aids for Li_2TiO_3–MgO ceramics. Such sample was compatible with Ag electrodes, suitable for the low-temperature co-fired ceramics (LTCC) applications. - Highlights: • Temperature stability of Li_2TiO_3 ceramics were improved by doping MgO. • The low-fired Li_2TiO_3–MgO ceramics are fabricated. • LiF liquid phase reduced sintering temperature of Li_2TiO_3–MgO ceramics to 850 °C. • The low-fired Li_2TiO_3–MgO ceramics possess well microwave dielectric properties. • The sample was compatible with Ag electrodes and suitable for LTCC applications. - Abstract: We fabricated the low-fired Li_2TiO_3–MgO ceramics doped with LiF by a conventional solid-state route, and investigated systematically their sintering characteristics, microstructures and microwave dielectric properties. The results showed that temperature stability of Li_2TiO_3 ceramics were improved by doping MgO. Well microwave dielectric properties for Li_2TiO_3–13 wt%MgO (LTM) ceramics with ε_r = 16.4, Q × f = 87,500 GHz, and τ_f = −1.2 ppm/°C were obtained at 1325 °C. Furthermore, addition of LiF enhanced the sinterability and optimized the microwave dielectric properties of LTM ceramics. A typically sample of LTM-4 wt%LiF ceramics with optimum dielectric properties (ε_r = 15.8, Q × f = 64,500 GHz, and τ_f = −0.2 ppm/°C) were achieved at 850 °C for 4 h. Such sample was compatible with Ag electrodes, suitable for the low-temperature co-fired ceramics (LTCC) applications.

  14. Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite

    Science.gov (United States)

    Dhal, Jharana

    Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in

  15. Synthesis of the phase with T sub c =110 K in Bi(Pb)-Sr-Ca-Cu-O superconducting ceramics. Sintez fazy T sub c =110 K sverkhprovodyashchej keramiki sostava Bi(Pb)-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Dubovitskij, A V; Makarov, E F; Makova, M K; Merzhanov, V A; Topnikov, V N [AN SSSR, Moscow (USSR). Inst. Khimicheskoj Fiziki

    1991-05-01

    Synthesis of 110 K single-phase bismuth ceramics (BiPb){sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub x} was conducted in narrow temperature and time range. Diffusion of bismuth ions is proposed to be the decisive factor of synthesis of bismuth ceramics. The diffusion depends on prehistory of basic burden preparation and on its dispersivity and homogeneity in particluar. Optimal time of synthesis for lead doped ceramics of 2223 composition, synthesized from initial nitrate components, is equal to 65 h at 850 deg C. The role of Pb{sup 2+} ions is probably reduced to decrease of diffusion mobility of Bi{sup 3+} ions over the bismuth sublattice. Ceramics doping with CdO and CdCl{sub 2} compounds instead of lead stabilizes superconductivity in bismuth ceramics, but with worth superconducting parameters.

  16. Structural and dielectric characteristics of donor dopants in A and B places of perovskite ceramic PZT 54/46

    International Nuclear Information System (INIS)

    Durruthy-Rodriguez, M.D.; Perez-Fernandez, L.D.; Pelaiz-Barranco, A.; Calderon-Pinar, F.

    2009-01-01

    The microstructural (XRD and SEM) and dielectric behavior of Pb(Zr 0.54 Ti 0.46 )O 3 (PZT 54/46) ceramic system with donor (La, Nb and La+Nb) doping was studied. For all Nb-doped PZT samples, only one (tetragonal) phase was found, which confirms the compositional shifts near the morphotropic phase boundary. For La- and La+Nb-doped samples, there are two (rhombohedral and tetragonal) phases. Dielectric characteristic behavior (1/ε) for La- and La+Nb-doped PZT was associated with two-phase transitions: Ferro-Ferro at low temperature and Ferro-Para at Curie temperature. For Nb-doped samples, only one phase transition is observed, which indicates the presence of a single ferroelectric phase. (orig.)

  17. Dielectric, ferroelectric and impedance spectroscopic studies of Mn and W modified AgNbO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Muduli, Rakesh; Kumar, Pawan, E-mail: pawankumar@nitrkl.ac.in; Panda, Ranjit Kumar; Panigrahi, Simanchal

    2016-09-01

    In the present study, the effect of heterovalent ion doping on the dielectric and ferroelectric behaviour of AgNbO{sub 3}/AN system was investigated. 0.04 mol of manganese (Mn{sup 4+}) and tungsten (W{sup 6+}) ions of smaller ionic radii were substituted in place of niobium (Nb{sup 5+}) ions in the AN system for generating hole and electron rich compounds, respectively. Better dielectric properties with improved saturation polarisations were observed in the heterovalent ions modified AN ceramics. The relaxation behaviour of the modified AN ceramics was investigated by impedance spectroscopy study and intrinsic grain conduction was found to be dominating in the chosen frequency and temperature ranges. The reduced resistivity of the modified AN ceramics was discussed in terms of calculated activation energy. The significant reduction of the activation energy was proposed as the possible cause of early arrival of relaxation peak in the electron doped AN system. - Highlights: • Holes and electrons doping effect on electrical properties of AN system. • Doping of holes significantly enhanced the ferroelectricity. • Doping of electrons reduced activation energy. • Reduced activation energy was related with grains relaxation process.

  18. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Science.gov (United States)

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  19. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics

    International Nuclear Information System (INIS)

    Marsilius, Mie; Granzow, Torsten; Jones, Jacob L

    2011-01-01

    The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180 0 domain wall motion under electrical and mechanical poling loads. To distinguish between 180 0 and non-180 0 domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180 0 domains.

  20. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics

    Science.gov (United States)

    Marsilius, Mie; Granzow, Torsten; Jones, Jacob L.

    2011-02-01

    The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180° domain wall motion under electrical and mechanical poling loads. To distinguish between 180° and non-180° domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180° domains.

  1. Deodorant ceramic catalyst. Dasshu ceramics shokubai

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K. (Kobe Steel Ltd., Kobe (Japan)); Naka, R. (Hitachi Ltd., Tokyo (Japan))

    1993-07-01

    Concerning debromination to be used for the filter of deodorizing device, those of long life and high deodorizing performance are demanded a great deal. As one of this kind of debromination, a deodorant ceramic catalyst (mangantid) has been developed and put for practical use as deodorant for refrigerator. In this article, the information and knowledge obtained by the development of mangantid, the features as well as several properties of the product are stated. The deodorizing methods currently used practically are roughly divided into 6 kinds such as the adsorption method, the direct combustion method, the catalytic method and the oxidation method, but each of them has its own merit and demerit, hence it is necessary to select the method in accordance with the kind of odor and its generating condition. Mangantid is a compound body of high deodorant material in a honeycomb configuration, and has the features that in comparison with the existing deordorants, its pressure loss is smaller, its deodorizing rate is bigger, and acidic, neutral and basic gaseous components can be removed in a well-balanced manner. Deodorization with mangantid has the mechanism to let the odorous component contact and react with the catalyst and change the component to the non-odorous component in the temperature range from room temperature to the low temperature region. 5 refs., 11 figs., 1 tab.

  2. Cleanability evaluation of ceramic glazes with nanometer far-infrared materials using contact angle measurement.

    Science.gov (United States)

    Wang, Lijuan; Liang, Jinsheng; Di, Xingfu; Tang, Qingguo

    2014-05-01

    The cleanability of easy-to-clean ceramic glazes doped with nanometer far-infrared materials was compared with that of some high-quality household ceramic glazes from the market. The cleanability was evaluated by the contact angle measurement using a sessile drop method with a Dataphysics OCA-30 contact angle analyzer. The results showed that the difference of contact angles of water on the glazes before soiling and after cleaning could be used as a parameter for evaluating the cleanability of the glazes. The relationship between cleanability and surface properties, such as surface free energy and surface topography, was investigated. The surface free energy of the samples and their components were calculated using van Oss acid-base approach. By measuring advancing and receding contact angles, the contact angle hysteresis of the ceramic glazes due to the surface topography was investigated. It was shown that the cleanability of ceramic glazes containing nanometer far-infrared materials (NFIM) is better than that of household ceramic glazes from market, due to a higher ratio of electron-acceptor parameter to electron-donor parameter, which led to the effect of water hydration as well as better hydrophilic property and increased smoothness. The contact angle measurement not only accurately evaluates the cleanability of the ceramic glazes, but also has a contribution to the study of cleanability theory. Moreover, this method is simple, convenient and less sample-consumption.

  3. Continuous-wave ceramic Nd:YAG laser at 1123 nm

    International Nuclear Information System (INIS)

    Zhang, S S; Wang, Q P; Zhang, X Y; Cong, Z H; Fan, S Z; Liu, Z J; Sun, W J

    2009-01-01

    Ceramic Nd:YAG (cNd:YAG) materials are employed to generate 1123-nm laser. A fiber-coupled continuous-wave (CW) 808-nm diode laser is used as the pumping source. With an incident diode power of 26.1 W, a CW output power of up to 10.8 W is obtained with a 10-mm-long ceramic Nd:YAG rod (1.0 at.%-Nd-doped). The conversion efficiency from diode power to 1123-nm laser power is 41.4%. The laser performance of another 10-mm-long cNd:YAG rod with a Nd-doping concentration of 0.6 at.% is studied as a comparison

  4. Micromolding for ceramic microneedle arrays

    NARCIS (Netherlands)

    van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; Lüttge, Regina

    2011-01-01

    The fabrication process of ceramic microneedle arrays (MNAs) is presented. This includes the manufacturing of an SU-8/Si-master, its double replication resulting in a PDMS mold for production by micromolding and ceramic sintering. The robustness of the replicated structures was tested by means of

  5. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  6. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 12. Science and Technology of Ceramics - Functional Ceramics. Sheela K Ramasesha. Series Article Volume 4 Issue 12 December 1999 pp 21-30. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 8. Science and Technology of Ceramics - Traditional Ceramics. Sheela K Ramasesha. Series Article Volume 4 Issue 8 August 1999 pp 16-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  9. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  10. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  11. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  12. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  13. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1989-05-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scients, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electroeletronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  14. Directionally Solidified Multifunctional Ceramics

    Science.gov (United States)

    2006-12-01

    Vidrio , Vol. 44 [5] (2005) pp 347 - 352. 9. F. W. Dynys and A. Sayir, "Self Assemble Silicide Architectures by Directional Solidification," Journal...Sociedad Espanola de Ceramica y Vidrio , Vol. 43 [4] (2004) pp 753 - 758. 21. A. Sayir and F. S. Lowery, "Combustion-Resistance of Silicon-Based Ceramics...Espafiola de Cerdmica y Vidrio , Vol. 43 [3], 2004. ISSN-0366-3175-BSCVB9. 14 37. P. Berger, A. Sayir and M. H. Berger, "Nuclear Microprobe using Elastic

  15. Doping control in sport

    DEFF Research Database (Denmark)

    Overbye, Marie Birch

    2016-01-01

    Doping testing is a key component enforced by anti-doping authorities to detect and deter doping in sport. Policy is developed to protect athletes' right to participate in doping-free sport; and testing is a key tool to secure this right. Accordingly, athletes' responses to anti-doping efforts...... are important. This article explores how the International Standards for Testing, which face different interpretations and challenges when policy is implemented, are perceived by elite athletes. Particularly, this article aims to investigate how elite athletes perceive the functioning of the testing system (i.......e., the efforts of stakeholders involved in testing) in their own sport both nationally and worldwide. Moreover, it seeks to identify whether specific factors such as previous experience of testing and perceived proximity of doping have an impact on athletes' perceptions of the testing system. The study comprises...

  16. Structural Contribution to the Ferroelectric Fatigue in Lead Zirconate Titanate (PZT) Ceramics

    OpenAIRE

    Hinterstein , Manuel; Rouquette , Jerome; Haines , J; Papet , Ph; Glaum , Julia; Knapp , Michael; Eckert , J; Hoffman , M

    2014-01-01

    International audience; Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less i...

  17. (Nd0⋅065Ti0⋅87Nb0⋅065)O3 ceramic

    Indian Academy of Sciences (India)

    Unknown

    Polycrystalline ceramic samples of sodium bismuth titanate with simultaneous doping at A and B sites have been studied for the influence of ... of Nd and Nb at B site in BaTiO3 (BaNdxTi1–2xNbxO3). (Mahboob et al 2005a). Dielectric ..... hence the conduction arises due to short range translation hopping via large polarons.

  18. The Anti-Doping Movement.

    Science.gov (United States)

    Willick, Stuart E; Miller, Geoffrey D; Eichner, Daniel

    2016-03-01

    Historical reports of doping in sports date as far back as the ancient Greek Olympic Games. The anti-doping community considers doping in sports to be cheating and a violation of the spirit of sport. During the past century, there has been an increasing awareness of the extent of doping in sports and the health risks of doping. In response, the anti-doping movement has endeavored to educate athletes and others about the health risks of doping and promote a level playing field. Doping control is now undertaken in most countries around the world and at most elite sports competitions. As athletes have found new ways to dope, however, the anti-doping community has endeavored to strengthen its educational and deterrence efforts. It is incumbent upon sports medicine professionals to understand the health risks of doping and all doping control processes. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  19. Formulation and synthesis by melting process of titanate enriched glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Advocat, T.; Fillet, C.; Lacombe, J.; Bonnetier, A.; McGlinn, P.

    1999-01-01

    The main objective of this work is to provide containment for the separated radionuclides in stable oxide phases with proven resistance to leaching and irradiation damage and in consequence to obtain a glass ceramic or a ceramic material using a vitrification process. Sphene glass ceramic, zirconolite glass ceramic and zirconolite enriched ceramic have been fabricated and characterized by XRD, SEM/EDX and DTA

  20. Tuning the Electrical and Thermal Conductivities of Thermoelectric Oxides through Impurity Doping

    Science.gov (United States)

    Torres Arango, Maria A.

    Waste heat and thermal gradients available at power plants can be harvested to power wireless networks and sensors by using thermoelectric (TE) generators that directly transform temperature differentials into electrical power. Oxide materials are promising for TE applications in harsh industrial environments for waste heat recovery at high temperatures in air, because they are lightweight, cheaply produced, highly efficient, and stable at high temperatures in air. Ca3Co4O9(CCO) with layered structure is a promising p-type thermoelectric oxide with extrapolated ZT value of 0.87 in single crystal form [1]. However the ZT values for the polycrystalline ceramics remain low of ˜0.1-0.3. In this research, nanostructure engineering approaches including doping and addition of nanoinclusions were applied to the polycrystalline CCO ceramic to improve the energy conversion efficiency. Polycrystalline CCO samples with various Bi doping levels were prepared through the sol-gel chemical route synthesis of powders, pressing and sintering of the pellets. Microstructure features of Bi doped ceramic bulk samples such as porosity, development of crystal texture, grain boundary dislocations and segregation of Bi dopants at various grain boundaries are investigated from microns to atomic scale. The results of the present study show that the Bi-doping is affecting both the electrical conductivity and thermal conductivity simultaneously, and the optimum Bi doping level is strongly correlated with the microstructure and the processing conditions of the ceramic samples. At the optimum doping level and processing conditions of the ceramic samples, the Bi substitution of Ca results in the increase of the electrical conductivity, decrease of the thermal conductivity, and improvement of the crystal texture. The atomic resolution Scanning Transmission Electron Microscopy (STEM) Z-contrast imaging and the chemistry analysis also reveal the Bi-segregation at grain boundaries of CCO

  1. Influence of oxygen disordering on static magnetic susceptibility of YBa2Cu3O7-x ceramics

    International Nuclear Information System (INIS)

    Sokolov, B.Yu.; Vil'danov, R.R.

    2008-01-01

    Influence of disordering of the populated oxygen positions in YBa 2 Cu 3 O 7-x ceramic's structure on its static magnetic susceptibility in the range of temperatures T>Tc is investigated. For occurrence of disordering the initial ceramics YBa 2 Cu 3 O 6,9 was annealed at T=520 C with the subsequent quenching in liquid nitrogen. Evolutions of a magnetic susceptibility and resistance of annealed ceramics during its air storage at a room temperature were studied. It is revealed that, unlike the initial optimum doped ceramics, annealed samples have appreciable temperature dependence of a magnetic susceptibility. Interpretation of results is executed on the basis of model of electronic phase separation and occurrence of a pseudo gap in a energy spectrum of free carriers of a superconductor. (authors)

  2. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  3. Preparation of 147Pm ceramic source core

    International Nuclear Information System (INIS)

    Mielcarski, M.

    1989-01-01

    Preparation of ceramic pellets containing fixed promethium-147 is described. Incorporation rate of 147 Pm into the ceramic material was determined. The leachability and vaporization of promethium from the obtained ceramics was investigated. The ceramic pellets prepared by the described procedure, mounted in special holders, can be applied as point sources in beta backscatter thickness gauges. (author)

  4. Recent research activities on functional ceramics for insulator, breeder and optical sensing systems in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, S., E-mail: nagata@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai (Japan); Katsui, H.; Hoshi, K. [Institute for Materials Research, Tohoku University, Sendai (Japan); Tsuchiya, B. [Meijo University, Faculty of Science and Technology, Nagoya (Japan); Toh, K. [J-PARC Center Japan Atomic Energy Agency, Tokai (Japan); Zhao, M.; Shikama, T. [Institute for Materials Research, Tohoku University, Sendai (Japan); Hodgson, E.R. [Euratom/CIEMAT Fusion Association, Madrid (Spain)

    2013-11-15

    The paper presents a brief overview of current research activities on functional ceramic materials for insulating components, tritium breeder and optical sensing systems, mainly carried out at Institute for Materials Research (IMR), Tohoku University. Topics include recent experimental results related to the electrical degradation and optical changes in typical oxide ceramics (e.g. Al{sub 2}O{sub 3} and SiO{sub 2}) concerning radiolytic effects. Hydrogen effects on the electrical conductivity in the Perovskite-type oxide ceramics and the interaction between hydrogen and irradiation induced defects in ternary Li oxides used as breeder materials, were dynamically observed under the irradiation environment. Further attention is focused on several challenging qualifications required for an advanced sensing system using optical characteristics (e.g., thermoluminescence in SiO{sub 2} core fiber, neutron-induced long lasting emission from oxides doped with rare-earth elements, and gasochromic coloration phenomenon of WO{sub 3})

  5. Crystal phase analysis of SnO2-based varistor ceramic using the Rietveld method

    International Nuclear Information System (INIS)

    Moreira, M.L.; Pianaro, S.A.; Andrade, A.V.C.; Zara, A.J.

    2006-01-01

    A second addition of l mol% of CoO to a pre calcined SnO 2 -based ceramic doped with 1.0 mol% of CoO, 0.05 mol% of Nb 2 O 5 and 0.05 mol% of Cr 2 O 3 promotes the appearance of a secondary phase, Co 2 SnO 4 , besides the SnO 2 cassiterite phase, when the ceramic was sintered at 1350 deg. C/2 h. This was observed using X-ray powder diffraction, scanning electron microscopy and energy dispersive X-ray techniques. Rietveld refinement was carried out to quantify the phases present in the ceramic system. The results of the quantitative analysis were 97 wt.% SnO 2 and 3 wt.% Co 2 SnO 4 . The microstructural analysis showed that a certain amount of cobalt ion remains into cassiterite grains

  6. Small polaron conduction in lead modified lanthanum ferrite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bhargav, K.K.; Ram, S.; Majumder, S.B., E-mail: subhasish@matsc.iitkgp.ernet.in

    2015-07-25

    Highlights: • La{sub 0.8}Pb{sub 0.2}FeO{sub 3} (ε{sub r} ∼ 30,000) shows higher dielectric constant than LaFeO{sub 3} (∼14,000). • Lower A-site dopant content, the dielectric maxima shift to higher temperature. • The frequency dependence of ε{sub r} and tan δ vs. temperature exhibit CDC like behavior. • R{sub g} and R{sub gb} of Pb modified LaFeO{sub 3} follow small polaron hopping conduction model. - Abstract: In the present work we have illustrated the physics of the electrical characteristics of nanocrystalline La{sub 1−x}Pb{sub x}FeO{sub 3,} (0 ⩽ x ⩽ 0.2) powder prepared using auto-combustion synthesis. The effect of lead doping on the dielectric, impedance and ac conductivity characteristics of lanthanum ferrite has systematically been investigated. The synthesized powders were phase pure and crystallized into centro-symmetric Pnma space group. As compared to pure LaFeO{sub 3} ceramics (dielectric constant ∼ 14,000), the dielectric constant is grossly increased (∼30,000) in Pb doped LaFeO{sub 3}. The temperature dependence of dielectric constant of 10.0 at.% Pb doped LaFeO{sub 3} exhibits dielectric maxima similar to that observed in ferroelectric ceramics with non-centrosymmetric point group. For La{sub 0.8}Pb{sub 0.2}FeO{sub 3} ceramics, the frequency dependence of the dielectric constant and loss tangent at various temperatures (300–450 K) exhibit typical colossal dielectric constant (CDC) like behavior. From the impedance spectroscopy we have estimated the grain and grain boundary resistance and capacitance of Pb doped LaFeO{sub 3} that follow a small polaron hopping conduction model. Long range movement of the charge carriers govern the CDC behavior.

  7. Fibrous monolithic ceramics

    International Nuclear Information System (INIS)

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  8. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  9. Application of NDE methods to green ceramics: initial results

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Karplus, H.B.; Poeppel, R.B.; Ellingson, W.A.; Berger, H.; Robbins, C.; Fuller, E.

    1983-01-01

    The effectiveness of microradiography, ultrasonic methods, unclear magnetic resonance, and neutron radiography was assessed for the nondestructive evaluation of green (unfired) ceramics. The application of microradiography to ceramics is reviewed, and preliminary experiments with a commercial microradiography unit are described. Conventional ultrasonic techniques are difficult to apply to flaw detection green ceramics because of the high attenuation, fragility, and couplant-absorbing properties of these materials. However, velocity, attenuation, and spectral data were obtained with pressure-coupled transducers and provided useful informaion related to density variations and the presence of agglomerates. Nuclear magnetic resonance (NMR) imaging techniques and neutron radiography were considered for detection of anomalies in the distribution of porosity. With NMR, areas of high porosity might be detected after the samples are doped with water. In the case of neutron radiography, although imaging the binder distribution throughout the sample may not be feasible because of the low overall concentration of binder, regions of high binder concentration (thus high porosity) should be detectable

  10. Fabrication and Sintering Behavior of Er:SrF2 Transparent Ceramics using Chemically Derived Powder

    Science.gov (United States)

    Liu, Jun; Liu, Peng; Wang, Jun; Xu, Xiaodong; Li, Dongzhen; Zhang, Jian; Nie, Xinming

    2018-01-01

    In this paper, we report the fabrication of high-quality 5 at. % Er3+ ions doped SrF2 transparent ceramics, the potential candidate materials for a mid-infrared laser-gain medium by hot-pressing at 700 °C for 40 h using a chemically-derived powder. The phase structure, densification, and microstructure evolution of the Er:SrF2 ceramics were systematically investigated. In addition, the grain growth kinetic mechanism of Er:SrF2 was clarified. The results showed lattice diffusion to be the grain growth mechanism in the Er:SrF2 transparent ceramic of which highest in-line transmittance reached 92% at 2000 nm, i.e., very close to the theoretical transmittance value of SrF2 single crystal. Furthermore, the emission spectra showed that the strongest emission band was located at 2735 nm. This means that it is possible to achieve a laser output of approximately 2.7 μm in the 5 at. % Er3+ ions doped SrF2 transparent ceramics. PMID:29565322

  11. Fabrication and Sintering Behavior of Er:SrF2 Transparent Ceramics using Chemically Derived Powder

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2018-03-01

    Full Text Available In this paper, we report the fabrication of high-quality 5 at. % Er3+ ions doped SrF2 transparent ceramics, the potential candidate materials for a mid-infrared laser-gain medium by hot-pressing at 700 °C for 40 h using a chemically-derived powder. The phase structure, densification, and microstructure evolution of the Er:SrF2 ceramics were systematically investigated. In addition, the grain growth kinetic mechanism of Er:SrF2 was clarified. The results showed lattice diffusion to be the grain growth mechanism in the Er:SrF2 transparent ceramic of which highest in-line transmittance reached 92% at 2000 nm, i.e., very close to the theoretical transmittance value of SrF2 single crystal. Furthermore, the emission spectra showed that the strongest emission band was located at 2735 nm. This means that it is possible to achieve a laser output of approximately 2.7 μm in the 5 at. % Er3+ ions doped SrF2 transparent ceramics.

  12. Cladding glass ceramic for use in high powered lasers

    Science.gov (United States)

    Marker, Alexander J.; Campbell, John H.

    1998-01-01

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  13. Ga2O3 doping and vacancy effect in KNN—LT lead-free piezoceramics

    Science.gov (United States)

    Tan, Zhi; Xing, Jie; Jiang, Laiming; Zhu, Jianguo; Wu, Bo

    2017-12-01

    Ga2O3 was doped into 0.95(K0.48Na0.52)NbO3—0.05LiTaO3 (KNN—LT) ceramics and its influences on the sintering behavior, phase structure and electrical properties of ceramics were studied. Firstly, SEM observation exhibits that more and more glass phase appears in ceramics with the gradual addition of Ga2O3, which determines the continuous decrease in sintering temperatures. And the addition of Ga2O3 is also found to increase the orthorhombic—tetragonal transition temperature ( T O—T) of system to a higher level. Secondly, both the density and the coercive field ( E C) of ceramics increase firstly and then decrease with increasing the Ga2O3 content, and the KNN—LT— xGa sample at x = 0.004 shows a pinched P— E hysteresis loop. Finally, the impedance characteristics of KNN—LT— xGa ceramics were investigated at different temperatures, revealing a typical vacancy related conduction mechanism. This work demonstrates that Ga2O3 is a good sintering aid for KNN-based ceramics, and the vacancy plays an important role in the sintering and electrical behaviors of ceramics.

  14. Ceramic drug-delivery devices.

    Science.gov (United States)

    Lasserre, A; Bajpai, P K

    1998-01-01

    A variety of ceramics and delivery systems have been used to deliver chemicals, biologicals, and drugs at various rates for desired periods of time from different sites of implantation. In vitro and in vivo studies have shown that ceramics can successfully be used as drug-delivery devices. Matrices, inserts, reservoirs, cements, and particles have been used to deliver a large variety of therapeutic agents such as antibiotics, anticancer drugs, anticoagulants, analgesics, growth factors, hormones, steroids, and vaccines. In this article, the advantages and disadvantages of conventional drug-delivery systems and the different approaches used to deliver chemical and biological agents by means of ceramic systems will be reviewed.

  15. High flow ceramic pot filters

    OpenAIRE

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6–19 L h−1), but initial LRVs for E. coli o...

  16. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  17. Porous ceramics out of oxides

    International Nuclear Information System (INIS)

    Bakunov, V.S.; Balkevich, V.L.; Vlasov, A.S.; Guzman, I.Ya.; Lukin, E.S.; Poluboyarinov, D.N.; Poliskij, R.Ya.

    1977-01-01

    A review is made of manufacturing procedures and properties of oxide ceramics intended for high-temperature thermal insulation and thermal protection applications. Presented are structural characteristics of porous oxide refractories and their properties. Strength and thermal conductivity was shown to depend upon porosity. Described is a procedure for manufacturing porous ceramic materials from aluminium oxide, zirconium dioxide, magnesium oxide, beryllium oxide. The thermal resistance of porous ceramics from BeO is considerably greater than that of other high-refractoriness oxides. Listed are areas of application for porous materials based on oxides

  18. Upconversion luminescence, ferroelectrics and piezoelectrics of Er Doped SrBi{sub 4}Ti{sub 4}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Peng Dengfeng [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Zou Hua; Wang Xusheng; Yao Xi [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xu Chaonan [National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Lin Jian; Sun Tiantuo [School of Material Science and Engineering, Tongji University, 4800 Cao' an Highway, Shanghai 201804 (China)

    2012-12-15

    Er{sup 3+} doped SrBi{sub 4}Ti{sub 4}O{sub 15} (SBT) bismuth layered-structure ferroelectric ceramics were synthesized by the traditional solid-state method, and their upconversion photoluminescent (UC) properties were investigated as a function of Er{sup 3+} concentration and incident pump power. Green (555 nm) and red (670 nm) emission bands were obtained under 980 nm excitation at room temperature, which corresponded to the radiative transitions from {sup 4}S{sub 3/2}, and {sup 4}F{sub 9/2} to {sup 4}I{sub 15/2}, respectively. The emission color of the samples could be changed with moderating the doping concentrations. The dependence of UC intensity on pumping power indicated a two-photon emission process. Studies on dielectric properties indicated that the introduction of Er increased the ferroelectric-paraelectric phase transition temperature (Tc) of SBT, thus making this ceramic suitable for piezoelectric sensor applications at higher temperatures. Piezoelectric measurement showed that the doped SBT had a relative higher piezoelectric constant d{sub 33} compared with the non-doped ceramics. The thermal annealing behaviors of the doped sample revealed a stable piezoelectric property. The doped SBT showed bright UC emission while simultaneously having increased Tc and d{sub 33}. As a multifunctional material, Er doped SBT ferroelectric oxide showed great potential in application of sensor, future optical-electro integration and coupling devices.

  19. To dope or not to dope

    DEFF Research Database (Denmark)

    Overbye, Marie Birch; Knudsen, Mette Lykke; Pfister, Gertrud Ursula

    2013-01-01

    tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43%) represe......tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43......%) representing 40 sports completed aweb-based questionnaire. Participants were asked to imagine themselves in a situation in which theyhad to decide whether to dope or not to dope and then evaluate how different circumstances would affecttheir decisions.Results: Multiple circumstances had an effect on athletes......’ hypothetical decisions. The most effective deter-rents were related to legal and social sanctions, side-effects and moral considerations. Female athletesand younger athletes evaluated more reasons as deterrents than older, male athletes. When confrontedwith incentives to dope, the type of sport was often...

  20. Air purification by heterogeneous photocatalytic oxidation with multi-doped thin film titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    O' Keeffe, Cormac, E-mail: cormac.okeeffe@theta.ie [Theta Chemicals Ltd., Station Road, Ballindine, Claremorris, Mayo (Ireland); Gannon, Paul; Gilson, Paul [Theta Chemicals Ltd., Station Road, Ballindine, Claremorris, Mayo (Ireland); Kafizas, Andreas; Parkin, Ivan P. [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Binions, Russell [School of Engineering and Materials Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2013-06-30

    Multi element-doped titania films (F, S-TiO{sub 2}) were produced via sol–gel techniques and deposited on glass and ceramic substrates with an annealing temperature of 500 °C. The films were characterised by X-ray diffraction, Raman Spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. The X-ray diffraction and Raman spectrum showed the films to have an anatase TiO{sub 2} structure with X-ray photoelectron spectroscopy confirming the presence of sulphur, fluorine and carbon doping. The titania coated glass and ceramic substrates were compared against two commercially available TiO{sub 2} coated products for the photo-destruction of NO{sub 2(g)}. The study included both equivalent indoor and outdoor test conditions. The multi-doped titania films were shown to provide a genuine method of air purification under both visible (room lighting) and UVA lighting with photo-destruction rates as high as 72%. - Highlights: • Synthesis of multi-doped titania films • Excellent NO{sub 2} conversion rates for coated ceramic tiles • Excellent NO{sub 2} conversion rates for coated glass substrates • Significantly better conversion rates for existing commercial products.

  1. Fabrication of high-power piezoelectric transformers using lead-free ceramics for application in electronic ballasts.

    Science.gov (United States)

    Yang, Song-Ling; Chen, Shih-Ming; Tsai, Cheng-Che; Hong, Cheng-Shong; Chu, Sheng-Yuan

    2013-02-01

    CuO is doped into (Na(0.5)K(0.5))NbO(3) (NKN) ceramics to improve the piezoelectric properties and thus obtain a piezoelectric transformer (PT) with high output power. In X-ray diffraction patterns, the diffraction angles of the CuO-doped NKN ceramics shift to lower values because of an expansion of the lattice volume, thus inducing oxygen vacancies and enhancing the mechanical quality factor. A homogeneous microstructure is obtained when NKN is subjected to CuO doping, leading to improved electrical properties. PTs with different electrode areas are fabricated using the CuO-doped NKN ceramics. Considering the efficiency, voltage gain, and temperature rise of PTs at a load resistance of 1 kΩ, PTs with an electrode with an inner diameter of 15 mm are combined with the circuit design for driving a 13-W T5 fluorescent lamp. A temperature rise of 6°C and a total efficiency of 82.4% (PT and circuit) are obtained using the present PTs.

  2. Doped graphene supercapacitors

    Science.gov (United States)

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2015-12-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed.

  3. Doped graphene supercapacitors

    International Nuclear Information System (INIS)

    Kumar, Nanjundan Ashok; Baek, Jong-Beom

    2015-01-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed. (topical review)

  4. STRUCTURAL CHARACTERISTICS & DIELECTRIC PROPERTIES OF TANTALUM OXIDE DOPED BARIUM TITANATE BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Md. Fakhrul Islam

    2013-01-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mole % Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90 % was achieved for 0.5 and 1.0 mole %Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0.5 mole % Ta2O5. Although fine grain size down to 200 - 300 nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000 - 14000 was found in the temperature range of 55 to 80 °C, for 1.0 mole % Ta2O5 doped samples with corresponding shift of Curie point to ~82 °C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  5. Structural Characteristics & Dielectric Properties of Tantalum Oxide Doped Barium Titanate Based Materials

    Directory of Open Access Journals (Sweden)

    Rubayyat Mahbub

    2012-11-01

    Full Text Available In this research, the causal relationship between the dielectric properties and the structural characteristics of 0.5 & 1.0 mol% Ta2O5 doped BaTiO3 based ceramic materials were investigated under different sintering conditions. Dielectric properties and microstructure of BaTio3 ceramics were significantly influenced by the addition of a small amount of Ta2O5. Dielectric properties were investigated by measuring the dielectric constant (k as a function of temperature and frequency. Percent theoretical density (%TD above 90% was achieved for 0.5 and 1.0 mol% Ta2O5 doped BaTiO3. It was observed that the grain size decreased markedly above a doping concentration of 0·5 mol% Ta2O5. Although fine grain size down to 200-300nm was attained, grain sizes in the range of 1-1.8µm showed the most alluring properties. The fine-grain quality and high density of the Ta2O5 doped BaTiO3 ceramic resulted in tenfold increase of dielectric constant. Stable value of dielectric constant as high as 13000-14000 was found in the temperature range of  55 to 80°C, for 1.0 mol% Ta2O5 doped samples with corresponding shift of Curie point to ~82°C. Experiments divulged that incorporation of a proper content of Ta2O5 in BaTiO3 could control the grain growth, shift the Curie temperature and hence significantly improve the dielectric property of the BaTiO3 ceramics.

  6. Agglomeration of ceramic powders

    Science.gov (United States)

    Cawley, James D.; Larosa, Judith; Dirkse, Fredrick

    1989-01-01

    A research program directed at a critical comparison of numerical models for power agglomeration with experimental observations is currently underway. Central to this program is the quantitative characterization of the distribution of mass within an agglomerate as a function of time. Current experiments are designed to restrict agglomeration to a surface, which is oriented perpendicular to the force of gravity. These experiments are discussed with reference to: their significance to ceramic processing; artifacts which may be avoided in microgravity experiments; and the comparison of information available in real space (from optical microscopy) to that in reciprocal space (from light scattering). The principle machine requirement appears to be a need to obtain information at small scattering angles.

  7. Creep in electronic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  8. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  9. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation.

    Science.gov (United States)

    Zhang, Fei; Vanmeensel, Kim; Batuk, Maria; Hadermann, Joke; Inokoshi, Masanao; Van Meerbeek, Bart; Naert, Ignace; Vleugels, Jef

    2015-04-01

    Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr(4+), exhibiting strong segregation at the ZrO2 grain boundary was preferred. The introduction of 0.2 mol% La2O3 in conventional 0.1-0.25 wt.% Al2O3-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining excellent mechanical properties. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Moessbauer studies of Inca ceramics

    International Nuclear Information System (INIS)

    Wagner, U.; Wagner, F.E.; Marticorena, B.; Salazar, R.; Schwabe, R.; Riederer, J.

    1986-01-01

    To obtain information on the firing of Inca ceramics, 7 samples from different locations were studied by Moessbauer spectroscopy including a detailed laboratory refiring procedure. The glaze typical for the surface of this ware was studied by Moessbauer scattering. (Auth.)

  11. Non destructive evaluation of ceramics

    International Nuclear Information System (INIS)

    Green, R.E. Jr

    1992-01-01

    While monolithic and composite ceramics have been successfully manufactured, inconsistencies in processing and the unpredictable nature of their failure have limited their use as engineering materials. The optimization of the processing and properties of ceramics and the structures, devices and systems made from them demand the innovative application of modern nondestructive materials characterization techniques to monitor and control as many stages of the production process as possible. This paper will describe the state-of-the-art of nondestructive evaluation techniques for characterization of monolithic ceramics and ceramic composites. Among the techniques to be discussed are laser ultrasonics, acoustic microscopy, thermography, microfocus and x-ray tomography, and micro-photoelasticity. Application of these and other nondestructive evaluation techniques for more effective and efficient real-time process control will result in improved product quality and reliability. 27 refs

  12. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  13. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  14. Ho2O3 additive effects on BaTiO3 ceramics microstructure and dielectric properties

    Directory of Open Access Journals (Sweden)

    Paunović Vesna

    2012-01-01

    Full Text Available Doped BaTiO3-ceramics is very interesting for their application as PTCR resistors, multilayer ceramic capacitors, thermal sensors etc. Ho doped BaTiO3 ceramics, with different Ho2O3 content, ranging from 0.01 to 1.0 wt% Ho, were investigated regarding their microstructural and dielectric characteristics. The samples were prepared by the conventional solid state reaction and sintered at 1320° and 1380°C in an air atmosphere for 4 hours. The grain size and microstructure characteristics for various samples and their phase composition was carried out using a scanning electron microscope (SEM equipped with EDS system. SEM analysis of Ho/BaTiO3 doped ceramics showed that in samples doped with a rare-earth ions low level, the grain size ranged from 20-30μm, while with the higher dopant concentration the abnormal grain growth is inhibited and the grain size ranged between 2- 10μm. Dielectric measurements were carried out as a function of temperature up to 180°C. The low doped samples sintered at 1380°C, display the high value of dielectric permittivity at room temperature, 2400 for 0.01Ho/BaTiO3. A nearly flat permittivity-response was obtained in specimens with higher additive content. Using a Curie-Weiss low and modified Curie-Weiss low the Curie constant (C, Curie temperature (Tc and a critical exponent of nonlinearity (γ were calculated. The obtained value of γ pointed out that the specimens have almost sharp phase transition. [Projekat Ministarstva nauke Republike Srbije, br. 172057: Directed synthesis, structure and properties of multifunctional materials

  15. Apatite glass-ceramics: a review

    Science.gov (United States)

    Duminis, Tomas; Shahid, Saroash; Hill, Robert Graham

    2016-12-01

    This article is a review of the published literature on apatite glass-ceramics (GCs). Topics covered include crystallization mechanisms of the various families of the apatite GCs and an update on research and development on apatite GCs for applications in orthopedics, dentistry, optoelectronics and nuclear waste management. Most apatite GCs crystallize through a homogenous nucleation and crystallization mechanism, which is aided by a prior liquid-liquid phase separation. Careful control of the base glass composition and heat-treatment conditions, which determine the nature and morphology of the crystal phases in the GC can produce GC materials with exceptional thermal, mechanical, optical and biological properties. The GCs reviewed for orthopedic applications exhibit suitable mechanical properties and can chemically bond to bone and stimulate its regeneration. The most commercially successful apatite GCs are those developed for dental veneering. These materials exhibit excellent translucency and clinical esthetics, and mimic the natural tooth mineral. Due to the ease of solid solution of the apatite lattice, rare earth doped apatite GCs are discussed for potential applications in optoelectronics and nuclear waste management. One of the drawbacks of the commercial apatite GCs used in orthopedics is the lack of resorbability, therefore the review provides a direction for future research in the field.

  16. Radioactivity Measurements on Glazed Ceramic Surfaces.

    Science.gov (United States)

    Hobbs, T G

    2000-01-01

    A variety of commonly available household and industrial ceramic items and some specialty glass materials were assayed by alpha pulse counting and ion chamber voltage measurements for radioactivity concentrations. Identification of radionuclides in some of the items was performed by gamma spectroscopy. The samples included tableware, construction tiles and decorative tiles, figurines, and other products with a clay based composition. The concentrations of radioactivity ranged from near background to about four orders of magnitude higher. Almost every nuclide identification test demonstrated some radioactivity content from one or more of the naturally occurring radionuclide series of thorium or uranium. The glazes seemed to contribute most of the activity, although a sample of unglazed pottery greenware showed some activity. Samples of glazing paints and samples of deliberately doped glass from the World War II era were included in the test, as was a section of foam filled poster board. A glass disc with known (232)Th radioactivity concentration was cast for use as a calibration source. The results from the two assay methods are compared, and a projection of sensitivity from larger electret ion chamber devices is presented.

  17. Metal-ceramic joint assembly

    Science.gov (United States)

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  18. Multiphase-Multifunctional Ceramic Coatings

    Science.gov (United States)

    2013-06-30

    systems for high temperatura applications” “ Estudios de Ferroelasticidad en Sistemas Cerámicos Multifásicos para Aplicaciones en Alta Temperatura ...Ceramic Coatings Performing Organization names: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional – Unidad Queretaro...materials, Cinvestav. Thesis: “Ferroelasticity studies in multiphase ceramic systems for high temperatura applications”. Her work mainly focused in the

  19. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  20. Method for preparing ceramic composite

    Science.gov (United States)

    Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.

    1996-01-09

    A process is disclosed for preparing ceramic composite comprising blending TiC particulates, Al{sub 2}O{sub 3} particulates and nickel aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m{sup 1/2}, a hardness equal to or greater than 18 GPa. 5 figs.