WorldWideScience

Sample records for magnesia-zirconia ceramics doped

  1. Phase composition of yttrium-doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2017-06-01

    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  2. Preparation of new composite ceramics based on gadolinium-doped ceria and magnesia nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingying; Schelter, Matthias; Zosel, Jens; Oelssner, Wolfram [Kurt-Schwabe-Institut fuer Mess- und Sensortechnik e.V. Meinsberg, Waldheim (Germany); Mertig, Michael [Kurt-Schwabe-Institut fuer Mess- und Sensortechnik e.V. Meinsberg, Waldheim (Germany); Physikalische Chemie, Mess- und Sensortechnik, Technische Universitaet Dresden (Germany)

    2017-09-15

    To achieve solid electrolyte materials for electrochemical energy storage devices with very high oxygen ion conductivity, composites of gadolinium-doped ceria (GDC) and magnesia (MgO) are developed in this study. Three different preparation methods are used to prepare nanoparticles from these two components. According to the characterization results, the self-propagating high-temperature synthesis is best suited for the preparation of both nanometer-sized GDC powder as solid electrolyte and MgO powder as insulator. The structures of the prepared nanometer-sized powders have been characterized by X-ray diffraction and transmission electron microscopy. They show narrow size distributions in the lower nanometer range. Then, dense composite ceramics are prepared from a MgO-GDC mixture by sintering. The size of the crystallite domains in the sintered ceramic is in the upper nanometer range. TEM and TEM-EDX images of a new composite ceramic based on gadolinium-doped ceria and magnesia nanoparticles. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Preparation of new composite ceramics based on gadolinium-doped ceria and magnesia nanoparticles

    International Nuclear Information System (INIS)

    Yao, Jingying; Schelter, Matthias; Zosel, Jens; Oelssner, Wolfram; Mertig, Michael

    2017-01-01

    To achieve solid electrolyte materials for electrochemical energy storage devices with very high oxygen ion conductivity, composites of gadolinium-doped ceria (GDC) and magnesia (MgO) are developed in this study. Three different preparation methods are used to prepare nanoparticles from these two components. According to the characterization results, the self-propagating high-temperature synthesis is best suited for the preparation of both nanometer-sized GDC powder as solid electrolyte and MgO powder as insulator. The structures of the prepared nanometer-sized powders have been characterized by X-ray diffraction and transmission electron microscopy. They show narrow size distributions in the lower nanometer range. Then, dense composite ceramics are prepared from a MgO-GDC mixture by sintering. The size of the crystallite domains in the sintered ceramic is in the upper nanometer range. TEM and TEM-EDX images of a new composite ceramic based on gadolinium-doped ceria and magnesia nanoparticles. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Thermo-mechanical properties of mullite/zirconia reinforced alumina ceramic composites

    International Nuclear Information System (INIS)

    Wahsh, M.M.S.; Khattab, R.M.; Awaad, M.

    2012-01-01

    Highlights: ► Alumina–mullite–zirconia ceramic composites were prepared from alumina and zircon. ► Constant amount of magnesia was added as a sintering aid. ► Mechanical properties were enhanced with increasing of zircon up to 30.52 mass%. ► All of ceramic composites were achieved excellent thermal shock resistance. -- Abstract: Alumina–mullite–zirconia ceramic composites were prepared by reaction bonding of alumina and zircon mixtures after firing at different temperatures 1300°, 1400° and 1500 °C. Constant amount of magnesia was added as a sintering aid. The technological parameters of the sintered ceramic composites, i.e. the mechanical properties and densification parameter as well as thermal shock resistance, have been investigated. The phase compositions and microstructure of the sintered ceramic composites were detected by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicated that alumina–mullite–zirconia ceramic composites fired at 1500 °C for 2 h were achieved a good densification parameters and mechanical properties as well as excellent thermal shock resistance. In addition, these ceramic composites were showed enhancement in Vickers’ microhardness and fracture toughness values.

  5. Mechanical behaviour of new zirconia-hydroxyapatite ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J.A.; Morejon, L. [La Habana Univ. (Cuba). Centro de Biomateriales; Martinez, S. [Barcelona Univ. (Spain). Dept. Cristallografia, Mineralogia; Ginebra, M.P.; Carlsson, N.; Fernandez, E.; Planell, J.A. [Universidad Politecnica de Cataluna, Barcelona (Spain). CREB; Clavaguera-Mora, M.T.; Rodriguez-Viejo, J. [Universitat Autonoma de Barcelona (Spain). Dept. de Fisica

    2001-07-01

    In this work a new zirconia-hydroxyapatite ceramic material was obtained by uniaxial pressing and sintering in humid environment. The powder X-ray diffraction (XRD) patterns and infrared spectra (FT-IR) showed that the hydroxyapatite (HA) is the only calcium phosphate phase present. The fracture toughness for HA with 20 wt.% of magnesia partially stabilised zirconia (Mg-PSZ) was around 2.5 times higher than those obtained for HA pure, also the highest value of bending strength (160 MPa) was obtained for material reinforced with Mg-PSZ. For the MgPSZ-HA (20%) the fracture mechanism seems to be less transgranular. (orig.)

  6. Microstructure-electrical properties relation of zirconia based ceramic composites

    International Nuclear Information System (INIS)

    Fonseca, Fabio Coral

    2001-01-01

    The electrical properties of zirconia based ceramic composites were studied by impedance spectroscopy. Three materials were prepared with different relative compositions of the conducting and insulating phases: (ZrO 2 :8 mol% Y 2 ) 3 ) + MgO, (ZrO 2 :8 mol% Y 2 O 3 ) + Y 2 O 3 and ZrO 2 + 8 mol% Y 2 O 3 . All specimens were analyzed by X-ray diffraction and scanning electron microscopy for microstructural characterization and for correlation of microstructural aspects with electrical properties. For (ZrO 2 :8 mol% Y 2 O 3 ) + MgO the main results show that the dependence of the different (microstructural constituents) contributions to the electrical resistivity on the magnesia content follows two stages: one below and another above the solubility limit of magnesia in Yttria-stabilized zirconia. The same dependence is found for the lattice parameter determined by X-ray diffraction measurements. The impedance diagrams of the composites have been resolved allowing the identification of contributions due to the presence of each microstructural constituent in both stages. Magnesia as a second phase is found to inhibit grain growth in Yttria-stabilized zirconia and the solubility limit for magnesia in the zirconia matrix is around 10 mol%. For (ZrO 2 :8 mol% Y 2 O 3 ) + Y 2 O 3 the main results show that: Yttria is present as a second phase for 1350 deg C /0.1 h sintering; the addition of 2 mol% of Yttria does not modify significantly the electrical properties; the solubility limit for Yttria is around 2 mol% according to electrical measurements. Similarly to magnesia, Yttria inhibits grain growth on Yttria-stabilized zirconia. The general effective medium theory was used to analyze the percolation of the insulating phase; the percolation threshold is different if one considers separately the total, bulk and grain boundary contributions to the electrical conductivity: 32.0, 38.5 and 27.8 vol% for total, intra and intergranular contributions, respectively. The increase of

  7. Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites

    International Nuclear Information System (INIS)

    Lyubushkin, R.A.; Ivanov, O.N.; Chuev, V.P.; Buzov, A.A.

    2011-01-01

    At present, zirconia-based ceramics are gaining popularity in dentistry, particularly in fixed prosthodontics. clinically, it is important that ceramic restorations reproduce the translucency and color of natural teeth. Zirconia based ceramics is a high performance material with excellent biocompatibility and mechanical properties, which suggest its suitability for posterior fixed partial dentures. Y 2 O 3 -stabilized tetragonal zirconia polycrystalline (YTZ/Al 2 O 3 ) and CeO 2 -stabilized tetragonal zirconia polycrystalline (CZA) ceramics with high-performance were prepared for dental application by use the wet chemical route, consolidated by cold isostatic pressing, and two-step sintering method. Physical and mechanical properties test results show that the bending strength, fracture toughness, and the density of full sintered ceramics suggest that the material is relatively suitable for dental restoration.

  8. Low Friction in CuO-Doped Yttria-Stabilized Tetragonal Zirconia Ceramics: A Complementary Macro- and Nanotribology Study

    NARCIS (Netherlands)

    Tocha, E.; Pasaribu, H.R.; Schipper, Dirk J.; Schönherr, Holger; Vancso, Gyula J.

    2008-01-01

    The tribological behavior of CuO-doped yttria-stabilized tetragonal zirconia (3Y-TZP) ceramics in the absence of additional lubricants was characterized by macroscale pin-on-disk measurements and nanoscale atomic force microscopy (AFM) for a broad range of velocities. The previously observed low

  9. CHARACTERIZATION OF YTTRIA AND MAGNESIA PARTIALLY STABILIZED ZIRCONIA BIOCOMPATIBLE COATINGS DEPOSITED BY PLASMA SPRAYING

    Directory of Open Access Journals (Sweden)

    Roşu R. A.

    2013-09-01

    Full Text Available Zirconia (ZrO2 is a biocompatible ceramic material which is successfully used in medicine to cover the metallic implants by various methods. In order to avoid the inconvenients related to structural changes which may appear because of the temperature treatment while depositing the zirconia layer over the metallic implant, certain oxides are added, the most used being Y2O3, MgO and CaO. This paper presents the experimental results regarding the deposition of yttria (Y2O3 and magnesia (MgO partially stabilized zirconia layers onto titanium alloy substrate by plasma spraying method. X ray diffraction investigations carried out both on the initial powders and the coatings evidenced the fact that during the thermal spraying process the structure has not been significantly modified, consisting primarily of zirconium oxide with tetragonal structure. Electronic microscopy analyses show that the coatings are dense, uniform and cracks-free. Adherence tests performed on samples whose thickness ranges between 160 and 220 μm showed that the highest value (23.5 MPa was obtained for the coating of ZrO2 - 8 wt. % Y2O3 with 160 μm thickness. The roughness values present an increasing tendency with increasing the coatings thickness.

  10. High temperature measurements of the microwave dielectric properties of ceramics

    International Nuclear Information System (INIS)

    Baeraky, T.A.

    1999-06-01

    Equipment has been developed for the measurement of dielectric properties at high temperature from 25 to 1700 deg. C in the microwave frequency range 614.97 to 3620.66 MHz using the cavity perturbation technique, to measure the permittivity of a range of ceramic materials. The complex permittivities of the standard materials, water and methanol, were measured at low temperature and compared with the other published data. A statistical analysis was made for the permittivity measurements of water and methanol using sample holders of different diameter. Also the measurements of these materials were used to compare the simple perturbation equation with its modifications and alternation correction methods for sample shape and the holes at the two endplates of the cavity. The dielectric properties of solid materials were investigated from the permittivity measurements on powder materials, shown in table 4.7, using the dielectric mixture equations. Two kinds of ceramics, oxide and nitrides, were selected for the high temperature dielectric measurements in microwave frequency ranges. Pure zirconia, yttria-stabilised zirconia, and Magnesia-stabilised zirconia are the oxide ceramics while aluminium nitride and silicon nitride are the nitride ceramics. A phase transformation from monoclinic to tetragonal was observed in pure zirconia in terms of the complex permittivity measurements, and the conduction mechanism in three regions of temperature was suggested to be ionic in the first region and a mixture of ionic and electronic in the second. The phase transition disappeared with yttria-stabilised zirconia but it was observed with magnesia-stabilised zirconia. Yttria doped zirconia was fully stabilised while magnesia stabilised was partially stabilised zirconia. The dielectric property measurements of aluminium nitride indicated that there is a transition from AIN to AlON, which suggested that the external layer of the AIN which was exposed to the air, contains alumina. It was

  11. Three-Point Bending Tests of Zirconia Core/Veneer Ceramics for Dental Restorations

    Directory of Open Access Journals (Sweden)

    Massimo Marrelli

    2013-01-01

    Full Text Available Introduction. The mechanical strength and the surface hardness of commercially available yttrium-doped zirconia were investigated. Furthermore, a comparative study of eight different ceramic veneers, to be used for the production of two-layered all-ceramic restorative systems, was carried out. Materials and Methods. Four types of zirconia specimens were analyzed, according to a standard ISO procedure (ISO 6872. Besides, two-layered zirconia-veneer specimens were prepared for three-point bending tests. Results. A strong effect of the surface roughness on the mechanical strength of zirconia specimens was observed. Finally, a comparative study of eight commercially available veneering ceramics shows different modes of failure between the selected veneers. Conclusion. The results indicate that close attention should be paid to the preparation of zirconia-based crowns and bridges by CAD/CAM process, because surface roughness has an important effect on the mechanical strength of the material. Finally, the results of the mechanical tests on two-layered specimens represent an important support to the choice of the veneering ceramic.

  12. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    International Nuclear Information System (INIS)

    Wang, Shanshan; Zhang, Chao; Guo, Ruisong; Liu, Lan; Yang, Yuexia; Li, Kehang

    2015-01-01

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m 1/2 . - Abstract: The effects of substitution of Ba 2+ by Sr 2+ on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba 1−x Sr x Fe 12 O 19 , x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m 1/2 for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase

  13. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    Science.gov (United States)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  14. Thermal barrier coating by electron beam-physical vapor deposition of zirconia co-doped with yttria and niobia

    Directory of Open Access Journals (Sweden)

    Daniel Soares de Almeida

    2010-08-01

    Full Text Available The most usual ceramic material for coating turbine blades is yttria doped zirconia. Addition of niobia, as a co-dopant in the Y2O3-ZrO2 system, can reduce the thermal conductivity and improve mechanical properties of the coating. The purpose of this work was to evaluate the influence of the addition of niobia on the microstructure and thermal properties of the ceramic coatings. SEM on coatings fractured cross-section shows a columnar structure and the results of XRD show only zirconia tetragonal phase in the ceramic coating for the chemical composition range studied. As the difference NbO2,5-YO1,5 mol percent increases, the tetragonality increases. A significant reduction of the thermal conductivity, measured by laser flash technique in the zirconia coating co-doped with yttria and niobia when compared with zirconia-yttria coating was observed.

  15. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    Science.gov (United States)

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  16. Thermogravimetry for optimization of chloride pyro hydrolytic separations in zirconia-magnesia matrix

    International Nuclear Information System (INIS)

    Pires, M.A.F.; Dantas, E.S.K.

    1992-08-01

    A fast and accurate method for chloride ion determination in zirconia-magnesia matrix was studied the method consists in the pyro hydrolysis of the oxides at 900 o C, using a quartz apparatus, during thirty minutes and further determination of the chloride ion collected by means of either ion-selective electrode or ion chromatography. The thermogravimetric curves (TG curves) of the metal oxides and oxychlorides provide all the information about the chloride ion evolution temperature and the influence of pyro hydrolytic accelerators (U 3 O 8 ) on ion evolution. (author)

  17. Zirconium oxide based ceramic solid electrolytes for oxygen detection

    International Nuclear Information System (INIS)

    Caproni, Erica

    2007-01-01

    Taking advantage of the high thermal shock resistance of zirconia-magnesia ceramics and the high oxide ion conductivity of zirconia-yttria ceramics, composites of these ceramics were prepared by mixing, pressing and sintering different relative concentrations of ZrO 2 : 8.6 mol% MgO and ZrO 2 : 3 mol% Y 2 O 3 solid electrolytes. Microstructural analysis of the composites was carried out by X-ray diffraction and scanning electron microscopy analyses. The thermal behavior was studied by dilatometric analysis. The electrical behavior was evaluated by the impedance spectroscopy technique. An experimental setup was designed for measurement the electrical signal generated as a function of the amount of oxygen at high temperatures. The main results show that these composites are partially stabilized (monoclinic, cubic and tetragonal) and the thermal behavior is similar to that of ZrO 2 : 8.6 mol% MgO materials used in disposable high temperature oxygen sensors. Moreover, the results of analysis of impedance spectroscopy show that the electrical conductivity of zirconia:magnesia is improved with zirconia-yttria addition and that the electrical signal depends on the amount of oxygen at 1000 deg C, showing that the ceramic composites can be used in oxygen sensors. (author)

  18. Tribological properties of toughened zirconia-based ceramics

    International Nuclear Information System (INIS)

    Stachowiak, G.W.; Stachowiak, G.B.

    1991-01-01

    The physical and mechanical properties of toughened zirconia ceramics are briefly characterized and described with a special emphasis on their tribological behaviour. The wear and friction properties of PSZ and TZP ceramics at room and elevated temperatures are described. The influence of the environment on the tribological characteristics of zirconia ceramics is discussed. Both lubricated and unlubricated conditions for ceramic/ceramic and metal/ceramic sliding contacts are analysed. One of the main, and as yet unresolved problems, lubrication of ceramic at elevated temperatures and/or space environment, is addressed and the possible solutions to the problem are suggested. The critical needs in the research and development area of improving the tribological properties of zirconia ceramics are defined and its future market potentials stated. 30 refs., 2 tabs., 4 figs

  19. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics

    International Nuclear Information System (INIS)

    Aguiar, Amanda Abati

    2007-01-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation of

  20. Study of the cubic - to - monoclinic transformation in magnesia partially stabilized zirconia

    International Nuclear Information System (INIS)

    Muccillo, R.

    1988-01-01

    The transformation of the cubic phase to the stable monoclinic phase in ZrO 2 : 3%MgO quenched from 1450 0 C to RT has been studied by X-ray diffractometry in order to explain the thermal hysteresis in the electrical conductivity. The monoclinic-to-cubic ratio has been measured for samples annealed in the 500 0 C-1000 0 C temperature range. The results show that the decrease in the cubic phase content is the main responsible for the thermal hysteresis in the electrical conductivity of the magnesia partially stabilized zirconia solid electrolytes. (author) [pt

  1. Combined mode I-mode II fracture of 12-mol%-ceria-doped tetragonal zirconia polycrystalline ceramic

    International Nuclear Information System (INIS)

    Tikare, V.; Choi, S.R.

    1997-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ceria-doped tetragonal zirconia polycrystalline (Ce-TZP) ceramic was studied. The single-edge-precracked-beam (SEPB) samples were fractured using the asymmetric four-point-bend geometry. The ratio of mode I to mode II loading was varied by varying the degree of asymmetry in the four-point-bend geometry. The minimum strain energy density theory best described the mixed-mode fracture behavior of Ce-TZP with the mode I fracture toughness, K IC = 8.2 ± 0.6 MPa·m 1/2 , and the mode II fracture toughness, K IIC = 8.6 ± 1.3 MPa·m 1/2

  2. Effects of CO2 laser irradiation on the wettability and human skin fibroblast cell response of magnesia partially stabilised zirconia

    International Nuclear Information System (INIS)

    Hao, L.; Lawrence, J.

    2003-01-01

    Human skin fibroblast cells in vitro responses on the surface of a bioinert zirconia ceramic partially stabilised with magnesia partially stabilised zirconia (MgO-PSZ) bioinert ceramic before and after CO 2 laser treatment were investigated to find the interrelationship between the cell adhesion, wettability and laser parameters. Contact angle, θ, measurements of a set of test liquids were a clear indication that surface treatment of the MgO-PSZ with a CO 2 laser brought about a reduction in θ, indicating that the wettability of the MgO-PSZ had been enhanced. A relationship was found between the wettability and the microstructure of the MgO-PSZ surface and laser processing parameters. It was subsequently deduced that the factors active in causing the observed modification in the wettability of the MgO-PSZ were the increases in the surface O 2 content and the polar component of the surface energy, γ sv p , the latter resulting from surface melting and resolidification. Moreover, the investigation into the human skin fibroblast cell response revealed that the CO 2 laser treatment of the MgO-PSZ had resulted in a surface favourable for cell adhesion, as the extent of cell attachment and adhesion on the MgO-PSZ surface was enhanced depending on laser parameters. Such an improvement in cell adhesion, which could be greatly beneficial to developing enhanced bonding at the tissue and implant interface, was influenced by the surface properties of the modified MgO-PSZ, particular wettability

  3. Anelasticity and strength in zirconia ceramics

    International Nuclear Information System (INIS)

    Matsuzawa, M.; Horibe, S.; Sakai, J.

    2005-01-01

    Non-elastic strain behavior was investigated for several different zirconia ceramics and a possible mechanism for anelasticity was discussed. Anelastic strain was detected in zirconia ceramics irrespective of the crystallographic phase and its productivity depended on the particular kind of dopant additive. It was found that the anelastic properties could be significantly influenced by the level of oxygen vacancy in the matrix, and that the anelastic strain might be produced by a light shift of ionic species. In order to investigate the effect of anelasticity on mechanical properties on zirconia ceramics, the tensile strength was investigated for a wide range of strain rates. The obviously unique strain rate dependence was observed only in the materials having anelastic properties. It was assumed that anelasticity could be efficient at improving the tensile strength. (orig.)

  4. A wear-resistant zirconia ceramic for low friction application

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.; Ran, S.; Wiratha, K.W.; Blank, D.H.A.; Pasaribu, H.R.; Sloetjes, J.W.; Schipper, D.J.

    2004-01-01

    A high wear-resistant ceramic/ceramic couple is described associated with low friction. By adding a small amount CuO to yttria-doped tetragonal zirconia (Y-TZP) the (dry) coefficient of friction against alumina is only 0.2 during a sliding distance of 3-5 km after which the coefficient drastically increases and a transition from mild to sever wear occurs. Pure Y-TZP exhibits a coefficient of friction of 0.7 under the same experimental conditions but wear remains mild during the test (upto 10 km of sliding distance). These small amounts of CuO also strongly influence the densification behaviour. Sintering of this system occurs in several steps where among other things dissolution of CuO in the Y-TZP matrix as well as liquid phase sintering takes place. Non-uniform shrinkage of the CuO-doped system resulting in relative large microcracks in the ceramic can explain its sudden drastic increase in coefficient of friction and wear rate after 3-5 km of operation. (orig.)

  5. Effects of CO{sub 2} laser irradiation on the wettability and human skin fibroblast cell response of magnesia partially stabilised zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Hao, L.; Lawrence, J

    2003-10-15

    Human skin fibroblast cells in vitro responses on the surface of a bioinert zirconia ceramic partially stabilised with magnesia partially stabilised zirconia (MgO-PSZ) bioinert ceramic before and after CO{sub 2} laser treatment were investigated to find the interrelationship between the cell adhesion, wettability and laser parameters. Contact angle, {theta}, measurements of a set of test liquids were a clear indication that surface treatment of the MgO-PSZ with a CO{sub 2} laser brought about a reduction in {theta}, indicating that the wettability of the MgO-PSZ had been enhanced. A relationship was found between the wettability and the microstructure of the MgO-PSZ surface and laser processing parameters. It was subsequently deduced that the factors active in causing the observed modification in the wettability of the MgO-PSZ were the increases in the surface O{sub 2} content and the polar component of the surface energy, {gamma}{sub sv}{sup p}, the latter resulting from surface melting and resolidification. Moreover, the investigation into the human skin fibroblast cell response revealed that the CO{sub 2} laser treatment of the MgO-PSZ had resulted in a surface favourable for cell adhesion, as the extent of cell attachment and adhesion on the MgO-PSZ surface was enhanced depending on laser parameters. Such an improvement in cell adhesion, which could be greatly beneficial to developing enhanced bonding at the tissue and implant interface, was influenced by the surface properties of the modified MgO-PSZ, particular wettability.

  6. Optical properties of pre-colored dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (Pceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Zirconia toughened ceramics for heat engine applications

    International Nuclear Information System (INIS)

    Rossi, G.A.; Blum, J.B.; Manwiller, K.E.; Knapp, C.E.

    1986-01-01

    Three classes of zirconia toughened ceramics (ZTC) were studied, i.e. Mg-PSZ (MgO-partially stabilized zirconia), Y-TZP (Y/sub 2/O/sub 3/-tetragonal zirconia polycrystals) and ZTA (zirconia toughened alumina). The main objective was to improve the high temperature strength and toughness, which are not satisfactory in the ''state of the art'' ZTC materials. Powders prepared by melting/rapid solidification and by chemical routes were used. The green parts were made by both dry and wet shape forming methods. Fine grained Mg-PSZ ceramics with unique microstructures were produced using the rapidly solidified powders. The Y-TZP materials were improved mainly through microstructure control and by addition of alpha alumina as a dispersed phase. Preliminary results on ZTA ceramics made with the rapidly solidified powders were also obtained. It is concluded that the Al/sub 2/O/sub 3//Y-TZP composites offer a good chance of meeting the program objectives

  8. Modern trends in engineering ceramics: review of transformation toughening in zirconia based ceramics

    International Nuclear Information System (INIS)

    Khan, A.A.

    1998-01-01

    The investigation of zirconia has continued to attract the interest of ever increasing number of scientists and solid evidence of commercial applications for the engineering ceramic is now available. To use zirconia to its full potential, the properties of the oxide have been modified extensively by the addition of cubic stabilizing oxides. These can be added in amounts sufficient to form a partially stabilized zirconia (PSZ) or to form a fully stabilized zirconia, which has a cubic structure at room temperature. The addition of varying amounts of cubic oxides, particularly MgO, CaO, Y sub 2 O sub 3, has allowed the development of novel and innovative ceramic materials. In this article an overview of the recent advances in zirconia based engineering materials is presented. It is shown that intelligent control of the composition and microstructure can lead the the production of extremely though ceramic materials, a property which is generally thought to be the major weak point of ceramics vis a vis other class of materials. (author)

  9. Analysis of the zirconia structure by 'ab initio' and Rietveld methods

    International Nuclear Information System (INIS)

    Bechepeche, A.P.; Nasar, R.S.; Longo, E.; Treu Junior, O.; Varela, J.A.

    1995-01-01

    The zirconia was doped with 0,113 mol of Mg O e 0,005 mol of Ti O 2 , and it was calcined in 1550 d eg C and it was analyzed by XRD. The results shows that pure zirconia contains 96,19% of monoclinic phase and 3,18% of cubic. However, the doping magnesia stabilizes the zirconia in 17,24 of monoclinic; 29,63 of tetragonal and 53,13% of cubic phase. The addition of titanium in zirconia gives 25,85% of tetragonal phase and 37,66% of cubic, and this shows the no stabilizing action of this transition metal. By the other side, the results with ab-initio calculating shows the same tendency resulting in the next values of total energy: pure zirconia - monoclinic -11.316,86ua; tetragonal -8742,09 ua and cubic -8742,80 ua and Zr O 2 Ti O 2 system - monoclinic -9463,02 ua, tetragonal -9459,39 ua and cubic -9459,97 ua (author)

  10. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    Science.gov (United States)

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  11. Formulation of nano-ceramic filters used in separation of heavy metals . Part II: Zirconia ceramic filters

    International Nuclear Information System (INIS)

    Khalil, T.; Labib, Sh.; Abou EI-Nour, F.H.; Abdel-Kbalik, M.

    2007-01-01

    Zirconia ceramic filters are prepared using polymeric sol-gel process. An optimization of synthesis parameters was studied to give cracked free coated nano porous film with high performance quality. Zirconia ceramic filters are characterized to select tbe optimized conditions that give tbe suitable zirconia filter used in heavy metal separation. The ceramic filters were characterized using BET method for surface measurements, mercury porosimeter for pore size distribution analysis and coating thickness measurements, SEM for microstructural studies and atomic absorption spectrophotometer (AAS) for metal analysis. The results indicated that zirconia ceramic filters. show high separation performance for cadmium, cupper, iron, manganese and lead

  12. Hot corrosion behavior of magnesia-stabilized ceramic material in a lithium molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Soo-Haeng, E-mail: nshcho1@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Sung-Wook [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Dae-Young [Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Jong-Hyeon, E-mail: jonglee@cnu.ac.kr [Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Graduate School of Advanced Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Rapidly Solidified Materials Research Center, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

    2017-07-15

    The isothermal and cyclic corrosion behaviors of magnesia-stabilized zirconia in a LiCl-Li{sub 2}O molten salt were investigated at 650 °C in an argon atmosphere. The weights of as-received and corroded specimens were measured and the microstructures, morphologies, and chemical compositions were analyzed by scanning electron microscopy, X-ray energy dispersive spectroscopy, and X-ray diffraction. For processes where Li is formed at the cathode during electrolysis, the corrosion rate was about five times higher than those of isothermal and thermal cycling processes. During isothermal tests, the corrosion product Li{sub 2}ZrO{sub 3} was formed after 216 h. During thermal cycling, Li{sub 2}ZrO{sub 3} was not detected until after the completion of 14 cycles. There was no evidence of cracks, pores, or spallation on the corroded surfaces, except when Li was formed. We demonstrate that magnesia-stabilized zirconia is beneficial for increasing the hot corrosion resistance of structural materials subjected to high temperature molten salts containing Li{sub 2}O. - Highlights: •Corrosion mechanism of MSZin LiCl-Li{sub 2}O molten salt is proposed. •Formation of Li{sub 2}ZrO{sub 3}is main corrosion mechanism. •There were no cracks, pores and spallation after corrosion test. •MSZ shows high corrosion resistance to LiCl-Li{sub 2}O molten salt.

  13. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics; Avaliacao de tratamentos quimicos e recobrimento biomimetico em ceramicas de alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Amanda Abati

    2007-07-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation

  14. Analysis of the zirconia structure by `ab initio` and Rietveld methods; Analise da estrutura da zirconia por metodos `Ab initio` e de Rietveld

    Energy Technology Data Exchange (ETDEWEB)

    Bechepeche, A.P.; Nasar, R.S.; Longo, E. [Sao Carlos Univ., SP (Brazil). Dept. de Quimica; Treu Junior, O.; Varela, J.A. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    1995-12-31

    The zirconia was doped with 0,113 mol of Mg O e 0,005 mol of Ti O{sub 2}, and it was calcined in 1550{sup d}eg C and it was analyzed by XRD. The results shows that pure zirconia contains 96,19% of monoclinic phase and 3,18% of cubic. However, the doping magnesia stabilizes the zirconia in 17,24 of monoclinic; 29,63 of tetragonal and 53,13% of cubic phase. The addition of titanium in zirconia gives 25,85% of tetragonal phase and 37,66% of cubic, and this shows the no stabilizing action of this transition metal. By the other side, the results with ab-initio calculating shows the same tendency resulting in the next values of total energy: pure zirconia - monoclinic -11.316,86ua; tetragonal -8742,09 ua and cubic -8742,80 ua and Zr O{sub 2} Ti O{sub 2} system - monoclinic -9463,02 ua, tetragonal -9459,39 ua and cubic -9459,97 ua (author) 3 figs., 2 tabs.

  15. Natural radioactivity in zirconia-based dental ceramics

    International Nuclear Information System (INIS)

    Giussani, Augusto; Gerstmann, Udo; La Porta, Caterina; Cantone, Marie C.; Veronese, Ivan

    2008-01-01

    Zirconia-based ceramics are being increasingly used in dental prosthetics in substitution of metal cores, which are known to induce local toxic reactions and delayed allergic responses in the oral tissues. Some concerns have been however raised about the use of zirconia, since it is known that unpurified zirconia materials may contain non negligible levels of natural radionuclides of the U/Th series. Combined measurements of alpha and gamma spectrometry as well as beta dosimetry were conducted on zirconia samples used for dental applications. Samples were available in form of powder and/or solid blocks. The results showed that the beta dose rate in zirconia ceramics was on average only slightly higher than the levels measured in natural teeth, and generally lower than the values measured in feldspatic and glass ceramics. These materials are indeed known to deliver a beta dose significantly higher than that measured from natural teeth, due to the relatively high levels of 40 K (between 2 and 3 kBq·kg -1 ). The content of radionuclides of the U/Th series in the zirconia sample was estimated to be lower than 15 Bq·kg -1 , i.e. doubtlessly below the exclusion level of 1 kBq·kg -1 recommended by IAEA in the Safety Standard Series. Beta dosimetry measurements, however, gave indications of possible inhomogeneous clusters of radioactivity, which might give rise to local doses above the background. (author)

  16. Zirconia toughened mica glass ceramics for dental restorations.

    Science.gov (United States)

    Gali, Sivaranjani; K, Ravikumar; Murthy, B V S; Basu, Bikramjit

    2018-03-01

    The objective of the present study is to understand the role of yttria stabilized zirconia (YSZ) in achieving the desired spectrum of clinically relevant mechanical properties (hardness, elastic modulus, fracture toughness and brittleness index) and chemical solubility of mica glass ceramics. The glass-zirconia mixtures with varying amounts of YSZ (0, 5, 10, 15 and 20wt.%) were ball milled, compacted and sintered to obtain pellets of glass ceramic-YSZ composites. Phase analysis was carried out using X-ray diffraction and microstructural characterization with SEM revealed the crystal morphology of the composites. Mechanical properties such as Vickers hardness, elastic modulus, indentation fracture toughness and chemical solubility were assessed. Phase analysis of sintered pellets of glass ceramic-YSZ composites revealed the characteristic peaks of fluorophlogopite (FPP) and tetragonal zirconia. Microstructural investigation showed plate and lath-like interlocking mica crystals with embedded zirconia. Vickers hardness of 9.2GPa, elastic modulus of 125GPa, indentation toughness of 3.6MPa·m 1/2 , and chemical solubility of 30μg/cm 2 (well below the permissible limit) were recorded with mica glass ceramics containing 20wt.% YSZ. An increase in hardness and toughness of the glass ceramic-YSZ composites with no compromise on their brittleness index and chemical solubility has been observed. Such spectrum of properties can be utilised for developing a machinable ceramic for low stress bearing inlays, onlays and veneers. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Niobia and tantala codoped orthorhombic zirconia ceramics

    International Nuclear Information System (INIS)

    Hoeftberger, M.; Gritzner, G.

    1995-01-01

    During recent studies it was found that codoping of zirconia with niobia and tantala yielded very corrosion resistant, orthorhombic zirconia ceramics. The powders for those novel ceramics were made via the sol-gel technique by hydrolysis of the respective metal propoxides; a method which required dry-box techniques during the preparation of the alkoxides. In these studies the authors investigated the fabrication of precursor material from aqueous solutions. The preparation of aqueous solutions of salts of zirconium, niobium and tantalum is hampered by rapid hydrolysis. Premature hydrolysis of the chlorides and oxichlorides of niobium, tantalum and zirconium can be, however, prevented in aqueous solutions of oxalic acid. Thus the authors investigated the coprecipitation of hydroxides as precursors by reacting oxalic acid solutions of the respective cations with aqueous ammonia. In addition they studied the effects of calcination and of hydrothermal conversion of the hydroxides to oxides on the powder characteristics and on the mechanical properties of the niobia and tantala codoped zirconia ceramics

  18. CAD/CAM Zirconia vs. slip-cast glass-infiltrated Alumina/Zirconia all-ceramic crowns: 2-year results of a randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Murat Cavit Çehreli

    2009-02-01

    Full Text Available The aim of this randomized controlled clinical trial was to compare the early clinical outcome of slip-cast glass-infiltrated Alumina/Zirconia and CAD/CAM Zirconia all-ceramic crowns. A total of 30 InCeram® Zirconia and Cercon® Zirconia crowns were fabricated and cemented with a glass ionomer cement in 20 patients. At baseline, 6-month, 1-year, and 2-year recall appointments, Californian Dental Association (CDA quality evaluation system was used to evaluate the prosthetic replacements, and plaque and gingival index scores were used to explore the periodontal outcome of the treatments. No clinical sign of marginal discoloration, persistent pain and secondary caries was detected in any of the restorations. All InCeram® Zirconia crowns survived during the 2-year period, although one nonvital tooth experienced root fracture coupled with the fracture of the veneering porcelain of the restoration. One Cercon® Zirconia restoration fractured and was replaced. According to the CDA criteria, marginal integrity was rated excellent for InCeram® Zirconia (73% and Cercon® Zirconia (80% restorations, respectively. Slight color mismatch rate was higher for InCeram® Zirconia restorations (66% than Cercon® Zirconia (26% restorations. Plaque and gingival index scores were mostly zero and almost constant over time. Time-dependent changes in plaque and gingival index scores within and between groups were statistically similar (p>0.05. This clinical study demonstrates that single-tooth InCeram® Zirconia and Cercon® Zirconia crowns have comparable early clinical outcome, both seem as acceptable treatment modalities, and most importantly, all-ceramic alumina crowns strengthened by 25% zirconia can sufficiently withstand functional load in the posterior zone.

  19. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.

    Science.gov (United States)

    Elsaka, Shaymaa E; Elnaghy, Amr M

    2016-07-01

    The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (Pglass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (Pglass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    Science.gov (United States)

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  1. Effects of multiple firings on the microstructure of zirconia and veneering ceramics.

    Science.gov (United States)

    Alkurt, Murat; Yeşil Duymus, Zeynep; Gundogdu, Mustafa

    2016-01-01

    The aim of study was to evaluate the effects of multiple firings on the microstructures of zirconia and two ceramics. Vita VM9 (VMZ) and Cerabien ZR (C-Z) ceramics on a zirconia framework and zirconia without veneering ceramic (WO-Z) were evaluated. Firing methods included firing two, five, and ten times (n=10). The effects of multiple firings on the surface hardness of the materials were evaluated using a Vickers hardness (HV) tester. Data were analyzed by two-way ANOVA and Tukey's test (α=0.05). After firing five and ten times, the hardness of VM-Z and C-Z increased significantly (p0.05). In the XRD analysis, zirconia had similar tetragonal (t)-monoclinic (m) phase transformations of Y-TZP after the different firing times. Clinically, multiple firings did not affect the microstructure of zirconia, but the structures of the two ceramics were affected.

  2. Glass ceramic toughened with tetragonal zirconia

    Science.gov (United States)

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  3. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    Science.gov (United States)

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  4. Ceramic Composites of 3Y-TZP Doped with CuO: Processing, Microstructure and Tribology

    NARCIS (Netherlands)

    Ran, S.

    2006-01-01

    The work described in this thesis is about processing, microstructure and tribology of CuO doped 3Y-TZP (3 mol% yttria stabilised tetragonal zirconia polycrystals) composite ceramics. This group of materials has shown attractive properties such as superplastic behaviour at elevated temperature and a

  5. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    Science.gov (United States)

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  6. The effect of some factors on Ms and SME in Ce-TZP ceramics

    International Nuclear Information System (INIS)

    Jiang, B.; Tu, J.; Hsu, T.Y.; Qi, X.; Zheng, X.; Zhong, J.

    1992-01-01

    As known to all, shape memory behaviour has been observed in a variety of metallic alloys. This phenomenon, however, is not only observed in that field but also in other materials recently, such as in polymers, intermetallic compounds and ceramics, especially in zirconia ceramics. Swain observed the shape recovery of a bent magnesia-partially-stabilized zirconia (Mg-PSZ) bar upon heating above a certain temperature. The maximum deflection which was nearly completely recovered on heating is about 300 μm. Chen et al., investigated the pseudoelasticity and shape memory effect (SME) in ceria-stabilized tetragonal zirconia polycrystals (Ce-TZP) containing 12 mol% CeO 2 . Wang et al., also observed the SME in Ce-TZP containing 10 mol% CeO 2 . In this paper, the authors would like to introduce some of results conducted recently in our group on SME in Ce-TZP ceramics

  7. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1989-05-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scients, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electroeletronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  8. Influence of full-contour zirconia surface roughness on wear of glass-ceramics.

    Science.gov (United States)

    Luangruangrong, Palika; Cook, N Blaine; Sabrah, Alaa H; Hara, Anderson T; Bottino, Marco C

    2014-04-01

    The purpose of this study was to evaluate the influence of full-contour (Y-TZP) zirconia surface roughness (glazed vs. as-machined) on the wear behavior of glass-ceramics. Thirty-two full contour Y-TZP (Diazir®) specimens (hereafter referred to as zirconia sliders) (ϕ = 2 mm, 1.5 mm in height) were fabricated using CAD/CAM and sintered according to the manufacturer's instructions. Zirconia sliders were embedded in brass holders using acrylic resin and then randomly assigned (n = 16) according to the surface treatment received, that is, as-machined or glazed. Glass-ceramic antagonists, Empress/EMP and e.max/EX, were cut into tabs (13 × 13 × 2 mm(3) ), wet-finished, and similarly embedded in brass holders. Two-body pin-on-disk wear testing was performed at 1.2 Hz for 25,000 cycles under a 3 kg load. Noncontact profilometry was used to measure antagonist height (μm) and volume loss (mm(3) ). Qualitative data of the zirconia testing surfaces and wear tracks were obtained using SEM. Statistics were performed using ANOVA with a significance level of 0.05. As-machined yielded significantly higher mean roughness values (Ra = 0.83 μm, Rq = 1.09 μm) than glazed zirconia (Ra = 0.53 μm, Rq = 0.78 μm). Regarding glass-ceramic antagonist loss, as-machined zirconia caused significantly less mean height and volume loss (68.4 μm, 7.6 mm(3) ) for EMP than the glazed group (84.9 μm, 9.9 mm(3) ), while no significant differences were found for EX. Moreover, EMP showed significantly lower mean height and volume loss than EX (p glass-ceramics tested. e.max wear was not affected by zirconia surface roughness; however, Empress wear was greater when opposing glazed zirconia. Overall, surface glazing on full-contour zirconia did not minimize glass-ceramic wear when compared with as-machined zirconia. © 2013 by the American College of Prosthodontists.

  9. Ceramics in engines - Long term stability of transformation toughened zirconia

    International Nuclear Information System (INIS)

    Marmach, M.; Swain, M.V.

    1985-01-01

    The long term thermal stability of two types of magnesia partially stabilized zirconia at temperatures below 1000 0 C has been determined. The effect on mechanical properties and phase stability of isothermal heating at 800 0 C and 900 0 C for up to 2000 hours, and with thermal cycling for a similar period between R.T. and 800 0 C in air, was measured. it was found that peak-aged (MS) type Mg-PSZ was much more stable than the thermal shock resistant (TS) type in both tests and showed minimal degradation

  10. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  11. Survival of anterior cantilevered all-ceramic resin-bonded fixed dental prostheses made from zirconia ceramic.

    Science.gov (United States)

    Sasse, Martin; Kern, Matthias

    2014-06-01

    This study evaluated the clinical outcome of all-ceramic resin-bonded fixed dental prostheses (RBFDPs) with a cantilevered single-retainer design made from zirconia ceramic. Forty-two anterior RBFDPs with a cantilevered single-retainer design were made from yttrium oxide-stabilized zirconium oxide ceramic. RBFDPs were inserted using Panavia 21 TC as luting agent after air-abrasion of the ceramic bonding surface. During a mean observation time of 61.8 months two debondings occurred. Both RBFDPs were rebonded using Panavia 21 TC and are still in function. A caries lesion was detected at one abutment tooth during recall and was treated with a composite filling. Therefore, the overall six-year failure-free rate according to Kaplan-Meier was 91.1%. If only debonding was defined as failure the survival rate increased to 95.2%. Since all RBFDPs are still in function the overall survival rate was 100% after six years. Cantilevered zirconia ceramic RBFDPs showed promising results within the observation period. Single-retainer resin-bonded fixed dental prostheses made from zirconia ceramic show very good mid-term clinical survival rates. They should therefore be considered as a viable treatment alternative for the replacement of single missing anterior teeth especially as compared to an implant therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications.

    Science.gov (United States)

    Gautam, Chandkiram; Joyner, Jarin; Gautam, Amarendra; Rao, Jitendra; Vajtai, Robert

    2016-12-06

    Zirconia (ZrO 2 ) based dental ceramics have been considered to be advantageous materials with adequate mechanical properties for the manufacturing of medical devices. Due to its very high compression strength of 2000 MPa, ZrO 2 can resist differing mechanical environments. During the crack propagation on the application of stress on the surface of ZrO 2 , a crystalline modification diminishes the propagation of cracks. In addition, zirconia's biocompatibility has been studied in vivo, leading to the observation of no adverse response upon the insertion of ZrO 2 samples into the bone or muscle. In vitro experimentation has exhibited the absence of mutations and good viability of cells cultured on this material leading to the use of ZrO 2 in the manufacturing of hip head prostheses. The mechanical properties of zirconia fixed partial dentures (FPDs) have proven to be superior to other ceramic/composite restorations and hence leading to their significant applications in implant supported rehabilitations. Recent developments were focused on the synthesis of zirconia based dental materials. More recently, zirconia has been introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures in combination with computer aided design/computer aided manufacturing (CAD/CAM) techniques. This systematic review covers the results of past as well as recent scientific studies on the properties of zirconia based ceramics such as their specific compositions, microstructures, mechanical strength, biocompatibility and other applications in dentistry.

  13. Effect of Lithium Disilicate Reinforced Liner Treatment on Bond and Fracture Strengths of Bilayered Zirconia All-Ceramic Crown

    Directory of Open Access Journals (Sweden)

    Yong-Seok Jang

    2018-01-01

    Full Text Available This study was performed to evaluate the effect of a lithium-disilicate spray-liner application on both the bond strength between zirconia cores and heat-pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of all-ceramic zirconia crowns. A lithium-disilicate reinforced liner was applied on the surface of a zirconia core and lithium-disilicate glass-ceramic was veneered on zirconia through heat press forming. Microtensile and crown fracture tests were conducted in order to evaluate, respectively, the bonding strength between the zirconia cores and heat pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of bilayered zirconia all-ceramic crowns. The role of lithium-disilicate spray-liner at the interface between zirconia and lithium-disilicate glass-ceramic veneers was investigated through surface and cross-sectional analyses. We confirmed that both the mean bonding strength between the zirconia ceramics and lithium-disilicate glass-ceramic veneers and the fracture strength of the liner-treated groups were significantly higher than those of the untreated groups, which resulted, on the one hand, from the chemical bonding at the interface of the zirconia and lithium-disilicate liner, and, on the other, from the existence of a microgap in the group not treated with liner.

  14. Studies on zirconia-mullite ceramic

    International Nuclear Information System (INIS)

    Virkar, Alka N.

    2014-01-01

    Zirconia Toughened Alumina (ZTA) ceramics with much improved Fracture Toughness and Strength have been used as a front material to fabricate composite Armour-Applications, Al 2 O 3 has very different fluxing ability with silica by sufficiently lowering the melting point. Addition of small amount of Fe 2 O 3 , TiO 2 , in an Al 2 O 3 -SiO 2 mixture enhances needle shaped Mullite crystal growth and also assist Liquid phase Sintering. In the present investigation, Zircon was used as a source of ZrO 2 and SiO 2 . Zircon (ZrSiO 4 ) has a low coefficient of Thermal Expansion and good Thermal Shock Resistance. Densification in terms of Relative Density and App. Porosity, Tetragonal ZrO 2 , phases, Thermal Expansion Coefficient, Hardness etc. were studied on Zirconia-Mullite system with and without additives. Z-M system with Y 2 O 3 additives show improved properties owing to the partial stabilization of Zirconia phase (PSZ). (author)

  15. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  16. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  17. Wear properties of alumina/zirconia composite ceramics for joint prostheses measured with an end-face apparatus.

    Science.gov (United States)

    Morita, Yusuke; Nakata, Kenichi; Kim, Yoon-Ho; Sekino, Tohru; Niihara, Koichi; Ikeuchi, Ken

    2004-01-01

    While only alumina is applied to all-ceramic joint prostheses at present, a stronger ceramic is required to prevent fracture and chipping due to impingement and stress concentration. Zirconia could be a potential substitute for alumina because it has high strength and fracture toughness. However, the wear of zirconia/zirconia combination is too high for clinical use. Although some investigations on composite ceramics revealed that mixing of different ceramics was able to improve the mechanical properties of ceramics, there are few reports about wear properties of composite ceramics for joint prosthesis. Since acetabular cup and femoral head of artificial hip joint are finished precisely, they indicate high geometric conformity. Therefore, wear test under flat contact was carried out with an end-face wear testing apparatus for four kinds of ceramics: alumina monolith, zirconia monolith, alumina-based composite ceramic, and zirconia based composite ceramic. Mean contact pressure was 10 MPa and sliding velocity was 40 mm/s. The wear test continued for 72 hours and total sliding distance was 10 km. After the test, the wear factor was calculated. Worn surfaces were observed with a scanning electron micrograph (SEM). The results of this wear test show that the wear factors of the both composite ceramics are similarly low and their mechanical properties are much better than those of the alumina monolith and the zirconia monolith. According to these results, it is predicted that joint prostheses of the composite ceramics are safer against break down and have longer lifetime compared with alumina/alumina joint prostheses.

  18. The effect of zirconia on flexural strength of IPS Empress 2 ceramic

    Directory of Open Access Journals (Sweden)

    Kermanshah H

    2007-06-01

    Full Text Available Background and Aim: All ceramic, inlay-retained resin bonded fixed partial denture is a conservative method for replacement of missing teeth, because of minimal tooth reduction. The connector between the retainer and the pontic is the weak point of these bridges. Reinforcement of ceramic core will increase the clinical longevity. The aim of this study was to determine the effect of zirconia on flexural strength of IPS Empress 2 core ceramic.Materials and Methods: In this experimental in vitro study, twenty eight bar shape specimens (17´3.1´3.1 mm were made of four different materials: (1 Slip casting in-ceram alumina core (control group (2 Hot-pressed lithium disilicate core ceramic (IPS Empress 2 (3 IPS Empress 2 with cosmopost (zirconia post inserted longitudinally in the center of the bar (4 IPS Empress 2 with cosmopost (zirconia post inserted longitudinally in bottom of the bar. Specimens were subjected to three-point flexure loading with the span of 15mm, at a cross-head speed of 0.5 mm/min. Failure loads were recorded and analyzed using one-way ANOVA and Tomhane Post-hoc tests and p<0.05 was set as the level of significance. Fractured surfaces were then observed by scanning electron microscope (SEM. Four additional samples were made as the third group, and zirconia-IPS interface was observed by SEM before fracture.Results: Mean values and standard deviations of three point flexural strengths of groups 1 to 4, were: 378.4±44.6, 258.6±27.5, 144.3±51.7, 230±22.3 MPa respectively. All the groups were statistically different from each other (P<0.05, except groups 2 and 4. The flexural strengths of groups 2, 3, 4 were significantly lower than group 1. Group 3 had the lowest flexural strength. SEM analysis showed that the initiated cracks propagated in the interface of zirconia post and IPS Empress 2 ceramic.Conclusion: Based on the results of this study, inserting zirconia post (cosmopost in IPS Empress 2 ceramic does not reinforce all-ceramic

  19. Translucency of Zirconia Ceramics before and after Artificial Aging.

    Science.gov (United States)

    Walczak, Katarzyna; Meißner, Heike; Range, Ursula; Sakkas, Andreas; Boening, Klaus; Wieckiewicz, Mieszko; Konstantinidis, Ioannis

    2018-03-11

    The aging of zirconia ceramics (Y-TZP) is associated with tetragonal to monoclinic phase transformation. This change in microstructure may affect the optical properties of the ceramic. This study examines the effect of aging on the translucency of different zirconia materials. 120 disc-shaped specimens were fabricated from four zirconia materials: Cercon ht white, BruxZir Solid Zirconia, Zenostar T0, Lava Plus (n = 30 per group). Accelerated aging was performed in a steam autoclave (134°C, 0.2 MPa, 5 hours). CIELab coordinates (L*, a*, b*) and luminous reflectance (Y) were measured with a spectrophotometer before and after aging. Contrast ratio (CR) and translucency parameter (TP) were calculated from the L*, a*, b*, and Y tristimulus values. The general linear model (Bonferroni adjusted) was used to compare both parameters before and after aging, as well as between the different zirconia materials (p ≤ 0.05). CR and TP differed significantly before and after aging in all groups tested. Before aging, Zenostar T showed the highest and Lava Plus showed the lowest translucency. After aging, Cercon ht and Zenostar T showed the highest and BruxZir and Lava Plus the lowest translucency. Aging reduced the translucency in all specimens tested. Furthermore, translucency differed between the zirconia brands tested. Nevertheless, the differences were below the detectability threshold of the human eye. The aging process can influence the translucency and thus the esthetic outcome of zirconia restorations; however, the changes in translucency were minimal and probably undetectable by the human eye. © 2018 by the American College of Prosthodontists.

  20. Production of defect-poor nanostructured ceramics of yttria-zirconia

    NARCIS (Netherlands)

    Sagel-Ransijn, C.D.; Sagel-Ransijn, C.D.; Winnubst, Aloysius J.A.; Kerkwijk, B.; Burggraaf, Anthonie; Burggraaf, A.J.; Verweij, H.

    1997-01-01

    For the production of nanostructured ceramics of yttria-zirconia four powders differing in agglomerate strength, agglomerate size and crystallite size are compared. An ultra-fine-grained ceramic with a final density of 98% and a grain size of 0.18 μm could be produced from a hydrothermally

  1. Zirconia-based colors for ceramic glazes

    International Nuclear Information System (INIS)

    Eppler, R.A.

    1977-01-01

    The history of color development for use in ceramic glazes is outlined. The most significant modern development is based on zirconia and zircon. These materials have gained increasing acceptance in the industry since their introduction in the late 1950's and early 1960's, due to their superior stability during firing of the glaze

  2. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  3. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia

    International Nuclear Information System (INIS)

    Diniz, Alexandre C.; Nascimento, Rubens M.; Souza, Julio C.M.; Henriques, Bruno B.; Carreiro, Adriana F.P.

    2014-01-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8 mm in diameter and 12 mm in height) (n = 10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni–Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni–Cr were carried out at a crosshead speed of 0.5 mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p < .05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3 ± 7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8 ± 1 MPa), Ceramco (18.2 ± 4.7 MPa), and IPS (16 ± 4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2 ± 5.1 MPa) groups (p > .05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal–ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration. - Highlights: • This study assessed the shear bond strength of different porcelains to zirconia. • The porcelain Vita VM9 showed a high shear bond strength to zirconia. • The fracture surface of all-ceramic systems revealed

  4. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Alexandre C. [School of Dentistry (DOD), Division of Prosthodontics, Universidade Federal do Rio Grande do Norte -UFRN, 59056-000, Natal (Brazil); Nascimento, Rubens M. [Materials Engineering Department, Universidade Federal do Rio Grande do Norte - UFRN, Natal (Brazil); Souza, Julio C.M. [Centre for Mechanics and Materials Technologies - CT2M, Department of Mechanical Engineering (DEM), Universidade do Minho, Campus Azurém, 4800-058, Guimarães (Portugal); Henriques, Bruno B. [Materials Engineering Department, Universidade Federal do Rio Grande do Norte - UFRN, Natal (Brazil); Centre for Mechanics and Materials Technologies - CT2M, Department of Mechanical Engineering (DEM), Universidade do Minho, Campus Azurém, 4800-058, Guimarães (Portugal); Carreiro, Adriana F.P., E-mail: adrianadafonte@hotmail.com [School of Dentistry (DOD), Division of Prosthodontics, Universidade Federal do Rio Grande do Norte -UFRN, 59056-000, Natal (Brazil)

    2014-05-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8 mm in diameter and 12 mm in height) (n = 10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni–Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni–Cr were carried out at a crosshead speed of 0.5 mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p < .05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3 ± 7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8 ± 1 MPa), Ceramco (18.2 ± 4.7 MPa), and IPS (16 ± 4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2 ± 5.1 MPa) groups (p > .05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal–ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration. - Highlights: • This study assessed the shear bond strength of different porcelains to zirconia. • The porcelain Vita VM9 showed a high shear bond strength to zirconia. • The fracture surface of all-ceramic systems revealed

  5. SEM evaluation of human gingival fibroblasts growth onto CAD/CAM zirconia and veneering ceramic for zirconia

    Science.gov (United States)

    Zizzari, Vincenzo; Borelli, Bruna; De Colli, Marianna; Tumedei, Margherita; Di Iorio, Donato; Zara, Susi; Sorrentino, Roberto; Cataldi, Amelia; Gherlone, Enrico Felice; Zarone, Fernando; Tetè, Stefano

    2013-01-01

    Summary Aim To evaluate the growth of Human Gingival Fibroblasts (HGFs) cultured onto sample discs of CAD/CAM zirconia and veneering ceramic for zirconia by means of Scanning Electron Microscope (SEM) analysis at different experimental times. Methods A total of 26 experimental discs, divided into 2 groups, were used: Group A) CAD/CAM zirconia (3Y-TZP) discs (n=13); Group B) veneering ceramic for zirconia discs (n=13). HGFs were obtained from human gingival biopsies, isolated and placed in culture plates. Subsequently, cells were seeded on experimental discs at 7,5×103/cm2 concentration and cultured for a total of 7 days. Discs were processed for SEM observation at 3h, 24h, 72h and 7 days. Results In Group A, after 3h, HGFs were adherent to the surface and showed a flattened profile. The disc surface covered by HGFs resulted to be wider in Group A than in Group B samples. At SEM observation, after 24h and 72h, differences in cell attachment were slightly noticeable between the groups, with an evident flattening of HGFs on both surfaces. All differences between Group A and group B became less significant after 7 days of culture in vitro. Conclusions SEM analysis of HGFs showed differences in terms of cell adhesion and proliferation, especially in the early hours of culture. Results showed a better adhesion and cell growth in Group A than in Group B, especially up to 72h in vitro. Differences decreased after 7 days, probably because of the rougher surface of CAD/CAM zirconia, promoting better cell adhesion, compared to the smoother surface of veneering ceramic. PMID:24611089

  6. [Study on friction and wear properties of dental zirconia ceramics processed by microwave and conventional sintering methods].

    Science.gov (United States)

    Guoxin, Hu; Ying, Yang; Yuemei, Jiang; Wenjing, Xia

    2017-04-01

    This study evaluated the wear of an antagonist and friction and wear properties of dental zirconia ceramic that was subjected to microwave and conventional sintering methods. Ten specimens were fabricated from Lava brand zirconia and randomly assigned to microwave and conventional sintering groups. A profile tester for surface roughness was used to measure roughness of the specimens. Wear test was performed, and steatite ceramic was used as antagonist. Friction coefficient curves were recorded, and wear volume were calculated. Finally, optical microscope was used to observe the surface morphology of zirconia and steatite ceramics. Field emission scanning electron microscopy was used to observe the microstructure of zirconia. Wear volumes of microwave and conventionally sintered zirconia were (6.940±1.382)×10⁻², (7.952±1.815) ×10⁻² mm³, respectively. Moreover, wear volumes of antagonist after sintering by the considered methods were (14.189±4.745)×10⁻², (15.813±3.481)×10⁻² mm³, correspondingly. Statistically significant difference was not observed in the wear resistance of zirconia and wear volume of steatite ceramic upon exposure to two kinds of sintering methods. Optical microscopy showed that ploughed surfaces were apparent in zirconia. The wear surface of steatite ceramic against had craze, accompanied by plough. Scanning electron microscopy showed that zirconia was sintered compactly when subjected to both conventional sintering and microwave methods, whereas grains of zirconia sintered by microwave alone were smaller and more uniform. Two kinds of sintering methods are successfully used to produce dental zirconia ceramics with similar friction and wear properties.
.

  7. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    International Nuclear Information System (INIS)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-01-01

    In this work an alumina-zirconia ceramic composites have been prepared with α-Al 2 O 3 contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest α-Al 2 O 3 content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  8. Performance of a carbon monoxide sensor based on zirconia-doped ceria

    Directory of Open Access Journals (Sweden)

    Noriya Izu

    2016-06-01

    Full Text Available Resistive-type carbon monoxide sensors were fabricated using zirconia-doped ceria, and their sensing properties were evaluated and compared with equivalent devices based on non-doped ceria. The response of both sensor types was found to increase with decreasing temperature, while the response at 450 °C of a sensor fired at 950 °C was greater than that of a sensor fired at 1100 °C. When fired at 950 °C, however, the response at 450 °C of a sensor created using zirconia-doped ceria was slightly less than that of a sensor constructed from non-doped ceria. Multivariate analysis confirmed that the response of both sensor types is proportional to the resistance raised to the power of about 0.5, and inversely proportional to the particle size raised to a power of about 0.8. The sensor response time can be considered almost the same regardless of whether zirconia doping is used or not.

  9. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  10. Bond strength of resin cement to CO2 and Er:YAG laser-treated zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Shahin Kasraei

    2014-11-01

    Full Text Available Objectives It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of CO2 and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness were assigned to 3 groups (n = 15. In control group (CNT no laser treatment was used. In groups COL and EYL, CO2 and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were 8.65 ± 1.75, 12.12 ± 3.02, and 5.97 ± 1.14 MPa, respectively. Data showed that application of CO2 and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001. The highest bond strength was recorded in the COL group (p < 0.0001. In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions Pretreatment of zirconia ceramic via CO2 and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the CO2 laser treated samples.

  11. Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.

    Science.gov (United States)

    Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei

    2013-12-01

    This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.

  12. Porous Alumina and Zirconia Ceramics With Tailored Thermal Conductivity

    Czech Academy of Sciences Publication Activity Database

    Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, Jiří

    2012-01-01

    Roč. 395, č. 1 (2012), 012022-012022 ISSN 1742-6588. [European Thermal Sciences Conference (Eurotherm)/6./. Poitiers, 04.09.2012-07.09.2012] Institutional support: RVO:61389021 Keywords : Ceramics * alumina * zirconia * porosity * thermal conductivity * pore-forming agent * oxide ceramics * starch * porosity Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://iopscience.iop.org/1742-6596/395/1/012022/pdf/1742-6596_395_1_012022.pdf

  13. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    Science.gov (United States)

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  14. An harmonic smile resulted from the use of ceramic prosthesis with zirconia structure: a case report.

    Science.gov (United States)

    Tavarez, Rudys Rodolfo de Jesus; Goncalves, Leticia Machado; Dias, Ana Paula; Dias, Anna Claudia Pereira; Malheiros, Adriana Santos; Silva, Alice Carvalho; Bandeca, Matheus Coelho

    2014-06-01

    The rehabilitation of patients requiring an esthetic smile demands a multidisciplinary approach. This clinical report describes a treatment plan for recovery aesthetics' smile of anterior teeth using ceramic prosthesis with zirconia structure. Initially, a review of aesthetic parameters, diagnostic waxing, mock-up and provisional restorations was performed. A contextual assessment of aesthetic, proportion and shape of teeth was done to recreate a natural looking for teeth in consonance with the smile line. Subsequently, based on these parameters, fixed prostheses of the upper anterior teeth using ceramic restorations with zirconia infrastructures were performed. The use of ceramic restorations with zirconia structures associated with a careful treatment plan allows the professional to integrate esthetic and function for satisfactory clinical results. How to cite the article: Tavarez RR, Gonçalves LM, Dias AP, Dias AC, Malheiros AS, Silva AC, Bandeca MC. An harmonic smile resulted from the use of ceramic prosthesis with zirconia structure: A case report. J Int Oral Health 2014;6(3):90-2.

  15. Rapid preparation of ceramic moulds for medium-sized superalloy castings with magnesia-phosphate-bonded bauxite-mullite investments

    Directory of Open Access Journals (Sweden)

    Li Tingzhong

    2010-11-01

    Full Text Available Phosphate-bonded investments have already been widely utilized in dental restoration and micro-casting of artistic products for its outstanding rapid setting and high strength. However, the rapid setting rate of investment slurry has up to now been a barrier to extend the use of such slurry in preparation of medium-sized ceramic moulds. This paper proposes a new process of rapid fabrication of magnesia-phosphate-bonded investment ceramic moulds for medium-sized superalloy castings utilizing bauxite and mullite as refractory aggregates. In order to determine the properties of magnesia-phosphate-bonded bauxite-mullite investments (MPBBMI, a series of experiments were conducted, including modification of the workable time of slurry by liquid(mL/powder(g(L/P ratio and addition of boric acid as retard agent and sodium tri-polyphosphate (STP as strengthening agent, and adjustment of bauxite (g/mullite(g(B/M ratio for mechanical strength. Mechanical vibration was applied to improve initial setting time and fluidity when pouring investment slurry; then an intermediate size ceramic mould for superalloy castings was manufactured by means of this rapid preparing process with MPBBMI material. The results showed that the MPBBMI slurry exhibits proper initial setting time and excellent fluidity when the L/P ratio is 0.64 and the boric acid content is 0.88wt.%. The fired specimens made from the MPBBMI material demonstrated adequate compression strength to withstand impact force of molten metal when the B/M ratio is 0.89 and the STP content is 0.92wt.%. The experimental results confirmed the feasibility of the proposed rapid fabricating process for medium-sized ceramic moulds with MPBBMI material by appropriate measures.

  16. Marginal and Internal Discrepancies of Posterior Zirconia-Based Crowns Fabricated with Three Different CAD/CAM Systems Versus Metal-Ceramic.

    Science.gov (United States)

    Ortega, Rocio; Gonzalo, Esther; Gomez-Polo, Miguel; Suárez, María J

    2015-01-01

    The aim of this study was to analyze the marginal and internal fit of metalceramic and zirconia-based crowns. Forty standardized steel specimens were prepared to receive posterior crowns and randomly divided into four groups (n = 10): (1) metal-ceramic, (2) NobelProcera Zirconia, (3) Lava Zirconia, and (4) VITA In-Ceram YZ. All crowns were cemented with glass-ionomer agent and sectioned buccolingually. A scanning electron microscope was used for measurements. Kruskal-Wallis and Wilcoxon signed rank test (α = .05) statistical analyses were conducted. Significant differences (P < .0001) in marginal discrepancies were observed between metal-ceramic and zirconia groups. No differences were found for the axial wall fit (P = .057). Significant differences were shown among the groups in discrepancies at the occlusal cusp (P = .0012) and at the fossa (P = .0062). No differences were observed between surfaces. All zirconia groups showed better values of marginal discrepancies than the metal-ceramic group. Procera Zirconia showed the lowest gaps.

  17. Finite Element Analysis of IPS Empress II Ceramic Bridge Reinforced by Zirconia Bar.

    Science.gov (United States)

    Kermanshah, H; Bitaraf, T; Geramy, A

    2012-01-01

    The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS -Empress II core ceramics. The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB), zirconia bar with vertical trench (VZB) and zirconia bar with horizontal trench (HZB) (cross sections of these bars were circular). The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component and von Mises stresses were evaluated along a defined path. IN THE CONNECTOR AREA, VON MISES STRESS IN MPA WERE APPROXIMATELY IDENTICAL IN THE SPECIMENS WITH ZB (AT MOLAR CONNECTOR (MC): 4.75 and at premolar connector (PC): 6.40) and without ZB (MC: 5.50, PC: 6.68), and considerable differences were not recognized. Whereas, Von-Mises stress (MPa) in the specimens with horizontal trenched Zirconia bar (HZB) (MC: 3.91, PC: 2.44) and Vertical trenched Zirconia bar (VZB) (MC: 2.53, PC: 2.56) was decreased considerably. Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures.

  18. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material.

    Science.gov (United States)

    Li, Weiyan; Sun, Jian

    2018-05-10

    BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.

  19. In vivo evaluation of zirconia ceramic in the DexAide right ventricular assist device journal bearing.

    Science.gov (United States)

    Saeed, Diyar; Shalli, Shanaz; Fumoto, Hideyuki; Ootaki, Yoshio; Horai, Tetsuya; Anzai, Tomohiro; Zahr, Roula; Horvath, David J; Massiello, Alex L; Chen, Ji-Feng; Dessoffy, Raymond; Catanese, Jacquelyn; Benefit, Stephen; Golding, Leonard A R; Fukamachi, Kiyotaka

    2010-06-01

    Zirconia is a ceramic with material properties ideal for journal bearing applications. The purpose of this study was to evaluate the use of zirconium oxide (zirconia) as a blood journal bearing material in the DexAide right ventricular assist device. Zirconia ceramic was used instead of titanium to manufacture the DexAide stator housing without changing the stator geometry or the remaining pump hardware components. Pump hydraulic performance, journal bearing reliability, biocompatibility, and motor efficiency data of the zirconia stator were evaluated in six chronic bovine experiments for 14-91 days and compared with data from chronic experiments using the titanium stator. Pump performance data including average in vivo pump flows and speeds using a zirconia stator showed no statistically significant difference to the average values for 16 prior titanium stator in vivo studies, with the exception of a 19% reduction in power consumption. Indices of hemolysis were comparable for both stator types. Results of coagulation assays and platelet aggregation tests for the zirconia stator implants showed no device-induced increase in platelet activation. Postexplant evaluation of the zirconia journal bearing surfaces showed no biologic deposition in any of the implants. In conclusion, zirconia ceramic can be used as a hemocompatible material to improve motor efficiency while maintaining hydraulic performance in a blood journal bearing application.

  20. An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing

    Science.gov (United States)

    Luo, Hu; Guo, Meijian; Yin, Shaohui; Chen, Fengjun; Huang, Shuai; Lu, Ange; Guo, Yuanfan

    2018-06-01

    Zirconia ceramics is a valuable crucial material for fabricating functional components applied in aerospace, biology, precision machinery, military industry and other fields. However, the properties of its high brittleness and high hardness could seriously reduce its finishing efficiency and surface quality by conventional processing technology. In this work, we present a high efficiency and high-quality finishing process by using magnetorheological finishing (MRF), which employs the permanent magnetic yoke with straight air gap as excitation unit. The sub-nanoscale surface roughness and damage free surface can be obtained after magnetorheological finishing. The XRD results and SEM morphologies confirmed that the mechanical shear removal with ductile modes are the dominant material removal mechanism for the magnetorheological finishing of zirconia ceramic. With the developed experimental apparatus, the effects of workpiece speed, trough speed and work gap on material removal rate and surface roughness were systematically investigated. Zirconia ceramics finished to ultra-smooth surface with surface roughness less than Ra 1 nm was repeatedly achieved during the parametric experiments. Additionally, the highest material removal rate exceeded 1 mg/min when using diamond as an abrasive particle. Magnetorheological finishing promises to be an adaptable and efficient method for zirconia ceramics finishing.

  1. Marginal Vertical Discrepancies of Monolithic and Veneered Zirconia and Metal-Ceramic Three-Unit Posterior Fixed Dental Prostheses.

    Science.gov (United States)

    Lopez-Suarez, Carlos; Gonzalo, Esther; Pelaez, Jesus; Serrano, Benjamin; Suarez, Maria J

    2016-01-01

    The aim of this study was to investigate and compare the marginal fit of posterior fixed dental prostheses (FDPs) made of monolithic and veneered computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia ceramic with metal-ceramic posterior FDPs. Thirty standardized steel dies were prepared to receive posterior three-unit FDPs. Specimens were randomly divided into three groups (n = 10): (1) metal-ceramic (control group), (2) veneered zirconia, and (3) monolithic zirconia. All FDPs were cemented using a glass-ionomer cement. The specimens were subjected to thermal cycling (5°C to 55°C). A scanning electron microscope (SEM) with a magnification of ×500 was used for measurements. The data were statistically analyzed using one-way analysis of variance and paired t test. Both zirconia groups showed similar vertical marginal discrepancies, and no significant differences (P = .661) in marginal adaptation were observed among the groups. No differences were observed in either group in marginal discrepancies between surfaces or abutments. Monolithic zirconia posterior FDPs exhibit similar vertical marginal discrepancies to veneered zirconia posterior FDPs. No influence of localization measurements was observed.

  2. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  3. A study of the bending resistance of implant-supported reinforced alumina and machined zirconia abutments and copies.

    Science.gov (United States)

    Sundh, Anders; Sjögren, Göran

    2008-05-01

    The purpose of the present study was to evaluate the bending resistance of implant-supported CAD/CAM-processed restorations made out of zirconia or manually shaped made out of reinforced alumina. Units of abutments and copies made of (i) a prefabricated hot isostatic pressed (HIPed) yttrium oxide partially-stabilized zirconia (Y-TZP) (Denzir), (ii) a prefabricated densely-sintered magnesia partially stabilized zirconia (Mg-PSZ) (Denzir-M) or, copies made of (iii) a prefabricated partially-sintered, porous reinforced alumina ceramic (RN synOcta-In-Ceram) were subjected to static loading perpendicularly at the long axis. The abutments were attached to either stainless steel analogs or titanium implant fixtures. The Y-TZP and Mg-PSZ copies were bonded onto the ceramic abutments with a dual-cured resin composite (Rely-X Unicem). Units of titanium abutment attached to a titanium implant fixtures were used as reference. The units comprising Denzir abutments as delivered (pstainless steel analogs exhibited significantly higher bending resistance than the control. The heat-treated Denzir copies bonded to the heat-treated Denzir M abutments attached to titanium implant fixtures and the In-Ceram specimens attached to stainless steel analogs showed significantly (pstainless steel analogs. No statistically significant (p>0.05) differences were seen among the other groups studied. All the ceramic abutments and copies exhibited values that were equal or superior to that of the control and exceeded the reported value, up to 300 N, for maximum incisal bite forces. To assess the clinical behavior long-term clinical studies should be conducted.

  4. Surface treatment of zirconia ceramics

    International Nuclear Information System (INIS)

    1980-01-01

    A method of chemically micropitting and/or microcratering at least a portion of a smooth surface of an impervious zirconia-base ceramic is described, comprising (a) contacting the smooth surface with a liquid leachant selected from concentrated sulphuric acid, ammonium bisulphate, alkali metal bisulphates and mixtures thereof at a temperature of at least 250 0 C for a period of time sufficient to effect micropitting and/or microcratering generally uniformly distributed throughout the microstructure of the resultant leached surface; (b) removing the leached surface from contact with the leachant; (c) contacting the leached surface with hydrochloric acid to effect removal from the leached surface of a residue thereon comprising sulphate of metal elements including zirconium in the ceramic; (d) removing the leached surface from contact with the hydrochloric acid; and (e) rinsing the leached surface with water to effect removal of acid residue from that surface. (author)

  5. Effect of core ceramic grinding on fracture behaviour of bilayered zirconia veneering ceramic systems under two loading schemes.

    Science.gov (United States)

    Jian, Yu-Tao; Tang, Tian-Yu; Swain, Michael V; Wang, Xiao-Dong; Zhao, Ke

    2016-12-01

    The aim of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered zirconia under two loading schemes. Interfacial surfaces of sandblasted zirconia disks (A) were ground with 80 (B), 120 (C) and 220 (D) grit diamond discs, respectively. Surface roughness and topographic analysis were performed using a confocal scanning laser microscope (CSLM) and a scanning electron microscopy (SEM). Relative monoclinic content was evaluated using X-ray diffraction analysis (XRD) then reevaluated after simulated veneer firing. Biaxial fracture strength (σ) and Weibull modulus (m) were calculated either with core in compression (subgroup Ac-Dc) or in tension (subgroup At-Dt). Facture surfaces were examined by SEM and energy dispersive X-ray spectroscopy (EDS). Maximum tensile stress at fracture was estimated by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis and one-way ANOVA at a significance level of 0.05. As grit size of the diamond disc increased, zirconia surface roughness decreased (pgrinding. No difference in initial (p=0.519 for subgroups Ac-Dc) and final fracture strength (p=0.699 for subgroups Ac-Dc; p=0.328 for subgroups At-Dt) was found among the four groups for both loading schemes. While coarse grinding slightly increased final fracture strength reliability (m) for subgroups Ac-Dc. Two different modes of fracture were observed according to which material was on the bottom surface. Components of the liner porcelain remained on the zirconia surface after fracture for all groups. Technician grinding changed surface topography of zirconia ceramic material, but was not detrimental to the bilayered system strength after veneer application. Coarse grinding slightly improved the fracture strength reliability of the bilayered system tested with core in compression. It is recommended that veneering porcelain be applied directly after routine lab grinding of zirconia ceramic, and its

  6. Effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations: in vitro study of color masking ability.

    Science.gov (United States)

    Oh, Seon-Hee; Kim, Seok-Gyu

    2015-10-01

    The aim of the study was to evaluate the effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations. Three different types of disk-shaped zirconia coping specimens (Lava, Cercon, Zirkonzahn: ø10 mm × 0.4 mm) were fabricated and veneered with IPS e.max Press Ceram (shade A2), for total thicknesses of 1 and 1.5 mm. A total of sixty zirconia restoration specimens were divided into six groups based on their coping types and thicknesses. The abutment specimens (ø10 mm × 7 mm) were prepared with gold alloy, base metal (nickel-chromium) alloy, and four different shades (A1, A2, A3, A4) of composite resins. The average L*, a*, b* values of the zirconia specimens on the six abutment specimens were measured with a dental colorimeter, and the statistical significance in the effects of three variables was analyzed by using repeated measures analysis of variance (α=.05).The average shade difference (ΔE) values of the zirconia specimens between the A2 composite resin abutment and other abutments were also evaluated. The effects of zirconia specimen thickness (Pabutment shade (Pabutments was higher (close to the acceptability threshold of 5.5 ΔE) than th ose between the A2 composite resin and other abutments. This in-vitro study demonstrated that abutment shade, ceramic thickness, and coping type affected the resulting shade of zirconia restorations.

  7. Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components

    Science.gov (United States)

    Larsen, D. C.; Adams, J. W.

    1985-01-01

    Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.

  8. Color stability of CAD/CAM Zirconia ceramics following exposure to acidic and staining drinks.

    Science.gov (United States)

    Colombo, Marco; Cavallo, Marco; Miegge, Matteo; Dagna, Alberto; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio

    2017-11-01

    The aim of this in vitro study was to evaluate the color stability of CAD/CAM Zirconia ceramics following exposure to acidic drink (Coca Cola) and after exposure to staining solution (coffee). All the samples were immersed in different staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. Shapiro Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. Paired t-test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. One week immersion in acidic drink did not cause a perceivable discoloration for all restorative materials (ΔE < 3.3). Subsequent immersion in coffee affected color stability of all Zirconia samples, even if Kruskal-Wallis ANOVA found significant differences among the various restorative materials. The ∆Es of CAD/CAM Zirconia ceramics after immersion in coffee varied among the products, but color integrity is not affected by contact with acidic drinks. Key words: CAD/CAM restorative materials, CIE Lab, Zirconia ceramics.

  9. Finite Element Analysis of IPS –Empress II Ceramic Bridge Reinforced by Zirconia Bar

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2012-01-01

    Full Text Available Objective: The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS –Empress II core ceramics.Material and Methods: The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB, zirconia bar with vertical trench (VZB, and zirconia bar with horizontal trench (HZB (cross sections of these bars were circular. The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component, and Von-Mises stresses were evaluated along a defined path.Result: In the connector area, VonMises stress in MPa were approximately identical in the specimens with ZB (at molar connector (MC: 4.75, and at premolar connector (PC: 6.40 and without ZB (MC: 5.50, PC: 6.68, and considerable differences were not recognized. Whereas, Von-Mises stress (MPa in the specimens with horizontal trenched Zirconia bar (HZB (MC: 3.91, PC: 2.44 and Vertical trenched Zirconia bar (VZB (MC: 2.53, PC: 2.56 was decreased considerably.Conclusion: Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures.

  10. Evaluation of marginal fit of 2 CAD-CAM anatomic contour zirconia crown systems and lithium disilicate glass-ceramic crown.

    Science.gov (United States)

    Ji, Min-Kyung; Park, Ji-Hee; Park, Sang-Won; Yun, Kwi-Dug; Oh, Gye-Jeong; Lim, Hyun-Pil

    2015-08-01

    This study was to evaluate the marginal fit of two CAD-CAM anatomic contour zirconia crown systems compared to lithium disilicate glass-ceramic crowns. Shoulder and deep chamfer margin were formed on each acrylic resin tooth model of a maxillary first premolar. Two CAD-CAM systems (Prettau®Zirconia and ZENOSTAR®ZR translucent) and lithium disilicate glass ceramic (IPS e.max®press) crowns were made (n=16). Each crown was bonded to stone dies with resin cement (Rely X Unicem). Marginal gap and absolute marginal discrepancy of crowns were measured using a light microscope equipped with a digital camera (Leica DFC295) magnified by a factor of 100. Two-way analysis of variance (ANOVA) and post-hoc Tukey's HSD test were conducted to analyze the significance of crown marginal fit regarding the finish line configuration and the fabrication system. The mean marginal gap of lithium disilicate glass ceramic crowns (IPS e.max®press) was significantly lower than that of the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) (Pmarginal discrepancy (Pmarginal gap than the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia). In terms of absolute marginal discrepancy, the CAD-CAM anatomic contour zirconia crown system (ZENOSTAR®ZR translucent) had under-extended margin, whereas the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) and lithium disilicate glass ceramic crowns (IPS e.max®press) had overextended margins.

  11. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive.

    Science.gov (United States)

    Lee, Ji-Yeon; Ahn, Jaechan; An, Sang In; Park, Jeong-Won

    2018-02-01

    The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al 2 O 3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test ( p = 0.05). Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 ( p < 0.05). Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

  12. Effect of the shades of background substructures on the overall color of zirconia-based all-ceramic crowns

    Science.gov (United States)

    Tulapornchai, Chantana; Mamani, Jatuphol; Kamchatphai, Wannaporn; Thongpun, Noparat

    2013-01-01

    PURPOSE The objective of this study was to determine the effect of the color of a background substructure on the overall color of a zirconia-based all-ceramic crown. MATERIALS AND METHODS Twenty one posterior zirconia crowns were made for twenty subjects. Seven premolar crowns and six molar crowns were cemented onto abutments with metal post and core in the first and second group. In the third group, eight molar crowns were cemented onto abutments with a prefabricated post and composite core build-up. The color measurements of all-ceramic crowns were made before try-in, before and after cementation. A repeated measure ANOVA was used for a statistical analysis of a color change of all-ceramic crowns at α=.05. Twenty four zirconia specimens, with different core thicknesses (0.4-1 mm) were also prepared to obtain the contrast ratio of zirconia materials after veneering. RESULTS L*, a*, and b* values of all-ceramic crowns cemented either on a metal cast post and core or on a prefabricated post did not show significant changes (P>.05). However, the slight color changes of zirconia crowns were detected and represented by ΔE*ab values, ranging from 1.2 to 3.1. The contrast ratios of zirconia specimens were 0.92-0.95 after veneering. CONCLUSION No significant differences were observed between the L*, a*, and b* values of zirconia crowns cemented either on a metal cast post and core or a prefabricated post and composite core. However, the color of a background substructure could affect the overall color of posterior zirconia restorations with clinically recommended core thickness according to ΔE*ab values. PMID:24049574

  13. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function.

    Science.gov (United States)

    Oilo, Marit; Hardang, Anne D; Ulsund, Amanda H; Gjerdet, Nils R

    2014-06-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation. © 2014 Eur J Oral Sci.

  14. Study of the distribution of magnesium in zirconia-magnesia ceramic solid electrolytes

    International Nuclear Information System (INIS)

    Muccillo, R.; Nogueira, R.A.

    1988-01-01

    ZrO 2 : 3%MgO ceramic samples have been prepared according to three different experimental procedures in order to find out the best method for processing powders for the conformation of solid electrolytes for disposable oxygen sensors. These procedures were I) simple mechanical mixing, II) homogeneization in liquid medium, and III) homogeneization of the ceramic pellet by grinding, pressing and sintering. All samples have been analysed by electron microprobe and electrical resistivity measurements. The main results show the same degree of homogeneity and electrical resistivity are obtained for the specimens of the 2nd and 3rd group, whereas the specimens of the 1st group have non-homogeneous distribution of magnesium and scattered values of electrical resistivity. (author) [pt

  15. Effect of in vitro aging on the flexural strength and probability to fracture of Y-TZP zirconia ceramics for all-ceramic restorations.

    Science.gov (United States)

    Siarampi, Eleni; Kontonasaki, Eleana; Andrikopoulos, Konstantinos S; Kantiranis, Nikolaos; Voyiatzis, George A; Zorba, Triantafillia; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2014-12-01

    Dental zirconia restorations should present long-term clinical survival and be in service within the oral environment for many years. However, low temperature degradation could affect their mechanical properties and survival. The aim of this study was to investigate the effect of in vitro aging on the flexural strength of yttrium-stabilized (Y-TZP) zirconia ceramics for ceramic restorations. One hundred twenty bar-shaped specimens were prepared from two ceramics (ZENO Zr (WI) and IPS e.max(®) ZirCAD (IV)), and loaded until fracture according to ISO 6872. The specimens from each ceramic (nx=60) were divided in three groups (control, aged for 5h, aged for 10h). One-way ANOVA was used to assess statistically significant differences among flexural strength values (Pceramics, however statistically significant was for the WI group (Pceramics presented a t→m phase transformation, with the m-phase increasing from 4 to 5% at 5h to around 15% after 10h. The significant reduction of the flexural strength after 10h of in vitro aging, suggests high fracture probability for one of the zirconia ceramics tested. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Effect of metal chloride solutions on coloration and biaxial flexural strength of yttria-stabilized zirconia

    Science.gov (United States)

    Oh, Gye-Jeong; Lee, Kwangmin; Lee, Doh-Jae; Lim, Hyun-Pil; Yun, Kwi-Dug; Ban, Jae-Sam; Lee, Kyung-Ku; Fisher, John G.; Park, Sang-Won

    2012-10-01

    The effect of three kinds of transition metal dopants on the color and biaxial flexural strength of zirconia ceramics for dental applications was evaluated. Presintered zirconia discs were colored through immersion in aqueous chromium, molybdenum and vanadium chloride solutions and then sintered at 1450 °C. The color of the doped specimens was measured using a digital spectrophotometer. For biaxial flexural strength measurements, specimens infiltrated with 0.3 wt% of each aqueous chloride solution were used. Uncolored discs were used as a control. Zirconia specimens infiltrated with chromium, molybdenum and vanadium chloride solutions were dark brown, light yellow and dark yellow, respectively. CIE L*, a*, and b* values of all the chromium-doped specimens and the specimens infiltrated with 0.1 wt% molybdenum chloride solution were in the range of values for natural teeth. The biaxial flexural strengths of the three kinds of metal chloride groups were similar to the uncolored group. These results suggest that chromium and molybdenum dopants can be used as colorants to fabricate tooth colored zirconia ceramic restorations.

  17. Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin.

    Science.gov (United States)

    Hallmann, Lubica; Ulmer, Peter; Lehmann, Frank; Wille, Sebastian; Polonskyi, Oleksander; Johannes, Martina; Köbel, Stefan; Trottenberg, Thomas; Bornholdt, Sven; Haase, Fabian; Kersten, Holger; Kern, Matthias

    2016-05-01

    Purpose of this in vitro study was to evaluate the effect of surface modifications on the tensile bond strength between zirconia ceramic and resin. Zirconia ceramic surfaces were treated with 150-μm abrasive alumina particles, 150-μm abrasive zirconia particles, argon-ion bombardment, gas plasma, and piranha solution (H2SO4:H2O2=3:1). In addition, slip casting surfaces were examined. Untreated surfaces were used as the control group. Tensile bond strengths (TBS) were measured after water storage for 3 days or 150 days with additional 37,500 thermal cycling for artificial aging. Statistical analyses were performed with 1-way and 3-way ANOVA, followed by comparison of means with the Tukey HSD test. After storage in distilled water for three days at 37 °C, the highest mean tensile bond strengths (TBS) were observed for zirconia ceramic surfaces abraded with 150-μm abrasive alumina particles (TBS(AAP)=37.3 MPa, TBS(CAAP)=40.4 MPa), and 150-μm abrasive zirconia particles (TBS(AZP)=34.8 MPa, TBS(CAZP)=35.8 MPa). Also a high TBS was observed for specimens treated with argon-ion bombardment (TBS(BAI)=37.8 MPa). After 150 days of storage, specimens abraded with 150-μm abrasive alumina particles and 150-μm abrasive zirconia particles revealed high TBS (TBS(AAP)=37.6 MPa, TBS(CAAP)=33.0 MPa, TBS(AZP)=22.1 MPa and TBS(CAZP)=22.8 MPa). A high TBS was observed also for specimens prepared with slip casting (TBS(SC)=30.0 MPa). A decrease of TBS was observed for control specimens (TBS(UNT)=12.5 MPa, TBS(CUNT)=9.0 MPa), specimens treated with argon-ion bombardment (TBS(BAI)=10.3 MPa) and gas plasma (TBS(GP)=11.0 MPa). A decrease of TBS was observed also for specimens treated with piranha solution (TBS(PS)=3.9 MPa, TBS(CPS)=4.1 MPa). A significant difference in TBS after three days storage was observed for specimens treated with different methods (p0.05), CAAP(p>0.05) and SC(p>0.05). However, the failure patterns of debonded specimens prepared with 150-μm abrasive zirconia

  18. Color stability of CAD/CAM Zirconia ceramics following exposure to acidic and staining drinks

    Science.gov (United States)

    Colombo, Marco; Cavallo, Marco; Miegge, Matteo; Dagna, Alberto; Beltrami, Riccardo; Chiesa, Marco

    2017-01-01

    Background The aim of this in vitro study was to evaluate the color stability of CAD/CAM Zirconia ceramics following exposure to acidic drink (Coca Cola) and after exposure to staining solution (coffee). Material and Methods All the samples were immersed in different staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. Shapiro Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. Paired t-test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. Results One week immersion in acidic drink did not cause a perceivable discoloration for all restorative materials (ΔE < 3.3). Subsequent immersion in coffee affected color stability of all Zirconia samples, even if Kruskal-Wallis ANOVA found significant differences among the various restorative materials. Conclusions The ∆Es of CAD/CAM Zirconia ceramics after immersion in coffee varied among the products, but color integrity is not affected by contact with acidic drinks. Key words:CAD/CAM restorative materials, CIE Lab, Zirconia ceramics. PMID:29302281

  19. Flexural strength and the probability of failure of cold isostatic pressed zirconia core ceramics.

    Science.gov (United States)

    Siarampi, Eleni; Kontonasaki, Eleana; Papadopoulou, Lambrini; Kantiranis, Nikolaos; Zorba, Triantafillia; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2012-08-01

    The flexural strength of zirconia core ceramics must predictably withstand the high stresses developed during oral function. The in-depth interpretation of strength parameters and the probability of failure during clinical performance could assist the clinician in selecting the optimum materials while planning treatment. The purpose of this study was to evaluate the flexural strength based on survival probability and Weibull statistical analysis of 2 zirconia cores for ceramic restorations. Twenty bar-shaped specimens were milled from 2 core ceramics, IPS e.max ZirCAD and Wieland ZENO Zr, and were loaded until fracture according to ISO 6872 (3-point bending test). An independent samples t test was used to assess significant differences of fracture strength (α=.05). Weibull statistical analysis of the flexural strength data provided 2 parameter estimates: Weibull modulus (m) and characteristic strength (σ(0)). The fractured surfaces of the specimens were evaluated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The investigation of the crystallographic state of the materials was performed with x-ray diffraction analysis (XRD) and Fourier transform infrared (FTIR) spectroscopy. Higher mean flexural strength (Plines zones). Both groups primarily sustained the tetragonal phase of zirconia and a negligible amount of the monoclinic phase. Although both zirconia ceramics presented similar fractographic and crystallographic properties, the higher flexural strength of WZ ceramics was associated with a lower m and more voids in their microstructure. These findings suggest a greater scattering of strength values and a flaw distribution that are expected to increase failure probability. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  20. Zirconia - the cinderella transformation

    International Nuclear Information System (INIS)

    Hannink, R.H.J.

    1999-01-01

    Zirconia and its alloys have formed a turning point in mechanical property developments of engineering ceramics. This can be stated primarily because zirconia alloys were one of the first ceramic systems in which it was demonstrated that the mechanical properties could be tailored using careful control of composition, powder processing and thermal treatment. For the improved mechanical properties to be captured in zirconia-based or containing ceramics, control of the tetragonal to monoclinic transformation is required. Through microstructural control, zirconia-based ceramics can be tailored to form some of the strongest and toughest ceramics yet developed. By carefully controlling the use of various dopants (alloying additions), a variety of microstructures can be produced all of which may exhibit transformation toughening. While success in capturing the benefits of transformation toughening relies on adequate powder processing techniques, this review is restricted to outlining the phase control and behaviour that make zirconia and its alloys such a scientifically fascinating and rewarding system for study and a commercially appealing ceramic material

  1. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications

    International Nuclear Information System (INIS)

    Duarte, Daniel Gomes

    2009-01-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning electron

  2. [Evaluation of alumina effects on the mechanical property and translucency of nano-zirconia all-ceramics].

    Science.gov (United States)

    Jiang, Li; Zhao, Yong-qi; Zhang, Jing-chao; Liao, Yun-mao; Li, Wei

    2010-06-01

    To study the effects of alumina content on sintered density, mechanical property and translucency of zirconia nanocomposite all-ceramics. Specimens of zirconia nanocomposite all-ceramics were divided into five groups based on their alumina content which are 0% (control group), 2.5%, 5.0%, 7.5% and 10.0% respectively. The sintered densities were measured using Archimedes' method. Specimens' bending strengths were measured with three-point bending test (ISO 6872). The visible light transmittances were measured with spectrophotometric arrangements and the fractured surfaces were observed using scanning electron microscope (SEM). The control group of pure zirconia could be sintered to the theoretical density under pressure-less sintering condition. The bending strength was (1100.27 ± 54.82) MPa, the fracture toughness was (4.96 ± 0.35) MPa×m(1/2) and the transmittance could reach 17.03%. The sintered density and transmittance decreased as alumina content increased from 2.5% to 10%. However, the fracture toughness only increased slightly. In all four alumina groups, the additions of alumina had no significant effect on samples' bending strengths (P > 0.05). When the content of alumina was 10%, fracture toughness of specimens reached (6.13 ± 0.44) MPa×m(1/2) while samples' transmittance declined to 6.21%. SEM results showed that alumina particles had no significant effect on the grain size and distribution of tetragonal zirconia polycrystals. Additions of alumina to yttria-tetragonal zirconia polycrystals could influence its mechanical property and translucency. Additions of the other phase to zirconia ceramics should meet the clinical demands of strength and esthetics.

  3. Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles

    Science.gov (United States)

    Al-Fahdawi, Mohamed Qasim; Rasedee, Abdullah; Al-Qubaisi, Mothanna Sadiq; Alhassan, Fatah H; Rosli, Rozita; El Zowalaty, Mohamed Ezzat; Naadja, Seïf-Eddine; Webster, Thomas J; Taufiq-Yap, Yun Hin

    2015-01-01

    Iron–manganese-doped sulfated zirconia nanoparticles with both Lewis and Brønsted acidic sites were prepared by a hydrothermal impregnation method followed by calcination at 650°C for 5 hours, and their cytotoxicity properties against cancer cell lines were determined. The characterization was carried out using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Brauner–Emmett–Teller (BET) surface area measurements, X-ray fluorescence, X-ray photoelectron spectroscopy, zeta size potential, and transmission electron microscopy (TEM). The cytotoxicity of iron–manganese-doped sulfated zirconia nanoparticles was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays against three human cancer cell lines (breast cancer MDA-MB231 cells, colon carcinoma HT29 cells, and hepatocellular carcinoma HepG2 cells) and two normal human cell lines (normal hepatocyte Chang cells and normal human umbilical vein endothelial cells [HUVECs]). The results suggest for the first time that iron–manganese-doped sulfated zirconia nanoparticles are cytotoxic to MDA-MB231 and HepG2 cancer cells but have less toxicity to HT29 and normal cells at concentrations from 7.8 μg/mL to 500 μg/mL. The morphology of the treated cells was also studied, and the results supported those from the cytotoxicity study in that the nanoparticle-treated HepG2 and MDA-MB231 cells had more dramatic changes in cell morphology than the HT29 cells. In this manner, this study provides the first evidence that iron–manganese-doped sulfated zirconia nanoparticles should be further studied for a wide range of cancer applications without detrimental effects on healthy cell functions. PMID:26425082

  4. The development of Zirconia and Copper toughened Alumina ceramic insert

    Science.gov (United States)

    Amalina Sabuan, Nur; Zolkafli, Nurfatini; Mebrahitom, A.; Azhari, Azmir; Mamat, Othman

    2018-04-01

    Ceramic cutting tools have been utilized in industry for over a century for its productivity and efficiency in machine tools and cutting tool material. However, due to the brittleness property the application has been limited. In order to manufacture high strength ceramic cutting tools, there is a need for suitable reinforcement to improve its toughness. In this case, copper (Cu) and zirconia (ZrO2) powders were added to investigate the hardness and physical properties of the developed composite insert. A uniaxial pre-forming process of the mix powder was done prior to densification by sintering at 1000 and 1300°C. The effect of the composition of the reinforcement on the hardness, density, shrinkage and microstructure of the inserts was investigated. It was found that an optimum density of 3.26 % and hardness 1385HV was obtained for composite of 10wt % zirconia and 10wt% copper at temperature 1000 °C.

  5. Effects of the presence of heavy rare earths on the stabilization of the zirconia ceramics - Yttria; Efeito da presenca de terras raras pesadas na estabilizacao das fases de ceramicas de zirconia - itria

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, D.R.R.; Fancio, E.; Menezes, C.A.B.; Ussui, V.; Bressiani, A.H.A.; Lima, N.B.; Paschoal, J.O.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: drlazar@net.ipen.br

    2000-07-01

    The use of Yttria concentrates has been proposed to substitute the high purity Yttria in the zirconia stabilization. The elements terbium, dysprosium, holmium, erbium and ytterbium, classified as heavy rare earths, are the main impurities in these concentrates, due to their presence in yttrium ores. Besides that, the chemical similarities of these elements need the utilization of complex purification techniques. Considering the importance of the employed dopant on zirconia crystallization, this work shows the quantitative phases analysis of powders and ceramics of stabilized zirconia doped with 3 and 9 mol % of high purity Yttria and with a 85 wt % Yttria concentrate. This determination was performed using the Rietveld refinement of the X-ray diffraction data. The powders were synthesized by the hydroxides coprecipitation route, which includes treatments with ethanol and butanol, drying, calcination at 800 deg C for 1 hour and milling in a ball mill and in an attrition mill. The ceramics pellets were pressed uniaxially and sintered at 1550 deg C for 1 hour. The powders and sintered pellets were also characterized by X-ray fluorescence analysis, laser diffraction, gas adsorption (B.E.T.), scanning electron microscopy and determination of apparent density by the Archimedes method. The results showed the same stabilization behavior when it was employed high purity Yttria and a concentrate of this oxide. It was also observed the predominating formation of tetragonal and cubic phases when the dopant concentration is 3 and 9 mol %, respectively. (author)

  6. Effect of conditioning methods on the microtensile bond strength of phosphate monomer-based cement on zirconia ceramic in dry and aged conditions

    NARCIS (Netherlands)

    Amaral, Regina; Ozcan, Mutlu; Valandro, Luiz Felipe; Balducci, Ivan; Bottino, Marco Antonio

    The objective of this study was to evaluate the durability of bond strength between a resin cement and aluminous ceramic submitted to various surface conditioning methods. Twenty-four blocks (5 X 5 X 4 mm 3) of a glass-in filtrated zirconia-alumina ceramic (inCeram Zirconia Classic) were randomly

  7. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia.

    Science.gov (United States)

    García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (pbrackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.

  8. Rugometric and microtopographic non-invasive inspection in dental-resin composites and zirconia ceramics

    Science.gov (United States)

    Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Pecho, Oscar E.; Rubiño, Manuel; Pérez, María. M.

    2013-11-01

    Surface properties are essential for a complete characterization of biomaterials. In restorative dentistry, the study of the surface properties of materials meant to replace dental tissues in an irreversibly diseased tooth is important to avoid harmful changes in future treatments. We have experimentally analyzed the surface characterization parameters of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental-resin. All the samples were submitted to rugometric and microtopographic non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to gather meaningful statistical parameters such as the average roughness (Ra), the root-mean-square deviation (Rq), the skewness (Rsk), and the kurtosis of the surface height distribution (Rku). For a comparison of the different biomaterials, the uncertainties associated to the surface parameters were also determined. With respect to Ra and Rq, significant differences between the composite shades were found. Among the dental resins, the nanocomposite presented the highest values and, for the zirconia ceramics, the pre-sintered sample registered the lowest ones. The composite performance may have been due to cluster-formation variations. Except for the composites with the surface treatment, the sample surfaces had approximately a normal distribution of heights. The surface treatment applied to the composites increased the average roughness and moved the height distribution farther away from the normal distribution. The zirconia-sintering process resulted in higher average roughness without affecting the height distribution.

  9. A randomized controlled clinical trial of 3-unit posterior zirconia-ceramic fixed dental prostheses (FDP) with layered or pressed veneering ceramics: 3-year results.

    Science.gov (United States)

    Naenni, Nadja; Bindl, Andreas; Sax, Caroline; Hämmerle, Christoph; Sailer, Irena

    2015-11-01

    The aim of the present pilot study was to test whether or not posterior zirconia-ceramic fixed dental prostheses (FDPs) with pressed veneering ceramic exhibit less chipping than FDPs with layered veneering ceramics. Forty patients (13 female, 27 male; mean age 54 years (range 26.1-80.7 years) in need of one maxillary or mandibular three-unit FDP in the second premolar or molar region were recruited and treated at two separate centers at the University of Zurich according to the same study protocol. The frameworks were made out of zirconia using a CAD/CAM system (Cerec Sirona, Bensheim, Germany). The patients were randomly assigned to either the test group (zirconia frameworks veneered with pressed ceramic; IPS e.max ZirPress, Ivoclar Vivadent AG, Schaan, Liechtenstein; n=20) or the control group (layered veneering ceramic; IPS e.max Ceram, Ivoclar Vivadent AG, Schaan, Liechtenstein; n=20). All FDPs were adhesively cemented and evaluated at baseline (i.e., cementation), at 6 months and at 1 and 3 years of clinical service. The survival of the reconstruction was recorded. The technical outcome was assessed using modified United States Public Health Services (USPHS) criteria. The biologic parameters analyzed at abutment teeth and analogous non-restored teeth included probing pocket depth (PPD), plaque control record (PCR), bleeding on probing (BOP), and tooth vitality (CO2). Data was descriptively analyzed and survival was calculated using Kaplan-Meier statistics. 36 patients (25 female, 11 male; mean age 52.3 years) with 18 test and 18 control FDPs were examined after a mean follow-up of 36 months (95% CI: 32.6-39.1 months). Comparison of groups was done by Crosstabulation showing even distribution of the respective restored teeth amidst the groups. Survival rate was 100% for both test and control FDPs. Chipping of the veneering ceramic tended to occur more frequently in test (n=8; 40%) than in control (n=4; 20%) FDPs, albeit not significantly (p=0.3). No further

  10. The role of powder preparation method in enhancing fracture toughness of zirconia ceramics with low alumina amount

    International Nuclear Information System (INIS)

    Danilenko, I.; Konstantinova, T.; Volkova, G.; Burkhovetski, V.; Glazunova, V.

    2015-01-01

    In most cases zirconia-alumina composites for scientific investigations and industry are prepared by means of mechanical mixing of powders, compaction and sintering. In our opinion, this is one of the reasons for the low values for fracture toughness of the sintered materials. In this study, we investigated the effect of nanopowder synthesis methods on the structure and mechanical properties of 3Y-TZP/alumina ceramic composites and determined the mechanisms involved in composite toughening. We show that the addition of a small amount of alumina (1 - 2 wt%) to zirconia ceramics has the potential to increase the fracture toughness of zirconia ceramics. The starting powders were obtained by means of co-precipitation and ball milling. It turned out that at equal density, bending strength and hardness values, the fracture toughness in ceramic composites sintered from co-precipitated nanopowders is higher in comparison with fracture toughness values in matrix material and traditional 3Y-TZP/alumina composites. We believed that the role of the crack deflection process in ceramic composites sintered from co-precipitated nanopowders increased significantly. This can be conditioned by means of a series of processes for composite structure formation during precipitation, crystallization, and sintering of nanopowders.

  11. The role of powder preparation method in enhancing fracture toughness of zirconia ceramics with low alumina amount

    Energy Technology Data Exchange (ETDEWEB)

    Danilenko, I.; Konstantinova, T.; Volkova, G.; Burkhovetski, V.; Glazunova, V. [NAS of Ukraine, Donetsk (Ukraine). Donetsk Inst. for Physics and Engineering

    2015-07-01

    In most cases zirconia-alumina composites for scientific investigations and industry are prepared by means of mechanical mixing of powders, compaction and sintering. In our opinion, this is one of the reasons for the low values for fracture toughness of the sintered materials. In this study, we investigated the effect of nanopowder synthesis methods on the structure and mechanical properties of 3Y-TZP/alumina ceramic composites and determined the mechanisms involved in composite toughening. We show that the addition of a small amount of alumina (1 - 2 wt%) to zirconia ceramics has the potential to increase the fracture toughness of zirconia ceramics. The starting powders were obtained by means of co-precipitation and ball milling. It turned out that at equal density, bending strength and hardness values, the fracture toughness in ceramic composites sintered from co-precipitated nanopowders is higher in comparison with fracture toughness values in matrix material and traditional 3Y-TZP/alumina composites. We believed that the role of the crack deflection process in ceramic composites sintered from co-precipitated nanopowders increased significantly. This can be conditioned by means of a series of processes for composite structure formation during precipitation, crystallization, and sintering of nanopowders.

  12. Radiation effects in cubic zirconia: A model system for ceramic oxides

    Science.gov (United States)

    Thomé, L.; Moll, S.; Sattonnay, G.; Vincent, L.; Garrido, F.; Jagielski, J.

    2009-06-01

    Ceramics are key engineering materials for electronic, space and nuclear industry. Some of them are promising matrices for the immobilization and/or transmutation of radioactive waste. Cubic zirconia is a model system for the study of radiation effects in ceramic oxides. Ion beams are very efficient tools for the simulation of the radiations produced in nuclear reactors or in storage form. In this article, we summarize the work made by combining advanced techniques (RBS/C, XRD, TEM, AFM) to study the structural modifications produced in ion-irradiated cubic zirconia single crystals. Ions with energies in the MeV-GeV range allow exploring the nuclear collision and electronic excitation regimes. At low energy, where ballistic effects dominate, the damage exhibits a peak around the ion projected range; it accumulates with a double-step process by the formation of a dislocation network. At high energy, where electronic excitations are favored, the damage profiles are rather flat up to several micrometers; the damage accumulation is monotonous (one step) and occurs through the creation and overlap of ion tracks. These results may be generalized to many nuclear ceramics.

  13. Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2012-01-01

    Potentiometric oxygen sensors with an internal reference electrode, which uses the equilibrium pO2 of the binary mixture of Ni/NiO as the reference, are demonstrated. The cells employ Pt or composite ceramics as the sensing electrode. The cells are fabricated by a flexible and potentially low cost...... and performance are highly reproducible. The composite ceramics, based on strontium doped manganite and yttria doped zirconia, are proven superior over Pt to serve as the electrode material....

  14. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Moradabadi, Ashkan [Department of Electrochemistry, Universität Ulm, Ulm (Germany); Roudsari, Sareh Esmaeily Sabet [Department of Optoelectonics, Universität Ulm, Ulm (Germany); Yekta, Bijan Eftekhari [School of Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Rahbar, Nima, E-mail: nrahbar@wpi.edu [Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30 × magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. - Highlights: • Understanding the dominant mechanism of bonding

  15. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Ha, Seung-Ryong

    2016-06-01

    Surface polishing or glazing may increase the appearance of depth of monolithic zirconia restorations. The purpose of this in vitro study was to investigate the effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. Forty-five monolithic zirconia specimens (16.3×16.4×2.0 mm) were divided into groups I to V, according to the number of colorings each received. Each group was then divided into 3 subgroups (n=3) according to the surface treatment: N=no treatment; P=polished; and G=glazed. CIElab color coordinates were obtained relative to D65 on a reflection spectrophotometer. The translucency parameter (TP) and opalescence parameter (OP) were calculated. One specimen per subgroups I and V was selected for evaluation of surface roughness (Ra) and was examined with scanning electron microscopy (SEM). Data were analyzed with 2-way ANOVA and pairwise comparisons (α=.05). Statistical powers were verified to evaluate results (α=.05). The interaction effects of surface treatments combined with the number of colorings were significant for TP, OP, and Ra (P.05), whereas glazing significantly decreased OP and Ra in most groups. SEM images demonstrated that surface treatments affected the surface texture of monolithic zirconia ceramics. Surface treatments combined with coloring strongly affect the surface texture of dental monolithic zirconia ceramics. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Three-unit posterior zirconia-ceramic fixed dental prostheses (FDPs) veneered with layered and milled (CAD-on) veneering ceramics: 1-year follow-up of a randomized controlled clinical trial.

    Science.gov (United States)

    Grohmann, Philipp; Bindl, Andreas; Hämmerle, Christoph; Mehl, Albert; Sailer, Irena

    2015-01-01

    The aim of this multicenter randomized controlled clinical trial was to test posterior zirconia-ceramic fixed dental prostheses (FDPs) veneered with a computer-aided design/computer- assisted manufacture (CAD/CAM) lithium disilicate veneering ceramic (CAD-on) and manually layered zirconia veneering ceramic with respect to survival of the FDPs, and technical and biologic outcomes. Sixty patients in need of one posterior three-unit FDP were included. The zirconia frameworks were produced with a CAD/CAM system (Cerec inLab 3D/Cerec inEOS inLab). Thirty FDPs were veneered with a CAD/CAM lithium disilicate veneering ceramic (Cad-on) (test) and 30 were veneered with a layered zirconia veneering ceramic (control). For the clinical evaluation at baseline, 6, and 12 months, the United States Public Health Service (USPHS) criteria were used. The biologic outcome was judged by comparing the plaque control record (PCR), bleeding on probing (BOP), and probing pocket depth (PPD). Data were statistically analyzed. Fifty-six patients were examined at a mean follow-up of 13.9 months. At the 1-year follow-up the survival rate was 100% in the test and in the control group. No significant differences of the technical outcomes occurred. Major chipping occurred in the control group (n = 3) and predominantly minor chipping in the test group (minor n = 2, major n = 1). No biologic problems or differences were found. Both types of zirconia-ceramic FDPs exhibited very good clinical outcomes without differences between groups. Chipping occurred in both types of FDPs at small amounts, yet the extension of the chippings differed. The test FDPs predominantly exhibited minor chipping, the control FDPs major chipping.

  17. Influence of heat treatment and veneering on the storage modulus and surface of zirconia ceramic

    NARCIS (Netherlands)

    Siavikis, G.; Behr, M.; van der Zel, J.M.; Feilzer, A.J.; Rosentritt, M.

    2011-01-01

    Objectives: Glass-ceramic veneered zirconia is used for the application as fixed partial dentures. The aim of this investigation was to evaluate whether the heat treatment during veneering, the application of glass-ceramic for veneering or long term storage has an influence on the storage modulus of

  18. Effect of coping thickness and background type on the masking ability of a zirconia ceramic.

    Science.gov (United States)

    Tabatabaian, Farhad; Taghizade, Fateme; Namdari, Mahshid

    2018-01-01

    The masking ability of zirconia ceramics as copings is unclear. The purpose of this in vitro study was to evaluate the effect of coping thickness and background type on the masking ability of a zirconia ceramic and to determine zirconia coping thickness cut offs for masking the backgrounds investigated. Thirty zirconia disks in 3 thickness groups of 0.4, 0.6, and 0.8 mm were placed on 9 backgrounds to measure CIELab color attributes using a spectrophotometer. The backgrounds included A1, A2, and A3.5 shade composite resin, A3 shade zirconia, nickel-chromium alloy, nonprecious gold-colored alloy, amalgam, black, and white. ΔE values were measured to determine color differences between the specimens on the A2 shade composite resin background and the same specimens on the other backgrounds. The color change (ΔE) values were compared with threshold values for acceptability (ΔE=5.5) and perceptibility (ΔE=2.6). Repeated measures ANOVA, the Bonferroni test, and 1-sample t tests were used to analyze data (α=.05). Mean ΔE values ranged between 1.44 and 7.88. The zirconia coping thickness, the background type, and their interaction affected the CIELab and ΔE values (Pmasking, the minimum thickness of a zirconia coping should be 0.4 mm for A1 and A3.5 shade composite resin, A3 shade zirconia, and nonprecious gold-colored alloy, 0.6 mm for amalgam, and 0.8 mm for nickel-chromium alloy. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Microstructural evolution of alumina-zirconia nanocomposites; Evolucao microestrutural de nanocompositos alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L. [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Pallone, E.M.J.A., E-mail: christianelago@yahoo.com.br [Universidade de Sao Paulo (USP), Pirassununga, Sao Paulo, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos

    2012-07-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  20. Comparison of Shade of Ceramic with Three Different Zirconia Substructures using Spectrophotometer.

    Science.gov (United States)

    Habib, Syed Rashid; Shiddi, Ibraheem F Al

    2015-02-01

    This study assessed how changing the Zirconia (Zr) substructure affected the color samples after they have been overlaid by the same shade of veneering ceramic. Three commercial Zr materials were tested in this study: Prettau(®) Zirconia (ZirKonZahn, Italy), Cercon (Dentsply, Germany) and InCoris ZI (Sirona, Germany). For each system, 15 disk-shaped specimens (10 × 1 mm) were fabricated. Three shades of A1, A2 and A3.5 of porcelain (IPS e.MaxCeram, IvoclarVivadent, USA) were used for layering the specimens. Five specimens from each type of Zr were layered with same shade of ceramic. Color measurements were recorderd by a spectrophotometer Color-Eye(®) 7000A (X-Rite, Grand Rapids, MI). Mean values of L, a, b color coordinates and ΔE were recorded and comparisons were made. Differences in the ΔE were recorded for the same porcelain shade with different Zr substructures and affected the color of the specimens (p < 0.01, ANOVA). The maximum difference between the ΔE values for the A1, A2 and A3.5 shades with three types of Zr substructures was found to be 1.59, 1.69 and 1.45 respectively. Multiple comparisons of the ΔE with PostHoc Tukey test revealed a statistically significant difference (p < 0.05) between the three types of Zr, except between Type 2 Zr and Type 3 Zr for the Shade A1. The mean values of L, a, b and ΔE for the Prettau(®) Zirconia substructure were found to be the least among the three types. The brand of Zr used influences the final color of the all ceramic Zr based restorations and this has clinical significance.

  1. Effects of SiC and MgO on aluminabased ceramic foams filters

    OpenAIRE

    CAO Da-li; ZHOU Jing-yi; JIN Yong-ming

    2007-01-01

    Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phas...

  2. Long-term Bond Strength between Layering Indirect Composite Material and Zirconia Coated with Silicabased Ceramics.

    Science.gov (United States)

    Fushiki, Ryosuke; Komine, Futoshi; Honda, Junichi; Kamio, Shingo; Blatz, Markus B; Matsumura, Hideo

    2015-06-01

    This study evaluated the long-term shear bond strength between an indirect composite material and a zirconia framework coated with silica-based ceramics, taking the effect of different primers into account. A total of 165 airborne-particle abraded zirconia disks were subjected to one of three pretreatments: no pretreatment (ZR-AB), airborne-particle abrasion of zirconia coated with feldspathic porcelain (ZR-PO-AB), and 9.5% hydrofluoric acid etching of zirconia coated with feldspathic porcelain (ZR-PO-HF). An indirect composite material (Estenia C&B) was then bonded to the zirconia disks after they were treated with one of the following primers: Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + Activator), Estenia Opaque Primer (EOP), Porcelain Liner M Liquid B (PLB), or no priming (CON, control group). Shear bond strength was tested after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass U-test (α = 0.05). For ZR-PO-AB and ZR-PO-HF specimens, bond strength was highest in the CPB+Activator group (25.8 MPa and 22.4 MPa, respectively). Bond strengths were significantly lower for ZR-AB specimens in the CON and PLB groups and for ZR-PO-AB specimens in the CON, CPB, and EOP groups. Combined application of a hydrophobic phosphate monomer (MDP) and silane coupling agent enhanced the long-term bond strength of indirect composite material to a zirconia coated with silica-based ceramics.

  3. Dilemmas in zirconia bonding: A review

    Directory of Open Access Journals (Sweden)

    Obradović-Đuričić Kosovka

    2013-01-01

    Full Text Available This article presents a literature review on the resin bond to zirconia ceramic. Modern esthetic dentistry has highly recognized zirconia, among other ceramic materials. Biocompatibility of zirconia, chemical and dimensional stability, excellent mechanical properties, all together could guarantee optimal therapeutical results in complex prosthodontic reconstruction. On the other hand, low thermal degradation, aging of zirconia as well as problematic bonding of zirconia framework to dental luting cements and tooth structures, opened the room for discussion concerning their clinical durability. The well known methods of mechanical and chemical bonding used on glass-ceramics are not applicable for use with zirconia. Therefore, under critical clinical situations, selection of the bonding mechanism should be focused on two important points: high initial bond strength value and long term bond strength between zirconia-resin interface. Also, this paper emphases the use of phosphate monomer luting cements on freshly air-abraded zirconia as the simplest and most effective way for zirconia cementation procedure today.

  4. Comparison of three and four point bending evaluation of two adhesive bonding systems for glass-ceramic zirconia bi-layered ceramics.

    Science.gov (United States)

    Gee, C; Weddell, J N; Swain, M V

    2017-09-01

    To quantify the adhesion of two bonding approaches of zirconia to more aesthetic glass-ceramic materials using the Schwickerath (ISO 9693-2:2016) three point bend (3PB) [1] test to determine the fracture initiation strength and strain energy release rate associated with stable crack extension with this test and the Charalamabides et al. (1989) [2] four point bend (4PB) test. Two glass-ceramic materials (VITABLOCS Triluxe forte, Vita Zahnfabrik, Germany and IPS.emax CAD, Ivoclar Vivadent, Liechtenstein) were bonded to sintered zirconia (VITA InCeram YZ). The former was resin bonded using a dual-cure composite resin (Panavia F 2.0, Kuraray Medical Inc., Osaka, Japan) following etching and silane conditioning, while the IPS.emax CAD was glass bonded (IPS e.max CAD Crystall/Connect) during crystallization of the IPS.emax CAD. Specimens (30) of the appropriate dimensions were fabricated for the Schwickerath 3PB and 4PB tests. Strength values were determined from crack initiation while strain energy release rate values were determined from the minima in the force-displacement curves with the 3PB test (Schneider and Swain, 2015) [3] and for 4PB test from the plateau region of stable crack extension. Strength values for the resin and glass bonded glass ceramics to zirconia were 22.20±6.72MPa and 27.02±3.49MPa respectively. The strain energy release rates for the two methods used were very similar and for the glass bonding, (4PB) 15.14±5.06N/m (or J/m 2 ) and (3PB) 16.83±3.91N/m and resin bonding (4PB) 8.34±1.93N/m and (3PB) 8.44±2.81N/m respectively. The differences in strength and strain energy release rate for the two bonding approaches were statistically significant (pceramics to zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Comparative analysis of two measurement methods for marginal fit in metal-ceramic and zirconia posterior FPDs.

    Science.gov (United States)

    Gonzalo, Esther; Suárez, María J; Serrano, Benjamin; Lozano, José F L

    2009-01-01

    The purpose of this study was to compare two measurement methods for the external marginal fit of zirconia posterior fixed partial dentures (FPDs) fabricated using computer-aided design/manufacturing technology and metal-ceramic posterior FPDs fabricated using the conventional lost-wax technique. The null hypothesis was that there would be no differences between the measurement methods. Forty standardized steel specimens were prepared to receive posterior three-unit FPDs. Specimens were divided into four groups (n = 10): (1) metal-ceramic, (2) Procera Bridge Zirconia, (3) Lava AllCeramic System, and (4) Vita In-Ceram YZ 2000. All FPDs were luted with glass-ionomer cement (Ketac Cem EasyMix, 3M ESPE). Two measurement methods were used to analyze marginal fit: an image analysis (IA) program and a scanning electron microscope (SEM) (JEOL JSM-6400) with magnifications of 340 and 31,000, respectively. Marginal fit was measured at the same point on each abutment. Significant interaction was observed between measurement method and material (P = .0019). Therefore, the measurement method is not independent of the restoration material. Differences among groups were observed for IA (P = .0001) and SEM (P = .0013). Significant differences were observed for the Procera (P = .0050) and metal-ceramic (P = .0039) specimen groups when both measurement methods were evaluated separately. Accuracy of fit achieved by the four groups analyzed was within the range of clinical acceptance, yielding Procera Bridge Zirconia to have the best marginal fit using both measurement methods.

  6. The isothermal conductivity improvement in zirconia-based ceramics under 24 GHz microwave heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Teranishi, Takashi; Hayashi, Hidetaka

    2014-01-01

    Abstract Under 24-GHz millimetre-wave irradiation heating ionic conductivity of zirconia base ceramics was up to 20 times higher than that of a conventionally-heated sample at the same temperature of 400 °C. The degree of enhancement could be altered by changing the stabilising atom from Y to Yb. Enhancement of ionic conduction was prominent in the setup condition of larger self-heating ratio and larger MMW absorbing materials. The isothermal improvement of ionic conductivity under MMW irradiation would be ascribed to the non-thermal effect. - Highlights: • Under millimetre-wave irradiation heating ionic conductivity of zirconia ceramics was examined. • It was up to 20 times higher than that of a conventionally heating condition. • The activation process was examined in relation to the non-thermal effects. • The operation temperature could be lowered while maintaining the ionic conductivity

  7. Evaluation of surface topography of zirconia ceramic after Er:YAG laser etching.

    Science.gov (United States)

    Turp, Volkan; Akgungor, Gokhan; Sen, Deniz; Tuncelli, Betul

    2014-10-01

    The aim of this study is to evaluate the effect of Erbium: yttrium-aluminum-garnet (Er:YAG) laser with different pulse lengths on the surface roughness of zirconia ceramic and airborne particle abrasion. Er:YAG laser treatment is expected to be an alternative surface treatment method for zirconia ceramics; however, the parameters and success of the application are not clear. One hundred and forty zirconia discs (diameter, 10 mm; thickness, 1.2 mm) were prepared by a computer-aided design and computer-aided manufacturing (CAD/CAM) system according to the manufacturer's instructions. Specimens were divided into 14 groups (n=10). One group was left as polished control, one group was air-particle abraded with Al2O3 particles. For the laser treatment groups, laser irradiation was applied at three different pulse energy levels (100, 200, and 300 mJ) and for each energy level at four different pulse lengths; 50, 100, 300, and 600 μs. Surface roughness was evaluated with an optical profilometer and specimens were evaluated with scanning electron microscopy (SEM). Data was analyzed with one way ANOVA and Tukey multiple comparison tests (α=0.05). For the 100 and 200 mJ laser etching groups, 50 and 100 μs laser duration resulted in significantly higher surface roughness compared with air-particle abrasion (p0.05). For the 300 mJ laser etching groups; there was no statistically significant difference among the Ra values of 50 μs, 100 μs, 300 μs, 600 μs, and air-particle abrasion groups (p>0.05). In order to increase surface roughness and promote better bonding to resin luting agents, Er:YAG laser etching may be an alternative to air-particle abrasion for zirconia ceramics. However, high levels of pulse energy and longer pulse length may have an adverse effect on micromechanical locking properties, because of a decrease in surface roughness.

  8. Improvement of the steel quality through zirconia base ceramic filter

    International Nuclear Information System (INIS)

    Santos, Benedito M.; Foschini, Cesar R.; Santos, Ieda M.G.; Pinheiro, Adriano S.; Paskocimas, Carlos A.; Leite, Edson R.; Longo, Elson

    1997-01-01

    At the end of production, the steel presents inclusions own to the making process. Ceramics filters, with controlled porosity, are being produced to eliminate the impurities, so as to increase the good quality steel production. This work studies the optimization of the zirconia filters composition and production for siderurgical processes application. The study was done through the granulometric control, using BET, XRD and Hg Porosimetry. (author)

  9. Effect of testing methods on the bond strength of resin to zirconia-alumina ceramic : microtensile versus shear test

    NARCIS (Netherlands)

    Valandro, Luiz F.; Ozcan, Mutlu; Amaral, Regina; Vanderlei, Aleska; Bottino, Marco A.

    2008-01-01

    This study tested the bond strength of a resin cement to a glass-infiltrated zirconia-alumina ceramic after three conditioning methods and using two test methods (shear-SBS versus microtensile-MTBS). Ceramic blocks for MTBS and ceramic disks for SBS were fabricated. Three surface conditioning (SC)

  10. Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses.

    Science.gov (United States)

    He, X; Zhang, Y Z; Mansell, J P; Su, B

    2008-07-01

    Zirconia toughened alumina (ZTA) has been regarded as the next generation orthopedic graft material due to its excellent mechanical properties and biocompatibility. Porous ZTA ceramics with good interconnectivity can potentially be used as bone grafts for load-bearing applications. In this work, three-dimensional (3D) interconnected porous ZTA ceramics were fabricated using a direct foaming method with egg white protein as binder and foaming agent. The results showed that the porous ZTA ceramics possessed a bimodal pore size distribution. Their mechanical properties were comparable to those of cancellous bone. Due to the bio-inertness of alumina and zirconia ceramics, surface bioactivation of the ZTA foams was carried out in order to improve their bioactivity. A simple NaOH soaking method was employed to change the surface chemistry of ZTA through hydroxylation. Treated samples were tested by conducting osteoblast-like cell culture in vitro. Improvement on cells response was observed and the strength of porous ZTA has not been deteriorated after the NaOH treatment. The porous 'bioactivated' ZTA ceramics produced here could be potentially used as non-degradable bone grafts for load-bearing applications.

  11. The effect of various primers on shear bond strength of zirconia ceramic and resin composite.

    Science.gov (United States)

    Sanohkan, Sasiwimol; Kukiattrakoon, Boonlert; Larpboonphol, Narongrit; Sae-Yib, Taewalit; Jampa, Thibet; Manoppan, Satawat

    2013-11-01

    To determine the in vitro shear bond strengths (SBS) of zirconia ceramic to resin composite after various primer treatments. Forty zirconia ceramic (Zeno, Wieland Dental) specimens (10 mm in diameter and 2 mm thick) were prepared, sandblasted with 50 μm alumina, and divided into four groups (n = 10). Three experimental groups were surface treated with three primers; CP (RelyX Ceramic Primer, 3M ESPE), AP (Alloy Primer, Kuraray Medical), and MP (Monobond Plus, Ivoclar Vivadent AG). One group was not treated and served as the control. All specimens were bonded to a resin composite (Filtek Supreme XT, 3M ESPE) cylinder with an adhesive system (Adper Scotchbond Multi-Purpose Plus Adhesive, 3M ESPE) and then stored in 100% humidity at 37°C for 24 h before SBS testing in a universal testing machine. Mean SBS (MPa) were analyzed with one-way analysis of variance (ANOVA) and the Tukey's Honestly Significant Difference (HSD) test (α = 0.05). Group AP yielded the highest mean and standard deviation (SD) value of SBS (16.8 ± 2.5 MPa) and Group C presented the lowest mean and SD value (15.4 ± 1.6 MPa). The SBS did not differ significantly among the groups (P = 0.079). Within the limitations of this study, the SBS values between zirconia ceramic to resin composite using various primers and untreated surface were not significantly different.

  12. Electrical conductivity of zirconia and yttrium-doped zirconia from Indonesian local zircon as prospective material for fuel cells

    International Nuclear Information System (INIS)

    Apriany, Karima; Permadani, Ita; Rahmawati, Fitria; Syarif, Dani G.; Soepriyanto, Syoni

    2016-01-01

    In this research, zirconium dioxide, ZrO 2 , was synthesized from high-grade zircon sand that was founded from Bangka Island, Sumatra, Indonesia. The zircon sand is a side product of Tin mining plant industry. The synthesis was conducted by caustic fusion method with considering definite stoichiometric mole at every reaction step. Yttrium has been doped into the prepared zirconia by solid state reaction. The prepared materials were then being analyzed by X-ray diffraction equipped with Le Bail refinement to study its crystal structure and cell parameters. Electrical conductivity was studied through impedance measurement at a frequency range of 20 Hz- 5 MHz. Morphological analysis was conducted through Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX) for elemental analysis. The results show that the prepared yttrium stabilized zirconia, YSZ, was crystallized in the cubic structure with a space group of P42/NMC. The sintered zirconia and yttrium stabilized zirconia at 8 mol% of yttrium ions (8YSZ) show dense surface morphology with a grain size less than 10 pm. Elemental analysis on the sintered zirconia and 8YSZ show that sintering at 1500°C could eliminate the impurities, and the purity became 81.30%. Impedance analysis shows that ZrO 2 provide grain and grain boundary conductivity meanwhile 8YSZ only provide grain mechanism. The yttrium doping enhanced the conductivity up to 1.5 orders. The ionic conductivity of the prepared 8YSZ is categorized as a good material with conductivity reach 7.01 x10 -3 at 700 °C. The ionic conductivities are still lower than commercial 8YSZ at various temperature. It indicates that purity of raw material might significantly contribute to the electrical conductivity. (paper)

  13. Production of Yttria-doped zirconia by hydrothermal synthesis: thermodynamical analysis

    International Nuclear Information System (INIS)

    Nascimento Dias, A.J. do; Ogasawara, T.

    1993-01-01

    After a short review of the literature on Hydrothermal Synthesis of Zirconia, the computation and construction of the Standard Hydrogen Scale Potential versus pH diagrams have been performed starting from data supplied by Thermodynamic Tables. Diagrams have been developed for several temperatures (in the range 298.15 K up to 573.15 K) and for activities of the Y and Zr in the aqueous solution ranging from 0,0001 M up to 1 M. The resultant diagrams have been analyzed and interpreted. The results gotten from the study give good elucidation of the phenomena taking place in the hydrothermal treatment of the Zirconia Powders inside an autoclave at temperatures between 473.15 K and 573.15 K. The conditions for crystallization of the doped zirconia at temperatures lower than 573.15 K are better visualized. (author)

  14. Influence of Surface Conditioning Protocols on Reparability of CAD/CAM Zirconia-reinforced Lithium Silicate Ceramic.

    Science.gov (United States)

    Al-Thagafi, Rana; Al-Zordk, Walid; Saker, Samah

    2016-01-01

    To test the effect of surface conditioning protocols on the reparability of CAD/CAM zirconia-reinforced lithium silicate ceramic compared to lithium-disilicate glass ceramic. Zirconia-reinforced lithium silicate ceramic (Vita Suprinity) and lithium disilicate glass-ceramic blocks (IPS e.max CAD) were categorized into four groups based on the surface conditioning protocol used. Group C: no treatment (control); group HF: 5% hydrofluoric acid etching for 60 s, silane (Monobond-S) application for 60 s, air drying; group HF-H: 5% HF acid etching for 60 s, application of silane for 60 s, air drying, application of Heliobond, light curing for 20 s; group CO: sandblasting with CoJet sand followed by silanization. Composite resin (Tetric EvoCeram) was built up into 4 x 6 x 3 mm blocks using teflon molds. All specimens were subjected to thermocycling (5000x, 5°C to 55°C). The microtensile bond strength test was employed at a crosshead speed of 1 mm/min. SEM was employed for evaluation of all the debonded microbars, the failure type was categorized as either adhesive (failure at adhesive layer), cohesive (failure at ceramic or composite resin), or mixed (failure between adhesive layer and substrate). Two-way ANOVA and the Tukey's HSD post-hoc test were applied to test for significant differences in bond strength values in relation to different materials and surface pretreatment (p ceramic types used (p ceramics and lithium-disilicate glass ceramic could be improved when ceramic surfaces are sandblasted with CoJet sand followed by silanization.

  15. Grinding mechanism of zirconia toughened alumina

    International Nuclear Information System (INIS)

    Tsukuda, A.; Kondo, Y.; Yokota, K.

    1998-01-01

    In the grinding process, physical properties of ceramics affect both grinding mechanism and quality of ground surface. In this study we focused on fracture toughness of ceramics and the effect on grinding. A grinding test was carried out by single point grinding for ten different zirconia toughened alumina ceramics with different monoclinic zirconia contents. Effects of zirconia contents on the grinding mechanism and crack initiation were discussed. Copyright (1998) AD-TECH - International Foundation for the Advancement of Technology Ltd

  16. Effect of an experimental zirconia-silica coating technique on micro tensile bond strength of zirconia in different priming conditions

    NARCIS (Netherlands)

    Chen, C.; Kleverlaan, C.J.; Feilzer, A.J.

    2012-01-01

    Objectives This study aimed to evaluate the adhesive properties of a MDP-containing resin cement to a colored zirconia ceramic, using an experimental zirconia-silica coating technique with different priming conditions. Methods 18 zirconia ceramic discs (Cercon base colored) were divided into two

  17. Effects of SiC and MgO on aluminabased ceramic foams filters

    Directory of Open Access Journals (Sweden)

    CAO Da-li

    2007-11-01

    Full Text Available Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phases after 1 hour sintering at 1 500 consist of alumina, silicon carbide, spinel and mullite.

  18. Towards long lasting zirconia-based composites for dental implants: Transformation induced plasticity and its consequence on ceramic reliability.

    Science.gov (United States)

    Reveron, Helen; Fornabaio, Marta; Palmero, Paola; Fürderer, Tobias; Adolfsson, Erik; Lughi, Vanni; Bonifacio, Alois; Sergo, Valter; Montanaro, Laura; Chevalier, Jérôme

    2017-01-15

    Zirconia-based composites were developed through an innovative processing route able to tune compositional and microstructural features very precisely. Fully-dense ceria-stabilized zirconia ceramics (84vol% Ce-TZP) containing equiaxed alumina (8vol%Al 2 O 3 ) and elongated strontium hexa-aluminate (8vol% SrAl 12 O 19 ) second phases were obtained by conventional sintering. This work deals with the effect of the zirconia stabilization degree (CeO 2 in the range 10.0-11.5mol%) on the transformability and mechanical properties of Ce-TZP-Al 2 O 3 -SrAl 12 O 19 materials. Vickers hardness, biaxial flexural strength and Single-edge V-notched beam tests revealed a strong influence of ceria content on the mechanical properties. Composites with 11.0mol% CeO 2 or above exhibited the classical behaviour of brittle ceramics, with no apparent plasticity and very low strain to failure. On the contrary, composites with 10.5mol% CeO 2 or less showed large transformation-induced plasticity and almost no dispersion in strength data. Materials with 10.5mol% of ceria showed the highest values in terms of biaxial bending strength (up to 1.1GPa) and fracture toughness (>10MPa√m). In these ceramics, as zirconia transformation precedes failure, the Weibull modulus was exceptionally high and reached a value of 60, which is in the range typically reported for metals. The results achieved demonstrate the high potential of using these new strong, tough and stable zirconia-based composites in structural biomedical applications. Yttria-stabilized (Y-TZP) zirconia ceramics are increasingly used for developing metal-free restorations and dental implants. Despite their success related to their excellent mechanical resistance, Y-TZP can undergo Low Temperature Degradation which could be responsible for restoration damage or even worst the failure of the implant. Current research is focusing on strategies to improve the LTD resistance of Y-TZP or to develop alternative composites with better

  19. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Science.gov (United States)

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pglass ceramic, and enamel (Pglass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Effects of different lasers and particle abrasion on surface characteristics of zirconia ceramics.

    Directory of Open Access Journals (Sweden)

    Sakineh Arami

    2014-04-01

    Full Text Available The aim of this study was to assess the surface of yttrium-stabilized tetragonal zirconia (Y-TZP after surface treatment with lasers and airborne-particle abrasion.First, 77 samples of presintered zirconia blocks measuring 10 × 10 × 2 mm were made, sintered and polished. Then, they were randomly divided into 11 groups (n=7 and received surface treatments namely, Er:YAG laser irradiation with output power of 1.5, 2 and 2.5 W, Nd:YAG laser with output power of 1.5, 2 and 2.5 W, CO2 laser with output power of 3, 4 and 5 W, AL2O3 airborne-particle abrasion (50μ and no treatment (controls. Following treatment, the parameters of surface roughness such as Ra, Rku and Rsk were evaluated using a digital profilometer and surface examination was done by SEM.According to ANOVA and Tukey's test, the mean surface roughness (Ra after Nd:YAG laser irradiation at 2 and 2.5 W was significantly higher than other groups. Roughness increased with increasing output power of Nd:YAG and CO2 lasers. Treated surfaces by Er:YAG laser and air abrasion showed similar surface roughness. SEM micrographs showed small microcracks in specimens irradiated with Nd:YAG and CO2 lasers.Nd:YAG laser created a rough surface on the zirconia ceramic with many microcracks; therefore, its use is not recommended. Air abrasion method can be used with Er:YAG laser irradiation for the treatment of zirconia ceramic.

  1. Bulk and Interface Thermodynamics of Calcia-, and Yttria-doped Zirconia Ceramics: Nanograined Phase Stability

    Science.gov (United States)

    Drazin, John Walter

    Calcia-, and yttria- doped zirconia powders and samples are essential systems in academia and industry due to their observed bulk polymorphism. Pure zirconia manifests as Baddeleyite, a monoclinic structured mineral with 7-fold coordination. This bulk form of zirconia has little application due to its asymmetry. Therefore dopants are added to the grain in-order to induce phase transitions to either a tetragonal or cubic polymorph with the incorporation of oxygen vacancies due to the dopant charge mis-match with the zirconia matrix. The cubic polymorph has cubic symmetry such that these samples see applications in solid oxide fuel cells (SOFCs) due to the high oxygen vacancy concentrations and high ionic mobility at elevated temperatures. The tetragonal polymorph has slight asymmetry in the c-axis compared to the a-axis such that the tetragonal samples have increased fracture toughness due to an impact induced phase transformation to a cubic structure. These ceramic systems have been extensively studied in academia and used in various industries, but with the advent of nanotechnology one can wonder whether smaller grain samples will see improved characteristics similar to their bulk grain counterparts. However, there is a lack of data and knowledge of these systems in the nano grained region which provides us with an opportunity to advance the theory in these systems. The polymorphism seen in the bulk grains samples is also seen in the nano-grained samples, but at slightly distinct dopant concentrations. The current theory hypothesizes that a surface excess, gamma (J/m 2), can be added to the Gibbs Free energy equation to account for the additional free energy of the nano-grain atoms. However, these surface energies have been difficult to measure and therefore thermodynamic data on these nano-grained samples have been sparse. Therefore, in this work, I will use a well established water adsorption microcalorimetry apparatus to measure the water coverage isotherms

  2. Influence of zirconia framework thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-04-01

    Framework design is reported to influence chipping in zirconia-based restorations, which is an important cause of failure of such restorations. Residual stress profile in the veneering ceramic after the manufacturing process is an important predictive factor of the mechanical behavior of the material. The objective of this study is to investigate the influence of framework thickness on the stress profile measured in zirconia-based structures. The stress profile was measured with the hole-drilling method in bilayered disc samples of 20mm diameter with a 1.5 mm thick veneering ceramic layer. Six different framework thicknesses from 0.5 mm to 3 mm were studied. Two different cooling procedures were also investigated. Compressive stresses were observed in the surface, and tensile stresses in the depth of most of the samples. The slow cooling procedure was found to promote the development of interior tensile stresses, except for the sample with a 3mm thick framework. With the tempering procedure, samples with a 1.5 mm thick framework exhibited the most favorable stress profile, while thicker and thinner frameworks exhibited respectively in surface or interior tensile stresses. The measurements performed highlight the importance of framework thickness, which determine the nature of stresses and can explain clinical failures encountered, especially with thin frameworks. The adequate ratio between veneering ceramic and zirconia is hard to define, restricting the range of indications of zirconia-based restorations until a better understanding of such a delicate veneering process is achieved. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Defect ordering in aliovalently doped cubic zirconia from first principles

    International Nuclear Information System (INIS)

    Bogicevic, A.; Wolverton, C.; Crosbie, G.M.; Stechel, E.B.

    2001-01-01

    Defect ordering in aliovalently doped cubic-stabilized zirconia is studied using gradient corrected density-functional calculations. Intra- and intersublattice ordering interactions are investigated for both cation (Zr and dopant ions) and anion (oxygen ions and vacancies) species. For yttria-stabilized zirconia, the crystal structure of the experimentally identified, ordered compound δ-Zr 3 Y 4 O 12 is established, and we predict metastable zirconia-rich ordered phases. Anion vacancies repel each other at short separations, but show an energetic tendency to align as third-nearest neighbors along directions. Calculations with divalent (Be, Mg, Ca, Sr, Ba) and trivalent (Y, Sc, B, Al, Ga, In) oxides show that anion vacancies prefer to be close to the smaller of the cations (Zr or dopant ion). When the dopant cation is close in size to Zr, the vacancies show no particular preference, and are thus less prone to be bound preferentially to any particular cation type when the vacancies traverse such oxides. This ordering tendency offers insight into the observed high conductivity of Y 2 O 3 - and Sc 2 O 3 -stabilized zirconia, as well as recent results using, e.g., lanthanide oxides. The calculations point to In 2 O 3 as a particularly promising stabilizer for high ionic conductivity. Thus we are able to directly link (thermodynamic) defect ordering to (kinetic) ionic conductivity in cubic-stabilized zirconia using first-principles atomistic calculations

  4. Phase stability in yttria-stabilized zirconia from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Carbogno, Christian; Scheffler, Matthias [Materials Department, University of California, Santa Barbara, CA (United States); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Levi, Carlos G.; Van de Walle, Chris G. [Materials Department, University of California, Santa Barbara, CA (United States)

    2012-07-01

    Zirconia based ceramics are of pivotal importance for a variety of industrial technologies, e.g., for thermal barrier coatings in gas and airplane turbines. Naturally, the stability of such coatings at elevated temperatures plays a critical role in these applications. It is well known that an aliovalent doping of tetragonal ZrO{sub 2} with yttria, which induces oxygen vacancies due to charge conservation, increases its thermodynamic stability. However, the atomistic mechanisms that determine the phase stability of such yttria-stabilized Zirconia (YSZ) coatings are not yet fully understood. In this work, we use density functional theory calculations to assess the electronic structure of the different YSZ polymorphs at various levels of doping. With the help of population analysis schemes, we are able to unravel the intrinsic mechanisms that govern the interaction in YSZ and that can so explain the relative stabilities of the various polymorphs. We critically compare our results to experimental measurements and discuss the implications of our findings with respect to other oxides.

  5. Production of mullite-zirconia ceramics composites by 'In situ' reaction

    International Nuclear Information System (INIS)

    Melo, F.C.L. de; Cairo, C.A.A.; Piorino Neto, F.; Devezas, T.C.

    1987-01-01

    Mullita-zirconia ceramic composites were produced by 'In situ' reaction of alumina and brazilian zircon. The ideal curve of thermal treatment (reaction + sinterization) was determined for the obtention of composites of maximum mechanical resistence. The retained fraction of tetragonal fase was evaluated by X-ray difraction and correlated with the values of mechanical resistence obtained by different treatment curves. The performance of the developed composites under corrosion and thermal shock was evaluated by glass casting. (Author) [pt

  6. [Influence of coping material selection and porcelain firing on marginal and internal fit of computer-aided design/computer- aided manufacturing of zirconia and titanium ceramic implant-supported crowns].

    Science.gov (United States)

    Cuiling, Liu; Liyuan, Yang; Xu, Gao; Hong, Shang

    2016-06-01

    This study aimed to investigate the influence of coping material and porcelain firing on the marginal and internal fit of computer-aided design/computer-aided manufacturing (CAD/CAM) of zirconia ceramic implant- and titanium ceramic implant-supported crowns. Zirconia ceramic implant (group A, n = 8) and titanium metal ceramic implant-supported crowns (group B, n = 8) were produced from copings using the CAD/CAM system. The marginal and internal gaps of the copings and crowns were measured by using a light-body silicone replica technique combined with micro-computed tomography scanning to obtain a three-dimensional image. Marginal gap (MG), horizontal marginal discrepancy (HMD), and axial wall (AW) were measured. Statistical analyses were performed using SPSS 17.0. Prior to porcelain firing, the measurements for MG, HMD, and AW of copings in group A were significantly larger than those in group B (P 0.05). Porcelain firing significantly reduced MG (P 0.05). The marginal fits of CAD/CAM zirconia ceramic implant-supported crowns were superior to those of CAD/CAM titanium ceramic-supported crowns. The fits of both the CAD/CAM zirconia ceramic implant- and titanium ceramic implant-supported crowns were obviously influenced by porcelain firing.

  7. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  8. Fracture toughness of zirconia ceramic crowns made by feather-edge tooth preparation design

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2012-01-01

    Full Text Available Background/Aim. Fracture toughness determines functional crown strenght and prevents damages on ceramics during mastication. There is a lack of relevant literature data about fracture toughness of crowns made by feather-edge preparation. Mechanical testing of ceramic samples is supposed to show if feather-edge tooth preparation is a successful method for making ceramic crowns without any risk of reduction of their mechanical properties. This research was done to establish effects of feather-edge tooth preparation on fracture toughness of single zirconia ceramic crowns. Methods. The research was performed as an experimental study. Sixty (60 ceramic crowns were made on non-carious extracted human premolars. Thirty (30 crowns were made on the basis of feather-edge preparation (experimental group I. The group II included 30 crowns made on 1 mm rounded shoulder. Crowns fabrication was executed on a copy mill production system “Zirkonzahn” (Zirkonzahn GMBH, Gais, Germany. The spherical compression test was used to determine fracture toughness, using 6 mm diameter ceramic ball. Fracture load for damaging ceramic crown was recorded on a universal testing machine - Zwick, type 1464, with the speed of 0.05 mm/min. Results. The results of this research introduced significant differences between fracture toughness of ceramic samples in every examined group. However, fracture toughness of crowns from both group was above 2 000 N, what was double beyond a recommended value. The mean value of fracture toughness in the feather-edge group was 2 090 N, and in shoulder group it was 2 214 N. Conclusion. This research showed a high fracture toughness of zirconia crowns made on feather-edge preparation. The examined crowns showed a fracture resistance at a sufficient distance in relation to the minimum values of functional loads. Further research of functional loads of these crown is necessary, as well as research of marginal adaptation of cemented crowns and

  9. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  10. Mixed conductivity, structural and microstructural characterization of titania-doped yttria tetragonal zirconia polycrystalline/titania-doped yttria stabilized zirconia composite anode matrices

    International Nuclear Information System (INIS)

    Colomer, M.T.; Maczka, M.

    2011-01-01

    Taking advantage of the fact that TiO 2 additions to 8YSZ cause not only the formation of a titania-doped YSZ solid solution but also a titania-doped YTZP solid solution, composite materials based on both solutions were prepared by solid state reaction. In particular, additions of 15 mol% of TiO 2 give rise to composite materials constituted by 0.51 mol fraction titania-doped yttria tetragonal zirconia polycrystalline and 0.49 mol fraction titania-doped yttria stabilized zirconia (0.51TiYTZP/0.49TiYSZ). Furthermore, Y 2 (Ti 1-y Zr y ) 2 O 7 pyrochlore is present as an impurity phase with y close to 1, according to FT-Raman results. Lower and higher additions of titania than that of 15 mol%, i.e., x=0, 5, 10, 20, 25 and 30 mol% were considered to study the evolution of 8YSZ phase as a function of the TiO 2 content. Furthermore, zirconium titanate phase (ZrTiO 4 ) is detected when the titania content is equal or higher than 20 mol% and this phase admits Y 2 O 3 in solid solution according to FE-SEM-EDX. The 0.51TiYTZP/0.49TiYSZ duplex material was selected in this study to establish the mechanism of its electronic conduction under low oxygen partial pressures. In the pO 2 range from 0.21 to 10 -7.5 atm. the conductivity is predominantly ionic and constant over the range and its value is 0.01 S/cm. The ionic plus electronic conductivity is 0.02 S/cm at 1000 o C and 10 -12.3 atm. Furthermore, the onset of electronic conductivity under reducing conditions exhibits a -1/4 pO 2 dependence. Therefore, it is concluded that the n-type electronic conduction in the duplex material can be due to a small polaron-hopping between Ti 3+ and Ti 4+ . -- Graphical abstract: FE-SEM micrograph of a polished and thermal etched surface of a Ti-doped YTZP/Ti-doped YSZ composite material. Display Omitted Research highlights: → Ti-doped YTZP/Ti-doped YSZ composite materials are mixed conductors under low partial pressures. → From 5 mol% of TiO 2 , Y 2 (Ti 1-y ,Zr y ) 2 O 7 pyrochlore is

  11. Comparison of shear test methods for evaluating the bond strength of resin cement to zirconia ceramic.

    Science.gov (United States)

    Kim, Jae-Hoon; Chae, Soyeon; Lee, Yunhee; Han, Geum-Jun; Cho, Byeong-Hoon

    2014-11-01

    This study compared the sensitivity of three shear test methods for measuring the shear bond strength (SBS) of resin cement to zirconia ceramic and evaluated the effects of surface treatment methods on the bonding. Polished zirconia ceramic (Cercon base, DeguDent) discs were randomly divided into four surface treatment groups: no treatment (C), airborne-particle abrasion (A), conditioning with Alloy primer (Kuraray Medical Co.) (P) and conditioning with Alloy primer after airborne-particle abrasion (AP). The bond strengths of the resin cement (Multilink N, Ivoclar Vivadent) to the zirconia specimens of each surface treatment group were determined by three SBS test methods: the conventional SBS test with direct filling of the mold (Ø 4 mm × 3 mm) with resin cement (Method 1), the conventional SBS test with cementation of composite cylinders (Ø 4 mm × 3 mm) using resin cement (Method 2) and the microshear bond strength (μSBS) test with cementation of composite cylinders (Ø 0.8 mm × 1 mm) using resin cement (Method 3). Both the test method and the surface treatment significantly influenced the SBS values. In Method 3, as the SBS values increased, the coefficients of variation decreased and the Weibull parameters increased. The AP groups showed the highest SBS in all of the test methods. Only in Method 3 did the P group show a higher SBS than the A group. The μSBS test was more sensitive to differentiating the effects of surface treatment methods than the conventional SBS tests. Primer conditioning was a stronger contributing factor for the resin bond to zirconia ceramic than was airborne-particle abrasion.

  12. Effects of grinding on properties of Mg-PSZ ceramics prepared by the surface enrichment of zirconia powders

    International Nuclear Information System (INIS)

    Deb, S.; Das, S.R.

    1995-01-01

    Commercial grade zirconia powders of mean particle size of 3.21 microns were super-ground in wet condition in alcoholic medium in a Planetary Ball-Mill for 12-hours using a zirconia pot as well as balls, in order to avoid contaminations from the grinding media. Sedigraph analysis data show the mean particle sizes within the range of 0.4 to 0.2 micron. The super-ground zirconia powders were then treated with appropriate acid and alkali solutions in order to enrich the surfaces of zirconia powders. The chemical analysis reports depict the enrichment phenomena of the processed zirconia powders. Magnesium oxide of different mole percentages (3 to 9%) have been incorporated to the above super-ground and enriched zirconia powder and green specimens were prepared by pressing with a suitable pressure of 200 MPa to yield the green compaction density of 3.06 gm/cm 3 . The compacted green specimens were sintered without pressure at 1,480 C in air followed by normal cooling. X-ray diffraction patterns of the above sintered and cooled specimens have confirmed the formation of Mg-PSZ ceramics with 40% tetragonal phase. The sintered PSZ-products have shown very good surface properties but at the cost of transverse rupture strength. The effects of grinding were observed on the above Mg-PSZ ceramics which exhibit very little change in the tetragonal phase even after 30-minutes of grinding with a 60-mesh diamond wheel at a normal pressure of 4 kg/cm 2

  13. Positron annihilation studies of zirconia doped with metal cations of different valence

    Science.gov (United States)

    Prochazka, I.; Cizek, J.; Melikhova, O.; Konstantinova, T. E.; Danilenko, I. A.; Yashchishyn, I. A.; Anwand, W.; Brauer, G.

    2013-06-01

    New results obtained by applying positron annihilation spectroscopy to the investigation of zirconia-based nanomaterials doped with metal cations of different valence are reported. The slow-positron implantation spectroscopy combined with Doppler broadening measurements was employed to study the sintering of pressure-compacted nanopowders of tetragonal yttria-stabilised zirconia (t-YSZ) and t-YSZ with chromia additive. Positronium (Ps) formation in t-YSZ was proven by detecting 3γ-annihilations of ortho-Ps and was found to gradually decrease with increasing sintering temperature. A subsurface layer with enhanced 3γ-annihilations, compared to the deeper regions, could be identified. Addition of chromia was found to inhibit Ps formation. In addition, first results of positron lifetime measurements on nanopowders of zirconia phase-stabilised with MgO and CeO2 are presented.

  14. CVD of solid oxides in porous substrates for ceramic membrane modification

    NARCIS (Netherlands)

    Lin, Y.S.; Lin, Y.S.; Burggraaf, Anthonie; Burggraaf, A.J.

    1992-01-01

    The deposition of yttria-doped zirconia has been experimented systematically in various types of porous ceramic substrates by a modified chemical vapor deposition (CVD) process operating in an opposing reactant geometry using water vapor and corresponding metal chloride vapors as reactants. The

  15. Studies of alumina additions in zirconia - magnesia

    International Nuclear Information System (INIS)

    Muccillo, R.

    1987-01-01

    Ionic conductivity measurements have been carried out in the 500 0 C - 1000 0 C temperature range in Mg - PSZ (Partially Stabilized Zirconia) with 0.5 to 10 mol % alumina additions. All specimens were prepared by pressing followed by pre - and sintering at 1000 0 C/2h and1450 0 C/4h, respectively. Thermal histerysis of the ionic conductivity have been detected, probably due to phase changes in the Mg-PSZ samples. The results show that alumina additions up to 2.1% enhances densification with no major variations in electrical resistivity values. (Author) [pt

  16. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces

    International Nuclear Information System (INIS)

    Pae, Ahran; Kim, Hyeong-Seob; Woo, Yi-Hyung; Lee, Heesu; Kwon, Yong-Dae

    2009-01-01

    The attachment, growth behaviour and the genetic effect of human gingival fibroblasts (HGF) cultured on titanium and different zirconia surfaces were investigated. HGF cells were cultured on (1) titanium discs with a machined surface, (2) yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP) with a smooth surface and (3) Y-TZP with 100 μm grooves. The cell proliferation activity was evaluated through a MTT assay at 24 h and 48 h, and the cell morphology was examined by SEM. The mRNA expression of integrin-β1, type I and III collagen, laminin and fibronectin in HGF were evaluated by RT-PCR after 24 h. From the MTT assay, the mean optical density values for the titanium and grooved zirconia surfaces after 48 h of HGF adhesion were greater than the values obtained for the smooth zirconia surfaces. SEM images showed that more cells were attached to the grooves, and the cells appeared to follow the direction of the grooves. The results of RT-PCR suggest that all groups showed comparable fibroblast-specific gene expression. A zirconia ceramic surface with grooves showed biological responses that were comparable to those obtained with HGF on a titanium surface.

  17. Evaluation of the effect of heavy rare earth elements on the microstructure and mechanical and electrical properties of zirconia - Yttria ceramics

    International Nuclear Information System (INIS)

    Lazar, Dolores Ribeiro Ricci

    2002-01-01

    The use of Yttria concentrates for synthesis and processing of zirconia based ceramics, applied as structural and solid electrolyte materials, was investigated in this work. Terbium, dysprosium, holmium, erbium and ytterbium are chemical elements, classified as heavy rare earths, that can be found in those concentrates due to their association with yttrium ores. The ceramic characteristics were compared to zirconia - Yttria and zirconia - Yttria - rare earth oxide systems. The dopant content was 3 and 9 mol%. The raw materials were prepared by the coprecipitation route using solutions from the chemical processing of zircon and monazite ores and obtained by dissolution of high purity rare earth oxides. In the first part of this work, calcination, milling and ceramic processing were studied to produce ceramics with densities up to 95% TD. Samples were prepared in optimized conditions for the evaluation of the effect of each heavy rare earth element. Powders were characterized by chemical analysis. X-ray diffraction, scanning and transmission electron microscopy, gas adsorption (BET) and laser diffraction for the determination of the agglomerate size distributions. Green pellets were characterized by mercury porosimetry and the sintering kinetic was studied by dilatometry. The characterization of the as-sintered pellets was performed by the apparent density measurement (Archimedes method). X-ray diffraction, microstructure analysis by scanning and transmission electron microscopy, Vickers indentation tests for hardness and fracture toughness determination, dynamic mechanical analysis for the elastic modulus measurement, and impedance spectroscopy for electrical resistivity measurement. It was observed that the presence of heavy rare earths in a concentrate containing 85 wt% of Yttria has no significant influence on the properties of zirconia based ceramics. TZP ceramics, containing 3 mol% of dopants, have grain size smaller than 0.4μm, and Vickers hardness and

  18. Synthesis, processing and characterization of the solid oxide half-cells cathode/electrolyte of strontium-doped lanthanum manganite/Yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Chiba, Rubens

    2010-01-01

    The ceramic films of strontium-doped lanthanum manganite (LSM) and strontium doped lanthanum manganite/Yttria-stabilized zirconia (LSM/YSZ) are used as cathodes of the high temperature solid oxide fuel cells (HTSOFC). These porous ceramic films had been deposited on the YSZ dense ceramic substrate, used as electrolyte, structural component of the module, thus conferring a configuration of half-cell called auto-support. The study of the half-cell it is basic, therefore in the interface cathode/electrolyte occurs the oxygen reduction reaction, consequently influencing in the performance of the HTSOFC. In this direction, the present work contributes for the processing of thin films, using the wet powder spraying technique, adopted for the conformation of the ceramic films for allowing the attainment of porous layers with thicknesses varied in the order of micrometers. The LSM powders were synthesized by the citrate technique and the LSM/YSZ powders synthesized by the solid mixture technique. In the stage of formation were prepared organic suspensions of LSM and LSM/YSZ fed by gravity in a manual aerograph. For the formation of the YSZ substrate was used a hydraulic uniaxial press. The attainment of solid oxide half-cells cathode/electrolyte was possible of crystalline structures hexagonal for phase LSM and cubic for phase YSZ. The half-cells micrographs show that the YSZ substrate is dense, enough to be used as solid electrolyte, and the LSM and LSM/YSZ films are presented porous with approximately 30 μm of thickness and good adherence between the cathodes and the electrolyte. The presence of composite cathode between the LSM cathode and YSZ substrate, presented an increase in the electrochemical performance in the oxygen reduction reaction. (author)

  19. Effect of phototherapy on shear bond strength of resin cements to zirconia ceramics: a systematic review and meta-analysis of in-vitro studies.

    Science.gov (United States)

    Al-Aali, Khulud Abdulrahman

    2018-05-11

    The present study systematically reviewed the literature to investigate the effect of phototherapy on the shear bond strength (SBS) of resin cement to zirconia ceramic. electronic databases including MEDLINE (PubMed), ISI Web of Science, Scopus, ScIELO, LILACS and EMBASE until April 2018. The addressed focused question was: Does phototherapy increase the SBS of resin cement to zirconia ceramics?" A total of 8 in-vitro studies were included in the qualitative and quantitative analysis. The mean SBS for phototherapy ranged from 4.1 to 18.95 MPa while mean SBS for sandblasted zirconia-composite specimens ranged from 3.98 to 23.35 MPa in the included studies. Qualitative analysis showed 3 studies favoured application of phototherapy in significantly increasing SBS, while 4 studies indicated sandblasting showed significantly greater SBS of resin cement to zirconia ceramics. Considering the effects of phototherapy, significant heterogeneity for SBS (Q value = 136.37, p<0.0001, I 2  = 94.87%) was noticed among both the groups. The overall mean difference for SBS (SMD = -0.59, 95% CI = -1.99 to -0.80, p = 0.402) was not significant between phototherapy and sandblast (control) groups. Whether the effect of phototherapy on increasing the SBS of resin cement to zirconia ceramic is debatable. Further in-vitro studies should be performed in order to obtain strong conclusions. Copyright © 2018. Published by Elsevier B.V.

  20. Deposition and characterization of plasma sprayed Ni-5A1/ magnesia stabilized zirconia based functionally graded thermal barrier coating

    International Nuclear Information System (INIS)

    Baig, M N; Khalid, F A

    2014-01-01

    Thermal barrier coatings (TBCs) are employed to protect hot section components in industrial and aerospace gas turbine engines. Conventional TBCs frequently fail due to high residual stresses and difference between coefficient of thermal expansion (CTE) of the substrate and coatings. Functionally graded thermal barrier coatings (FG-TBCs) with gradual variation in composition have been proposed to minimize the problem. In this work, a five layered functionally graded thermal barrier coating system was deposited by atmospheric plasma spray (APS) technique on Nimonic 90 substrates using Ni-5Al as bond coat (BC) and magnesia stabilized zirconia as top coat (TC). The coatings were characterized by SEM, EDS, XRD and optical profilometer. Microhardness and coefficient of thermal expansion of the five layers deposited as individual coatings were also measured. The deposited coating system was oxidized at 800°C. SEM analysis showed that five layers were successfully deposited by APS to produce a FG-TBC. The results also showed that roughness (Ra) of the individual layers decreased with an increase in TC content in the coatings. It was found that microhardness and CTE values gradually changed from bond coat to cermet layers to top coat. The oxidized coated sample revealed parabolic behavior and changes in the surface morphology and composition of coating

  1. Zirconia in biomedical applications.

    Science.gov (United States)

    Chen, Yen-Wei; Moussi, Joelle; Drury, Jeanie L; Wataha, John C

    2016-10-01

    The use of zirconia in medicine and dentistry has rapidly expanded over the past decade, driven by its advantageous physical, biological, esthetic, and corrosion properties. Zirconia orthopedic hip replacements have shown superior wear-resistance over other systems; however, risk of catastrophic fracture remains a concern. In dentistry, zirconia has been widely adopted for endosseous implants, implant abutments, and all-ceramic crowns. Because of an increasing demand for esthetically pleasing dental restorations, zirconia-based ceramic restorations have become one of the dominant restorative choices. Areas covered: This review provides an updated overview of the applications of zirconia in medicine and dentistry with a focus on dental applications. The MEDLINE electronic database (via PubMed) was searched, and relevant original and review articles from 2010 to 2016 were included. Expert commentary: Recent data suggest that zirconia performs favorably in both orthopedic and dental applications, but quality long-term clinical data remain scarce. Concerns about the effects of wear, crystalline degradation, crack propagation, and catastrophic fracture are still debated. The future of zirconia in biomedical applications will depend on the generation of these data to resolve concerns.

  2. [In vitro evaluation of low-temperature aging effects of Y2O3 stabilized tetragonal zirconia polycrystals dental ceramics].

    Science.gov (United States)

    Yi, Yuan-fu; Liu, Hong-chen; Wang, Chen; Tian, Jie-mo; Wen, Ning

    2008-03-01

    To investigate the influence of in vitro low-temperature degradation (LTD) treatment on the structural stability of 5 kinds of Y2O3 stabilized tetragonal zirconia polycrystals (Y-TZP) dental ceramics. TZ-3YS powder was compacted at 200 MPa using cold isostatic pressure and pre-sintered at 1050 degrees C for 2 h forming presintered blocks. Specimens were sectioned into 15 mm x 15 mm x 1.5 mm slices from blocks of TZ-3YS, Vita In-Ceram YZ, Ivoclar, Cercon Smart, and Kavo Y-TZP presintered blocks, 18 slices for each brand, and then densely sintered. Specimens were divided into 6 groups and subjected to an accelerated aging test carried out in an autoclave in steam at 134 degrees C, 0.2 MPa, for 0, 1, 2, 3, 4, and 5 h. X-ray diffraction (XRD) was used to identify crystal phases and relative content of monoclinic phase was calculated. Specimens for three-point bending test were fabricated using TZ-3YS ceramics according to the ISO 6872 standard and bending strength was tested before and after aging. The polished and aging specimens of TZ-3YS and Cercon Smart zirconia ceramics were observed by atomic force microscopy (AFM) to evaluate surface microstructure. Tetragonal-to-monoclinic phase transformation was detected for specimens of TZ-3YS, Vita In-Ceram YZ, Ivoclar, and Kavo zirconia ceramics except for Cercon Smart ceramics after aging, and the relative content of monoclinic phase was increasing with the prolonged aging time. TZ-3YS was the most affected material, Kavo took the second, and Vita and Ivoclar were similar. Aging had no significant negative effects on flexural strength of TZ-3YS with average bending strength being over 1100 MPa. The nucleation and growth of monoclinic phase were detected by AFM in surface of Cercon Smart zirconia in which monoclinic phase was not detected by XRD. The results suggest that LTD of dental Y-TZP is time dependent, but the aging test does not reduce the flexural strength of TZ-3YS. The long-term clinical serviceability of dental

  3. Development of crystalline ceramic for immobilization of TRU wastes in V.G. Khlopin Radium Institute

    International Nuclear Information System (INIS)

    Burakov, B.E.; Anderson, E.B.

    1999-01-01

    This paper discusses the Radium Institute's experience in the synthesis of crystalline ceramics based on two groups of actinide host-phases: 1) Zircon/zirconia-(Zn, Ac)SiO 4 /(Zr, Ac)O 2 , where Ac=Pu, Np, Am, Cm; 2) Garnet/perovskite-(Y, Gd, Ac) 3 (Al, Ga, Ac,..) 5 O 12 /(Y, Gd, Ac)(Al, Ga)O 3 . The zircon/zirconia ceramic was suggested as an universal waste form for the immobilization of TRU as well as weapon-grade Pu. Because the position of the Russian Ministry of Atomic Energy (Minatom) does not consider weapons Pu as a waste', the Radium Institute proposed the use of the same ceramic (mainly monophase zirconia ) as a Pu-fuel. The garnet/perovskite ceramic was suggested for the immobilization of military TRU wastes of complex chemical composition. The advantage of this ceramic is that Garnet and Perovskite host-phases can incorporate in their lattices not only actinides, but also other elements including neutron absorbers in a broad range of concentration and in different valence state. Sample of zircon/zirconia ceramic were prepared by hot uniaxial pressing (at temperature T=1300, 1400, 1500degC and pressure P=25 MPa) and sintering (at T=1450, 1490, 1500, 1600degC) methods using different types of initial precursor. Samples of garnet/perovskite ceramic were synthesized by melting method at T=2000degC. Ce, U, Gd were used as TRU stimulants for both types of ceramic. One sample of zircon/zirconia ceramic was doped with 10 wt.% of Pu 239 . Physico-chemical features of these ceramics are described. In conclusion we propose that the pressureless technology based on sintering or melting methods be used for the synthesis of ceramics for the immobilization of all types of TRU wastes. (author)

  4. Synthesis and surface characterization of alumina-silica-zirconia nanocomposite ceramic fibres on aluminium at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak Ali, M., E-mail: masterscience2003@yahoo.co.in [Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Omalur Main Road, Salem 636 011, Tamil Nadu (India); Raj, V., E-mail: alaguraj2@rediffmail.com [Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Omalur Main Road, Salem 636 011, Tamil Nadu (India)

    2010-04-01

    Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.

  5. Iron Oxide Doped Alumina-Zirconia Nanoparticle Synthesis by Liquid Flame Spray from Metal Organic Precursors

    Directory of Open Access Journals (Sweden)

    Juha-Pekka Nikkanen

    2008-01-01

    Full Text Available The liquid flame spray (LFS method was used to make iron oxide doped alumina-zirconia nanoparticles. Nanoparticles were generated using a turbulent, high-temperature (Tmax⁡∼3000 K H2-O2 flame. The precursors were aluminium-isopropoxide, zirconium-n-propoxide, and ferrocene in xylene solution. The solution was atomized into micron-sized droplets by high velocity H2 flow and introduced into the flame where nanoparticles were formed. The particle morphology, size, phase, and chemical composition were determined by TEM, XRD, XPS, and N2-adsorption measurements. The collected particulate material consists of micron-sized aggregates with nanosized primary particles. In both doped and undoped samples, tetragonal phase of zirconia was detected in room temperature while alumina was found to be noncrystalline. In the doped powder, Fe was oxidized to Fe2O3. The primary particle size of collected sample was approximately from 6 nm to 40 nm. Doping was observed to increase the specific surface area of the powder from 39 m2/g to 47 m2/g.

  6. Shear Bond Strengths between Three Different Yttria-Stabilized Zirconia Dental Materials and Veneering Ceramic and Their Susceptibility to Autoclave Induced Low-Temperature Degradation

    Directory of Open Access Journals (Sweden)

    Manoti Sehgal

    2016-01-01

    Full Text Available A study was undertaken to evaluate the effect of artificial aging through steam and thermal treatment as influencing the shear bond strength between three different commercially available zirconia core materials, namely, Upcera, Ziecon, and Cercon, layered with VITA VM9 veneering ceramic using Universal Testing Machine. The mode of failure between zirconia and ceramic was further analyzed as adhesive, cohesive, or mixed using stereomicroscope. X-ray diffraction and SEM (scanning electron microscope analysis were done to estimate the phase transformation (m-phase fraction and surface grain size of zirconia particles, respectively. The purpose of this study was to simulate the clinical environment by artificial aging through steam and thermal treatment so as the clinical function and nature of the bond between zirconia and veneering material as in a clinical trial of 15 years could be evaluated.

  7. Effect of dysprosia doping on structural and electrical property of stabilized zirconia for intermediate- temperature SOFCs

    International Nuclear Information System (INIS)

    Pastor, M.; Maiti, S.; Pandey, A.; Biswas, K.; Manna, I.

    2011-01-01

    Present work deals with structural, micro-structural and electrical properties of dysprosia stabilized zirconia electrolyte, which have been evaluated by means of X-ray diffraction (XRD) and scanning (SEM), and complex impedance analysis respectively. The amount of dysprosia was varied from 2 to 12 mol% in zirconia. The addition of dysprosia (8-12 mol%) stabilized the cubic zirconia phase, which was analyzed from XRD analysis. SEM micrographs clearly showed the improvement in sinterability with increase in dysprosia concentration up to 6 mol% disprosia. Complex impedance analysis was performed in the temperature range from 250 to 600 deg. C. The results indicated a gradual decrease in impedance of both bulk and grain boundary and increase in conductivity with dysprosia doping up to 6 mol% and thereafter showing a reverse trend. The activation energies for oxygen ion migration were also found to decrease with increase in dysprosia doping which was in the range of 0.99 - 1.28 eV. The average thermal expansion coefficient increases linearly.

  8. CO2 and Nd:YAP laser interaction with lithium disilicate and Zirconia dental ceramics: A preliminary study

    Science.gov (United States)

    Rocca, Jean-Paul; Fornaini, Carlo; Brulat-Bouchard, Nathalie; Bassel Seif, Samy; Darque-Ceretti, Evelyne

    2014-04-01

    Lithium disilicate and Zirconia ceramics offer a high level of accuracy when used in prosthetic dentistry. Their bonding using different resins is highly dependent on micro-mechanical interlocking and adhesive chemical bonding. Investigation of the performances of high strength ceramics when their surface is modified for chemical and mechanical bonding is then required. The aim of this study is to investigate the possibility of using laser for surface treatment of different high strength CAD/CAM ceramics and thus to improve their mechanical and chemical properties. Thirty two CAD/CAM ceramic discs were divided into two different groups: lithium disilicate ceramics (IPS e.max CAD®, Ivoclar, Vivadent, Italy) and Zirconia ceramics (IPS e.max ZirCAD®, Ivoclar, Vivadent, Italy). The Laser surface treatment was performed by Carbon Dioxide laser (Dream Pulse Laser®, Daeshin Enterprise Corp., Korea) at 20 W, 25 W and 30 W CW and by Neodymium Yttrium Aluminum Perovskite laser (Nd:YAP Lokki®, Lobel Medical, France) at 10 W and 30 Hz. Physical modifications of the irradiated ceramic discs were observed by scanning electron microscopy (SEM) and chemically analyzed by Energy-Dispersive Spectroscopy (EDS). Surface wettability was tested using the water drop test and the crystalline structure was investigated using X-ray diffraction (XRD). The macroscopic observation showed a shinier structure in all the groups, while at the SEM observation only CO2 25 W and 30 W treated groups showed cracks and fissures. In the conditions of this study, CO2 laser and Nd:YAP laser with the parameters used create chemical and physical surface modifications of the ceramics, indicating the possibility of an improvement in adhesion of the tested ceramics.

  9. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations.

    Science.gov (United States)

    Zhang, Fei; Inokoshi, Masanao; Batuk, Maria; Hadermann, Joke; Naert, Ignace; Van Meerbeek, Bart; Vleugels, Jef

    2016-12-01

    The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y 2 O 3 content and La 2 O 3 doping on the translucency. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n=6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n=10), single edge V-notched beam (SEVNB) fracture toughness (n=8) and Vickers hardness (n=10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n=3) after accelerated hydrothermal aging in steam at 134°C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (α=0.05). Lowering the alumina content below 0.25wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2mol% La 2 O 3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La 2 O 3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Three different approaches were compared to improve the translucency of 3Y-TZP ceramics. Copyright

  10. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  11. [Influence of compaction pressure and pre-sintering temperature on the machinability of zirconia ceramic].

    Science.gov (United States)

    Huang, Huil; Li, Jing; Zhang, Fuqiang; Sun, Jing; Gao, Lian

    2011-10-01

    In order to make certain the compaction pressure as well as pre-sintering temperature on the machinability of the zirconia ceramic. 3 mol nano-size 3 mol yttria partially stabilized zirconia (3Y-TZP) powder were compacted at different isostatic pressure and sintered at different temperature. The cylindrical surface was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. Pre-sintering temperature had the obviously influence on the machinability of 3Y-TZP. The cutting surface was smooth, and the integrality of edge was better when the pre-sintering temperature was chosen between 800 degrees C to 900 degrees C. Compaction pressure showed only a weak influence on machinability of 3Y-TZP blanks, but the higher compaction pressure result in the poor surface quality. The best machinability of pre-sintered zirconia body was found for 800-900 degrees C pre-sintering temperature, and 200-300 MPa compaction pressure.

  12. Quantitative Evaluation of Contamination on Dental Zirconia Ceramic by Silicone Disclosing Agents after Different Cleaning Procedures

    Directory of Open Access Journals (Sweden)

    Sebastian Wille

    2015-05-01

    Full Text Available The aim of this study was to evaluate the effectiveness of cleaning procedures for air-abraded zirconia after contamination with two silicone disclosing agents. Air-abraded zirconia ceramic specimens (IPS e.max ZirCAD were contaminated with either GC Fit Checker white or GC Fit Checker II. Untreated zirconia specimens were used as control. Afterwards the surfaces were cleaned either with waterspray or ultrasonically in 99% isopropanol or using a newly developed cleaning paste (Ivoclean. After cleaning X-ray photoelectron spectroscopy (XPS was performed and the relative peak intensities of Zr, C and Si were used for a qualitative comparison of the residuals. There was no significant difference between the two different silicone disclosing agents. An additional cleaning step with isopropanol led to a significantly lower amount of residuals on the surface, but an additional cleaning process with Ivoclean did not reduce the amount of carbon residuals in comparison to the isopropanol cleaning. Just the silicone amount on the surface was reduced. None of the investigated cleaning processes removed all residuals from the contaminated surface. Standard cleaning processes do not remove all residuals of the silicone disclosing agent from the surface. This may lead to a failure of the resin-ceramic bonding.

  13. Bonding effectiveness to different chemically pre-treated dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  14. Enhanced ionic transport in fine-grained scandia-stabilized zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Abdala, Paula M.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CONICET-CITEFA, J.B. de La Salle 4397 (B1603ALO) Villa Martelli, Pcia. de Buenos Aires (Argentina); Custo, Graciela S. [Gerencia de Area Seguridad Nuclear y Ambiente, Gerencia Quimica, Departamento Quimica Analitica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. Constituyentes 1499 (B1650KNA) San Martin, Pcia. de Buenos Aires (Argentina)

    2010-06-01

    In this work, the transport properties of fine-grained scandia-stabilized zirconia ceramics with low Si content have been investigated. These materials were prepared from ZrO{sub 2}-6 mol% Sc{sub 2}O{sub 3} nanopowders synthesized by a nitrate-lysine gel-combustion route. High relative densities and excellent electrical properties were obtained, even for sintering temperatures as low as 1350 C. Our electrochemical impedance spectroscopy study showed that both the volume fraction of grain boundaries and the specific grain-boundary conductivity are significantly enhanced with decreasing grain size, resulting in a higher total ionic conductivity. (author)

  15. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test.

    Science.gov (United States)

    Carrabba, Michele; Keeling, Andrew J; Aziz, Aziz; Vichi, Alessandro; Fabian Fonzar, Riccardo; Wood, David; Ferrari, Marco

    2017-05-01

    To compare three different compositions of Yttria-Tetragonal Zirconia Polycrystal (Y-TZP) ceramic and a lithium disilicate ceramic in terms of flexural strength and translucency. Three zirconia materials of different composition and translucency, Aadva ST [ST], Aadva EI [EI] and Aadva NT [NT](GC Tech, Leuven, Belgium) were cut with a slow speed diamond saw into beams and tabs in order to obtain, after sintering, dimensions of 1.2×4.0×15.0mm and 15.0×15.0×1.0mm respectively. Blocks of IPS e.max CAD LT were cut and crystallized in the same shapes and dimensions and used as a reference group [LD]. Beams (n=15) were tested in a universal testing machine for three-point bending strength. Critical fracture load was recorded in N, flexural strength (σ in MPa), Weibull modulus (m) and Weibull characteristic strength (σ 0 in MPa) were then calculated. Tabs (n=10) were measured with a spectrophotometer equipped with an integrating sphere. Contrast Ratios were calculated as CR=Yb/Yw. SEM of thermally etched samples coupled with lineal line analysis (n=6) was used to measure the tested zirconia grain size. Data were statistically analyzed. Differences in translucency, flexural strength and grain size were found to be statistically significant. CR increased and flexural strength decreased in the following order ST(σ 1215±190MPa, CR 0.74±0.01)>EI(σ 983±182MPa, CR 0.69±0.01)>NT(σ 539±66MPa, CR 0.65±0.01)>LD (σ 377±39Mpa, CR 0.56±0.02). The average grain size was different for the three zirconia samples with NT(558±38nm)>ST(445±34nm)>EI(284±11nm). The zirconia composition heavily influenced both the flexural strength and the translucency. Different percentages of Yittria and Alumina result in new materials with intermediate properties in between the conventional zirconia and lithium disilicate. Clinical indications for Zirconia Aadva NT should be limited up to three-unit span bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness.

    Science.gov (United States)

    Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe

    2018-06-01

    To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  17. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    Directory of Open Access Journals (Sweden)

    Akkuş Emek

    2015-07-01

    Full Text Available Objectives: To compare the effects of airborne-particle abrasion (APA and tribochemical silica coating (TSC surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  18. Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Gabriela Freitas RAMOS

    2016-01-01

    Full Text Available Abstract The present study investigated the effect of grinding on roughness, flexural strength, and reliability of a zirconia ceramic before and after heat treatment. Seven groups were tested (n = 15: a control group (labeled CG, untreated, and six groups of samples ground with diamond discs, simulating diamond burs, with grits of 200 µm (G80; 160 µm (G120, and 25 µm (G600, either untreated or heat-treated at 1200°C for 2 h (labeled A. Yttria tetragonal zirconia polycrystal discs were manufactured, ground, and submitted to roughness and crystalline phase analyses before the biaxial flexural strength test. There was no correlation between roughness (Ra and Rz and flexural strength. The reliability of the materials was not affected by grinding or heat treatment, but the characteristic strength was higher after abrasion with diamond discs, irrespective of grit size. The X-ray diffraction data showed that grinding leads to a higher monoclinic (m phase content, whereas heat treatment produces reverse transformation, leading to a fraction of m-phase in ground samples similar to that observed in the control group. However, after heat treatment, only the G80A samples presented strength similar to that of the control group, while the other groups showed higher strength values. When zirconia pieces must be adjusted for clinical use, a smoother surface can be obtained by employing finer-grit diamond burs. Moreover, when the amount of monoclinic phase is related to the degradation of zirconia, the laboratory heat treatment of ground pieces is indicated for the reverse transformation of zirconia crystals.

  19. Lifetime estimation of zirconia ceramics by linear ageing kinetics

    International Nuclear Information System (INIS)

    Zhang, Fei; Inokoshi, Masanao; Vanmeensel, Kim; Van Meerbeek, Bart; Naert, Ignace; Vleugels, Jef

    2015-01-01

    Up to now, the ageing kinetics of zirconia ceramics were mainly derived from the sigmoidal evolution of the surface phase transformation as a function of time, as quantified by means of X-ray diffraction (XRD). However, the transformation propagation into the material should be better to monitor the ageing kinetics. In this work, μ-Raman spectroscopy was used to quantitatively measure the transformation profiles in depth as a function of ageing time at 160 °C, 140 °C, 134 °C and 110 °C. A linear relationship between the transformed depth and the ageing time was observed for all investigated yttria stabilized tetragonal zirconia polycrystals (3Y-TZP). Furthermore, the μ-Raman investigation of residual stresses in the subsurface of aged 3Y-TZPs showed that the highest tensile stress was located just ahead of the transformation front, indicating the key responsibility of stress accumulation for transformation front propagating into the material. Moreover, the linear kinetics of the transformation propagation were more accurate to calculate the apparent activation energy of the ageing process and allowed a more straightforward estimation of the lifetime of 3Y-TZP at body temperature, as compared to the conventional ageing kinetic parameters obtained from the surface transformation analysis by XRD

  20. Zirconia-doped nanoparticles: organic coating, polymeric entrapment and application as dual-imaging agents

    OpenAIRE

    Rebuttini, Valentina; Pucci, Andrea; Arosio, Paolo; Bai, Xue; Locatelli, Erica; Pinna, Nicola; Lascialfari, Alessandro; Franchini, Mauro Comes

    2013-01-01

    Zirconia nanoparticles doped with Eu3+, Tb3+ and Gd3+ ions have been synthesized following the benzyl alcohol route. The nanoparticles were coated with N-hydroxydodecanamide and encapsulated in PLGA-b-PEG-COOH nanomicelles. The magnetic and fluorescent properties of these hybrid nanocarriers were investigated, proving them to be potential dual-imaging contrast agents.

  1. Selective etching of injection molded zirconia-toughened alumina: Towards osseointegrated and antibacterial ceramic implants.

    Science.gov (United States)

    Flamant, Quentin; Caravaca, Carlos; Meille, Sylvain; Gremillard, Laurent; Chevalier, Jérôme; Biotteau-Deheuvels, Katia; Kuntz, Meinhard; Chandrawati, Rona; Herrmann, Inge K; Spicer, Christopher D; Stevens, Molly M; Anglada, Marc

    2016-12-01

    Due to their outstanding mechanical properties and excellent biocompatibility, zirconia-toughened alumina (ZTA) ceramics have become the gold standard in orthopedics for the fabrication of ceramic bearing components over the last decade. However, ZTA is bioinert, which hampers its implantation in direct contact with bone. Furthermore, periprosthetic joint infections are now the leading cause of failure for joint arthroplasty prostheses. To address both issues, an improved surface design is required: a controlled micro- and nano-roughness can promote osseointegration and limit bacterial adhesion whereas surface porosity allows loading and delivery of antibacterial compounds. In this work, we developed an integrated strategy aiming to provide both osseointegrative and antibacterial properties to ZTA surfaces. The micro-topography was controlled by injection molding. Meanwhile a novel process involving the selective dissolution of zirconia (selective etching) was used to produce nano-roughness and interconnected nanoporosity. Potential utilization of the porosity for loading and delivery of antibiotic molecules was demonstrated, and the impact of selective etching on mechanical properties and hydrothermal stability was shown to be limited. The combination of injection molding and selective etching thus appears promising for fabricating a new generation of ZTA components implantable in direct contact with bone. Zirconia-toughened alumina (ZTA) is the current gold standard for the fabrication of orthopedic ceramic components. In the present work, we propose an innovative strategy to provide both osseointegrative and antibacterial properties to ZTA surfaces: we demonstrate that injection molding allows a flexible design of surface micro-topography and can be combined with selective etching, a novel process that induces nano-roughness and surface interconnected porosity without the need for coating, avoiding reliability issues. These surface modifications have the

  2. Physical Characteristics and Sintering Behavior of MgO-Doped ZrO2nanoparticles

    International Nuclear Information System (INIS)

    Muccillo, E.N.S.; Tadokoro, S.K.; Muccillo, R.

    2004-01-01

    Nanosized particles of 13mol% MgO-doped ZrO 2 with a narrow distribution of pore sizes were prepared by the coprecipitation technique using optimized parameters of synthesis. Transmission electron microscopy analysis of the calcined powder reveals that the majority of the particles have grain sizes in the 10-20nm range. From nitrogen adsorption analysis an average particle size of 13nm was estimated, which is similar to the average pore size diameter (12nm). Besides the unimodal distribution of pore sizes, the linear shrinkage curve of a powder compact exhibits several inflexions indicating different rates of densification up to 1600 deg. C. After sintering at 1600 deg. C for 2h, the microstructure features of a compact are characteristics of the intermediate stage with interconnected porosity preferentially observed at grain boundaries. These results are explained as a size effect of nanoparticles of magnesia-doped zirconia during sintering

  3. Yttria-doped zirconia as solid electrolyte for fuel-cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Butz, Benjamin

    2009-11-27

    7.3-10 mol% yttria-doped zirconia (YDZ) was studied with emphasis on its long-term stability as solid electrolyte. The decomposition of common 8.5YDZ (950 C) was detected by analytical TEM. As second issue, the microstructural and chemical properties of nanocrystalline 7.3YDZ thin films were investigated. Metastable t''-YDZ was found to precipitate in nanoscaled regions in YDZ up to 10 mol% yttria. Furthermore, a revised boundary of the c+t phase field, in which YDZ decomposes, is presented. (orig.)

  4. Yttria-doped zirconia as solid electrolyte for fuel-cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Butz, Benjamin

    2009-11-27

    7.3-10 mol% yttria-doped zirconia (YDZ) was studied with emphasis on its long-term stability as solid electrolyte. The decomposition of common 8.5YDZ (950 C) was detected by analytical TEM. As second issue, the microstructural and chemical properties of nanocrystalline 7.3YDZ thin films were investigated. Metastable t''-YDZ was found to precipitate in nanoscaled regions in YDZ up to 10 mol% yttria. Furthermore, a revised boundary of the c+t phase field, in which YDZ decomposes, is presented. (orig.)

  5. Effect of Three Different Core Materials on Masking Ability of a Zirconia Ceramic

    Directory of Open Access Journals (Sweden)

    Farhad Tabatabaian

    2016-12-01

    Full Text Available Objectives: Masking ability of a restorative material plays a role in hiding colored substructures; however, the masking ability of zirconia ceramic (ZRC has not yet been clearly understood in zirconia-based restorations. This study evaluated the effect of three different core materials on masking ability of a ZRC.Materials and Methods: Ten zirconia disc samples, 0.5mm in thickness and 10mm in diameter, were fabricated. A white (W substrate (control and three substrates of nickel-chromium alloy (NCA, non-precious gold alloy (NPGA, and ZRC were prepared. The zirconia discs were placed on the four types of substrates for spectrophotometry. The L*, a*, and b* values of the specimens were measured by a spectrophotometer and color change (ΔE values were calculated to determine color differences between the test and control groups and were then compared with the perceptual threshold. Randomized block ANOVA and Bonferroni test analyzed the data. A significance level of 0.05 was considered.Results: The mean and standard deviation values of ΔE for NCA, NPGA, and ZRC groups were 10.26±2.43, 9.45±1.74, and 6.70±1.91 units, respectively. Significant differences were found in the ΔE values between ZRC and the other two experimental groups (NCA and NPGA; P<0.0001 and P=0.001, respectively. The ΔE values for the groups were more than the predetermined perceptual threshold.Conclusions: Within the limitations of this study, it was concluded that the tested ZRC could not well mask the examined core materials.Keywords: Color; Spectrophotometry; Visual Perception; Yttria Stabilized Tetragonal Zirconia

  6. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    International Nuclear Information System (INIS)

    Shibata, Taiju; Ishihara, Masahiro; Baba, Shinichi; Hayashi, Kimio

    2000-05-01

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x10 20 n/cm 2 and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 10 10 Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x10 20 n/cm 2 and that it decays to about 1/100 in a year. (author)

  7. A Passive Pressure Sensor Fabricated by Post-Fire Metallization on Zirconia Ceramic for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2014-09-01

    Full Text Available A high-temperature pressure sensor realized by the post-fire metallization on zirconia ceramic is presented. The pressure signal can be read out wirelessly through the magnetic coupling between the reader antenna and the sensor due to that the sensor is equivalent to an inductive-capacitive (LC resonance circuit which has a pressure-sensitive resonance frequency. Considering the excellent mechanical properties in high-temperature environment, multilayered zirconia ceramic tapes were used to fabricate the pressure-sensitive structure. Owing to its low resistivity, sliver paste was chosen to form the electrical circuit via post-fire metallization, thereby enhancing the quality factor compared to sensors fabricated by cofiring with a high-melting-point metal such as platinum, tungsten or manganese. The design, fabrication, and experiments are demonstrated and discussed in detail. Experimental results showed that the sensor can operate at 600 °C with quite good coupling. Furthermore, the average sensitivity is as high as 790 kHz/bar within the measurement range between 0 and 1 Bar.

  8. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes

    International Nuclear Information System (INIS)

    Garcia, Rafael Henrique Lazzari

    2007-01-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  9. Optical properties and laser oscillations of highly neodymium-doped YAG ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Ichiro; Kurimura, Sunao; Sato, Yoichi; Taira, Takunori [Laser Research Center, Institute for Molecular Science, Okazaki, Aichi (Japan); Ikesue, Akio [Japan Fine Ceramics Center, Nagoya, Aichi (Japan); Yoshida, Kunio [Institute of Laser Engineering, Osaka Institute of Technology, Osaka (Japan)

    2000-03-01

    Diode-pumped microchip laser oscillation of highly Nd{sup 3+}-doped polycrystalline YAG ceramics has been succeeded. It is found that the loss of a 2.4 at. % neodymium-doped ceramic YAG is as low as that of a 0.9 at. % Nd:YAG single crystal. From a 4.8 at. % Nd:YAG ceramic microchip, 2.3 times higher laser output power is obtained than that from a 0.9 at. % Nd:YAG single crystal microchip. (author)

  10. Optical properties and laser oscillations of highly neodymium-doped YAG ceramics

    International Nuclear Information System (INIS)

    Shoji, Ichiro; Kurimura, Sunao; Sato, Yoichi; Taira, Takunori; Ikesue, Akio; Yoshida, Kunio

    2000-01-01

    Diode-pumped microchip laser oscillation of highly Nd 3+ -doped polycrystalline YAG ceramics has been succeeded. It is found that the loss of a 2.4 at. % neodymium-doped ceramic YAG is as low as that of a 0.9 at. % Nd:YAG single crystal. From a 4.8 at. % Nd:YAG ceramic microchip, 2.3 times higher laser output power is obtained than that from a 0.9 at. % Nd:YAG single crystal microchip. (author)

  11. Zirconia based inert matrix fuel: fabrication concepts and feasibility studies

    International Nuclear Information System (INIS)

    Ingold, F.; Burghartz, M.; Ledergerber, G.

    1999-01-01

    The internal gelation process has traditionally been applied to fabricate standard fuel based on uranium, typically UO2 and MOX. To meet the recent aim to destroy plutonium in the most effective way, a uranium free fuel was evaluated. The fuel development programme at PSI has been redirected toward a fuel based on zirconium oxide or a mixture of zirconia and a conducting material to form ceramic/metal (CERMET) or ceramic/ceramic (CERCER) combinations. A feasibility study was carried out to demonstrate that microspheres based on zirconia and spinel can be fabricated with the required properties. The gelation parameters were investigated to optimise compositions of the starting solutions. Studies to fabricate a composite material (from zirconia and spinel) are ongoing. If the zirconia/spinel ratio is chosen appropriately, the low thermal conductivity of pure zirconia can be compensated by the higher thermal conductivity of spinel. Another solution to offset the low thermal conductivity of zirconia is the development of a CERMET, which consists of fine particles bearing plutonium in a cubic zirconia lattice dispersed in a metallic matrix. The fabrication of such a CERMET is also being studied. (author)

  12. The Impact of Plasma Treatment of Cercon® Zirconia Ceramics on Adhesion to Resin Composite Cements and Surface Properties.

    Science.gov (United States)

    Tabari, Kasra; Hosseinpour, Sepanta; Mohammad-Rahimi, Hossein

    2017-01-01

    Introduction: In recent years, the use of ceramic base zirconia is considered in dentistry for all ceramic restorations because of its chemical stability, biocompatibility, and good compressive as well as flexural strength. However, due to its chemical stability, there is a challenge with dental bonding. Several studies have been done to improve zirconia bonding but they are not reliable. The purpose of this research is to study the effect of plasma treatment on bonding strength of zirconia. Methods: In this in vitro study, 180 zirconia discs' (thickness was 0.85-0.9 mm) surfaces were processed with plasma of oxygen, argon, air and oxygen-argon combination with 90-10 and 80-20 ratio (n=30 for each group) after being polished by sandblast. Surface modifications were assessed by measuring the contact angle, surface roughness, and topographical evaluations. Cylindrical Panavia f2 resin-cement and Diafill were used for microshear strength bond measurements. The data analysis was performed by SPSS 20.0 software and one-way analysis of variance (ANOVA) and Tukey test as the post hoc. Results: Plasma treatment in all groups significantly reduces contact angle compare with control ( P =0.001). Topographic evaluations revealed coarseness promotion occurred in all plasma treated groups which was significant when compared to control ( P <0.05), except argon plasma treated group that significantly decreased surface roughness ( P <0.05). In all treated groups, microshear bond strength increased, except oxygen treated plasma group which decreased this strength. Air and argon-oxygen combination (both groups) significantly increased microshear bond strength ( P <0.05). Conclusion: According to this research, plasmatic processing with dielectric barrier method in atmospheric pressure can increase zirconia bonding strength.

  13. Bond strength of three luting agents to zirconia ceramic - influence of surface treatment and thermocycling

    Directory of Open Access Journals (Sweden)

    Ahmed Attia

    2011-08-01

    Full Text Available OBJECTIVE: This in vitro study aimed to evaluate the influence of different surface treatments, 3 luting agents and thermocycling on microtensile bond strength (µTBS to zirconia ceramic. Material and METHODS: A total of 18 blocks (5x5x4 mm were fabricated from zirconia ceramic (ICE Zirkonia and duplicated into composite blocks (Alphadent. Ceramic blocks were divided into 3 groups (n=6 according to the following surface treatments: airborne-particle abrasion (AA, silica-coating, (SC (CoJet and silica coating followed by silane application (SCSI (ESPE Sil. Each group was divided into 3 subgroups (n=2 according to the 3 luting agents used. Resin-modified glass-ionomer cement (RMGIC, Ketac Cem Plus, self-adhesive resin cement (UN, RelyX Unicem and adhesive resin cement (ML, MultiLink Automix were used for bonding composite and zirconia blocks. Each bonding assembly was cut into microbars (10 mm long and 1±0.1 mm². Seven specimens of each subgroup were stored in water bath at 37ºC for 1 week. The other 7 specimens were stored in water bath at 37ºC for 30 days then thermocycled (TC for 7,500 cycles. µTBS values were recorded for each specimen using a universal testing machine. Statistical analyses were performed using a 3-way ANOVA model followed by serial 1-way ANOVAs. Comparison of means was performed with Tukey's HSD test at (α=0.05. RESULTS: µTBS ranged from 16.8 to 31.8 MPa after 1 week and from 7.3 to 16.4 MPa after 30 days of storage in water and thermocycling. Artificial aging significantly decreased µTBS (p<0.05. Considering surface treatment, SCSI significantly increased µTBS (p<0.05 compared to SC and AA. Resin cements (UN and ML demonstrated significantly higher µTBS (p<0.05 compared to RMGIC cement. CONCLUSIONS: Silica coating followed by silane application together with adhesive resin cements significantly increased µTBS, while thermocycling significantly decreased µTBS.

  14. Investigations on thermoluminescent dosimetry (TLD) with doped alumina ceramics

    International Nuclear Information System (INIS)

    Janas, R.; Huebner, K.

    1976-01-01

    Alumina ceramics doped and burned under various conditions have been investigated with regard to their suitability for thermoluminescent dosimetry. The production of ceramics is described. The properties essential for dosimetric purposes, such as glow curve, energy dose characteristics, fading, recoverability, lower detection limit and energy dependence, are indicated. The advantages and disadvantages of alumina ceramics are compared. (author)

  15. 3D-characterization of the veneer-zirconia interface using FIB nano-tomography.

    Science.gov (United States)

    Mainjot, Amélie K; Douillard, Thierry; Gremillard, Laurent; Sadoun, Michaël J; Chevalier, Jérôme

    2013-02-01

    The phenomena occurring during zirconia frameworks veneering process are not yet fully understood. In particular the study of zirconia behavior at the interface with the veneer remains a challenge. However this interface has been reported to act on residual stress in the veneering ceramic, which plays a significant role in clinical failures such as chipping. The objective of this study was thus to investigate the veneer-zirconia interface using a recent 3D-analysis tool and to confront these observations to residual stress measurements in the veneering ceramic. Two cross-sectioned bilayered disc samples (veneer on zirconia), exhibiting different residual stress profiles in the veneering ceramic, were investigated using 2D and 3D imaging (respectively Scanning Electron Microscopy (SEM) and Focused Ion Beam nanotomography (FIB-nt), associated with chemical analysis by Energy Dispersive X-ray Spectroscopy (EDS). The observations did not reveal any structural change in the bulk of zirconia layer of both samples. However the presence of structural alterations and sub-surface microcracks were highlighted in the first micrometer of zirconia surface, exclusively for the sample exhibiting interior tensile stress in the veneering ceramic. No interdiffusion phenomena were observed. FIB nanotomography was proven to be a powerful technique to study the veneer-zirconia interface. The determination of the origin and the nature of zirconia alterations need to be further studied. The results of the present study support the hypothesis that zirconia surface property changes could be involved in the development of tensile stress in the veneering ceramic, increasing the risk of chipping. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    OpenAIRE

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis

  17. Prestresses in bilayered all-ceramic restorations.

    Science.gov (United States)

    Aboushelib, Moustafa N; Feilzer, Albert J; de Jager, Niek; Kleverlaan, Cornelis J

    2008-10-01

    A general trend in all ceramic systems is to use veneering ceramics of slightly lower thermal expansion coefficients compared with that of the framework resulting in a positive mismatch in thermal expansion coefficient (+DeltaTEC). The concept behind this TEC mismatch is to generate compressive stresses in the weaker veneering ceramic and thus enhance the overall strength of the restoration. This technique had excellent results with porcelain fused to metal restorations (PFM). However, there are concerns to apply this concept to all-ceramic restorations. The aim of this research was to determine the stresses in bilayered all-ceramic restorations due to the mismatch in TEC. Two commercial veneering ceramics with a TEC lower than that of zirconia (+DeltaTEC); NobelRondo zirconiatrade mark and Lava Ceramtrade mark, plus one experimental veneering ceramic with an identical TEC that matches that of zirconia (DeltaTEC = 0) were used to veneer zirconia discs. The specimens were loaded in biaxial flexure test setup with the veneer ceramic in tension. The stresses due to load application and TEC mismatch were calculated using fractography, engineering mathematics, and finite element analysis (FEA). In this study, the highest load at failure (64 N) was obtained with the experimental veneer where the thermal mismatch between zirconia and veneering ceramic was minimal. For the two commercial veneer ceramics the magnitude of the thermal mismatch localized at the zirconia veneer interface (42 MPa) exceeded the bond strength between the two materials and resulted in delamination failure during testing (ca. 50 MPa). For all-ceramic zirconia veneered restorations it is recommended to minimize the thermal mismatch as much as possible. (c) 2008 Wiley Periodicals, Inc.

  18. On the comparison of the ballistic performance of 10% zirconia toughened alumina and 95% alumina ceramic target

    International Nuclear Information System (INIS)

    Zhang, X.F.; Li, Y.C.

    2010-01-01

    Ballistic performance of different type of ceramic materials subjected to high velocity impact was investigated in many theoretical, experimental and numerical studies. In this study, a comparison of ballistic performance of 95% alumina ceramic and 10% zirconia toughened alumina (ZTA) ceramic tiles was analyzed theoretically and experimentally. Spherical cavity model based on the concepts of mechanics of compressible porous media of Galanov was used to analyze the relation of target resistance and static mechanical properties. Experimental studies were carried out on the ballistic performance of above two types of ceramic tiles based on the depth of penetration (DOP) method, when subjected to normal impact of tungsten long rod projectiles. Typical damaged targets were presented. The residual depth of penetration on after-effect target was measured in all experiments, and the ballistic efficiency factor of above two types ceramic plates were determined. Both theoretical and experimental results show that the improvement on ballistic resistance was clearly observed by increasing fracture toughness in ZTA ceramics.

  19. Effect of CASP glass doping on sintering and dielectric properties of SBN ceramics

    International Nuclear Information System (INIS)

    Chen Guohua; Qi Bing

    2009-01-01

    16CaO-29Al 2 O 3 -34SiO 2 -13PbO-4B 2 O 3 -2ZnO-2P 2 O 5 (CASP) glass doped-Sr 0.5 Ba 0.5 Nb 2 O 6 (SBN50) ceramics have been synthesized by solid-state ceramic route. The effects of CASP glass on the firing, microstructure and dielectric characterization of SBN50 ceramics are investigated. The densities of the ceramic samples firstly increase and then slightly decrease with increasing CASP glass content. The appropriate amount of doping glass is 2%. The SBN50 ceramics doped with CASP glass can be sintered at a relatively low temperature, 1200 deg. C. X-ray diffraction analysis shows the single phase (tetragonal tungsten bronze type structure) is preserved for all the samples. The diffuse character of the ceramic system increases and the dielectric constant at phase transition temperature (T c ) markedly decreases as CASP glass content increases. Interestingly, the CASP glass addition drastically alters the microstructure of the sintered ceramics. The isotropic grains in the pure SBN50 ceramics transform to rod like grains after the addition of CASP glass. The grain size of SBN phase is found to obviously increase with increase in CASP glass doping level

  20. Influence of framework color and layering technique on the final color of zirconia veneered restorations

    NARCIS (Netherlands)

    Aboushelib, M.N.; Dozic, A.; Liem, J.K.

    2010-01-01

    Objective: To investigate the influence of colored zirconia frameworks on the overall color match of zirconia- veneered restorations. Method and Materials: Identical natural and colored zirconia frameworks (Cercon Base, Degudent) were layered using a veneer ceramic (IPS e.max Ceram Dentin, Ivoclar

  1. Enhancement of ionic conductivity in stabilized zirconia ceramics under millimeter-wave irradiation heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Hayashi, Hidetaka

    2011-01-01

    Ionic conductivity in yttria-stabilized zirconia ceramics under millimeter-wave irradiation heating was compared with that obtained using conventional heating. The former was found to result in higher conductivity than the latter. Enhancement of the ionic conductivity and the reduction in activation energy seemed to depend on self-heating resulting from the millimeter-wave irradiation. Millimeter-wave irradiation heating restricted the degradation in conductivity accompanying over-substitution, suggesting the optimum structure that provided the maximum conductivity could be different between the two heating methods.

  2. Microstructures and luminescent properties of Ce-doped transparent mica glass-ceramics

    International Nuclear Information System (INIS)

    Taruta, Seiichi; Iwasaki, Yoshitomo; Nishikiori, Hiromasa; Yamakami, Tomohiko; Yamaguchi, Tomohiro; Kitajima, Kunio; Okada, Kiyoshi

    2012-01-01

    Highlights: ► Ce-doped transparent glass-ceramics and their parent glasses. ► TEM and STEM images for the microstructures. ► Each mica crystal did not contain Ce uniformly. ► Emission due to Ce 3+ ions in the glass phase and/or Ce 3+ ions in the mica crystals. - Abstract: Transparent mica glass-ceramics were prepared by heating parent glasses that had been doped with 0.5–15 mol% CeO 2 . During the melting and heat treatment, Ce 4+ ions in the specimens were reduced to Ce 3+ ions, and one or both of these ion species were then replaced with Li + ions in the interlayers of the separated mica crystals. However, scanning transmission electron microscope (STEM) and Z-contrast imaging revealed that the mica crystals did not contain the same amount of Ce. On excitation at 254 nm, the parent glasses and glass-ceramics emitted blue light, which originated from the 5d to 4f transition of the Ce 3+ ions. The emission of the glass-ceramic containing a smaller amount of Ce was attributed to the Ce 3+ ions in both the glass phase and the mica crystals, whereas that of the glass-ceramics containing a larger amount of Ce was caused mainly by Ce 3+ ions in the mica crystals. The dependence of the emission band of the parent glasses on the amount of Ce was a unique feature of the Ce-doped transparent mica glass-ceramics and was not observed in previous studies of Eu-doped parent glasses and mica glass-ceramics.

  3. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  4. Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging.

    Science.gov (United States)

    Mota, Yasmine A; Cotes, Caroline; Carvalho, Rodrigo F; Machado, João P B; Leite, Fabíola P P; Souza, Rodrigo O A; Özcan, Mutlu

    2017-10-01

    This study evaluated the influence of two aging procedures on the biaxial flexural strength of yttria-stabilized tetragonal zirconia ceramics. Disc-shaped zirconia specimens and (ZE: E.max ZirCAD, Ivoclar; ZT: Zirkon Translucent, Zirkonzahn) (N = 80) (∅:12 mm; thickness:1.2 mm, ISO 6872) were prepared and randomly divided into four groups (n = 10 per group) according to the aging procedures: C: Control, no aging; M: mechanical cycling (2 × 10 6 cycles/3.8 Hz/200 N); AUT: Aging in autoclave at 134°C, 2 bar for 24 h; AUT + M: Autoclave aging followed by mechanical cycling. After aging, the transformed monoclinic zirconia (%) were evaluated using X-ray diffraction and surface roughness was measured using atomic force microscopy. The average grain size was measured by scanning electron microscopy and the specimens were submitted to biaxial flexural strength testing (1 mm/min, 1000 kgf in water). Data (MPa) were statistically analyzed using 2-way analysis of variance and Tukey's test (α = 0.05). Aging procedures significantly affected (p = 0.000) the flexural strength data but the effect of zirconia type was not significant (p = 0.657). AUT ZT (936.4 ± 120.9 b ) and AUT + M ZE (867.2 ± 49.3 b ) groups presented significantly higher values (p autoclave aging alone or with mechanical aging increased the flexure strength but also induced higher transformation from tetragonal to monoclinic phase in both zirconia materials tested. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1972-1977, 2017. © 2016 Wiley Periodicals, Inc.

  5. Utilization of niobium pentoxide as additive for reducing the ''in situ'' reaction temperature of ceramic composites in the system mullite-zirconia

    International Nuclear Information System (INIS)

    Melo, F.C.L. de; Cairo, C.A.A.; Piorino Neto, F.; Cunha, P.A.; Devezas, T.C.

    1988-01-01

    Ceramics Composites of the system mullite-zirconia were produced trough reaction sintering, following the equation: 2ZrSiO 4 +3Al 2 O 3 +x(Al 2 O 3 +Nb 2 O 5 )--> 2ZrO 2 +Al 6 Si 2 O 13 +2xAlNbO 4 , with different x values (0.05,0.1 e 0.25), trying to investigate the role of niobia as sintering aid. Through x-ray diffraction was evaluated the fraction of zirconia tetragonal phase retained in the ceramic matrix, and the produced composites were caracterized as to the apparent porosity and density, sintering shrinkage and rupture strenght. The reaction sintering temperature was reduced from 1600 0 C (x=0) to 1400 0 C (with x=0.1). (author) [pt

  6. Efficacy of ceramic repair material on the bond strength of composite resin to zirconia ceramic.

    Science.gov (United States)

    Kirmali, Omer; Kapdan, Alper; Harorli, Osman Tolga; Barutcugil, Cagatay; Ozarslan, Mehmet Mustafa

    2015-01-01

    The aim of this study was to evaluate the shear bond strength of composite resin in five different repair systems. Sixty specimens (7 mm in diameter and 3 mm in height) of zirconia ceramic were fabricated. All specimen surfaces were prepared with a 30 µm fine diamond rotary cutting instrument with water irrigation for 10 s and dried with oil-free air. Specimens were then randomly divided into six groups for the following different intra-oral repair systems (n = 10): Group 1, control group; Group 2, Cojet system (3M ESPE, Seefeld, Germany); Group 3, Cimara® System (Voco, Cuxhaven, Germany); Group 4, Z-Prime Plus System (Bisco Inc., Schaumburg, IL); Group 5, Clearfil™ System (Kuraray, Osaka, Japan); and Group 6, Z-Bond System (Danville, CA). After surface conditioning, a composite resin Grandio (Voco, Cuxhaven, Germany) was applied to the zirconia surface using a cylindrical mold (5 mm in diameter and 3 mm in length) and incrementally filled up, according to the manufacturer's instructions of each intra-oral system. Each specimen was subjected to a shear load at a crosshead speed of 1 mm/min until fracture. One-way analysis of variance (ANOVA) and Tukey post-hoc tests were used to analyze the bond strength values. There were significant differences between Groups 2-6 and Group 1. The highest bond strength values were obtained with Group 2 (17.26 ± 3.22) and Group 3 (17.31 ± 3.62), while the lowest values were observed with Group 1 (8.96 ± 1.62) and Group 6 (12.85 ± 3.95). All repair systems tested increased the bond strength values between zirconia and composite resin that used surface grinding with a diamond bur.

  7. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  8. The biological properties of the silver- and copper-doped ceramic biomaterial

    International Nuclear Information System (INIS)

    Lysenko, Oleksandr; Dubok, Oleksii; Borysenko, Anatolii; Shinkaruk, Oleksandr

    2015-01-01

    The biological properties of nanostructured bioactive ceramic composite (BCC) granules doped with 0.1–10 at.% silver and 0.05–5 at.% copper have been investigated both in vitro and in vivo to develop effective alloplastic material for infected bone defect substitute. It is assumed that the granules consisting of biphasic calcium phosphate and bioactive glass ceramics due to their nanoscale (15–40 nm) and multiphase structure, bioelement placement in different ceramic phases as well as antimicrobial effect should improve osteogenic properties and biocompatibility. Tests in vitro have been conducted with multipotent mesenchymal stromal cells (MSCs) and test strains of microorganisms. The same biocomposite has been used in vivo to study the repair of bone defects in animal model. The findings indicate that doped BCC leads to antimicrobial activity. Inhibition of MSCs growth has been observed for granules doped with ions of more than 1 at.% silver and 0.5 at.% copper. The results of the in vivo study reveal that BCC implantation significantly improves bone reparation. Differences between bone repair with undoped and doped, with 1 at.% silver and 0.5 at.% copper, ceramic samples were not observed. The BCC doped within 0.5–1 at.% silver and 0.25–0.5 at.% copper stimulates bone tissue repair and has satisfactory biocompatibility and antimicrobial properties

  9. The biological properties of the silver- and copper-doped ceramic biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Lysenko, Oleksandr, E-mail: dr.alex.lysenko@gmail.com [Bogomolets National Medical University, Department of Therapeutic Stomatology (Ukraine); Dubok, Oleksii [Institute for Problems of Material Science NASU, Department of Analytical Chemistry and Functional Ceramics (Ukraine); Borysenko, Anatolii [Bogomolets National Medical University, Department of Therapeutic Stomatology (Ukraine); Shinkaruk, Oleksandr [Institute for Problems of Material Science NASU, Department of Analytical Chemistry and Functional Ceramics (Ukraine)

    2015-04-15

    The biological properties of nanostructured bioactive ceramic composite (BCC) granules doped with 0.1–10 at.% silver and 0.05–5 at.% copper have been investigated both in vitro and in vivo to develop effective alloplastic material for infected bone defect substitute. It is assumed that the granules consisting of biphasic calcium phosphate and bioactive glass ceramics due to their nanoscale (15–40 nm) and multiphase structure, bioelement placement in different ceramic phases as well as antimicrobial effect should improve osteogenic properties and biocompatibility. Tests in vitro have been conducted with multipotent mesenchymal stromal cells (MSCs) and test strains of microorganisms. The same biocomposite has been used in vivo to study the repair of bone defects in animal model. The findings indicate that doped BCC leads to antimicrobial activity. Inhibition of MSCs growth has been observed for granules doped with ions of more than 1 at.% silver and 0.5 at.% copper. The results of the in vivo study reveal that BCC implantation significantly improves bone reparation. Differences between bone repair with undoped and doped, with 1 at.% silver and 0.5 at.% copper, ceramic samples were not observed. The BCC doped within 0.5–1 at.% silver and 0.25–0.5 at.% copper stimulates bone tissue repair and has satisfactory biocompatibility and antimicrobial properties.

  10. Zirconia powders production by precipitation: state-of-art review; Producao de pos de zirconia por precipitacao - revisao do estado da arte

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ana Paula Almeida de; Torem, Mauricio Leonardo [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    1994-12-31

    The important role played by zirconia in advanced ceramics can be attributed to its excellent wear and corrosion resistance and refractory character. The polymorphic nature of zirconia made the controlled addition of stabilizing oxides or the constraining effect of a dense ceramics matrix necessary to maintain high parameters had a significant influence on powder properties and on compacted powder behaviour in sintering. Particle shape and size, purity and crystalline structure were specially influenced by precipitation parameters. Therefore, this work presented a review of the state of the art in zirconia powder production and in the recent research on precipitation of that powder. (author) 15 refs., 5 figs., 2 tabs.

  11. Y-TZP ceramic processing from coprecipitated powders : A comparative study with three commercial dental ceramics

    NARCIS (Netherlands)

    Lazar, Dolores R. R.; Bottino, Marco C.; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H. A.

    2008-01-01

    Objectives. (1) To synthesize 3 mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. Methods.

  12. Phase characterization of precipitated zirconia

    International Nuclear Information System (INIS)

    Gutzov, S.; Ponahlo, J.; Lengauer, C.L.; Beran, A.

    1994-01-01

    The phase compositions of undoped and europium-doped zirconia samples, obtained by precipitation and thermal treatment from 350 to 1,000 C, have been investigated by powder X-ray diffractometry, infrared spectroscopy, and cathodoluminescence spectroscopy. The low-temperature stabilization of tetragonal zirconia is mainly controlled by the presence of anion additives, such as ammonium chloride. The influences of the crystallite size is less important. Cathodoluminescence spectra show a structural similarity between tetragonal and amorphous zirconia

  13. Zirconia powders production by precipitation: state-of-art review

    International Nuclear Information System (INIS)

    Oliveira, Ana Paula Almeida de; Torem, Mauricio Leonardo

    1994-01-01

    The important role played by zirconia in advanced ceramics can be attributed to its excellent wear and corrosion resistance and refractory character. The polymorphic nature of zirconia made the controlled addition of stabilizing oxides or the constraining effect of a dense ceramics matrix necessary to maintain high parameters had a significant influence on powder properties and on compacted powder behaviour in sintering. Particle shape and size, purity and crystalline structure were specially influenced by precipitation parameters. Therefore, this work presented a review of the state of the art in zirconia powder production and in the recent research on precipitation of that powder. (author)

  14. Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Arai, Yusuke; Ohishi, Yasutake

    2008-01-01

    A systematic method to evaluate potentials of Ni 2+ -doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni 2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa 2 O 4 and LiGa 5 O 8 at room temperature. Transparent glass-ceramics containing Ni 2+ :LiGa 5 O 8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media

  15. All-ceramic posts and cores: the state of the art.

    Science.gov (United States)

    Koutayas, S O; Kern, M

    1999-06-01

    Metal posts used to restore endodontically treated teeth may shine through all-ceramic crowns and thin gingival tissue. When nonprecious alloys are used, corrosion products may lead to discoloration. All-ceramic posts and cores can be used in combination with all-ceramic crowns to prevent these problems. All-ceramic posts and cores are highly biocompatible and will almost always increase the translucency of an all-ceramic restoration. The purpose of this article is to describe the fabrication of all-ceramic posts and cores, using high-toughness ceramic materials such as alumina or zirconia ceramics, through 4 different techniques: the slip-casting technique; the copy-milling technique; the 2-piece technique, which involves a prefabricated zirconia ceramic post and a copy-milled alumina or zirconia ceramic core; and the heat-press technique, which involves a prefabricated zirconia ceramic post and a heat-pressed glass-ceramic core. Indications, contraindications, advantages, and disadvantages of the different techniques are compared.

  16. Characteristics of porous zirconia coated with hydroxyapatite

    Indian Academy of Sciences (India)

    However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared ...

  17. Low Temperature Synthesis and Properties of Gadolinium-Doped Cerium Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Machado, Marina F. S.; P. R. Moraes, Leticia; Monteiro, Natalia K.

    2017-01-01

    Gadolinium-doped cerium oxide (GDC) is an attractive ceramic material for solid oxide fuel cells (SOFCs) both as the electrolyte or in composite electrodes. The Ni/GDC cermet can be tuned as a catalytic layer, added to the conventional Ni/yttria-stabilized zirconia (YSZ), for the internal steam...... sintering temperature needed to obtain a fully dense ceramic body, which can result in undesired reactions with YSZ. In this study, a green chemistry route for the synthesis of 10 mol% GDC nanoparticles is proposed. Such a low temperature synthesis provides control over particle size and sinterability...

  18. Fracture toughness measurements on zirconia toughened ceramics

    International Nuclear Information System (INIS)

    El Sayed Ali, M.; Toft Soerensen, O.

    1986-12-01

    Three techniques for fracture toughness measurements on zirconia toughened ceramics were evaluated: the notched beam (NB) technique, the indentation fracture (IF) technique and the indentation strength in bending (ISB) technique. Using these techniques comparative measurements were performed on samples prepared by pressing (uniaxial) and sintering of four commercially available powder types. These were: Toya Soda (Japan) powders with the designations TZ3Y (2.86 mole% Y 2 O 3 ), TZ3YA (2.77 mole% Y 2 O 3 , 0.1 wt% Al 2 O 3 ) and TZ3Y20A (2.88 mole% Y 2 O 3 , 20 wt.% Al 2 O 3 ) and a powder supplied by Viking Chemicals (Denmark) designated as YP5Z-2.5 (2.5 mole% Y 2 O 3 ). The measurements showed that similar K Ic values were obtained with the IF- and ISB-techniques, which therefore are recommended for K Ic measurements. Too high values were, however, obtained with the NB-technique which therefore cannot be recommended. Finally, the measurements showed that a high temperature annealing is recommended prior to testing for the IF-technique. (author)

  19. Zirconia- versus metal-based, implant-supported abutments and crowns

    DEFF Research Database (Denmark)

    Hosseini, Mandana

    , the selection of restoration materials should be based on proper optical characteristics in addition to biocompatibility and sufficient strength of materials. Abutments and crowns based on zirconia are one of the most recent alternatives to metal abutments and metal-ceramic crowns. To date, only few comparative...... and to estimate long-term biomechanical results of zirconia-based versus metal-based restorations. The aim of study I was to analyse the mode of fracture and number of cyclic loadings until veneering fracture of zirconia-based all-ceramic restorations compared to metal-ceramic restorations. The aim of study II...... was to test the reliability and validity of six aesthetic parameters used at the Copenhagen Dental School to assess the aesthetic outcome of implant-supported restorations. The aims of study III and IV were to compare the influence of different abutment and crown materials on biological, biomechanical...

  20. Bi-layered zirconia/fluor-apatite bridges supported by ceramic dental implants: a prospective case series after thirty months of observation.

    Science.gov (United States)

    Spies, Benedikt Christopher; Witkowski, Siegbert; Butz, Frank; Vach, Kirstin; Kohal, Ralf-Joachim

    2016-10-01

    The aim of this study was to determine the success and survival rate of all-ceramic bi-layered implant-supported three-unit fixed dental prostheses (IS-FDPs) 3 years after implant placement. Thirteen patients (seven males, six females; age: 41-78 years) received two one-piece ceramic implants (alumina-toughened zirconia) each in the region of the premolars or the first molar and were finally restored with adhesively cemented bi-layered zirconia-based IS-FDPs (3 in the maxilla, 10 in the mandible) composed of CAD/CAM-fabricated zirconia frameworks pressed-over with fluor-apatite glass-ceramic ingots. At prosthetic delivery and the follow-ups after 1, 2 and 3 years, the restorations were evaluated using modified United States Public Health Service (USPHS) criteria. Restorations with minor veneer chippings, a small-area occlusal roughness, slightly soundable restoration margins, minimal contour deficiencies and tolerable color deviations were regarded as success. In case of more distinct defects that could, however, be repaired to a clinically acceptable level, IS-FDPs were regarded as surviving. Kaplan-Meier plots were used for the success/survival analyses. To verify an impact on subjective patients' perceptions, satisfaction was evaluated by visual analog scales (VAS). All patients were seen 3 years after implant installation. No IS-FDP had to be replaced, resulting in 100% survival after a mean observation period of 29.5 months (median: 30.7). At the 3-year follow-up, 7/13 IS-FDPs showed a veneer chipping, 13/13 an occlusal roughness and 12/13 minimal deficiencies of contour/color. Since six restorations showed a major chipping and/or a major occlusal roughness, the Kaplan-Meier success rate was 53.8%. However, patients' significantly improved perceptions of function, esthetics, sense, and speech at prosthetic delivery remained stable over time. Bi-layered zirconia/fluor-apatite IS-FDPs entirely survived the observation period but showed a high frequency of

  1. Defluoridation of water using magnesia/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Sairam Sundaram, C. [Department of Science and Humanities, Karaikal Polytechnic College, Karaikal 609609, Puducherry (India)], E-mail: sairam_adithya@yahoo.com; Viswanathan, Natrayasamy [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Tamilnadu (India)], E-mail: natrayasamy_viswanathan@rediffmail.com; Meenakshi, S. [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Tamilnadu (India)], E-mail: drs_meena@rediffmail.com

    2009-04-30

    Magnesia (MgO) is a well-known adsorbent showing extremely high defluoridation capacity (DC). In order to over come the limitations of MgO for field applications, an attempt has been made to modify magnesia with abundant biomaterial chitosan to form magnesia/chitosan (MgOC) composite in a usable form and its merits over conventional magnesia and raw chitosan is established. Removal of fluoride from aqueous solution with MgO and MgOC composite was studied with batch equilibrium experiments. At equilibrium, MgOC composite has a DC of 4440 mg F{sup -}/kg while for magnesia it is only 2175 mg F{sup -}/kg. The physicochemical properties of the synthesised MgOC composite were analyzed with FTIR and SEM with EDAX studies. The equilibrium data were fitted with isotherm and kinetic models. Thermodynamic parameters viz, {delta}G{sup o}, {delta}H{sup o} and {delta}S{sup o} were calculated to understand the nature of sorption. Field studies were carried out to find the suitability of these sorbents at field conditions.

  2. Translucence in dental prosthesis based on zirconia ceramics: effect of the sintering parameters

    International Nuclear Information System (INIS)

    Santos, C.

    2011-01-01

    In this work the translucence of Zirconia dental ceramics was evaluated as function of sintering conditions (temperature and isothermal holding time). Samples with 15x15x1mm, were sintered at 1450 to 1600 deg C, with holding of 2h or 4h. Sintered samples were characterized by relative density, crystalline phases and microstructural aspects. Full density was obtained in samples sintered at 1530 and 1600 deg C, which presented higher grain sizes. Na increasing of translucence was observed in samples sintered at 1530 and 1600, correlating these properties with increasing of density and grain size of the samples. (author)

  3. Fabrication of porous zirconia using filter paper template

    International Nuclear Information System (INIS)

    Deng Yuhua; Wei Pan

    2005-01-01

    In this work, porous zirconia ceramic was synthesized using filter papers as a template. Special attention is paid to whether the structural of the filter paper can be transferred to the zirconia structure. Microstructure of so synthesized porous zirconia was observed with SEM and the phase was determined by XRD. The surface area and the pore were investigated with an automatic volumetric sorption analyzer. It has been found that the morphology of the template transmit to the porous zirconia quite well. (orig.)

  4. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  5. INTERFACE RESIDUAL STRESSES IN DENTAL ZIRCONIA USING LAUE MICRO-DIFFRACTION

    International Nuclear Information System (INIS)

    Bale, H. A.; Tamura, N.; Coelho, P.G.; Hanan, J. C.

    2009-01-01

    Due to their aesthetic value and high compressive strength, dentists have recently employed ceramics for restoration materials. Among the ceramic materials, zirconia provides high toughness and crack resistant characteristics. Residual stresses develop in processing due to factors including grain anisotropy and thermal coefficient mismatch. In the present study, polychromatic X-ray (Laue) micro-diffraction provided grain orientation and residual stresses on a clinically relevant zirconia model ceramic disk. A 0.5 mm x 0.024 mm region on zirconia was examined on a 500 nm scale for residual stresses using a focused poly-chromatic synchrotron X-ray beam. Large stresses ranging from - to + 1GPa were observed at some grains. On average, the method suggests a relatively small compressive stress at the surface between 47 and 75 MPa depending on direction

  6. Effect of air-abrasion on the retention of zirconia ceramic crowns luted with different cements before and after artificial aging.

    Science.gov (United States)

    Shahin, Ramez; Kern, Matthias

    2010-09-01

    The purpose of this in vitro study was to evaluate the effect of intaglio surface air-abrasion on the retention of CAD/CAM produced zirconia ceramic crowns cemented with three different types of cement. In addition the influence of artificial aging in masticatory simulator and thermocycling was tested. Extracted human premolars were prepared for all-ceramic crowns (12 degrees taper, 3 mm axial length). CAD/CAM zirconia crowns were manufactured. Half of the crowns were air-abraded with 50 microm alumina particles at 0.25 MPa, the rest was left as machined. The crowns were luted with zinc phosphate cement (Hoffmann), glass ionomer cement (Ketac Cem), or composite resin (Panavia 21), subgroups were either stored for 3 days in 37 degrees water bath or stored for 150 days in 37 degrees water bath, with additional 37,500 thermal cycles (5-55 degrees) and 300,000 cycles dynamic loading with 5 kg in a masticatory simulator. Then crown retention was measured in tension at a crosshead speed of 2 mm/min using a universal testing machine. Statistical analysis was performed with three-way ANOVA. Mean retention values were ranged from 2.8 to 7.1 MPa after 3 days and from 1.6 to 6.1 MPa after artificial aging. Air-abrasion significantly increased crown retention (partificial aging decreased retention (p=0.017). In addition, the luting material had a significant influence on retention (p<0.001) with the adhesive luting resin providing the highest retention. The use of phosphate monomer containing composite resin on air-abraded zirconia ceramic can be recommended as most retentive luting method. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Translucency of dental ceramics with different thicknesses.

    Science.gov (United States)

    Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko

    2013-07-01

    The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (Pceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  8. Dielectric, ferroelectric and piezoelectric properties of Nb{sup 5+} doped BCZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Parjansri, Piewpan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand); Intatha, Uraiwan [School of Science, Mae Fah Luang University, 57100 Chiang Rai (Thailand); Eitssayeam, Sukum, E-mail: sukum99@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand)

    2015-05-15

    Highlights: • Average grain size of BCZT ceramic decreased with the increasing Nb{sup 5+} doping. • Dielectric constant value is enhanced with Nb{sup 5+} doping. • Dielectric loss of BCZT − x Nb{sup 5+} ceramics was less than 0.03 at room temperature (1 kHz). • Piezoelectric coefficient decreased with the increasing Nb{sup 5+} doping. • The relaxation behavior is enhanced with the doping of Nb{sup 5+}. - Abstract: This work investigated the electrical properties of Nb{sup 5+} (0.0–1.0 mol%) doped with Ba{sub 0.90}Ca{sub 0.10}Zr{sub 0.10}Ti{sub 0.90}O{sub 3} while adding 1 mol% of Ba{sub 0.90}Ca{sub 0.10}Zr{sub 0.10}Ti{sub 0.90}O{sub 3} seeds. The mixed powder was ball milled for 24 h, calcined and sintered at 1200 °C for 2 h and 1450 °C for 4 h, respectively. The XRD patterns of the ceramic samples were investigated by X-ray diffraction. The electrical properties of ceramics were measured and the results indicated that all samples show a pure perovskite phase with no secondary phase. Density and average grain size values were in the range of 5.60–5.71 g/cm{sup 3} and 12.62–1.86 μm, respectively. The highest dielectric constant, ϵ{sub r} at room temperature (1 kHz) was 4636 found at 1.0 mol% Nb. The dielectric loss, tan δ was less than 0.03 for all samples at room temperature (1 kHz). Other electrical properties, P{sub r}, d{sub 33} and k{sub p} values were decreased with Nb doped relates to the decreasing grain size in BCZT ceramics. Moreover, the degrees of phase transition diffuseness and relaxation behavior were observed in the higher Nb doping.

  9. Impedance spectroscopy of Li2CO3 doped (Ba,Sr)TiO3 ceramic

    Science.gov (United States)

    Ham, Yong-Su; Koh, Jung-Hyuk

    2013-02-01

    (BaxSr1-x)TiO3-based ceramic has been considered as one of the most important electronic materials widely employed in microwave passive device applications. Many researches have been performed to lower the high sintering temperature, by adding various dopants such as B2O3, La2O3, etc. In our previous study, by adding Li2CO3 to (Ba0.5,Sr0.5)TiO3 ceramics, the sintering temperature of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics decreased from 1350 to 900 °C. This study observed the crystalline structure and electrical properties of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics. In scanning the crystalline structure of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics, no pyro phase was observed by X-ray diffraction analysis. To investigate the electrical properties of Li2CO3 doped (Ba0.5,Sr0.5)TiO3 ceramics, real and imaginary parts of the impedances were analyzed. Complex impedance data were measured from 100 Hz to 1 MHz at various temperature ranges.

  10. Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor

    International Nuclear Information System (INIS)

    Furuta, Satoshi; Matsuhashi, Hiromi; Arata, Kazushi

    2006-01-01

    Amorphous zirconia catalysts, titanium-, aluminum-, and potassium-doped zirconias, were prepared and evaluated in the transesterification of soybean oil with methanol at 250 deg. C, and the esterification of n-octanoic acid with methanol at 175-200 deg. C. Titanium- and aluminum-doped zirconias are promising solid catalysts for the production of biodiesel fuels from soybean oil because of their high performance, with over 95% conversion in both of the esterifications

  11. Design and Fabrication of Porous Yttria-Stabilized Zirconia Ceramics for Hot Gas Filtration Applications

    Science.gov (United States)

    Shahini, Shayan

    Hot gas filtration has received growing attention in a variety of applications over the past few years. Yttria-stabilized zirconia (YSZ) is a promising candidate for such an application. In this study, we fabricated disk-type porous YSZ filters using the pore forming procedure, in which poly methyl methacrylate (PMMA) was used as the pore-forming agent. After fabricating the pellets, we characterized them to determine their potential for application as gas filters. We investigated the effect of sintering temperature, polymer particle size, and polymer-to-ceramic ratio on the porosity, pore size, gas permeability, and Vickers hardness of the sintered pellets. Furthermore, we designed two sets of experiments to investigate the robustness of the fabricated pellets--i.e., cyclic heating/cooling and high temperature exposure. This study ushers in a robust technique to fabricate such porous ceramics, which have the potential to be utilized in hot gas filtration.

  12. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  13. Spectroscopic Properties of Neodymium and Erbium-Doped Magnesium Oxide Ceramics

    Science.gov (United States)

    2015-09-01

    universally >99% of theoretical. Powder x-ray diffraction (XRD) analysis was employed to determine the crystalline phases in doped MgO ceramics after the...different sintering steps. Powders of sintered pellets were prepared by grinding fragments in a glass mortar and pestle to avoid crystalline...than anticipated for the doped MgO. Somewhat more conclusive information on the extent of successful RE doping was derived from the XRD analysis

  14. Antagonist wear of monolithic zirconia crowns after 2 years.

    Science.gov (United States)

    Lohbauer, Ulrich; Reich, Sven

    2017-05-01

    The aim of this study was to evaluate the amount of wear on the antagonist occlusal surfaces of clinically placed monolithic zirconia premolar and molar crowns (LAVA Plus, 3M ESPE). Fourteen in situ monolithic zirconia crowns and their opposing antagonists (n = 26) are the subject of an ongoing clinical trial and have been clinically examined at baseline and after 24 months. Silicone impressions were taken and epoxy replicas produced for qualitative SEM analysis and quantitative analysis using optical profilometry. Based on the baseline replicas, the follow-up situation has been scanned and digitally matched with the initial topography in order to calculate the mean volume loss (in mm 3 ) as well as the mean maximum vertical loss (in mm) after 2 years in service. The mean volume loss for enamel antagonist contacts (n = 7) was measured to 0.361 mm 3 and the mean of the maximum vertical loss to 0.204 mm. The mean volume loss for pure ceramic contacts (n = 10) was measured to 0.333 mm 3 and the mean of the maximum vertical loss to 0.145 mm. The wear rates on enamel contacts were not significantly different from those measured on ceramic antagonists. Based on the limitations of this study, it can be concluded for the monolithic zirconia material LAVA Plus that the measured wear rates are in consensus with other in vivo studies on ceramic restorations. Further, that no significant difference was found between natural enamel antagonists and ceramic restorations as antagonists. The monolithic zirconia restorations do not seem to be affected by wear within the first 2 years. The monolithic zirconia crowns (LAVA Plus) show acceptable antagonist wear rates after 2 years in situ, regardless of natural enamel or ceramics as antagonist materials.

  15. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Darroudi, Taghi; Zeng, Xiaoyu; Alshareef, Husam N.; Tritt, Terry M.

    2015-01-01

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  16. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    KAUST Repository

    Mehdizadeh Dehkordi, Arash

    2015-08-15

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  17. Experimental study of stress-induced localized transformation plastic zones in tetragonal zirconia polycrystalline ceramics

    International Nuclear Information System (INIS)

    Sun, Q.; Zhao, Z.; Chen, W.; Qing, X.; Xu, X.; Dai, F.

    1994-01-01

    Stress-induced martensitic transformation plastic zones in ceria-stabilized tetragonal zirconia polycrystalline ceramics (Ce-TZP), under loading conditions of uniaxial tension, compression, and three-point bending, are studied by experiments. The transformed monoclinic phase volume fraction distribution and the corresponding plastic strain distribution and the surface morphology (surface uplift) are measured by means of moire interferometry, Raman microprobe spectroscopy, and the surface measurement system. The experimental results from the above three kinds of specimens and methods consistently show that the stress-induced transformation at room temperature of the above specimen is not uniform within the transformation zone and that the plastic deformation is concentrated in some narrow band; i.e., macroscopic plastic flow localization proceeds during the initial stage of plastic deformation. Flow localization phenomena are all observed in uniaxial tension, compression, and three-point bending specimens. Some implications of the flow localization to the constitutive modeling and toughening of transforming thermoelastic polycrystalline ceramics are explored

  18. Effect of ceramic thickness, grinding, and aging on the mechanical behavior of a polycrystalline zirconia.

    Science.gov (United States)

    Prado, Rodrigo Diniz; Pereira, Gabriel Kalil Rocha; Bottino, Marco Antonio; Melo, Renata Marques de; Valandro, Luiz Felipe

    2017-11-06

    Monolithic restorations of Y-TZP have been recommended as a restorative alternative on prosthetic dentistry as it allows a substantial reduction of ceramic thickness, which means a greater preservation of tooth structure. However, the influence of grinding and aging when using a thinner layer of the material is unclear. This investigation aimed to evaluate and compare the effects of ceramic thickness (0.5 mm and 1.0 mm), grinding and aging (low-temperature degradation) on the mechanical behavior and surface characteristics of a full-contour Y-TZP ceramic. Y-TZP disc-shaped specimens (15 mm diameter) were manufactured with both thicknesses and randomly assigned into 4 groups considering the factors 'grinding with diamond bur' and 'aging in autoclave'. Surface topography (roughness, 3D profilometry and SEM), phase transformation, flexural strength and structural reliability (Weibull) analyses were executed. Grinding affected the surface topography, while aging did not promote any effect. An increase in m-phase content was observed after grinding and aging, although different susceptibilities were observed. Regardless of zirconia's thickness, no deleterious effect of grinding or aging on the mechanical properties was observed. Thus, in our testing assembly, reducing the thickness of the Y-TZP ceramic did not alter its response to grinding and low temperature degradation and did not impair its mechanical performance.

  19. Effect of magnesia on properties and microstructure of alkali-activated slag cement

    Directory of Open Access Journals (Sweden)

    Yong-hao Fang

    2011-12-01

    Full Text Available The effect of magnesia burnt at 800-950°C on the properties, especially the shrinkage, of alkali-activated slag cement (AASC was experimentally studied. Experimental results show that, although adding 4%-8% lightly-burnt magnesia may shorten the setting time and slightly reduce the compressive strength of AASC, it can remarkably reduce the shrinkage of AASC. The results also show that the setting time of AASC with a certain amount of magnesia increases with the burning temperature, and that the flexural and compressive strengths of AASC decrease with the increase of the additive amount of magnesia. Generally, the adverse effect of magnesia decreases with the increase of the burning temperature, and the shrinkage-reducing effect of magnesia increases with the additive amount of magnesia. X-ray diffraction (XRD and scanning electron microscopy (SEM analyses show that some magnesia particles in the hardened AASC paste at a 28-d age remained unhydrated, and that the compactness decreased a little as magnesia was added. We can also conclude that magnesia burnt at 850-950°C can be used to reduce the shrinkage of AASC only when its additive amount does not exceed 8%; otherwise, the setting time may be too short, and the flexural and compressive strengths may severely decrease.

  20. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo

    2016-01-01

    This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).

  1. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia.

    Science.gov (United States)

    Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B

    2016-07-01

    The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Microstructure and mechanical properties of TiAl castings produced by zirconia ceramic mould

    Directory of Open Access Journals (Sweden)

    Tian Jing

    2011-11-01

    Full Text Available Owing to their low density and attractive high-temperature properties, gamma titanium aluminide alloys (TiAl alloys, hereafter have significant potential application in the aerospace and automobile industries, in which these materials may replace the heavier nickel-based superalloys at service temperatures of 600 – 900℃. Investment casting of TiAl alloys has become the most promising cost-effective technique for the manufacturing of TiAl components. Ceramic moulds are fundamental to fabricating the TiAl casting components. In the present work, ceramic mould with a zirconia primary coat was designed and fabricated successfully. Investment casting of TiAl blades and tensile test of specimens was carried out to verify the correctness and feasibility of the proposed method. The tensile test results indicate that, at room temperature, the tensile strength and the elongation are about 450 MPa and 0.8%, respectively. At 700℃, the tensile strength decreases to about 410 MPa and the elongation increases to 2.7%. Microstructure and mechanical properties of investment cast TiAl alloy are discussed.

  3. Atomistic modeling of La3+ doping segregation effect on nanocrystalline yttria-stabilized zirconia.

    Science.gov (United States)

    Zhang, Shenli; Sha, Haoyan; Castro, Ricardo H R; Faller, Roland

    2018-05-16

    The effect of La3+ doping on the structure and ionic conductivity change in nanocrystalline yttria-stabilized zirconia (YSZ) was studied using a combination of Monte Carlo and molecular dynamics simulations. The simulation revealed the segregation of La3+ at eight tilt grain boundary (GB) structures and predicted an average grain boundary (GB) energy decrease of 0.25 J m-2, which is close to the experimental values reported in the literature. Cation stabilization was found to be the main reason for the GB energy decrease, and energy fluctuations near the grain boundary are smoothed out with La3+ segregation. Both dynamic and energetic analysis on the Σ13(510)/[001] GB structure revealed La3+ doping hinders O2- diffusion in the GB region, where the diffusion coefficient monotonically decreases with increasing La3+ doping concentration. The effect was attributed to the increase in the site-dependent migration barriers for O2- hopping caused by segregated La3+, which also leads to anisotropic diffusion at the GB.

  4. Shear bond strength of a denture base acrylic resin and gingiva-colored indirect composite material to zirconia ceramics.

    Science.gov (United States)

    Kubochi, Kei; Komine, Futoshi; Fushiki, Ryosuke; Yagawa, Shogo; Mori, Serina; Matsumura, Hideo

    2017-04-01

    To evaluate the shear bond strengths of two gingiva-colored materials (an indirect composite material and a denture base acrylic resin) to zirconia ceramics and determine the effects of surface treatment with various priming agents. A gingiva-colored indirect composite material (CER) or denture base acrylic resin (PAL) was bonded to zirconia disks with unpriming (UP) or one of seven priming agents (n=11 each), namely, Alloy Primer (ALP), Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB+Act), Metal Link (MEL), Meta Fast Bonding Liner (MFB), MR. bond (MRB), and V-Primer (VPR). Shear bond strength was determined before and after 5000 thermocycles. The data were analyzed with the Kruskal-Wallis test and Steel-Dwass test. The mean pre-/post-thermalcycling bond strengths were 1.0-14.1MPa/0.1-12.1MPa for the CER specimen and 0.9-30.2MPa/0.1-11.1MPa for the PAL specimen. For the CER specimen, the ALP, CPB, and CPB+Act groups had significantly higher bond strengths among the eight groups, at both 0 and 5000 thermocycles. For the PAL specimen, shear bond strength was significantly lower after thermalcycling in all groups tested. After 5000 thermocycles, bond strengths were significantly higher in the CPB and CPB+Act groups than in the other groups. For the PAL specimens, bond strengths were significantly lower after thermalcycling in all groups tested. The MDP functional monomer improved bonding of a gingiva-colored indirect composite material and denture base acrylic resin to zirconia ceramics. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  5. Synthesis and characterization of nickel oxide doped barium strontium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M. [Dept. of Electrical Engineering, Bengal Institute of Technology Kolkata (India); Mukherjee, S. [Dept. of Metallurgical Engineering, Jadavpur University, Kolkata (India); Maitra, S. [Govt. College of Engg. and Ceramic Technology, Kolkata (India)

    2012-01-15

    Barium strontium titanate (BST) ceramics (Ba{sub 0.6}Sr{sub 0.4})TiO{sub 3} were synthesized by solid state sintering using barium carbonate, strontium carbonate and rutile as the precursor materials. The samples were doped with nickel oxide in different proportions. Different phases present in the sintered samples were determined from X-ray diffraction investigation and the distribution of different phases in the microstructure was assessed from scanning electron microscopy study. It was observed that the dielectric properties of BST were modified significantly with nickel oxide doping. These ceramics held promise for applications in tuned circuits. (author)

  6. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao

    2014-04-03

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  7. Structural, Raman, and dielectric studies on multiferroic Mn-doped Bi 1-xLax FeO 3 ceramics

    KAUST Repository

    Xing, Zhibiao; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2014-01-01

    Multiferroic Bi1-xLaxFeO3 [BLFO (x)] ceramics with x = 0.10-0.50 and Mn-doped BLFO (x = 0.30) ceramics with different doping contents (0.1-1.0 mol%) were prepared by solid-state reaction method. They were crystallized in a perovskite phase with rhombohedral symmetry. In the BLFO (x) system, a composition (x)-driven structural transformation (R3c→C222) was observed at x = 0.30. The formation of Bi2Fe 4O9 impure phase was effectively suppressed with increasing the x value, and the rhombohedral distortion in the BLFO ceramics was decreased, leading to some Raman active modes disappeared. A significant red frequency shift (~13 cm-1) of the Raman mode of 232 cm-1 in the BLFO ceramics was observed, which strongly perceived a significant destabilization in the octahedral oxygen chains, and in turn affected the local FeO6 octahedral environment. In the Mn-doped BLFO (x = 0.30) ceramics, the intensity of the Raman mode near 628 cm-1 was increased with increasing the Mn-doping content, which was resulted from an enhanced local Jahn-Teller distortions of the (Mn,Fe)O6 octahedra. Electron microscopy images revealed some changes in the ceramic grain sizes and their morphologies in the Mn-doped samples at different contents. Wedge-shaped 71° ferroelectric domains with domain walls lying on the {110} planes were observed in the BLFO (x = 0.30) ceramics, whereas in the 1.0 mol% Mn-doped BLFO (x = 0.30) samples, 71° ferroelectric domains exhibited a parallel band-shaped morphology with average domain width of 95 nm. Dielectric studies revealed that high dielectric loss of the BLFO (x = 0.30) ceramics was drastically reduced from 0.8 to 0.01 (measured @ 104 Hz) via 1.0 mol% Mn-doping. The underlying mechanisms can be understood by a charge disproportion between the Mn4+ and Fe2+ in the Mn-doped samples, where a reaction of Mn4+ + Fe2+→Mn3+ + Fe3+ is taken place, resulting in the reduction in the oxygen vacancies and a suppression of the electron hopping from Fe3+ to Fe2+ ions

  8. Investigation of holmium-doped zirconium oxide ceramic phosphor as an ultraviolet wavelength-discriminating laser beam viewer

    Science.gov (United States)

    Yamanoi, Kohei; Hori, Tatsuhiro; Minami, Yuki; Empizo, Melvin John F.; Luong, Mui Viet; Shiro, Atsushi; Watanabe, Jun; Iwano, Keisuke; Iwasa, Yuki; Cadatal-Raduban, Marilou; Gabayno, Jacque Lynn; Shimizu, Toshihiko; Sarukura, Nobuhiko; Norimatsu, Takayoshi

    2018-01-01

    We report the fluorescence spectra of ZrO2 and trivalent Ho-doped ZrO2 ceramics under ultraviolet (UV) excitation at 213, 266, and 355 nm wavelengths. The Ho3+-doped ZrO2 ceramics exhibited varying fluorescence color tones depending on the excitation wavelength used. The different color tones match the fluorescence spectrum characteristics at each excitation wavelength. Our results demonstrate that Ho3+-doped ZrO2 ceramics can discriminate between UV light, specifically the third, fourth, and fifth harmonics of a Nd:YAG laser. It can potentially be used for developing UV laser beam viewers to aid laser alignment.

  9. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Science.gov (United States)

    Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  10. Synthesis, characterization of CaF2 doped silicate glass-ceramics.

    Science.gov (United States)

    Riaz, Madeeha; Zia, Rehana; Mirza, Ambreen; Hussain, Tousif; Bashir, Farooq; Anjum, Safia

    2017-06-01

    This paper reports the fabrication and characterization of silicate glass-ceramics doped with (0-12mol%) CaF 2 . TGA-DSC analysis was carried out to determine the crystallization temperature and stability of glass measured by two glass parameters; Hruby parameter K H =(T x -T g )/(T L -T x ) and Weinberg parameter K W =(T c -T g )/T L . It was found that with CaF 2 doping improved sinterability at low temperature and provided stability to the glass. The XRD pattern exhibits a single phase of combeite and doping of CaF 2 cause increase in crystallite size. Microstructure of samples was also improved with CaF 2 addition, pores were significantly reduced. After 15days immersion in simulated body fluid all samples developed apatite layer onto its surface. Hence, the addition of CaF 2 provided bioactive glass-ceramic material having a low processing temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Iron Oxide Doped Alumina-Zirconia Nanoparticle Synthesis by Liquid Flame Spray from Metal Organic Precursors

    OpenAIRE

    Juha-Pekka Nikkanen; Helmi Keskinen; Mikko Aromaa; Mikael Järn; Tomi Kanerva; Erkki Levänen; Jyrki M. Mäkelä; Tapio Mäntylä

    2008-01-01

    The liquid flame spray (LFS) method was used to make iron oxide doped alumina-zirconia nanoparticles. Nanoparticles were generated using a turbulent, high-temperature (Tmax⁡∼3000 K) H2-O2 flame. The precursors were aluminium-isopropoxide, zirconium-n-propoxide, and ferrocene in xylene solution. The solution was atomized into micron-sized droplets by high velocity H2 flow and introduced into the flame where nanoparticles were formed. The particle morphology, size, phase, and chemical compositi...

  12. Esthetic and Clinical Performance of Implant-Supported All-Ceramic Crowns Made with Prefabricated or CAD/CAM Zirconia Abutments: A Randomized, Multicenter Clinical Trial.

    Science.gov (United States)

    Wittneben, J G; Gavric, J; Belser, U C; Bornstein, M M; Joda, T; Chappuis, V; Sailer, I; Brägger, U

    2017-02-01

    Patients' esthetic expectations are increasing, and the options of the prosthetic pathways are currently evolving. The objective of this randomized multicenter clinical trial was to assess and compare the esthetic outcome and clinical performance of anterior maxillary all-ceramic implant crowns (ICs) based either on prefabricated zirconia abutments veneered with pressed ceramics or on CAD/CAM zirconia abutments veneered with hand buildup technique. The null hypothesis was that there is no statistically significant difference between the 2 groups. Forty implants were inserted in sites 14 to 24 (FDI) in 40 patients in 2 centers, the Universities of Bern and Geneva, Switzerland. After final impression, 20 patients were randomized into group A, restored with a 1-piece screw-retained single crown made of a prefabricated zirconia abutment with pressed ceramic as the veneering material using the cut-back technique, or group B using an individualized CAD/CAM zirconia abutment (CARES abutment; Institut Straumann AG) with a hand buildup technique. At baseline, 6 mo, and 1 y clinical, esthetic and radiographic parameters were assessed. Group A exhibited 1 dropout patient and 1 failure, resulting in a survival rate of 94.7% after 1 y, in comparison to 100% for group B. No other complications occurred. Clinical parameters presented stable and healthy peri-implant soft tissues. Overall, no or only minimal crestal bone changes were observed with a mean DIB (distance from the implant shoulder to the first bone-to-implant contact) of -0.15 mm (group A) and 0.12 mm (group B) at 1 y. There were no significant differences at baseline, 6 mo, and 1 y for DIB values between the 2 groups. Pink esthetic score (PES) and white esthetic score (WES) values at all 3 examinations indicated stability over time for both groups and pleasing esthetic outcomes. Both implant-supported prosthetic pathways represent a valuable treatment option for the restoration of single ICs in the anterior maxilla

  13. Wear mechanisms of toughened zirconias

    International Nuclear Information System (INIS)

    Becker, P.C.; Libsch, T.A.; Rhee, S.K.

    1985-01-01

    The dry friction and wear behavior of toughened zirconias against hardened steel was studied using the falex ring and block technique. Three experimental ZrO 2 -Y 2 O 3 ceramics and two commerical ZrO 2 -MgO ceramics were investigated. Each ceramic was tested at 500 and 2000 rpm at normal loads in the range 2.3 to 40.8 kg. Significant trends in the friction and wear data were found correlating composition, test speeds, and loads. Microstructural examination of the ring, ceramic block, and wear debris has shown that the wear process is very complex and incorporates a number of mechanisms

  14. Fluency over the monoclinic zirconia indentation

    International Nuclear Information System (INIS)

    Pereira, A.S.; Jornada, J.A.H. da

    1992-01-01

    It was investigated the environment and the time dependence of the Vickers microhardness of monoclinic zirconia single-crystals. The samples were kept at room temperature and the identifications were performed for different environments (air, toluene and water). An indentation creep process was observed for the samples indented is moist media, indicating for a water activated plastic relaxation mechanism. The possible influence of such effect in the fatigue and phase transformations mechanisms of zirconia based ceramics is discussed. (author)

  15. Effect of adhesive luting on the fracture resistance of zirconia compared to that of composite resin and lithium disilicate glass ceramic

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lim

    2017-02-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of adhesive luting on the fracture resistance of zirconia compared to that of a composite resin and a lithium disilicate glass ceramic. Materials and Methods The specimens (dimension: 2 mm × 2 mm × 25 mm of the composite resin, lithium disilicate glass ceramic, and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP were prepared. These were then divided into nine groups: three non-luting groups, three non-adhesive luting groups, and three adhesive luting groups, for each restorative material. In the non-luting groups, specimens were placed on the bovine tooth without any luting agents. In the non-adhesive luting groups, only zinc phosphate cement was used for luting the specimen to the bovine tooth. In the adhesive luting groups, specimens were pretreated, and the adhesive luting procedure was performed using a self-adhesive resin cement. For all the groups, a flexural test was performed using universal testing machine, in which the fracture resistance was measured by recording the force at which the specimen was fractured. Results The fracture resistance after adhesive luting increased by approximately 29% in the case of the composite resin, 26% in the case of the lithium disilicate glass ceramic, and only 2% in the case of Y-TZP as compared to non-adhesive luting. Conclusions The fracture resistance of Y-TZP did not increased significantly after adhesive luting as compared to that of the composite resin and the lithium disilicate glass ceramic.

  16. An overview of monolithic zirconia in dentistry

    Directory of Open Access Journals (Sweden)

    Özlem Malkondu

    2016-07-01

    Full Text Available Zirconia restorations have been used successfully for years in dentistry owing to their biocompatibility and good mechanical properties. Because of their lack of translucency, zirconia cores are generally veneered with porcelain, which makes restorations weaker due to failure of the adhesion between the two materials. In recent years, all-ceramic zirconia restorations have been introduced in the dental sector with the intent to solve this problem. Besides the elimination of chipping, the reduced occlusal space requirement seems to be a clear advantage of monolithic zirconia restorations. However, scientific evidence is needed to recommend this relatively new application for clinical use. This mini-review discusses the current scientific literature on monolithic zirconia restorations. The results of in vitro studies suggested that monolithic zirconia may be the best choice for posterior fixed partial dentures in the presence of high occlusal loads and minimal occlusal restoration space. The results should be supported with much more in vitro and particularly in vivo studies to obtain a final conclusion.

  17. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ Powder

    Directory of Open Access Journals (Sweden)

    Chen Barad

    2017-12-01

    Full Text Available Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  18. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; Goldner, Philippe, E-mail: philippe.goldner@chimie-paristech.fr [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Ferrier, Alban [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonnes Universités, UPMC Univ Paris 06, 75005 Paris (France); Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Ramírez, Mariola O.; Bausá, Luisa E. [Departamento Física de Materiales and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Ikesue, Akio [World Laboratory, Mutsuno, Atsuta-ku, Nagoya 456-0023 (Japan)

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu{sup 3+} doped Y {sub 2}O{sub 3} transparent ceramics. This result is obtained on the {sup 7}F{sub 0}→{sup 5}D{sub 0} transition in Eu{sup 3+} doped Y {sub 2}O{sub 3} ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu{sup 3+} concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  19. Synthesis, characterization, bioactivity and antibacterial studies of silver doped calcium borosilicate glass-ceramics

    Science.gov (United States)

    Kumar, Alesh; Mariappan, C. R.

    2018-04-01

    Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.

  20. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes; Sintese e processamento de compositos de zirconia-alumina para aplicacao como eletrolito em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rafael Henrique Lazzari

    2007-07-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  1. Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics

    Science.gov (United States)

    Good, Brian

    2013-01-01

    Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.

  2. Investigation of the additive induced doping effects in gelcast soft lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    Guo Dong; Cai Kai; Li Longtu; Gui Zhilun

    2009-01-01

    Due to the high sensitivity of the electrical properties of electronic ceramics to various factors, knowledge about the possible influence of the processing procedure on their electrical performance is critical for applying a new technique to the fabrication of the materials. In this study, various electrical parameters, complex impedance spectra, ferroelectric hysteresis loops, and microstructures of soft lead zirconate titanate (PZT) ceramics formed by the gelcasting technique from suspensions with various dispersants were investigated in comparison with those of the conventional dry pressed ones. We found that the sodium ion, which is the main cation in many commercial surfactants, exhibited obvious hard doping effects; thus causing deteriorated performance of the gelcast PZT ceramics. While a certain impurity ion introduced by a dispersant was also found to induce soft doping characteristics and improve the electrical performance of the materials. The results suggest that the doping effects of the metal ions or impurities introduced by the dispersants, or other additives, should be generally considered for applying a wet processing technique to forming multicomponent electronic ceramics.

  3. Deposition of crystalline hydroxyapatite nano-particle on zirconia ceramic: a potential solution for the poor bonding characteristic of zirconia ceramics to resin cement.

    Science.gov (United States)

    Azari, Abbas; Nikzad, Sakineh; Yazdani, Arash; Atri, Faezeh; Fazel Anvari-Yazdi, Abbas

    2017-07-01

    The poor bonding strength of zirconia to different dental substrates is one of the challenging issues in restorative dentistry. Hydroxyapatite is an excellent biocompatible material with fine bonding properties. In this study, it was hypothesized that hydroxyapatite coating on zirconia would improve its bond strength. Forty-five zirconia blocks were prepared and randomly divided into three groups: hydroxyapatite coating, sandblasting, and no preparation (control). The blocks were bonded to cement and the micro-shear bond strength was measured following load application. The bond strength values were analyzed with the Kruskal-Wallis test in 3 groups and paired comparisons were made using the Mann-Whitney U test. The failure patterns of the specimens were studied by a stereomicroscope and a scanning electron microscope and then analyzed by the chi-square test (significance level = 0.05). Deposition of hydroxyapatite on the zirconia surface significantly improved its bond strength to the resin cement in comparison with the control specimens (p improved the bond strength quality and values.

  4. 75 FR 56556 - Certain Magnesia Carbon Bricks From China and Mexico

    Science.gov (United States)

    2010-09-16

    ...)] Certain Magnesia Carbon Bricks From China and Mexico Determinations On the basis of the record \\1... from China and Mexico of certain magnesia carbon bricks, provided for in subheadings 6902.10.10, 6902... the Act (19 U.S.C. 1671b(b)) and that imports of certain magnesia carbon bricks from China and Mexico...

  5. Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics

    International Nuclear Information System (INIS)

    Stambouli, W.; Elhouichet, H.; Gelloz, B.; Férid, M.

    2013-01-01

    Tellurite glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (85−x) TeO 2 +5La 2 O 3 +10TiO 2 +xEu 2 O 3 by varying the concentration of the rare-earth ion in the order 0.5, 1 and 1.5 mol%. Using Judd–Ofelt analysis, we calculated intensity parameters (Ω 2 and Ω 4 ), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross-sections for 5 D 0 → 7 F 2 transition. The change in optical properties with the variation of Eu 3+ ion concentration have been discussed and compared with other glasses. The luminescence intensity ratio, quantum efficiency and emission cross-section values support that the TeEu1.5 tellurite glass is a suitable candidate for red laser source applications. Optical properties for Eu 3+ doped tellurite glass, heated for different temperature, were investigated. Crystalline phases for α-TeO 2 , γ-TeO 2 and TiTe 3 O 8 system were determined by the XRD method. The effect of heat treatment on luminescence properties in the tellurite glass was discussed. By using Eu 3+ as a probe, the local structure of rare-earth ion in tellurite glass, vitro-ceramic and ceramic glass has been investigated. The evaluated J–O intensity parameters have been used to calculate different radiative and laser characteristic parameters of the 5 D 0 excited level. The large magnitudes of stimulated emission cross-section (σ e ), branching ratio (β) and Gain bandwidth (σ e ×Δλ eff ) obtained for 5 D 0 → 7 F 2 (613 nm) transition for ceramic glass indicate that the present glass ceramic is promising host material for Eu 3+ doped fiber amplifiers. The measured lifetime of 5 D 0 excited state increases with increase of the heat treatment which further indicate that some Eu 3+ ions were successfully embedded in the crystal phase and prove the low phonon energy environment of Eu 3+ ions

  6. Phase segregation and dielectric, ferroelectric, and piezoelectric properties of MgO-doped NBT-BT lead-free ferroelecric ceramics

    Science.gov (United States)

    Liu, Gang; Wang, Ziyang; Zhang, Leiyang; Shi, Wenjing; Jing, Jiayi; Chen, Yi; Liu, Hongbo; Yan, Yan

    2018-03-01

    MgO doped NBT-BT ceramics were prepared by the conventional electroceramic processing. The effects of MgO on the phase, microstructures and electrical properties of NBT-BT ceramics were systematically investigated. When doping content is more than 1%, a second phase appeared, which has great effect on dielectric, ferroelectric, and piezoelectric properties, such as the T F-R peak weakened, moved to the higher temperature, and eventually disappeared. When the doping content is above 1.5%, the ceramic samples show a strong relaxation. The detailed analysis and discussion can be found within this study.

  7. Effect of different grinding burs on the physical properties of zirconia.

    Science.gov (United States)

    Lee, Kyung-Rok; Choe, Han-Cheol; Heo, Yu-Ri; Lee, Jang-Jae; Son, Mee-Kyoung

    2016-04-01

    Grinding with less stress on 3Y-TZP through proper selection of methods and instruments can lead to a long-term success of prosthesis. The purpose of this study was to compare the phase transformation and physical properties after zirconia surface grinding with 3 different grinding burs. Forty disc-shaped zirconia specimens were fabricated. Each Ten specimens were ground with AllCeramic SuperMax (NTI, Kahla, Germany), Dura-Green DIA (Shofu Inc., Kyoto, Japan), and Dura-Green (Shofu Inc., Kyoto, Japan). Ten specimens were not ground and used as a control group. After the specimen grinding, XRD analysis, surface roughness test, FE-SEM imaging, and biaxial flexural strength test were performed. After surface grinding, small amount of monoclinic phase in all experimental groups was observed. The phase change was higher in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs. The roughness of surfaces increased in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs than control groups and ground with Dura-Green. All experimental groups showed lower flexural strength than control group, but there was no statistically significant difference between control group and ground with Dura-Green DIA and AllCeramic SuperMax burs. The specimens, which were ground with Dura- Green showed the lowest strength. The use of dedicated zirconia-specific grinding burs such as Dura-Green DIA and AllCeramic SuperMax burs decreases the grinding time and did not significantly affect the flexural strength of zirconia, and therefore, they may be recommended. However, a fine polishing process should be accompanied to reduce the surface roughness after grinding.

  8. Properties and clinical application of zirconia bioceramics in medicine

    Directory of Open Access Journals (Sweden)

    Čedomir Oblak

    2014-01-01

    Full Text Available Background: A group of inorganic non-metal biomaterials, that are commonly used in clinical medicine to replace or repair tissues, can be classified as a bioceramics. This group includes bioactive glasses, glass-ceramics, hydroxy-apatite and some other calcium phosphates. In addition, some bio-inert engineering ceramics materials have become increasingly utilised, aluminum oxide, zirconium oxide and their composites being the most popular. With the developement of yttria stabilized tetragonal zirconium oxide ceramics (Y-TZP medical community received a high strength biomaterial that is currently a material of choice for the manufacturing of medical devices. Y-TZP ceramics is becoming also increasingly used in dental medicine, where frameworks are manufactured by the use of computer-assisted technology.Conclusions: The article describes the basic properties of zirconia oxide ceramics important for the use in clinical medicine; high strength and fracture toughness, biocompatibility and negligible radiation. The ageing issue of this particular material, which is attributable to the thermo-dynamical instability of tetragonal zirconium oxide in hydrothermal conditions, is also discussed. When exposed to an aqueous environment over long periods of time, the surface of the Y-TZP ceramic will start transforming spontaneously into the monoclinic structure. The mechanism leading to the t-m transformation is temperature-dependent and is accompanied by extensive micro-cracking, which ultimately leads to strength degradation. The degradation might influence the clinical success rate of medical devices and therefore Y-TZP femoral heads are no longer made of pure zirconium oxide. Composites of zirconium and aluminium oxides are used instead, that are currently the strongest ceramic materials used in clinical medicine. In this work the clinical application of zirconia oxide ceramics in dental medicine is also presented. Conventional porcelain fused to metal

  9. Bond strength and Raman analysis of the zirconia-feldspathic porcelain interface.

    Science.gov (United States)

    Ramos, Carla Müller; Cesar, Paulo Francisco; Lia Mondelli, Rafael Francisco; Tabata, Americo Sheitiro; de Souza Santos, Juliete; Sanches Borges, Ana Flávia

    2014-10-01

    Zirconia has the best mechanical properties of the available ceramic systems. However, the stability of the zirconia-feldspathic porcelain interface may be jeopardized by the presence of the chipping and debonding of the feldspathic porcelain. The purpose of this study is to evaluate the shear bond strength of 3 cold isostatic pressed zirconia materials and a feldspathic veneer by analyzing their interface with micro-Raman spectroscopy. The test groups were experimental zirconia, Zirkonzahn zirconia, and Schuetz zirconia. Blocks of partially sintered zirconia were cut into disks (n=20) and then veneered with a feldspathic porcelain. Half of the specimens from each group (n=10) were incubated in 37°C water for 24 hours, and the other half were thermocycled. All the specimens were then subjected to shear testing. The fractured areas were analyzed with optical stereomicroscopy and classified as adhesive, cohesive, or an adhesive-cohesive failure. Spectral patterns were examined to detect bands related to the zirconia and feldspathic porcelain phases. The shear strength data were submitted to 2-way ANOVA. No significant differences in shear bond strength were observed among the 3 groups, regardless of whether or not the specimens were thermocycled. Adhesive failures were the most prevalent types of failure (70%). Raman spectra were clearly distinguished for all the materials, which showed the presence of tetragonal and monoclinic phases. The controlled production of the experimental zirconia did not influence the results of the bond strength. Raman analysis suggested a process of interdiffusion by the presence of peaks associated with the zirconia and feldspathic ceramics. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Effect of ion implantation on thermal shock resistance of magnesia and glass

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Williams, J.S.; Watt, A.J.

    1995-01-01

    Monocrystals of magnesia together with glass samples have been subjected to ion implantation prior to thermal shock testing in an impulse plasma of continuously varied intensity. Measurements of the separation between fragments have been used to estimate the surface temperature. Fracture and deformation characteristics of the surface layer are measured in ion implanted and unimplanted samples using optical and scanning electron microscopy. Implantation-induced near-surface damage is analysed by ion channeling using 2 MeV He + ions. Ion implantation is shown to modify the near-surface structure of magnesia samples by introducing damage, which makes crack initiation easier under thermal stresses. The fracture threshold and maximum crack density are shifted towards the lower temperature range. Ion implanted MgO crystals show a ten fold increase in surface crack density. An increased crack density results in a decreased degree of damage characterised by the depth of crack penetration. The thermal stress resistance parameter of glass samples is increased at relatively small doses and decreased at higher doses. The results suggest that crack density and the degree of fracture damage in brittle ceramics operating under thermal shock conditions can be effectively controlled by ion implantation which provides crack initiating defects in the near-surface region. 23 refs., 7 figs

  11. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    Science.gov (United States)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  12. Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Venkata Ramana, E.; Graça, M.P.F.; Valente, M.A.; Bhima Sankaram, T.

    2014-01-01

    Highlights: • Sr 1−x Pb x Bi 4 Ti 4 O 15 (SPBT, x = 0 − 0.4) ceramics were synthesized by soft chemical method. • X-ray diffraction analysis confirmed the formation of bismuth layered structure. • SEM images showed plate like grain morphology with random orientation of plate faces. • Pb-doping resulted in improved ferroelectricity of SrBi 4 Ti 4 O 15 ceramics. • Pb-doped SrBi 4 Ti 4 O 15 exhibited improved pyroelectric properties with high T C . -- Abstract: Ferroelectric properties of Pb-modified strontium bismuth titanate ceramics with chemical formula Sr 1−x Pb x Bi 4 Ti 4 O 15 (x = 0–0.4) were investigated. Polycrystalline ceramics were synthesized by soft chemical method to study the effect of Pb-doping on its physical properties. X-ray diffraction analysis revealed a bismuth layered structure for all the compounds. The doping resulted in an increased tetragonal strain and improved ferroelectric properties. Scanning electron microscope images showed plate like grain morphology with random orientation of platelets. The ferroelectric transition temperature of the ceramics increased systematically from 525 °C to 560 °C with the increase of doping concentration. The piezoelectric coefficient (d 33 ) of the ceramics was enhanced significantly with Pb doping, exhibiting a maximum value of 21.8 pC/N for 40 mol.% Pb-doped SBT. Pyroelectric studies carried out using the Byer–Roundy method indicated that the modified SBT ceramics are promising candidates for high temperature pyroelectric applications

  13. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs.

    Science.gov (United States)

    Kanat, Burcu; Cömlekoğlu, Erhan M; Dündar-Çömlekoğlu, Mine; Hakan Sen, Bilge; Ozcan, Mutlu; Ali Güngör, Mehmet

    2014-08-01

    The objectives of this study were to evaluate the fracture resistance (FR), flexural strength (FS), and shear bond strength (SBS) of zirconia framework material veneered with different methods and to assess the stress distributions using finite element analysis (FEA). Zirconia frameworks fabricated in the forms of crowns for FR, bars for FS, and disks for SBS (N = 90, n = 10) were veneered with either (a) file splitting (CAD-on) (CD), (b) layering (L), or (c) overpressing (P) methods. For crown specimens, stainless steel dies (N = 30; 1 mm chamfer) were scanned using the labside contrast spray. A bilayered design was produced for CD, whereas a reduced design (1 mm) was used for L and P to support the veneer by computer-aided design and manufacturing. For bar (1.5 × 5 × 25 mm(3) ) and disk (2.5 mm diameter, 2.5 mm height) specimens, zirconia blocks were sectioned under water cooling with a low-speed diamond saw and sintered. To prepare the suprastructures in the appropriate shapes for the three mechanical tests, nano-fluorapatite ceramic was layered and fired for L, fluorapatite-ceramic was pressed for P, and the milled lithium-disilicate ceramics were fused with zirconia by a thixotropic glass ceramic for CD and then sintered for crystallization of veneering ceramic. Crowns were then cemented to the metal dies. All specimens were stored at 37°C, 100% humidity for 48 hours. Mechanical tests were performed, and data were statistically analyzed (ANOVA, Tukey's, α = 0.05). Stereomicroscopy and scanning electron microscopy (SEM) were used to evaluate the failure modes and surface structure. FEA modeling of the crowns was obtained. Mean FR values (N ± SD) of CD (4408 ± 608) and L (4323 ± 462) were higher than P (2507 ± 594) (p mechanical tests, whereas a layering technique increased the FR when an anatomical core design was employed. File splitting (CAD-on) or layering veneering ceramic on zirconia with a reduced framework design may reduce ceramic chipping

  14. Stability of cubic zirconia in a granitic system under high pressure and temperature

    International Nuclear Information System (INIS)

    Gibb, F. G. F.; Burakov, B. E.; Taylor, K. J.; Domracheva, Y.

    2008-01-01

    Cubic zirconia is a well known, highly durable material with potential uses as an actinide host phase in ceramic waste forms and inert matrix fuels and in containers for very deep borehole disposal of some highly radioactive wastes. To investigate the behaviour of this material under the conditions of possible use, a cube of ∼2.5 mm edge was made from a single crystal of Yttria stabilized cubic zirconia doped with 0.3 wt.% CeO 2 . The cube was enclosed in powdered granite within a gold capsule and a small amount of H 2 O added before sealing. The sealed capsule was held for 4 months in a cold-seal pressure vessel at a temperature of 780 deg. C and a pressure 150 MPa, simulating both the conditions of a deep borehole disposal involving partial melting of the host rock and the conditions under which the actinide waste form might be encapsulated in granite prior to disposal. At the end of the experiment the quenched, largely glassy, sample was cut into thin slices and studied by optical microscopy, EMPA, SEM and cathodoluminescence methods. The results show that no corrosion of the zirconia crystal or reaction with the granite melt occurred and that no detectable diffusion of elements, including Ce, in or out of the zirconia took place on the timescale of the experiment. Consequently, it appears that cubic zirconia could perform most satisfactorily as both an actinide host waste form for encapsulation in solid granite for very deep disposal and as a container material for deep borehole disposal of highly radioactive wastes (HLW), including spent fuel. (authors)

  15. Using Mortar Mixing Pump for Magnesia Mortars Preparing and Transporting

    Science.gov (United States)

    Kiyanets, A. V.

    2017-11-01

    The article is devoted to the problem of preparation and transportation of magnesia mortars with the help of screw mortar mixing pumps. The urgency of the wide use of mortars on magnesia binders (Sorel’s cement) in construction is substantiated due to their high characteristics: strength, hardening speed, wear resistance, possibility of using organic and mineral aggregates, ecological purity and economic efficiency. The necessity for the development of a technique for calculating the main parameters of a mortar mixing pump for its application in the technology of preparation and transportation of magnesia mortars is demonstrated. The analysis of various types of modern mortar mixing pumps is given. The conclusions are drawn about the advantages and disadvantages of standard schemes. The description of the experiment for determination of the productivity of a mortar mixing pump is described depending on the plasticity (mobility) of the used magnesia mortar. The graph and description of the mathematical dependency of the productivity of the mortar mixing pump on the magnesia mortar plasticity are given. On the basis of the obtained dependency, as well as the already known formulas given in the article, a new method is proposed for calculating the main parameters of the screw mortar mixing pump in preparation and transportation of magnesia mortar: productivity, feed range, supply pressure, drive power.

  16. Comparative study of transparent ceramic and single crystal Ce doped LuAG scintillators

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei; Yanagida, Satoko; Yoshikawa, Akira; Yagi, Hideki; Yanagitani, Takagimi

    2011-01-01

    Transparent ceramic Ce 0.5% doped Lu 3 Al 5 O 12 (LuAG) scintillator grown by the sintering method and single crystalline Ce doped LuAG grown by the Czochralski method are prepared. They are cut to the physical dimensions 4 × 4 × 2 mm 3 . Their transmittance and radio luminescence spectra are evaluated. They are both transmissive in wavelength longer than 500 nm and intense Ce 3+ 5d–4f emission appears around 520 nm. When 137 Cs γ-ray is irradiated, 662 keV photo-absorption peaks are clearly observed in each sample. The transparent ceramic one shows higher light yield than that of the single crystalline one. The absolute light yield of the ceramic sample is turned out to be 14800 ± 1500 ph/MeV. The decay time constants are evaluated under pulse X-ray excitation. The main component of the decay time of ceramic and single crystalline one are determined as 37 and 46 ns, respectively.

  17. Characterization of the Sol-Gel Transition for Zirconia-Toughened Alumina Precursors

    Science.gov (United States)

    Moeti, I.; Karikari, E.; Chen, J.

    1998-01-01

    High purity ZTA ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and theological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. In all experimental cases a-alumina and tetragonal zirconia phases were confirmed even in the absence of yttria.

  18. Synthesis of sulfated Y-doped zirconia particles and effect on properties of polysulfone membranes for treatment of wastewater containing oil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuqing, E-mail: zhangyuqing@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); ARC Centre for Functional Nanomaterials, AIBN and School of Engineering, University of Queensland, Brisbane 4072 (Australia); Shan Xing; Jin Zhenhua; Wang Yueling [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2011-08-30

    Highlights: {yields} Novel hybrid membrane material - sulfated Y-doped zirconia particle is prepared. {yields} SZY/PSF membrane is formed by doping SZY particles into PSF membrane. {yields} Hydrophilicity, antifouling and anti-compaction property of PSF membrane is improved. {yields} Treatment efficiency of wastewater containing oil is enhanced. - Abstract: Polysulfone (PSF) membranes are broadly applied in many fields owing to good physicochemical stability, resistance to oxidation and chlorine. But when treated with wastewater containing oil, PSF membranes are easily contaminated due to their hydrophilicity, causing declining flux and lifespan of the membranes thereby limiting their large scale applications. In order to enhance the hydrophilic and anti-fouling capability of PSF membranes for treating wastewater containing oil, sulfated Y-doped zirconia particles (SO{sub 4}{sup 2-}/ZrO{sub 2}-Y{sub 2}O{sub 3} or SZY particles) were firstly synthesized and then doped into polysulfone to fabricate a novel hybrid membrane (SZY/PSF). The optimum preparation conditions of SZY particles were studied and determined. SZY particles were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), specific surface area and transmission electron microscopy (TEM). Wastewater containing oil (80 mg/L) was used to investigate the separation properties of SZY/PSF membranes. The results show that the oil concentration in the permeation is 0.67 mg/L, which meets the recycle standard of the Chinese oil-field (SY/T 5329-94, oil concentration <10 mg/L). It is concluded that doping SZY particles into polysulfone can reasonably resist membrane fouling and SZY/PSF membranes can be considered feasible in treating wastewater containing oil.

  19. A 3 years retrospective study of survival for zirconia-based single crowns fabricated from intraoral digital impressions.

    Science.gov (United States)

    Gherlone, Enrico; Mandelli, Federico; Capparè, Paolo; Pantaleo, Giuseppe; Traini, Tonino; Ferrini, Francesco

    2014-09-01

    To evaluate the clinical performance of glass-ceramic/zirconia crowns fabricated using intraoral digital impressions - a retrospective study with a three-year follow-up. 70 consecutive patients with a total of 86 glass-ceramic/zirconia crowns were treated by a single clinician using standardized clinical and laboratory protocols. A complete digital workflow was adopted for the purpose except for the veneering procedure for the glass-ceramic crowns. Occlusal adjustments were made before the ceramic glazing procedure. Before cementation, all abutments where carefully cleaned with a 70% alcoholic solution and air dried. Cementation was performed using dual-curing, self-adhesive resin cement. Patients were re-examined after 12, 24 and 36 months, to assess crown chipping/fractures. After the three-year follow-up, none of the zirconia-based restoration was lost ("apparent" survival rate 100%) otherwise, the chipping rate of the veneering material increased from 9.3% after 12 months, to 14% after 24 months to 30.2% after 36 months. As a consequence, the "real" success rate after 3 years was 69.8%. After 3 years the success rate of zirconia-based crowns was 69.8%, while the incidence of the chipping was 30.2%. Assuming an exponential increase in chipping rate between 12 and 36 months it can be argued that, among others, the fatigue-mechanism could be advocated as the main factor for the failure of glass-ceramic veneered zirconia especially after 24 months. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Vanadia-based SCR Catalysts Supported on Tungstated and Sulfated Zirconia: Influence of Doping with Potassium

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Boghosian, Soghomon; Kustov, Arkadii

    2007-01-01

    A series of vanadium-based SCR catalysts supported on sulfated or tungstated ZrO2 were synthesized and characterized by means of N2-BET, XRD, NH3-TPD and in situ Raman spectroscopy. The effect of potassium doping on the properties of vanadia species is studied in detail. A number of catalyst...... and morphology, the surface composition and the molecular configuration of the dispersed vanadates. It was observed that poisoning with potassium had a negligible effect on the surface vanadate species (especially the V=O stretching frequency observed by in situ Raman spectroscopy) if supported on the sulfated...... the observed decrease in V=O stretching frequency and the higher proportion of dimers and higher polymers through coordination between K+ and two neighbouring V=O. The results suggest an increased resistance towards potassium doping for the vanadia-based catalysts supported on sulfated zirconia....

  1. [Study of relationship between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite powder].

    Science.gov (United States)

    Chai, Feng; Xu, Ling; Liao, Yun-mao; Chao, Yong-lie

    2003-07-01

    The fabrication of all-ceramic dental restorations is challenged by ceramics' relatively low flexural strength and intrinsic poor resistance to fracture. This paper aimed at investigating the relationships between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite (Al(2)O(3)-nZrO(2)). Al(2)O(3)-nZrO(2) ceramics powder (W) was processed by combination methods of chemical co-precipitation and ball milling with addition of different powder-sized ZrO(2). Field-emission scanning electron microscopy was used to determine the particle size distribution and characterize the particle morphology of powders. The matrix compacts were made by slip-casting technique and sintered to 1,450 degrees C and flexural strength and the fracture toughness of them were measured. 1. The particle distribution of Al(2)O(3)-nZrO(2) ceramics powder ranges from 0.02 - 3.5 micro m and among them the superfine particles almost accounted for 20%. 2. The ceramic matrix samples with addition of nZrO(2) (W) showed much higher flexural strength (115.434 +/- 5.319) MPa and fracture toughness (2.04 +/- 0.10) MPa m(1/2) than those of pure Al(2)O(3) ceramics (62.763 +/- 7.220 MPa; 1.16 +/- 0.02 MPa m(1/2)). The particle size of additive ZrO(2) may impose influences on mechanical properties of Al(2)O(3)-nZrO(2) ceramics matrix. Good homogeneity and reasonable powder-size gradation of ceramic powder can improve the mechanical properties of material.

  2. Analytical and experimental evaluation of joining ceramic oxides to ceramic oxides and ceramic oxides to metal for advanced heat engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J.; Majumdar, B.; Rosenfield, A.R.; Swartz, S.L.; Cawley, J.; Park, E.; Hauser, D.; Hopper, A.T. (Battelle Columbus Labs., OH (United States))

    1992-04-01

    The problem of designing reliable, high strength zirconia-to-zirconia and zirconia-to-nodular cast iron joints is addressed by developing a general joint design and assessment methodology. A joint's load carrying capability is predicted in terms of its material strength and fracture toughness characteristics. The effects of joint constituent properties and joining process variables are included. The methodology is verified in a two step process by applying it first to notched bend bars and then to a notched disk specimen loaded in compression. Key technical accomplishments in the program include the development of a joint design and assessment methodology which predicts failure based on a combination of strength and toughness, the development of a new method of hot forging magnesia partially stabilized zirconia to itself, and the development of a bimaterial disk-shaped specimen notched along the diametral bond line and compressively loaded to generate both shear and tensile loadings on the bond line. Mechanical and thermal characterization of joints, adherents, and interlayer materials were performed to provide data for input to the design methodology. Results from over 150 room temperature tests and 30 high temperature tests are reported. Extensive comparisons of experimental results are made with model predictions of failure load. The joint design and assessment model, as applied to the materials and test specimens of this program, has been programmed for a PC and is available to interested researchers.

  3. Densification of zirconia-hematite nanopowders

    NARCIS (Netherlands)

    Raming, T.P.; Winnubst, Aloysius J.A.; van Zyl, W.E.; Verweij, H.

    2003-01-01

    The densification of dual-phase yttria-doped tetragonal zirconia polycrystals (Y-TZP) and -Fe2O3 (hematite) composite powders is described. Different powder synthesis methods, different forms of dry compaction processes, and two sinter methods (pressureless sintering and sinterforging) were

  4. Sintering and thermal ageing studies of zirconia - yttria ceramics by impedance spectroscopy

    International Nuclear Information System (INIS)

    Florio, Daniel Zanetti de

    1998-01-01

    ZrO 2 :8 mol %Y 2 O 3 solid electrolyte ceramic pellets have been prepared with powders of three different origins: a Nissan (Japan) commercial powder, a powder obtained by the coprecipitation technique at IPEN, and the mixing of powder oxides (ZrO 2 produced at a Pilot Plant at IPEN and 99.9% pure Y 2 O 3 of USA origin). These starting powders have been analysed by the following techniques: X-ray fluorescence for yttrium content, X-ray diffraction for structural phase content, sedimentation for particle size distribution, gas adsorption (BET) for surface area determination, and transmission electron microscopy for average particle size determination. Pressed ceramic pellets have been analysed by dilatometry to evaluate the sintering stages. Sintered pellets have been characterized by X-ray diffraction for phase analysis and scanning electron microscopy for grain morphology analysis. Impedance spectroscopy analysis have been carried out to follow thermal ageing of zirconia-yttria solid electrolyte at 600 deg C, the working temperature of permanent oxygen sensor, and to study sintering kinetics. The main results show that ageing at 600 deg C decreases the emf sensor response in the first 100 h to a steady value. Moreover, sintering studies by impedance spectroscopy allowed for finding correlations between electrical parameters, sintering kinetics and grain growth mechanisms. (author)

  5. In vivo biofilm formation on different dental ceramics.

    Science.gov (United States)

    Bremer, Felicia; Grade, Sebastian; Kohorst, Philipp; Stiesch, Meike

    2011-01-01

    To investigate the formation of oral biofilm on various dental ceramics in vivo. Five different ceramic materials were included: a veneering glass- ceramic, a lithium disilicate glass-ceramic, a yttrium-stabilized zirconia (Y-TZP), a hot isostatically pressed (HIP) Y-TZP ceramic, and an HIP Y-TZP ceramic with 25% alumina. Test specimens were attached to individually designed acrylic appliances; five volunteers wore these appliances for 24 hours in the maxillary arch. After intraoral exposure, the samples were removed from the appliances and the adhering biofilms vitally stained. Then, the two-dimensional surface coating and thickness of the adhering biofilm were determined by confocal laser scanning microscopy. Statistical analysis was performed using one-way ANOVA with the level of significance set at .05. Significant differences (P ceramic materials. The lowest surface coating (19.0%) and biofilm thickness (1.9 Μm) were determined on the HIP Y-TZP ceramic; the highest mean values were identified with the lithium disilicate glass-ceramic (46.8%, 12.6 Μm). Biofilm formation on various types of dental ceramics differed significantly; in particular, zirconia exhibited low plaque accumulation. In addition to its high strength, low plaque accumulation makes zirconia a promising material for various indications (including implant abutments and telescopic crowns) that previously were met only with metal-based materials.

  6. Session 6: Liquid-phase chloro-benzene hydrogenolysis over alkali-doped zirconia supported palladium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aramendia, M.A.; Borau, V.; Jimenez, C.; Marinas, A.; Marinas, J.M.; Moreno, J.M.; Ruiz, J.R.; Urbano, F.J. [University of Cordoba. Marie Curie Building, Dept. of Organic Chemistry (Spain)

    2004-07-01

    Chlorinated hydrocarbons constitute one of the most important kind of organic pollutants due to their environmental impact and noxious effects. Catalytic hydro-dehalogenation is now emerging as a promising non-destructive alternative technology whereby the chlorinated waste is converted to products with a commercial value. It is simple, safe, effective, and it ensures, in many instances, the regeneration of the initial raw material. One of the main problems of catalytic hydro-dehalogenation arise from the deactivating effect of the hydrogen halide released as by product. This can be surpassed by, for example, adding a base, such as NaOH, or modification of the catalyst in order to neutralize the hydrogen halide released. In conclusion, the alkali modification of the zirconia supported catalysts did not enhance the catalytic activity in comparison to the undoped Pd/ZrO{sub 2}. Moreover, the lithium doped catalyst exhibits very poor results in initial rate and final chloro-benzene conversion. This could be related to the reduction in BET surface area caused by the doping together with a lower enhancement of the surface basicity of the doped catalysts. (authors)

  7. Zirconia implants and peek restorations for the replacement of upper molars

    Directory of Open Access Journals (Sweden)

    José María Parmigiani-Izquierdo

    2017-02-01

    Full Text Available Abstract Background One of the disadvantages of the zirconia implants is the lack of elasticity, which is increased with the use of ceramic or zirconia crowns. The consequences that could result from this lack of elasticity have led to the search for new materials with improved mechanical properties. Case presentation A patient who is a 45-year-old woman, non-smoker and has no medical record of interest with a longitudinal fracture in the palatal root of molar tooth 1.7 and absence of tooth 1.6 was selected in order to receive a zirconia implant with a PEEK-based restoration and a composite coating. The following case report describes and analyses treatment with zirconia implants in molars following a flapless surgical technique. Zirconia implants are an alternative to titanium implants in patients with allergies or who are sensitive to metal alloys. However, one of the disadvantages that they have is their lack of elasticity, which increases with the use of ceramic or zirconia crowns. The consequences that can arise from this lack of elasticity have led to the search for new materials with better mechanical properties to cushion occlusal loads. PEEK-based restoration in implant prosthetics can compensate these occlusal forces, facilitating cushioning while chewing. Conclusion This procedure provides excellent elasticity and resembles natural tooth structure. This clinical case suggests that PEEK restorations can be used in zirconia implants in dentistry.

  8. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O3 lead-free ceramics

    International Nuclear Information System (INIS)

    Chen, Xiaoming; Ruan, Xuezheng; Zhao, Kunyun; He, Xueqing; Zeng, Jiangtao; Li, Yongsheng; Zheng, Liaoying; Park, Chul Hong; Li, Guorong

    2015-01-01

    Highlights: • Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d 33 (512 pC/N) and a planar electromechanical coupling factor k p (0.49), which have the characteristics of soft Pb(Zr,Ti)O 3 (PZT) piezoceramic, on the other hand, the mechanical quality factor Q m is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature

  9. Effect of zirconia content and powder processing mechanical properties of gelcasted ZTA composite

    International Nuclear Information System (INIS)

    Khoshkalam, M.; Faghihi-Sani, M.A.; Nojoomi, A.

    2013-01-01

    Addition of fine zirconia particles in the alumina matrix in order to produce ZTA composite is a well-known method for improving the mechanical properties of alumina ceramics such as flexural strength and fracture toughness. Increasing homogeneity and reducing alumina grain size are two key factors for achieving proper mechanical properties in this ceramic matrix composite. In this work two batches of ZTA powder precursor were prepared through mixing of alumina and zirconia by ball milling and in situ synthesis of ZTA composite via solution combustion method. The bending strength testing samples were fabricated through gel-casting process. The effects of different powder processing methods as well as zirconia contents on microstructural homogeneity and mechanical properties of ZTA composites were investigated. The samples produced by solution combustion synthesized powder yielded higher homogeneity, finer microstructure and higher flexural strength. Results showed an upswing in the fracture toughness for the synthesized samples even up to 20 vol% zirconia, while the mixed samples depicted optimum fracture toughness in 10 vol% zirconia content. (author)

  10. High-temperature thermoelectric properties of La-doped BaSnO3 ceramics

    International Nuclear Information System (INIS)

    Yasukawa, Masahiro; Kono, Toshio; Ueda, Kazushige; Yanagi, Hiroshi; Hosono, Hideo

    2010-01-01

    To elucidate the thermoelectric properties at high temperatures, perovskite-type La-doped BaSnO 3 ceramics were fabricated by a polymerized complex (PC) method and subsequent spark plasma sintering (SPS) technique. Fine powders of Ba 1-x La x SnO 3 (x = 0.00-0.07) were prepared by the PC method using citrate complexes, and SPS treatment converted the powders into dense ceramics with relative densities of 93-97%. The La content dependence of the lattice parameter suggested that the solubility of La for Ba sites was approximately x = 0.03. The temperature dependence of the electrical conductivity σ and Seebeck coefficient S showed that each La-doped ceramic was an n-type degenerate semiconductor in the measured temperature range of 373-1073 K. The La content dependence of the S values indicated that the electron carrier concentration increased successively up to x = 0.03, which was the solubility limit of the La atoms. The thermoelectric power factors S 2 σ increased drastically with La doping, and reached a maximum for x = 0.01 with values of 0.8 x 10 -4 W m -1 K -2 at 373 K to 2.8 x 10 -4 W m -1 K -2 at 1073 K.

  11. Residual stress measurement in veneering ceramic by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-05-01

    Mismatch in thermal expansion properties between veneering ceramic and metallic or high-strength ceramic cores can induce residual stresses and initiate cracks when combined with functional stresses. Knowledge of the stress distribution within the veneering ceramic is a key factor for understanding and predicting chipping failures, which are well-known problems with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objectives of this study are to develop a method for measuring the stress profile in veneering ceramics and to compare ceramic-fused-to-metal compounds to veneered Yttria-tetragonal-zirconia-polycrystal ceramic. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. Because of the high sensitivity needed in comparison with industrial applications, a high sensitivity electrical measurement chain was developed. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth and becoming tensile at 0.5-1.0mm from the surface, and then becoming slightly compressive again. The zirconia samples exhibited a stress depth profile of larger magnitude. The hole drilling method was shown be a practical tool for measuring residual stresses in veneering ceramics. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Characterization and surface treatment effects on topography of a glass-infiltrated alumina/zirconia-reinforced ceramic.

    Science.gov (United States)

    Della Bona, Alvaro; Donassollo, Tiago A; Demarco, Flávio F; Barrett, Allyson A; Mecholsky, John J

    2007-06-01

    Characterize the microstructure, composition and some physical properties of a glass-infiltrated alumina/zirconia-reinforced ceramic (IZ) and the effect of surface treatment on topography. IZ ceramic specimens were fabricated according to ISO6872 instructions and polished through 1 microm alumina abrasive. Quantitative and qualitative analyses were performed using scanning electron microscopy (SEM), backscattered imaging (BSI), electron dispersive spectroscopy (EDS) and stereology. The elastic modulus (E) and Poisson's ratio (nu) were determined using ultrasonic waves, and the density (rho) using a helium pycnometer. The following ceramic surface treatments were used: AP-as-polished; HF-etching with 9.5% hydrofluoric acid for 90 s; SB-sandblasting with 25 microm aluminum oxide particles for 15s and SC-blasting with 30 microm aluminum oxide particles modified by silica (silica coating) for 15s. An optical profilometer was used to examine the surface roughness (Ra) and SEM-EDS were used to measure the amount of silica after all treatments. The IZ mean property values were as follows: rho=4.45+/-0.01 g/cm(3); nu=0.26 and E=245 GPa. Mean Ra values were similar for AP- and HF-treated IZ but significantly increased after either SC or SB treatment (pceramic. Treating IZ with either SB or SC produced greater Ra values and the SC showed a significant increase in the surface concentration of silica, which may enhance bonding to resin via silane coupling.

  13. Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo

    2014-01-01

    The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.

  14. Ternary ceramic alloys of Zr-Ce-Hf oxides

    Science.gov (United States)

    Becher, P.F.; Funkenbusch, E.F.

    1990-11-20

    A ternary ceramic alloy is described which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce[sub x]Hf[sub y]Zr[sub 1[minus]x[minus]y]O[sub 2], is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites. 1 fig.

  15. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and Pcoating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.

  16. Ferroelectric properties of bismuth-doped PMT-PT ceramics

    International Nuclear Information System (INIS)

    Hyun, June Won; Kim, Yeon Jung; Kim, Gang Bae

    2010-01-01

    This study examined the ferroelectric properties of Bi-doped 0.66(Pb (1-3x/2) Bi x )(Mg 1/3 Ta 2/3 )O 3 - 0.34PbTiO 3 ceramics for use as a piezoelectric transformer. The optimum conditions for obtaining samples with high density and improved electrical properties were a sintering temperature of 1200 .deg. C/4 h and the addition of 3 mol% Bi. The temperature dependent dielectric constant of the ceramics was examined at frequencies ranging from 1 kHz to 100 kHz. The broad dielectric constant anomaly coupled with a shift in the dielectric maximum towards higher temperature with increasing frequency indicates a relaxor-type behavior in the ceramics. The piezoelectric coefficient (d 33 ) and the planar coupling factor (K p ) increase with the addition of 3 mol% Bi, and then decrease with further addition of Bi. The dielectric constant and the dissipation factor at room temperature could be improved by the addition of 3 mol% Bi.

  17. Solid-state reaction synthesis and aqueous durability of Ce-doped zirconolite-rich ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Guanjun [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Zhang, Kuibao, E-mail: xiaobao320@163.com [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Yin, Dan [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Zhang, Haibin, E-mail: hbzhang@imr.ac.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    In this study, Ce-doped zirconolite-rich ceramics were prepared by solid-state reaction process using cerium as the surrogate of tetravalence actinide nuclide. The occupancy of Ce in the waste forms was investigated. The aqueous durability of Ce-doped zirconolite-rich ceramic was examined as well. The results show that zirconolite and pseudobrookite coexisted after being sintered at 1200 °C for 6 h. Meanwhile, perovskite is inevitable generated during the process. CeO{sub 2} can be successfully incorporated into the lattice structure of the zirconolite-rich ceramics. The maximum containing capacity of CeO{sub 2} is up to 14.95 wt% or y = 0.4. The normalized elemental leaching rates of Ce and Ca are fairly constant in low values of 1.2 × 10{sup −6} and 2.3 × 10{sup −2} g m{sup −2} d{sup −1} after 28 days. The normalized leaching rate of Fe is also in a low value of 2.9 × 10{sup −4} g m{sup −2} d{sup −1} after 7 days. - Highlights: • Ce-doped zirconolite-rich ceramic was produced at 1200 °C. • Pseudobrookite-type Fe{sub 2}TiO{sub 5} was employed to incorporate Fe element. • Ce{sup 3+} and Ce{sup 4+} coexisted in the Ce-doped zirconolite-rich waste form after being sintered at 1200 °C for 6 h. • The leaching rate of Ca was relatively higher than that of borosilicate glasses.

  18. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics.

    Science.gov (United States)

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-09-01

    This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Pceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.

  19. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs.

    Science.gov (United States)

    Pjetursson, Bjarni Elvar; Sailer, Irena; Makarov, Nikolay Alexandrovich; Zwahlen, Marcel; Thoma, Daniel Stefan

    2015-06-01

    To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported fixed dental prostheses (FDPs) and to describe the incidence of biological, technical and esthetic complications. Medline (PubMed), Embase and Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported FDPs with a mean follow-up of at least 3 years. This was complemented by an additional hand search and the inclusion of 10 studies from a previous systematic review [1]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. Forty studies reporting on 1796 metal-ceramic and 1110 all-ceramic FDPs fulfilled the inclusion criteria. Meta-analysis of the included studies indicated an estimated 5-year survival rate of metal-ceramic FDPs of 94.4% (95% CI: 91.2-96.5%). The estimated survival rate of reinforced glass ceramic FDPs was 89.1% (95% CI: 80.4-94.0%), the survival rate of glass-infiltrated alumina FDPs was 86.2% (95% CI: 69.3-94.2%) and the survival rate of densely sintered zirconia FDPs was 90.4% (95% CI: 84.8-94.0%) in 5 years of function. Even though the survival rate of all-ceramic FDPs was lower than for metal-ceramic FDPs, the differences did not reach statistical significance except for the glass-infiltrated alumina FDPs (p=0.05). A significantly higher incidence of caries in abutment teeth was observed for densely sintered zirconia FDPs compared to metal-ceramic FDPs. Significantly more framework fractures were reported for reinforced glass ceramic FDPs (8.0%) and glass-infiltrated alumina FDPs (12.9%) compared to metal-ceramic FDPs (0.6%) and densely sintered zirconia FDPs (1.9%) in 5 years in function. However, the incidence of ceramic fractures and loss of retention was significantly (p=0.018 and 0.028 respectively) higher for densely sintered zirconia FDPs compared to all other types of FDPs. Survival rates of all

  20. Analytical and experimental evaluation of joining ceramic oxides to ceramic oxides and ceramic oxides to metal for advanced heat engine applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J.; Majumdar, B.; Rosenfield, A.R.; Swartz, S.L.; Cawley, J.; Park, E.; Hauser, D.; Hopper, A.T. [Battelle Columbus Labs., OH (United States)

    1992-04-01

    The problem of designing reliable, high strength zirconia-to-zirconia and zirconia-to-nodular cast iron joints is addressed by developing a general joint design and assessment methodology. A joint`s load carrying capability is predicted in terms of its material strength and fracture toughness characteristics. The effects of joint constituent properties and joining process variables are included. The methodology is verified in a two step process by applying it first to notched bend bars and then to a notched disk specimen loaded in compression. Key technical accomplishments in the program include the development of a joint design and assessment methodology which predicts failure based on a combination of strength and toughness, the development of a new method of hot forging magnesia partially stabilized zirconia to itself, and the development of a bimaterial disk-shaped specimen notched along the diametral bond line and compressively loaded to generate both shear and tensile loadings on the bond line. Mechanical and thermal characterization of joints, adherents, and interlayer materials were performed to provide data for input to the design methodology. Results from over 150 room temperature tests and 30 high temperature tests are reported. Extensive comparisons of experimental results are made with model predictions of failure load. The joint design and assessment model, as applied to the materials and test specimens of this program, has been programmed for a PC and is available to interested researchers.

  1. Enhanced Luminescent Properties in Tm3+/Dy3+ Co-doped Transparent Phosphate Glass Ceramic

    OpenAIRE

    Yao L. Q.; Chen G. H.; Zhong H. J.; Cui S. C.; Li F.; Gan J.Y.

    2016-01-01

    Novel Tm3+/Dy3+ co-doped phosphate glass and glass ceramic samples for white light emitting diodes were prepared by melt quenching method. Under 353 nm excitation, the colors of the luminescence of the glass and glass ceramic samples are white. The CIE chromaticity coordinates (0.338, 0.328) of the emission from the glass ceramic is close to the standard white-light illumination (0.333, 0.333). Compared to the glass, the fluorescence intensity in the glass ceramic is greatly enhanced.

  2. Deposition of Crystalline Hydroxyapatite Nanoparticles on Y-TZP Ceramic: A Potential Solution to Enhance Bonding Characteristics of Y-TZP Ceramics

    Directory of Open Access Journals (Sweden)

    Abbas Azari

    2017-08-01

    Full Text Available Objectives: Many advantages have been attributed to dental zirconia ceramics in terms of mechanical and physical properties; however, the bonding ability of this material to dental structure and/or veneering ceramics has always been a matter of concern. On the other hand, hydroxyapatite (HA shows excellent biocompatibility and good bonding ability to tooth structure, with mechanically unstable and brittle characteristics, that make it clinically unacceptable for use in high stress bearing areas. The main purpose of this study was to introduce two simple yet practical methods to deposit the crystalline HA nanoparticles on zirconia ceramics. Materials and Methods: zirconia blocks were treated with HA via two different deposition methods namely thermal coating and air abrasion. Specimens were analyzed by scanning electron microscopy, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD.Results: In both groups, the deposition techniques used were successfully accomplished, while the substrate showed no structural change. However, thermal coating group showed a uniform deposition of crystalline HA but in air abrasion method, there were dispersed thin islands of HA.Conclusions: Thermal coating method has the potential to significantly alter the surface characteristics of zirconia. The simple yet practical nature of the proposed method may be able to shift the bonding paradigm of dental zirconia ceramics. This latter subject needs to be addressed in future investigations.Keywords: Zirconium Oxide; Hydroxyapatites; Dental Bonding; Microscopy, Electron, Scanning; X-Ray Diffraction; Spectrometry, X-Ray Emission

  3. Fabrication and electrical investigations of Pb-doped BaTiO_3 ceramics

    International Nuclear Information System (INIS)

    Sareecha, N.; Shah, W.A.; Maqsood, A.; Anis-ur-Rehman, M.; Latif Mirza, M.

    2017-01-01

    Electrical properties of Pb doped BaTiO_3; PBT are investigated in the wide range of temperatures (40–700 °C) at 1 kHz frequency. PBT ceramics were fabricated through solid state sintering method. Pre fired BaTiO_3 prepared with Ba/Ti molar ratio of 0.98 was doped with PbCO_3 (<1 mole %). XRD patterns indicated perovskite phase with tetragonal structures (P4mm). Morphological studies (SEM) revealed grain development with increasing lead contents. With lead doping and its variation, Curie temperature (T_C) was shifted from 120 to 200 °C with broad dielectric constant peaks and dielectric anomalies with relaxor behavior were observed. Resistivity decreased with increasing temperature, all specimens showed semiconductor behavior with negative temperature coefficient of resistivity (NTCR) characteristics. Mobility of electrons increased with thermal activation due to hopping of charge carriers from one site to another. Ohmic conductivities and associated activation energies were evaluated by impedance spectroscopy. Conductivity followed the Arrhenius law with E_a = 1.187–1.169 eV which can be attributed to the ionic conduction owning to doubly ionized oxygen vacancies. Well-defined hysteresis P-E loops measured at room temperature depicted ferroelectric properties of the materials. - Graphical abstract: Temperature dependence of dielectric constant (Ɛ′) and resistivity (ρ) for pure and Pb-doped BaTiO_3 ceramics at 1 k Hz frequency. - Highlights: • Pb-doped BaTiO_3ceramics were fabricated through solid state sintering. • Electrical properties were studied at the temperatures 40–700 °C at 1 kHz. • Specimens showed negative temperature coefficient of resistivity characteristics. • Conductivity followed the Arrhenius law with E_a = 1.187–1.169 eV. • Ionic conduction was supposed to be responsible for conduction process.

  4. Bond strength of the porcelain repair system to all-ceramic copings and porcelain.

    Science.gov (United States)

    Lee, Sang J; Cheong, Chan Wook; Wright, Robert F; Chang, Brian M

    2014-02-01

    The purpose of this study was to investigate the shear bond strength of the porcelain repair system on alumina and zirconia core ceramics, comparing this strength with that of veneering porcelain. Veneering ceramic (n = 12), alumina core (n = 24), and zirconia core (n = 24) blocks measuring 10 × 5 × 5 mm(3) were fabricated. Veneering ceramic blocks were used as the control. Alumina and zirconia core blocks were divided into 2 groups (n = 12 each), and a slot (2 × 2 × 4 mm(3)) filled with veneering ceramics was prepared into one of the alumina and zirconia core groups (n = 12). Followed by surface treatments of micro-abrasion with 30 μm alumina particles, etching with 35% phosphoric acid and silane primer and bond, composite resin blocks (2 × 2 × 2 mm(3)) were built up and light polymerized onto the treated surfaces by 3 configurations: (a) composite blocks bonded onto veneering ceramic surface alone, (b) composite blocks bonded onto alumina core or zirconia core surfaces, (c) a 50% surface area of the composite blocks bonded to veneering ceramics and the other 50% surface area of the composite blocks to alumina core or zirconia core surfaces. The shear bond strength of the composite to each specimen was tested by a universal testing machine at a 0.5 mm/min crosshead speed. The shear bond strength was analyzed by unpaired t-tests for within the configuration groups and ANOVA for among the different configuration groups. When the mean shear bond strength was compared within groups of the same configuration, there were no statistically significant differences. Comparison of the shear bond strength among groups of different configurations revealed statistically significant differences. The mean shear bond strength of composite onto 100% veneering ceramic surface and composite onto 50% veneering 50% all-ceramic cores was statistically higher than that of composite onto 100% all-ceramic cores; however, the differences of the shear bond strength of composite bonded

  5. Synthesis, characterization and potential utility of doped ceramics based catalysts

    Science.gov (United States)

    Sharma, Ritika; Yadav, Deepshikha; Singh, G. P.; Vyas, G.; Bhojak, N.

    2018-05-01

    Excessive utilization of petrol, diesel and other fossil fuels, continuous increase in their prices, and the big problem of carbon dioxide mission have encouraged scientists and technologist to find either new sources of energy or to develop technologies for the sustainable utilization of fuel. Biofuels are the only energy technologies that can resolve the problem of carbon dioxide emission in the atmosphere as well as reduce the amount of fossil fuel burned. Bio ethanol and biodiesel are the most common types of biofuel which are being used at present. Biodiesel has become more interesting for all the researchers in present scenario. Various feedstock viz. edible, nonedible oils, waste cooking oil, animal fat, algae etc, are using for the production of biodiesel worldwide according to their availability. Selection of efficient heterogeneous catalysts for biodiesel preparation still needs more attention of researchers. The present investigation deals with determination of synthesis, characterization and applications of doped ceramic based materials in different medium. Two of doped ceramic based catalysts which has been potentially used for the production of biodiesel. The Engine performance of biodiesel samples, made from industrial waste oils and ceramic based catalyst, have also been investigated and found up to satisfactory levels.

  6. Evaluation of shear bond strength and shear stress on zirconia reinforced lithium silicate and high translucency zirconia.

    Directory of Open Access Journals (Sweden)

    Amanda Maria de Oliveira Dal Piva

    2018-01-01

    Full Text Available This study evaluated the shear stress distribution on the adhesive interface and the bond strength between resin cement and two ceramics. For finite element analysis (FEA, a tridimensional model was made using computer-aided design software. This model consisted of a ceramic slice (10x10x2mm partially embedded on acrylic resin with a resin cement cylinder (Ø=3.4 mm and h=3mm cemented on the external surface. Results of maximum principal stress and maximum principal shear were obtained to evaluate the stress generated on the ceramic and the cylinder surfaces. In order to reproduce the in vitro test, similar samples to the computational model were manufactured according to ceramic material (Zirconia reinforced lithium silicate - ZLS and high translucency Zirconia - YZHT, (N=48, n=12. Half of the specimens were submitted to shear bond test after 24h using a universal testing machine (0.5 mm/min, 50kgf until fracture. The other half was stored (a (180 days, water, 37ºC prior to the test. Bond strength was calculated in MPa and submitted to analysis of variance. The results showed that ceramic material influenced bond strength mean values (p=0.002, while aging did not: YZHT (19.80±6.44a, YZHTa (17.95±7.21a, ZLS (11.88±5.40b, ZLSa (11.76±3.32b. FEA results showed tensile and shear stress on ceramic and cylinder surfaces with more intensity on their periphery. Although the stress distribution was similar for both conditions, YZHT showed higher bond strength values; however, both materials seemed to promote durable bond strength.

  7. Translucency of zirconia copings made with different CAD/CAM systems.

    Science.gov (United States)

    Baldissara, Paolo; Llukacej, Altin; Ciocca, Leonardo; Valandro, Felipe L; Scotti, Roberto

    2010-07-01

    Zirconia cores are reported to be less translucent than glass, lithium disilicate, or alumina cores. This could affect the esthetic appearance and the clinical choices made when using zirconia-based restorations. The purpose of this in vitro study was to evaluate the translucency of zirconia copings for single crowns fabricated using different CAD/CAM systems, using lithium disilicate glass ceramic as a control. Using impressions made from a stainless steel complete-crown master die, 9 stone cast replicas were fabricated, numbered, and distributed into 8 ceramic ZrO(2) CAD/CAM system groups (Lava Frame 0.3 and 0.5, IPS e.max ZirCAD, VITA YZ, Procera AllZircon, Digizon, DC Zircon, and Cercon Base) and to a lithium disilicate glass-ceramic control group (IPS e.max Press) using a simple computer-generated randomization method. From each die, the manufacturer's authorized milling centers supplied 5 copings per group without applying any dying technique to the ceramic base material. The copings were prepared to allow for a 40-mum cement layer and were of different thicknesses according to system specifications. Translucency was measured by the direct transmission method with a digital photoradiometer mounted in a dark chamber. The light source was a 150-W halogen lamp beam. Measurements were repeated 3 times for each specimen. Data obtained were analyzed using 1-way ANOVA and the Bonferroni multiple comparison test (alpha=.05). Among ZrO(2) copings, Lava (0.3 mm and 0.5 mm thick) showed the highest (Plight flow units (3.572 + or - 018 x 10(3) lx and 3.181 + or - 0.13 x 10(3) lx, respectively). These values represent 71.7% and 63.9%, respectively, of the glass-ceramic control group (4.98 x 10(3) lx). All ZrO(2) copings demonstrated different levels of light transmission, with the 2 Lava specimens showing the highest values. Translucency of zirconia copings was significantly lower (P=.001) than that of the lithium disilicate glass-ceramic control. Copyright 2010 The

  8. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  9. Effect of Nb doping on sintering and dielectric properties of PZT ceramics

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2016-09-01

    Full Text Available The extensive use of piezoelectric ceramics such as lead zirconate titanate (PZT in different applications became possible with the development of donor or acceptor dopants. Therefore, studies on the effect of dopants on the properties of PZT ceramics are highly demanded. In this study undoped and 2.4 mol% Nb-doped PZT (PZTN powders were successfully obtained by a solid-state reaction and calcination at 850 °C for 2 h. Crystallinity and phase formation of the prepared powders were studied using X-ray diffraction (XRD. In order to study morphology of powders, scanning electron microscopy (SEM was performed. The crystalline PZT and Nb-doped PZT powders were pelleted into discs and sintered at 1100, 1150 and 1200 °C, with a heating rate of 10 °C/min, and holding time of 1–6 h to find the optimum combination of temperature and time to produce high density ceramics. Microstructural characterization was conducted on the fractured ceramic surfaces using SEM. Density measurements showed that maximal density of 95% of the theoretical density was achieved after sintering of PZT and PZTN ceramics at 1200 °C for 2 h and 4 h, respectively. However, the results of dielectric measurements showed that PZTN ceramics have higher relative permittivity (εr ∼17960 with lower Curie temperature (∼358 °C relative to PZT (εr = 16000 at ∼363 °C as a result of fine PZTN structure as well as presence of vacancies. In addition, dielectric loss (at 1 kHz of PZT and PZTN ceramics with 95% theoretical density was 0.0087 and 0.02, respectively. The higher dielectric loss in PZTN was due to easier domain wall motions in PZTN ceramics.

  10. Microstructural and dielectrical characterization of Ho doped BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Marjanović Miloš

    2014-01-01

    Full Text Available The Ho doped BaTiO3 ceramics, with different Ho2O3 content, ranging from 0.01 to 1.0 wt % Ho, were investigated regarding their microstructural and dielectric characteristics. Doped BaTiO3 were prepared using conventional solid state reaction and sintered at 1380°C for four hours. SEM analysis of Ho/BaTiO3 doped ceramics showed that the low doped samples exhibit mainly fairly uniform and homogeneous microstructure with the grain size ranged from 20-40 μm. In the samples with the higher dopant concentration the abnormal grain growth is inhibited and the grain size ranged between 2-10 μm. Measurements of dielectric properties were carried out as a function of temperature up to 180 °C at different frequencies. The samples doped with 0.01wt % of Ho, exhibit the high value of dielectric permittivity (εr = 2160 at room temperature. A nearly flat permittivity-response was obtained in specimens with higher additive content. Using a Curie-Weiss law and modified Curie-Weiss law the Curie constant (C, Curie temperature (Tc and a critical exponent of nonlinearity (g were calculated. The Curie temperature of doped samples were ranged from 128 to 130°C. The Curie constant for all series of samples decrease with increase of dopant concentration and the lowest values were observed on samples doped with 0.01 wt % of holmium. [Projekat Ministarstva nauke Republike Srbije, br. OI 172057: Directed synthesis, structure and properties of multifunctional materials i br. TR 32026

  11. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations.

    Science.gov (United States)

    Sghaireen, Mohd G

    2015-06-01

    The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.

  12. THE STUDY OF HIGH DIELECTRIC CONSTANT MECHANISM OF La-DOPED Ba0.67Sr0.33TiO3 CERAMICS

    Science.gov (United States)

    Xu, Jing; He, Bo; Liu, Han Xing

    It is a common and effective method to enhance the dielectric properties of BST ceramics by adding rare-earth elements. In this paper, it is important to analyze the cause of the high dielectric constant behavior of La-doped BST ceramics. The results show that proper rare earth La dopant (0.2≤x≤0.7) may greatly increase the dielectric constant of BST ceramics, and also improve the temperature stability, evidently. According to the current-voltage (J-V) characteristics, the proper La-doped BST ceramics may reach the better semiconductivity, with the decrease and increase in La doping, the ceramics are insulators. By using the Schottky barrier model and electric microstructure model to find the surface or grain boundary potential barrier height, the width of the depletion layer and grain size do play an important role in impacting the dielectric constant.

  13. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-10-01

    Full Text Available The intensive up-conversion (UC photoluminescence and temperature sensing behavior of Er3+-doped Bi7Ti4NbO21(BTN ferroelectric ceramics prepared by a conventional solid-state reaction technique have been investigated. The X-ray diffraction and field emission scanning electron microscope analyses demonstrated that the Er3+-doped BTN ceramics are single phase and uniform flake-like structure. With the Er3+ ions doping, the intensive UC emission was observed without obviously changing the properties of ferroelectric. The optimal emission intensity was obtained when Er doping level was 15 mol.%. The temperature sensing behavior was studied by fluorescence intensity ratio (FIR technique of two green UC emission bands, and the experimental data fitted very well with the function of temperature in a range of 133–573 K. It suggested that the Er3+-doped BTN ferroelectric ceramics are very good candidates for applications such as optical thermometry, electro-optical devices and bio-imaging ceramics.

  14. Synthesis and characterization of tungsten or calcium doped PZT ceramics

    International Nuclear Information System (INIS)

    Santos, D.M.; Caracas, L.B.; Noronha, R.G.; Santos, M.M.T. dos; Paiva-Santos, C.O.

    2009-01-01

    Pure and doped (tungsten or calcium) PZT ceramics were prepared by association of the polymeric precursor and partial oxalate method. The phase formation was investigated by thermal analysis (TG/DSC) and X-ray diffraction (XRD). The affect of W or Ca doping PZT and their electrical properties was evaluated. Substitution of W by Ti and Ca by Pb leads to an increase of Curie temperature and broadening of dielectric constant. A typical hysteresis loop was observed at room temperature and the remnant polarization was increased with the content of W and Ca. (author)

  15. Dual-scan technique for the customization of zirconia computer-aided design/computer-aided manufacturing frameworks.

    Science.gov (United States)

    Andreiuolo, Rafael Ferrone; Sabrosa, Carlos Eduardo; Dias, Katia Regina H Cervantes

    2013-09-01

    The use of bi-layered all-ceramic crowns has continuously grown since the introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia cores. Unfortunately, despite the outstanding mechanical properties of zirconia, problems related to porcelain cracking or chipping remain. One of the reasons for this is that ceramic copings are usually milled to uniform thicknesses of 0.3-0.6 mm around the whole tooth preparation. This may not provide uniform thickness or appropriate support for the veneering porcelain. To prevent these problems, the dual-scan technique demonstrates an alternative that allows the restorative team to customize zirconia CAD/CAM frameworks with adequate porcelain thickness and support in a simple manner.

  16. Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics.

    Science.gov (United States)

    Li, H C; Wang, D G; Meng, X G; Chen, C Z

    2014-06-01

    A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and β-CaSiO(3). (β-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of β-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Production of nano-crystalline zirconia powders and fabrication of high strength ultra-fine-grained ceramics

    International Nuclear Information System (INIS)

    Rajendran, S.

    1993-01-01

    Hydrous zirconia containing 2 and 2.5 mol% Y 2 O 3 was prepared by a hydroxide co-precipitation method and portions were dispersed in ethanol before drying(P2), milled in ethanol after drying (P3) or after calcination at 550 deg C (P4) or milled in iso-propanal after calcination at 1000 deg C (P5). The crystallisation behaviour and sintering characteristics of the materials were investigated. The calcined as dried powder (P1) has strongly bonded hard aggregates and the material reached a density of only about 80% of theoretical after sintering at 1500 deg C. Powder characteristics and the sinterability of the alcohol treated materials depended on the conditions of processing and heat treatment. The sinter-activity of the powders decreased from P2 to P5. Powder P3 was composed of relatively weakly bonded crystallites and could be sintered at 1400 deg C, while the powders P4 and P5 contained hard agglomerates and required a sintering temperature of 1450 and 1550 deg C respectively to achieve similar density. Powder (P2) had zirconium alkoxide species on the particle surface which decomposed at about 300 deg C. The calcined powder had very weak agglomerates composed of fine, uniform zirconia crystals and/or aggregates and sintered to high density at 1150 deg C. The final ceramic had a very uniform microstructure with an average grain size of about 150nm and exhibited fracture strength as high as 1700 MPa. A detailed account of the formation of aggregates of strongly bonded crystallites during calcination of hydrous zirconia, influence of alcohol in producing soft agglomerates and the sintering characteristics of the powders is reported. 46 refs., 2 tabs., 15 figs

  18. The Use of Newer High Translucency Zirconia in Aesthetic Zone

    Directory of Open Access Journals (Sweden)

    Zishan Dangra

    2014-01-01

    Full Text Available Loss of anterior tooth causes aesthetic and functional disharmony. Although no restorative material can approach the appearance of intact tooth enamel, glass ceramic, at the increased risk of brittle fracture, can mimic original tooth color better than the other restorative options. The newest zirconia material comes with unparalleled individualization in aesthetics and optimal physical properties. One of the basic principles of tooth preparation is conservation of tooth structure. This clinical report describes the replacement of maxillary and mandibular incisor with latest generation zirconia adhesive fixed partial denture. The authors have achieved unmatched aesthetics with newer high translucency zirconia.

  19. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoming [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Ruan, Xuezheng; Zhao, Kunyun [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); He, Xueqing [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zeng, Jiangtao, E-mail: zjt@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Li, Yongsheng [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zheng, Liaoying [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Park, Chul Hong [Department of Physics Education, Pusan National University, Pusan 609735 (Korea, Republic of); Li, Guorong [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-05-25

    Highlights: • Li-doped Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1}O{sub 3} (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1}O{sub 3} (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d{sub 33} (512 pC/N) and a planar electromechanical coupling factor k{sub p} (0.49), which have the characteristics of soft Pb(Zr,Ti)O{sub 3} (PZT) piezoceramic, on the other hand, the mechanical quality factor Q{sub m} is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature.

  20. Ionoluminscence of partially-stabilized zirconia for thermal barrier coatings

    International Nuclear Information System (INIS)

    Rebollo, N.R.; Ruvalcaba-Sil, J.L.; Miranda, J.

    2007-01-01

    Ionoluminescence is explored as an alternative technique to study the high temperature phase stability of zirconia-based oxides. The evolution of an initially metastable single tetragonal phase towards de-stabilization is investigated for three single-doped zirconia compositions with Y, Yb and Gd. The differences in de-stabilization paths are identified using X-ray diffraction and ionoluminescence; elemental analysis is also performed using particle-induced X-ray emission. X-ray diffraction studies reveal a different scenario for each of the compositions selected; the differences are strongly influenced by the thermodynamic driving forces associated to the fluorite-to-tetragonal displacive transformation. Ionoluminescence studies indicate a significant increment on the signal intensity for de-stabilized samples, relative to previous annealing stages. There are also more subtle differences in the luminescent response from the samples at intermediate annealing stages also related to phase changes. This study provides a basis to characterize phase evolution in single-doped zirconia compositions for thermal insulation applications using luminescence

  1. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  2. Study of microstructure and mechanical properties of ceramics composites alumina-zirconia reinforced with yttria for inert coating of metal matrices used in the petroleum industry

    International Nuclear Information System (INIS)

    Pontual, J.O.; Silva, N.D.G.; Ferreira, R.A.S.; Yadava, Y.P.

    2014-01-01

    The storage and transportation of crude oil is complicated due to the hostile environment provided by this. Under these conditions, it is imperative to search for alternative solutions, using an inert coating to protect from corrosion caused by crude oil. In this work, alumina-zirconia ceramic composites with 5-20%w zirconia and 1 - 2%w yttria were produced through thermomechanical process. The structural and microstructural characterization of the sintered material was carried out by X-ray diffraction and scanning electron microscopy. Mechanical properties were analyzed by Vickers hardness tests. Currently, the pads are submerged in crude oil and after 30-60 days will be removed and sent for stability test.(author)

  3. Optical properties of ytterbium-doped yttrium oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, V.I.; Maksimov, R.N. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation); Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira 19, 620002 Ekaterinburg (Russian Federation); Osipov, V.V.; Shitov, V.A.; Lipchak, A.I. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation)

    2017-05-15

    Ytterbium-doped yttrium oxide (Yb:Y{sub 2}O{sub 3}) transparent ceramics with different sintering additives (Lu{sub 2}O{sub 3}, Sc{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2}, or HfO{sub 2}) were fabricated using nanopowders produced by laser ablation. Transmission and photoluminescence spectra of the obtained ceramics were investigated at room temperature. Highest in-line transmittance was over 80% at the wavelength of 1060 nm for 2 mm thick Yb:Y{sub 2}O{sub 3} ceramics with zirconium and hafnium. Divalent Yb ions with the ground state electron configuration 4f{sup 13}6s were revealed. The absorption and emission bands caused by s <-> s transitions of these ions were observed in the IR spectral range of Yb{sup 3+} ions. The superposition of both Yb{sup 3+} and Yb{sup 2+} emission bands leads to an effective broadening of the whole luminescence band. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Influence of coping design on the cervical color of ceramic crowns.

    Science.gov (United States)

    Paniz, Gianluca; Kang, Ki-Ho; Kim, Yongjeong; Kumagai, Naota; Hirayama, Hiroshi

    2013-12-01

    The replication of natural teeth, especially with single-tooth restorations, represents a challenge. Similar to metal ceramic crowns, different designs of zirconia substructures have been suggested to improve the esthetic results of zirconia ceramic crowns. The purpose of the study was to analyze the color of the cervical portion of single zirconia ceramic crowns fabricated with different zirconia coping designs. The color, measured on the CIELAB color scale, of 3 different groups of restorations (n=10) fabricated with zirconia coping (Lava) and feldspathic porcelain (Noritake Super Porcelain) was analyzed with a spectrophotometer. Conventional zirconia crowns with zirconia facial margins were compared with ceramic crowns with porcelain facial margins and either a horizontal reduction of the zirconia coping (1.0 mm reduction) or an additional vertical reduction (1.0 mm additional reduction). The 3 groups, each with a different coping extension, were examined with a 1-way ANOVA and the Fisher exact test, and the differences of the groups were evaluated by applying ΔE thresholds (α=.05). The mean color difference among all the groups was not clinically significant (ΔEcolor differences were present between the 2 porcelain butt margin groups of crowns (ΔE=1.06, between group H and V). Increased differences were present between the zirconia margin group and the porcelain butt margin group (ΔE=2.54 between group C and H; ΔE=2.41 between group C and V). Lab* values were examined in all the groups of crowns to determine the clinical implications. Within the limitation of the study, no significant differences were present among the tested groups of crowns. Nevertheless, although some differences were present between the zirconia margin group and the porcelain butt margin group, reduced differences were present between the 2 different cutback designs. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights

  5. Microwave sintering of zirconia toughened alumina at 28GHz

    International Nuclear Information System (INIS)

    Samandi, M.; Ji, H.; Miyake, S.

    1998-01-01

    Microwave radiation from a 10 kW, CW gyrotron operating at 28 GHz was employed to sinter 10% zirconia toughened alumina (ZTA) ceramic samples. It has been established that the use of millimetre wave radiation circumvents the difficulties encountered during the sintering of ceramics, i e. formation of hot spot, by radiation at industrially permissible frequency of 2.45GHz. Further, careful density measurement and microstructural characterisation of mm- wave and conventionally sintered samples by XRD, SEM and TEM has unequivocally demonstrated the effectiveness of mm-wave radiation for obtaining high density ceramics at lower sintering temperatures. Copyright (1998) Australasian Ceramic Society

  6. Influence of ageing on glass and resin bonding of dental glass-ceramic veneer adhesion to zirconia: A fracture mechanics analysis and interpretation.

    Science.gov (United States)

    Swain, M V; Gee, C; Li, K C

    2018-04-26

    Adhesion plays a major role in the bonding of dental materials. In this study the adhesion of two glass-ceramic systems (IPS e.max and VITABLOCS) to a zirconia sintered substrate using a glass (for IPS e.max) and resin (VITABLOCS) before and after exposure to ageing for 14 days in distilled water at 37 °C are compared using two interfacial fracture mechanics tests, the 3 point bend Schwickerath (Kosyfaki and Swain, 2014; Schneider and Swain, 2015) and 4 point bend (Charalambides et al., 1989) approaches. Both tests result in stable crack extension from which the strain energy release rate (G, N/m or J/m 2 ) can be determined. In the case of the 3 PB test the Work of Fracture was also determined. In addition, the Schwickerath test enables determination of the critical stress for the onset of cracking to occur, which forms the basis of the ISO (ISO9693-2:2016) adhesion test for porcelain ceramic adhesion to zirconia. For the aged samples there was a significant reduction in the resin-bonded strengths (Schwickerath) and strain energy release rate (both 3 and 4 PB tests), which was not evident for the glass bonded specimens. Critical examination of the force-displacement curves showed that ageing of the resin resulted in a major change in the form of the curves, which may be interpreted in terms of a reduction in the critical stress to initiate cracking and also in the development of an R-curve. The extent of the reduction in strain energy release rate following ageing was greater for the Schwickerath test than the Charalambides test. The results are discussed in terms of; the basic mechanics of these two tests, the deterioration of the resin bonding following moisture exposure and the different dimensions of the specimens. These in-vitro results raise concerns regarding resin bonding to zirconia. The present study uses a novel approach to investigate the role of ageing or environmental degradation on the adhesive bonding of two dental ceramics to zirconia

  7. In vitro comparison of fracture load of implant-supported, zirconia-based, porcelain- and composite-layered restorations after artificial aging.

    Science.gov (United States)

    Komine, Futoshi; Taguchi, Kohei; Fushiki, Ryosuke; Kamio, Shingo; Iwasaki, Taro; Matsumura, Hideo

    2014-01-01

    This study evaluated fracture load of single-tooth, implant-supported, zirconia-based, porcelain- and indirect composite-layered restorations after artificial aging. Forty-four zirconia-based molar restorations were fabricated on implant abutments and divided into four groups, namely, zirconia-based all-ceramic restorations (ZAC group) and three types of zirconia-based composite-layered restorations (ZIC-P, ZIC-E, and ZIC groups). Before layering an indirect composite material, the zirconia copings in the ZIC-P and ZIC-E groups were primed with Clearfil Photo Bond and Estenia Opaque Primer, respectively. All restorations were cemented on the abutments with glass-ionomer cement and then subjected to thermal cycling and cyclic loading. All specimens survived thermal cycling and cyclic loading. The fracture load of the ZIC-P group (2.72 kN) was not significantly different from that of the ZAC group (3.05 kN). The fracture load of the zirconia-based composite-layered restoration primed with Clearfil Photo Bond (ZIC-P) was comparable to that of the zirconia-based all-ceramic restoration (ZAC) after artificial aging.

  8. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  9. The Metal-Zirconia Implant Fixed Hybrid Full-Arch Prosthesis: An Alternative Technique for Fabrication.

    Science.gov (United States)

    Stumpel, Lambert J; Haechler, Walter

    2018-03-01

    The metal-resin hybrid full-arch prosthesis has been a traditionally used type of restoration for full-arch implant fixed dentures. A newer development has centered around the use of monolithic zirconia or zirconia veneered with porcelain. Being a ceramic, zirconia has the potential for fracture. This article describes a technique that utilizes a metal substructure to support a chemically and mechanically resinbonded shell of zirconia. The workflow is discussed, ranging from in-office master cast fabrication to the CAD/ CAM production of the provisional and the definitive metal-zirconia prosthesis. The article also highlights the advantages and disadvantages of various materials used for hybrid prostheses.

  10. Influence of SrF_2-doping in AlN ceramics on scintillation and dosimeter properties

    International Nuclear Information System (INIS)

    Kojima, Kaori; Okada, Go; Fukuda, Kentaro; Yanagida, Takayuki

    2016-01-01

    In this study, we synthesized undoped AlN and SrF_2-doped AlN (AlN-SrF_2) ceramics by Spark Plasma Sintering (SPS), and we characterized their optical, scintillation and dosimeter properties. The prepared undoped AlN ceramic had gray color and visually non-transparent whereas, with an addition of SrF_2, the transparency improved and became translucent. The measured in-line transmittance was approximately 0.2% at wavelengths longer than 500 nm. While the addition of SrF_2 decreased the scintillation intensity, the decay time was significantly fastened, which is a great advantage for fast photon counting-based measurements. Both the thermally-stimulated luminescence (TSL) and optically-stimulated luminescence (OSL) showed good linear response from the milli-gray range to over 10 Gy. The sensitivity seems to decrease by an addition of SrF_2 as it suppresses structural defect centers which are responsible for dosimeter properties. However, the main TSL glow peak position shifts to higher temperature with the addition of SrF_2, which indicates that inclusion of SrF_2 improves the TSL signal stability. - Highlights: • We synthesized undoped and SrF_2-doped AlN ceramics by Spark Plasma Sintering. • We evaluated scintillator and dosimeter properties of undoped and SrF_2-doped AlN. • By doping with SrF_2, the decay time is shortened. • By doping with SrF_2, the stability of TSL and OSL is improved.

  11. Fabrication and electrical investigations of Pb-doped BaTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sareecha, N., E-mail: nsareecha@hotmail.com [Laboratory of Physical Chemistry, Department of Chemistry, Islamia University of Bahawalpur (Pakistan); Shah, W.A. [Glass and Ceramics Research Centre, PCSIR Laboratories Complex, Ferozpur Road, Lahore 54600 (Pakistan); Maqsood, A. [Nano Scale Physics Laboratory, Department of Physics, Air University, PAF Complex E-9, Islamabad (Pakistan); Anis-ur-Rehman, M. [Applied Thermal Physics Laboratory, COMSATS Institute of Information and Technology, Park Road, Islamabad 44000 (Pakistan); Latif Mirza, M. [Laboratory of Physical Chemistry, Department of Chemistry, Islamia University of Bahawalpur (Pakistan)

    2017-06-01

    Electrical properties of Pb doped BaTiO{sub 3}; PBT are investigated in the wide range of temperatures (40–700 °C) at 1 kHz frequency. PBT ceramics were fabricated through solid state sintering method. Pre fired BaTiO{sub 3} prepared with Ba/Ti molar ratio of 0.98 was doped with PbCO{sub 3} (<1 mole %). XRD patterns indicated perovskite phase with tetragonal structures (P4mm). Morphological studies (SEM) revealed grain development with increasing lead contents. With lead doping and its variation, Curie temperature (T{sub C}) was shifted from 120 to 200 °C with broad dielectric constant peaks and dielectric anomalies with relaxor behavior were observed. Resistivity decreased with increasing temperature, all specimens showed semiconductor behavior with negative temperature coefficient of resistivity (NTCR) characteristics. Mobility of electrons increased with thermal activation due to hopping of charge carriers from one site to another. Ohmic conductivities and associated activation energies were evaluated by impedance spectroscopy. Conductivity followed the Arrhenius law with E{sub a} = 1.187–1.169 eV which can be attributed to the ionic conduction owning to doubly ionized oxygen vacancies. Well-defined hysteresis P-E loops measured at room temperature depicted ferroelectric properties of the materials. - Graphical abstract: Temperature dependence of dielectric constant (Ɛ′) and resistivity (ρ) for pure and Pb-doped BaTiO{sub 3} ceramics at 1 k Hz frequency. - Highlights: • Pb-doped BaTiO{sub 3}ceramics were fabricated through solid state sintering. • Electrical properties were studied at the temperatures 40–700 °C at 1 kHz. • Specimens showed negative temperature coefficient of resistivity characteristics. • Conductivity followed the Arrhenius law with E{sub a} = 1.187–1.169 eV. • Ionic conduction was supposed to be responsible for conduction process.

  12. Spectroscopic properties of Er3+ and Yb3+ co-doped glass ceramics containing SrF2 nanocrystals

    International Nuclear Information System (INIS)

    Qiao Xvsheng; Fan Xianping; Wang Minquan; Zhang Xianghua

    2009-01-01

    The spectroscopic properties of Er 3+ /Yb 3+ co-doped 50SiO 2 -10Al 2 O 3 -20ZnF 2 -20SrF 2 glass and glass ceramic containing SrF 2 nanocrystals were investigated. The formation of SrF 2 nanocrystals in the glass ceramic was confirmed by XRD. The oscillator strengths for several transitions of the Er 3+ ions in the glass ceramic have been obtained and the Judd-Ofelt parameters were then determined. The XRD result and Judd-Ofelt parameters suggested that Er 3+ and Yb 3+ ions had efficiently enriched in the SrF 2 nanocrystals in the glass ceramic. The lifetime of excited states has been used to reveal the surroundings of luminescent Er 3+ and Yb 3+ and energy transfer (ET) mechanism between Er 3+ and Yb 3+ . Much stronger upconversion luminescence and longer lifetime of the Er 3+ /Yb 3+ co-doped glass ceramic were observed in comparison with the Er 3+ /Yb 3+ co-doped glass, which could be ascribed to more efficient ET from Yb 3+ to Er 3+ due to the enrichment of Yb 3+ and Er 3+ and the shortening of the distance between lanthanide ions in the precipitated SrF 2 nanocrystals.

  13. Fabrication of a zirconia MEMS-based microthruster by gel casting on PDMS soft molds

    International Nuclear Information System (INIS)

    Cheah, K H; Khiew, P S; Chin, J K

    2012-01-01

    A zirconia microelectromechanical-system-based microthruster was fabricated through a newly developed fabrication route. Gel casting of homogenously dispersed zirconia suspension on polydimethylsiloxane soft mold was utilized to replicate the geometries of microthruster design onto a ceramic layer of about 1.2 mm thick. Lamination of the patterned ceramic layer to another flat ceramic layer and subsequent sintering produced the microthruster. Characterizations on the fabricated prototype showed good shape retention on the replicated geometries and good quality of lamination. Shrinkage of about 10–15% was noted after sintering. The current fabrication route is particularly promising for the development of high-performance micropropulsion systems which require their structural material to survive in an extreme environment which is corrosive, of high temperature and highly oxidative. (paper)

  14. Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Chou Wu

    2015-02-01

    Full Text Available Surface properties play a critical role in influencing cell responses to a biomaterial. The objectives of this study were (1 to characterize changes in surface properties of zirconia (ZrO2 ceramic after oxygen plasma treatment; and (2 to determine the effect of such changes on biological responses of human osteoblast-like cells (MG63. The results indicated that the surface morphology was not changed by oxygen plasma treatment. In contrast, oxygen plasma treatment to ZrO2 not only resulted in an increase in hydrophilicity, but also it retained surface hydrophilicity after 5-min treatment time. More importantly, surface properties of ZrO2 modified by oxygen plasma treatment were beneficial for cell growth, whereas the surface roughness of the materials did not have a significant efficacy. It is concluded that oxygen plasma treatment was certified to be effective in modifying the surface state of ZrO2 and has the potential in the creation and maintenance of hydrophilic surfaces and the enhancement of cell proliferation and differentiation.

  15. Influence of cooling rate on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-09-01

    The manufacture of dental crowns and bridges generates residual stresses within the veneering ceramic and framework during the cooling process. Residual stress is an important factor that control the mechanical behavior of restorations. Knowing the stress distribution within the veneering ceramic as a function of depth can help the understanding of failures, particularly chipping, a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the cooling rate dependence of the stress profile in veneering ceramic layered on metal and zirconia frameworks. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples 20 mm in diameter, with a 0.7 mm thick metal or Yttria-tetragonal-zirconia-polycrystal framework and a 1.5mm thick veneering ceramic. Three different cooling procedures were investigated. The magnitude of the stresses in the surface of the veneering ceramic was found to increase with cooling rate, while the interior stresses decreased. At the surface, compressive stresses were observed in all samples. In the interior, compressive stresses were observed in metal samples and tensile in zirconia samples. Cooling rate influences the magnitude of residual stresses. These can significantly influence the mechanical behavior of metal-and zirconia-based bilayered systems. The framework material influenced the nature of the interior stresses, with zirconia samples showing a less favorable stress profile than metal. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Ceramic on ceramic arthroplasty of the hip: new materials confirm appropriate use in young patients.

    Science.gov (United States)

    Sentuerk, U; von Roth, P; Perka, C

    2016-01-01

    The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. ©2016 The British Editorial Society of Bone & Joint Surgery.

  17. Spectroscopic properties of Er/Nd co-doped yttrium lanthanum oxide transparent ceramics pumped at 980 nm

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yingjie; Yang, Qiuhong, E-mail: yangqiuhong@shu.edu.cn; Gui, Yan; Yuan, Ye; Lu, Qing

    2016-05-15

    (Er{sub 0.01}Nd{sub x}Y{sub 0.89-x}La{sub 0.1}){sub 2}O{sub 3} (x = 0, 0.001, 0.002, 0.005, 0.01) transparent ceramics were prepared by conventional ceramic processing. The Nd{sup 3+} content dependencies of mid-infrared, near infrared and up-conversion emission of Er{sup 3+} pumped at 980 nm were fully presented. Mechanism of energy transfer between Er{sup 3+} and Nd{sup 3+} was also demonstrated. The results showed that co-doping 0.1 at% Nd{sup 3+} into 1 at% Er{sup 3+} doped yttrium lanthanum oxide transparent ceramic enhanced the 2.7 μm emission significantly and meanwhile suppressed the 1.5 μm emission effectively which indicated an improvement in population inversion between Er:{sup 4}I{sub 11/2} and Er:{sup 4}I{sub 13/2}. Moreover, green up-conversion emission of Er{sup 3+} ion also showed a great improvement by co-doping 0.1 at% Nd{sup 3+}. Those great results were attributed to energy recycle from Er:{sup 4}I{sub 13/2} to Er:{sup 4}I{sub 11/2}. The energy recycle was mainly built by the two energy transfer between Er{sup 3+} and Nd{sup 3+} (one is from Er to Nd, another is in opposite way). So, Er/Nd co-doped yttrium lanthanum oxide transparent ceramic with Nd in low concentration can be considered as a promising laser material for ∼3 μm and up-conversion laser application. - Highlights: • (Er{sub 0.01}Nd{sub x}Y{sub 0.89-x}La{sub 0.1}){sub 2}O{sub 3} transparent ceramics were prepared. • The emission of 2.7 μm of Er{sup 3+} ion was significantly enhanced as x was 0.001. • The emission of 1.5 μm of Er{sup 3+} ion was suppressed greatly by co-doping Nd{sup 3+} ion. • Mechanism of Er–Nd energy transfer was discussed by the energy sketch.

  18. Accelerated ceria–zirconia solubilization by cationic diffusion inversion at low oxygen activity

    DEFF Research Database (Denmark)

    Esposito, Vincenzo; Ni, De Wei; Marani, Debora

    2016-01-01

    Fast elemental diffusion at the Gd-doped ceria/Y-stabilized zirconia interface occurs under reducing conditions at low oxygen activity (pO2 < 10−12 atm) and high temperature (1400 °C). This effect leads to formation of thick ceria–zirconia solid solution reaction layers in the micro-range vs. thi...

  19. Influence of implant abutment material and ceramic thickness on optical properties.

    Science.gov (United States)

    Jirajariyavej, Bundhit; Wanapirom, Peeraphorn; Anunmana, Chuchai

    2018-05-01

    Anterior shade matching is an essential factor influencing the esthetics of a ceramic restoration. Dentists face a challenge when the color of an implant abutment creates an unsatisfactory match with the ceramic restoration or neighboring teeth. The purpose of this in vitro study was to evaluate the influence of abutment material and ceramic thickness on the final color of different ceramic systems. Four experimental and control ceramic specimens in shade A3 were cut from IPS e.max CAD, IPS Empress CAD, and VITA Suprinity PC blocks. These specimens had thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm, respectively, for the experimental groups, and 4 mm for the controls. Background abutment specimens were fabricated to yield 3 different shades: white zirconia, yellow zirconia, and titanium at a 3-mm thickness. All 3 ceramic specimens in each thickness were placed in succession on different abutment backgrounds with glycerin optical fluid in between, and the color was measured. A digital spectrophotometer was used to record the specimen color value in the Commission Internationale De L'éclairage (CIELab) color coordinates system and to calculate the color difference (ΔE) between the control and experimental groups. The Kruskal-Wallis test was used to analyze the effect of ceramic thickness on different abutments, and the pair-wise test was used to evaluate within the group (α=.05). The color differences between the test groups and the control decreased with increasing ceramic thickness for every background material. In every case, significant differences were found between 1.0- and 2.5-mm ceramic thicknesses. Only certain 2.5-mm e.max CAD, VITA Suprinity PC, and Empress CAD specimens on yellow-shade zirconia or VITA Suprinity PC on titanium were identified as clinically acceptable (ΔEabutment background decreased the color mismatch. Increasing the thickness of ceramic on a yellow-shaded zirconia abutment rather than on titanium or white zirconia yielded a more

  20. One-Piece Zirconia Ceramic versus Titanium Implants in the Jaw and Femur of a Sheep Model: A Pilot Study.

    Science.gov (United States)

    Siddiqi, A; Duncan, W J; De Silva, R K; Zafar, S

    2016-01-01

    Reports have documented titanium (Ti) hypersensitivity after dental implant treatment. Alternative materials have been suggested including zirconia (Zr) ceramics, which have shown predictable osseointegration in animal studies and appear free of immune responses. The aim of the research was to investigate the bone-to-implant contact (BIC) of one-piece Zr, compared with one-piece Ti implants, placed in the jaws and femurs of domestic sheep. Ten New Zealand mixed breed sheep were used. A One-piece prototype Ti (control) and one Zr (test) implant were placed in the mandible, and one of each implant (Ti and Zr) was placed into the femoral epicondyle of each animal. The femur implants were submerged and unloaded; the mandibular implants were placed using a one-stage transgingival protocol and were nonsubmerged. After a healing period of 12 weeks, %BIC was measured. The overall survival rate for mandibular and femur implants combined was 87.5%. %BIC was higher for Zr implants versus Ti implants in the femur (85.5%, versus 78.9%) ( p = 0.002). Zirconia implants in the mandible showed comparable %BIC to titanium implants (72.2%, versus 60.3%) ( p = 0.087). High failure rate of both Zr and Ti one-piece implants in the jaw could be attributed to the one-piece design and surface characteristics of the implant that could have influenced osseointegration. Further clinical trials are recommended to evaluate the performance of zirconia implants under loading conditions.

  1. Preparation and leaching property of Nd-doped zirconolite-based glass-ceramic

    International Nuclear Information System (INIS)

    Wu Lang; Xu Dong; Teng Yuancheng; Li Yuxiang; Liu Zongqiang

    2014-01-01

    Nd-doped zirconolite-based glass-ceramics were prepared by melting-heat treatment technique. The effects of heat treatment processing on phase structure of the glass-ceramics were investigated. The leaching properties of the glass-ceramics were also evaluated by static leaching experiments (product consistency test, PCT). The results show that glass transformation temperature (T g ) and crystallization temperature of the glass-ceramics are about 580℃ and 740℃, respectively. CaTiO 3 phase forms easily when the glass-ceramics were prepared by two-step method, i.e. the glass was prepared first, and then it was heat-treated at the crystallization temperatures. 2M-zirconolite phase can be obtained by one-step method, i.e. the heat-treatment immediately followed by the melting process. In addition, the zirconolite crystals exhibit a dendritic shape. The normalized mass loss of B and Na in the glass-ceramics remains almost unchanged (about 1 mg/m 2 ) after 14 days, while the normalized mass loss of Nd reaches stable value (about 0.2 mg/m 2 ) after 28 days. The normalized mass loss of B, Na, and Nd in the glass-ceramics is an order of magnitude lower than that of borosilicate glasses, respectively. (authors)

  2. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  3. Improved dielectric and ferroelectric properties of Mn doped barium zirconium titanate (BZT) ceramics for energy storage applications

    Science.gov (United States)

    Sangwan, Kanta Maan; Ahlawat, Neetu; Kundu, R. S.; Rani, Suman; Rani, Sunita; Ahlawat, Navneet; Murugavel, Sevi

    2018-06-01

    Lead free Mn doped barium zirconium titanate ceramic of composition BaZr0.045 (MnxTi1-x)0.955O3 (x = 0.00, 0.01, 0.02) were prepared by solid state reaction method. Tetragonal perovskite structure was confirmed by Rietveld refinement of X-ray diffraction pattern. Analysis of Scanning electron microscope (SEM) micrographs revealed that addition of Mn up to a certain limit accelerates grain growth of BZT ceramic. Static dielectric constant was successfully extended up to high frequencies with an appreciable decrease in dielectric loss about 70% for Mn doped BZT ceramics. The experimental data fitted with Curie Weiss Law and Power Law confirmed first order transition and diffusive behavior of the investigated system. The shifting of Curie temperature (Tc) from 387 K to 402 K indicated tendency for sustained ferroelectricity in doped BZMT ceramics. High value of percentage temperature coefficient of capacitance TCC >10% near Tc was observed for all the compositions and increases with Mn content in pure BZT. At room temperature, BZT modified ceramic corresponding to x = 0.01 composition shows better values of remnant polarization (Pr = 5.718 μC/cm2), saturation polarization (Ps = 14.410 μC/cm2), low coercive field (Ec = 0.612 kV/cm), and highest value of Pr/Ps = 0.396.

  4. Methods for improving mechanical properties of partially stabilized zirconia and the resulting product

    International Nuclear Information System (INIS)

    Aronov, V.A.

    1987-01-01

    A method for improving mechanical surface properties of a rigid body comprising partially stabilized zirconia as a constituent is described comprising the following steps: (i) providing a rigid body having an exposed surface and an interior volume; (ii) subjecting the exposed surface region of partially stabilized zirconia to external heating to heat the exposed surface region to 1100 0 C-1600 0 C without heating the interior volume above 500 0 C-800 0 C; and (iii) cooling the rigid body to a temperature of less than 500 0 C to cause a portion of the exposed surface region to transform from the tetragonal lattice modification to the monoclinic lattice modification, thereby creating a compressive stress field in the exposed surface region and improving the mechanical surface properties of the exposed surface region. In a ceramic body comprising a first exposed region of a partially stabilized zirconia, and a second region of a partially stabilized zirconia at an interior portion of the ceramic body, the improvement is described comprising the ceramic body having in the first, exposed region a greater percentage of the monoclinic lattice modification than in the second region; having in the first, exposed region 5 percent to 100 percent in the monoclinic lattice modification; and having a molded surface finish in the first, exposed region; the first, exposed region being subjected to a compressive field resulting from the greater percentage of the monoclinic lattice modification

  5. Multifold polar states in Zn-doped Sr0.9Ba0.1TiO3 ceramics

    Science.gov (United States)

    Guo, Yan-Yan; Guo, Yun-Jun; Wei, Tong; Liu, Jun-Ming

    2015-12-01

    We investigate the effect of Zn doping on the dielectricity and ferroelectricity of a series of polycrystalline Sr0.9-xZnxBa0.1TiO3 (0.0% ≤ x ≤ 5.0%) ceramics. It is surprisingly observed that the Zn doping will produce the multifold polar states, i.e., the Zn-doped ceramic will convert a reduced polar state into an enhanced polar state, and eventually into a stabilized polar state with increasing the doping level x. It is revealed that in the background of quantum fluctuations, the competition between the Zn-doping-induced lattice contraction and the Ba-doping-induced lattice expansion is responsible for both the reduced polar state and the enhanced polar state coming into being. Also, the addition of the antiferrodistortive effect, which is the antipolar interaction originating from the opposite tilted-TiO6 octahedra rotation, represents the core physics behind the stabilized polar state. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304158, 51431006, 51102277, and 11104118), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY213020), and the Qing Lan Project of Jiangsu Province, China.

  6. Dispersion and consolidation of WO{sub x}-doped zirconia from zirconium tungstate and triethanolamine in aqueous medium; Dispersao e consolidacao de zirconia dopada com WO{sub x} a partir do tungstato de zirconio e trietanolamina em meio aquoso

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, M.; Zorzi, J.E.; Perottoni, C.A., E-mail: jezorzi@ucs.br [Universidade de Caxias do Sul (UCS), RS (Brazil); Machado, G. [Centro de Tecnologias Estrategicas do Nordeste, Recife, PE (Brazil)

    2017-01-15

    In recent studies, it was possible to produce hydrous zirconia nanoparticles with crystallite sizes as small as 2 nm from ZrW{sub 2} O{sub 8} powder with initial particle size of 1.7 μm in an aqueous medium. The zirconia nanoparticles formed transparent polycrystalline aggregates. However, the controlled production of transparent zirconia solids by centrifugation of stable suspensions, deagglomerated in the moment of the synthesis, has not been explored yet. In this context, this study aimed to evaluate the dispersion and consolidation of hydrous zirconia nanoparticles produced from ZrW{sub 2} O{sub 8} , in aqueous medium and using triethanolamine (TEOA) as surfactant, and to understand the effect of experimental conditions on the tungsten content in the consolidated solids. The synthesis and dispersion were carried out in aqueous medium at 80 °C with the use of NaOH and TEOA; the colloidal solutions were dialysed, their pH values were adjusted to 6, and then ultracentrifuged at 28000 rpm for 24 h. It has been found that the use of TEOA in the synthesis allowed obtaining stable sols of zirconia nanoparticles which, after centrifugation, originated transparent and yellowish solids that were characterized using various techniques (scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and simultaneous thermal analysis). Although TEOA assists in the dispersion of nanoparticles, it interfered in the synthesis mechanism, leading to the production of zirconia doped with WO{sub x} , with tungsten concentrations that varied depending on the experimental conditions employed. (author)

  7. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    Science.gov (United States)

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469

  8. Two R curves for partially stabilized zirconia

    International Nuclear Information System (INIS)

    Rose, L.R.F.; Swain, M.V.

    1986-01-01

    The enhanced fracture toughness due to stress-induced transformation can be explained from two view points: (1) the increase can be attributed to the need to supply a work of transformation, or (2) the transformation can be considered to result in internal stresses which oppose crack opening. Experimental results for magnesia-partially-stabilized zirconia are presented for the two experimental measures of toughness corresponding to these two viewpoints, namely (1) the specific work of fracture, R, and (2) the nominal stress intensity factor, K/sup R/. It is observed that these two measures are not equivalent during the initial stage of R-curve behavior, prior to reaching steady-state cracking. The theoretical reason for this difference is discussed. In particular, it is noted that the usual definition for the crack extension force does not correspond to the experimentally measured work of fracture in the presence of stress-induced (or pre-existing) sources of internal stress

  9. Joining Dental Ceramic Layers With Glass

    Science.gov (United States)

    Saied, MA; Lloyd, IK; Haller, WK; Lawn, BR

    2011-01-01

    Objective Test the hypothesis that glass-bonding of free-form veneer and core ceramic layers can produce robust interfaces, chemically durable and aesthetic in appearance and, above all, resistant to delamination. Methods Layers of independently produced porcelains (NobelRondo™ Press porcelain, Nobel BioCare AB and Sagkura Interaction porcelain, Elephant Dental) and matching alumina or zirconia core ceramics (Procera alumina, Nobel BioCare AB, BioZyram yttria stabilized tetragonal zirconia polycrystal, Cyrtina Dental) were joined with designed glasses, tailored to match thermal expansion coefficients of the components and free of toxic elements. Scanning electron microprobe analysis was used to characterize the chemistry of the joined interfaces, specifically to confirm interdiffusion of ions. Vickers indentations were used to drive controlled corner cracks into the glass interlayers to evaluate the toughness of the interfaces. Results The glass-bonded interfaces were found to have robust integrity relative to interfaces fused without glass, or those fused with a resin-based adhesive. Significance The structural integrity of the interfaces between porcelain veneers and alumina or zirconia cores is a critical factor in the longevity of all-ceramic dental crowns and fixed dental prostheses. PMID:21802131

  10. Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics

    International Nuclear Information System (INIS)

    Li, Yiming; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua; Zhao, Lijuan

    2016-01-01

    Tm 3+ ions doped β-PbF 2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm 3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O h to D 4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm 3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field

  11. Structural, thermal, and optical properties of Er3+/Yb3+ co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Joshi, C.; Rai, R.N.; Rai, S.B.

    2012-01-01

    Glass-ceramics and ceramics containing nano-crystals of different phases doped with Er 3+ /Yb 3+ ions have been successfully prepared by heat treatment of the precursor oxyhalide glasses synthesized by the melt-quench method. X-ray diffraction patterns and transmission electron microscopy (TEM) images verify the precipitation of nano-crystals. Emission of Er 3+ enhances several times when Yb 3+ ion is added with the matrix. The Stark splitting and the intensity of different emission bands increase to a great extent when we approach to ceramics from glasses via glass-ceramics. The intensity of the blue and green emission bands increases much faster than the red and NIR emission bands. Intense upconversion emission observed by the naked eye has been quantified in terms of standard chromaticity diagram (CIE). Power dependence study shows that the upconversion of NIR radiation to visible radiation takes place mainly via photon avalanche (PA) process.

  12. Zirconia dispersion as a toughening agent in alumina - Influence of the cerium oxide

    International Nuclear Information System (INIS)

    Gritti, Olivier

    1987-01-01

    The improvement of mechanical properties of alumina can be obtained by fine dispersion of zirconia particles. The addition of cerium oxide as a stabilizer of the tetragonal phase has been examined. Different powder preparations, based on impregnation of the alumina powder by zirconium and cerium precursor salts, have been studied. Parameters, such as properties of alumina powder and cerium oxide content, for the production of reactive powders have been determined by two laboratory processes. The sintering of these powders in air at 1600 deg. C has resulted in dense materials with homogeneous microstructure. The mechanical properties, in particular the biaxial flexure strength and the toughness, have been determined in the temperature range 20 deg. C-900 deg. C. A reinforcement of about 80 pc in comparison with alumina is achieved. The optimal composition is (Al 2 O 3 ) 0.8 (ZrO 2 ) 0.18 (CeO 2 ) 0.02 . In the other hand, powder preparation by spray drying has been chosen for an approach to a larger scale process. The sintered ceramics made with these powders present a double microstructure which does not affect the mechanical properties. The presence of cerium oxide produces the following improvements: - increased mobility of the intergranular zirconia inclusions which results in a faster densification; - stabilization of a tetragonal phase without prohibiting the stress induced transformation; - increase of the critical sizes of the tetragonal → monoclinic transformation; - a large decrease in the transformation kinetic in water at 300 deg. C in comparison with that observed for alumina-zirconia doped with yttrium oxide. (author) [fr

  13. New nanostructured ceramics from baddeleyite with improved mechanical properties for biomedical applications

    Science.gov (United States)

    Tyurin, Alexander I.; Zhigachev, Andrey O.; Umrikhin, Alexey V.; Rodaev, Vyacheslav V.; Korenkov, Viktor V.; Pirozhkova, Tatyana S.

    2017-12-01

    A method for the preparation of novel nanostructured zirconia ceramics from natural zirconia mineral—baddeleyite—using CaO as the stabilizer is described in the present work. Optimal synthesis conditions, including calcia content, planetary mill treatment regime, sintering time and temperature, corresponding to the highest values of hardness H, Young modulus E, and fracture toughness KC are found. The values of the mechanical properties H = 10.8 GPa, E = 200 GPa, and KC = 13.3 MPa m1/2 are comparable with or exceed the corresponding properties of commercial yttria-stabilized ceramics prepared from chemically precipitated zirconia.

  14. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  15. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO_3) ceramics

    International Nuclear Information System (INIS)

    Billah, Masum; Ahmed, A.; Rahman, Md. Miftaur; Mahbub, Rubbayat; Gafur, M. A.; Bashar, M. Shahriar

    2016-01-01

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La_2O_3) doped Barium Titanate (BaTiO_3) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO_3 with 0.3, 0.5 and 0.7 mole% La_2O_3 under different sintering parameters. The raw materials used were La_2O_3 nano powder of ~80 nm grain size and 99.995% purity and BaTiO_3 nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanning Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO_3 ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La_2O_3) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La_2O_3 with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La"3"+ concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO_3 ceramics.

  16. Superplasticity in Fine-Grained Ceramics

    Science.gov (United States)

    1994-01-31

    Stabilized, Tetragonal Zirconia," Acta Metall. Mater., 39(12), (1991), pp. 3227-3236. 10. B. Kellett, P. Carry, and A. Mocellin , "Extrusion of Tet-ZrO2...F. Wakai, S. Sakaguchi, and H. Kato, J. Ceram. Soc. Jap., 94, 72 (1986). 8. B. Kellett, P. Carry, and A. Mocellin , J. Amer. Ceram. Soc., 74, 1922

  17. Investigations of a zirconia solid electrolyte oxygen sensor in liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Rivai, Abu Khalid, E-mail: rivai.abukhalid@jaea.go.j [Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, N1-18, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Takahashi, Minoru, E-mail: mtakahas@nr.titech.ac.j [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-18, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2010-03-15

    Investigations of a magnesia-stabilized zirconia solid electrolyte oxygen sensor for oxygen control measurement in liquid lead were carried out. The fluid of Bi/Bi{sub 2}O{sub 3} as a reference electrode and a molybdenum wire as a working electrode to detect the output signal of the sensor were used. The Nernst equation was used to estimate the electromotive force (EMF) values theoretically. The temperatures of liquid lead were 500, 550 and 600 deg. C. The results showed that the injection gas temperatures did not affect the detected EMF, the sensor responded well to quick changes of oxygen activity in liquid lead, and the discrepancy between the measured and theoretical EMF of the oxygen sensor output signal was higher at 500 deg. C than at 550 and 600 deg. C.

  18. In vitro shear bond strength of Y-TZP ceramics to different core materials with the use of three primer/resin cement systems.

    Science.gov (United States)

    Al-Harbi, Fahad A; Ayad, Neveen M; Khan, Zahid A; Mahrous, Amr A; Morgano, Steven M

    2016-01-01

    Durability of the bond between different core materials and zirconia retainers is an important predictor of the success of a dental prosthesis. Nevertheless, because of its polycrystalline structure, zirconia cannot be etched and bonded to a conventional resin cement. The purpose of this in vitro study was to compare the effects of 3 metal primer/resin cement systems on the shear bond strength (SBS) of 3 core materials bonded to yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic retainers. Zirconia ceramic (Cercon) disks (5×3 mm) were airborne-particle abraded, rinsed, and air-dried. Disk-shaped core specimens (7×7 mm) that were prepared of composite resin, Ni-Cr, and zirconia were bonded to the zirconia ceramic disks by using one of 3 metal primer/cement systems: (Z-Prime Plus/BisCem, Zirconia Primer/Multilink Automix, or Clearfil Ceramic Primer/Clearfil SA). SBS was tested in a universal testing machine. Stereomicroscopy was used to evaluate the failure mode of debonded specimens. Data were analyzed using 2-way ANOVA and post hoc analysis using the Scheffe procedure (α=.05). Clearfil SA/Clearfil Ceramic Primer system with an Ni-Cr core yielded the highest SBS value (19.03 MPa), whereas the lowest SBS value was obtained when Multilink Automix/Zirconia Primer system was used with the zirconia core group (4.09 MPa). Differences in mean SBS values among the cement/primer groups were statistically significant, except for Clearfil SA and BisCem with both composite resin and zirconia cores. Differences in mean SBS values among the core subgroups were not statistically significant, except for zirconia core with BisCem, Multilink, and Clearfil SA. The predominant failure mode was adhesive, except for Clearfil SA and BisCem luting agents with composite resin cores, which displayed cohesive failure, and Multilink Automix with a composite resin, core as well as Clearfil SA with Ni-Cr cores, where the debonded specimens of each group displayed a mixed

  19. Preparation and luminescence properties of Eu{sup 2+}doped {gamma}-aluminum oxynitride transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fang; Yuan, Xianyuan; Wang, Shaohua [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai (China); Wang, Shiwei, E-mail: swwang51@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai (China)

    2013-01-15

    Eu{sup 2+} doped {gamma}-AlON transparent ceramics have been prepared by the solid-state reaction sintering method. The influences of Eu concentration on both strength, transparency and luminescence properties of the as-prepared samples were discussed. The strength and transparency decreased as Eu content increased. Two bands were observed in the emission spectrum of each sample. One (B{sub 1}) was narrow and centered at around 401 nm, the other (B{sub 2}) was comparatively broader, and the location of its center as well as the intensity ratio of peak values of B{sub 2} to that of B{sub 1} varied with Eu content. - Highlights: Black-Right-Pointing-Pointer Eu{sub 2}O{sub 3} was an effective sintering aid in fabrication of transparent {gamma}-AlON ceramics. Black-Right-Pointing-Pointer Eu-doped transparent {gamma}-AlON ceramics exhibited broad emission spectra composed of two bands. Black-Right-Pointing-Pointer The relationship between crystal position of Eu{sup 2+} ions and luminescent properties was given.

  20. Ceramic membrane technologies for gas separation

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Ciacchi, F.T.

    2000-01-01

    Solid state electrochemical cells based on oxygen-ion or proton conduction (pure ionic or mixed ionic/electronic conductors) allow selective transport of oxygen (oxygen-ion conducting materials) or hydrogen (for proton conducting materials) in the form of ionic flux at high temperatures. Thus these systems can act as filters for molecular oxygen or hydrogen and can be used for both generation or removal of these gases selectively. The usage of such devices are numerous including control of atmosphere in industrial environments to production of power and chemicals, in petroleum and medical industries, and in combustion processes. In this paper, a brief overview of the technology has been given and various doped materials for construction of such devices, such as zirconia, ceria, bismuth oxides or lanthanum gallates have been briefly reviewed. Copyright (2000) The Australian Ceramic Society

  1. Nature and strength of defect interactions in cubic stabilized zirconia

    International Nuclear Information System (INIS)

    Bogicevic, A.; Wolverton, C.

    2003-01-01

    The intrinsic ordering tendencies that limit ionic conduction in doped zirconia electrolytes are fully elucidated using first-principles calculations. A detailed analysis of nearly 300 yttria- and scandia-stabilized cubic-zirconia-ordered vacancy compounds reveals a delicate balance between competing elastic and electrostatic interactions. These results explain several outstanding experimental observations and provide substantial insight needed for improving ionic conduction and enabling low-temperature operation of zirconia-based electrolytes. We show that the surprising vacancy ordering in dilute solid solutions is a consequence of repulsive electrostatic and attractive elastic interactions that balance at third-neighbor vacancy separations. In contrast, repulsive elastic vacancy-dopant interactions prevail over electrostatic attraction at all probed defect separations in YSZ and lead to very weak ordering preferences in ScSZ. The total electronic contribution to the defect interactions is shown to be strongly dominated by simple point-charge electrostatics, leaving speciation of defect ordering for a given class of aliovalent dopants to the elastic term. Thus, ion size becomes a critical parameter in controlling the ionic conductivity of doped oxide electrolytes

  2. Fission product release from core-concrete mixtures

    International Nuclear Information System (INIS)

    Roche, M.F.; Settle, J.; Leibowitz, L.; Johnson, C.E.; Ritzman, R.L.

    1988-01-01

    The objective of this research is to measure the amount of strontium, barium, and lanthanum that is vaporized from core-concrete mixtures. The measurements are being done using a transpiration method. Mixtures of limestone-aggregated concrete, urania doped with a small amount of La, Sr, Ba, and Zr oxides, and stainless steel were vaporized at 2150 K from a zirconia crucible into flowing He-6% H 2 -0.06% H 2 O (a partial molar free energy of oxygen of -420 kJ). The amounts that were vaporized was determined by weight change and by chemical analyses on condensates. The major phases present in the mixture were inferred from electron probe microanalysis (EPM). They were: (1) urania containing calcia and zirconia, (2) calcium zirconate, (3) a calcium magnesium silicate, and (4) magnesia. About 10% of the zirconia crucible was dissolved by the concrete-urania mixture during the experiment, which accounts for the presence of zirconia-containing major phases. To circumvent the problem of zirconia dissolution, we repeated the experiments using mixtures of the limestone-aggregate concrete and the doped urania in molybdenum crucibles. These studies show that thermodynamic calculations of the release of refractory fission products will yield release fractions that are a factor of sixteen too high if the effects of zirconate formation are ignored

  3. Shear bond strength between an indirect composite layering material and feldspathic porcelain-coated zirconia ceramics.

    Science.gov (United States)

    Fushiki, Ryosuke; Komine, Futoshi; Blatz, Markus B; Koizuka, Mai; Taguchi, Kohei; Matsumura, Hideo

    2012-10-01

    This study aims to evaluate the effect of both feldspathic porcelain coating of zirconia frameworks and priming agents on shear bond strength between an indirect composite material and zirconia frameworks. A total of 462 airborne-particle-abraded zirconia disks were divided into three groups: untreated disks (ZR-AB), airborne-particle-abraded zirconia disks coated with feldspathic porcelain, (ZR-PO-AB), and hydrofluoric acid-etched zirconia disks coated with feldspathic porcelain (ZR-PO-HF). Indirect composite (Estenia C&B) was bonded to zirconia specimens with no (CON) or one of four priming agents--Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + activator), Estenia Opaque primer, or Porcelain Liner M Liquid B (PLB)--with or without an opaque material (Estenia C&B Opaque). All specimens were tested for shear bond strength before and after 20,000 thermocycles. The Steel-Dwass test and Mann-Whitney U test were used to compare shear bond strength. In ZR-AB specimens, the initial bond strength of the CPB and CPB + Activator groups was significantly higher as compared with the other three groups (P material, bond strength was significantly lower in ZR-AB specimens than in ZR-PO-AB and ZR-PO-HF specimens (P composite to zirconia independent of surface treatment. The use of a silane coupling agent and opaque material yields durable bond strength between the indirect composite and feldspathic-porcelain-coated zirconia. The results of the present study suggest that feldspathic porcelain coating of zirconia frameworks is an effective method to obtain clinically acceptable bond strengths of a layering indirect composite material to a zirconia framework.

  4. Large recoverable electrostrain in Mn-doped (Ba,Sr) TiO3 ceramics

    International Nuclear Information System (INIS)

    Zhang, L.X.; Chen, W.; Ren, X.

    2004-01-01

    In this letter we demonstrate that with a different principle, BaTiO 3 ceramics, so far considered as inferior piezoelectrics compared with Pb(Zr,Ti)O 3 (PZT), can show a large recoverable electrostrain. This principle utilizes a point-defect-mediated reversible domain switching mechanism, which can in theory generate 0.368% strain for BaTiO 3 ceramics at the best condition. Experimental results showed that, after aging at room temperature, 1.0 mol % Mn-doped (Ba 0.95 Sr 0.05 )TiO 3 ceramics generate a large recoverable nonlinear strain of about 0.12%-0.15% at a field of 3 kV/mm. This value exceeds that of conventional hard PZT piezoelectric ceramics. A microscopic model for the domain-related electrostrain effect in ceramics is proposed. It is also found that the large electrostrain effect is quite stable with respect to both changing frequency and fatigue cycles. Large electrostrain remains recoverable down to 0.05 Hz and after 10 000 cycles. These results demonstrate the potential of our approach in achieving large recoverable electrostrain in environmental-friendly (Pb-free) ceramics

  5. Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in sol-gel derived silica glass

    Science.gov (United States)

    Le Rouge, A.; El Hamzaoui, H.; Capoen, B.; Bernard, R.; Cristini-Robbe, O.; Martinelli, G.; Cassagne, C.; Boudebs, G.; Bouazaoui, M.; Bigot, L.

    2015-05-01

    A new approach to dope a silica glass with gold nanoparticles (GNPs) is presented. It consisted in embedding zirconia-coated GNPs in a silica sol to form a doped silica gel. Then, the sol-doped nanoporous silica xerogel is densified leading to the formation of a glass monolith. The spectral position and shape of the surface plasmon resonance (SPR) reported around 520 nm remain compatible with small spherical GNPs in a silica matrix. The saturable absorption behavior of this gold/zirconia-doped silica glass has been evidenced by Z-scan technique. A second-order nonlinear absorption coefficient β of about -13.7 cm GW-1 has been obtained at a wavelength near the SPR of the GNPs.

  6. Dielectric properties of Ga2O3-doped barium iron niobate ceramics

    International Nuclear Information System (INIS)

    Sanjoom, Kachaporn; Pengpat, Kamonpan; Eitssayeam, Sukum; Tunkasiri, Tawee; Rujijanagul, Gobwute

    2014-01-01

    Ga-doped BaFe 0.5 Nb 0.5 O 3 (Ba(Fe 1-x Ga x ) 0.5 Nb 0.5 O 3 ) ceramics were fabricated and their properties were investigated. All ceramics showed perovskite structure with cubic symmetry and the solubility of Ga in BFN ceramics had a limit at x = 0.2. Examination of the dielectric spectra indicated that all ceramic samples presented high dielectric constants that were frequency dependent. The x = 0.2 ceramic showed a very high dielectric constant (ε r > 240 000 at 1 kHz) while the x = 0.4 sample exhibited high thermal stability of dielectric constant with low loss tangent from room temperature (RT) to 100 C with ε r > 28 000 (at 1 kHz) when compared to other samples. By using a complex impedance analysis technique, bulk grain, grain boundary, and electrode response were found to affect the dielectric behavior that could be related to the Maxwell-Wagner polarization mechanism. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Grain growth kinetics for B2O3-doped ZnO ceramics

    Directory of Open Access Journals (Sweden)

    Yuksel Berat

    2015-06-01

    Full Text Available Grain growth kinetics in 0.1 to 2 mol % B2O3-added ZnO ceramics was studied by using a simplified phenomenological grain growth kinetics equation Gn = K0 · t · exp(-Q/RT together with the physical properties of sintered samples. The samples, prepared by conventional ceramics processing techniques, were sintered at temperatures between 1050 to 1250 °C for 1, 2, 3, 5 and 10 hours in air. The kinetic grain growth exponent value (n and the activation energy for the grain growth of the 0.1 mol % B2O3-doped ZnO ceramics were found to be 2.8 and 332 kJ/mol, respectively. By increasing B2O3 content to 1 mol %, the grain growth exponent value (n and the activation energy decreased to 2 and 238 kJ/mol, respectively. The XRD study revealed the presence of a second phase, Zn3B2O6 formed when the B2O3 content was > 1 mol %. The formation of Zn3B2O6 phase gave rise to an increase of the grain growth kinetic exponent and the grain growth activation energy. The kinetic grain growth exponent value (n and the activation energy for the grain growth of the 2 mol % B2O3-doped ZnO ceramics were found to be 3 and 307 kJ/mol, respectively. This can be attributed to the second particle drag (pinning mechanism in the liquid phase sintering.

  8. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  9. Effect of different surface treatments on adhesion of In-Ceram Zirconia to enamel and dentin substrates.

    Science.gov (United States)

    Saker, Samah; Ibrahim, Fatma; Ozcan, Mutlu

    2013-08-01

    Resin bonding of In-Ceram Zirconia (ICZ) ceramics is still a challenge, especially for minimally invasive applications. This study evaluated the adhesion of ICZ to enamel and dentin after different surface treatments of the ceramic. ICZ ceramic specimens (diameter: 6 mm; thickness: 2 mm) (N = 100) were fabricated following the manufacturer's instructions and randomly assigned to 5 groups (n = 20), according to the surface treatment methods applied. The groups were as follows: group C: no treatment; group SB: sandblasting; group SCS-S: CoJet+silane; group SCS-P: CoJet+Alloy Primer; group GE-S: glaze+ hydrofluoric acid etching (9.6%) for 60 s+silane. Each group was randomly divided into two subgroups to be bonded to either enamel or dentin (n = 10 per group) using MDP-based resin cement (Panavia F2.0). All the specimens were subjected to thermocycling (5000x, 5°C-55°C). The specimens were mounted in a universal testing machine and tensile force was applied to the ceramic/cement interface until failure occurred (1 mm/min). After evaluating all the debonded specimens under SEM, the failure types were defined as either "adhesive" with no cement left on the ceramic surface (score 0) or "mixed" with less than 1/2 of the cement left adhered to the surface with no cohesive failure of the substrate (score 1). The data were statistically evaluated using 2-way ANOVA and Tukey's tests (α = 0.05). The highest tensile bond strength for the enamel surfaces was obtained in group GE-S (18.1 ± 2 MPa) and the lowest in group SB (7.1 ± 1.4 MPa). Regarding dentin, group CSC-P showed the highest (12 ± 1.3 MPa) and SB the lowest tensile bond strength (5.7 ± 0.4 MPa). Groups SB, CSC-S, CSC-P, and GE-S did not show significant differences between the different surface treatments on either enamel or dentin surfaces (p enamel and dentin substrates (p enamel substrates, exclusively adhesive failures from ICZ (score 0) were found, on dentin exclusively mixed failures were observed (score

  10. ADVANCED CERAMIC MATERIALS FOR DENTAL APPLICATIONS SINTERED BY MICROWAVE HEATING

    OpenAIRE

    Presenda Barrera, Álvaro

    2016-01-01

    [EN] Zirconia has become a widely utilized structural ceramic material with important applications in dentistry due to its superb mechanical properties, biocompatibility, aesthetic characteristics and durability. Zirconia needs to be stabilized in the t-phase to obtain improved mechanical properties such as hardness and fracture toughness. Fully dense yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) materials are normally consolidated through the energy-intensive processing of po...

  11. Performance of zirconia ceramic cantilever fixed dental prostheses: 3-year results from a prospective, randomized, controlled pilot study.

    Science.gov (United States)

    Zenthöfer, Andreas; Ohlmann, Brigitte; Rammelsberg, Peter; Bömicke, Wolfgang

    2015-07-01

    Little is known about the clinical performance of ceramic cantilever fixed dental prostheses on natural teeth. The purpose of this randomized controlled pilot study was to evaluate the clinical performance of ceramic and metal ceramic cantilever fixed dental prostheses (CFDPs) after 3 years of service. Twenty-one participants were randomly allocated to 2 treatment groups. Participants in the ceramic (ZC) group (n=11) each received 1 CFDP made of yttria-stabilized, tetragonal zirconia polycrystal; the others (n=10) were fitted with a metal ceramic (MC) CFDP. All CFDPs were retained by 2 complete crown abutments and replaced 1 tooth. The clinical target variables were survival, incidence of complications, probing pocket depth (PPD), probing attachment level (PAL), plaque index (PI), gingival index (GI), and esthetic performance as rated by the participants. The United States Public Health Service (USPHS) criteria were used to evaluate chipping, retention, color, marginal integrity, and secondary caries. Descriptive statistics and nonparametric analyses were applied to the target variables in the 2 groups. The esthetic performance of the CFDPs was also visualized by using a pyramid comparison. The overall survival of the CFDPs was 100% in both groups. During the 3-year study, 6 clinically relevant complications requiring aftercare were observed among 5 participants (4 in the ZC group and 2 in the MC group). Changes in the PI, GI, PPD, and PAL of the abutment teeth were similar for both groups (P>.05). The participants regarded the esthetic performance of ZC-CFDPs and MC-CFDPs as satisfactory. Within the 3-year observation period, the clinical performance of MC-FDPs and ZC-FDPs was acceptable. More extensive research with larger sample sizes is encouraged, however, to confirm the evaluation of the survival of Y-TZP hand-veneered cantilever FPDs. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Identification of various phases in HRTEM images of MgO-PSZ

    International Nuclear Information System (INIS)

    Liu, Z.; Spargo, A.E.C.

    2000-01-01

    Magnesia partially stabilized zirconia is one of the most commonly used engineering ceramics based on zirconia. A detailed discussion about how to identify the various phases in the high resolution transmission electron microscopy images of this material is presented. It shows that in some cases, the standard procedures of image simulation are inadequate to interpret these images. By including the effect of astigmatism in both experimental and simulated images, together with the digital Fourier transforms of the images, orthorhombic ZrO 2 in [001] orientation was identified. The δ-phase, which has a marked effect on the thermomechanical properties of MgO-PSZ, can most easily be identified by high resolution imaging in the [130] c zone which coincides with a low-index zone axis of the δ-phase

  13. Spatially resolved Raman spectroscopy study of transformed zones in magnesia-partially-stabilized zirconia

    International Nuclear Information System (INIS)

    Davskardt, R.H.; Veirs, D.K.; Ritchie, R.O.

    1989-01-01

    Raman vibrational spectroscopy provides an effective phase characterization technique in materials systems containing particle dispersions of the tetragonal and monoclinic polymorphs of zirconia, each of which yields a unique Raman spectrum. An investigation is reported to assess a novel, spatially resolved Raman spectroscopy system in the study of transformed zones surrounding cracks in partially stabilized MgO-ZrO 2 (PSZ). The experimental arrangement uses an imaging (two-dimensional) photomultiplier tube to produce a one-dimensional Raman profile of phase compositions along a slitlike laser beam without translation of either the sample or the laser beam and without scanning the spectrometer. Results from phase characterization studies of the size, frontal morphology, and extent of transformation of transformation zones surrounding cracks produced under monotonic and cyclic loading conditions are presented

  14. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate–borax

    International Nuclear Information System (INIS)

    Shen, M.J.; Wang, X.J.; Zhang, M.F.

    2012-01-01

    Highlights: ► The MgO ceramic coating has been prepared on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation in the borax-doped silicate system. ► Boron element exists in the PEO films in the form of noncrystal. ► The microhardness and compactness of doped ceramic coating are much higher than that of the substrate and undoped ceramic coating, and this doped coated sample shows better wear-resisting property. - Abstract: A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  15. Effects of superplastic deformations on thermophysical properties of tetragonal zirconia polycrystals

    International Nuclear Information System (INIS)

    Motohashi, Y.; Wan, C.; Sakuma, T.; Harjo, S.; Shibata, T.; Ishihara, M.; Baba, S.; Hoshiya, T.

    2004-01-01

    Neutron irradiation studies on superplastic zirconia-based ceramics are now in progress as an innovative basic project using the High-temperature Engineering Test Reactor (HTTR) in Japan. The characteristics of the zirconia-based engineering components, made through the formation of superplastic, may be strongly affected by their response to transient or steady-state heat flow. Reliable thermophysical properties such as the coefficients of thermal expansion and thermal conductivity are, therefore, needed to estimate and predict the influence of a high-temperature environment. Accordingly, one of this project's targets is to study the thermophysical properties of superplastic zirconia-based ceramics. The first stage of the research addresses the effects of superplastic deformations on the thermophysical properties of a typical superplastic ceramic, 3 mol% yttria-stabilised tetragonal zirconia polycrystals (3Y-TZP), in its un-irradiated state. First, superplastic tensile deformations were conducted on 3Y-TZP specimens under different conditions in order to obtain specimens with different microstructural characteristics. Afterwards, the following actions were taken: - Specific heat measurements were conducted on the specimens at temperatures ranging from 473 K to 1273 K. - The thermal diffusivity was measured using a laser flash method. The thermal conductivity was then calculated from the measured thermal diffusivity, specific heat and density. - The linear thermal expansion was measured by a push-rod type dilatometer from 300 K to 1473 K. The coefficient of linear thermal expansion (CTE) was estimated from the thermal expansion data. The results obtained from the above measurements are discussed, as is the microstructural evolution caused by the superplastic deformations. It was found that the specific heat was almost independent of microstructural evolution, whereas the thermal diffusivity, thermal conductivity and thermal expansion were quite sensitive to

  16. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic.

    Science.gov (United States)

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min

    2017-05-01

    This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Schebaum, Oliver; Drewello, Volker; Auge, Alexander; Reiss, Guenter; Muenzenberg, Markus; Schuhmann, Henning; Seibt, Michael; Thomas, Andy

    2011-01-01

    Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier. - Research highlights: → Transport properties of Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions. → Tunnel barrier consists of MgO, Al-Ox, or MgO/Al-Ox bilayer systems. → Limitation of TMR-ratio in composite barrier tunnel junctions to Al-Ox values. → Limitation indicates that Al-Ox layer is causing incoherent tunneling.

  18. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  19. Microstructure and enhanced dielectric properties of yttrium and zirconium co-doped CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zunping, E-mail: xzp16213@163.com [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qiang, Hua [College of Electromechanical Engineering, Chongqing College of Humanities, Science and Technology, Chongqing 401524 (China); Chen, Yi; Chen, Zhiqian [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China)

    2017-04-15

    CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics doped with Y{sub 2}O{sub 3}, ZrO{sub 2}, and (Y{sub 2}O{sub 3}+ZrO{sub 2}) were prepared by the citrate-nitrate combustion derived powders in order to investigate the effect of dopants on the microstructure and electrical properties. The results showed that giant dielectric response was enhanced by co-doping of Y{sup 3+} and Zr{sup 4+} ions at the Ti site. Y{sub 2}O{sub 3} and ZrO{sub 2} additive can inhibit the grain growth. Compared with other samples, (Y{sub 2}O{sub 3}+ZrO{sub 2}) co-doped ceramics exhibit a dense and homogenous fine-grained microstructure. A much better temperature and frequency stability of dielectric properties were realized in these ceramics. The dielectric loss (tan δ) < 0.05 in the frequency range of 200 Hz–60 kHz at room temperature, and in the temperature range of 15–72 °C at 10 kHz was successfully accomplished in (Y{sub 2}O{sub 3}+ZrO{sub 2}) co-doped CCTO ceramics. Low tan δ ∼0.039 and high dielectric constant (ε{sub r} ∼10196) were observed at room temperature and 10 kHz for the above ceramic samples, and the characteristic frequency shifts to higher frequency with increasing measuring temperature. The present results indicate that (Y{sub 2}O{sub 3}+ZrO{sub 2}) co-doping may improve the dielectric properties and increase the grain boundary resistance of CCTO. - Highlights: • Y and Zr co-doped CCTO exhibits a dense and homogenous fine-grained microstructure. • Y and Zr co-doped CCTO performs a lower dielectric loss in wide-range of frequency. • Temperature and frequency stability of dielectric properties were greatly enhanced.

  20. The effect of extended aging on the optical properties of different zirconia materials.

    Science.gov (United States)

    Alghazzawi, Tariq F

    2017-07-01

    The purpose of this study was to determine if the optical properties of zirconia and glass-ceramic (e.max) were affected by low-temperature degradation (aging). Experiment samples were fabricated with seven zirconia brands (n=10): Zenostar, Zirlux, Katana, Bruxzir, DD-BioZX 2 , DD-cubeX 2 , NexxZr; and e.max were used as a control. This resulted in a total of 80 samples in the experiment. The L*, a* and b* were measured for each sample, and then the optical properties including translucency parameter (TP), contrast ratio (CR), and opalescence parameter (OP) were calculated. The samples were aged (20, 40, 60, 80, 100h), and the optical properties were calculated after each interval. Most zirconia brands had lower L*, higher a*, higher b* with increased aging, which visually corresponds to darker, redder, and more yellow. Aging also increased CR, lowered TP, and lowered OP. e.max was also affected by aging but still had the highest TP (23.9±2.8), L* (81.7±3.4), and lowest CR (0.41±0.05) compared to any zirconia. The Zenostar had the closest TP (24.1±0.4), and L* (90.2±0.5) values to e.max before aging. However, after 100h of aging, the DD-cubeX 2 was least effected and had the highest TP (22.2±0.6) and lowest CR (0.43±0.01) compared with other zirconia samples and highest OP (11.3±0.2) of all ceramic samples. The optical properties of zirconia and e.max materials were affected by aging with the effects increasing with time. The magnitude of change was affected by seven brands of dental zirconia. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  1. Luminescent properties of Eu2+-doped BaGdF5 glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    International Nuclear Information System (INIS)

    Zhang, Weihuan; Zhang, Yuepin; Ouyang, Shaoye; Zhang, Zhixiong; Wang, Qian; Xia, Haiping

    2015-01-01

    Eu 2+ doped transparent oxyfluoride glass ceramics containing BaGdF 5 nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd 3+ ions at 312 nm excited with 275 nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu 2+ doped glass ceramics showed an excellent overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd 3+ to Eu 2+ ions, the energy transfer efficiency from Gd 3+ to Eu 2+ ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu 2+ doped BaGdF 5 glass ceramics may be used as a potential blue-emitting phosphor for UV-LED

  2. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions

    Science.gov (United States)

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2018-01-01

    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  3. Chemistry-driven structural alterations in short-term retrieved ceramic-on-metal hip implants: Evidence for in vivo incompatibility between ceramic and metal counterparts.

    Science.gov (United States)

    Zhu, Wenliang; Pezzotti, Giuseppe; Boffelli, Marco; Chotanaphuti, Thanainit; Khuangsirikul, Saradej; Sugano, Nobuhiko

    2017-08-01

    Ceramic-on-metal (CoM) hip implants were reported to experience lower wear rates in vitro as compared to metal-on-metal (MoM) bearings, thus hinting metal-ion release at lower levels in vivo. In this article, we show a spectroscopic study of two short-term retrieval cases of zirconia-toughened alumina (ZTA) femoral heads belonging to CoM hip prostheses, which instead showed poor wear performances in vivo. Metal contamination and abnormally high fractions of tetragonal-to-monoclinic (t→m) polymorphic transformation of the zirconia phase could be found on both ZTA heads, which contrasted with the optimistic predictions of in vitro experiments. At the molecular scale, incorporation of metal ions into the ceramic lattices could be recognized as due to frictionally assisted phenomena occurring at the ceramic surface. Driven by abnormal friction, diffusion of metal ions induced lattice shrinkage in the zirconia phases, while residual stress fields became stored at the surface of the femoral head. Diffusional alterations destabilized the chemistry of the ceramic surface and resulted in an abnormal increase in t→m phase transformation in vivo. Frictionally driven metal transfer to the ceramic lattice thus hinders the in vivo performance of CoM prostheses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1469-1480, 2017. © 2016 Wiley Periodicals, Inc.

  4. Thermoelectric Properties of the Yttrium-Doped Ceramic Oxide SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Tamal Tahsin; Ur, Soon-Chul [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-01-15

    The doping dependence of the thermoelectric figure of merit, ZT, of the ceramic oxide SrTiO{sub 3} at high temperature has been studied. In this study, yttrium was used as the doping element. A conventional solid-state reaction method was used for the preparation of Y-doped SrTiO{sub 3}. The doping level in SrTiO{sub 3} was controlled to be in the doping range of 2 - 10 mole%. Almost all the yttrium atoms incorporated into the SrTiO{sub 3} provided charge carriers, as was observed by using X-ray diffraction pattern. The relative densities of all the samples varied from 98.53% to 99.45%. The thermoelectric properties, including the electrical conductivity σ, Seebeck coefficient S, thermal conductivity k, and the figure of merit, ZT, were investigated at medium temperatures. The ZT value showed an obvious doping level dependence, in which a value as high as 0.18 is realized at 773 K for a doping of 8 mole%.

  5. Emerging ceramic-based materials for dentistry.

    Science.gov (United States)

    Denry, I; Kelly, J R

    2014-12-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. © International & American Associations for Dental Research.

  6. Influence of veneer thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-02-01

    The veneering process of frameworks induces residual stresses and can initiate cracks when combined with functional stresses. The stress distribution within the veneering ceramic as a function of depth is a key factor influencing failure by chipping. This is a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the influence of veneer thickness on the stress profile in zirconia- and metal-based structures. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples of 20 mm diameter, with a 1 mm thick zirconia or metal framework. Different veneering ceramic thicknesses were performed: 1 mm, 1.5 mm, 2 mm, 2.5 mm and 3 mm. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth up to 0.5-1.0 mm from the surface, and then becoming compressive again near the framework, except for the 1.5 mm-veneered zirconia samples which exhibited interior tensile stresses. Stresses in the surface of metal samples were not influenced by veneer thickness. Variation of interior stresses at 1.2 mm from the surface in function of veneer thickness was inverted for metal and zirconia samples. Veneer thickness influences in an opposite way the residual stress profile in metal- and in zirconia-based structures. A three-step approach and the hypothesis of the crystalline transformation are discussed to explain the less favorable residual stress development in zirconia samples. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Structure, dielectric and electrical properties of cerium doped barium zirconium titanate ceramics

    International Nuclear Information System (INIS)

    Feng Hongjun; Hou Jungang; Qu Yuanfang; Shan Dan; Yao Guohua

    2012-01-01

    Highlights: ► Rare-earth doped barium zirconate titanate (BZT) ceramics, Ba(Zr 0.25 Ti 0.75 )O 3 + xCeO 2 , (x = 0–1.5 at%) were obtained by a solid state reaction route. ► Morphological analysis on sintered samples by scanning electron microscopy shows that the addition of rare-earth ions affects the growth of the grain and remarkably changes the grain morphology. ► The effect of rare-earth addition to BZT on dielectric and electrical properties is analyzed, demonstrating that the samples with x = 0.4 and x = 0.6 could be semiconducting in air atmosphere. - Abstract: Rare-earth doped barium zirconium titanate (BZT) ceramics, Ba(Zr 0.25 Ti 0.75 )O 3 + xCeO 2 , (x = 0–1.5 at%) were obtained by a solid state reaction route. Perovskite-like single-phase compounds were confirmed from X-ray diffraction data and the lattice parameters were refined by the Rietveld method. It is found that, integrating with the lattice parameters and the distortion of crystal lattice, there is an alternation of substitution preference of cerium ions for the host cations in perovskite lattice. Morphological analysis on sintered samples by scanning electron microscopy shows that the addition of rare-earth ions affects the growth of the grain and remarkably changes the grain morphology. The effect of rare-earth addition to BZT on dielectric and electrical properties is analyzed. High values of dielectric tunability are obtained for cerium doped BZT. Especially, the experimental results on the effect of the contents of rare-earth addition on the resistivity of BZT ceramics were investigated, demonstrating that the samples with x = 0.4 and x = 0.6 could be semiconducting in air atmosphere.

  8. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  9. Fabrication and characterization of nanostructured Ba-doped BiFeO3 porous ceramics

    Directory of Open Access Journals (Sweden)

    Mostafavi E.

    2016-03-01

    Full Text Available Nanostructured barium doped bismuth ferrite, Bi₀.₈Ba₀.₂FeO₃ porous ceramics with a relatively high magnetic coercivity was fabricated via sacrificial pore former method. X-ray diffraction results showed that 20 wt.% Ba doping induces a structural phase transition from rhombohedral to distorted pseudo-cubic structure in the final porous samples. Moreover, utilizing Bi₀.₈Ba₀.₂FeO₃ as the starting powder reduces the destructive interactions between the matrix phase and pore former, leading to an increase in stability of bismuth ferrite phase in the final porous ceramics. Urea-derived Bi₀.₈Ba₀.₂FeO₃ porous ceramic exhibits density of 4.74 g/cm³ and porosity of 45 % owing the uniform distribution of interconnected pores with a mean pore size of 7.5 μm. Well defined nanostructured cell walls with a mean grain size of 90 nm were observed in the above sample, which is in a good accordance with the grain size obtained from BET measurements. Saturation magnetization decreased from 2.31 in the Bi₀.₈Ba₀.₂FeO₃ compact sample to 1.85 A m²/kg in urea-derived Bi₀.₈Ba₀.₂FeO₃ porous sample; moreover, coercivity increased from 284 to 380 kA/m.

  10. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs).

    Science.gov (United States)

    Sailer, Irena; Makarov, Nikolay Alexandrovich; Thoma, Daniel Stefan; Zwahlen, Marcel; Pjetursson, Bjarni Elvar

    2015-06-01

    To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported single crowns (SCs) and to describe the incidence of biological, technical and esthetic complications. Medline (PubMed), Embase, Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported fixed dental prostheses (FDPs) with a mean follow-up of at least 3 years. This was complimented by an additional hand search and the inclusion of 34 studies from a previous systematic review [1,2]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. Sixty-seven studies reporting on 4663 metal-ceramic and 9434 all-ceramic SCs fulfilled the inclusion criteria. Seventeen studies reported on metal-ceramic crowns, and 54 studies reported on all-ceramic crowns. Meta-analysis of the included studies indicated an estimated survival rate of metal-ceramic SCs of 94.7% (95% CI: 94.1-96.9%) after 5 years. This was similar to the estimated 5-year survival rate of leucit or lithium-disilicate reinforced glass ceramic SCs (96.6%; 95% CI: 94.9-96.7%), of glass infiltrated alumina SCs (94.6%; 95% CI: 92.7-96%) and densely sintered alumina and zirconia SCs (96%; 95% CI: 93.8-97.5%; 92.1%; 95% CI: 82.8-95.6%). In contrast, the 5-year survival rates of feldspathic/silica-based ceramic crowns were lower (pceramic and zirconia crowns exhibited significantly lower survival rates in the posterior region (pceramic fractures than metal-ceramic SCs (pceramic SCs than for metal-ceramic SCs. Survival rates of most types of all-ceramic SCs were similar to those reported for metal-ceramic SCs, both in anterior and posterior regions. Weaker feldspathic/silica-based ceramics should be limited to applications in the anterior region. Zirconia-based SCs should not be considered as primary option due to their high incidence of technical problems. Copyright © 2015 Academy

  11. Fracture toughness improvements of dental ceramic through use of yttria-stabilized zirconia (YSZ) thin-film coatings.

    Science.gov (United States)

    Chan, Ryan N; Stoner, Brian R; Thompson, Jeffrey Y; Scattergood, Ronald O; Piascik, Jeffrey R

    2013-08-01

    The aim of this study was to evaluate strengthening mechanisms of yttria-stabilized zirconia (YSZ) thin film coatings as a viable method for improving fracture toughness of all-ceramic dental restorations. Bars (2mm×2mm×15mm, n=12) were cut from porcelain (ProCAD, Ivoclar-Vivadent) blocks and wet-polished through 1200-grit using SiC abrasive. A Vickers indenter was used to induce flaws with controlled size and geometry. Depositions were performed via radio frequency magnetron sputtering (5mT, 25°C, 30:1 Ar/O2 gas ratio) with varying powers of substrate bias. Film and flaw properties were characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Flexural strength was determined by three-point bending. Fracture toughness values were calculated from flaw size and fracture strength. Data show improvements in fracture strength of up to 57% over unmodified specimens. XRD analysis shows that films deposited with higher substrate bias displayed a high %monoclinic volume fraction (19%) compared to non-biased deposited films (87%), and resulted in increased film stresses and modified YSZ microstructures. SEM analysis shows critical flaw sizes of 67±1μm leading to fracture toughness improvements of 55% over unmodified specimens. Data support surface modification of dental ceramics with YSZ thin film coatings to improve fracture toughness. Increase in construct strength was attributed to increase in compressive film stresses and modified YSZ thin film microstructures. It is believed that this surface modification may lead to significant improvements and overall reliability of all-ceramic dental restorations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Formation of nanocomposite alumina-zirconia-silica ceramics

    Czech Academy of Sciences Publication Activity Database

    Chráska, Tomáš; Klementová, Mariana; Hostomský, Jiří

    2007-01-01

    Roč. 52, č. 4 (2007), s. 331-341 ISSN 0001-7043 R&D Projects: GA AV ČR KAN300430651 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z40320502 Keywords : TEM * sample preparation * plasma spraying * ceramic s Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass

  13. Synthesis of ceramic powder of TiO_2 doped with Zr by the Pechini Method applied in ceramic membranes for water treatment

    International Nuclear Information System (INIS)

    Farias, R.F.V.; Fernandes, M.S.M.; Silva, R.S.; Franca, K.B.; Lira, H.L.; Bonifacio, M.A.R.

    2016-01-01

    This paper describes the synthesis of ceramic powder of TiO2 doped with Zr by the polymeric precursor method, also known as Pechini method applied in ceramic membranes for water treatment. Three compositions were synthesized according to the molar ratio Ti_x-1Zr_xO_2 (x = 0.25, 0.50 and 0.75 moles), calcined at 700° C/1h. The samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and microbiological analysis. The presence of the doping element was not decisive in the average size of crystallite, which ranged from 5.5 to 11.3 nm. The SEM images showed clusters with uniform surface and granular aspect, it is still possible to see a clearly porous structure formed by clusters of uniform size for all samples. The microbiological analyses of powders have revealed that they have bactericidal properties. (author)

  14. Study of microstructure and mechanical properties of ceramics composites alumina-zirconia reinforced with yttria for inert coating of metal matrices used in the petroleum industry; Estudo de microestrutura e propriedades mecanicas de compositos ceramicos alumina-zirconia reforcado com itria para revestimento inerte de matrizes metalicas usadas na industria petrolifera

    Energy Technology Data Exchange (ETDEWEB)

    Pontual, J.O.; Silva, N.D.G.; Ferreira, R.A.S.; Yadava, Y.P., E-mail: juliaopontual@hotmail.com, E-mail: yadava@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Engenharia Mecanica

    2014-07-01

    The storage and transportation of crude oil is complicated due to the hostile environment provided by this. Under these conditions, it is imperative to search for alternative solutions, using an inert coating to protect from corrosion caused by crude oil. In this work, alumina-zirconia ceramic composites with 5-20%w zirconia and 1 - 2%w yttria were produced through thermomechanical process. The structural and microstructural characterization of the sintered material was carried out by X-ray diffraction and scanning electron microscopy. Mechanical properties were analyzed by Vickers hardness tests. Currently, the pads are submerged in crude oil and after 30-60 days will be removed and sent for stability test.(author)

  15. Microstructure and durability of zirconia thermal barrier coatings

    International Nuclear Information System (INIS)

    Suhr, D.S.; Mitchell, T.E.; Keller, R.J.

    1983-01-01

    Various combinations of plasma-sprayed bond coatings and zirconia ceramic coatings on a nickel-based superalloy substrate were tested by static thermal exposure at 1200 0 C and cyclic thermal exposure to 1000 0 C. The bond coats were based on Ni-Cr-Al alloys with additions of rare earth elements and Si. The ceramic coats were various ZrO 2 -Y 2 O 3 compositions, of which the optimum was found to be ZrO 2 -8.9 wt% Y 2 O 3 . Microstructural analysis showed that resistance to cracking during thermal exposure is strongly related to deleterious phase changes

  16. Band structure of TiO sub 2 -doped yttria-stabilized zirconia probed by soft-x-ray spectroscopy

    CERN Document Server

    Higuchi, T; Kobayashi, K; Yamaguchi, S; Fukushima, A; Shin, S

    2003-01-01

    The electronic structure of TiO sub 2 -doped yttria-stabilized zirconia (YSZ) has been studied by soft-X-ray emission spectroscopy (SXES) and X-ray absorption spectroscopy (XAS). The valence band is mainly composed of the O 2p state. The O 1s XAS spectrum exhibits the existence of the Ti 3d unoccupied state under the Zr 4d conduction band. The intensity of the Ti 3d unoccupied state increases with increasing TiO sub 2 concentration. The energy separation between the top of the valence band and the bottom of the Ti 3d unoccupied state is in accord with the energy gap, as expected from dc-polarization and total conductivity measurements. (author)

  17. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    International Nuclear Information System (INIS)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto

    2016-01-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  18. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto, E-mail: carlos.couto.sjc@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  19. Flexural resistance of Cerec CAD/CAM system ceramic blocks. Part 2: Outsourcing materials.

    Science.gov (United States)

    Sedda, Maurizio; Vichi, Alessandro; Del Siena, Francesco; Louca, Chris; Ferrari, Marco

    2014-02-01

    To test different Cerec CAD/CAM system ceramic blocks, comparing mean flexural strength (sigma), Weibull modulus (m), and Weibull characteristic strength (sigma0) in an ISO standardized set-up. Following the recent ISO Standard (ISO 6872:2008), 11 types of ceramic blocks were tested: IPS e.max CAD MO, IPS e.max CAD LT and IPS e.max CAD HT (lithium disilicate glass-ceramic); In-Ceram SPINELL, In-Ceram Alumina and In-Ceram Zirconia (glass-infiltrated materials); inCoris AL and In-Ceram AL (densely sintered alumina); In-Ceram YZ, IPS e.max Zir-CAD and inCoris ZI (densely sintered zirconia). Specimens were cut out from ceramic blocks, finished, crystallized/infiltrated/sintered, polished, and tested in a three-point bending test apparatus. Flexural strength, Weibull characteristic strength, and Weibull modulus were obtained. A statistically significant difference was found (P ceramic (sigma = 272.6 +/- 376.8 MPa, m = 6.2 +/- 11.3, sigma0 = 294.0 +/- 394.1 MPa) and densely sintered alumina (sigma = 441.8 +/- 541.6 MPa, m = 11.9 +/- 19.0, sigma0 = 454.2 +/- 565.2 MPa). No statistically significant difference was found (P = 0.254) in glass infiltrated materials (sigma = 376.9 +/- 405.5 MPa, m = 7.5 +/- 11.5, sigma0 = 393.7 +/- 427.0 MPa). No statistically significant difference was found (P = 0.160) in densely sintered zirconia (sigma = 1,060.8 +/- 1,227.8 MPa, m = 5.8 +/- 7.4, sigma0 = 1,002.4 +/- 1,171.0 MPa). Not all the materials tested fulfilled the requirements for the clinical indications recommended by the manufacturer.

  20. Dilatometric study of anisotropic sintering of alumina/zirconia laminates with controlled fracture behaviour

    Czech Academy of Sciences Publication Activity Database

    Maca, K.; Pouchlý, V.; Drdlík, D.; Hadraba, Hynek; Chlup, Zdeněk

    2017-01-01

    Roč. 37, č. 14 (2017), s. 4287-4295 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GA15-06390S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Alumina/zirconia laminate * Crack deflection * Master sintering curve * Sintering shrinkage Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass OBOR OECD: Ceramic s Impact factor: 3.411, year: 2016

  1. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO{sub 3}) ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd [Department of Materials & Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Mahbub, Rubbayat, E-mail: rubayyatm@gce.buet.ac.bd [Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Gafur, M. A., E-mail: d-r-magafur@bcsir.gov.bd [Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka-1205 (Bangladesh); Bashar, M. Shahriar, E-mail: bashar@agni.com [Institute of Fuel Research & Development, Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka-1205 (Bangladesh)

    2016-07-12

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanning Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.

  2. Evaluation of torque loss value of MAD/MAM zirconia abutments with prefabricated titanium abutments

    OpenAIRE

    Marzieh Alikhasi; Roshanak Baghaie; Nasim khosronejad

    2013-01-01

    Background and Aims: In response to esthetic demand of patients, ceramic abutments have been developed. Despite esthetic of zirconia abutments, machining accuracy of these abutments has always been a question. Any misfit in the abutment-implant interface connection can lead to detorque and screw loosening. The aim of this study was to compare torque loss value of manually aided design/manually aided manufacture (MAD/MAM) zirconia abutments with prefabricated titanium abutments. Materials and ...

  3. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    Science.gov (United States)

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2018-03-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.

  4. Synthesis of Ca,Y-zirconia/hydroxyapatite nanoparticles and composites

    Czech Academy of Sciences Publication Activity Database

    Částková, K.; Hadraba, Hynek; Matoušek, A.; Roupcová, P.; Chlup, Zdeněk; Novotná, L.; Cihlář, J.

    2016-01-01

    Roč. 36, č. 12 (2016), s. 2903-2912 ISSN 0955-2219 R&D Projects: GA ČR GA14-11234S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Zirconia * Hydroxyapatite * Composite * Bioactivity * Mechanical properties Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 3.411, year: 2016

  5. Osseointegration of zirconia implants: an SEM observation of the bone-implant interface.

    Science.gov (United States)

    Depprich, Rita; Zipprich, Holger; Ommerborn, Michelle; Mahn, Eduardo; Lammers, Lydia; Handschel, Jörg; Naujoks, Christian; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich

    2008-11-06

    The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.

  6. Superplasticity and joining of zirconia-based ceramics

    International Nuclear Information System (INIS)

    Dominguez-Rodriguez, A.; Gutierrez-Mora, F.; Jimenez-Melendo, M.; Chaim, R.; Routbort, J. L.

    1999-01-01

    Steady-state creep and joining of alumina/zirconia composites containing alumina volume fractions of 20, 60, and 85% have been investigated between 1,250 and 1,350 C. Superplasticity of these compounds is controlled by grain-boundary sliding and the creep rate is a function of alumina volume fraction, not grain size. Using the principles of superplasticity, pieces of the composite have been joined by applying the stress required to achieve 5 to 10% strain to form a strong interface at temperatures as low as 1,200 C

  7. Superplasticity and joining of zirconia-based ceramics

    International Nuclear Information System (INIS)

    Gutierrez-Mora, F.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; Chaim, R.; Ravi, G.B.; Routbort, J.L.

    2000-01-01

    Steady-state creep and joining of alumina/zirconia composites containing alumina volume fractions of 20, 60 and 85% have been investigated between 1,250 and 1,350 C. Superplasticity of these compounds is controlled by grain-boundary sliding and the creep rate is a function of alumina volume fraction, not grain size. Using the principles of superplasticity, pieces of the composite have been joined by applying the stress required to achieve 5 to 10% strain to form a strong interface at temperatures as low as 1,200 C

  8. Effect of hydrothermal treatment on light transmission of translucent zirconias.

    Science.gov (United States)

    Putra, Armand; Chung, Kwok-Hung; Flinn, Brian D; Kuykendall, Tuesday; Zheng, Cheng; Harada, Kosuke; Raigrodski, Ariel J

    2017-09-01

    Studies of the light transmission of translucent zirconias after hydrothermal treatment are limited. The purpose of this in vitro study was to evaluate the effect of hydrothermal treatment on the light transmission of translucent zirconias for monolithic restorations. Four commercially available zirconia products, BruxZir Anterior Solid Zirconia (BruxAnt, BA), Lava Plus High Translucency (LPHT), Katana Zirconia Super Translucent (KST), and Katana Zirconia Ultra Translucent (KUT) were assessed and 1 type of lithium disilicate, e.max Press LT (LDLT) was used as a control. Plate specimens, 20×20×1 mm (n=80) for the translucency assessment were sectioned from postsintered zirconia bulk materials and ground with a #400-grit diamond wheel and coolant. The specimens were placed under hydrothermal conditions of 134°C at 0.2 MPa (n=5 per group at 0, 5, 50, and 100 hours). Percentage of total transmittance of light (T t %) of each specimen was measured using a spectrophotometer with an integrating sphere. X-ray diffraction analyses were used to measure tetragonal-monoclinic phase transformation. Surfaces were examined by scanning electron microscopy and energy dispersive spectrometry. Data were analyzed using 2-way ANOVA followed by the Tukey test (α=.05). The T t % ranged from 6.5% to 28.3%. Group LDLT obtained significantly higher transmittance than other tested groups, whereas groups KST and KUT had significantly higher T t % than groups BA and LPHT (Phydrothermal treatment for all tested translucent zirconias and a lithium disilicate glass-ceramic control. Hydrothermal treatment had minimal effects on the translucency of translucent zirconias. The tetragonal-monoclinic phase transformation rate of translucent zirconias was found to be low, except in group LPHT. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Sol–gel zirconia nanopowders with α-cyclodextrin as organic additive

    International Nuclear Information System (INIS)

    Răileanu, M.; Todan, L.; Crişan, D.; Drăgan, N.; Crişan, M.; Stan, C.; Andronescu, C.; Voicescu, M.; Vasile, B.S.; Ianculescu, A.

    2012-01-01

    Highlights: ► The sol–gel synthesis of a zirconia powder has been performed, in the presence of α-cyclodextrin as organic additive. ► A crystalline powder consisting from a mixture of monoclinic and tetragonal zirconia phases has resulted after the thermal treatment. ► The organic additive acted the role of metal oxides used as doppants for zirconia powders, avoiding phase transformations. ► The α-cyclodextrin made particles to assume spherical shape and reach fairly uniform size and prevented their agglomeration. ► The organic additive led to a certain porous morphology of the zirconia particles that is pores embedded within grains. - Abstract: Nanomaterials present unique structural and physicochemical properties due to their ultra fine size of particles that make them very useful in many domains. The most spectacular applications of nanosized zirconia include ceramics, piezoelectrics, refractories, pigments, solid electrolytes, oxygen sensors, catalysts, ultrafiltration membranes, and chromatography packing materials. Nanostructured zirconia powders can be prepared using various methods, such as sol–gel process, coprecipitation, hydrothermal synthesis, and reverse micelle method. The aim of the present work was to prepare zirconia nanopowders through the sol–gel method, using α-cyclodextrin as organic additive and to establish its influence on the structural and textural properties of the obtained product. A white, amorphous ZrO 2 powder containing α-cyclodextrin was prepared, which became a crystalline, stable one, after removing the organic matter by thermal treatment. The resulted nanocrystalline powder contains both monoclinic and tetragonal zirconia phases and is very stable. It presents a relatively reduced tendency of agglomeration of particles and contains closed pores which are embedded in the zirconia matrix. The zirconia powders were characterized using the following methods: thermal analysis, IR spectroscopy, UV–vis spectroscopy

  10. Stereological observations of platelet-reinforced mullite- and zirconia-matrix composites

    International Nuclear Information System (INIS)

    Cherian, I.K.; Kriven, W.M.; Lehigh, M.D.; Nettleship, I.

    1996-01-01

    Recently, the effect of solid inclusions on the sintering of ceramic powders has been explained in terms of a back-stress that opposes densification. Several analyses have been proposed to describe this problem. However, little quantitative information exists concerning the effect of reinforcement on microstructural evolution. This study compares the microstructural development of zirconia and mullite matrices in the presence of alumina platelets. The effect of platelet loading on density is similar for both composites. Quantitative stereological examinations reveal that the average grain size and pore size are finer for the zirconia-matrix composite. The platelet loading does not have any noticeable effect on the average grain size of the matrix in either composite. However, the average pore size increases as the volume fraction of platelets increases for both materials. Contiguity measurements have detected some aggregation of platelets in the zirconia-matrix composite

  11. Refractory materials based on compounds of Mg, Zr, Si and Ca

    International Nuclear Information System (INIS)

    Drygalska, E.; Piech, J.; Szczerba, J.

    2003-01-01

    Basic refractory materials modified with zirconium oxide or calcium zirconate find application in metallurgy and ceramic industry. Fundamental raw material for ZrO 2 production is zirconia sand, while synthetic calcium zirconate is produced in reaction of zirconium oxide with calcium oxide. Regarding these facts new highly refractory composite materials CZ and DZ were obtained from mixtures of zirconia sand and limestone of dolomite. These composite materials may contain stabilised ZrO 2 and/or calcium zirconate. Among other important components are periclase and calcium orthosilicates. All these phases have high melting points (above 2000 o C). This work describes thermal and technological properties and microstructure of CZ and DZ materials. The use of calcareous raw materials (limestone and dolomite) yields materials with good hydration resistance. These composites may be used as an additive modifying properties of magnesia products. (author)

  12. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics

    Science.gov (United States)

    Mu, Chunhong; Song, Yuanqiang; Wang, Haibin; Wang, Xiaoning

    2015-05-01

    CaCu3Ti4-xCoxO12 (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the presence of Cu and Co rich phase at grain boundaries of Co-doped ceramics. Scanning electron microscopy micrographs of Co-doped samples showed a striking change from regular polyhedral particle type in pure CaCu3Ti4O12 (CCTO) to sheet-like grains with certain growth orientation. Undoped CaCu3Ti4O12 is well known for its colossal dielectric constant in a broad temperature and frequency range. The dielectric constant value was slightly changed by 5 at. % and 10 at. % Co doping, whereas the second relaxation process was clearly separated in low frequency region at room temperature. A multirelaxation mechanism was proposed to be the origin of the colossal dielectric constant. In addition, the permeability spectra measurements indicated Co-doped CCTO with good magnetic properties, showing the initial permeability (μ') as high as 5.5 and low magnetic loss (μ″ < 0.2) below 3 MHz. And the interesting ferromagnetic superexchange coupling in Co-doped CaCu3Ti4O12 was discussed.

  13. Characterization of nanocrystalline zirconia powders by electron optical techniques

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1989-01-01

    Electron optical techniques are described for the characterization of the size distribution of agglomerates, aggregates and primary micro- and nanocrystallites of as-processed zirconia powders. These techniques allow for direct identification of individual crystallites as tetragonal or monoclinic, by optical transform of high-resolution electron micrographs. The latter also permit surface morphology to be examined with atomic resolution. Applications to a range of pure and doped zirconia powders, of recent commercial interest, are presented, which enable the results of concurrent studies by sedimentation, surface specific area measurements, porosity and sinterability to be correctly interpreted. 18 figs

  14. OCT and shear-force evaluations of zirconia Fixed Partial Prosthesis processed with a conventional CAD/CAM technology

    Science.gov (United States)

    Zaharia, C.; Gabor, A.; Sinescu, C.; Topala, F. I.; Negrutiu, M. L.; Levai, C. M.; Duma, V. F.; Bradu, A.; Podoleanu, A. Gh.

    2016-03-01

    Introduction. Dental ceramics show better biocompatibility and aesthetic properties in dental constructs with regard to metals. However, they also have an insufficient mechanical stability, as well as low resistance limits due to their fragility. Taking into account these aspects, glass infiltrated with ceramic materials such as alumina (i.e., zirconiareinforced ceramics) is being nowadays considered a better material for full fixed partial prostheses (FPPs) than ceramics: the former has a higher mechanical resistance, which makes it more appropriate for restoration areas, where there is an increased mechanical stress. The interest for zirconia is growing due both to its resistance and to the possibility to develop such prostheses using the CAD/CAM technology. Materials and methods. 24 all ceramic FPPs created with CAD/CAM technology were used. The models were scanned with Zeno Wieland Scanner, a one touch scanning machine which requires between 45-60 s for a full model scan. The scanner provides 3 axis-architecture and automatic data processing. The zirconia infrastructures resulted from milling zirconia green disks in Wieland units, followed by the deposition of ceramic masses and then by burning procedures. All the samples were assessed with a Time Domain Optical Coherence Tomography (TD-OCT) system working at a wavelenght of 1300 nm. Using OCT investigations, material defects were detected in the areas of maximal tension, i.e. the connectors, the oclusal, and the cervical areas. These samples with defects in the above areas have not been considered for the study further on. Finally, the samples were loaded in a MultiTest 5 i Mecmesin system and tested until fracture occurred. The MultiTest 5-i creates tensile and compression forces of up to 5 kN. Results and discussions. All the test samples survived a dynamic load of 1.2 x 107 cycles and a thermal cycle mixer simulator version; signs of failure in terms of fracture lines were observed in all samples. The

  15. Fracture resistance of prepared premolars restored with bonded new lab composite and all-ceramic inlay/onlay restorations: Laboratory study.

    Science.gov (United States)

    Wafaie, Ramy Ahmed; Ibrahim Ali, Ashraf; Mahmoud, Salah Hasab

    2018-01-25

    To assess the influence of new light curing lab composite, lithium-disilicate glass-ceramic and yttrium-stabilized zirconia-based ceramic on the fracture resistance of maxillary premolars with class II inlay and onlay preparations. Seventy sound maxillary premolars were divided randomly into seven main groups. The first group was left intact (control group). The remaining six groups were prepared with inlay and onlay cavities and restored with lab composite (SR Nexco), lithium-disilicate glass-ceramic (IPS e.max Press) and yttrium-stabilized zirconia-based ceramic (ICE Zirkon). The restorations were cemented with luting resin composite (Variolink N). All specimens were thermocycled 5000 cycles between 5°C ± 2°C and 55°C ± 2°C and were then cyclic loaded for 500 000 cycles. The specimens were subjected to a compressive load in a universal testing machine using a metal sphere until fracture occurred. The results were analyzed by 2-way ANOVA and Tukey HSD post hoc tests. The level of significance was set at P  .05). However, statistically significant differences were found among the means of control group and the groups restored with lab composite inlays, lab composite onlays, pressable glass ceramic inlays and pressable glass ceramic onlays (P lab composite is used. Conversely, when a ceramic material being used, the prepared teeth for inlay and onlay restorations showed a comparable strength to the intact teeth especially zirconia ceramic. Premolar teeth restored with zirconia ceramic inlays and onlays exhibited fracture resistance comparable to intact teeth. © 2018 Wiley Periodicals, Inc.

  16. EFFECTS OF NEODYMIUM DOPING ON DIELECTRIC AND OPTICAL PROPERTIES OF Ba(1-xNdxTi1.005O3 CERAMICS

    Directory of Open Access Journals (Sweden)

    Zhang W.

    2013-06-01

    Full Text Available This paper investigated the optical properties and dielectric properties of neodymium doped BaTiO3 ceramics prepared by Ba(1-xNdxTi1.005O3 powders synthesized via a hydrothermal method. The effects of Nd3+ ions content on the structure, dielectric properties and optical properties of the ceramics were studied. The structural analysis performed on the X-ray diffractometer shows that the phase compositions of all ceramics are tetragonal phase structure. The red shift of the absorption edge indicates the presence of defect energy levels which was proved by the UV-Vis-NIR diffuse reflection spectra. Dielectric property measurements show that Nd-doped BaTiO3 ceramics possess improved dielectric properties at low Nd3+ contents (x = 0.001 and 0.002, as demonstrated by decreased dependence to frequency for both the dielectric constant and dielectric loss.

  17. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States); Lin, Jerry [Arizona State Univ., Tempe, AZ (United States); Romero, Van [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  18. An investigation of vacancy-like defects in differently doped and treated Pb(ZrxTi1-x)O3 ceramics

    International Nuclear Information System (INIS)

    Puff, W.; Balogh, A.G.; Balke, N.; Gottschalk, S.

    2006-01-01

    Full text: Important macroscopic properties of lead zirconate-titanate (PZT) ceramics are strongly affected by defect structure and diffusivity. In this study we discuss vacancy like defects in ferroelectric Pb(Zr x Ti 1-x )O 3 ceramics doped either with Fe or Ni and Sb. The investigations were performed with positron lifetime and Doppler broadening spectroscopy. The undoped samples show one defect lifetime component with a value of about 250 and 270 ps in dependence of the sintering atmosphere and sintering temperature. After doping this defect lifetime increases to about 290 to 300 ps. The Fe doped samples, Fe concentration from 0.1 to 1.0 mol-%, were measured also at low temperature to study the charge state of the observed defects. To study the aging behaviour of the Ni and Sb doped samples measurements were performed either after dc loading for 24 hours or ac loading up to 3 x 10 7 cycles. (author)

  19. Evaluation of hot hardness, creep, fatigue and fracture properties of zirconia ceramics by an indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Ganguly, C.; Upadhyaya, D.D.

    1996-01-01

    Zirconia ceramics have wide range engineering applications at room and elevated temperatures. For understanding the mechanical behaviour, the indentation technique was adapted for quick evaluation of hot hardness, creep, fatigue and fracture properties. A Vicker's diamond indentor with 10 N load was employed for hot hardness and creep measurement up to 1300 deg. The fatigue data were evaluated at room temperature by repeated indentation with a constant load (10-2500N) at the same location for a dwell time of 5s until it resulted in the formation of a lateral chip on the sample surface. Thus, the number of cycles for chip formation at a specific indentation load was obtained. The fracture toughness was evaluated at room temperature with a load of 300N using a Vicker's diamond indentor. The results of hot hardness, creep, fatigue, and fracture data ol 3Y-TZP and Mg-PSZ are discussed along with their microstructural features. (authors)

  20. Structure and mechanical properties of silica doped zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, Ina, E-mail: uhlmann@ceramics.tu-darmstadt.de [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Hawelka, Dominik [Fraunhofer Institute for Laser Technology ILT, 52074 Aachen (Germany); Hildebrandt, Erwin [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Pradella, Jens [Merck KGaA Darmstadt, 64293 Darmstadt (Germany); Rödel, Jürgen [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2013-01-01

    Sol–gel based wear resistant coatings are presented as an alternative to existing vapor deposition coatings. The films consist of zirconia which has been doped with 8 wt.% silica. Crack-free single as well as multilayer coatings with thicknesses of 80 and 150 nm, respectively, could be produced after sintering at 1000 °C. The evolution of layer thickness, optical, chemical and mechanical properties during film annealing was investigated by ellipsometry, scanning electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction, nanoindentation and micro-abrasion. Micro-abrasion has been established as an easy and powerful tool to achieve first comparative abrasion data which could be correlated to hardness, Young's modulus and structure of the films. Above 600 °C a tetragonal, oxide coating with a Young's modulus ranging from 80 to 90 GPa, a hardness from 7 to 8 GPa and an increased abrasion resistance was obtained. The film density reached 4.64 g/cm{sup 3} with the mean refractive index n{sub 550} {sub nm} lying between 1.88 and 1.93. - Highlights: ► Sol–gel zirconia–8 wt.% silica coatings with hardness up to 8 GPa achieved ► Layer thickness as compared by ellipsometry and scanning electron microscopy ► Crack-free multilayer coatings produced up to 150 nm.

  1. The effect of abrading and cutting instruments on machinability of dental ceramics.

    Science.gov (United States)

    Sakoda, Satoshi; Nakao, Noriko; Watanabe, Ikuya

    2018-03-16

    The aim was to investigate the effect of machining instruments on machinability of dental ceramics. Four dental ceramics, including two zirconia ceramics were machined by three types (SiC, diamond vitrified, and diamond sintered) of wheels with a hand-piece engine and two types (diamond and carbide) of burs with a high-speed air turbine. The machining conditions used were abrading speeds of 10,000 and 15,000 r.p.m. with abrading force of 100 gf for the hand-piece engine, and a pressure of 200 kPa and a cutting force of 80 gf for the air-turbine hand-piece. The machinability efficiency was evaluated by volume losses after machining the ceramics. A high-abrading speed had high-abrading efficiency (high-volume loss) compared to low-abrading speed in all abrading instruments used. The diamond vitrified wheels demonstrated higher volume loss for two zirconia ceramics than those of SiC and diamond sintered wheels. When the high-speed air-turbine instruments were used, the diamond points showed higher volume losses compared to the carbide burs for one ceramic and two zirconia ceramics with high-mechanical properties. The results of this study indicated that the machinability of dental ceramics depends on the mechanical and physical properties of dental ceramics and machining instruments. The abrading wheels show autogenous action of abrasive grains, in which ground abrasive grains drop out from the binder during abrasion, then the binder follow to wear out, subsequently new abrasive grains come out onto the instrument surface (autogenous action) and increase the grinding amount (volume loss) of grinding materials.

  2. Influence of implant abutment material on the color of different ceramic crown systems.

    Science.gov (United States)

    Dede, Doğu Ömür; Armağanci, Arzu; Ceylan, Gözlem; Celik, Ersan; Cankaya, Soner; Yilmaz, Burak

    2016-11-01

    Ceramics are widely used for anterior restorations; however, clinical color reproduction still constitutes a challenge particularly when the ceramic crowns are used on titanium implant abutments. The purpose of this in vitro study was to investigate the effect of implant abutment material on the color of different ceramic material systems. Forty disks (11×1.5 mm, shade A2) were fabricated from medium-opacity (mo) and high-translucency (ht) lithium disilicate (IPS e.max) blocks, an aluminous ceramic (VITA In-Ceram Alumina), and a zirconia (Zirkonzahn) ceramic system. Disks were fabricated to represent 3 different implant abutments (zirconia, gold-palladium, and titanium) and dentin (composite resin, A2 shade) as background (11×2 mm). Disk-shaped composite resin specimens in A2 shade were fabricated to represent the cement layer. The color measurements of ceramic specimens were made on composite resin abutment materials using a spectrophotometer. CIELab color coordinates were recorded, and the color coordinates measured on composite resin background served as the control group. Color differences (ΔE 00 ) between the control and test groups were calculated. The data were analyzed with 2-way analysis of variance (ANOVA) and compared with the Tukey HSD test (α=.05). The ceramics system, abutment material, and their interaction were significant for ΔE 00 values (P2.25) were observed for lithium disilicate ceramics on titanium abutments (2.46-2.50). The ΔE 00 values of lithium disilicate ceramics for gold-palladium and titanium abutments were significantly higher than for other groups (P2.25) of an implant-supported lithium disilicate ceramic restoration may be clinically unacceptable if it is fabricated over a titanium abutment. Zirconia may be a more suitable abutment material for implant-supported ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  4. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  5. Cutting efficiency of diamond burs operated with electric high-speed dental handpiece on zirconia.

    Science.gov (United States)

    Nakamura, Keisuke; Katsuda, Yusuke; Ankyu, Shuhei; Harada, Akio; Tenkumo, Taichi; Kanno, Taro; Niwano, Yoshimi; Egusa, Hiroshi; Milleding, Percy; Örtengren, Ulf

    2015-10-01

    Zirconia-based dental restorations are becoming used more commonly. However, limited attention has been given to the difficulties experienced, concerning cutting, in removing the restorations when needed. The aim of the present study was to compare the cutting efficiency of diamond burs, operated using an electric high-speed dental handpiece, on zirconia (Zir) with those on lithium disilicate glass-ceramic (LD) and leucite glass-ceramic (L). In addition, evaluation of the cutting efficiency of diamond burs on Zir of different thicknesses was performed. Specimens of Zir were prepared with thicknesses of 0.5, 1.0, 2.0, and 4.0 mm, and specimens of LD and L were prepared with a thickness of 1.0 mm. Cutting tests were performed using diamond burs with super coarse (SC) and coarse (C) grains. The handpiece was operated at 150,000 rpm with a cutting force of 0.9 N. The results demonstrated that cutting of Zir took about 1.5- and 7-fold longer than cutting of LD and L, respectively. The SC grains showed significantly higher cutting efficiency on Zir than the C grains. However, when the thickness of Zir increased, the cutting depth was significantly decreased. As it is suggested that cutting of zirconia is time consuming, this should be taken into consideration in advance when working with zirconia restorations. © 2015 Eur J Oral Sci.

  6. Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics for capacitor applications

    Directory of Open Access Journals (Sweden)

    Zhang Chen

    2018-03-01

    Full Text Available Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics, prepared by solid state method, were investigated with non-stoichiometric level and various La2O3 content, using XRD, SEM and LCR measuring system. With an increase of non-stoichiometric level, the unit cell volumes of perovskite lattices for the single phase Ti-rich barium strontium titanate ceramics increased due to the decreasing A site vacancy concentration V″A. The unit cell volume increased and then decreased slightly with the increasing La2O3 content. Relatively high non-stoichiometric level and high La2O3 content in Ti-rich barium strontium titanate ceramics contributed to the decreased average grain size as well as fine grain size distribution, which correspondingly improved the temperature stability of the relative dielectric constant. The relative dielectric constant єrRT, dielectric loss tanδRT and the maximum relative dielectric constant єrmax decreased and then increased with the increasing non-stoichiometric level. With the increase of La2O3 doping content, the relative dielectric constant єrRT increased initially and then decreased. The maximum relative dielectric constant єrmax can be increased by applying low doping content of La2O3 in Ti-rich barium strontium titanate ceramics due to the increased spontaneous polarization.

  7. Indirect zirconia-reinforced lithium silicate ceramic CAD/CAM restorations: Preliminary clinical results after 12 months.

    Science.gov (United States)

    Zimmermann, Moritz; Koller, Christina; Mehl, Albert; Hickel, Reinhard

    2017-01-01

    No clinical data are available for the new computer-aided design/computer-assisted manufacture (CAD/CAM) material zirconia-reinforced lithium silicate (ZLS) ceramic. This study describes preliminary clinical results for indirect ZLS CAD/CAM restorations after 12 months. Indirect restorations were fabricated, using the CEREC method and intraoral scanning (CEREC Omnicam, CEREC MCXL). Sixty-seven restorations were seated adhesively (baseline). Sixty restorations were evaluated after 12 months (follow-up), using modified FDI criteria. Two groups were established, according to ZLS restorations' post-processing procedure prior to adhesive seating: group I (three-step polishing, n = 32) and group II (fire glazing, n = 28). Statistical analysis was performed with Mann-Whitney U test and Wilcoxon test (P  .05). Statistically significant differences were found for criteria surface gloss for group I and group II (Mann-Whitney U test, P < .05). This study demonstrates ZLS CAD/CAM restorations have a high clinical success rate after 12 months. A longer clinical evaluation period is necessary to draw further conclusions.

  8. Light up conversion effects in Erbium doped CaBi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Bokolia, Renuka; Sreenivas, K.

    2013-01-01

    In recent years the rare earth doped bismuth layered structured ferroelectric (BLSF) compositions such as CaBi 4 Ti 4 O 15 , SrBi 4 Ti 4 O 15 and BaBi 4 Ti 4 O 15 ceramics have shown interesting light up-conversion emission effects. The observation of such novel effects has generated a lot of scientific interest, and there is a need to further improve their dielectric, piezoelectric and light up-conversion properties. In the present study, Erbium doped CaBi 4 Ti 4 O 15 (CBT), and SrBi 4 Ti 4 O 15 (SBT) ferroelectric ceramic have been prepared by the conventional solid state reaction method. Formation of single phase material is confirmed by X-Ray Diffraction (XRD), and changes occurring in the lattice parameters with Erbium dopant are analysed. Room temperature dielectric studies and ferroelectric studies will be discussed. (author)

  9. Dielectric properties of Ga{sub 2}O{sub 3}-doped barium iron niobate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoom, Kachaporn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok, 10400 (Thailand); Pengpat, Kamonpan; Eitssayeam, Sukum; Tunkasiri, Tawee [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Rujijanagul, Gobwute [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Sri Ayutthaya Road, Bangkok, 10400 (Thailand)

    2014-08-15

    Ga-doped BaFe{sub 0.5}Nb{sub 0.5}O{sub 3} (Ba(Fe{sub 1-x}Ga{sub x}){sub 0.5}Nb{sub 0.5}O{sub 3}) ceramics were fabricated and their properties were investigated. All ceramics showed perovskite structure with cubic symmetry and the solubility of Ga in BFN ceramics had a limit at x = 0.2. Examination of the dielectric spectra indicated that all ceramic samples presented high dielectric constants that were frequency dependent. The x = 0.2 ceramic showed a very high dielectric constant (ε{sub r} > 240 000 at 1 kHz) while the x = 0.4 sample exhibited high thermal stability of dielectric constant with low loss tangent from room temperature (RT) to 100 C with ε{sub r} > 28 000 (at 1 kHz) when compared to other samples. By using a complex impedance analysis technique, bulk grain, grain boundary, and electrode response were found to affect the dielectric behavior that could be related to the Maxwell-Wagner polarization mechanism. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    Energy Technology Data Exchange (ETDEWEB)

    Wananuruksawong, R; Jinawath, S; Wasanapiarnpong, T [Research Unit of Advanced Ceramic, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); Padipatvuthikul, P, E-mail: raayaa_chula@hotmail.com [Faculty of Dentistry, Srinakharinwirot University, Bangkok (Thailand)

    2011-10-29

    Silicon nitride (Si{sub 3}N{sub 4}) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si{sub 3}N{sub 4} ceramic as a dental core material. The white Si{sub 3}N{sub 4} was prepared by pressureless sintering at relative low sintering temperature of 1650 deg. C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si{sub 3}N{sub 4} ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si{sub 3}N{sub 4} specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y{sub 2}O{sub 3} - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si{sub 3}N{sub 4} specimens, the firing was performed in electric tube furnace between 1000-1200 deg. C. The veneered specimens fired at 1100 deg. C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98x10{sup -6} deg. C{sup -1}, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  11. Enabling new sensor applications for (V)HTRS by laser hybrid brazing of oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, F.; Rixecker, G. [Robert Bosch GmbH, Stuttgart (Germany). Corporate Research and Development; Herrmann, M.; Lippmann, W.; Hurtado, A. [Univ. of Technology, Dresden (Germany). Chair of Hydrogen- and Nuclear Engineering

    2008-07-01

    The use of (very) high temperature reactors ((V)HTRs) requires a sensor technology suitable to withstand thermal loads both in normal operation mode and under incident conditions which may appear during service. Especially ceramic sensors are ideal to suit this purpose. A special sensor type that is based upon oxide ceramics is the high temperature oxygen sensor. Base material for this application is yttria-doped zirconia. At elevated temperatures (above 450 C) the activation energy of oxygen ions is sufficient to migrate in the ZrO{sub 2} lattice following an oxygen partial pressure gradient. This diffusion process is facilitated by the trivalent yttrium ions which give rise to a high concentration of oxygen vacancies. The macroscopical effect of the migration of the oxygen ions can be detected as a Nernst voltage or, alternatively, as an electrical current. Thus it is possible to compare the oxygen content of measured media with that of a known reference gas. To be able to produce such sensors both efficiently and in the desired quality, joining technologies adapted to ceramics are necessary. Laser-based technologies for brazing with glass or glass-ceramic solders are especially suitable, as they combine high precision with high throughput. They thus enable cost efficient production processes both for large and small lot sizes. (orig.)

  12. Characteristics of F doped PZT ceramics using different fluorine sources

    Energy Technology Data Exchange (ETDEWEB)

    Guiffard, B. [Laboratory of Electrical Engineering and Ferroelectricity, LGEF INSA-Lyon, Bat. Gustave Ferrie, 8 rue de la Physique, F-69621 Villeurbanne Cedex (France)]. E-mail: benoit.guiffard@insa-lyon.fr; Boucher, E. [SPCTS, UMR 6638, Faculte des Sciences et Techniques, Universite de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); Lebrun, L. [Laboratory of Electrical Engineering and Ferroelectricity, LGEF INSA-Lyon, Bat. Gustave Ferrie, 8 rue de la Physique, F-69621 Villeurbanne Cedex (France); Guyomar, D. [Laboratory of Electrical Engineering and Ferroelectricity, LGEF INSA-Lyon, Bat. Gustave Ferrie, 8 rue de la Physique, F-69621 Villeurbanne Cedex (France)

    2007-02-25

    In this study, some structural and electrical properties of a PZT base composition Pb{sub 0.89}(Ba, Sr){sub 0.11}(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} co-doped with 1 mol% manganese and 2 mol% fluorine have been studied. Two different fluorine sources were used: lead fluoride PbF{sub 2} and manganese fluoride MnF{sub 2}. These fluoride salts are added to the co-precipitated precursors powder. Mn dopant was added to the solution as manganese acetate (MnAc) before co-precipitation, when PbF{sub 2} was used. The structural analysis of the sintered ceramics revealed that MnF{sub 2} doping makes the volume of the cubic unit cell (V {sub c}) and the grain size decrease, whereas (MnAc, PbF{sub 2}) co-doping makes the apparent density increase and keeps the average grain size and V {sub c} unchanged. Both types of doping reagents largely enhance the piezoelectric activity (high d {sub 33} and k {sub 33} coefficients, well saturated Polarization-Electric field loops) but MnF{sub 2} induces both combinatory soft and hard characteristics compared to (MnAc, PbF{sub 2}) co-doping. Impedance spectroscopy showed that both types of doping reagents strongly reduce the electrical conductivity with the same conducting species, i.e. the same defect chemistry, confirmed by optical absorption data. Finally, this study shows that in the semi-wet process used, PbF{sub 2} is added homogeneously to the co-precipitated powder. Whatever the fluorine source, only the coexistence of Mn and F dopants is necessary to improve the piezoelectric response.

  13. Microwave processing for ceramic materials in microsystem technology

    International Nuclear Information System (INIS)

    Rhee, S.

    2002-11-01

    In this study, the applicability of microwaves for sintering of monolithic ceramics and ceramic microcomponents was investigated. Experiments with 2.45 GHz and 30 GHz microwaves were conducted and contrasted to conventional thermal processing. The advantages and disadvantages of microwave processing were then assessed. Nanoscale zirconia and sub-micron lead-zirconate-titanate electroceramics were selected for the evaluation. (orig.)

  14. Nano-oxides to improve the surface properties of ceramic tiles

    International Nuclear Information System (INIS)

    Rambaldi, E.; Tucci, A.; Esposito, L.; Naldi, D.; Timellini, G.

    2010-01-01

    The aim of the present work is to realise ceramic tiles with superior surface mechanical characteristics and chemical resistance, by the addition of nano-oxides, such as zirconia and alumina, since such advanced ceramics oxides are well known for their excellent mechanical properties and good resistance to chemical etching. In order to avoid any dangerousness, the nanoparticles were used in form of aqueous suspension and they were sprayed, by airbrush, directly onto the dried ceramic support, before firing. To observe the distribution of the nanoparticles and to optimise the surface treatment, SEM-EDS analyses were carried out on the fired samples. XRD analysis was conducted to assess the phases evolution of the different materials during the firing step. The surface mechanical characteristics of the samples have been evaluated by Vickers hardness and scratch test. In addition, also chemical resistance tests were performed. Microstructural observations allowed to understand how alumina and zirconia nanoparticles acted to improve the surface performances of the modified ceramic tiles. (Author) 20 refs.

  15. A 3-year prospective study of implant-supported, single-tooth restorations of all-ceramic and metal-ceramic materials in patients with tooth agenesis.

    Science.gov (United States)

    Hosseini, Mandana; Worsaae, Nils; Schiødt, Morten; Gotfredsen, Klaus

    2013-10-01

    The purpose of this clinical study was to describe outcome variables of all-ceramic and metal-ceramic implant-supported, single-tooth restorations. A total of 59 patients (mean age: 27.9 years) with tooth agenesis and treated with 98 implant-supported single-tooth restorations were included in this study. Two patients did not attend baseline examination, but all patients were followed for 3 years. The implants supported 52 zirconia, 21 titanium and 25 gold alloy abutments, which retained 64 all-ceramic and 34 metal-ceramic crowns. At baseline and 3-year follow-up examinations, the biological outcome variables such as survival rate of implants, marginal bone level, modified Plaque Index (mPlI), modified Sulcus Bleeding Index (mBI) and biological complications were registered. The technical outcome variables included abutment and crown survival rate, marginal adaptation of crowns, cement excess and technical complications. The aesthetic outcome was assessed by using the Copenhagen Index Score, and the patient-reported outcomes were recorded using the OHIP-49 questionnaire. The statistical analyses were mainly performed by using mixed model of ANOVA for quantitative data and PROC NLMIXED for ordinal categorical data. The 3-year survival rate was 100% for implants and 97% for abutments and crowns. Significantly more marginal bone loss was registered at gold-alloy compared to zirconia abutments (P = 0.040). The mPlI and mBI were not significantly different at three abutment materials. The frequency of biological complications was higher at restorations with all-ceramic restorations than metal-ceramic crowns. Loss of retention, which was only observed at metal-ceramic crowns, was the most frequent technical complication, and the marginal adaptations of all-ceramic crowns were significantly less optimal than metal-ceramic crowns (P = 0.020). The professional-reported aesthetic outcome demonstrated significantly superior colour match of all-ceramic over metal-ceramic

  16. Sintering and thermal ageing studies of zirconia - yttria ceramics by impedance spectroscopy; Estudos de sinterizacao e de envelhecimento termico de ceramicas de zirconia - itria por espectroscopia de impedancia

    Energy Technology Data Exchange (ETDEWEB)

    Florio, Daniel Zanetti de

    1998-07-01

    ZrO{sub 2}:8 mol %Y{sub 2}O{sub 3} solid electrolyte ceramic pellets have been prepared with powders of three different origins: a Nissan (Japan) commercial powder, a powder obtained by the coprecipitation technique at IPEN, and the mixing of powder oxides (ZrO{sub 2} produced at a Pilot Plant at IPEN and 99.9% pure Y{sub 2}O{sub 3} of USA origin). These starting powders have been analysed by the following techniques: X-ray fluorescence for yttrium content, X-ray diffraction for structural phase content, sedimentation for particle size distribution, gas adsorption (BET) for surface area determination, and transmission electron microscopy for average particle size determination. Pressed ceramic pellets have been analysed by dilatometry to evaluate the sintering stages. Sintered pellets have been characterized by X-ray diffraction for phase analysis and scanning electron microscopy for grain morphology analysis. Impedance spectroscopy analysis have been carried out to follow thermal ageing of zirconia-yttria solid electrolyte at 600 deg C, the working temperature of permanent oxygen sensor, and to study sintering kinetics. The main results show that ageing at 600 deg C decreases the emf sensor response in the first 100 h to a steady value. Moreover, sintering studies by impedance spectroscopy allowed for finding correlations between electrical parameters, sintering kinetics and grain growth mechanisms. (author)

  17. Effect of the application of surface treatments before and after sintering on the flexural strength, phase transformation and surface topography of zirconia.

    Science.gov (United States)

    Kurtulmus-Yilmaz, Sevcan; Aktore, Huseyin

    2018-05-01

    To evaluate the effects of airborne-particle abrasion (APA) and Er,Cr:YSGG laser irradiation on 4-point-flexural strength, phase transformation and morphologic changes of zirconia ceramics treated at pre-sintered or post-sintered stage. Three hundred and forty-two bar shaped zirconia specimens were milled with different sizes according to the flexural strength test (n = 10), X-ray diffraction (XRD) (n = 4) and field emission scanning electron microscope (FE-SEM) (n = 4) analyses. For each test protocol, specimens were divided into 4 main groups whether the surface treatments applied before or after sintering and whether the specimens received heat treatment or not as pre-sintered, post-sintered no-heat and post-sintered heat-treated groups, and a group was served as control. Main groups were further divided into 6 equal subgroups according to surface treatment method applied (2 W-, 3 W-, 4 W-, 5 W-, 6 W-laser irradiations and APA). Surface treatments were applied to pre-sintered groups before sintering and to post-sintered groups after sintering. Post-sintered heat-treated groups were subjected to veneer ceramic firing simulation after surface treatments. Flexural strength and flexural modulus values were statistically analysed and monoclinic phase content was calculated. Weibull analysis was used to evaluate strength reliability and fractographic analysis was conducted. Highest flexural strength values were detected at post-sintered no-heat APA and 4W-laser groups (P SEM images pre-sintered groups. Application of surface treatments at pre-sintered stage may be detrimental for zirconia ceramics in terms of flexural strength. Treating the surface of zirconia ceramic before sintering process is not recommended due to significant decrease in flexural strength values. 2 W-4 W Er,Cr:YSGG laser irradiations can be regarded as alternative surface treatment methods when zirconia restoration would be subjected to veneer ceramic firing procedures

  18. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).

    Science.gov (United States)

    Scheithauer, Uwe; Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Abel, Johannes; Richter, Hans-Jürgen; Moritz, Tassilo; Michaelis, Alexander

    2017-11-28

    In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components.

  19. The development of zirconia membrane oxygen separation technology

    International Nuclear Information System (INIS)

    Chiacchi, F.T.; Badwal, S.P.S.; Velizko, V.

    2000-01-01

    The oxygen separation technology based on ceramic membranes constructed from stabilised zirconia is currently under development for applications ranging from oxygen generation or air enrichment for medical use to control of oxygen concentration or oxygen removal from gas streams and enclosures for semiconductor, food packaging and process control instrumentation industries. The technology is based on a rugged tubular design with extensive thermal cycling capability. Several single and three tube devices have been operated for periods up to 5000h. An eight tube module, as a building block for larger scale oxygen production or removal devices, has been constructed and is being evaluated. In this paper, the construction of the device, oxygen generating capacity, life time tests and performance of the ceramic membrane device under development at CSIRO will be discussed. Copyright (2000) The Australian Ceramic Society

  20. Survival of resin infiltrated ceramics under influence of fatigue.

    Science.gov (United States)

    Aboushelib, Moustafa N; Elsafi, Mohamed H

    2016-04-01

    to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, Pceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while

  1. Synthesis and luminescent properties of Eu{sup 3+}/Eu{sup 2+} co-doped calcium aluminosilicate glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bouchouicha, H. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Panczer, G., E-mail: gerard.panczer@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Ligny, D. de [Universität Erlangen-Nürnberg, Department Werkstoffwissenschaften, Lehrstuhl für Glas und Keramik, D-91058 Erlangen (Germany); Guyot, Y. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Baesso, M.L. [Departemento de Fisica, Universidade Estadual de Maringa, 87020-900 Maringa, PR (Brazil); Andrade, L.H.C.; Lima, S.M. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul – UEMS, C.P. 351, Dourados, MS (Brazil); Ternane, R. [Laboratoire d' Application de la Chimie aux Ressources et Substances Naturelles et à l' Environnement (LACReSNE), Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte (Tunisia)

    2016-01-15

    Eu{sup 3+} and Eu{sup 2+} co-doped calcium aluminosilicate glass–ceramics have been prepared by devitrification of calcium aluminosilicate glass using heat-treatment. Control of crystallization in the glass–ceramics was studied by X-ray diffraction (XRD) and Raman spectroscopy. The results showed that crystalline phases in glass–ceramic belong to the family of melilite Ca{sub 2}Mg{sub 0.25}Al{sub 1.5}Si{sub 1.25}O{sub 7} as the major phase and anorthite CaAl{sub 2}Si{sub 2}O{sub 8} as the minor phase. Luminescent properties were investigated by emission; lifetime and the color points were calculated. Emission spectra showed that Eu{sup 2+} entered into the crystalline phase in a two steps mechanism: first as Eu{sup 3+} which is then reduced to Eu{sup 2+}. This incorporation in the crystal enhanced Eu{sup 2+} emission with increasing time of heat-treatment and therefore crystallization. - Highlights: • Crystallization of doped glass–ceramics by heat-treatment controlled by microRaman. • Crystalline phases consist of melilite and anorthite. • Eu{sup 3+} and Eu{sup 2+} emissions characterized by their lifetime and color indexes. • Crystallization process modified efficiently the emission color point.

  2. Mechanical properties of zirconia core-shell rods with porous core and dense shell prepared by thermoplastic co-extrusion

    Czech Academy of Sciences Publication Activity Database

    Kaštyl, J.; Chlup, Zdeněk; Clemen, F.; Trunec, M.

    2017-01-01

    Roč. 37, č. 6 (2017), s. 2439-2447 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : ceramic injection moldings * oxide fuel -cells * electrophoretic deposition * large pores * alumina * fabrication * behavior * tubes * bioceramics * composites * Zirconia * Co-extrusion * Core-shell * Porous structure * Mechanical properties Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 3.411, year: 2016

  3. Cationic hetero diffusion and mechanical properties of yttria-stabilized zirconia: influence of irradiation; Heterodiffusion cationique et proprietes mecaniques de la zircone stabilisee a l'oxyde d'yttrium: influence de l'irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Menvie Bekale, V

    2007-12-15

    Cubic yttria-stabilized zirconia (YSZ) is a promising material as target for the transmutation of radioactive waste. In this context, the present work is dedicated to the study of the atomic transport and the mechanical properties of this ceramic, as well as the influence of irradiation on these properties. The preliminary step concerns the synthesis of YSZ cubic zirconia ceramic undoped and doped with rare earths to form homogeneous Ce-YSZ or Gd-YSZ solid solutions with the highest density. The diffusion experiments of Ce and Gd in YSZ or Ce-YSZ were performed in air from 900 to 1400 C, and the depth profiles were established by SIMS. The bulk diffusion decreases when the ionic radius of diffusing element increases. The comparison with literature data of activation energies for bulk diffusion suggests that the cationic diffusion occurs via a vacancy mechanism. The diffusion results of Ce in YSZ irradiated with 4 or 20 MeV Au ions show a bulk diffusion slowing-down at 1000 and 1100 C when the radiation damage becomes important (30 dpa). The mechanical properties of YSZ ceramics irradiated with 944 MeV Pb ions and non irradiated samples were studied by Vickers micro indentation and Berkovitch nano indentation techniques. The hardness of the material increases when the average grain size decreases. Furthermore, the hardness and the toughness increase with irradiation fluence owing to the occurrence of compressive residual stresses in the irradiated area. (author)

  4. All-Ceramic Single Crown Restauration of Zirconia Oral Implants and Its Influence on Fracture Resistance: An Investigation in the Artificial Mouth

    Directory of Open Access Journals (Sweden)

    Ralf-Joachim Kohal

    2015-04-01

    Full Text Available The aim of the current investigation was to evaluate the fracture resistance of one-piece zirconia oral implants with and without all-ceramic incisor crowns after long-term thermomechanical cycling. A total of 48 implants were evaluated. The groups with crowns (C, 24 samples and without crowns (N, 24 samples were subdivided according to the loading protocol, resulting in three groups of 8 samples each: Group “0” was not exposed to cyclic loading, whereas groups “5” and “10” were loaded with 5 and 10 million chewing cycles, respectively. This resulted in 6 different groups: C0/N0, C5/N5 and C10/N10. Subsequently, all 48 implants were statically loaded to fracture and bending moments were calculated. All implants survived the artificial aging. For the static loading the following average bending moments were calculated: C0: 326 Ncm; C5: 339 Ncm; C10: 369 Ncm; N0: 339 Ncm; N5: 398 Ncm and N10: 355 Ncm. To a certain extent, thermomechanical cycling resulted in an increase of fracture resistance which did not prove to be statistically significant. Regarding its fracture resistance, the evaluated ceramic implant system made of Y-TZP seems to be able to resist physiological chewing forces long-term. Restauration with all-ceramic single crowns showed no negative influence on fracture resistance.

  5. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  6. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.

    Science.gov (United States)

    Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng

    2013-08-01

    The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.

  7. International Conference on the Science and Technology of Zirconia (ZrO2IV) (4th) Held in Anaheim, California on Nov 1-3, 1989

    Science.gov (United States)

    1990-02-01

    niobia-zirconia powder from freshly precipitated hydrous zirconia and niobium- Different ceria stabilized TZP ceram- ammonium oxalate . Zirconia powders...is mol% Nb205 showed single orthorhombic phase an acid soluble Zr-Y-REE-Nb-Ta-sili- while this phase always coexisted with mono- cate occurring in a...C :1RCONIA, Chen-Feng Kao and Tsu-Meng BY HYDROTHERMAL PRECIPITATION METHOD, S. P Fueng, Dept of Chemical Engineering, Somiya*, Nishi-Tokyo Univ

  8. NIR optimized dual mode photoluminescence in Nd doped Y{sub 2}O{sub 3} ceramic phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sukul, Prasenjit Prasad; Mahata, Manoj Kumar; Kumar, Kaushal, E-mail: kumar.bhu@gmail.com

    2017-05-15

    Authors here report the dual mode photo luminescence emission in neodymium doped yttrium oxide ceramic phosphor upon 808 nm diode laser excitation. Single cubic phase Nd{sup 3+} doped Y{sub 2}O{sub 3} phosphor was synthesized using urea assisted combustion route. Nd{sup 3+} doped Y{sub 2}O{sub 3} ceramic phosphor has given photoluminescence in a wide wavelength range covering near infrared window (850–1100 nm) to the visible region i.e. green (525 nm) and red (680 nm) upon 808 nm diode laser excitation. The two most intense bands on 808 nm excitation were observed at 750 nm and 1064 nm due to the upconversion and downconversion emission processes. The sample was also tested for emission using 980 nm and intense green emission due to the trace presence of Er{sup 3+} in the raw materials was seen in the sample. The excitation power dependent upconversion measurements have shown that transitions {sup 4}F{sub 9/2}→{sup 4}I{sub 9/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 9/2} are thermally coupled and can be used to estimate the sample temperature using Boltzmann relation.

  9. To Evaluate Effect of Airborne Particle Abrasion using Different Abrasives Particles and Compare Two Commercial Available Zirconia on Flexural Strength on Heat Treatment

    Science.gov (United States)

    Prasad, Hari A.; Pasha, Naveed; Hilal, Mohammed; Amarnath, G. S.; Kundapur, Vinaya; Anand, M; Singh, Sumeet

    2017-01-01

    Background and objective: The popularity of ceramic restorations can be attributed to its life-like appearance, durability and biocompatibility and therefore ceramic restorations have been widely used for anterior and posterior teeth. Ceramic restorations have esthetic and biocompatible advantages but low fracture resistance. Since it has high flexural strength and fracture resistance, yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is the dental material most commonly used for the core of ceramic crowns and fixed dental prosthesis. In spite of improved mechanical properties, acceptable marginal adaptation and biocompatibility the whitish opacity of zirconia is an obvious esthetic disadvantage. The zirconia framework is often veneered with conventional feldspathic porcelain to achieve a natural appearance. However it is difficult to achieve sufficient bond strength between zirconia and the veneering material. Achieving sufficient bond strength between the veneering ceramic and the zirconia core is a major challenge in the long term clinical success of veneered zirconia restorations. The main objective of this study is to evaluate the effect of different surface treatments on the fracture strength of the two commercially available Zirconia namely Ceramill and ZR-White (AMANNGIRRBACH and UPCERA) respectively. Method: Two commercially available pre-sinteredyttrium stabilized Zirconia blanks (ZR-White and Ceramill) from AMANNGIRRBACH and UPCERA respectively are used to produce the disc shaped specimens of size (15.2 ± 0.03 mm in diameter and 1.2 ± 0.03 mm thick) from each Zirconia blank. All disc shaped specimens are heated at 1200°C in a furnace for 2 hours to form homogenous tetragonal ZrO2. The dimensions of the specimens are measured with a digital caliper (aerospace). The thickness and diameter of each specimen are calculated as the means of 3 measurements made at random sites. 80 discs from each Zirconia blank are divided into ten groups of 8

  10. Preparation and spectral analysis of a new Tb3+-doped CaO-MgO-SiO2 glass ceramics

    International Nuclear Information System (INIS)

    Cheng Jinshu; Tian Peijing; Zheng Weihong; Xie Jun; Chen Zhenxia

    2009-01-01

    Tb 3+ -doped CaO-MgO-SiO 2 glass ceramics have been prepared and characterized. The structure and optical properties of the glass ceramics were studied by XRD, SEM, Raman, and fluorescence spectra. The precipitated crystalline phase in the glass ceramics was columnar CaMgSi 2 O 6 . Raman spectra showed the introduction of rare earth nearly had no influence on the sample structure. Fluorescence measurements showed that Tb 3+ ions entered into the diopside crystalline phase and induced a much stronger emission in the glass ceramics than that in the corresponding glass. With increase of Tb 3+ content and the introduction of Gd 3+ , the fluorescence intensity of the luminescent glass ceramic increased

  11. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    Science.gov (United States)

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  12. Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique

    International Nuclear Information System (INIS)

    Sharma, S.C.; Gokhale, N.M.; Dayal, Rajiv; Lazl, Ramji

    2002-01-01

    Ceria stabilized zirconia powders with ceria concentration varying from 6 to 16 mol% were synthesized using spray drying technique. Powders were characterized for their particle size distribution and specific surface area. The dense sintered ceramics fabricated using these powders were characterized for their microstructure, crystallite size and phase composition. The flexural strength, fracture toughness and micro-hardness of sintered ceramics were measured. High fracture toughness and flexural strength were obtained for sintered bodies with 12 mol% of CeO 2 . Flexural strength and fracture toughness were dependent on CeO 2 concentration, crystallite size and phase composition of sintered bodies. Correlation of data has indicated that the transformable tetragonal phase is the key factor in controlling the fracture toughness and strength of ceramics. It has been demonstrated that the synthesis method is effective to prepare nanocrystalline tetragonal ceria stabilized zirconia powders with improved mechanical properties. Ce-ZrO 2 with 20 wt% alumina was also prepared with flexural strength, 1200 MPa and fracture toughness 9.2 MPa√m. (author)

  13. Electron beam treatments of electrophoretic ceramic coatings

    International Nuclear Information System (INIS)

    De Riccardis, M.F.; Carbone, D.; Piscopiello, E.; Antisari, M. Vittori

    2008-01-01

    In this work a method to densify ceramic coating obtained by electrophoresis and to improve its adhesion to the substrate is proposed. It consists in irradiating the coating surface by electron beam (EB). Alumina and alumina-zirconia coatings were deposited on stainless steel substrates and treated by low power EB. SEM, XRD and TEM characterizations demonstrated that the sintering occurred. Moreover, it is shown that on alumina-zirconia coating the EB irradiation produced a composite material consisting principally of tetragonal zirconia particles immersed in an amorphous alumina matrix. The adhesion stress of EB treated coating was estimated by stud pull test and it was found to be comparable to that of plasma-sprayed coatings

  14. Preparation and infrared emission of silica-zirconia-alumina doped with erbium for planar waveguide

    International Nuclear Information System (INIS)

    Thu Huong, T.; Kim Anh, T.; Hoai Nam, M.; Barthou, C.; Strek, W.; Quoc Minh, L.

    2007-01-01

    The sol-gel synthesis of Er 3+ (1-5%) doped silica(83)-zirconia(17) waveguide materials with addition of aluminum (6-20 at%) giving a FWHM ( 4 I 13/2 - 4 I 15/2 )>60 nm is reported. Zirconia with high refractive index of 1.9 and low phonon energy is a good material compared with titania. The films were deposited on silicon or silica substrate by dipcoating technique using the precursors of Si(OC 2 H 5 ) 4 (Aldrich), Zr(C 3 H 7 O) 4 , CH 3 -CH(OH)-CH 3 , C 5 H 8 O 2 , Al(NO 3 ) 3 .9H 2 O, Er(NO 3 ) 3 .5H 2 O and Yb(NO 3 ) 3 .5H 2 O (Merck). The dipcoating rate of 2 and 3 mm/s were controlled by computer. Samples were calcinated at temperatures from 70 to 900 deg. C. The optical properties were studied by photoluminescent spectra and decay time. Influence of the Al 3+ concentration and the heat treatment conditions for the Er 3+ luminescent properties were studied. An energy transfer from 2 F 5/2 (Yb 3+ ) to 4 I 11/2 (Er 3+ ) multiplets is followed by a relaxation to the 4 I 13/2 (Er 3+ ) and an efficiency luminescence of Er 3+ ( 4 I 13/2 - 4 I 15/2 ) was clearly measured. It is interesting to indicate that the lifetime of few ms of Er 3+ at 1530 nm in the sample Si(83)Zr(17)Al(6%)Er(1%)Yb(1%) is longer than for the sample without Yb ions. Multilayer thin films were prepared. The thickness, refractive index, the roughness about 2 nm and a propagation loss<2.5 dB/cm were studied for active planar waveguide applications

  15. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    International Nuclear Information System (INIS)

    Wananuruksawong, R; Jinawath, S; Wasanapiarnpong, T; Padipatvuthikul, P

    2011-01-01

    Silicon nitride (Si 3 N 4 ) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si 3 N 4 ceramic as a dental core material. The white Si 3 N 4 was prepared by pressureless sintering at relative low sintering temperature of 1650 deg. C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si 3 N 4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si 3 N 4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder ( 2 O 3 - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si 3 N 4 specimens, the firing was performed in electric tube furnace between 1000-1200 deg. C. The veneered specimens fired at 1100 deg. C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98x10 -6 deg. C -1 , rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  16. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing.

    Science.gov (United States)

    Hmaidouch, Rim; Müller, Wolf-Dieter; Lauer, Hans-Christoph; Weigl, Paul

    2014-12-01

    The aim of this study was to evaluate the effect of controlled intraoral grinding and polishing on the roughness of full-contour zirconia compared to classical veneered zirconia. Thirty bar-shaped zirconia specimens were fabricated and divided into two groups (n=15). Fifteen specimens (group 1) were glazed and 15 specimens (group 2) were veneered with feldspathic ceramic and then glazed. Prior to grinding, maximum roughness depth (Rmax) values were measured using a profilometer, 5 times per specimen. Simulated clinical grinding and polishing were performed on the specimens under water coolant for 15 s and 2 N pressure. For grinding, NTI diamonds burs with grain sizes of 20 µm, 10 µm, and 7.5 µm were used sequentially. The ground surfaces were polished using NTI kits with coarse, medium and fine polishers. After each step, Rmax values were determined. Differences between groups were examined using one-way analysis of variance (ANOVA). The roughness of group 1 was significantly lower than that of group 2. The roughness increased significantly after coarse grinding in both groups. The results after glazing were similar to those obtained after fine grinding for non-veneered zirconia. However, fine-ground veneered zirconia had significantly higher roughness than venerred, glazed zirconia. No significant difference was found between fine-polished and glazed zirconia, but after the fine polishing of veneered zirconia, the roughness was significantly higher than after glazing. It can be concluded that for full-contour zirconia, fewer defects and lower roughness values resulted after grinding and polishing compared to veneered zirconia. After polishing zirconia, lower roughness values were achieved compared to glazing; more interesting was that the grinding of glazed <