WorldWideScience

Sample records for macroscopic quantum vacuum

  1. Macroscopic quantum resonators (MAQRO)

    CERN Document Server

    Kaltenbaek, Rainer; Kiesel, Nikolai; Romero-Isart, Oriol; Johann, Ulrich; Aspelmeyer, Markus

    2012-01-01

    Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigating this largely unexplored realm of macroscopic quantum physics. MAQRO has originally been proposed as a medium-sized fundamental-science space mission for the 2010 call of Cosmic Vision. MAQRO unites two experiments: DECIDE (DECoherence In Double-Slit Experiments) and CASE (Comparative Acceleration Sensing Experiment). The main scientific objective of MAQRO, which is addressed by the experiment DECIDE, is to test the predictions of quantum theory for quantum superpositions of macroscopic objects containing more than 10e8 atoms. Under these conditions, deviations due to various suggested alternative models to quantum th...

  2. Covariant Macroscopic Quantum Geometry

    CERN Document Server

    Hogan, Craig J

    2012-01-01

    A covariant noncommutative algebra of position operators is presented, and interpreted as the macroscopic limit of a geometry that describes a collective quantum behavior of the positions of massive bodies in a flat emergent space-time. The commutator defines a quantum-geometrical relationship between world lines that depends on their separation and relative velocity, but on no other property of the bodies, and leads to a transverse uncertainty of the geometrical wave function that increases with separation. The number of geometrical degrees of freedom in a space-time volume scales holographically, as the surface area in Planck units. Ongoing branching of the wave function causes fluctuations in transverse position, shared coherently among bodies with similar trajectories. The theory can be tested using appropriately configured Michelson interferometers.

  3. Quantum equilibria for macroscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)

    2006-06-30

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.

  4. Macroscopic Quantum Resonators (MAQRO): 2015 update

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbaek, Rainer [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Aspelmeyer, Markus; Kiesel, Nikolai [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Barker, Peter F.; Bose, Sougato [University College London, Department of Physics and Astronomy, London (United Kingdom); Bassi, Angelo [University of Trieste, Department of Physics, Trieste (Italy); INFN - Trieste Section, Trieste (Italy); Bateman, James [University of Swansea, Department of Physics, College of Science, Swansea (United Kingdom); Bongs, Kai; Cruise, Adrian Michael [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Braxmaier, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Brukner, Caslav [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Austrian Academy of Sciences, Institute of Quantum Optics and Quantum Information (IQOQI), Vienna (Austria); Christophe, Bruno; Rodrigues, Manuel [The French Aerospace Lab, ONERA, Chatillon (France); Chwalla, Michael; Johann, Ulrich [Airbus Defence and Space GmbH, Immenstaad (Germany); Cohadon, Pierre-Francois; Heidmann, Antoine; Lambrecht, Astrid; Reynaud, Serge [ENS-PSL Research University, Laboratoire Kastler Brossel, UPMC-Sorbonne Universites, CNRS, College de France, Paris (France); Curceanu, Catalina [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dholakia, Kishan; Mazilu, Michael [University of St. Andrews, School of Physics and Astronomy, St. Andrews (United Kingdom); Diosi, Lajos [Wigner Research Center for Physics, P.O. Box 49, Budapest (Hungary); Doeringshoff, Klaus; Peters, Achim [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Ertmer, Wolfgang; Rasel, Ernst M. [Leibniz Universitaet Hannover, Institut fuer Quantenoptik, Hannover (Germany); Gieseler, Jan; Novotny, Lukas; Rondin, Loic [ETH Zuerich, Photonics Laboratory, Zuerich (Switzerland); Guerlebeck, Norman; Herrmann, Sven; Laemmerzahl, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Hechenblaikner, Gerald [Airbus Defence and Space GmbH, Immenstaad (Germany); European Southern Observatory (ESO), Garching bei Muenchen (Germany); Hossenfelder, Sabine [KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Kim, Myungshik [Imperial College London, QOLS, Blackett Laboratory, London (United Kingdom); Milburn, Gerard J. [University of Queensland, ARC Centre for Engineered Quantum Systems, Brisbane (Australia); Mueller, Holger [University of California, Department of Physics, Berkeley, CA (United States); Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Pikovski, Igor [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Pilan Zanoni, Andre [Airbus Defence and Space GmbH, Immenstaad (Germany); CERN - European Organization for Nuclear Research, EN-STI-TCD, Geneva (Switzerland); Riedel, Charles Jess [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Roura, Albert [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Schleich, Wolfgang P. [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Texas A and M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE), and Department of Physics and Astronomy, College Station, TX (United States); Schmiedmayer, Joerg [Vienna University of Technology, Vienna Center for Quantum Science and Technology, Institute of Atomic and Subatomic Physics, Vienna (Austria); Schuldt, Thilo [Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Schwab, Keith C. [California Institute of Technology, Applied Physics, Pasadena, CA (United States)

    2016-12-15

    Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schroedinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored 'quantum-classical' transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments. (orig.)

  5. Macroscopically-Discrete Quantum Cosmology

    CERN Document Server

    Chew, Geoffrey F

    2008-01-01

    To Milne's Lorentz-group-based spacetime and Gelfand-Naimark unitary representations of this group we associate a Fock space of 'cosmological preons'-quantum-theoretic universe constituents. Milne's 'cosmological principle' relies on Lorentz invariance of 'age'--global time. We divide Milne's spacetime into 'slices' of fixed macroscopic width in age, with 'cosmological rays' defined on (hyperbolic) slice boundaries-Fock space attaching only to these exceptional universe ages. Each (fixed-age) preon locates within a 6-dimensional manifold, one of whose 3 'extra' dimensions associates in Dirac sense to a self-adjoint operator that represents preon (continuous) local time, the operator canonically-conjugate thereto representing preon (total) energy. Self-adjoint-operator expectations at any spacetime-slice boundary prescribe throughout the following slice a non-fluctuating 'mundane reality'- electromagnetic and gravitational potentials 'tethered' to current densities of locally-conserved electric charge and ener...

  6. Assessments of macroscopicity for quantum optical states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2015-01-01

    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....

  7. Optomechanical entanglement of a macroscopic oscillator by quantum feedback

    Science.gov (United States)

    Wu, E.; Li, Fengzhi; Zhang, Xuefeng; Ma, Yonghong

    2016-07-01

    We propose a scheme to generate the case of macroscopic entanglement in the optomechanical system, which consist of Fabry-Perot cavity and a mechanical oscillator by applying a homodyne-mediated quantum feedback. We explore the effect of feedback on the entanglement in vacuum and coherent state, respectively. The results show that the introduction of quantum feedback can increase the entanglement effectively between the cavity mode and the oscillator mode.

  8. Quantum Bell Inequalities from Macroscopic Locality

    CERN Document Server

    Yang, Tzyh Haur; Sheridan, Lana; Scarani, Valerio

    2010-01-01

    We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.

  9. A macroscopic challenge for quantum spacetime

    CERN Document Server

    Amelino-Camelia, Giovanni

    2013-01-01

    Over the last decade a growing number of quantum-gravity researchers has been looking for opportunities for the first ever experimental evidence of a Planck-length quantum property of spacetime. These studies are usually based on the analysis of some candidate indirect implications of spacetime quantization, such as a possible curvature of momentum space. Some recent proposals have raised hope that we might also gain direct experimental access to quantum properties of spacetime, by finding evidence of limitations to the measurability of the center-of-mass coordinates of some macroscopic bodies. However I here observe that the arguments that originally lead to speculating about spacetime quantization do not apply to the localization of the center of mass of a macroscopic body. And I also analyze some popular formalizations of the notion of quantum spacetime, finding that when the quantization of spacetime is Planckian for the constituent particles then for the composite macroscopic body the quantization of spa...

  10. Macroscopic quantum mechanics in a classical spacetime.

    Science.gov (United States)

    Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei

    2013-04-26

    We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.

  11. Experiments testing macroscopic quantum superpositions must be slow

    CERN Document Server

    Mari, Andrea; Giovannetti, Vittorio

    2015-01-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations an...

  12. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  13. Macroscopic Quantum Criticality in a Circuit QED

    CERN Document Server

    Wang, Y D; Nori, F; Quan, H T; Sun, C P; Liu, Yu-xi; Nori, Franco

    2006-01-01

    Cavity quantum electrodynamic (QED) is studied for two strongly-coupled charge qubits interacting with a single-mode quantized field, which is provided by a on-chip transmission line resonator. We analyze the dressed state structure of this superconducting circuit QED system and the selection rules of electromagnetic-induced transitions between any two of these dressed states. Its macroscopic quantum criticality, in the form of ground state level crossing, is also analyzed, resulting from competition between the Ising-type inter-qubit coupling and the controllable on-site potentials.

  14. Thermal extraction: enhancing thermal emission of finite size macroscopic blackbody to far-field vacuum

    CERN Document Server

    Yu, Zongfu; Zhang, Torbjorn Skauli Gang; Wang, Hailiang; Fan, Shanhui

    2012-01-01

    The understanding of far-field thermal radiation had directly led to the discovery of quantum mechanics a century ago, and is of great current practical importance for applications in energy conversions, radiative cooling, and thermal control. It is commonly assumed that for any macroscopic thermal emitter, its maximal emitted power within any given frequency range cannot exceed that of a blackbody with the same surface area. In contrast to such conventional wisdom, here we propose, and experimentally demonstrate, that the emitted power from a finite size macroscopic blackbody to far field vacuum can be significantly enhanced, within the constraint of the second law of thermodynamics. To achieve such an enhancement, the thermal body needs to have internal electromagnetic density of states (DOS) greater than that of vacuum, and one needs to provide a thermal extraction mechanism to enable the contributions of all internal modes to far field radiation.

  15. Quantum correlations of lights in macroscopic environments

    Science.gov (United States)

    Sua, Yong Meng

    This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear

  16. Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HU Hui; LO Rong; ZHU Jia-Lin; XIONG Jia-Jiong

    2001-01-01

    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis of instanton technique in the spin-coherent-state path-integral representation, both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained. We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys. Rev. Lett. 80 (1998) 169), but also have great influence on the intensity of the ground-state tunnel splitting. Those features clearly have no analogue in the ferromagnetic molecular magnets. We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets. The analytical results are complemented by exact diagonalization calculation.

  17. Black Holes and Quantumness on Macroscopic Scales

    CERN Document Server

    Flassig, D; Wintergerst, N

    2012-01-01

    It has recently been suggested that black holes may be described as condensates of weakly interacting gravitons at a critical point, exhibiting strong quantum effects. In this paper, we study a model system of attractive bosons in one spatial dimension which is known to undergo a quantum phase transition. We demonstrate explicitly that indeed quantum effects are important at the critical point, even if the number of particles is macroscopic. Most prominently, we evaluate the entropy of entanglement between different momentum modes and observe it to become maximal at the critical point. Furthermore, we explicitly see that the leading entanglement is between long wavelength modes and is hence a feature independent of ultraviolet physics. If applicable to black holes, our findings substantiate the conjectured breakdown of semiclassical physics even for large black holes. This can resolve long standing mysteries, such as the information paradox and the no-hair theorem.

  18. Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HUHui; LURong; 等

    2001-01-01

    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model.On the basis of instanton technique in the spin-coherent-state path-integral representation,both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained.We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys.Rev.Lett.80(1998)169),but also have great influence on the intensity of the ground-state tunnel splitting.Those features clearly have no analogue in the ferromagnetic molecular magnets.We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets.The analytical results are complemented by exact diagonalization calculation.

  19. Experiments testing macroscopic quantum superpositions must be slow

    Science.gov (United States)

    Mari, Andrea; de Palma, Giacomo; Giovannetti, Vittorio

    2016-03-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.

  20. Distributivity breaking and macroscopic quantum games

    CERN Document Server

    Grib, A A; Parfionov, G N; Starkov, K A

    2005-01-01

    Examples of games between two partners with mixed strategies, calculated by the use of the probability amplitude as some vector in Hilbert space are given. The games are macroscopic, no microscopic quantum agent is supposed. The reason for the use of the quantum formalism is in breaking of the distributivity property for the lattice of yes-no questions arising due to the special rules of games. The rules of the games suppose two parts: the preparation and measurement. In the first part due to use of the quantum logical orthocomplemented non-distributive lattice the partners freely choose the wave functions as descriptions of their strategies. The second part consists of classical games described by Boolean sublattices of the initial non-Boolean lattice with same strategies which were chosen in the first part. Examples of games for spin one half are given. New Nash equilibria are found for some cases. Heisenberg uncertainty relations without the Planck constant are written for the "spin one half game".

  1. Casimir effect from macroscopic quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.uk [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2011-06-15

    The canonical quantization of macroscopic electromagnetism was recently presented in (Philbin 2010 New J. Phys. 12 123008). This theory is used here to derive the Casimir effect, by considering the special case of thermal and zero-point fields. The stress-energy-momentum tensor of the canonical theory follows from Noether's theorem, and its electromagnetic part in thermal equilibrium gives the Casimir energy density and stress tensor. The results hold for arbitrary inhomogeneous magnetodielectrics and are obtained from a rigorous quantization of electromagnetism in dispersive, dissipative media. Continuing doubts about the status of the standard Lifshitz theory as a proper quantum treatment of Casimir forces do not apply to the derivation given here. Moreover, the correct expressions for the Casimir energy density and stress tensor inside media follow automatically from the simple restriction to thermal equilibrium, without the need for complicated thermodynamical or mechanical arguments.

  2. A rotating quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-11-01

    It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.

  3. The rotating quantum vacuum

    CERN Document Server

    Davies, Paul Charles William; Manogue, C A; Davies, Paul C W; Dray, Tevian; Manogue, Corinne A

    1996-01-01

    We derive conditions for rotating particle detectors to respond in a variety of bounded spacetimes and compare the results with the folklore that particle detectors do not respond in the vacuum state appropriate to their motion. Applications involving possible violations of the second law of thermodynamics are briefly addressed.

  4. A Rotating Quantum Vacuum

    CERN Document Server

    De Lorenci, V A

    1996-01-01

    We investigate which mapping we have to use to compare measurements made in a rotating frame to those made in an inertial frame. Using a "Lorentz-like" coordinate transformation we obtain that creation-anihilation operators of a massless scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state (a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. After this, introducing an apparatus device coupled linearly with the field we obtain that there is a strong correlation between number of rotating particles (in a given state) obtained via canonical quantization and via response function of the rotating detector. Finally, we analyse polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view.

  5. Quantum Electrodynamics vacuum polarization solver

    CERN Document Server

    Carneiro, Pedro; Fonseca, Ricardo; Silva, Luís

    2016-01-01

    The self-consistent modeling of vacuum polarization due to virtual electron-positron fluctuations is of relevance for many near term experiments associated with high intensity radiation sources and represents a milestone in describing scenarios of extreme energy density. We present a generalized finite-difference time-domain solver that can incorporate the modifications to Maxwells equations due to virtual vacuum polarization. Our multidimensional solver reproduced in one dimensional configurations the results for which an analytic treatment is possible, yielding vacuum harmonic generation and birefringence. The solver has also been tested for two-dimensional scenarios where finite laser beam spot sizes must be taken into account. We employ this solver to explore different types of counter-propagating configurations that can be relevant for future planned experiments aiming to detect quantum vacuum dynamics at ultra-high electromagnetic field intensities.

  6. Observability of relative phases of macroscopic quantum states

    CERN Document Server

    Pati, A K

    1998-01-01

    After a measurement, to observe the relative phases of macroscopically distinguishable states we have to ``undo'' a quantum measurement. We generalise an earlier model of Peres from two state to N-state quantum system undergoing measurement process and discuss the issue of observing relative phases of different branches. We derive an inequality which is satisfied by the relative phases of macroscopically distinguishable states and consequently any desired relative phases can not be observed in interference setups. The principle of macroscopic complementarity is invoked that might be at ease with the macroscopic world. We illustrate the idea of limit on phase observability in Stern-Gerlach measurements and the implications are discussed.

  7. Macroscopic superpositions and gravimetry with quantum magnetomechanics

    Science.gov (United States)

    Johnsson, Mattias T.; Brennen, Gavin K.; Twamley, Jason

    2016-11-01

    Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10-10 Hz-1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters.

  8. On the notion of a macroscopic quantum system

    CERN Document Server

    Khrenikov, A Yu

    2004-01-01

    We analyse the notion of macroscopic quantum system from the point of view of the statistical structure of quantum theory. We come to conclusion that the presence of interference of probabilities should be used the main characteristic of quantumness (in the opposition to N. Bohr who permanently emphasized the crucial role of quantum action). In the light of recent experiments with statistical ensembles of people who produced interference of probabilities for special pairs of questions (which can be considered as measurements on people) human being should be considered as a macroscopic quantum system. There is also discussed relation with experiments of A. Zeilinger on interference of probabilities for macromoleculas.

  9. An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2010-10-01

    Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeterminism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.

  10. An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2010-10-01

    Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeter- minism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.

  11. The Source of the Quantum Vacuum

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-01-01

    Full Text Available The quantum vacuum consists of virtual particles randomly appearing and disappearing in free space. Ordinarily the wavenumber (or frequency spectrum of the zero-point fields for these virtual particles is assumed to be unbounded. The unbounded nature of the spectrum leads in turn to an infinite energy density for the quantum vacuum and an infinite renormalization mass for the free particle. This paper argues that there is a more fundamental vacuum state, the Planck vacuum, from which the quantum vacuum emerges and that the "graininess" of this more fundamental vacuum state truncates the wavenumber spectrum and leads to a finite energy density and a finite renormalization mass.

  12. The Source of the Quantum Vacuum

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-01-01

    Full Text Available The quantum vacuum consists of virtual particles randomly appearing and disappearing in free space. Ordinarily the wavenumber (or frequency spectrum of the zero-point fields for these virtual particles is assumed to be unbounded. The unbounded nature of the spectrum leads in turn to an infinite energy density for the quantum vacuum and an infinite renormalization mass for the free particle. This paper argues that there is a more fundamental vacuum state, the Planck vacuum, from which the quantum vacuum emerges and that the “graininess” of this more fundamental vacuum state truncates the wavenumber spectrum and leads to a finite energy density and a finite renormalization mass.

  13. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    DEFF Research Database (Denmark)

    Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...... space, and we prove experimentally that a coherent state contains these features with a distance in phase space of 0.51 +/- 0.02 shot noise units. This is surprising because coherent states are generally considered being at the border between classical and quantum states, not yet displaying any...

  14. The quantum interaction of macroscopic objects and gravitons

    Science.gov (United States)

    Piran, Tsvi

    2016-09-01

    Copious production of gravitational radiation requires a compact source that moves relativistically. Such sources are rare and are found only in extreme cases such as the formation of a black hole in either via a gravitational collapse or via a merger. Noncompact, nonrelativistic objects emit gravitational radiation, however, this emission is extremely weak due to very large value of the Planck energy. The quantum nature of gravitons, namely the fact that a single graviton carries energy of order ℏω implies that macroscopic objects whose kinetic energy is less than the Planck energy emit gravitons quantum mechanically, emitting a single graviton at a time. This is a unique situation in which a macroscopic object behaves quantum mechanically. While it is impossible to check experimentally this quantum gravitational effect, it might be possible to carry out analogous electromagnetic experiments that will shed light on this macroscopic quantum mechanical behavior.

  15. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    Science.gov (United States)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  16. Quantum statistical derivation of the macroscopic Maxwell equations

    NARCIS (Netherlands)

    Schram, K.

    1960-01-01

    The macroscopic Maxwell equations in matter are derived on a quantum statistical basis from the microscopic equations for the field operators. Both the density operator formalism and the Wigner distribution function method are discussed. By both methods it can be proved that the quantum statistical

  17. Macroscopic quantum phenomena from the large N perspective

    Science.gov (United States)

    Chou, C. H.; Hu, B. L.; Subaşi, Y.

    2011-07-01

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that there is no a priori

  18. Macroscopic quantum phenomena from the large N perspective

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C H [department of Physics, National Cheng Kung University, Tainan, Taiwan 701 (China) and National Center for Theoretical Sciences (South), Tainan, Taiwan 701 (China); Hu, B L; Subasi, Y, E-mail: hubeilok@gmail.com [Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2011-07-08

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that

  19. The origins of macroscopic quantum coherence in high temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Philip, E-mail: ph.turner@napier.ac.uk [Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom); Nottale, Laurent, E-mail: laurent.nottale@obspm.fr [CNRS, LUTH, Observatoire de Paris-Meudon, 5 Place Janssen, 92190 Meudon (France)

    2015-08-15

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  20. Macroscopic Quantum Phenomena from the Correlation, Coupling and Criticality Perspectives

    Science.gov (United States)

    Chou, C. H.; Hu, B. L.; Subaşi, Y.

    2011-12-01

    In this sequel paper we explore how macroscopic quantum phenomena can be measured or understood from the behavior of quantum correlations which exist in a quantum system of many particles or components and how the interaction strengths change with energy or scale, under ordinary situations and when the system is near its critical point. We use the nPI (master) effective action related to the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for systemizing the contributions of higher order correlation functions to the dynamics of lower order correlation functions. Together with the large N expansion discussed in our first paper [1] we explore 1) the conditions whereby an H-theorem is obtained, which can be viewed as a signifier of the emergence of macroscopic behavior in the system. We give two more examples from past work: 2) the nonequilibrium dynamics of N atoms in an optical lattice under the large Script N (field components), 2PI and second order perturbative expansions, illustrating how N and Script N enter in these three aspects of quantum correlations, coherence and coupling strength. 3) the behavior of an interacting quantum system near its critical point, the effects of quantum and thermal fluctuations and the conditions under which the system manifests infrared dimensional reduction. We also discuss how the effective field theory concept bears on macroscopic quantum phenomena: the running of the coupling parameters with energy or scale imparts a dynamical-dependent and an interaction-sensitive definition of 'macroscopia'.

  1. Applying quantum mechanics to macroscopic and mesoscopic systems

    CERN Document Server

    T., N Poveda

    2012-01-01

    There exists a paradigm in which Quantum Mechanics is an exclusively developed theory to explain phenomena on a microscopic scale. As the Planck's constant is extremely small, $h\\sim10^{-34}{J.s}$, and as in the relation of de Broglie the wavelength is inversely proportional to the momentum; for a mesoscopic or macroscopic object the Broglie wavelength is very small, and consequently the undulatory behavior of this object is undetectable. In this paper we show that with a particle oscillating around its classical trajectory, the action is an integer multiple of a quantum of action, $S = nh_{o}$. The quantum of action, $h_{o}$, which plays a role equivalent to Planck's constant, is a free parameter that must be determined and depends on the physical system considered. For a mesoscopic and macroscopic system: $h_{o}\\gg h$, this allows us to describe these systems with the formalism of quantum mechanics.

  2. Generation of a macroscopic entangled coherent state using quantum memories in circuit QED

    Science.gov (United States)

    Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco

    2016-01-01

    W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit. PMID:27562055

  3. Macroscopic Quantum Coherence in Magnetic Molecular Clusters

    Institute of Scientific and Technical Information of China (English)

    JIN Yan-Hong; NIE Yi-Hang; LIANG Jiu-Qing; PU Fu-Cho

    2001-01-01

    The oscillation of tunnel splitting in Fes molecular clusters is obtained as a function of magnetic field applied along the hard axis by means of the instanton method with both semiclassical treatment and the effective potential field description of the quantum spin system. The theoretical splittings of the instanton method are compared with the numerical result by diagonalization of spin Hamiltonian operators and experimental observations. By taking the appropriate parameters, our theoretical formula yields a result the same as the experimental observation.

  4. Macroscopic quantum oscillator based on a flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mandip, E-mail: mandip@iisermohali.ac.in

    2015-09-25

    In this paper a macroscopic quantum oscillator is proposed, which consists of a flux-qubit in the form of a cantilever. The net magnetic flux threading through the flux-qubit and the mechanical degrees of freedom of the cantilever are naturally coupled. The coupling between the cantilever and the magnetic flux is controlled through an external magnetic field. The ground state of the flux-qubit-cantilever turns out to be an entangled quantum state, where the cantilever deflection and the magnetic flux are the entangled degrees of freedom. A variant, which is a special case of the flux-qubit-cantilever without a Josephson junction, is also discussed. - Highlights: • In this paper a flux-qubit-cantilever is proposed. • Coupling can be varied by an external magnetic field. • Ground state is a macroscopic entangled quantum state. • Ground state of the superconducting-loop-oscillator is a macroscopic quantum superposition. • Proposed scheme is based on a generalized quantum approach.

  5. Approximating macroscopic observables in quantum spin systems with commuting matrices

    CERN Document Server

    Ogata, Yoshiko

    2011-01-01

    Macroscopic observables in a quantum spin system are given by sequences of spatial means of local elements $\\frac{1}{2n+1}\\sum_{j=-n}^n\\gamma_j(A_{i}), \\; n\\in{\\mathbb N},\\; i=1,...,m$ in a UHF algebra. One of their properties is that they commute asymptotically, as $n$ goes to infinity. It is not true that any given set of asymptotically commuting matrices can be approximated by commuting ones in the norm topology. In this paper, we show that for macroscopic observables, this is true.

  6. Decoherence of quantum states in QCD vacuum

    Science.gov (United States)

    Kuvshinov, V.; Bagashov, E.

    2017-09-01

    The stochastic vacuum of quantum chromodynamics is used as an environment for quarks considered as color state vectors. It is shown that during interaction with the stochastic vacuum information of the quark color state is lost with time (decoherence of the quark state vector occurs), which effectively means that it is impossible to observe the quark as a free color particle (confinement).

  7. Quantum-limited heat conduction over macroscopic distances

    Science.gov (United States)

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-05-01

    The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.

  8. Macroscopic superposition states and decoherence by quantum telegraph noise

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Benjamin Simon

    2008-12-19

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  9. Direct Observation of Spatial Quantum Correlations in the Macroscopic Regime

    CERN Document Server

    Kumar, Ashok; Marino, A M

    2016-01-01

    Spatial quantum correlations in the transverse degree of freedom promise to enhance optical resolution, image detection, and quantum communications through parallel quantum information encoding. In particular, the ability to observe these spatial quantum correlations in a single shot will enable such enhancements in applications that require real time imaging, such as particle tracking and in-situ imaging of atomic systems. Here, we report on the direct measurement of spatial quantum correlations in the macroscopic regime in single images using an electron-multiplying charge-coupled device camera. A four-wave mixing process in hot rubidium atoms is used to generate narrowband-bright-entangled pulsed twin-beams of light with $\\sim10^8$ photons in each beam. Owing to momentum conservation in this process, the twin-beams are momentum correlated, which leads to spatial quantum correlations in far field. We show around 2 dB of spatial quantum noise reduction with respect to the shot noise limit. The spatial squeez...

  10. Classical enhancement of quantum vacuum fluctuations

    CERN Document Server

    De Lorenci, V A

    2016-01-01

    We propose a mechanism for the enhancement of vacuum fluctuations by means of a classical field. The basic idea is that if an observable quantity depends quadratically upon a quantum field, such as the electric field, then the application of a classical field produces a cross term between the classical and quantum fields. This cross term may be significantly larger than the purely quantum part, but also undergoes fluctuations driven by the quantum field. We illustrate this effect in a model for lightcone fluctuations involving pulses in a nonlinear dielectric. Vacuum electric field fluctuations produce fluctuations in the speed of a probe pulse, and form an analog model for quantum gravity effects. If the material has a nonzero third-order susceptibility, then the fractional light speed fluctuations are proportional to the square of the fluctuating electric field. Hence the application of a classical electric field can enhance the speed fluctuations. We give an example where this enhancement can be an increas...

  11. Vector Potential Quantization and the Quantum Vacuum

    Directory of Open Access Journals (Sweden)

    Constantin Meis

    2014-01-01

    Full Text Available We investigate the quantization of the vector potential amplitude of the electromagnetic field to a single photon state starting from the fundamental link equations between the classical electromagnetic theory and the quantum mechanical expressions. The resulting wave-particle formalism ensures a coherent transition between the classical electromagnetic wave theory and the quantum representation. A quantization constant of the photon vector potential is defined. A new quantum vacuum description results directly in having very low energy density. The calculated spontaneous emission rate and Lambs shift for the nS states of the hydrogen atom are in agreement with quantum electrodynamics. This low energy quantum vacuum state might be compatible with recent astrophysical observations.

  12. Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States

    Science.gov (United States)

    Abdi, M.; Degenfeld-Schonburg, P.; Sameti, M.; Navarrete-Benlloch, C.; Hartmann, M. J.

    2016-06-01

    The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.

  13. True random numbers from amplified quantum vacuum

    CERN Document Server

    Jofre, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V; 10.1364/OE.19.020665

    2011-01-01

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up t...

  14. Tuned Transition from Quantum to Classical for Macroscopic Quantum States

    NARCIS (Netherlands)

    Fedorov, A.; Macha, P.; Feofanov, A.K.; Harmans, C.J.P.M.; Mooij, J.E.

    2011-01-01

    The boundary between the classical and quantum worlds has been intensely studied. It remains fascinating to explore how far the quantum concept can reach with use of specially fabricated elements. Here we employ a tunable flux qubit with basis states having persistent currents of 1  μA carried by a

  15. Quantum vacuum radiation in optical glass

    CERN Document Server

    Liberati, Stefano; Visser, Matt

    2011-01-01

    A recent experimental claim of the detection of analogue Hawking radiation in an optical system [PRL 105 (2010) 203901] has led to some controversy [PRL 107 (2011) 149401, 149402]. While this experiment strongly suggests some form of particle creation from the quantum vacuum (and hence it is per se very interesting), it is also true that it seems difficult to completely explain all features of the observations by adopting the perspective of a Hawking-like mechanism for the radiation. For instance, the observed photons are emitted parallel to the optical horizon, and the relevant optical horizon is itself defined in an unusual manner by combining group and phase velocities. This raises the question: Is this really Hawking radiation, or some other form of quantum vacuum radiation? Naive estimates of the amount of quantum vacuum radiation generated due to the rapidly changing refractive index --- sometimes called the dynamical Casimir effect --- are not encouraging. However we feel that naive estimates could be ...

  16. Anomalous vacuum energy and stability of a quantum liquid

    CERN Document Server

    Trachenko, K

    2016-01-01

    We show that the vacuum (zero-point) energy of a low-temperature quantum liquid is a variable property which changes with the state of the system, in notable contrast to the static vacuum energy in solids commonly considered. We further show that this energy is inherently anomalous: it decreases with temperature and gives negative contribution to system's heat capacity. This effect operates in an equilibrium and macroscopic system, in marked contrast to small or out-of-equilibrium configurations discussed previously. We find that the negative contribution is over-compensated by the positive term from the excitation of longitudinal fluctuations and demonstrate how the overall positive heat capacity is related to the stability of a condensed phase at the microscopic level.

  17. Macroscopic Quantum Phenomena from the Correlation, Coupling and Criticality Perspectives

    CERN Document Server

    Chou, C H; Subasi, Y

    2011-01-01

    In this sequel paper we explore how macroscopic quantum phenomena can be measured or understood from the behavior of quantum correlations which exist in a quantum system of many particles or components and how the interaction strengths change with energy or scale, under ordinary situations and when the system is near its critical point. We use the nPI (master) effective action related to the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for systemizing the contributions of higher order correlation functions to the dynamics of lower order correlation functions. Together with the large N expansion discussed in our first paper(MQP1) we explore 1) the conditions whereby an H-theorem is obtained, which can be viewed as a signifier of the emergence of macroscopic behavior in the system. We give two more examples from past work: 2) the nonequilibrium dynamics of N atoms in an optical lattice under the large $\\cal N$ (field components), 2PI and second order perturbative expansions, illustrating h...

  18. Single-atom quantum control of macroscopic mechanical oscillators

    Science.gov (United States)

    Bariani, F.; Otterbach, J.; Tan, Huatang; Meystre, P.

    2014-01-01

    We investigate a hybrid electromechanical system consisting of a pair of charged macroscopic mechanical oscillators coupled to a small ensemble of Rydberg atoms. The resonant dipole-dipole coupling between an internal atomic Rydberg transition and the mechanics allows cooling to its motional ground state with a single atom despite the considerable mass imbalance between the two subsystems. We show that the rich electronic spectrum of Rydberg atoms, combined with their high degree of optical control, paves the way towards implementing various quantum-control protocols for the mechanical oscillators.

  19. Investigating macroscopic quantum superpositions and the quantum-to-classical transition by optical parametric amplification

    CERN Document Server

    De Martini, Francesco

    2012-01-01

    The present work reports on an extended research endeavor focused on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. As it is well known, this intriguing, fundamental quantum condition is at the core of a famous argument conceived by Erwin Schroedinger, back in 1935. The main experimental challenge to the actual realization of this object resides generally on the unavoidable and uncontrolled interactions with the environment, i.e. the decoherence leading to the cancellation of any evidence of the quantum features associated with the macroscopic system. The present scheme is based on a nonlinear process, the "quantum injected optical parametric amplification", that maps by a linearized cloning process the quantum coherence of a single - particle state, i.e. a Micro - qubit, into a Macro - qubit, consisting in a large number M of photons in quantum superposition. Since the adopted scheme was found resilient to decoherence, the MQS\\ demonstration wa...

  20. Quantum teleportation of entangled squeezed vacuum states

    Institute of Scientific and Technical Information of China (English)

    蔡新华

    2003-01-01

    An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.

  1. Geometrodynamics, Inertia and the Quantum Vacuum

    CERN Document Server

    Haisch, B; Haisch, Bernard; Rueda, Alfonso

    2001-01-01

    Why does {\\bf F} equal m{\\bf a} in Newton's equation of motion? How does a gravitational field produce a force? Why are inertial mass and gravitational mass the same? It appears that all three of these seemingly axiomatic foundational questions have an answer involving an identical physical process: interaction between the electromagnetic quantum vacuum and the fundamental charged particles (quarks and electrons) constituting matter. All three of these effects and equalities can be traced back to the appearance of a specific asymmetry in the otherwise uniform and isotropic electromagnetic quantum vacuum. This asymmetry gives rise to a non-zero Poynting vector from the perspective of an accelerating object. We call the resulting energy-momentum flux the {\\it Rindler flux}. The key insight is that the asymmetry in an accelerating reference frame in flat spacetime is identical to that in a stationary reference frame (one that is not falling) in curved spacetime. Therefore the same Rindler flux that creates inert...

  2. True random numbers from amplified quantum vacuum.

    Science.gov (United States)

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  3. Macroscopic quantum electrodynamics of high-Q cavities

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, Mikayel

    2009-10-27

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the

  4. Macroscopic quantum electrodynamics of high-Q cavities

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, Mikayel

    2009-10-27

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the

  5. The quantum vacuum in electromagnetic fields: From the Heisenberg-Euler effective action to vacuum birefringence

    CERN Document Server

    Karbstein, Felix

    2016-01-01

    The focus of these lectures is on the quantum vacuum subjected to classical electromagnetic fields. To this end we explicitly derive the renowned Heisenberg-Euler effective action in constant electromagnetic fields in a rather pedagogical and easy to conceive way. As an application, we use it to study vacuum birefringence constituting one of the most promising optical signatures of quantum vacuum nonlinearity.

  6. A Model for Macroscopic Quantum Tunneling of Bose-Einstein Condensate with Attractive Interaction

    Institute of Scientific and Technical Information of China (English)

    YAN Ke-Zhu; TAN Wei-Han

    2000-01-01

    Based on the numerical wave function solutions of neutral atoms with attractive interaction in a harmonic trap, we propose an exactly solvable model for macroscopic quantum tunneling of a Bose condensate with attractive interaction. We calculate the rate of macroscopic quantum tunneling from a metastable condensate state to the collapse state and analyze the stability of the attractive Bose-Einstein condensation.

  7. Tunable Broadband Transparency of Macroscopic Quantum Superconducting Metamaterials

    Directory of Open Access Journals (Sweden)

    Daimeng Zhang

    2015-12-01

    Full Text Available Narrow-band invisibility in an otherwise opaque medium has been achieved by electromagnetically induced transparency (EIT in atomic systems. The quantum EIT behavior can be classically mimicked by specially engineered metamaterials via carefully controlled interference with a “dark mode.” However, the narrow transparency window limits the potential applications that require a tunable wideband transparent performance. Here, we present a macroscopic quantum superconducting metamaterial with manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional EIT or its classical analogs. A near-complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bistability of the meta-atoms and can be tuned on and off easily by altering rf and dc magnetic fields, temperature, and history. Hysteretic in situ 100% tunability of transparency paves the way for autocloaking metamaterials, intensity-dependent filters, and fast-tunable power limiters.

  8. Gravitational wave echoes from macroscopic quantum gravity effects

    Science.gov (United States)

    Barceló, Carlos; Carballo-Rubio, Raúl; Garay, Luis J.

    2017-05-01

    New theoretical approaches developed in the last years predict that macroscopic quantum gravity effects in black holes should lead to modifications of the gravitational wave signals expected in the framework of classical general relativity, with these modifications being characterized in certain scenarios by the existence of dampened rep-etitions of the primary signal. Here we use the fact that non-perturbative corrections to the near-horizon external geometry of black holes are necessary for these modifications to exist, in order to classify different proposals and paradigms with respect to this criterion and study in a neat and systematic way their phenomenology. Proposals that lead naturally to the existence of echoes in the late-time ringdown of gravitational wave signals from black hole mergers must share the replacement of black holes by horizonless configurations with a physical surface showing reflective properties in the relevant range of frequencies. On the other hand, proposals or paradigms that restrict quantum gravity effects on the external geometry to be perturbative, such as black hole complementarity or the closely related firewall proposal, do not display echoes. For the sake of completeness we exploit the interplay between the timescales associated with the formation of firewalls and the mechanism behind the existence of echoes in order to conclude that even unconventional distortions of the firewall concept (such as naked firewalls) do not lead to this phenomenon.

  9. Quantum correlations with vacuum ambiguity in de Sitter space

    CERN Document Server

    Feng, Jun; Yang, Wen-Li; Zhang, Yao-Zhong; Fan, Heng

    2012-01-01

    We study the quantum correlations of free scalar field with vacuum ambiguity of de Sitter space. We show the occurrence of degradation of quantum entanglement and quantum discord between field modes for inertial observer in curved space due to the radiation associated with cosmological horizon. In particular, we find that quantum correlations can be used to encode infinite de Sitter invariant vacua, which correspond to infinite set of possible physical worlds. This may provide a superselection rule of physical vacuum via quantum information tasks. We also discuss the simulation of such quantum effects of vacuum ambiguity in ion trap experiments.

  10. Chiral vacuum fluctuations in quantum gravity

    CERN Document Server

    Magueijo, Joao

    2010-01-01

    We examine tensor perturbations around a deSitter background within the framework of Ashtekar's variables and cousins parameterized by the Immirzi parameter $\\gamma$. At the classical level we recover standard cosmological perturbation theory, with illuminating insights. Quantization leads to real novelties. In the low energy limit we find a second quantized theory of gravitons which displays different vacuum fluctuations for right and left gravitons. Nonetheless right and left gravitons have the same (positive) energies, resolving a number of paradoxes suggested in the literature. The right-left asymmetry of the vacuum fluctuations depends on $\\gamma$ and the ordering of the Hamiltonian constraint, and it would leave a distinctive imprint in the polarization of the cosmic microwave background, thus opening quantum gravity to observational test.

  11. Chiral Vacuum Fluctuations in Quantum Gravity

    Science.gov (United States)

    Magueijo, João; Benincasa, Dionigi M. T.

    2011-03-01

    We examine tensor perturbations around a de Sitter background within the framework of Ashtekar’s variables and its cousins parameterized by the Immirzi parameter γ. At the classical level we recover standard cosmological perturbation theory, with illuminating insights. Quantization leads to real novelties. In the low energy limit we find a second quantized theory of gravitons which displays different vacuum fluctuations for right and left gravitons. Nonetheless right and left gravitons have the same (positive) energies, resolving a number of paradoxes suggested in the literature. The right-left asymmetry of the vacuum fluctuations depends on γ and the ordering of the Hamiltonian constraint, and it would leave a distinctive imprint in the polarization of the cosmic microwave background, thus opening quantum gravity to observational test.

  12. The quantum vacuum a scientific and philosophical concept, from electrodynamics to string theory and the geometry of the microscopic world

    CERN Document Server

    Boi, Luciano

    2011-01-01

    A vacuum, classically understood, contains nothing. The quantum vacuum, on the other hand, is a seething cauldron of nothingness: particle pairs going in and out of existence continuously and rapidly while exerting influence over an enormous range of scales. Acclaimed mathematical physicist and natural philosopher Luciano Boi expounds the quantum vacuum, exploring the meaning of nothingness and its relationship with physical reality. Boi first provides a deep analysis of the interaction between geometry and physics at the quantum level. He next describes the relationship between the microscopic and macroscopic structures of the world. In so doing, Boi sheds light on the very nature of the universe, stressing in an original and profound way the relationship between quantum geometry and the internal symmetries underlying the behavior of matter and the interactions of forces. Beyond the physics and mathematics of the quantum vacuum, Boi offers a profoundly philosophical interpretation of the concept. Plato and...

  13. Macroscopic quantum superposition of spin ensembles with ultra-long coherence times via superradiant masing

    CERN Document Server

    Jin, Liang; Wrachtrup, Jörg; Liu, Ren-Bao

    2014-01-01

    Macroscopic quantum phenomena such as lasers, Bose-Einstein condensates, superfluids, and superconductors are of great importance in foundations and applications of quantum mechanics. In particular, quantum superposition of a large number of spins in solids is highly desirable for both quantum information processing and ultrasensitive magnetometry. Spin ensembles in solids, however, have rather short collective coherence time (typically less than microseconds). Here we demonstrate that under realistic conditions it is possible to maintain macroscopic quantum superposition of a large spin ensemble (such as about ~10^{14} nitrogen-vacancy center electron spins in diamond) with an extremely long coherence time ~10^8 sec under readily accessible conditions. The scheme, following the mechanism of superradiant lasers, is based on superradiant masing due to coherent coupling between collective spin excitations (magnons) and microwave cavity photons. The coherence time of the macroscopic quantum superposition is the ...

  14. Quantum fluctuations, gauge freedom and mesoscopic/macroscopic stability

    Energy Technology Data Exchange (ETDEWEB)

    Del Giudice, E [Istituto Nazionale di Fisica Nucleare, Via Celoria 16, I-20133 Milan (Italy); Vitiello, G [Dipartimento di Matematica e Informatica, Universita di Salerno and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Salerno, 84100 Salerno (Italy)

    2007-11-15

    We study how the mesoscopic/macroscopic stability of coherent extended domains is generated out of the phase locking between gauge field and matter field. The role of the radiative gauge field in sustaining the coherent regime is discussed.

  15. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    Science.gov (United States)

    Hou, P.-Y.; Huang, Y.-Y.; Yuan, X.-X.; Chang, X.-Y.; Zu, C.; He, L.; Duan, L.-M.

    2016-05-01

    With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6+/-1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science.

  16. Quantum hoop conjecture and a natural cutoff for vacuum energy

    CERN Document Server

    Yang, Rong-Jia

    2015-01-01

    We propose here a quantum hoop conjecture which states: the de Broglie wavelength of a quantum system can not be infinitely small, otherwise it will collapse into a quantum black hole. Based on this conjecture, we find an upper bound for the wave number of a particle, which offers a natural cutoff for the vacuum energy.

  17. Numerical model for macroscopic quantum superpositions based on phase-covariant quantum cloning

    CERN Document Server

    Buraczewski, Adam

    2011-01-01

    We present a numerical model of macroscopic quantum superpositions generated by universally covariant optimal quantum cloning. It requires fast computation of the Gaussian hypergeometric function for moderate values of its parameters and argument as well as evaluation of infinite sums involving this function. We developed a method of dynamical estimation of cutoff for these sums. We worked out algorithms performing efficient summation of values of orders ranging from $10^{-100}$ to $10^{100}$ which neither lose precision nor accumulate errors, but provide the summation with acceleration. Our model is well adapted to experimental conditions. It optimizes computation by parallelization and choice of the most efficient algorithm. The methods presented here can be adjusted for analysis of similar experimental schemes. Including decoherence and realistic detection greatly improved the reliability and usability of our model for scientific research.

  18. Stimulating Uncertainty: Amplifying the Quantum Vacuum with Superconducting Circuits

    CERN Document Server

    Nation, P D; Blencowe, M P; Nori, Franco

    2011-01-01

    The ability to generate particles from the quantum vacuum is one of the most pro- found consequences of Heisenberg's uncertainty principle. Although the significance of vacuum fluctuations can be seen throughout physics, the experimental realization of vacuum amplification effects has until now been limited to a few cases. Superconducting circuit devices, driven by the goal to achieve a viable quantum computer, may soon be able to realize the elusive verification of the dynamical Casimir effect and analogue Hawking radiation. This article describes several mechanisms for generating photons from the quantum vacuum and emphasizes their connection to the well-known parametric amplifier from quantum optics. Discussed in detail is the possible realization of each mechanism, or its analogue, in superconducting circuit systems. The ability to selectively engineer these circuit devices highlights the relationship between the various amplification mechanisms.

  19. Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits

    Science.gov (United States)

    Nation, P. D.; Johansson, J. R.; Blencowe, M. P.; Nori, Franco

    2012-01-01

    The ability to generate particles from the quantum vacuum is one of the most profound consequences of Heisenberg’s uncertainty principle. Although the significance of vacuum fluctuations can be seen throughout physics, the experimental realization of vacuum amplification effects has until now been limited to a few cases. Superconducting circuit devices, driven by the goal to achieve a viable quantum computer, have been used in the experimental demonstration of the dynamical Casimir effect, and may soon be able to realize the elusive verification of analog Hawking radiation. This Colloquium article describes several mechanisms for generating photons from the quantum vacuum and emphasizes their connection to the well-known parametric amplifier from quantum optics. Discussed in detail is the possible realization of each mechanism, or its analog, in superconducting circuit systems. The ability to selectively engineer these circuit devices highlights the relationship between the various amplification mechanisms.

  20. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    Science.gov (United States)

    Hou, Panyu; Huang, Yuanyuan; Yuan, Xinxing; Chang, Xiuying; Zu, Chong; He, Li; Duan, Luming; CenterQuantum Information, IIIS, Tsinghua University, Beijing 100084, PR China Team; Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA Team

    2016-05-01

    Quantum teleportation is an unusual disembodied form of quantum information transfer through pre-shared entanglement and classical communication, which has found important applications for realization of various quantum technologies. It is of both fundamental interest and practical importance to push quantum teleportation towards macroscopic objects. With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Built on the recent remarkable progress in optical control of motional states in diamond, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum state tomography, we demonstrate an average teleportation fidelity (90.6 +/- 1.0)%, exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for quantum foundational studies, optomechanical quantum control and quantum information science. Center for Quantum Information, IIIS, Tsinghua University.

  1. Quantum vacuum effects from boundaries of designer potentials

    NARCIS (Netherlands)

    Konopka, T.J.

    2009-01-01

    Vacuum energy in quantum field theory, being the sum of zero-point energies of all field modes, is formally infinite but yet, after regularization or renormalization, can give rise to finite observable effects. One way of understanding how these effects arise is to compute the vacuum energy in an id

  2. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles

    Science.gov (United States)

    Liao, Wen-Te; Keitel, Christoph H.; Pálffy, Adriana

    2016-09-01

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.

  3. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles.

    Science.gov (United States)

    Liao, Wen-Te; Keitel, Christoph H; Pálffy, Adriana

    2016-09-19

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.

  4. On Macroscopic Quantum Phenomena in Biomolecules and Cells: From Levinthal to Hopfield

    Directory of Open Access Journals (Sweden)

    Dejan Raković

    2014-01-01

    Full Text Available In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semiclassically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well.

  5. On Macroscopic Quantum Phenomena in Biomolecules and Cells: From Levinthal to Hopfield

    Science.gov (United States)

    Raković, Dejan; Dugić, Miroljub; Jeknić-Dugić, Jasmina; Plavšić, Milenko; Jaćimovski, Stevo; Šetrajčić, Jovan

    2014-01-01

    In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semi)classically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled) biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well). PMID:25028662

  6. Continuity of the entropy of macroscopic quantum systems

    Science.gov (United States)

    Swendsen, Robert H.

    2015-11-01

    The proper definition of entropy is fundamental to the relationship between statistical mechanics and thermodynamics. It also plays a major role in the recent debate about the validity of the concept of negative temperature. In this paper, I analyze and calculate the thermodynamic entropy for large but finite quantum mechanical systems. A special feature of this analysis is that the thermodynamic energy of a quantum system is shown to be a continuous variable, rather than being associated with discrete energy eigenvalues. Calculations of the entropy as a function of energy can be carried out with a Legendre transform of thermodynamic potentials obtained from a canonical ensemble. The resultant expressions for the entropy are able to describe equilibrium between quantum systems having incommensurate energy-level spacings. This definition of entropy preserves all required thermodynamic properties, including satisfaction of all postulates and laws of thermodynamics. It demonstrates the consistency of the concept of negative temperature with the principles of thermodynamics.

  7. Broadband detection of squeezed vacuum A spectrum of quantum states

    CERN Document Server

    Breitenbach, G; Schiller, S; Mlynek, J; Breitenbach, Gerd; Illuminati, Fabrizio; Schiller, Stephan; Mlynek, Jurgen

    1998-01-01

    We demonstrate the simultaneous quantum state reconstruction of the spectral modes of the light field emitted by a continuous wave degenerate optical parametric amplifier. The scheme is based on broadband measurement of the quantum fluctuations of the electric field quadratures and subsequent Fourier decomposition into spectral intervals. Applying the standard reconstruction algorithms to each bandwidth-limited quantum trajectory, a "spectrum" of density matrices and Wigner functions is obtained. The recorded states show a smooth transition from the squeezed vacuum to a vacuum state. In the time domain we evaluated the first order correlation function of the squeezed output field, showing good agreement with the theory.

  8. Strict Holism in a Quantum Superposition of Macroscopic States

    CERN Document Server

    De Barros, J A; Suppes, Patrick

    2000-01-01

    We show that some N-particle quantum systems are holistic, such that the system is deterministic, whereas its parts are random. The total correlation is not sufficient to determine the probability distribution, showing a need for extra measurements. We propose a formal definition of holism not based on separability.

  9. Macroscopic quantum tunneling in π Josephson junctions with insulating ferromagnets and its application to phase qubits

    NARCIS (Netherlands)

    Kawabata, Shiro; Golubov, Alexander A.

    2007-01-01

    We theoretically investigate macroscopic quantum tunneling (MQT) in a current-biased π junction with a superconductor (S) and an insulating ferromagnet (IF). By using the functional integral method and the instanton approximation, the influence of the quasiparticle dissipation on MQT is found to be

  10. Microscopic and macroscopic polarization within a combined quantum mechanics and molecular mechanics model

    NARCIS (Netherlands)

    Jensen, L; Swart, M; van Duijnen, PT

    2005-01-01

    A polarizable quantum mechanics and molecular mechanics model has been extended to account for the difference between the macroscopic electric field and the actual electric field felt by the solute molecule. This enables the calculation of effective microscopic properties which can be related to mac

  11. Macroscopic Quantum Superposition States in a Model of Photon-Supersonic Phonon Interaction

    Institute of Scientific and Technical Information of China (English)

    CHAI Jin-Hua; WANG Yan-Bang; LU Yi-Qun

    2000-01-01

    A model of photon-hypersonic phonon interaction is proposed. The evolution of macroscopic quantum superpo sition states is analyzed, including the wave function and number distribution. It is shown that a superposition state of hypersonic phonon modes can be generated in the case of nondetuning and no losses.

  12. Macroscopic Quantum-Type Potentials in Theoretical Systems Biology

    Directory of Open Access Journals (Sweden)

    Laurent Nottale

    2013-12-01

    Full Text Available We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space—or of the underlying medium—can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations—geodesic, quantum-like, fluid mechanical, stochastic—of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided.

  13. Simulations of light-light scattering in quantum vacuum

    Science.gov (United States)

    Carneiro, Pedro; Grismayer, Thomas; Silva, LuíS.; Fonseca, Ricardo

    2016-10-01

    Facilities such as the Extreme Light Infrastructure (ELI) or the VULCAN 20 PW project, as well as the Petta-Watt SLAC project, coupled with the x-ray LCLSII source will allow to perform the first experiments on the probing of quantum vacuum. In our work, we developed a numerical method to self-consistently solve the nonlinear system of Maxwell's equations including quantum corrections of vacuum polarization. The robustness of our algorithm allied to the ability to integrate this tool within a particle-in-cell (PIC) method, represents an important milestone in modeling future planned experiments to prove the existence of the quantum vacuum. Such experiments aim to measure the induced ellipticity on a x-ray pulse after probing a strong optical pump due to the quantum vacuum fluctuations. We present simulation results of both the ellipticity induced and polarization rotation, using realistic laser parameters of the Petta-Watt SLAC project, and the x-ray LCLSII source, whilst taking into account all finite-size multi-dimensional effects. We show how the ellipticity induced varies as a function of the distance to the axis of the beam, proving the importance of taking into account finite-size effects. This work serves as an important tool to complement existing efforts within the community to probe the effects of the quantum vacuum, in the strong field regime, for the first time.

  14. Macroscopic locality with equal bias reproduces with high fidelity a quantum distribution achieving the Tsirelson's bound

    Science.gov (United States)

    Gazi, Md. Rajjak; Banik, Manik; Das, Subhadipa; Rai, Ashutosh; Kunkri, Samir

    2013-11-01

    Two physical principles, macroscopic locality (ML) and information causality (IC), so far have been most successful in distinguishing quantum correlations from post-quantum correlations. However, there are also some post-quantum probability distributions which cannot be distinguished with the help of these principles. Thus, it is interesting to see whether consideration of these two principles, separately, along with some additional physically plausible constraints, can explain some interesting quantum features which are otherwise hard to reproduce. In this paper we show that in a Bell-Clauser-Horne-Shimony-Holt scenario, ML along with the constraint of equal bias for the concerned observables, almost reproduces the quantum joint probability distribution corresponding to a maximal quantum Bell violation, which is unique up to relabeling. From this example and earlier work of Cavalcanti, Salles, and Scarani, we conclude that IC and ML are inequivalent physical principles; satisfying one does not imply that the other is satisfied.

  15. Vacuum Rabi spectra of a single quantum emitter

    CERN Document Server

    Ota, Yasutomo; Kumagai, Naoto; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-01-01

    We report the observation of the vacuum Rabi splitting of a single quantum emitter by measuring its direct spontaneous emission into free space. We used a semiconductor quantum dot inside a photonic crystal nanocavity, in conjunction with an appropriate cavity design and filtering with a polarizer and an aperture, enabling the extraction of the inherently-weak emitter's signal. The emitter's vacuum Rabi spectra exhibit clear differences to those measured by detecting the cavity photon leakage. Moreover, we observed an asymmetric vacuum Rabi spectrum induced by interference between the emitter and cavity detection channels. Our observations lay the groundwork for accessing various cavity quantum electrodynamics phenomena that manifest themselves only in the emitter's direct spontaneous emission.

  16. Metastable states and macroscopic quantum tunneling in a cold atom josephson ring

    Energy Technology Data Exchange (ETDEWEB)

    Solenov, Dmitry [Los Alamos National Laboratory; Mozyrsky, Dmitry [Los Alamos National Laboratory

    2009-01-01

    We study macroscopic properties of a system of weakly interacting neutral bosons confined in a ring-shaped potential with a Josephson junction. We derive an effective low energy action for this system and evaluate its properties. In particular we find that the system possesses a set of metastable current-carrying states and evaluate the rates of transitions between these states due to macroscopic quantum tunneling. Finally we discuss signatures of different metastable states in the time-of-flight images and argue that the effect is observable within currently available experimental technique.

  17. Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states.

    Science.gov (United States)

    Iftikhar, Z; Jezouin, S; Anthore, A; Gennser, U; Parmentier, F D; Cavanna, A; Pierre, F

    2015-10-08

    Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.

  18. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.

    Science.gov (United States)

    Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D

    2015-11-01

    Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.

  19. Thermal Equilibrium of a Macroscopic Quantum System in a Pure State

    Science.gov (United States)

    Goldstein, Sheldon; Huse, David A.; Lebowitz, Joel L.; Tumulka, Roderich

    2015-09-01

    We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.

  20. A model for the quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Joffily, S. [ICRA/CBPF, Rua Dr. Xavier Sigaud, 150 Rio de Janeiro, RJ (Brazil)]. E-mail joffily@cbpf.br

    2007-06-15

    Following our recent works [S. Joffily, Jost function, prime numbers and Riemann zeta function, Contribution to Roberto Salmeron Festschrift, eds. by R. Aldrovandi, et al., AIAFEX, Rio de Janeiro, 2003, math-ph/0303014, S. Joffily, 'The Riemann Zeta Function and Vacuum Spectrum', Proceedings of Science, PoS (WC2004) 026, hep-th/0412217] where it was suggested a 'potential scattering' Hilbert-Polya conjecture, such that the nontrivial zeros of Riemann's zeta function could be put in one-to-one correspondence with the zeros of the s-wave Jost function for finite range potentials in the complex momenta plane, we extend our investigation to a relativistic S matrix for a Dirac particle scattering. We then present a description of the vacuum structure as being a dynamical system described by 'virtual resonances', completely independent of the second quantization.

  1. Quantum dynamics of a macroscopic magnet operating as an environment of a mechanical oscillator

    Science.gov (United States)

    Foti, C.; Cuccoli, A.; Verrucchi, P.

    2016-12-01

    We study the dynamics of a bipartite quantum system in a way such that its formal description keeps holding even if one of its parts becomes macroscopic; the problem is related to the analysis of the quantum-to-classical crossover, but our approach implies that the whole system stays genuinely quantum. The aim of the work is to understand (1) if, (2) to what extent, and possibly (3) how the evolution of a macroscopic environment testifies to the coupling with its microscopic quantum companion. To this purpose we consider a magnetic environment made of a large number of spin-1/2 particles, coupled with a quantum mechanical oscillator, possibly in the presence of an external magnetic field. We take the value of the total environmental spin S constant and large, which allows us to consider the environment as one single macroscopic system, and further deal with the hurdles of the spin-algebra via approximations that are valid in the large-S limit. We find an insightful expression for the propagator of the whole system, where we identify an effective "back-action" term, i.e., an operator acting on the magnetic environment only, and yet missing in the absence of the quantum principal system. This operator emerges as a time-dependent magnetic anisotropy whose character, whether uniaxial or planar, also depends on the detuning between the frequency of the oscillator and the level splitting in the spectrum of the free magnetic system, induced by the possible presence of the external field. The time dependence of the anisotropy is analyzed, and its effects on the dynamics of the magnet, as well as its relation to the entangling evolution of the overall system, are discussed.

  2. Detecting Current Noise with a Josephson Junction in the Macroscopic Quantum Tunneling Regime

    OpenAIRE

    Peltonen, J. T.; Timofeev, A. V.; Meschke, M.; Pekola, J.P.

    2006-01-01

    We discuss the use of a hysteretic Josephson junction to detect current fluctuations with frequencies below the plasma frequency of the junction. These adiabatic fluctuations are probed by switching measurements observing the noise-affected average rate of macroscopic quantum tunneling of the detector junction out of its zero-voltage state. In a proposed experimental scheme, frequencies of the noise are limited by an on-chip filtering circuit. The third cumulant of current fluctuations at the...

  3. Macroscopic Quantum Phenomena and Topological Phase Interference Effects in Single-Domain Magnets

    Institute of Scientific and Technical Information of China (English)

    L(U) Rong; ZHU Jialin

    2001-01-01

    The tunneling of macroscopic object is one of the most fascinating phenomena in condensed matter physics.During the last decade,the problem of quantum tunneling of magnetization in nanometer-scale magnets has attracted a great deal of theoretical and experimental interest.A review of recent theoretical research of the macroscopic quantum phenomena in nanometer-scale single-domain magnets is presented in this paper.It includes macroscopic quantum tunneling (MQT) and coherence (MQC) in single-domain magnetic particles,the topological phase interference or spin-parity effects,and tunneling of magnetization in an arbitrarily directed magnetic field.The general formulas are shown to evaluate the tunneling rate and the tunneling level splitting for single-domain AFM particles.A nontrivial generalization of Kramers degeneracy for double-well system is provided to coherently spin tunneling for spin systems with m-fold rotational symmetry.The effects induced by the external magnetic field have been studied,where the field is along the easy,medium,hard axis,or arbitrary direction.

  4. Properties of the false vacuum as the quantum unstable state

    CERN Document Server

    Urbanowski, K

    2016-01-01

    We analyze properties of unstable vacuum states from the point of view of the quantum theory. In the literature one can find some suggestions that some of false (unstable) vacuum states may survive up to times when their survival probability has a non-exponential form. At asymptotically late times the survival probability as a function of time $t$ has an inverse power--like form. We show that at this time region the energy of the false vacuum states tends to the energy of the true vacuum state as $1/t^{2}$ for $t \\to \\infty$. This means that the energy density in the unstable vacuum state should have analogous properties and hence the cosmological constant $\\Lambda = \\Lambda (t)$ too. The conclusion is that $\\Lambda$ in the Universe with the unstable vacuum should have a form of the sum of the "bare" cosmological constant and of the term of a type $1/t^{2}$: $\\Lambda(t) \\equiv \\Lambda_{bare} + d/ t^{2}$ (where $\\Lambda_{bare}$ is the cosmological constant for the Universe with the true vacuum).

  5. The quantum vacuum at the foundations of classical electrodynamics

    CERN Document Server

    Leuchs, G; Sánchez-Soto, L L

    2010-01-01

    In the classical theory of electromagnetism, the permittivity and the permeability of free space are constants whose magnitudes do not seem to possess any deeper physical meaning. By replacing the free space of classical physics with the quantum notion of the vacuum, we speculate that the values of the aforementioned constants could arise from the polarization and magnetization of virtual pairs in vacuum. A classical dispersion model with parameters determined by quantum and particle physics is employed to estimate their values. We find the correct orders of magnitude. Additionally, our simple assumptions yield an independent estimate for the number of charged elementary particles based on the known values of the permittivity and the permeability, and for the volume of a virtual pair. Such interpretation would provide an intriguing connection between the celebrated theory of classical electromagnetism and the quantum theory in the weak field limit.

  6. Microscopic and macroscopic polarization within a combined quantum mechanics and molecular mechanics model.

    Science.gov (United States)

    Jensen, L; Swart, Marcel; van Duijnen, Piet Th

    2005-01-15

    A polarizable quantum mechanics and molecular mechanics model has been extended to account for the difference between the macroscopic electric field and the actual electric field felt by the solute molecule. This enables the calculation of effective microscopic properties which can be related to macroscopic susceptibilities directly comparable with experimental results. By separating the discrete local field into two distinct contribution we define two different microscopic properties, the so-called solute and effective properties. The solute properties account for the pure solvent effects, i.e., effects even when the macroscopic electric field is zero, and the effective properties account for both the pure solvent effects and the effect from the induced dipoles in the solvent due to the macroscopic electric field. We present results for the linear and nonlinear polarizabilities of water and acetonitrile both in the gas phase and in the liquid phase. For all the properties we find that the pure solvent effect increases the properties whereas the induced electric field decreases the properties. Furthermore, we present results for the refractive index, third-harmonic generation (THG), and electric field induced second-harmonic generation (EFISH) for liquid water and acetonitrile. We find in general good agreement between the calculated and experimental results for the refractive index and the THG susceptibility. For the EFISH susceptibility, however, the difference between experiment and theory is larger since the orientational effect arising from the static electric field is not accurately described.

  7. Quantum Bubble Nucleation beyond WKB Resummation of Vacuum Bubble Diagrams

    CERN Document Server

    Suzuki, H; Suzuki, Hiroshi; Yasuta, Hirofumi

    1998-01-01

    On the basis of Borel resummation, we propose a systematical improvement of bounce calculus of quantum bubble nucleation rates. We study a metastable super-renormalizable field theory, D dimensional O(N) symmetric \\phi^4 model (D<4) with an attractive interaction. The validity of our proposal is tested in D=1 (quantum mechanics) by using the perturbation series of ground state energy to high orders. We also present a result in D=2 based on an explicit calculation of vacuum bubble diagrams to five loop orders.

  8. Macroscopic effect of quantum gravity: graviton, ghost and instanton condensation on horizon scale of the Universe

    CERN Document Server

    Marochnik, Leonid; Vereshkov, Grigory

    2013-01-01

    We discuss a special class of quantum gravity phenomena that occur on the scale of the Universe as a whole at any stage of its evolution. These phenomena are a direct consequence of the zero rest mass of gravitons, conformal non-invariance of the graviton field, and one-loop finiteness of quantum gravity. The effects are due to graviton-ghost condensates arising from the interference of quantum coherent states. Each of coherent states is a state of gravitons and ghosts of a wavelength of the order of the horizon scale and of different occupation numbers. The state vector of the Universe is a coherent superposition of vectors of different occupation numbers. To substantiate the reliability of macroscopic quantum effects, the formalism of one-loop quantum gravity is discussed in detail. The theory is constructed as follows: Faddeev-Popov path integral in Hamilton gauge -> factorization of classical and quantum variables, allowing the existence of a self-consistent system of equations for gravitons, ghosts and m...

  9. No survival of Nonlocalilty of fermionic quantum states with alpha vacuum in the infinite acceleration limit

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Younghun, E-mail: yyhkwon@hanyang.ac.kr

    2015-09-02

    In this article, we investigate the nonlocal behavior of the quantum state of fermionic system having the alpha vacuum. We evaluate the maximum violation of CHSH inequality in the quantum state. Even when the maximally entangled quantum state is initially shared it cannot violate the CHSH inequality, regardless of any alpha vacuum, when the infinite acceleration is applied. It means that the nonlocality of the quantum state in fermionic system with the alpha vacuum cannot survive in the infinite acceleration limit.

  10. Dielectric Anomaly in Ice near 20 K; Evidence of Macroscopic Quantum Phenomena

    CERN Document Server

    Yen, Fei

    2015-01-01

    H2O is one of the most important substances needed in sustaining life; but yet not much is known about its ground state. Here, a previously unidentified anomaly is identified in the form of a minimum in the imaginary part of the dielectric constant with respect to temperature near 20 K while the real part remains monotonic. Isothermal dispersion and absorption measurements show coinciding results. For the case of heavy ice (D2O), no anomaly was identified confirming an apparent isotope effect. Concerted quantum tunneling of protons is believed to be the main cause behind the reported anomaly. Our findings identify another system that exhibits macroscopic quantum phenomena of which rarely occur in nature.

  11. Pass-through Mach-Zehnder topologies for macroscopic quantum measurements

    CERN Document Server

    Khalili, F Ya

    2011-01-01

    Several relatively small-scale experimental setups aimed on prototyping of future laser gravitational-wave detectors and testing of new methods of quantum measurements with macroscopic mechanical objects, are under development now. In these devices, not devoted directly to the gravitational-wave detection, Mach-Zehnder interferometer with pass-through Fabry-Perot cavities in the arms can be used instead of the standard Michelson/Fabry-Perot one. The advantage of this topology is that it does not contain high-reflectivity end mirrors with multilayer coatings, which Brownian noise could constitute the major part of the noise budget of the Michelson/Fabry-Perot interferometers. We consider here two variants of this topology: the "ordinary" position meter scheme, and a new variant of the quantum speed meter.

  12. Vacuum CGHS in loop quantum gravity and singularity resolution

    CERN Document Server

    Corichi, Alejandro; Rastgoo, Saeed

    2016-01-01

    We study here a complete quantization of a Callan-Giddings-Harvey-Strominger (CGHS) vacuum model following loop quantum gravity techniques. Concretely, we adopt a formulation of the model in terms of a set of new variables that resemble the ones commonly employed in spherically symmetric loop quantum gravity. The classical theory consists of two pairs of canonical variables plus a scalar and diffeomorphism (first class) constraints. We consider a suitable redefinition of the Hamiltonian constraint such that the new constraint algebra (with structure constants) is well adapted to the Dirac quantization approach. For it, we adopt a polymeric representation for both the geometry and the dilaton field. On the one hand, we find a suitable invariant domain of the scalar constraint operator, and we construct explicitly its solution space. There, the eigenvalues of the dilaton and the metric operators cannot vanish locally, allowing us to conclude that singular geometries are ruled out in the quantum theory. On the o...

  13. Microscopic quantum structure of black hole and vacuum versus quantum statistical origin of gravity

    CERN Document Server

    Wang, Shun-Jin

    2012-01-01

    The Planckon densely piled model of vacuum is proposed. Based on it, the microscopic quantum structure of Schwarzschild black hole and quantum statistical origin of its gravity are studied. It is shown that thermodynamic temperature equilibrium and mechanical acceleration balance make the space-time of the black hole horizon singular and Casimir effect works inside the horizon. This effect makes the inside vacuum have less zero fluctuation energy than the outside vacuum, and a temperature difference as well as gravity as thermal pressure are created. A dual relation between inside and outside regions of the black hole is found. By dual relation, an attractor behaviour of the horizon surface is unveiled. Outside horizon, there exist thermodynamic non-equilibrium and mechanical non-balance which lead to outward centrifugal energy flow and inward gravitation energy flow, their compensation establishes local equilibrium. The lost vacuum energy in negative gravitation potential regions has been removed to the blac...

  14. Spinorial space-time and the origin of Quantum Mechanics. The dynamical role of the physical vacuum

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2016-11-01

    Is Quantum Mechanics really and ultimate principle of Physics described by a set of intrinsic exact laws? Are standard particles the ultimate constituents of matter? The two questions appear to be closely related, as a preonic structure of the physical vacuum would have an influence on the properties of quantum particles. Although the first preon models were just « quark-like » and assumed preons to be direct constituents of the conventional « elementary » particles, we suggested in 1995 that preons could instead be constituents of the physical vacuum (the superbradyon hypothesis). Standard particles would then be excitations of the preonic vacuum and have substantially different properties from those of preons themselves (critical speed…). The standard laws of Particle Physics would be approximate expressions generated from basic preon dynamics. In parallel, the mathematical properties of space-time structures such as the spinoral space-time (SST) we introduced in 1996-97 can have strong implications for Quantum Mechanics and even be its real origin. We complete here our recent discussion of the subject by pointing out that: i) Quantum Mechanics corresponds to a natural set of properties of vacuum excitations in the presence of a SST geometry ; ii) the recently observed entanglement at long distances would be a logical property if preons are superluminal (superbradyons), so that superluminal signals and correlations can propagate in vacuum ; iii) in a specific description, the function of space-time associated to the extended internal structure of a spin-1/2 particle at very small distances may be incompatible with a continuous motion at space and time scales where the internal structure of vacuum can be felt. In the dynamics associated to iii), and using the SST approach to space-time, a contradiction can appear between macroscopic and microscopic space-times due to an overlap in the time variable directly related to the fact that a spinorial function takes

  15. A mirror moving in quantum vacuum of a massive scalar field

    CERN Document Server

    Wang, Qingdi

    2015-01-01

    We present a mirror model moving in the quantum vacuum of a massive scalar field and study its motion under infinitely fluctuating quantum vacuum stress. The model is similar to the one in \\cite{PhysRevD.89.085009}, but this time there is no divergent effective mass to weaken the effect of divergent vacuum energy density. We show that this kind of weakening is not necessary. The vacuum friction and strong anti-correlation property of the quantum vacuum are enough to confine the mirror's position fluctuations.

  16. The quantum vacuum of the minimal SO(10) GUT

    CERN Document Server

    Bertolini, Stefano; Malinsky, Michal

    2010-01-01

    We reexamine the longstanding no-go excluding all potentially viable SO(10) -> SU(3)_c x SU(2)_L x U(1)_Y symmetry breaking patterns within the minimal renormalizable non-supersymmetric SO(10) GUT framework featuring the 45-dimensional adjoint representation in the Higgs sector. A simple symmetry argument indicates that quantum effects do change the vacuum structure of the model dramatically. A thorough analysis of the one-loop effective potential reveals that the phenomenologically favoured symmetry breaking chains passing through the SU(4)_C x SU(2)_L x U(1)_R or SU(3)_c x SU(2)_L x SU(2)_R x U(1)_B-L intermediate stages are, indeed, supported at the quantum level. This brings the class of minimal non-supersymmetric SO(10) GUTs back from oblivion, providing a new ground for a potentially realistic model building.

  17. Macroscopic quantum tunneling induced by a spontaneous field in intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chizaki, Y., E-mail: y.chizaki@aist.go.jp [Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)] [CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012 (Japan); Kashiwaya, H.; Kashiwaya, S. [Nanoelectronics Research Institute (NeRI), AIST, Tsukuba, Ibaraki 305-8568 (Japan); Koyama, T. [CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012 (Japan)] [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Kawabata, S. [Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)] [CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012 (Japan)

    2011-11-15

    Derivation of an effective Hamiltonian in the case that one of the capacitively coupled junctions is in the finite voltage state. Calculation of MQT rate by using the Hamiltonian. The MQT rate is resonantly enhanced and the enhancement is found even when the bias current is off the resonant point. Discussion of the validity of the two types of enhancement. We theoretically study macroscopic quantum tunneling (MQT) in capacitively coupled Josephson junctions in the case that one of the junctions is in the finite voltage state. We find that the system can be mapped into a one dimensional model with a spontaneous periodic perturbation and calculate the MQT rate by using the time-dependent WKB method. Then the MQT rate is found to be resonantly enhanced and the enhancement of MQT rate is found even off the resonant point.

  18. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2014-09-15

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.

  19. Quantum Vacuum Instability of 'Eternal' de Sitter Space

    CERN Document Server

    Anderson, Paul R

    2013-01-01

    The Euclidean or Bunch-Davies O(4,1) invariant 'vacuum' state of quantum fields in global de Sitter space is shown to be unstable to small perturbations, even for a massive free field with no self-interactions. There are perturbations of this state with arbitrarily small energy density at early times that is exponentially blueshifted in the contracting phase of 'eternal' de Sitter space, and becomes large enough to disturb the classical geometry through the semiclassical Einstein eqs. at later times. In the closely analogous case of a constant, uniform electric field, a time symmetric state equivalent to the de Sitter invariant one is constructed, which is also not a stable vacuum state under perturbations. The role of a quantum anomaly in the growth of perturbations and symmetry breaking is emphasized in both cases. In de Sitter space, the same results are obtained either directly from the renormalized stress tensor of a massive scalar field, or for massless conformal fields of any spin, more directly from t...

  20. Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies

    Science.gov (United States)

    de Vega, H. J.; Sanchez, N. G.

    2017-02-01

    The Thomas-Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f( E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius r_h , mass M_h , velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for M_h ≳ 2.3 × 10^6 M_⊙ and effective temperatures T_0 > 0.017 K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6 × 10^6 M_⊙ ≳ M_h ≳ M_{h,min} ˜eq 3.10 × 10^4 (2 {keV}/m)^{16/5} M_⊙, T_0 < 0.011 K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T_0 = 0 degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius r_h , the squared velocity v^2(r_h) and the temperature T_0 turn to exhibit square-root of M_h scaling laws. The normalized density profiles ρ (r)/ρ (0) and the normalized velocity profiles v^2(r)/ v^2(0) are universal functions of r/r_h reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For the small galaxies, 10^6 ≳ M_h ≥ M_{h,min} , the equation of state is galaxy mass dependent and the density and velocity profiles are not

  1. Phenomenology of the vacuum in quantum electrodynamics and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Doebrich, Babette

    2011-09-30

    Determining forces that arise by the restriction of the fluctuation modes of the vacuum by the insertion of boundaries or the observation of altered light propagation in external fields is a versatile means to investigate the vacuum structure of quantum electrodynamics. For these quantum vacuum probes, the vacuum can be understood and effectively modeled as a medium. Investigating the properties of this medium cannot only test and broaden our understanding of known interactions but can also be a valuable tool in the search for particles at low energy scales which arise in extensions of the standard model. In this thesis, we first study the geometry dependence of fluctuation modes in the Dirichlet-scalar analog of Casimir-Polder forces between an atom and a surface with arbitrary uniaxial corrugations. To this end we employ a technique which is fully nonperturbative in the height profile. We parameterize the differences to the distance dependencies in the planar limit in terms of an anomalous dimension quantifying the power-law deviation from the planar case. In numerical studies of experimentally relevant corrugations, we identify a universal regime of the anomalous dimension at larger distances. We argue that this universality arises as the relevant fluctuations average over corrugation structures smaller than the atom-wall distance. Turning to modified light propagation as a probe of the quantum vacuum, we show that a combination of strong, pulsed magnets and gravitational-wave interferometers can not only facilitate the detection of strong-field QED phenomena, but also significantly enlarges the accessible parameter space of hypothetical hidden-sector particles. We identify pulsed magnets as a suitable strong-field source to induce quantum nonlinearities, since their pulse frequency can be perfectly matched with the domain of highest sensitivity of modern gravitational-wave interferometers. Pushing current laboratory field-strengths to their limits, we suggest a

  2. Can observations inside the Solar System reveal the gravitational properties of the quantum vacuum?

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2013-01-01

    The understanding of the gravitational properties of the quantum vacuum might be the next scientific revolution.It was recently proposed that the quantum vacuum contains the virtual gravitational dipoles; we argue that this hypothesis might be tested within the Solar System. The key point is that quantum vacuum ("enriched" with the gravitational dipoles) induces a retrograde precession of the perihelion. It is obvious that this phenomenon might eventually be revealed by more accurate studies of orbits of planets and orbits of the artificial Earth satellites. However, we suggest that potentialy the best "laboratory" for the study of the gravitational properties of the quantum vacuum is the Dwarf Planet Eris and its satellite Dysnomia; the distance of nearly 100AU makes it the unique system in which the precession of the perihelion of Dysnomia (around Eris) is strongly dominated by the quantum vacuum.

  3. The influence of quantum vacuum friction on pulsars

    CERN Document Server

    Coelho, Jaziel G; de Araujo, José C N

    2016-01-01

    We firstly revisit the energy loss mechanism known as quantum vacuum friction (QVF), clarifying some of its subtleties. Then we investigate the observables that could easily differentiate QVF from the classical magnetic dipole radiation for pulsars with braking indices (n) measured accurately. We show this is specially the case for the time evolution of a pulsar's magnetic dipole direction ($\\dot{\\phi}$) and surface magnetic field ($\\dot{B}_0$). As it is well known in the context of the classic magnetic dipole radiation, $n0$ ($\\dot{\\phi}>0$) when $\\phi$ ($B_0$) is constant. On the other hand, we show that QVF can result in very contrasting predictions with respect to the above ones. Finally, even in the case $\\dot{B}_0$ in both aforesaid models for a pulsar has the same sign, for a given $\\phi$, we show that they give rise to different associated timescales, which could be another way to falsify QVF.

  4. Long-Time Behavior of Macroscopic Quantum Systems: Commentary Accompanying the English Translation of John von Neumann's 1929 Article on the Quantum Ergodic Theorem

    OpenAIRE

    Goldstein, Sheldon; Lebowitz, Joel L.; Tumulka, Roderich; Zanghi, Nino

    2010-01-01

    The renewed interest in the foundations of quantum statistical mechanics in recent years has led us to study John von Neumann's 1929 article on the quantum ergodic theorem. We have found this almost forgotten article, which until now has been available only in German, to be a treasure chest, and to be much misunderstood. In it, von Neumann studied the long-time behavior of macroscopic quantum systems. While one of the two theorems announced in his title, the one he calls the "quantum H-theore...

  5. Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Vega, H.J. de [Sorbonne Universites, Universite Pierre et Marie Curie UPMC Paris VI, LPTHE CNRS UMR 7589, Paris Cedex 05 (France); Sanchez, N.G. [Observatoire de Paris PSL Research University, Sorbonne Universites UPMC Paris VI, Observatoire de Paris, LERMA CNRS UMR 8112, Paris (France)

    2017-02-15

    The Thomas-Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f(E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius r{sub h}, mass M{sub h}, velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for M{sub h} >or similar 2.3 x 10{sup 6} M {sub CircleDot} and effective temperatures T{sub 0} > 0.017 K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6 x 10{sup 6} M {sub CircleDot} >or similar M{sub h} >or similar M{sub h,min} ≅ 3.10 x 10{sup 4} (2 keV/m){sup (16)/(5)} M {sub CircleDot}, T{sub 0} < 0.011 K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T{sub 0} = 0 degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius r{sub h}, the squared velocity v{sup 2}(r{sub h}) and the temperature T{sub 0} turn to exhibit square-root of M{sub h} scaling laws. The normalized density profiles ρ(r)/ρ(0) and the normalized velocity profiles v{sup 2}(r)/v{sup 2}(0) are universal functions of r/r{sub h} reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For

  6. Theory of Macroscopic Quantum Tunneling in High-T_c c-Axis Josephson Junctions

    CERN Document Server

    Yokoyama, Takehito; Kato, Takeo; Tanaka, Yukio

    2007-01-01

    We study macroscopic quantum tunneling (MQT) in c-axis twist Josephson junctions made of high-T_c superconductors in order to clarify the influence of the anisotropic order parameter symmetry (OPS) on MQT. The dependence of the MQT rate on the twist angle $\\gamma$ about the c-axis is calculated by using the functional integral and the bounce method. Due to the d-wave OPS, the $\\gamma$ dependence of standard deviation of the switching current distribution and the crossover temperature from thermal activation to MQT are found to be given by $\\cos2\\gamma$ and $\\sqrt{\\cos2\\gamma}$, respectively. We also show that a dissipative effect resulting from the nodal quasiparticle excitation on MQT is negligibly small, which is consistent with recent MQT experiments using Bi${}_2$Sr${}_2$CaCu${}_2$O${}_{8 + \\delta}$ intrinsic junctions. These results indicate that MQT in c-axis twist junctions becomes a useful experimental tool for testing the OPS of high-T_c materials at low temperature, and suggest high potential of suc...

  7. The Effect of Vacuum Fluctuations on Quantum Metrology for a Uniformly Accelerated Atom

    Science.gov (United States)

    Jin, Yao

    2016-12-01

    We studied, in the framework of open quantum systems, the dynamics of the quantum Fisher information of the parameters of the initial atomic state and atomic transition frequency for a uniformly accelerated polarizable two-level atom coupled in the multipolar scheme to a bath of fluctuating vacuum electromagnetic fields in Minkowski space-time. Our results show that the vacuum fluctuations in Minkowski space-time always make the quantum Fisher information decay, thus degrade the precision of the parameter estimation. The acceleration of the atom makes the quantum Fisher information of initial parameters of atomic state decay faster than those in case with static atom in Minkowski vacuum and even those in case with static atom in Minkowski thermal bath with corresponding Unruh temperature. The maxima of quantum Fisher information of atomic frequency and the optimal measurement time are shown to be smaller than those in the static atom in vacuum case as well as those in the corresponding thermal case.

  8. Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.

    Science.gov (United States)

    Nottale, Laurent; Auffray, Charles

    2008-05-01

    In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential

  9. About Dark Energy and Dark Matter in a Three-Dimensional Quantum Vacuum Model

    Science.gov (United States)

    Fiscaletti, Davide

    2016-10-01

    A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. The possibility to provide an unifying explanation of dark matter and dark energy as phenomena linked with the fluctuations of the three-dimensional quantum vacuum is explored. The changes and fluctuations of the quantum vacuum energy density generate a curvature of space-time similar to the curvature produced by a "dark energy" density. The formation of large scale structures in the universe associated to the flattening of the orbital speeds of the spiral galaxies can be explained in terms of primary fluctuations of the quantum vacuum energy density without attracting the idea of dark matter.

  10. Kinetic Theory of the Quantum Field Systems With Unstable Vacuum

    CERN Document Server

    Smolyansky, S A; Prozorkevich, A V

    2003-01-01

    The description of quantum field systems with meta-stable vacuum is motivated by studies of many physical problems (the decay of disoriented chiral condensate, the resonant decay of CP-odd meta-stable states, self-consistent model of QGP pre-equilibrium evolution, the phase transition problem in the systems with broken symmetry etc). A non-perturbative approach based on the kinetic description within the framework of the quasi-particle representation was proposed here. We restrict ourselves to scalar field theory with potentials of polynomial type. The back reaction mechanism, i.e. the particle production influence on background field is also discussed. Using the oscillator representation, we derive the generalized kinetic equation with non-pertrubative source term for description of particle-antiparticle creation under action of background field and equation of motion for it. As an illustrative example we consider one-component scalar theory with double-well potential. On this example, we study some features...

  11. Hidden Vacuum Rabi Oscillations: Dynamical Quantum Superpositions of On/Off Interaction between a Single Quantum Dot and a Microcavity

    Science.gov (United States)

    Ridolfo, A.; Stassi, R.; Di Stefano, O.

    2017-06-01

    We show that it is possible to realize quantum superpositions of switched-on and -off strong light-matter interaction in a single quantum dot- semiconductor microcavity system. Such superpositions enable the observation of counterintuitive quantum conditional dynamics effects. Situations are possible where cavity photons as well as the emitter luminescence display exponential decay but their joint detection probability exhibits vacuum Rabi oscillations. Remarkably, these quantum correlations are also present in the nonequilibrium steady state spectra of such coherently driven dissipative quantum systems.

  12. Paraxial Theory of Direct Electro-optic Sampling of the Quantum Vacuum

    Science.gov (United States)

    Moskalenko, A. S.; Riek, C.; Seletskiy, D. V.; Burkard, G.; Leitenstorfer, A.

    2015-12-01

    Direct detection of vacuum fluctuations and analysis of subcycle quantum properties of the electric field are explored by a paraxial quantum theory of ultrafast electro-optic sampling. The feasibility of such experiments is demonstrated by realistic calculations adopting a thin ZnTe electro-optic crystal and stable few-femtosecond laser pulses. We show that nonlinear mixing of a short near-infrared probe pulse with the multiterahertz vacuum field leads to an increase of the signal variance with respect to the shot noise level. The vacuum contribution increases significantly for appropriate length of the nonlinear crystal, short pulse duration, tight focusing, and a sufficiently large number of photons per probe pulse. If the vacuum input is squeezed, the signal variance depends on the probe delay. Temporal positions with a noise level below the pure vacuum may be traced with subcycle resolution.

  13. Genuinely quantum effects in nonlinear spectroscopy: vacuum fluctuations and their induced superradiance

    CERN Document Server

    León-Montiel, R de J; Yuen-Zhou, Joel

    2016-01-01

    The classical or quantum nature of optical spectroscopy signals is a topic that has attracted great attention recently. Spectroscopic techniques have been classified as quantum or classical depending on the light-source used in their implementations. In this way, experiments performed with quantum light---such as entangled photon pairs---have been labeled as quantum spectroscopies, whereas those performed with coherent laser pulses are generally referred to as classical ones. In this work, we highlight the fact that typical laser-spectroscopy signals should sometimes be deemed quantum too, as they contain information about the quantum vacua of the modes that interact with the sample. Using a minimalistic model, namely frequency-integrated pump-probe spectroscopy, we demonstrate that vacuum contributions can be expressed as a correction term to the \\emph{classical} pump-probe signals, which scales linearly with the intensity of the pump field. Remarkably, we show that these vacuum contributions may not be negl...

  14. Long-Time Behavior of Macroscopic Quantum Systems: Commentary Accompanying the English Translation of John von Neumann's 1929 Article on the Quantum Ergodic Theorem

    CERN Document Server

    Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino

    2010-01-01

    The renewed interest in the foundations of quantum statistical mechanics in recent years has led us to study John von Neumann's 1929 article on the quantum ergodic theorem. We have found this almost forgotten article, which until now has been available only in German, to be a treasure chest, and to be much misunderstood. In it, von Neumann studied the long-time behavior of macroscopic quantum systems. While one of the two theorems announced in his title, the one he calls the "quantum H-theorem", is actually a much weaker statement than Boltzmann's classical H-theorem, the other theorem, which he calls the "quantum ergodic theorem", is a beautiful and very non-trivial result. It expresses a fact we call "normal typicality" and can be summarized as follows: For a "typical" finite family of commuting macroscopic observables, every initial wave function $\\psi_0$ from a micro-canonical energy shell so evolves that for most times $t$ in the long run, the joint probability distribution of these observables obtained ...

  15. Vacuum photon splitting in Lorentz-violating quantum electrodynamics.

    Science.gov (United States)

    Kostelecký, V Alan; Pickering, Austin G M

    2003-07-18

    Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.

  16. Black hole quantum vacuum polarization in higher dimensions

    Science.gov (United States)

    Flachi, Antonino; Quinta, Gonçalo M.; Lemos, José P. S.

    2016-11-01

    The goal of this paper is to extend to higher dimensionality the methods and computations of vacuum polarization effects in black hole spacetimes. We focus our attention on the case of five dimensional Schwarzschild-Tangherlini black holes, for which we adapt the general method initially developed by Candelas and later refined by Anderson and others. We make use of point splitting regularization and of the WKB approximation to extract the divergences occurring in the coincidence limit of the Green function and, after calculating the counterterms using the Schwinger-De Witt expansion, we explicitly prove the cancellation of the divergences and the regularity of the vacuum polarization once counterterms are added up. We finally handle numerically the renormalized expression of the vacuum polarization. As a check on the method we also prove the regularity of the vacuum polarization in the six dimensional case in the large mass limit.

  17. Black Hole Quantum Vacuum Polarization in Higher Dimensions

    CERN Document Server

    Flachi, Antonino; Lemos, José P S

    2016-01-01

    The goal of this paper is to extend to higher dimensionality the methods and computations of vacuum polarization effects in black hole spacetimes. We focus our attention on the case of five dimensional Schwarzschild-Tangherlini black holes, for which we adapt the general method initially developed by Candelas and later refined by Anderson and others. We make use of point splitting regularization and of the WKB approximation to extract the divergences occuring in the coincidence limit of the Green function and, after calculating the counter-terms using the Schwinger - De Witt expansion, we explicitly prove the cancellation of the divergences and the regularity of the vacuum polarization once counter-terms are added up. We finally handle numerically the renormalized expression of the vacuum polarization. As a check on the method we also prove the regularity of the vacuum polarization in the six dimensional case in the large mass limit.

  18. Vacuum Photon Splitting in Lorentz-Violating Quantum Electrodynamics

    CERN Document Server

    Kostelecky, V A; Kostelecky, Alan; Pickering, Austin

    2003-01-01

    Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.

  19. Towards Photonics Enabled Quantum Metrology of Temperature, Pressure and Vacuum

    CERN Document Server

    Ahmed, Zeeshan; Douglass, Kevin; Fedchak, Jim; Scherschligt, Julia; Hendricks, Jay; Ricker, Jacob; Strouse, Gregory

    2016-01-01

    This chapter presents a brief overview of photonic sensor and standards development that is currently undergoing in the thermodynamic metrology group at NIST in the areas of temperature, pressure, vacuum and time-resolved pressure measurements.

  20. Quantum electrodynamics in the squeezed vacuum state Electron mass shift

    CERN Document Server

    Putz, V; Putz, Volkmar; Svozil, Karl

    2001-01-01

    Due to the nonvanishing average photon population of the squeezed vacuum state, finite corrections to the scattering matrix are obtained. The lowest order contribution to the electron mass shift for a one mode squeezed vacuum state is given by $\\delta m(\\Omega, s)/m=\\alpha (2/\\pi)(\\Omega /m)^2\\sinh^2(s)$, where $\\Omega$ and $s$ stand for the mode frequency and the squeeze parameter and $\\alpha$ for the fine structure constant, respectively.

  1. Gravity effects of the quantum vacuum. Dark energy and dark matter

    CERN Document Server

    Santos, Emilio

    2015-01-01

    The stress-energy tensor of the quantum vacuum is studied for the particular case of quantum electrodynamics (QED), that is a fictituous universe where only the electromagnetic and the electron-positron fields exist. The integrals involved are ultraviolet divergent but it is suggested that a natural cut-off may exist. It is shown that, in spite of the fact that the stress-energy tensor of the electromagnetic field alone is traceless (i.e the pressure P equals 1/3 the energy density u), the total QED tensor is proportional to the metric tensor to a good approximation (i. e. P = -u). It is proposed that there is a cosmological constant in Einstein equation that exactly balances the stress-energy of the vacuum. It is shown that vacuum fluctuations give rise to a modified spacetime metric able to explain dark energy. Particular excitations of the vacuum are studied that might explain dark matter.

  2. Conversion of the zero-point energy of the quantum vacuum into classical mechanical energy

    Energy Technology Data Exchange (ETDEWEB)

    Turtur, Claus Wilhelm

    2010-07-01

    A perpetual motion machine - this can never exist. But energy sources nearly disregarded up to now - they exist. These are energy sources, which have been hardly under investigation, so that mankind did not yet learn how to get benefit from them. Most part of the universe consists of such energy, which is still called 'invisible'. A part of this energy is to be found within the so called zero-point oscillations of the quantum vacuum, thus within the empty void from the perspective of quantum physics. The author of the book is physicist. He theoretically developed and then experimentally verified a method for the conversion of vacuum energy into classical mechanical energy. His technique is one of the very few approaches known up to know. The most prominent approaches to convert vacuum energy are described in this book in many scientific details, and they are compared with other known proposals for the use of vacuum energy. (orig.)

  3. $\\delta-\\delta^\\prime$ generalized Robin boundary conditions and quantum vacuum fluctuations

    CERN Document Server

    Munoz-Castaneda, J M

    2014-01-01

    The effects induced by the quantum vacuum fluctuations of one massless real scalar field on a configuration of two partially transparent plates are investigated. The physical properties of the infinitely thin plates are simulated by means of Dirac-$\\delta-\\delta^\\prime$ point interactions. It is shown that the distortion caused on the fluctuations by this external background gives rise to a generalization of Robin boundary conditions. The $T$-operator for potentials concentrated on points with non defined parity is computed with total generality. The quantum vacuum interaction energy between the two plates is computed using the $TGTG$ formula to find positive, negative, and zero Casimir energies. The parity properties of the $\\delta-\\delta^\\prime$ potential allow repulsive quantum vacuum force between identical plates.

  4. Local effects of the quantum vacuum in Lorentz-violating electrodynamics

    Science.gov (United States)

    Martín-Ruiz, A.; Escobar, C. A.

    2017-02-01

    The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this paper we use a local approach to study the Lorentz violation effects of the minimal standard model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method similar to that used for obtaining the Born series for the scattering amplitudes in quantum mechanics, we compute, at leading order in the Lorentz-violating coefficients, the relevant Green's function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of the Green's function. We discuss its structure in the region between the plates. We compute the renormalized vacuum stress, which is obtained as the difference between the vacuum stress in the presence of the plates and that of the vacuum. The Casimir force is evaluated in an analytical fashion by two methods: by differentiating the renormalized global energy density and by computing the normal-normal component of the renormalized vacuum stress. We compute the local Casimir energy, which is found to diverge as approaching the plates, and we demonstrate that it does not contribute to the observable force.

  5. Interference of macroscopic superpositions

    CERN Document Server

    Vecchi, I

    2000-01-01

    We propose a simple experimental procedure based on the Elitzur-Vaidman scheme to implement a quantum nondemolition measurement testing the persistence of macroscopic superpositions. We conjecture that its implementation will reveal the persistence of superpositions of macroscopic objects in the absence of a direct act of observation.

  6. Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space

    Science.gov (United States)

    Volkoff, T. J.; Whaley, K. B.

    2014-12-01

    We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.

  7. Local effects of the quantum vacuum in Lorentz-violating electrodynamics

    CERN Document Server

    Martín-Ruiz, A

    2016-01-01

    The Casimir effect is one of the most remarkable consequences of the non-zero vacuum energy predicted by quantum field theory. In this paper we use a local approach to study the Lorentz violation effects of the minimal standard model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method similar to that used for obtaining the Born series for the scattering amplitudes in quantum mechanics, we compute, at leading order in the Lorentz-violating coefficients, the relevant Green's function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of the Green's function. We discuss its structure in the region between the plates. We compute the renormalized vacuum stress, which is obtained as the difference between the vacuum stress in the presence of the plates and that of the vacuum. The Casimir force is evaluated in an analytical fashion by two me...

  8. Hydrodynamics of the Physical Vacuum: I. Scalar Quantum Sector

    Science.gov (United States)

    Sbitnev, Valeriy I.

    2016-05-01

    Physical vacuum is a special superfluid medium. Its motion is described by the Navier-Stokes equation having two slightly modified terms that relate to internal forces. They are the pressure gradient and the dissipation force because of viscosity. The modifications are as follows: (a) the pressure gradient contains an added term describing the pressure multiplied by the entropy gradient; (b) time-averaged viscosity is zero, but its variance is not zero. Owing to these modifications, the Navier-Stokes equation can be reduced to the Schrödinger equation describing behavior of a particle into the vacuum, which looks like a superfluid medium populated by enormous amount of virtual particle-antiparticle pairs.

  9. An Introduction to Quantum Mechanics ... for those who dwell in the macroscopic world

    CERN Document Server

    Barletta, Antonio

    2012-01-01

    There is a huge number of excellent and comprehensive textbooks on quantum mechanics. They mainly differ for the approach, more or less oriented to the formalism rather than to the phenomenology, as well as for the topics covered. These lectures have been based mainly on the classical textbook by Gasiorowicz (1974). I must confess that the main reason for my choice of Gasiorowicz (1974) is affective, as it was the textbook were I first learned the basic principles of quantum mechanics. Beyond my personal taste, I now recognize that Gasiorowicz (1974) is still a very good textbook on quantum mechanics, with a rigorous theoretical approach accompanied by a wide collection of applications. If the textbook by Gasiorowicz was my main basis, I have taken much also from other textbooks such as Phillips (2003), as well as from the excellent classical textbook by Dirac (1981).

  10. Vacuum-Induced Abelian and Non-Abelian Gauge Potentials in Cavity Quantum Electrodynamics

    Institute of Scientific and Technical Information of China (English)

    张海龙; 梁奇锋; 俞立先; 陈刚

    2011-01-01

    Gauge potential plays an important role in exploring exotic phenomena in the single- and many-body quantum systems. In this paper, we propose a scheme to create both new Abelian and non-Abelian gauge potentials by adiabatically controlling the degenerate Dicke model in cavity quantum electrodynamics. It is shown that a non-Abelian gauge potential is achieved only for a single atom, whereas an Abelianizen diagonal gauge potential is realized for the atomic ensemble. More importantly, two interesting quantum phenomena such as the geometric phase and the magnetic monopole induced by our created gauge potentials are also predicted. The possible physical realization is presented in the macroscopic circuit quantum electrodynamics with the Cooper pair boxes, which act as the artificial two-level atoms controlled by the gate voltage and the external magnetic flux.

  11. Can Cosmological Constant be a Forbidden Zone (GAP) in Quantum Vacuum

    CERN Document Server

    Pankovic, Vladan; Ciganovic, Simo

    2008-01-01

    In this work we suggest, without detailed mathematical analysis, a hypothesis on the physical meaning of cosmological constant. It is primarily based on a conceptual analogy with energy characteristics of the crystal lattice structure, i.e. energy zones theory in solid state physics. Namely, according to some theories (holographic principle, emergent gravity etc.) it is supposed that empty space, i.e. quantum vacuum holds a structure like to crystal lattice. It implies a possibility of the existence of totally occupied zones consisting of many levels of the negative energies as well as at least one negative energy forbidden zone, i.e. negative energy gap without any (occupied or empty) level of the negative energy. We suppose that given negative energy forbidden zone in the quantum vacuum represents effectively a positive energy zone without quantum particles that corresponds to cosmological constant. Also we suggest some other (less extravagant) model of the cosmological constant. Here cosmological constant ...

  12. A generator for unique quantum random numbers based on vacuum states

    DEFF Research Database (Denmark)

    Gabriel, C.; Wittmann, C.; Sych, D.

    2010-01-01

    unpredictability of quantum mechanics(4-11). However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique(12-15). Here we present a simple experimental setup based on homodyne measurements that uses...... the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably...... unique randomness, are important attributes for achieving high-reliability, high-speed and low-cost quantum random number generators....

  13. A generator for unique quantum random numbers based on vacuum states

    Science.gov (United States)

    Gabriel, Christian; Wittmann, Christoffer; Sych, Denis; Dong, Ruifang; Mauerer, Wolfgang; Andersen, Ulrik L.; Marquardt, Christoph; Leuchs, Gerd

    2010-10-01

    Random numbers are a valuable component in diverse applications that range from simulations over gambling to cryptography. The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational unpredictability of quantum mechanics. However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique. Here we present a simple experimental setup based on homodyne measurements that uses the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably unique randomness, are important attributes for achieving high-reliability, high-speed and low-cost quantum random number generators.

  14. Finiteness of the vacuum energy density in quantum electrodynamics

    Science.gov (United States)

    Manoukian, Edward B.

    1983-03-01

    Recent interest in the finiteness problem of the vacuum energy density (VED) in finite QED has motivated us to reexamine this problem in the light of an analysis we have carried out earlier. By a loopwise summation procedure, supplemented by a renormalization-group analysis, we study the finiteness of the VED with α, the renormalized fine-structure constant, fixed in the process as the (infinite order) zero of the eigenvalue condition F[1](x)|x=α=0∞, and with the electron mass totally dynamical of origin. We propose a possible finite solution for the VED in QED which may require only one additional eigenvalue condition for α.

  15. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit

    CERN Document Server

    Santhosh, Kotni; Chuntonov, Lev; Haran, Gilad

    2015-01-01

    The strong interaction of individual quantum emitters with resonant cavities is of fundamental interest for understanding light matter interactions, as well as for quantum information processing and quantum communication applications. Plasmonic cavities hold the promise of attaining the strong coupling regime even under ambient conditions and within subdiffraction volumes. Recent experiments revealed strong coupling between individual plasmonic structures and multiple organic molecules, but so far strong coupling at the limit of a single quantum emitter has not been reported. Here we demonstrate vacuum Rabi splitting, a manifestation of strong coupling, using silver bowtie plasmonic cavities loaded with semiconductor quantum dots (QDs). A transparency dip is observed in the scattering spectra of individual bowties with one to a few QDs in their gaps. Rabi splitting values as high as 180 meV are registered with a single QD. These observations are verified by polarization-dependent experiments and validated by ...

  16. Cosmology with a Decaying Vacuum Energy Parametrization Derived from Quantum Mechanics

    CERN Document Server

    Szydlowski, Marek; Urbanowski, Krzysztof

    2015-01-01

    Within the quantum mechanical treatment of the decay problem one finds that at late times $t$ the survival probability of an unstable state cannot have the form of an exponentially decreasing function of time $t$ but it has an inverse power-like form. This is a general property of unstable states following from basic principles of quantum theory. The consequence of this property is that in the case of false vacuum states the cosmological constant becomes dependent on time: $\\Lambda - \\Lambda_{\\text{bare}}\\equiv \\Lambda(t) -\\Lambda_{\\text{bare}} \\sim 1/t^{2}$. We construct the cosmological model with decaying vacuum energy density and matter for solving the cosmological constant problem and the coincidence problem. We show the equivalence of the proposed decaying false vacuum cosmology with the $\\Lambda(t)$ cosmologies (the $\\Lambda(t)$CDM models). The cosmological implications of the model of decaying vacuum energy (dark energy) are discussed. We constrain the parameters of the model with decaying vacuum usin...

  17. Density-Gradient Theory: A Macroscopic Approach to Quantum Confinement and Tunneling in Semiconductor Devices

    Science.gov (United States)

    2011-01-01

    technological perspective, the most important quantum well is that that occurs in silicon MOSFETs ad- jacent to oxide interfaces. Because the barrier...harder to make. From the experimental (a) (b) Fig. 4.5.2 Energy band diagram and carrier profiles in the DGT ap- proximation for an n+-poly MOSFET ...device design using well-understood materials or predicting ultimate performance of some new material like graphene ). As a tactical choice for

  18. Quantum entanglement in the system of two two-level atoms interacting with a single-mode vacuum field

    Institute of Scientific and Technical Information of China (English)

    Zeng Ke; Fang Mao-Fa

    2005-01-01

    The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investigated by using the quantum reduced entropy; the quantum entanglement between two two-level atoms, and that between a single two-level atom and a single-mode vacuum field are studied in terms of the quantum relative entropy. The influences of the atomic dipole-dipole interaction on the quantum entanglement of the system are also discussed. Our results show that three entangled states of two atoms-field, atom-atom, and atom-field can be prepared via two two-level atoms interacting with a single-mode vacuum field.

  19. Fermion Condensates and the Trivial Vacuum of Light-Cone Quantum Field Theory

    CERN Document Server

    Heinzl, T

    1996-01-01

    We discuss the definition of condensates within light-cone quantum field theory. As the vacuum state in this formulation is trivial, we suggest to abstract vacuum properties from the particle spectrum. The latter can in principle be calculated by solving the eigenvalue problem of the light-cone Hamiltonian. We focus on fermionic condensates which are order parameters of chiral symmetry breaking. As a paradigm identity we use the Gell-Mann-Oakes-Renner relation between the quark condensate and the observable pion mass. We examine the analogues of this relation in the `t~Hooft and Schwinger model, respectively. A brief discussion of the Nambu-Jona-Lasinio model is added.

  20. Effects of the quantum vacuum in particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Juri

    2014-11-26

    In this work we investigate numerous effects of virtual particles on processes relevant for particle physics and cosmology. A central question is, whether radiative spontaneous electroweak symmetry breaking can be combined with neutrino mass generation, we find that the answer is affirmative. We discuss the implication of the RSSB on the neutrino mass phenomenology and low-energy observables. Furthermore, by comparing the models to experimental data we find that several anomalies in the present observations favour particular scenarios over the pure Standard Model hypothesis. We are able to show, that the presence of sterile neutrinos with active-sterile mixing of order 10{sup -3} and masses in the TeV range leads to a reduced invisible decay width of the Z-boson and can bring the NuTeV observations in agreement with theoretical expectations. The models we discuss naturally incorporate long lived particles which can serve as dark matter candidates and we investigate this phenomenologically. We find that the combination of the requirements leads to interesting constraints on the model and parameter space. We find that loop induced electromagnetic moments for the neutral dark matter candidates, lead to interactions with charged particles. We use this and derive new constraints from existing XENON100 and LUX data. In addition we study how vacuum effects can backreact on a given geometry in electromagnetism and semiclassical gravity. We find that in the case of gravity the conformal set up plays a special role and indicate several ideas for further investigation of this topic.

  1. A perspectival version of the modal interpretation of quantum mechanics and the origin of macroscopic behavior

    CERN Document Server

    Béné, G J; Bene, Gyula; Dieks, Dennis

    2001-01-01

    We study the process of observation (measurement), within the framework of a `perspectival' (`relational', `relative state') version of the modal interpretation of quantum mechanics. We show that if we assume certain features of discreteness and determinism in the operation of the measuring device (which could be a part of the observer's nerve system), this gives rise to classical characteristics of the observed properties, in the first place to spatial localization. We investigate to what extent semi-classical behavior of the object system itself (as opposed to the observational system) is needed for the emergence of classicality. Decoherence is an essential element in the mechanism of observation that we assume, but it turns out that in our approach no environment-induced decoherence on the level of the object system is required for the emergence of classical properties.

  2. Quantum Domains for Macroscopic Transport Effects in Nanostructures with Control Topology: Optics and e-Conductivity

    Directory of Open Access Journals (Sweden)

    Antipov A.

    2015-01-01

    Full Text Available The nanostructures with different morphology have been obtained by us by methods of both direct laser modification (from cw to fs laser radiation of the target surface/thin films and laser evaporation of the target substance in liquid to produce the colloid systems, and then – to deposite substance on substrate from colloid, and also – by a single drop deposition technique. The analysis of induced nanostructures has been carried out by absorption spectroscopy, scanning electron microscopy and transmission electron microscopy. The island conductivity is dominant for the nanocluster semiconductor systems induced by laser ablation technique, and electroresistance can dramatically decrease due to spontaneous selected multichannel/parallel electron transportation trajectories. A tunneling quantum coherent effect takes place for electron conductivity for the case.

  3. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity

    Science.gov (United States)

    Yoshie, T.; Scherer, A.; Hendrickson, J.; Khitrova, G.; Gibbs, H. M.; Rupper, G.; Ell, C.; Shchekin, O. B.; Deppe, D. G.

    2004-11-01

    Cavity quantum electrodynamics (QED) systems allow the study of a variety of fundamental quantum-optics phenomena, such as entanglement, quantum decoherence and the quantum-classical boundary. Such systems also provide test beds for quantum information science. Nearly all strongly coupled cavity QED experiments have used a single atom in a high-quality-factor (high-Q) cavity. Here we report the experimental realization of a strongly coupled system in the solid state: a single quantum dot embedded in the spacer of a nanocavity, showing vacuum-field Rabi splitting exceeding the decoherence linewidths of both the nanocavity and the quantum dot. This requires a small-volume cavity and an atomic-like two-level system. The photonic crystal slab nanocavity-which traps photons when a defect is introduced inside the two-dimensional photonic bandgap by leaving out one or more holes-has both high Q and small modal volume V, as required for strong light-matter interactions. The quantum dot has two discrete energy levels with a transition dipole moment much larger than that of an atom, and it is fixed in the nanocavity during growth.

  4. Quantum key distribution using vacuum-one-photon qubits: maximum number of transferable bits per particle

    CERN Document Server

    Lee, Su-Yong; Lee, Hai-Woong; Lee, Jae-Weon; Bergou, Janos A

    2009-01-01

    Quantum key distribution schemes which employ encoding on vacuum-one-photon qubits are capable of transferring more information bits per particle than the standard schemes employing polarization or phase coding. We calculate the maximum number of classical bits per particle that can be securely transferred when the key distribution is performed with the BB84 and B92 protocols, respectively, using the vacuum-one-photon qubits. In particular, we show that for a generalized B92 protocol with the vacuum-one-photon qubits, a maximum of two bits per particle can be securely transferred. We also demonstrate the advantage brought about by performing a generalized measurement that is optimized for unambiguous discrimination of the encoded states: the parameter range where the transfer of two bits per particle can be achieved is dramatically enhanced as compared to the corresponding parameter range of projective measurements.

  5. Practical quantum random number generator based on measuring the shot noise of vacuum states

    Science.gov (United States)

    Shen, Yong; Tian, Liang; Zou, Hongxin

    2010-06-01

    The shot noise of vacuum states is a kind of quantum noise and is totally random. In this paper a nondeterministic random number generation scheme based on measuring the shot noise of vacuum states is presented and experimentally demonstrated. We use a homodyne detector to measure the shot noise of vacuum states. Considering that the frequency bandwidth of our detector is limited, we derive the optimal sampling rate so that sampling points have the least correlation with each other. We also choose a method to extract random numbers from sampling values, and prove that the influence of classical noise can be avoided with this method so that the detector does not have to be shot-noise limited. The random numbers generated with this scheme have passed ent and diehard tests.

  6. Canonical quantization of macroscopic electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.u [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2010-12-15

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  7. Canonical quantization of macroscopic electromagnetism

    CERN Document Server

    Philbin, T G

    2010-01-01

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetoelectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  8. Hamiltonian finite-temperature quantum field theory from its vacuum on partially compactified space

    CERN Document Server

    Reinhardt, Hugo

    2016-01-01

    The partition function of a relativistic invariant quantum field theory is expressed by its vacuum energy calculated on a spatial manifold with one dimension compactified to a 1-sphere $S^1 (\\beta)$, whose circumference $\\beta$ represents the inverse temperature. Explicit expressions for the usual energy density and pressure in terms of the energy density on the partially compactified spatial manifold $\\mathbb{R}^2 \\times S^1 (\\beta)$ are derived. To make the resulting expressions mathematically well-defined a Poisson resummation of the Matsubara sums as well as an analytic continuation in the chemical potential are required. The new approach to finite-temperature quantum field theories is advantageous in a Hamilton formulation since it does not require the usual thermal averages with the density operator. Instead, the whole finite-temperature behaviour is encoded in the vacuum wave functional on the spatial manifold $\\mathbb{R}^2 \\times S^1 (\\beta)$. We illustrate this approach by calculating the pressure of...

  9. Vacuum-Induced Quantum Interference in a Trapped ∧-Configuration Three-Level System

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-Ling; YIN Jian-Ping

    2005-01-01

    @@ In consideration of quantization of centre-of-mass motion, we derive the second-order solution of the dynamic equation of a ∧-configuration three-level atom confined in an approximately harmonic trap by using the timedependent perturbation theory. It is found that there are a series of dark lines in the second-order probability spectrum with multi-peak structures, which is the result of the quantum interference from the same vacuum mode in the spontaneous decay process of the trapped atom from the upper level to the two nearby lower levels. Our study shows that the second-order spectrum may be modified by the oscillation frequency Ω of the trap and the frequency difference △ between two lower levels of the three-level atom, and the depth of the dark lines from the vacuum-induced quantum interference effect is strongly dependent on the above two parameters (Ω and △).

  10. Efficient vacuum-free-processed quantum dot light-emitting diodes with printable liquid metal cathodes.

    Science.gov (United States)

    Peng, Huiren; Jiang, Yibin; Chen, Shuming

    2016-10-20

    Colloidal quantum dot light-emitting diodes (QLEDs) are recognized as promising candidates for next generation displays. QLEDs can be fabricated by low-cost solution processing except for the metal electrodes, which, in general, are deposited by costly vacuum evaporation. To be fully compatible with the low-cost solution process, we herein demonstrate vacuum-free and solvent-free fabrication of electrodes using a printable liquid metal. With eutectic gallium-indium (EGaIn) based liquid metal cathodes, vacuum-free-processed QLEDs are demonstrated with superior external quantum efficiencies of 11.51%, 12.85% and 5.03% for red, green and blue devices, respectively, which are about 2-, 1.5- and 1.1-fold higher than those of the devices with thermally evaporated Al cathodes. The improved performance is attributable to the reduction of electron injection by the native oxide of EGaIn, which serves as an electron-blocking layer for the devices and thus improves the balance of carrier injection. Also, the T50 half-lifetime of the vacuum-free-processed QLEDs is about 2-fold longer than that of the devices with Al cathodes. Our results demonstrate that EGaIn-based solvent-free liquid metals are promising printable electrodes for realizing efficient, low-cost and vacuum-free-processed QLEDs. The elimination of vacuum and high-temperature processes significantly reduces the production cost and paves the way for industrial roll-to-roll manufacturing of large area displays.

  11. Numerical studies from quantum to macroscopic scales of carbon nanoparticules in hydrogen plasma

    Science.gov (United States)

    Lombardi, Guillaume; Ngandjong, Alain; Mezei, Zsolt; Mougenot, Jonathan; Michau, Armelle; Hassouni, Khaled; Seydou, Mahamadou; Maurel, François

    2016-09-01

    Dusty plasmas take part in large scientific domains from Universe Science to nanomaterial synthesis processes. They are often generated by growth from molecular precursor. This growth leads to the formation of larger clusters which induce solid germs nucleation. Particle formed are described by an aerosol dynamic taking into account coagulation, molecular deposition and transport processes. These processes are controlled by the elementary particle. So there is a strong coupling between particle dynamics and plasma discharge equilibrium. This study is focused on the development of a multiscale physic and numeric model of hydrogen plasmas and carbon particles around three essential coupled axes to describe the various physical phenomena: (i) Macro/mesoscopic fluid modeling describing in an auto-coherent way, characteristics of the plasma, molecular clusters and aerosol behavior; (ii) the classic molecular dynamics offering a description to the scale molecular of the chains of chemical reactions and the phenomena of aggregation; (iii) the quantum chemistry to establish the activation barriers of the different processes driving the nanopoarticule formation.

  12. Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping

    Science.gov (United States)

    Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S. R.

    1999-01-01

    We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3He-B and the internal Josephson effect in 3He-A are also discussed.

  13. Contrasting Classical and Quantum Vacuum States in Non-inertial Frames

    Science.gov (United States)

    Boyer, Timothy H.

    2013-08-01

    Classical electron theory with classical electromagnetic zero-point radiation (stochastic electrodynamics) is the classical theory which most closely approximates quantum electrodynamics. Indeed, in inertial frames, there is a general connection between classical field theories with classical zero-point radiation and quantum field theories. However, this connection does not extend to noninertial frames where the time parameter is not a geodesic coordinate. Quantum field theory applies the canonical quantization procedure (depending on the local time coordinate) to a mirror-walled box, and, in general, each non-inertial coordinate frame has its own vacuum state. In particular, there is a distinction between the "Minkowski vacuum" for a box at rest in an inertial frame and a "Rindler vacuum" for an accelerating box which has fixed spatial coordinates in an (accelerating) Rindler frame. In complete contrast, the spectrum of random classical zero-point radiation is based upon symmetry principles of relativistic spacetime; in empty space, the correlation functions depend upon only the geodesic separations (and their coordinate derivatives) between the spacetime points. The behavior of classical zero-point radiation in a noninertial frame is found by tensor transformations and still depends only upon the geodesic separations, now expressed in the non-inertial coordinates. It makes no difference whether a box of classical zero-point radiation is gradually or suddenly set into uniform acceleration; the radiation in the interior retains the same correlation function except for small end-point (Casimir) corrections. Thus in classical theory where zero-point radiation is defined in terms of geodesic separations, there is nothing physically comparable to the quantum distinction between the Minkowski and Rindler vacuum states. It is also noted that relativistic classical systems with internal potential energy must be spatially extended and can not be point systems. The

  14. Contrasting Classical and Quantum Vacuum States in Non-Inertial Frames

    CERN Document Server

    Boyer, Timothy H

    2013-01-01

    Classical electron theory with classical electromagnetic zero-point radiation (stochastic electrodynamics) is the classical theory which most closely approximates quantum electrodynamics. Indeed, in inertial frames, there is a general connection between classical field theories with classical zero-point radiation and quantum field theories. However, this connection does not extend to noninertial frames where the time parameter is not a geodesic coordinate. Quantum field theory applies the canonical quantization procedure (depending on the local time coordinate) to a mirror-walled box, and, in general, each non-inertial coordinate frame has its own vacuum state. In complete contrast, the spectrum of random classical zero-point radiation is based upon symmetry principles of relativistic spacetime; in empty space, the correlation functions depend upon only the geodesic separations (and their coordinate derivatives) between the spacetime points. It makes no difference whether a box of classical zero-point radiati...

  15. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit.

    Science.gov (United States)

    Santhosh, Kotni; Bitton, Ora; Chuntonov, Lev; Haran, Gilad

    2016-06-13

    The strong interaction of individual quantum emitters with resonant cavities is of fundamental interest for understanding light-matter interactions. Plasmonic cavities hold the promise of attaining the strong coupling regime even under ambient conditions and within subdiffraction volumes. Recent experiments revealed strong coupling between individual plasmonic structures and multiple organic molecules; however, strong coupling at the limit of a single quantum emitter has not been reported so far. Here we demonstrate vacuum Rabi splitting, a manifestation of strong coupling, using silver bowtie plasmonic cavities loaded with semiconductor quantum dots (QDs). A transparency dip is observed in the scattering spectra of individual bowties with one to a few QDs, which are directly counted in their gaps. A coupling rate as high as 120 meV is registered even with a single QD, placing the bowtie-QD constructs close to the strong coupling regime. These observations are verified by polarization-dependent experiments and validated by electromagnetic calculations.

  16. Quantum Walks as simulators of neutrino oscillations in vacuum and matter

    CERN Document Server

    Di Molfetta, Giuseppe

    2016-01-01

    We analyze the simulation of Dirac neutrino oscillations using quantum walks, both in vacuum and in matter. We show that this simulation, in the continuum limit, reproduces a set of coupled Dirac equations that describe neutrino flavor oscillations, and we make use of this to establish a connection with neutrino phenomenology, thus allowing to fix the parameters of the simulation for a given neutrino experiment. We also analyze how matter effects for neutrino propagation can be simulated in the quantum walk. In this way, important features, such as the MSW effect, can be incorporated. Thus, the simulation of neutrino oscillations with the help of quantum walks might be useful to explore these effects in extreme conditions, such as the solar interior or supernovae, in a complementary way to existing experiments.

  17. Quantum walks as simulators of neutrino oscillations in a vacuum and matter

    Science.gov (United States)

    Di Molfetta, G.; Pérez, A.

    2016-10-01

    We analyze the simulation of Dirac neutrino oscillations using quantum walks, both in a vacuum and in matter. We show that this simulation, in the continuum limit, reproduces a set of coupled Dirac equations that describe neutrino flavor oscillations, and we make use of this to establish a connection with neutrino phenomenology, thus allowing one to fix the parameters of the simulation for a given neutrino experiment. We also analyze how matter effects for neutrino propagation can be simulated in the quantum walk. In this way, important features, such as the MSW effect, can be incorporated. Thus, the simulation of neutrino oscillations with the help of quantum walks might be useful to illustrate these effects in extreme conditions, such as the solar interior or supernovae.

  18. Quantum vacuum effects on the final fate of a collapsing ball of dust

    CERN Document Server

    Arfaei, Hessamaddin

    2016-01-01

    We consider the quantum vacuum effects of the massless scalar fields that are non-minimally coupled to the background geometry of a collapsing homogeneous ball of dust. It is shown that for a definite range of coupling constants, there are repulsive quantum vacuum effects, capable of stopping the collapse process inside the black hole and precluding the formation of singularity. The final fate of the collapse will be a black hole with no singularity, inside which the matter stays balanced. The density of the final static matter will be close to the Planck density. We show that the largest possible radius of the stable static ball inside a black hole with Schwarzschild mass $M$ is given by ${{\\left( \\frac{1}{90\\pi }\\frac{M}{{{m}_{p}}} \\right)}^{\\frac{1}{3}}}{{\\ell }_{p}}$. If the black hole undergoes Hawking radiation, the final state will be an extremal quantum-corrected black hole, with zero temperature, with a remnant of matter inside. We show that the resolution of singularity is not disrupted under Hawkin...

  19. Quantum vacuum effects on the final fate of a collapsing ball of dust

    Science.gov (United States)

    Arfaei, Hessamaddin; Noorikuhani, Milad

    2017-02-01

    We consider the quantum vacuum effects of the massless scalar fields that are non-minimally coupled to the background geometry of a collapsing homogeneous ball of dust. It is shown that for a definite range of coupling constants, there are repulsive quantum vacuum effects, capable of stopping the collapse process inside the black hole and precluding the formation of singularity. The final fate of the collapse will be a black hole with no singularity, inside which the matter stays balanced. The density of the final static matter will be close to the Planck density. We show that the largest possible radius of the stable static ball inside a black hole with Schwarzschild mass M is given by {(1/90πM/m_p)}^{1/3}{ℓ}_p . If the black hole undergoes Hawking radiation, the final state will be an extremal quantum-corrected black hole, with zero temperature, with a remnant of matter inside. We show that the resolution of singularity is not disrupted under Hawking radiation.

  20. Quantum Dot Molecule Polaritons and a Voltage-Tunable Vacuum Rabi Splitting

    Science.gov (United States)

    Vora, Patrick; Bracker, Allan; Carter, Samuel; Kim, Mijin; Kim, Chul Soo; Economou, Sophia; Gammon, Daniel

    2015-03-01

    InAs quantum dots (QDs) are a popular system for realizing quantum information protocols and studying cavity-QED. An additional class of optical transitions can be accessed by using quantum dot molecules (QDMs): a pair of tunnel-coupled QDs. Recombination can occur within one of the QDs (intradot) or across the tunnel barrier (interdot). Interdot transitions are typically weaker due to reduced wavefunction overlap. Recently, our team embedded a QDM within a GaAs photonic crystal cavity and demonstrated photonic enhancement of a singlet-triplet qubit. Here, we realize a strongly-coupled cavity-QDM system and demonstrate cavity-QED effects inaccessible in single QDs. These include the first observation of molecular polaritons in InAs QDs and a voltage-tunable vacuum Rabi splitting (2 g) . The tunable vacuum Rabi splitting can only occur in QDMs and provides an advantage as g is typically fixed post-fabrication. This flexibility could be useful for optical signal processing schemes that exploit the anharmonicity of the Jaynes-Cummings ladder.

  1. Vacuum Radiation and Symmetry Breaking in Conformally Invariant Quantum Field Theory

    CERN Document Server

    Aldaya, V; Cerveró, J M

    1999-01-01

    The underlying reasons for the difficulty of unitarily implementing the whole conformal group $SO(4,2)$ in a massless Quantum Field Theory (QFT) are investigated in this paper. Firstly, we demonstrate that the singular action of the subgroup of special conformal transformations (SCT), on the standard Minkowski space $M$, cannot be primarily associated with the vacuum radiation problems, the reason being more profound and related to the dynamical breakdown of part of the conformal symmetry (the SCT subgroup, to be more precise) when representations of null mass are selected inside the representations of the whole conformal group. Then we show how the vacuum of the massless QFT radiates under the action of SCT (usually interpreted as transitions to a uniformly accelerated frame) and we calculate exactly the spectrum of the outgoing particles, which proves to be a generalization of the Planckian one, this recovered as a given limit.

  2. Nonlinear random gravity. I. Stochastic gravitational waves and spontaneous conformal fluctuations due to the quantum vacuum

    CERN Document Server

    Wang, Charles H -T; Bingham, Robert; Mendonca, J Tito

    2008-01-01

    We investigate the problem of metric fluctuations in the presence of the vacuum fluctuations of matter fields and critically assess the usual assertion that vacuum energy implies a Planckian cosmological constant. A new stochastic classical approach to the quantum fluctuations of spacetime is developed. The work extends conceptually Boyer's random electrodynamics to a theory of random gravity but has a considerably richer structure for inheriting nonlinearity from general relativity. Attention is drawn to subtleties in choosing boundary conditions for metric fluctuations in relation to their dynamical consequences. Those compatible with the observed Lorentz invariance must allow for spontaneous conformal fluctuations, in addition to stochastic gravitational waves due to zero point gravitons. This is implemented through an effective metric defined in terms of the random spacetime metric modulo a fluctuating conformal factor. It satisfies an effective Einstein equation coupled to an effective stress-energy tens...

  3. Quantum dissipation in a neutrino system propagating in vacuum and in matter

    Science.gov (United States)

    Guzzo, Marcelo M.; de Holanda, Pedro C.; Oliveira, Roberto L. N.

    2016-07-01

    Considering the neutrino state like an open quantum system, we analyze its propagation in vacuum or in matter. After defining what can be called decoherence and relaxation effects, we show that in general the probabilities in vacuum and in constant matter can be written in a similar way, which is not an obvious result for such system. From this result, we analyze the situation where neutrino evolution satisfies the adiabatic limit and use this formalism to study solar neutrinos. We show that the decoherence effect may not be bounded by the solar neutrino data and review some results in the literature, in particular the current results where solar neutrinos were used to put bounds on decoherence effects through a model-dependent approach. We conclude explaining how and why these models are not general and we reinterpret these constraints.

  4. MACROSCOPIC RIVERS

    NARCIS (Netherlands)

    VANDENBERG, IP

    1991-01-01

    We present a mathematical model for the ''river-phenomenon'': striking concentrations of trajectories of ordinary differential equations. This model of ''macroscopic rivers'' is formulated within nonstandard analysis, and stated in terms of macroscopes and singular perturbations. For a subclass, the

  5. Space-time curvature due to quantum vacuum fluctuations: An alternative to dark energy?

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Emilio, E-mail: santose@unican.e [Departamento de Fisica, Universidad de Cantabria, Santander (Spain)

    2010-01-18

    It is pointed out that quantum vacuum fluctuations may give rise to a curvature of space-time equivalent to the curvature currently attributed to dark energy. A simple calculation is made, involving plausible assumptions within the framework of quantized gravity, which suggests that the value of the dark energy density is roughly given by the product of Newton's constant times the quantity m{sup 6}c{sup 4}h{sup -4}, m being a typical mass of elementary particles. The estimate is compatible with observations.

  6. Quantum interferences revealed by neutron diffraction accord with a macroscopic-scale quantum-theory of ferroelectrics KH2(1- ρ)D2 ρ PO4

    Science.gov (United States)

    Fillaux, François; Cousson, Alain

    2016-03-01

    Neutron diffraction by single-crystals KH2(1- ρ)D2 ρ PO4 at 293 K reveal quantum interferences consistent with a static lattice of entangled proton-deuteron scatterers. These crystals are represented by a macroscopic-scale condensate of phonons with continuous space-time-translation symmetry and zero-entropy. This state is energetically favored and decoherence-free over a wide temperature-range. Projection of the crystal state onto a basis of four electrically- and isotopically-distinct state-vectors accounts for isotope and pressure effects on the temperature of the ferroelectric-dielectric transition, as well as for the latent heat. At the microscopic level, an incoming wave realizes a transitory state either in the space of static positional parameters (elastic scattering) or in that of the symmetry species (energy transfer). Neutron diffraction, vibrational spectroscopy, relaxometry and neutron Compton scattering support the conclusion that proton and deuteron scatterers are separable exclusively through resonant energy-transfer.

  7. Projective Limits of State Spaces: Quantum Field Theory without a Vacuum

    CERN Document Server

    Lanéry, Suzanne

    2016-01-01

    Instead of formulating the states of a Quantum Field Theory (QFT) as density matrices over a single large Hilbert space, it has been proposed by Kijowski [Kijowski, 1977] to construct them as consistent families of partial density matrices, the latter being defined over small 'building block' Hilbert spaces. In this picture, each small Hilbert space can be physically interpreted as extracting from the full theory specific degrees of freedom. This allows to reduce the quantization of a classical field theory to the quantization of finite-dimensional sub-systems, thus sidestepping some of the common ambiguities (specifically, the issues revolving around the choice of a 'vacuum state'), while obtaining robust and well-controlled quantum states spaces. The present letter provides a self-contained introduction to this formalism, detailing its motivations as well as its relations to other approaches to QFT (such as conventional Fock-like Hilbert spaces, path-integral quantization, and the algebraic formulation). At...

  8. Vacuum for a massless quantum scalar field outside a collapsing shell in anti-de Sitter space-time

    CERN Document Server

    Abel, Paul G

    2015-01-01

    We consider a massless quantum scalar field on a two-dimensional space-time describing a thin shell of matter collapsing to form a Schwarzschild-anti-de Sitter black hole. At early times, before the shell starts to collapse, the quantum field is in the vacuum state, corresponding to the Boulware vacuum on an eternal black hole space-time. The scalar field satisfies reflecting boundary conditions on the anti-de Sitter boundary. Using the Davies-Fulling-Unruh prescription for computing the renormalized expectation value of the stress-energy tensor, we find that at late times the black hole is in thermal equilibrium with a heat bath at the Hawking temperature, so the quantum field is in a state analogous to the Hartle-Hawking vacuum on an eternal black hole space-time.

  9. The Ghost (Phantom) Universe A Model in which the Universe is Flat, Quantum Ghost Matter and Vacuum Dominated and Accelerating

    CERN Document Server

    Naboulsi, R

    2003-01-01

    We propose a modification of the Standard Hot Big Bang Cosmology (SHBBC), in which the Universe is flat, quantum matter dominated, and accelerating. The total energy density of the Universe is taken to be the sum of two terms: the quantum contributions from vacuum and plus an additional quantum (ghost) term (with negative pressure) which is responsible of the dominant driver of expansion at a late epoch of the Universe. When the new term dominates, the scalar factor varies as R propto t^frac{4}{3} (Accelerating Flat Ghost Universe). The quantum energy density required to close the Ghost Universe is found to be much smaller than in SHBBC, so that quantum matter can be sufficient to provide a flat geometry. Quantum matter particles interactions are interpreted as a quantum fifth force and it is found to vary as $F(r)\\propto r^{1/2}$.

  10. Callan-Giddings-Harvey-Strominger vacuum in loop quantum gravity and singularity resolution

    Science.gov (United States)

    Corichi, Alejandro; Olmedo, Javier; Rastgoo, Saeed

    2016-10-01

    We study here a complete quantization of a Callan-Giddings-Harvey-Strominger vacuum model following loop quantum gravity techniques. Concretely, we adopt a formulation of the model in terms of a set of new variables that resemble the ones commonly employed in spherically symmetric loop quantum gravity. The classical theory consists of two pairs of canonical variables plus a scalar and diffeomorphism (first class) constraints. We consider a suitable redefinition of the Hamiltonian constraint such that the new constraint algebra (with structure constants) is well adapted to the Dirac quantization approach. For it, we adopt a polymeric representation for both the geometry and the dilaton field. On the one hand, we find a suitable invariant domain of the scalar constraint operator, and we construct explicitly its solution space. There, the eigenvalues of the dilaton and the metric operators cannot vanish locally, allowing us to conclude that singular geometries are ruled out in the quantum theory. On the other hand, the physical Hilbert space is constructed out of them, after group averaging the previous states with the diffeomorphism constraint. In turn, we identify the standard observable corresponding to the mass of the black hole at the boundary, in agreement with the classical theory. We also construct an additional observable on the bulk associated with the square of the dilaton field, with no direct classical analog.

  11. A neutron diffraction study from 6 to 293 K and a macroscopic-scale quantum theory of the hydrogen bonded dimers in the crystal of benzoic acid

    CERN Document Server

    Fillaux, François

    2011-01-01

    The crystal of benzoic acid is comprised of tautomeric centrosymmetric dimers linked through bistable hydrogen bonds. Statistical disorder of the bonding protons is excluded by neutron diffraction from 6 K to 293 K. In addition to diffraction data, vibrational spectra and relaxation rates measured with solid-state-NMR and quasi-elastic neutron scattering are consistent with wave-like, rather than particle-like protons. We present a macroscopic-scale quantum theory for the bonding protons represented by a periodic lattice of fermions. The adiabatic separation, the exclusion principle, and the antisymmetry postulate yield a static lattice-state immune to decoherence. According to the theory of quantum measurements, vibrational spectroscopy and relaxometry involve realizations of decoherence-free Bloch states for nonlocal symmetry species that did not exist before the measurement. The eigen states are fully determined by three temperature-independent parameters which are effectively measured: the energy differen...

  12. Kinematic study of the effect of dispersion in quantum vacuum emission from strong laser pulses

    CERN Document Server

    Finazzi, Stefano

    2012-01-01

    A strong light pulse propagating in a nonlinear medium causes an effective change in the local refractive index. With a suitable tuning of the pulse velocity, the leading and trailing edge of the pulse were predicted to behave as analogue black and white horizons in the limit of a dispersionless medium. In this paper, we study a more realistic situation where the frequency dispersion of the medium is fully taken into account. As soon as negative frequency modes are present in the comoving frame, spontaneous emission of quantum vacuum radiation is expected to arise independently of the presence of horizons. We finally investigate the kinematic constraints put on the emission and we show that the optimal directions to observe Hawking-like emission form a narrow angle with the direction of propagation of the pulse.

  13. Entanglement of a two-atom system driven by the quantum vacuum in arbitrary cavity size

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Hidalgo, G., E-mail: gfloreshidalgo@unifei.edu.br [Instituto de Física e Química, Universidade Federal de Itajubá, 37500-903, Itajubá, MG (Brazil); Rojas, M., E-mail: moises.leyva@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil); Rojas, Onofre, E-mail: ors@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil)

    2017-05-10

    We study the entanglement dynamics of two distinguishable atoms confined into a cavity and interacting with a quantum vacuum field. As a simplified model for this system, we consider two harmonic oscillators linearly coupled to a massless scalar field which are inside a spherical cavity of radius R. Through the concurrence, the entanglement dynamics for the two-atom system is discussed for a range of initial states composed of a superposition of atomic states. Our results reveal how the entanglement of the two atoms behaves through the time evolution, in a precise way, for arbitrary cavity size and for arbitrary coupling constant. All our computations are analytical and only the final step is numerical. - Highlights: • Entanglement time evolution in arbitrary cavity size is considered. • In free space concurrence approaches a fixed value at large time. • For finite cavity, concurrence behaves almost as a periodic function of time.

  14. Materials Bound by Non-Chemical Forces: External Fields and the Quantum Vacuum

    CERN Document Server

    Swain, John; Srivastava, Yogendra

    2014-01-01

    We discuss materials which owe their stability to external fields. These include: 1) external electric or magnetic fields, and 2) quantum vacuum fluctuations in these fields induced by suitable boundary conditions (the Casimir effect). Instances of the first case include the floating water bridge and ferrofluids in magnetic fields. An example of the second case is taken from biology where the Casimir effect provides an explanation of the formation of stacked aggregations or "rouleaux" by negatively charged red blood cells. We show how the interplay between electrical and Casimir forces can be used to drive self-assembly of nano-structured materials, and could be generalized both as a probe of Casimir forces and as a means of manufacturing nanoscale structures. Interestingly, all the cases discussed involve the generation of the somewhat exotic negative pressures. We note that very little is known about the phase diagrams of most materials in the presence of external fields other than those represented by the ...

  15. Quantum vacuum fluctuations in presence of dissipative bodies: Dynamical approach for nonequilibrium and squeezed states

    Science.gov (United States)

    Rubio López, Adrián E.

    2017-01-01

    The present work contributes to the study of nonequilibrium aspects of the Casimir forces with the introduction of squeezed states in the calculations. Throughout this article two main results can be found, being both strongly correlated. Primarily, the more formal result involves the development of a first-principles canonical quantization formalism to study the quantum vacuum in the presence of different dissipative material bodies in completely general scenarios. For this purpose, we consider a one-dimensional quantum scalar field interacting with the volume elements' degrees of freedom of the material bodies, which are modeled as a set of composite systems consisting of quantum harmonic oscillators interacting with an environment (provided as an infinite set of quantum harmonic oscillators acting as a thermal bath). Solving the full dynamics of the composite system through its Heisenberg equations, we study each contribution to the field operator by employing general properties of the Green function. We deduce the long-time limit of the contributions to the field operator. In agreement with previous works, we show that the expectation values of the components of the energy-momentum tensor present two contributions, one associated to the thermal baths and the other one associated to the field's initial conditions. This allows the direct study of steady situations involving different initial states for the field (keeping arbitrary thermal states for the baths). This leads to the other main result, consisting of computing the Casimir force when the field is initially in thermal or continuum-single-mode squeezed states (the latter being characterized by a given bandwidth and frequency). Time averaging is required for the squeezed case, showing that both results can be given in a unified way, while for the thermal state, all the well-known equilibrium results can be successfully reproduced. Finally, we compared the initial conditions' contribution and the total

  16. The Vacuum Structure, Special Relativity Theory and Quantum Mechanics Revisited: A Field Theory-No-Geometry Approach

    CERN Document Server

    Bogolubov, Nikolaj N; Taneri, Ufuk

    2008-01-01

    The main fundamental principles characterizing the vacuum field structure are formulated, the modeling of the related vacuum medium and point charged particle dynamics by means of devised field theoretic tools is analyzed. The Maxwell electrodynamic theory is revisited and newly derived from the suggested vacuum field structure principles, the classical special relativity theory relationship between the energy and the corresponding point particle mass is revisited and newly obtained. The Lorentz force expression with respect to arbitrary non-inertial reference frames is revisited and discussed in detail, some new interpretations of relations between the special relativity theory and quantum mechanics are presented. The famous quantum-mechanical Schr\\"{o}dinger type equation for a relativistic point particle in the external potential field within the quasiclassical approximation as the Plank constant $\\hbar \\to 0$ is obtained.

  17. Testing statistics of the CMB B -mode polarization toward unambiguously establishing quantum fluctuation of the vacuum

    Science.gov (United States)

    Shiraishi, Maresuke; Hikage, Chiaki; Namba, Ryo; Namikawa, Toshiya; Hazumi, Masashi

    2016-08-01

    The B -mode polarization in the cosmic microwave background (CMB) anisotropies at large angular scales provides compelling evidence for the primordial gravitational waves (GWs). It is often stated that a discovery of the GWs establishes the quantum fluctuation of vacuum during the cosmic inflation. Since the GWs could also be generated by source fields, however, we need to check if a sizable signal exists due to such source fields before reaching a firm conclusion when the B mode is discovered. Source fields of particular types can generate non-Gaussianity (NG) in the GWs. Testing statistics of the B mode is a powerful way of detecting such NG. As a concrete example, we show a model in which gauge field sources chiral GWs via a pseudoscalar coupling and forecast the detection significance at the future CMB satellite LiteBIRD. Effects of residual foregrounds and lensing B mode are both taken into account. We find the B -mode bispectrum "BBB" is in particular sensitive to the source-field NG, which is detectable at LiteBIRD with a >3 σ significance. Therefore the search for the BBB will be indispensable toward unambiguously establishing quantum fluctuation of vacuum when the B mode is discovered. We also introduced the Minkowski functional to detect the NGs. While we find that the Minkowski functional is less efficient than the harmonic-space bispectrum estimator, it still serves as a useful cross-check. Finally, we also discuss the possibility of extracting clean information on parity violation of GWs and new types of parity-violating observables induced by lensing.

  18. Graviton, ghost and instanton condensation on horizon scale of the Universe. Dark energy as a macroscopic effect of quantum gravity

    CERN Document Server

    Marochnik, Leonid; Vereshkov, Grigory

    2008-01-01

    We show that cosmological acceleration, Dark Energy (DE) effect is a consequence of the zero rest mass, conformal non-invariance of gravitons, and 1-loop finiteness of quantum gravity (QG). The effect is due to graviton-ghost condensates arising from the interference of quantum coherent states. The theory is constructed as follows: De Witt-Faddeev-Popov gauged path integral -> factorization of classical and quantum variables -> transition to the 1-loop approximation -> choice of ghost sector, satisfying 1-loop finiteness of the theory off the mass shell. The Bogolyubov-Born-Green-Kirckwood-Yvon (BBGKY) chain for the spectral function of gravitons renormalized by ghosts is used to build a theory of gravitons in the isotropic Universe. We found three exact solutions of the equations that describe virtual graviton and ghost condensates as well as condensates of instanton fluctuations. Exact solutions correspond to various condensates with different graviton-ghost compositions. The formalism of the BBGKY chain ta...

  19. The Stark interaction of identical particles with vacuum electromagnetic field as quantum Poisson process suppressing collective spontaneous emission

    CERN Document Server

    Basharov, A M

    2011-01-01

    The effective Hamiltonian describing resonant interaction of an ensemble of identical quantum particles with a photon-free vacuum electromagnetic field has been obtained with allowance for the second-order terms over the coupling constant (the Stark interaction) by means of the perturbation theory on the basis of the unitary transformation of the system quantum state. It has been shown that in the Markov approximation the effective Hamiltonian terms of the first-order coupling constant are represented as the quantum Wiener process, whereas the second-order terms are expressed by the quantum Poisson process. In the course of investigation it was established that the Stark interaction played a significant role in the ensemble dynamics, thus influencing the collective spontaneous decay of the ensemble of an appreciably high number of identical particles. New fundamental effects have been discovered, i.e., the excitation conservation in a sufficiently dense ensemble of identical particles and superradiance suppre...

  20. Macroscopic quantum phenomena in strongly correlated fermionic systems; Phenomenes quantiques macroscopiques dans les systemes d'electrons fortement correles

    Energy Technology Data Exchange (ETDEWEB)

    Rech, J

    2006-06-15

    It took several years after the idea of a zero-temperature phase transition emerged to realize the impact of such a quantum critical point over a large region of the phase diagram. Observed in many experimental examples, this quantum critical regime is not yet understood in details theoretically, and one needs to develop new approaches. In the first part, we focused on the ferromagnetic quantum critical point. After constructing a controlled approach allowing us to describe the quantum critical regime, we show through the computation of the static spin susceptibility that the ferromagnetic quantum critical point is unstable, destroyed internally by an effective dynamic long-range interaction generated by the Landau damping. In the second part, we revisit the exactly screened single impurity Kondo model, using a bosonic representation of the local spin and treating it in the limit of large spin degeneracy N. We show that, in this regime, the ground-state is a non-trivial Fermi liquid, unlike what was advocated by previous similar studies. We then extend our method to encompass the physics of two coupled impurities, for which our results are qualitatively comparable to the ones obtained from various approaches carried out in the past. We also develop a Luttinger-Ward formalism, enabling us to cure some of the drawbacks of the original method used to describe the single impurity physics. Finally, we present the main ideas and the first results for an extension of the method towards the description of a Kondo lattice, relevant for the understanding of the quantum critical regime of heavy fermion materials. (authors)

  1. Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation

    Science.gov (United States)

    Phillips, Nicholas G.; Hu, B. L.

    2000-10-01

    We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that, contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universes, and for examining the design feasibility of real-life ``time machines.'' For the Minkowski vacuum we find that the ratio of the variance to the mean-squared, calculated from the coincidence limit, is identical to the value of the Casimir case at the same limit for spatial point separation while identical to the value of a hot flat space result with a temporal point separation. We analyze the origin of divergences in the fluctuations of the energy density and discuss choices in formulating a procedure for their removal, thus raising new questions about the uniqueness and even the very meaning of regularization of the energy momentum tensor for quantum fields in curved or even flat spacetimes when spacetime is viewed as having an extended structure.

  2. How does Casimir energy fall? II. Gravitational acceleration of quantum vacuum energy

    CERN Document Server

    Milton, Kimball A; Shajesh, K V; Wagner, Jef

    2007-01-01

    It has been demonstrated that quantum vacuum energy gravitates according to the equivalence principle, at least for the finite Casimir energies associated with perfectly conducting parallel plates. We here add further support to this conclusion by considering parallel semitransparent plates, that is, delta-function potentials, acting on a massless scalar field, in a spacetime defined by Rindler coordinates (tau,x,y,xi). Fixed xi in such a spacetime represents uniform acceleration. We calculate the force on systems consisting of one or two such plates at fixed values of xi. In the limit of large Rindler coordinate xi (small acceleration), we recover (via the equivalence principle) the situation of weak gravity, and find that the gravitational force on the system is just Mg, where g is the gravitational acceleration and M is the total mass of the system, consisting of the mass of the plates renormalized by the Casimir energy of each plate separately, plus the energy of the Casimir interaction between the plates...

  3. Testing statistics of the CMB B-mode polarization toward unambiguously establishing quantum fluctuation of vacuum

    CERN Document Server

    Shiraishi, Maresuke; Namba, Ryo; Namikawa, Toshiya; Hazumi, Masashi

    2016-01-01

    The B-mode polarization in the cosmic microwave background (CMB) anisotropies at large angular scales provides a smoking-gun evidence for the primordial gravitational waves (GWs). It is often stated that a discovery of the GWs establishes the quantum fluctuation of vacuum during the cosmic inflation. Since the GWs could also be generated by source fields, however, we need to check if a sizable signal exists due to such source fields before reaching a firm conclusion when the B-mode is discovered. Source fields of particular types can generate non-Gaussianity (NG) in the GWs. Testing statistics of the B-mode is a powerful way of detecting such NG. As a concrete example, we show a model in which a gauge field sources chiral GWs via a pseudoscalar coupling, and forecast the detection significance at the future CMB satellite LiteBIRD. Effects of residual foregrounds and lensing B-mode are both taken into account. We find the B-mode bispectrum "BBB" is in particular sensitive to the source-field NG, which is detec...

  4. Vacuum Energy Density Fluctuations in Minkowski and Casimir States via Smeared Quantum Fields and Point Separation

    CERN Document Server

    Phillips, N G; Phillips, Nicholas. G.

    2000-01-01

    We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universe, and for examining the design feasibility of real-life `time-machines'. For the Minkowski vacuum we find that the ratio of the var...

  5. The Pioneer riddle, the quantum vacuum and the acceleration of light

    CERN Document Server

    Ranada, A F

    2003-01-01

    It is shown that the same phenomenological Newtonian model recently proposed by the author to explain the cosmological evolution of the fine structure constant suggests furthermore an explanation of the unmodelled acceleration $a_P\\simeq 8.5\\times 10^{-10}m/s^2$ of the Pioneer 10/11 spaceships reported by Anderson {\\em et al} in 1998. In the view presented here, it is argued that the permittivity and permeability of empty space are decreasing adiabatically, and the light is accelerating therefore, as a consequence of the progressive thinning down of the quantum vacuum due to the combined effect of its gravitational interaction with all the expanding universe and the fourth Heisenberg relation. It is suggested that the spaceships do not have any extra acceleration (but follow the unchanged Newton laws), the observed effect being due to an adiabatic acceleration of the light equal to $a_P$, which has the same observational radio signature as the anomalous acceleration of the Pioneers.

  6. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [North Carolina State Univ., Raleigh, NC (United States)

    2004-12-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  7. Quantum Linear Gravity in de Sitter Universe on Gupta-Bleuler Vacuum State

    Science.gov (United States)

    Enayati, M.; Takook, M. V.; Rouhani, S.

    2017-04-01

    Application of Krein space quantization to the linear gravity in de Sitter space-time have constructed on Gupta-Bleuler vacuum state, resulting in removal of infrared divergence and preserving de Sitter covariant. By pursuing this path, the non uniqueness of vacuum expectation value of the product of field operators in curved space-time disappears as well. Then the vacuum expectation value of the product of field operators can be defined properly and uniquely.

  8. Time and Matter in the Interaction between Gravity and Quantum Fluids: Are there Macroscopic Quantum Transducers between Gravitational and Electromagnetic waves?

    CERN Document Server

    Chiao, R Y; Chiao, Raymond Y.; Fitelson, Walter J.

    2006-01-01

    Measurements of the tunneling time are briefly reviewed. Next, time and matter in general relativity and quantum mechanics is examined. In particular, the question arises: How does gravitational radiation interact with a coherent quantum many-body system (a ``quantum fluid'')? A minimal coupling rule for the coupling of the electron spin to curved spacetime in general relativity implies the possibility of a coupling between electromagnetic (EM) and gravitational (GR) radiation mediated by a quantum Hall fluid. This suggests that quantum transducers between these two kinds of radiation fields might exist. We report here on a first attempt at a Hertz-type experiment, in which a high-$\\rm{T_c}$ superconductor (YBCO) was the material used as a quantum transducer to convert EM into GR microwaves, and a second piece of YBCO in a separate apparatus was used to back-convert GR into EM microwaves. An upper limit on the conversion efficiency of YBCO was measured to be $1.6\\times10^{-5}$.

  9. Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance

    Science.gov (United States)

    Senokos, E.; Reguero, V.; Palma, J.; Vilatela, J. J.; Marcilla, Rebeca

    2016-02-01

    In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m2 g-1, high electrical conductivity (3.5 × 105 S m-1) and mechanical properties in the high-performance range including toughness (35 J g-1) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg-1 and 14 Wh kg-1, respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10 000 cycles of charge-discharge at 3.5 V.In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through

  10. The Trace Anomaly and Dynamical Vacuum Energy in Cosmology

    CERN Document Server

    Mottola, Emil

    2010-01-01

    The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effective action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmol...

  11. Quantum states of light

    CERN Document Server

    Furusawa, Akira

    2015-01-01

    This book explains what quantum states of light look like. Of special interest, a single photon state is explained by using a wave picture, showing that it corresponds to the complementarity of a quantum. Also explained is how light waves are created by photons, again corresponding to the complementarity of a quantum. The author shows how an optical wave is created by superposition of a "vacuum" and a single photon as a typical example. Moreover, squeezed states of light are explained as "longitudinal" waves of light and Schrödinger's cat states as macroscopic superposition states.

  12. Vacuum Incalescence

    CERN Document Server

    Intravaia, F

    2016-01-01

    In quantum theory the vacuum is defined as a state of minimum energy that is devoid of particles but still not completely empty. It is perhaps more surprising that its definition depends on the geometry of the system and on the trajectory of an observer through space-time. Along these lines we investigate the case of an atom flying at constant velocity near a planar surface. Using general concepts of statistical mechanics it is shown that the motion-modified interaction with the electromagnetic vacuum is formally equivalent to the interaction with a thermal field having an effective temperature determined by the atom's velocity and distance from the surface. This result suggests new ways to experimentally investigate the properties of the quantum vacuum in non-equilibrium systems and effects such as quantum friction.

  13. Quantum Fluctuation Properties of Polariton System in Thermal Vacuum State Field

    Institute of Scientific and Technical Information of China (English)

    邵彬; 余天胜; 邹健; 曾天海

    2004-01-01

    Using the theory of thermal field dynamics (TFD), a model polariton system is investigated and the squeezing properties of the polariton system at finite temperature is discussed. It is shown that when the photon field is initially in a thermal vacuum state and the phonon initially in its lowest energy level state (the vacuum state), the phonon, photon and also the polariton system can exhibit nonclassical behaviour.

  14. Vacuum Energy: Myths and Reality

    OpenAIRE

    Volovik, G. E.

    2006-01-01

    We discuss the main myths related to the vacuum energy and cosmological constant, such as: ``unbearable lightness of space-time''; the dominating contribution of zero point energy of quantum fields to the vacuum energy; non-zero vacuum energy of the false vacuum; dependence of the vacuum energy on the overall shift of energy; the absolute value of energy only has significance for gravity; the vacuum energy depends on the vacuum content; cosmological constant changes after the phase transition...

  15. Quantum correction to tiny vacuum expectation value in two Higgs doublet model for Dirac neutrino mass

    CERN Document Server

    Morozumi, Takuya; Tamai, Kotaro

    2011-01-01

    We study a Dirac neutrino mass model of Davidson and Logan. In the model, the smallness of the neutrino mass is originated from the small vacuum expectation value of the second Higgs of two Higgs doublets. We study the one loop effective potential of the Higgs sector and examine how the small vacuum expectation is stable under the radiative correction. By deriving formulae of the radiative correction, we numerically study how large the one loop correction is and show how it depends on the quadratic mass terms and quartic couplings of the Higgs potential. The correction changes depending on the various scenarios for extra Higgs mass spectrum.

  16. Cavity Quantum Electrodynamics in a wide aperture spherical resonator. Part II Vacuum-field atom trapping

    CERN Document Server

    Daul, J M; Daul, Jean-Marc; Grangier, Philippe

    2003-01-01

    We consider the situation where a two-level atom is placed in the vicinity of the center of a spherical cavity with a large numerical aperture. The vacuum field at the center of the cavity is actually equivalent to the one obtained in a microcavity, and both the dissipative and the reactive parts of the atom's spontaneous emission are significantly modified. Using an explicit calculation of the spatial dependence of the radiative relaxation rate and of the associated level shift, we show that for a weakly excitating light field, the atom can be attracted to the center of the cavity by vacuum-induced light shifts.

  17. Karolyhazy's quantum space-time generates neutron star density in vacuum

    CERN Document Server

    Diósi, L

    1993-01-01

    By simple arguments, we have shown that Karolyhazy's model overestimates the quantum uncertainty of the space-time geometry and leads to absurd physical consequences. The given model can thus not account for gradual violation of quantum coherence and can not predict tiny experimental effects either.

  18. Macroscopic Quantum Coherence and Computing

    Science.gov (United States)

    2010-02-17

    A. Gubrud, A. J. Berkley, J. R. Anderson, C. J. Lobb, and F. C. Wellstood, IEEE Trans AppI Supr 11,998 (2001) [2] J. M. Martinis, S. Nam, J. Aumentado...al., Phys. Rev. Lett. 87, 217003 (2001) [5] M. Savolainen, et. al., to be published in Appi . Phys. A (2004), cond-mat/031 1383 Modelling the current

  19. Millikelvin cooling of an optically trapped microsphere in vacuum

    CERN Document Server

    Li, Tongcang; Raizen, Mark G

    2011-01-01

    The apparent conflict between general relativity and quantum mechanics remains one of the unresolved mysteries of the physical world. According to recent theories, this conflict results in gravity-induced quantum state reduction of "Schr\\"odinger cats", quantum superpositions of macroscopic observables. In recent years, great progress has been made in cooling micromechanical resonators towards their quantum mechanical ground state. This work is an important step towards the creation of Schr\\"odinger cats in the laboratory, and the study of their destruction by decoherence. A direct test of the gravity-induced state reduction scenario may therefore be within reach. However, a recent analysis shows that for all systems reported to date, quantum superpositions are destroyed by environmental decoherence long before gravitational state reduction takes effect. Here we report optical trapping of glass microspheres in vacuum with high oscillation frequencies, and cooling of the center-of-mass motion from room tempera...

  20. Vacuum Quantum Effects for Parallel Plates Moving by Uniform Acceleration in Static de Sitter Space

    CERN Document Server

    Setare, M R

    2004-01-01

    The Casimir forces on two parallel plates moving by uniform proper acceleration in static de Sitter background due to conformally coupled massless scalar field satisfying Dirichlet boundary conditions on the plates is investigated. Static de Sitter space is conformally related to the Rindler space, as a result we can obtain vacuum expectation values of energy-momentum tensor for conformally invariant field in static de Sitter space from the corresponding Rindler counterpart by the conformal transformation.

  1. A rotating quantum vacuum and the depolarization problem in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F.

    1997-02-01

    We investigate the consequences of using a Lorentz-like transformation to connect measurements between a inertial a rotating frame of reference. We obtain a new rotating vacuum (of a massless scalar field) different from the Minkowski one. After this we consider a monopole detector interacting with the field. The radiative processes are discussed from a rotating and inertial frame point of view. Finally using this formalism the polarization effects of electrons in circular accelerators is discussed. (author). 16 refs.

  2. Quantum Vacuum Fluctuations in Presence of Dissipative Bodies: Dynamical Approach for Non-Equilibrium and Squeezed States

    CERN Document Server

    Lopez, Adrian E Rubio

    2016-01-01

    This work contributes to the study of non-equilibrium aspects of the Casimir forces with the introduction of squeezed states in the calculations. Throughout this article two main results can be found, being both strongly correlated. Primarily, the more formal result involves the development of a first-principles canonical quantization formalism to study the vacuum in presence different dissipative bodies in completely general scenarios. We considered a one-dimensional quantum scalar field interacting with the volume elements' degrees of freedom of the material bodies, which are modeled as composite systems consisting in a harmonic oscillators interacting with an environment. Solving the full dynamics of the composite system through its Heisenberg equations, we studied each contribution to the field operator by employing general properties of the Green function. We deduced the long-time limit of the field operator. In agreement with previous works, we showed that the expectation values of the components of the...

  3. Quantum Fluctuation in Thermal Vacuum State for Mesoscopic LC Electric Circuit

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; LIANG Xian-Ting

    2000-01-01

    We consider the quantization of LC (inductance-capacitance) circuit at a finite temperature T as any practical circuits always produce Joule heat except for superconductivity. It is shown that the quantum mechanical zeropoint fluctuations of both charge and current increase with upgoing T. Thermal field dynamics is used in ourdiscussion.

  4. Resonant amplification of quantum fluctuations in a spinor gas

    DEFF Research Database (Denmark)

    Topic, O.; Scherer, M.; Gebreyesus, G.;

    2010-01-01

    Bose-Einstein condensates of atoms with non-zero spin are known to constitute an ideal system to investigate fundamental properties of magnetic superfluids. More recently it was realized that they also provide the fascinating opportunity to investigate the macroscopic amplification of quantum and...... of seed atoms is triggered purely by quantum fluctuations and thus the system acts as a matter-wave amplifier for the vacuum state....

  5. Vacuum response to cosmic stretching: accelerated Universe and prevention of singularity

    OpenAIRE

    Novikov, E. A.

    2006-01-01

    Spacetime stretching is included in the general relativity alongside with the spacetime curvature. Response of the vacuum to cosmic stretching is considered as macroscopic quantum effect. This effect explains the accelerated expansion of the Universe without resorting to Plank scale. For negative stretching (collapse) the same effect can prevent formation of singularity. Stretching effect can be important for a variety of cosmic phenomena, including collisions of galaxies and local collapses.

  6. Electron spin control of optically levitated nanodiamonds in vacuum

    Science.gov (United States)

    Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  7. Electron spin control of optically levitated nanodiamonds in vacuum.

    Science.gov (United States)

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-19

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  8. Observation of vacuum-enhanced electron spin resonance of levitated nanodiamonds

    CERN Document Server

    Hoang, Thai M; Bang, Jaehoon; Li, Tongcang

    2015-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potenti...

  9. Observation of vacuum-enhanced electron spin resonance of optically levitated nanodiamonds

    Science.gov (United States)

    Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potential applications of NV centers in gas sensing.

  10. Separation of the Microscopic and Macroscopic Domains

    Science.gov (United States)

    Van Zandt, L. L.

    1977-01-01

    Examines the possibility of observing interference in quantum magnification experiments such as the celebrated "Schroedinger cat". Uses the possibility of observing interference for separating the realm of microscopic from macroscopic dynamics; estimates the dividing line to fall at system sizes of about 100 Daltons. (MLH)

  11. A macroscopic approach to creating exotic matter

    OpenAIRE

    Ridgely, C. T.

    2000-01-01

    Herein the Casimir effect is used to present a simple macroscopic view on creating exotic matter. The energy arising between two nearly perfectly conducting parallel plates is shown to become increasingly negative as the plate separation is reduced. It is proposed that the Casimir energy appears increasingly negative simply because the vacuum electromagnetic zero-point field performs positive work in pushing the plates together, transforming field energy into kinetic energy of the plates. Nex...

  12. Study of semi-transparent conductive layers for the realization of high quantum efficiency transmission mode CsI photocathodes for vacuum photodetectors

    Science.gov (United States)

    Barbato, F. C. T.; Valentini, A.; Casamassima, G.; Campajola, L.; Di Capua, F.

    2017-07-01

    We worked on the R&D of an innovative photodetector, the Vacuum Silicon Photomultiplier Tube (VSiPMT). The VSiPMT is composed by a photocathode and a solid state amplification stage. A semi-transparent conductive layer is necessary to supply voltage and to obtain a highly efficient CsI photocathode. Since the literature is poor on this topic we performed a systematic and detailed study of a set of semi-transparent conductive layers, made by different material and thickness. A CsI photocathode was evaporated on each sample. The impact of the semi-transparent conductive layer on the quantum efficiency of the photocathode is discussed.

  13. Quantum vacuum magnetic birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Berceau, Paul; Battesti, Remy; Fouche, Mathilde; Frings, Paul; Nardone, Marc; Portugall, Oliver; Rikken, Geert L. J. A.; Rizzo, Carlo, E-mail: carlo.rizzo@lncmi.cnrs.fr [UPR 3228, CNRS-UPS-UJF-INSA, Laboratoire National des Champs Magnetiques Intenses (France)

    2012-05-15

    In this contribution to EXA2011 congress, we present the status of the BMV (Birefringence Magnetique du Vide) experiment which is based on the use of a state-of-the-art optical resonant cavity and high pulsed magnetic fields, and it is hosted by the Laboratoire National des Champs Magnetiques Intenses in Toulouse, France.

  14. Quantum magnonics: The magnon meets the superconducting qubit

    Science.gov (United States)

    Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Usami, Koji; Nakamura, Yasunobu

    2016-08-01

    The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of a ferromagnetic insulator. We demonstrate, in the single-magnon limit, strong coupling between a magnetostatic mode in the sphere and a microwave cavity mode. Moreover, we introduce a superconducting qubit in the cavity and couple the qubit with the magnon excitation via the virtual photon excitation. We observe the magnon-vacuum-induced Rabi splitting. The hybrid quantum system enables generation and characterization of non-classical quantum states of magnons. xml:lang="fr"

  15. The unequal-power higher-power difference squeezing in the multimode Schr(o)dinger-cat state entangled light field with three macroscopically distinguishable quantum states superposition%叠加多模薛定谔猫态纠缠光场的不等幂次高次差压缩

    Institute of Scientific and Technical Information of China (English)

    孙中禹; 陈光德; 杨志勇; 王菊霞

    2004-01-01

    利用多模压缩态理论研究了由多模复共轭相干态、多模复共轭虚相干态和多模真空态的线性叠加所组成的三态叠加多模薛定谔猫态纠缠光场的广义非线性不等幂次高次差压缩特性.结果发现:①真空场对此猫态光场的不等幂次高次差压缩效应没有影响;②在一定条件下,此猫态光场的两个正交相位分量可分别呈现出不等幂次高次差压缩效应;③而在另外的条件下,此猫态光场的两个正交相位分量则可同时出现上述的不等幂次高次差压缩效应,这是一种与测不准关系相悖的现象,称此种现象为"双边差压缩"效应.%By utilizing the general theory of multimode squeezed states, the effects of generalized nonlinear unequal-power higher-power difference squeezing in the multimode Schrodinger-cat state entangled light field is studied, that is formed by the linear superposition of three macroscopical distinguishable quantum states named the multimode complex conjugate coherent state, multimode complex conjugate imaginary coherent state and multimode vacuum state. It is found that 1) the difference squeezing of the cat state entangled light field is independent of its vacuum state component; 2) in some cases, the two quadrature phase components of this cat state entangled light field present unequal-power higher-power difference squeezing properties respectively; 3)under some other conditions, the difference squeezing effects of two quadrature phase components of the state mentioned above cart exist at the same time. The two preceding results stated above are in conformity with the uncertainty principle, but the last is not. It is called "two-sided difference squeezing" phenomenon and could be very useful in the application of squeezed light on light quanta communication.

  16. Application of linear hyperbolic PDE to linear quantum fields in curved spacetimes especially black holes, time machines and a new semi-local vacuum concept

    CERN Document Server

    Kay, B S

    2000-01-01

    Several situations of physical importance may be modelled by linear quantum fields propagating in fixed spacetime-dependent classical background fields. For example, the quantum Dirac field in a strong and/or time-dependent external electromagnetic field accounts for the creation of electron-positron pairs out of the vacuum. Also, the theory of linear quantum fields propagating on a given background curved spacetime is the appropriate framework for the derivation of black-hole evaporation (Hawking effect) and for studying the question whether or not it is possible in principle to manufacture a time-machine. It is a well-established metatheorem that any question concerning such a linear quantum field may be reduced to a definite question concerning the corresponding classical field theory (i.e. linear hyperbolic PDE with non-constant coefficients describing the background in question) -- albeit not necessarily a question which would have arisen naturally in a purely classical context. The focus in this talk wi...

  17. The trace anomaly and dynamical vacuum energy in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Mottola, Emil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-04-30

    The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effective action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmological horizon scale, rather than sensitivity to the extreme ultraviolet Planck scale.

  18. Quantum dynamics of a BEC interacting with a single-mode quantized field under the influence of a dissipation process: thermal and squeezed vacuum reservoirs

    Science.gov (United States)

    Ghasemian, E.; Tavassoly, M. K.

    2017-09-01

    In this paper we consider a system consisting of a number of two-level atoms in a Bose-Einstein condensate (BEC) and a single-mode quantized field, which interact with each other in the presence of two different damping sources, i.e. cavity and atomic reservoirs. The reservoirs which we consider here are thermal and squeezed vacuum ones corresponding to field and atom modes. Strictly speaking, by considering both types of reservoirs for each of the atom and field modes, we investigate the quantum dynamics of the interacting bosons in the system. Then, via solving the quantum Langevin equations for such a dissipative BEC system, we obtain analytical expressions for the time dependence of atomic population inversion, mean atom as well as photon number and quadrature squeezing in the field and atom modes. Our investigations demonstrate that for modeling the real physical systems, considering the dissipation effects is essential. Also, numerical calculations which are presented show that the atomic population inversion, the mean number of atoms in the BEC and the photons in the cavity possess damped oscillatory behavior due to the presence of reservoirs. In addition, non-classical squeezing effects in the field quadrature can be observed especially when squeezed vacuum reservoirs are taken into account. As an outstanding property of this model, we may refer to the fact that one can extract the atom-field coupling constant from the frequency of oscillations in the mentioned quantities such as atomic population inversion.

  19. On the Possibility of Quantum-Mechanical Interpretation the Relativistic Effect of Energy Increase in a Particle Freely Moving in Vacuum

    CERN Document Server

    Gestrina, G N

    2005-01-01

    The relativistic effect of energy increase in a particle freely moving in vacuum is discussed on the basis of quantum field theory and probability theory using some ideas of super-symmetrical theories. The particle is assumed to consist of a "seed" whose energy is equal to the particle rest energy and whose pulse is equal to the product of the particle mass by its velocity and of a "fur coat" - the system of virtual quanta of the material field - vacuum. Each of these quanta possesses the same energy and pulse as the "seed" but have no mass. The system of the quanta is in a state being the superposition of quantum states with energies and pulses multiple of the "seed" energy and pulse. The virtual quanta is created (or destroyed) in of such states. The probability of creating a quanta in any state is the inverse of the relativistic factor, and the average number of the quanta making up the "fur coat" with a "seed" is equal to this particular factor. The kinetic energy and the relativistic addition to the part...

  20. Macroscopic Objects, Intrinsic Spin, and Lorentz Violation

    CERN Document Server

    Atkinson, David W; Tasson, Jay D

    2013-01-01

    The framework of the Standard-Model Extension (SME) provides a relativistic quantum field theory for the study of Lorentz violation. The classical, nonrelativistic equations of motion can be extracted as a limit that is useful in various scenarios. In this work, we consider the effects of certain SME coefficients for Lorentz violation on the motion of macroscopic objects having net intrinsic spin in the classical, nonrelativistic limit.

  1. Cavity Control and Cooling of Nanoparticles in High Vacuum

    Science.gov (United States)

    Millen, James

    2016-05-01

    Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging. Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres, and control the rotation of nanorods, with the potential to produce cold, aligned nanostructures. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 107 a.m.u.

  2. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    CERN Document Server

    Karbstein, Felix

    2016-01-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at a x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experim...

  3. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    Science.gov (United States)

    Karbstein, Felix; Sundqvist, Chantal

    2016-07-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article, we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at an x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experiment.

  4. Standard quantum limit of angular motion of a suspended mirror and homodyne detection of ponderomotively squeezed vacuum of the first-order Hermite-Gaussian modes of light field

    CERN Document Server

    Enomoto, Yutaro; Kawamura, Seiji

    2016-01-01

    Compared to the quantum noise in the measurement of the translational motion of a suspended mirror using laser light, the quantum noise in the measurement of the angular motion of a suspended mirror has not been investigated intensively despite its potential importance. In this letter, an expression for the quantum noise in the angular motion measurement is explicitly derived. The expression indicates that one quadrature of the vacuum field of the first-order Hermite-Gaussian mode of light causes quantum sensing noise and the other causes quantum backaction noise, or in other words the first-order vacuum field is ponderomotively squeezed. It is also shown that the Gouy phase shift the light acquires between the mirror and the position of detection of the light corresponds to the homodyne angle. Therefore, the quantum backaction noise can be cancelled and the standard quantum limit can be surpassed by choosing the appropriate position of detection analogously to the cancellation of quantum radiation pressure n...

  5. Towards a Quantum Theory of Solitons

    CERN Document Server

    Dvali, Gia; Gruending, Lukas; Rug, Tehseen

    2015-01-01

    We formulate a quantum coherent state picture for topological and non-topological solitons. We recognize that the topological charge arises from the infinite occupation number of zero momentum quanta flowing in one direction. Thus, the Noether charge of microscopic constituents gives rise to a topological charge in the macroscopic description. This fact explains the conservation of topological charge from the basic properties of coherent states. It also shows that no such conservation exists for non-topological solitons, which have finite mean occupation number. Consequently, they can have an exponentially-small but non-zero overlap with the vacuum, leading to vacuum instability. This amplitude can be interpreted as a coherent state description of false vacuum decay. Next we show that we can represent topological solitons as a convolution of two sectors that carry information about topology and energy separately, which makes their difference very transparent. Finally, we show how interaction among the soliton...

  6. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001 surface: nucleation, morphology, and CMOS compatibility

    Directory of Open Access Journals (Sweden)

    Yuryev Vladimir

    2011-01-01

    Full Text Available Abstract Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001 surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C and high (≳600°C temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001 surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001 quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  7. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility.

    Science.gov (United States)

    Yuryev, Vladimir A; Arapkina, Larisa V

    2011-09-05

    Issues of morphology, nucleation, and growth of Ge cluster arrays deposited by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered. Difference in nucleation of quantum dots during Ge deposition at low (≲600°C) and high (≳600°C) temperatures is studied by high resolution scanning tunneling microscopy. The atomic models of growth of both species of Ge huts--pyramids and wedges-- are proposed. The growth cycle of Ge QD arrays at low temperatures is explored. A problem of lowering of the array formation temperature is discussed with the focus on CMOS compatibility of the entire process; a special attention is paid upon approaches to reduction of treatment temperature during the Si(001) surface pre-growth cleaning, which is at once a key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array formation process. The temperature of the Si clean surface preparation, the final high-temperature step of which is, as a rule, carried out directly in the MBE chamber just before the structure deposition, determines the compatibility of formation process of Ge-QD-array based devices with the CMOS manufacturing cycle. Silicon surface hydrogenation at the final stage of its wet chemical etching during the preliminary cleaning is proposed as a possible way of efficient reduction of the Si wafer pre-growth annealing temperature.

  8. The macroscopic pancake bounce

    Science.gov (United States)

    Andersen Bro, Jonas; Sternberg Brogaard Jensen, Kasper; Nygaard Larsen, Alex; Yeomans, Julia M.; Hecksher, Tina

    2017-01-01

    We demonstrate that the so-called pancake bounce of millimetric water droplets on surfaces patterned with hydrophobic posts (Liu et al 2014 Nat. Phys. 10 515) can be reproduced on larger scales. In our experiment, a bed of nails plays the role of the structured surface and a water balloon models the water droplet. The macroscopic version largely reproduces the features of the microscopic experiment, including the Weber number dependence and the reduced contact time for pancake bouncing. The scalability of the experiment confirms the mechanisms of pancake bouncing, and allows us to measure the force exerted on the surface during the bounce. The experiment is simple and inexpensive and is an example where front-line research is accessible to student projects.

  9. Unruh effect and macroscopic quantum interference

    CERN Document Server

    Steane, Andrew

    2015-01-01

    We investigate the influence of Unruh radiation on matter-wave interferometry experiments using neutral objects modeled as dielectric spheres. The Unruh effect leads to a loss of coherence through momentum diffusion. This is a fundamental source of decoherence that affects all objects having electromagnetic interactions. However, the effect is not large enough to prevent the observation of interference for objects of any size, even when the path separation is larger than the size of the object. When the acceleration in the interferometer arms is large, inertial tidal forces will disrupt the material integrity of the interfering objects before the Unruh decoherence of the centre of mass motion is sufficient to prevent observable interference.

  10. Vacuum metastability with black holes

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Philipp [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute, 31 Caroline Street North,Waterloo, ON, N2L 2Y5 (Canada); Moss, Ian G. annd [School of Mathematics and Statistics, Newcastle University,Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2015-08-24

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  11. Hadron Contribution to Vacuum Polarisation

    Science.gov (United States)

    Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z.

    2016-10-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle-antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e- annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingredients to high precision tests of the Standard Theory.

  12. Hadron Contribution to Vacuum Polarisation

    CERN Document Server

    Davier, M; Malaescu, B; Zhang, Z

    2016-01-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle–antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e− annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingre...

  13. Vacuum Energy and Its Consequences

    Science.gov (United States)

    Hewett, Lionel

    2009-10-01

    Intuitively one would think that a perfect vacuum should contain no energy. However, quantum mechanics asserts that virtual particles popping in and out of existence too fast to be observed directly should produce a non-zero average energy density for empty space. This presentation discusses how quantum mechanics predicts too large a value for this energy density, how the Casimir effect correctly predicts the measured value of the vacuum energy between closely spaced objects, how time-symmetric cosmology predicts the energy density of interstellar space, how vacuum energy produces negative pressure, how vacuum energy causes the current universe to accelerate its expansion, and why vacuum energy cannot be tapped so as to produce an inexhaustible source of energy for all mankind.

  14. Quantum cosmology from group field theory condensates: a review

    CERN Document Server

    Gielen, Steffen

    2016-01-01

    We give, in some detail, a critical overview over recent work towards deriving a cosmological phenomenology from the fundamental quantum dynamics of group field theory (GFT), based on the picture of a macroscopic universe as a "condensate" of a large number of quanta of geometry which are given by excitations of the GFT field over a "no-space" vacuum. We emphasise conceptual foundations, relations to other research programmes in GFT and the wider context of loop quantum gravity (LQG), and connections to the quantum physics of real Bose-Einstein condensates. We show how to extract an effective dynamics for GFT condensates from the microscopic GFT physics, and how to compare it with predictions of more conventional quantum cosmology models, in particular loop quantum cosmology (LQC). No detailed familiarity with the GFT formalism is assumed.

  15. Theoretical Derivation of the Cosmological Constant in the Framework of the Hydrodynamic Model of Quantum Gravity: Can the Quantum Vacuum Singularity Be Overcome?

    Directory of Open Access Journals (Sweden)

    Piero Chiarelli

    2016-04-01

    Full Text Available In the present work, it is shown that the problem of the cosmological constant (CC is practically the consequence of the inadequacy of general relativity to take into account the quantum property of the space. The equations show that the cosmological constant naturally emerges in the hydrodynamic formulation of quantum gravity and that it does not appear in the classical limit because the quantum energy-impulse tensor gives an equal contribution with opposite sign. The work shows that a very large local value of the CC comes from the space where the mass of a quasi-punctual particle is present but that it can be as small as measured on cosmological scale. The theory shows that the small dependence of the CC from the mean mass density of the universe is due to the null contribution coming from the empty space. This fact gives some hints for the explanation of the conundrum of the cosmic coincidence by making a high CC value of the initial instant of universe compatible with the very small one of the present era.

  16. Quantum Nanomechanics

    OpenAIRE

    2008-01-01

    Quantum Nanomechanics is the emerging field which pertains to the mechanical behavior of nanoscale systems in the quantum domain. Unlike the conventional studies of vibration of molecules and phonons in solids, quantum nanomechanics is defined as the quantum behavior of the entire mechanical structure, including all of its constituents--the atoms, the molecules, the ions, the electrons as well as other excitations. The relevant degrees of freedom of the system are described by macroscopic var...

  17. New Tests of Macroscopic Local Realism using Continuous Variable Measurements

    CERN Document Server

    Reid, M D

    2001-01-01

    We show that quantum mechanics predicts an Einstein-Podolsky-Rosen paradox (EPR), and also a contradiction with local hidden variable theories, for photon number measurements which have limited resolving power, to the point of imposing an uncertainty in the photon number result which is macroscopic in absolute terms. We show how this can be interpreted as a failure of a new, very strong premise, called macroscopic local realism. We link this premise to the Schrodinger-cat paradox. Our proposed experiments ensure all fields incident on each measurement apparatus are macroscopic. We show that an alternative measurement scheme corresponds to balanced homodyne detection of quadrature phase amplitudes. The implication is that where either EPR correlations or failure of local realism is predicted for continuous variable (quadrature phase amplitude) measurements, one can perform a modified experiment which would lead to conclusions about the much stronger premise of macroscopic local realism.

  18. Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics

    Science.gov (United States)

    Hoff, Ulrich B.; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2016-09-01

    A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.

  19. Polarizable vacuum analysis of electromagnetic fields

    CERN Document Server

    Ye, Xing-Hao

    2009-01-01

    By examining the electric displacement in a dielectric medium and in a vacuum, the polarization property of quantum vacuum is discussed. Both the electric and magnetic fields are analysed in the framework of polarizable vacuum. It is found that the energy and force generated by the electric and magnetic fields can then be understood in a natural way. As an application, the electromagnetic wave is also investigated, which reaches a polarizable vacuum interpretation of the energy and spin of a photon.

  20. Gravity-Superconductors Interactions as a Possible Means to Exchange Momentum with the Vacuum

    CERN Document Server

    Modanese, Giovanni

    2014-01-01

    We report on work in progress in quantum field theory about possible interactions between coherent matter, i.e. matter described by a macroscopic wave function or a classical field, and a certain class of vacuum fluctuations, called "zero-modes of the Einstein action". These are little-known virtual masses present in the vacuum state of quantum gravity. A couple of equal masses of this kind can be excited by an oscillating coherent source with frequency f and decays to its ground state emitting a virtual graviton, which can propagate and transfer momentum p to ordinary matter. The virtual masses recoil in the emission, and this amounts to a transfer of momentum -p to the vacuum; this momentum can be passed in turn to some matter, or not. The energy hf for the process does not come from the vacuum, but from the coherent source. The ratio hf/p is of the order of 1 m/s. This model was developed to explain experimental results showing the emission of anomalous high-momentum radiation from certain superconductors,...

  1. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  2. Vacuum breakdown limit and quantum efficiency obtained for various technical metals using dc and pulsed voltage sources

    CERN Document Server

    Le Pimpec, F; Paraliev, M; Ganter, R; Hauri, C; Ivkovic, S; 10.1116/1.3478300

    2010-01-01

    For the SwissFEL project, an advanced high gradient low emittance gun is under development. Reliable operation with an electric field, preferably above 125 MV/m at a 4 mm gap, in the presence of an UV laser beam, has to be achieved in a diode configuration in order to minimize the emittance dilution due to space charge effects. In the first phase, a DC breakdown test stand was used to test different metals with different preparation methods at voltages up to 100 kV. In addition high gradient stability tests were also carried out over several days in order to prove reliable spark-free operation with a minimum dark current. In the second phase, electrodes with selected materials were installed in the 250 ns FWHM, 500 kV electron gun and tested for high gradient breakdown and for quantum efficiency using an ultra-violet laser.

  3. VACUUM TRAP

    Science.gov (United States)

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  4. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  5. Plasmons in QED vacuum

    Science.gov (United States)

    Petrov, E. Yu.; Kudrin, A. V.

    2016-09-01

    The problem of longitudinal oscillations of an electric field and a charge polarization density in a quantum electrodynamics (QED) vacuum is considered. Within the framework of semiclassical analysis, we calculate time-periodic solutions of bosonized (1 +1 )-dimensional QED (massive Schwinger model). Applying the Bohr-Sommerfeld quantization condition, we determine the mass spectrum of charge-zero bound states (plasmons) which correspond in quantum theory to the found classical solutions. We show that the existence of such plasmons does not contradict any fundamental physical laws and study qualitatively their excitation in a (3 +1 )-dimensional real world.

  6. Vacuum mechatronics

    Science.gov (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  7. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validationof the developed OSATS scale for vacuum...... extraction in a prospective observational study. Setting. Rigshospitalet, University Hospital of Copenhagen. Population. For development an obstetric expert from each labor ward in Denmark (28 departments) were invited to participate. For validation nine first-year residents and ten chief physicians...... with daily work in the obstetric field were tested. Methods. The Delphi method was used for development of the scale. In a simulated vacuum extraction scenario first-year residents and obstetric chief physicians were rated using the developed OSATS scale for vacuum extraction to test construct validity...

  8. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validationof the developed OSATS scale for vacuum...... extraction in a prospective observational study. Setting. Rigshospitalet, University Hospital of Copenhagen. Population. For development an obstetric expert from each labor ward in Denmark (28 departments) were invited to participate. For validation nine first-year residents and ten chief physicians...... with daily work in the obstetric field were tested. Methods. The Delphi method was used for development of the scale. In a simulated vacuum extraction scenario first-year residents and obstetric chief physicians were rated using the developed OSATS scale for vacuum extraction to test construct validity...

  9. Gravitational vacuum

    Science.gov (United States)

    Grigoryan, L. S.; Saakyan, G. S.

    1984-09-01

    The existence of a special gravitational vacuum is considered in this paper. A phenomenological method differing from the traditional Einsteinian formalization is utilized. Vacuum, metric and matter form a complex determined by field equations and at great distances from gravitational masses vacuum effects are small but could be large in powerful fields. Singularities and black holes justify the approach as well as the Ambartsmyan theory concerning the existence of supermassive and superdense prestallar bodies that then disintegrate. A theory for these superdense bodies is developed involving gravitational field equations that describe the vacuum by an energy momentum tensor and define the field and mass distribution. Computations based on the theory for gravitational radii with incompressible liquid models adequately reflecting real conditions indicate that a gravitational vacuum could have considerable effects on superdense stars and could have radical effects for very large masses.

  10. Vacuum polarization and Hawking radiation

    Science.gov (United States)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  11. Statistical thermodynamics understanding the properties of macroscopic systems

    CERN Document Server

    Fai, Lukong Cornelius

    2012-01-01

    Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th

  12. Quantum tunneling between Chern states in a Topological Insulator

    Science.gov (United States)

    Liu, Minhao; Wang, Wudi; Richardella, Anthony R.; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N. P.

    The tunneling of a macroscopic object through a barrier is a quintessentially quantum phenomenon important in field theory, low-temperature physics and quantum computing. Progress has been achieved in experiments on Josephson junctions, molecular magnets, and domain wall dynamics. However, a key feature - rapid expansion of the true vacuum triggered by a tunneling event is virtually unexplored. Here we report the detection of large jumps in the Hall resistance Ryx in a magnetized topological insulator which result from tunneling out of a metastable topological state. In the TI, the conducting electrons are confined to surface Dirac states. When magnetized, the TI enters the quantum anomalous Hall insulator state in which Ryx is strictly quantized. If the magnetic field is reversed, the sample is trapped in a metastable state. We find that, below 145 mK, Ryx exhibits abrupt jumps as large as one quantum unit on time-scales under 1 ms. If the temperature is raised, the escape rate is suppressed consistent with tunneling in the presence of dissipation. The jumps involve expansion of the thermodynamically stable state bubble over macroscopic lengths, but dissipation limits the final size. The results uncover novel effects of dissipation on macroscopic tunneling. We acknowledge support from DARPA SPAWAR (N66001-11-1-4110) and the Gordon and Betty Moore Foundations (GBMF4539).

  13. Vacuum energy as dark matter

    Science.gov (United States)

    Albareti, F. D.; Cembranos, J. A. R.; Maroto, A. L.

    2014-12-01

    We consider the vacuum energy of massive quantum fields in an expanding universe. We define a conserved renormalized energy-momentum tensor by means of a comoving cutoff regularization. Using exact solutions for de Sitter space-time, we show that in a certain range of mass and renormalization scales there is a contribution to the vacuum energy density that scales as nonrelativistic matter and that such a contribution becomes dominant at late times. By means of the WKB approximation, we find that these results can be extended to arbitrary Robertson-Walker geometries. We study the range of parameters in which the vacuum energy density would be compatible with current limits on dark matter abundance. Finally, by calculating the vacuum energy in a perturbed Robertson-Walker background, we obtain the speed of sound of density perturbations and show that the vacuum energy density contrast can grow on sub-Hubble scales as in standard cold dark matter scenarios.

  14. Vacuum energy as dark matter

    CERN Document Server

    Albareti, F D; Maroto, A L

    2014-01-01

    We consider the vacuum energy of massive quantum fields in an expanding universe. We define a conserved renormalized energy-momentum tensor by means of a comoving cutoff regularization. Using exact solutions for de Sitter space-time, we show that in a certain range of mass and renormalization scales there is a contribution to the vacuum energy density that scales as non-relativistic matter and that such a contribution becomes dominant at late times. By means of the WKB approximation, we find that these results can be extended to arbitrary Robertson-Walker geometries. We study the range of parameters in which the vacuum energy density would be compatible with current limits on dark matter abundance. Finally, by calculating the vacuum energy in a perturbed Robertson-Walker background, we obtain the speed of sound of density perturbations and show that the vacuum energy density contrast can grow on sub-Hubble scales as in standard cold dark matter scenarios.

  15. Topics in quantum field theory; Topicos em teoria quantica dos campos

    Energy Technology Data Exchange (ETDEWEB)

    Svaiter, N.F

    2006-11-15

    This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method.

  16. Macroscopic-microscopic mass models

    CERN Document Server

    Nix, J R; Nix, J Rayford; Moller, Peter

    1995-01-01

    We discuss recent developments in macroscopic-microscopic mass models, including the 1992 finite-range droplet model, the 1992 extended-Thomas-Fermi Strutinsky-integral model, and the 1994 Thomas-Fermi model, with particular emphasis on how well they extrapolate to new regions of nuclei. We also address what recent developments in macroscopic-microscopic mass models are teaching us about such physically relevant issues as the nuclear curvature energy, a new congruence energy arising from a greater-than-average overlap of neutron and proton wave functions, the nuclear incompressibility coefficient, and the Coulomb redistribution energy arising from a central density depression. We conclude with a brief discussion of the recently discovered rock of metastable superheavy nuclei near 272:110 that had been correctly predicted by macroscopic-microscopic models, along with a possible new tack for reaching an island near 290:110 beyond our present horizon.

  17. Electroweak Vacuum Instability and Renormalized Higgs Field Vacuum Fluctuations in the Inflationary Universe

    CERN Document Server

    Kohri, Kazunori

    2016-01-01

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations $\\left$ enlarge in proportion to the Hubble scale $H^{2}$. Therefore, the large inflationary vacuum fluctuations of the Higgs field $\\left$ are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations $\\left$, i.e., the vacuum expectation values have an ultraviolet divergence, and therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field $\\phi$ determined by the effective potential ${ V }_{\\rm eff}\\left( \\phi \\right)$ in curved space-time and the renormalized...

  18. Probing QED Vacuum with Heavy Ions

    CERN Document Server

    Rafelski, Johann; Müller, Berndt; Reinhardt, Joachim; Greiner, Walter

    2016-01-01

    We recall how nearly half a century ago the proposal was made to explore the structure of the quantum vacuum using slow heavy-ion collisions. Pursuing this topic we review the foundational concept of spontaneous vacuum decay accompanied by observable positron emission in heavy-ion collisions and describe the related theoretical developments in strong fields QED.

  19. Cosmic String Created from Vacuum Fluctuaions

    OpenAIRE

    Popov, Arkadii

    1998-01-01

    The possibility of the cosmic string creation by the vacuum fluctuations of quantum fields in the self-consistent semiclassical theory of gravity is discussed. We use the approximate method for obtaining vacuum expectation value of the renormalized stress-energy tensor of conformally invariant quantum fields in static cylindrically symmetric spacetimes. We have obtained the particular solutions of Einstein equations for the different boundary conditions at the cylinder symmetry axis.

  20. Searching for the nanoscopic–macroscopic boundary

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, E.A. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura Sec. Medellín, A.A. 5222, Medellín (Colombia); Altbir, D. [Departamento de Física, Universidad de Santiago de Chile (USACH), CEDENNA, Santiago (Chile); Mazo-Zuluaga, J. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Duque, L.F. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Física Teórica, Aplicada y Didáctica, Facultad de Ciencias Exactas y Aplicadas Instituto Tecnológico Metropolitano, Medellín (Colombia); Mejía-López, J., E-mail: jmejia@puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, CEDENNA, Santiago (Chile)

    2013-12-15

    Several studies have focused on the size-dependent properties of elements, looking for a unique definition of the nanoscopic–macroscopic boundary. By using a novel approach consisting of an energy variational method combined with a quantum Heisenberg model, here we address the size at which the ordering temperature of a magnetic nanoparticle reaches its bulk value. We consider samples with sizes in the range 1–500 nm, as well as several geometries and crystalline lattices and observe that, contrarily to what is commonly argued, the nanoscopic-microscopic boundary depends on both factors: shape and crystalline structure. This suggests that the surface-to-volume ratio is not the unique parameter that defines the behavior of a nanometric sample whenever its size increases reaching the bulk dimension. Comparisons reveal very good agreement with experimental evidence with differences less than 2%. Our results have broad implications for practical issues in measurements on systems at the nanometric scale. - Highlights: • A novel quantum-Heisenberg variational energy method is implemented. • The asymptotic behavior toward the thermodynamic limit is explored. • An important dependence of the nano-bulk boundary on the geometry is found. • And also an important dependence on the crystalline lattice. • We obtain a very good agreement with experimental evidence with differences <2%.

  1. The Two-Time Interpretation and Macroscopic Time-Reversibility

    Directory of Open Access Journals (Sweden)

    Yakir Aharonov

    2017-03-01

    Full Text Available The two-state vector formalism motivates a time-symmetric interpretation of quantum mechanics that entails a resolution of the measurement problem. We revisit a post-selection-assisted collapse model previously suggested by us, claiming that unlike the thermodynamic arrow of time, it can lead to reversible dynamics at the macroscopic level. In addition, the proposed scheme enables us to characterize the classical-quantum boundary. We discuss the limitations of this approach and its broad implications for other areas of physics.

  2. Measurement-induced macroscopic superposition states in cavity optomechanics

    CERN Document Server

    Hoff, Ulrich B; Neergaard-Nielsen, Jonas S; Andersen, Ulrik L

    2016-01-01

    We present a novel proposal for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator, compatible with existing optomechanical devices operating in the readily achievable bad-cavity limit. The scheme is based on a pulsed cavity optomechanical quantum non-demolition (QND) interaction, driven by displaced non-Gaussian states, and measurement-induced feedback, avoiding the need for strong single-photon optomechanical coupling. Furthermore, we show that single-quadrature cooling of the mechanical oscillator is sufficient for efficient state preparation, and we outline a three-pulse protocol comprising a sequence of QND interactions for squeezing-enhanced cooling, state preparation, and tomography.

  3. Vacuum Valve

    CERN Multimedia

    1974-01-01

    This valve was used in the Intersecting Storage Rings (ISR) to protect against the shock waves that would be caused if air were to enter the vacuum tube. Some of the ISR chambers were very fragile, with very thin walls - a design required by physicists on the lookout for new particles.

  4. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  5. Towards a quantum theory of solitons

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Gomez, Cesar [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Instituto de Física Teórica, UAM–CSICm C–XVI Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Gruending, Lukas, E-mail: Lukas.Gruending@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany); Rug, Tehseen [Arnold Sommerfeld Center for Theoretical Physics, LMU-München, Theresienstrasse 37, 80333 München (Germany); Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München (Germany)

    2015-12-15

    We formulate a quantum coherent state picture for topological and non-topological solitons. We recognize that the topological charge arises from the infinite occupation number of zero momentum quanta flowing in one direction. Thus, the Noether charge of microscopic constituents gives rise to a topological charge in the macroscopic description. This fact explains the conservation of topological charge from the basic properties of coherent states. It also shows that no such conservation exists for non-topological solitons, which have finite mean occupation number. Consequently, they can have an exponentially-small but non-zero overlap with the vacuum, leading to vacuum instability. This amplitude can be interpreted as a coherent state description of false vacuum decay. Next we show that we can represent topological solitons as a convolution of two sectors that carry information about topology and energy separately, which makes their difference very transparent. Finally, we show how interaction among the solitons can be understood from basic properties of quantum coherent states.

  6. Towards a quantum theory of solitons

    Directory of Open Access Journals (Sweden)

    Gia Dvali

    2015-12-01

    Full Text Available We formulate a quantum coherent state picture for topological and non-topological solitons. We recognize that the topological charge arises from the infinite occupation number of zero momentum quanta flowing in one direction. Thus, the Noether charge of microscopic constituents gives rise to a topological charge in the macroscopic description. This fact explains the conservation of topological charge from the basic properties of coherent states. It also shows that no such conservation exists for non-topological solitons, which have finite mean occupation number. Consequently, they can have an exponentially-small but non-zero overlap with the vacuum, leading to vacuum instability. This amplitude can be interpreted as a coherent state description of false vacuum decay. Next we show that we can represent topological solitons as a convolution of two sectors that carry information about topology and energy separately, which makes their difference very transparent. Finally, we show how interaction among the solitons can be understood from basic properties of quantum coherent states.

  7. Vacuum measurement on vacuum packaged MEMS devices

    Energy Technology Data Exchange (ETDEWEB)

    Gan Zhiyin; Lin Dong; Wang Xuefang; Chenggang; Zhang Honghai; Liu Sheng [Institute of Microsystems and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China, 430074 (China)

    2007-07-15

    This paper investigates the relationship between the resonance impedance of a tuning fork quartz oscillator and the small size cavity vacuum pressure and develops an on-line vacuum measurement system to track real-time vacuum pressure in MEMS devices. Furthermore, authors completely analyze all facts that affect the resonance impedance. A set of metal vacuum packaged devices have been monitored for more than 10 months using this on-line vacuum measurement system. The results indicate that it is very critical to investigate vacuum packaging processes, reliability and durability of the vacuum devices by using this on-line vacuum measurement system.

  8. Four wave mixing as a probe of the vacuum

    Science.gov (United States)

    Tennant, Daniel M.

    2016-06-01

    Much attention has been paid to the quantum structure of the vacuum. Higher order processes in quantum electrodynamics are strongly believed to cause polarization and even breakdown of the vacuum in the presence of strong fields soon to be accessible in high intensity laser experiments. Less explored consequences of strong field electrodynamics include effects from Born-Infeld type of electromagnetic theories, a nonlinear electrodynamics that follows from classical considerations as opposed to coupling to virtual fluctuations. In this article, I will demonstrate how vacuum four wave mixing has the possibility to differentiate between these two types of vacuum responses: quantum effects on one hand and nonlinear classical extensions on the other.

  9. Towards testing quantum physics in deep space

    Science.gov (United States)

    Kaltenbaek, Rainer

    2016-07-01

    MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.

  10. Graviton Corrections to Vacuum Polarization during Inflation

    CERN Document Server

    Leonard, Katie E

    2014-01-01

    We use dimensional regularization to compute the one loop quantum gravitational contribution to the vacuum polarization on de Sitter background. Adding the appropriate BPHZ counterterms gives a fully renormalized result which can be used to quantum correct Maxwell's equations. We use the Hartree approximation to argue that the electric field strengths of photons experience a secular suppression during inflation.

  11. The Light-Front Vacuum

    CERN Document Server

    Herrmann, Marc

    2015-01-01

    Background: The vacuum in the light-front representation of quantum field theory is trivial while vacuum in the equivalent canonical representation of the same theory is non-trivial. Purpose: Understand the relation between the vacuum in light-front and canonical representations of quantum field theory and the role of zero-modes in this relation. Method: Vacuua are defined as linear functionals on an algebra of field operators. The role of the algebra in the definition of the vacuum is exploited to understand this relation. Results: The vacuum functional can be extended from the light-front Fock algebra to an algebra of local observables. The extension to the algebra of local observables is responsible for the inequivalence. The extension defines a unitary mapping between the physical representation of the local algebra and a sub-algebra of the light-front Fock algebra. Conclusion: There is a unitary mapping from the physical representation of the algebra of local observables to a sub-algebra of the light-fro...

  12. Observation and Interpretation of Motional Sideband Asymmetry in a Quantum Electromechanical Device

    Directory of Open Access Journals (Sweden)

    A. J. Weinstein

    2014-10-01

    Full Text Available Quantum electromechanical systems offer a unique opportunity to probe quantum noise properties in macroscopic devices, properties that ultimately stem from Heisenberg’s uncertainty relations. A simple example of this behavior is expected to occur in a microwave parametric transducer, where mechanical motion generates motional sidebands corresponding to the up-and-down frequency conversion of microwave photons. Because of quantum vacuum noise, the rates of these processes are expected to be unequal. We measure this fundamental imbalance in a microwave transducer coupled to a radio-frequency mechanical mode, cooled near the ground state of motion. We also discuss the subtle origin of this imbalance: depending on the measurement scheme, the imbalance is most naturally attributed to the quantum fluctuations of either the mechanical mode or of the electromagnetic field.

  13. Sideband cooling beyond the quantum backaction limit with squeezed light

    Science.gov (United States)

    Clark, Jeremy B.; Lecocq, Florent; Simmonds, Raymond W.; Aumentado, José; Teufel, John D.

    2017-01-01

    Quantum fluctuations of the electromagnetic vacuum produce measurable physical effects such as Casimir forces and the Lamb shift. They also impose an observable limit—known as the quantum backaction limit—on the lowest temperatures that can be reached using conventional laser cooling techniques. As laser cooling experiments continue to bring massive mechanical systems to unprecedentedly low temperatures, this seemingly fundamental limit is increasingly important in the laboratory. Fortunately, vacuum fluctuations are not immutable and can be ‘squeezed’, reducing amplitude fluctuations at the expense of phase fluctuations. Here we propose and experimentally demonstrate that squeezed light can be used to cool the motion of a macroscopic mechanical object below the quantum backaction limit. We first cool a microwave cavity optomechanical system using a coherent state of light to within 15 per cent of this limit. We then cool the system to more than two decibels below the quantum backaction limit using a squeezed microwave field generated by a Josephson parametric amplifier. From heterodyne spectroscopy of the mechanical sidebands, we measure a minimum thermal occupancy of 0.19 ± 0.01 phonons. With our technique, even low-frequency mechanical oscillators can in principle be cooled arbitrarily close to the motional ground state, enabling the exploration of quantum physics in larger, more massive systems.

  14. Quantum measurement and entanglement of spin quantum bits in diamond

    NARCIS (Netherlands)

    Pfaff, W.

    2013-01-01

    This thesis presents a set of experiments that explore the possible realisation of a macroscopic quantum network based on solid-state quantum bits. Such a quantum network would allow for studying quantum mechanics on large scales (meters, or even kilometers), and can open new possibilities for

  15. Quantum measurement and entanglement of spin quantum bits in diamond

    NARCIS (Netherlands)

    Pfaff, W.

    2013-01-01

    This thesis presents a set of experiments that explore the possible realisation of a macroscopic quantum network based on solid-state quantum bits. Such a quantum network would allow for studying quantum mechanics on large scales (meters, or even kilometers), and can open new possibilities for appli

  16. Macroscopic realism, wave-particle duality and the superposition principle for entangled states

    CERN Document Server

    Chuprikov, N L

    2006-01-01

    On the basis of our model of a one-dimensional (1D) completed scattering (Russian Physics, 49, p.119 and p.314 (2006)) we argue that the linear formalism of quantum mechanics (QM) respects the principles of the macroscopic realism (J. Phys.: Condens. Matter, 14, R415-R451 (2002)). In QM one has to distinguish two kinds of pure ensembles: pure unentangled ensembles to be macroscopically inseparable, and pure entangled ones to be macroscopically separable. A pure entangled ensemble is an intermediate link between a pure unentangled ensemble and classical mixture. Like the former it strictly respects the linear formalism of QM. Like the latter it is decomposable into macroscopically distinct subensembles, in spite of interference between them; our new model exemplifies how to perform such a decomposition in the case of a 1D completed scattering. To respect macroscopic realism, the superposition principle must be reformulated: it must forbid introducing observables for entangled states.

  17. The large-scale structure of vacuum

    CERN Document Server

    Albareti, F D; Maroto, A L

    2014-01-01

    The vacuum state in quantum field theory is known to exhibit an important number of fundamental physical features. In this work we explore the possibility that this state could also present a non-trivial space-time structure on large scales. In particular, we will show that by imposing the renormalized vacuum energy-momentum tensor to be conserved and compatible with cosmological observations, the vacuum energy of sufficiently heavy fields behaves at late times as non-relativistic matter rather than as a cosmological constant. In this limit, the vacuum state supports perturbations whose speed of sound is negligible and accordingly allows the growth of structures in the vacuum energy itself. This large-scale structure of vacuum could seed the formation of galaxies and clusters very much in the same way as cold dark matter does.

  18. Influence of Photon Mass on Vacuum Birefringence Experiment

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; SHAO Cheng-Gang

    2007-01-01

    Influence of photon mass on vacuum birefringence experiment is analysed according to the nonlinearities of vacuum quantum electrodynamics for the light propagation through an intense electromagnetic field.It is shown that although the photon mass will cause a change of the refractive indices n⊥ and n(‖) of vacuum birefringence,the difference n(‖)-n⊥is unchanged,which means that the effect of photon mass cannot be observed in vacuum birefringence experiment.

  19. Macroscopic Theory of Dark Sector

    Directory of Open Access Journals (Sweden)

    Boris E. Meierovich

    2014-01-01

    Full Text Available A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out to be an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating nonsingular scenarios of evolution of the Universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the lower boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows displaying the main properties of the dark sector analytically. Although the physical nature of dark sector is still unknown, the macroscopic theory can help analyze the role of dark matter in astrophysical phenomena without resorting to artificial model assumptions.

  20. A strict experimental test of macroscopic realism in a superconducting flux qubit.

    Science.gov (United States)

    Knee, George C; Kakuyanagi, Kosuke; Yeh, Mao-Chuang; Matsuzaki, Yuichiro; Toida, Hiraku; Yamaguchi, Hiroshi; Saito, Shiro; Leggett, Anthony J; Munro, William J

    2016-11-04

    Macroscopic realism is the name for a class of modifications to quantum theory that allow macroscopic objects to be described in a measurement-independent manner, while largely preserving a fully quantum mechanical description of the microscopic world. Objective collapse theories are examples which aim to solve the quantum measurement problem through modified dynamical laws. Whether such theories describe nature, however, is not known. Here we describe and implement an experimental protocol capable of constraining theories of this class, that is more noise tolerant and conceptually transparent than the original Leggett-Garg test. We implement the protocol in a superconducting flux qubit, and rule out (by ∼84 s.d.) those theories which would deny coherent superpositions of 170 nA currents over a ∼10 ns timescale. Further, we address the 'clumsiness loophole' by determining classical disturbance with control experiments. Our results constitute strong evidence for the superposition of states of nontrivial macroscopic distinctness.

  1. Let's call it Nonlocal Quantum Physics

    CERN Document Server

    Requardt, M

    2000-01-01

    In the following we undertake to derive quantum theory as a stochastic low-energy and coarse-grained theory from a more primordial discrete and basically geometric theory living on the Planck scale and which (as we argue) possibly underlies also \\tit{string theory}. We isolate the so-called \\tit{ideal elements} which represent at the same time the cornerstones of the framework of ordinary quantum theory and show how and why they encode the \\tit{non-local} aspects, being ubiquituous in the quantum realm, in a, on the surface, local way. We show that the quantum non-locality emerges in our approach as a natural consequence of the underlying \\tit{two-storey} nature of space-time or the physical vacuum, that is, quantum theory turns out to be a residual effect of the geometric depth structure of space-time on the Planck scale. We indicate how the \\tit{measurement problem} and the emergence of the \\tit{macroscopic sub-regime} can be understood in this framework.

  2. Investigation of dissipative forces near macroscopic media

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R.S.

    1982-12-01

    The interaction of classical charged particles with the fields they induce in macroscopic dielectric media is investigated. For 10- to 1000-eV electrons, the angular perturbation of the trajectory by the image potential for surface impact parameters of 50 to 100 A is shown to be of the order of 0.001 rads over a distance of 100 A. The energy loss incurred by low-energy particles due to collective excitations such as surface plasmons is shown to be observable with a transition probability of 0.01 to 0.001 (Becker, et al., 1981b). The dispersion of real surface plasmon modes in planar and cylindrical geometries is discussed and is derived for pinhole geometry described in terms of a single-sheeted hyperboloid of revolution. An experimental apparatus for the measurement of collective losses for medium-energy electrons translating close to a dielectric surface is described and discussed. Data showing such losses at electron energies of 500 to 900 eV in silver foils containing many small apertures are presented and shown to be in good agreement with classical stopping power calculations and quantum mechanical calculations carried out in the low-velocity limit. The data and calculations are compared and contrasted with earlier transmission and reflection measurements, and the course of further investigation is discussed.

  3. Probing the Higgs vacuum with general relativity

    Science.gov (United States)

    Mannheim, Philip D.; Kazanas, Demosthenes

    1991-01-01

    It is shown that the structure of the Higgs vacuum can be revealed in gravitational experiments which probe the Schwarzschild geometry to only one order in MG/r beyond that needed for the classical tests of general relativity. The possibility that deviations from the conventional geometry are at least theoretically conceivable is explored. The deviations obtained provide a diagnostic test for searching for the existence of macroscopic scalar fields and open up the possiblity for further exploring the Higgs mechanism.

  4. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  5. Vacuum Decay via Lorentzian Wormholes

    Science.gov (United States)

    Rosales, J. L.

    We speculate about the space-time description due to the presence of Lorentzian worm-holes (handles in space-time joining two distant regions or other universes) in quantum gravity. The semiclassical rate of production of these Lorentzian wormholes in Reissner-Nordström space-times is calculated as a result of the spontaneous decay of vacuum due to a real tunneling configuration. In the magnetic case it only depends on the value of the field theoretical fine structure constant. We predict that the quantum probability corresponding to the nucleation of such geodesically complete space-times should be acutally negligible in our physical Universe.

  6. Virtualities of quark and gluon in QCD vacuum

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The non-local vacuum condensates of quantum chromodynamics (QCD) describe the distributions of quarks and gluons in the non-perturbative QCD vacuum state. Physically, this means that vacuum quarks and gluons have a nonzero mean-squared momentum in the vacuum, called virtuality. The quark virtuality is given by the ratio of the local quark-gluon mixed vacuum condensate to the quark local vacuum condensate. The gluon virtuality is expressed by gluon vacuum condensates and four-quark vacuum condensates. We study the two virtualities by solving Dyson-Schwinger Equations and calculating quark and gluon vacuum condensates. Our theoretical results for quark virtuality are in good agreement with many other theoretical model predictions such as QCD sum rules and lattice QCD calculations. Our calculation on gluon virtuality is initial and the results are quite interesting.

  7. Random numbers from vacuum fluctuations

    Science.gov (United States)

    Shi, Yicheng; Chng, Brenda; Kurtsiefer, Christian

    2016-07-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  8. Observation of subluminal twisted light in vacuum

    CERN Document Server

    Bouchard, Frédéric; Mand, Harjaspreet; Boyd, Robert W; Karimi, Ebrahim

    2015-01-01

    Einstein's theory of relativity establishes the speed of light in vacuum, c, as a fundamental constant. However, the speed of light pulses can be altered significantly in dispersive materials. While significant control can be exerted over the speed of light in such media, no experimental demonstration of altered light speeds has hitherto been achieved in vacuum for ``twisted'' optical beams. We show that ``twisted'' light pulses exhibit subluminal velocities in vacuum, being slowed by 0.1\\% relative to c. This work does not challenge relativity theory, but experimentally supports a body of theoretical work on the counterintuitive vacuum group velocities of twisted pulses. These results are particularly important given recent interest in applications of twisted light to quantum information, communication and quantum key distribution.

  9. An investigation into why macroscopic systems behave classically

    OpenAIRE

    Hallwood, David W.; Burnett, Keith; Dunningham, Jacob

    2006-01-01

    We study why it is quite so hard to make a superposition of superfluid flows in a Bose-Einstein condensate. To do this we initially investigate the quantum states of $N$ atoms trapped in a 1D ring with a barrier at one position and a phase applied around it. We show how macroscopic superpositions can in principle be produced and investigate factors which affect the superposition. We then use the Bose-Hubbard model to study an array of Bose-Einstein condensates trapped in optical potentials an...

  10. ``Hybrid'' multi-gap/single-gap Josephson junctions: Evidence of macroscopic quantum tunneling in superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions

    Science.gov (United States)

    Carabello, Steve; Lambert, Joseph; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Xi, X. X.; Ramos, Roberto

    We report results of superconducting-to-normal switching experiments on MgB2/I/Pb and MgB2/I/Sn junctions, with and without microwaves. These results suggest that the switching behavior is dominated by quantum tunneling through the washboard potential barrier, rather than thermal excitations or electronic noise. Evidence includes a leveling in the standard deviation of the switching current distribution below a crossover temperature, a Lorentzian shape of the escape rate enhancement peak upon excitation by microwaves, and a narrowing in the histogram of escape counts in the presence of resonant microwave excitation relative to that in the absence of microwaves. These are the first such results reported in ``hybrid'' Josephson tunnel junctions, consisting of multi-gap and single-gap superconducting electrodes.

  11. Study of Vacuum Energy Physics for Breakthrough Propulsion

    Science.gov (United States)

    Millis, Marc G. (Technical Monitor); Maclay, G. Jordan; Hammer, Jay; Clark, Rod; George, Michael; Kim, Yeong; Kir, Asit

    2004-01-01

    This report summarizes the accomplishments during a three year research project to investigate the use of surfaces, particularly in microelectromechanical systems (MEMS), to exploit quantum vacuum forces. During this project, we developed AFM instrumentation to repeatably measure Casimir forces in the nanoNewton range at 10 6 torr, designed an experiment to measure attractive and repulsive quantum vacuum forces, developed a QED based theory of Casimir forces that includes non-ideal material properties for rectangular cavities and for multilayer slabs, developed theoretical models for a variety of microdevices utilizing vacuum forces, applied vacuum physics to a gedanken spacecraft, and investigated a new material with a negative index of refraction.

  12. Vacuum nanoelectronic devices novel electron sources and applications

    CERN Document Server

    Evtukh, Anatoliy; Yilmazoglu, Oktay; Mimura, Hidenori; Pavlidis, Dimitris

    2015-01-01

    Introducing up-to-date coverage of research in electron field emission from nanostructures, Vacuum Nanoelectronic Devices outlines the physics of quantum nanostructures, basic principles of electron field emission, and vacuum nanoelectronic devices operation, and offers as insight state-of-the-art and future researches and developments.  This book also evaluates the results of research and development of novel quantum electron sources that will determine the future development of vacuum nanoelectronics. Further to this, the influence of quantum mechanical effects on high frequency vacuum nanoelectronic devices is also assessed. Key features: In-depth description and analysis of the fundamentals of Quantum Electron effects in novel electron sources. Comprehensive and up-to-date summary of the physics and technologies for THz sources for students of physical and engineering specialties and electronics engineers. Unique coverage of quantum physical results for electron-field emission and novel electron sourc...

  13. Vacuum phenomenon.

    Science.gov (United States)

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome.

  14. Macroscopic theory of dark sector

    CERN Document Server

    Meierovich, Boris E

    2013-01-01

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating soluti...

  15. Vacuum Lightcone Fluctuations in a Dielectric

    CERN Document Server

    Bessa, C H G; Ford, L H; Svaiter, N F

    2014-01-01

    A model for observable effects of electromagnetic vacuum fluctuations is presented. The model involves a probe pulse which traverses a slab of nonlinear optical material with a nonzero second order polarizability. We argue that the pulse interacts with the ambient vacuum fluctuations of other modes of the quantized electric field, and these vacuum fluctuations cause variations in the flight time of the pulse through the material. The geometry of the slab of material defines a sampling function for the quantized electric field, which in turn determines that vacuum modes whose wavelengths are of the order of the thickness of the slab give the dominant contribution. Some numerical estimates are made, which indicate that fractional fluctuations in flight time of the order of $10^{-9}$ are possible in realistic situations. The model presented here is both an illustration of a physical effect of vacuum fluctuations, and an analog model for the lightcone fluctuations predicted by quantum gravity.

  16. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Pei Xiaoyan; Hu Jiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system. The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  17. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    PeiXiaoyan; HuJiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system.The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  18. Scalar and tensor perturbation in vacuum inflation

    CERN Document Server

    Huang, Zhiqiang

    2016-01-01

    It was recently proposed that a small true vacuum universe can inflate spontaneously, in principle. In this paper, this model is completed with experimental results. There should be matter creation in vacuum inflation due to quantum fluctuations, and the matter created will influence the inflation simultaneously. We derive cosmological perturbations in this vacuum inflation model and express them with Hubble flow-functions. By comparing the perturbations with the experimental results, we can determine all the parameters in this model. Finally, we calculate the evolution of the matter density with the determined parameters and show that the matter produced in inflation roughly fits the observations at present.

  19. Quark Virtuality and QCD Vacuum Condensates

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; MA Wei-Xing

    2004-01-01

    @@ Based on the Dyson-Schwinger equations (DSEs) in the ‘rainbow' approximation, we investigate the quark virtuality in the vacuum state and quantum-chromodynamics (QCD) vacuum condensates. In particular, we calculate the local quark vacuum condensate and quark-gluon mixed condensates, and then the virtuality of quark. The calculated quark virtualities are λ2u,d = 0.7 GeV2 for u, d quarks, and 2s 1.6 GeV2 for s quark.Our theoretical predictions are consistent with empirical values used in QCD sum rules, and also fit to lattice QCD predictions.

  20. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond

    Science.gov (United States)

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-05-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.

  1. The emergence of gravity as a retro-causal post-inflation macro-quantum-coherent holographic vacuum Higgs-Goldstone field

    Energy Technology Data Exchange (ETDEWEB)

    Sarfatti, Jack [Internet Science Education Project (Country Unknown); Levit, Creon, E-mail: adastra1@mac.co, E-mail: creon.levit@nasa.go [NASA Ames Research Center (United States)

    2009-06-01

    We present a model for the origin of gravity, dark energy and dark matter: Dark energy and dark matter are residual pre-inflation false vacuum random zero point energy (w = - 1) of large-scale negative, and short-scale positive pressure, respectively, corresponding to the 'zero point' (incoherent) component of a superfluid (supersolid) ground state. Gravity, in contrast, arises from the 2nd order topological defects in the post-inflation virtual 'condensate' (coherent) component. We predict, as a consequence, that the LHC will never detect exotic real on-mass-shell particles that can explain dark matter OMEGAM{sub DM} approx 0.23. We also point out that the future holographic dark energy de Sitter horizon is a total absorber (in the sense of retro-causal Wheeler-Feynman action-at-a-distance electrodynamics) because it is an infinite redshift surface for static detectors. Therefore, the advanced Hawking-Unruh thermal radiation from the future de Sitter horizon is a candidate for the negative pressure dark vacuum energy.

  2. The emergence of gravity as a retro-causal post-inflation macro-quantum-coherent holographic vacuum Higgs-Goldstone field

    Science.gov (United States)

    Sarfatti, Jack; Levit, Creon

    2009-06-01

    We present a model for the origin of gravity, dark energy and dark matter: Dark energy and dark matter are residual pre-inflation false vacuum random zero point energy (w = - 1) of large-scale negative, and short-scale positive pressure, respectively, corresponding to the "zero point" (incoherent) component of a superfluid (supersolid) ground state. Gravity, in contrast, arises from the 2nd order topological defects in the post-inflation virtual "condensate" (coherent) component. We predict, as a consequence, that the LHC will never detect exotic real on-mass-shell particles that can explain dark matter ΩMDM approx 0.23. We also point out that the future holographic dark energy de Sitter horizon is a total absorber (in the sense of retro-causal Wheeler-Feynman action-at-a-distance electrodynamics) because it is an infinite redshift surface for static detectors. Therefore, the advanced Hawking-Unruh thermal radiation from the future de Sitter horizon is a candidate for the negative pressure dark vacuum energy.

  3. Optical driving of macroscopic mechanical motion by a single two-level system

    Science.gov (United States)

    Auffèves, A.; Richard, M.

    2014-08-01

    A quantum emitter coupled to a nanomechanical oscillator is a hybrid system where a macroscopic degree of freedom is coupled to a purely quantum system. Recent progress in nanotechnology has led to the realization of such devices by embedding single artificial atoms, such as quantum dots or superconducting qubits, into vibrating wires or membranes, opening up new perspectives for quantum information technologies and for the exploration of the quantum-classical boundary. In this paper, we show that the quantum emitter can be turned into a strikingly efficient light-controlled source of mechanical power by exploiting constructive interferences of classical phonon fields in the mechanical oscillator. We show that this mechanism can be exploited to carry out low-background nondestructive single-shot measurement of an optically active quantum bit state.

  4. How does Planck’s constant influence the macroscopic world?

    Science.gov (United States)

    Yang, Pao-Keng

    2016-09-01

    In physics, Planck’s constant is a fundamental physical constant accounting for the energy-quantization phenomenon in the microscopic world. The value of Planck’s constant also determines in which length scale the quantum phenomenon will become conspicuous. Some students think that if Planck’s constant were to have a larger value than it has now, the quantum effect would only become observable in a world with a larger size, whereas the macroscopic world might remain almost unchanged. After reasoning from some basic physical principles and theories, we found that doubling Planck’s constant might result in a radical change on the geometric sizes and apparent colors of macroscopic objects, the solar spectrum and luminosity, the climate and gravity on Earth, as well as energy conversion between light and materials such as the efficiency of solar cells and light-emitting diodes. From the discussions in this paper, students can appreciate how Planck’s constant affects various aspects of the world in which we are living now.

  5. Motion of macroscopic bodies in the electromagnetic field

    CERN Document Server

    Horsley, S A R

    2013-01-01

    A theory is presented for calculating the effect of the electromagnetic field on the centre of mass of a macroscopic dielectric body that is valid in both quantum and classical regimes. We apply the theory to find the classical equation of motion for the centre of mass of a macroscopic object in a classical field, and the spreading of an initially localized wave-packet representing the centre of mass of a small object, in a quantum field. The classical force is found to be consistent with the identification of the Abraham momentum with the mechanical momentum of light, and the motion of the wave-packet is found to be subject to an acceleration due to the Casimir force, and a time dependent fluctuating motion due the creation of pairs of excitations within the object. The theory is valid for any dielectric that has susceptibilities satisfying the Kramers-Kronig relations, and is not subject to arguments regarding the form of the electromagnetic energy-momentum tensor within a medium.

  6. Vacuum mechatronics. Proceedings.

    Science.gov (United States)

    Belinski, S. E.; Shirazi, M.; Hackwood, S.; Beni, G.

    The discipline of vacuum mechatronics is the design and development of vacuum-compatible, computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. Vacuum mechantronics is relevant to research engineers in integrated circuit manufacturing, surface physics, food processing, biotechnology, materials handling, space sciences and manufacturing.

  7. Rank distributions: A panoramic macroscopic outlook

    Science.gov (United States)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.

  8. False vacuum as an unstable state

    Science.gov (United States)

    Urbanowski, K.

    2016-11-01

    Calculations performed within the Standard Model suggest that the electroweak vacuum is unstable if MH Higgs particle). LHC discovery of the Higgs boson indicates that MH ≃ 125 GeV. So the vacuum in our Universe may be unstable. We analyze properties of unstable vacuum states from the point of view of the quantum theory. At asymptotically late times the survival probability as a function of time t has an inverse power-like form. We show that at this time region the energy of the false vacuum states tends to the energy of the true vacuum state as 1/t2 for t → ∞. This means that the energy density in the unstable vacuum state should have analogous properties and hence the cosmological constant Λ = Λ(t) too. So Λ in the Universe with the unstable vacuum should have a form of the sum of the "bare" cosmological constant and of the term of a type 1/t^2:Λ (t) ≡ Λbare + d/t^2, (where Λbare is the cosmological constant for the Universe with the true vacuum).

  9. Quantum physics meets biology.

    Science.gov (United States)

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-12-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  10. Direct sampling of electric-field vacuum fluctuations

    National Research Council Canada - National Science Library

    Riek, C; Seletskiy, D V; Moskalenko, A S; Schmidt, J F; Krauspe, P; Eckart, S; Eggert, S; Burkard, G; Leitenstorfer, A

    2015-01-01

    The ground state of quantum systems is characterized by zero-point motion. This motion, in the form of vacuum fluctuations, is generally considered to be an elusive phenomenon that manifests itself only indirectly...

  11. Quantum Mechanical Earth: Where Orbitals Become Orbits

    Science.gov (United States)

    Keeports, David

    2012-01-01

    Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…

  12. Quantum Mechanical Earth: Where Orbitals Become Orbits

    Science.gov (United States)

    Keeports, David

    2012-01-01

    Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…

  13. Long distance manipulation of a levitated nanoparticle in high vacuum

    CERN Document Server

    Mestres, Pau; Spasenović, Marko; Gieseler, Jan; Novotny, Lukas; Quidant, Romain

    2015-01-01

    Accurate delivery of small targets in high vacuum is a pivotal task in many branches of science and technology. Beyond the different strategies developed for atoms, proteins, macroscopic clusters and pellets, the manipulation of neutral particles over macroscopic distances still poses a formidable challenge. Here we report a novel approach based on a mobile optical trap operated under feedback control that enables long range 3D manipulation of a silica nanoparticle in high vacuum. We apply this technique to load a single nanoparticle into a high-finesse optical cavity through a load-lock vacuum system. We foresee our scheme to benefit the field of optomechanics with levitating nano-objects as well as ultrasensitive detection and monitoring.

  14. Macroscopic transport by synthetic molecular machines

    NARCIS (Netherlands)

    Berna, J; Leigh, DA; Lubomska, M; Mendoza, SM; Perez, EM; Rudolf, P; Teobaldi, G; Zerbetto, F

    2005-01-01

    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with - and perform physical tasks in - the macroscopic world represents a significant hurdle

  15. Decoherence delays false vacuum decay

    Science.gov (United States)

    Bachlechner, Thomas C.

    2013-05-01

    We show that gravitational interactions between massless thermal modes and a nucleating Coleman-de Luccia bubble may lead to efficient decoherence and strongly suppress metastable vacuum decay for bubbles that are small compared to the Hubble radius. The vacuum decay rate including gravity and thermal photon interactions has the exponential scaling \\Gamma \\sim \\Gamma _{CDL}^{2}, where ΓCDL is the Coleman-de Luccia decay rate neglecting photon interactions. For the lowest metastable initial state an efficient quantum Zeno effect occurs due to thermal radiation of temperatures as low as the de Sitter temperature. This strong decoherence effect is a consequence of gravitational interactions with light external mode. We argue that efficient decoherence does not occur for the case of Hawking-Moss decay. This observation is consistent with requirements set by Poincaré recurrence in de Sitter space.

  16. Measuring vacuum polarization with high-power lasers

    Institute of Scientific and Technical Information of China (English)

    B.King; T.Heinzl

    2016-01-01

    When exposed to intense electromagnetic fields, the quantum vacuum is expected to exhibit properties of a polarizable medium akin to a weakly nonlinear dielectric material. Various schemes have been proposed to measure such vacuum polarization effects using a combination of high- power lasers. Motivated by several planned experiments, we provide an overview of experimental signatures that have been suggested to confirm this prediction of quantum electrodynamics of real photon–photon scattering.

  17. Heretics of the False Vacuum Gravitational Effects On and Of Vacuum Decay 2

    CERN Document Server

    Banks, T

    2002-01-01

    This paper reexamines the question of vacuum decay in theories of quantum gravity. In particular it suggests that decay into stable flat or AdS vacua, never occurs. Instead, vacuum decay occurs, if at all, into a cosmological spacetime. If the latter has negative cosmological constant, it undergoes a Big Crunch, which suggests that the whole picture is inconsistent. The question of decay of de Sitter space must be very carefully defined.

  18. Vacuum alignment and radiatively induced Fermi scale

    CERN Document Server

    Alanne, Tommi

    2016-01-01

    We extend the discussion about vacuum misalignment by quantum corrections in models with composite pseudo-Goldstone Higgs boson to renormalisable models with elementary scalars. As a concrete example, we propose a framework, where the hierarchy between the unification and the Fermi scale emerges radiatively. This scenario provides an interesting link between the unification and Fermi scale physics.

  19. Modified growth of Ge quantum dots using C{sub 2}H{sub 4} mediation by ultra-high vacuum chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.W. [Institute of Materials Science and Engineering, National Central University, Jhong-Li 32001, Taiwan (China)], E-mail: swlee@ncu.edu.tw; Chen, P.S. [Department of Materials Science and Engineering, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan (China); Cheng, S.L. [Institute of Materials Science and Engineering, National Central University, Jhong-Li 32001, Taiwan (China); Department of Chemical and Materials Engineering, National Central University, Jhong-Li 32001, Taiwan (China); Lee, M.H. [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Chang, H.T. [Institute of Materials Science and Engineering, National Central University, Jhong-Li 32001, Taiwan (China); Lee, C.-H.; Liu, C.W. [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2008-07-30

    C{sub 2}H{sub 4} mediations were used to modify the Stranski-Krastanow growth mode of Ge dots on Si(0 0 1) at 550 deg. C by ultra-high vacuum chemical vapor deposition. With appropriate C{sub 2}H{sub 4}-mediation to modify the Si surface, the elongated Ge hut clusters can be transformed to highly uniform Ge domes with a high Ge composition at the core. These C{sub 2}H{sub 4}-mediated Ge dots, almost bounded by {l_brace}1 1 3{r_brace} facets, have an average diameter and height of 55 and 9 nm, respectively. We propose two major mechanisms to depict the formation of these C{sub 2}H{sub 4}-mediated Ge dots: (i) an almost hydrogen-passivated Si surface to limit the nucleation sites for dot formation, and (ii) the incorporation of Ge atoms, repelled by the C-rich areas, into the existing Ge dots. This work provides a useful scheme to tune the topography of Ge dots in an UHV/CVD condition for possible optoelectronic applications.

  20. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    CERN Document Server

    Karbstein, Felix; Reuter, Maria; Zepf, Matt

    2015-01-01

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of non-linear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generatio...

  1. Friedmann cosmology with decaying vacuum density

    CERN Document Server

    Borges, H A

    2005-01-01

    Among the several proposals to solve the incompatibility between the observed small value of the cosmological constant and the huge value obtained by quantum field theories, we can find the idea of a decaying vacuum energy density, leading from high values at early times of universe evolution to the small value observed nowadays. In this paper we consider a variation law for the vacuum density recently proposed by Schutzhold on the basis of quantum field estimations in the curved, expanding background, characterized by a vacuum density proportional to the Hubble parameter. We show that, in the context of an isotropic and homogeneous, spatially flat model, the corresponding solutions retain the well established features of the standard cosmology, and, in addition, are in accordance with the observed cosmological parameters. Our scenario presents an initial phase dominated by radiation, followed by a dust era long enough to permit structure formation, and by an epoch dominated by the cosmological term, which te...

  2. Inference of Planck action constant by a classical fluctuative postulate holding for stable microscopic and macroscopic dynamical systems

    CERN Document Server

    De Martino, S; Illuminati, F; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio

    1999-01-01

    The possibility is discussed of inferring or simulating some aspects of quantum dynamics by adding classical statistical fluctuations to classical mechanics. We introduce a general principle of mechanical stability and derive a necessary condition for classical chaotic fluctuations to affect confined dynamical systems, on any scale, ranging from microscopic to macroscopic domains. As a consequence we obtain, both for microscopic and macroscopic aggregates, dimensional relations defining the minimum unit of action of individual constituents, yielding in all cases Planck action constant.

  3. Tough and Thermosensitive Poly(N-isopropylacrylamide)/Graphene Oxide Hydrogels with Macroscopically Oriented Liquid Crystalline Structures.

    Science.gov (United States)

    Zhu, Zhongcheng; Li, Yang; Xu, Hui; Peng, Xin; Chen, Ya-Nan; Shang, Cong; Zhang, Qin; Liu, Jiaqi; Wang, Huiliang

    2016-06-22

    Bulk graphene oxide (GO) nanocomposite materials with macroscopically oriented GO liquid crystalline (LC) structures exhibit interesting anisotropic properties, but their facile preparations remain challenging. This work reports for the first time the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)/GO nanocomposite hydrogels with macroscopically oriented LC structures with the assistance of a flow field induced by vacuum degassing and the in situ polymerization accelerated by GO. The hydrogel prepared with a GO concentration of 5.0 mg mL(-1) exhibits macroscopically aligned LC structures, which endow the gels with anisotropic optical, mechanical properties, and dimensional changes during the phase transition. The hydrogels show dramatically enhanced tensile mechanical properties and phase transition rates. The oriented LC structures are not damaged during the phase transition of the PNIPAM/GO hydrogels, and hence their LC behavior undergoes reversible change. Moreover, highly oriented LC structures can also be formed when the gels are elongated, even for the gels which do not have macroscopically oriented LC structures. Very impressively, the oriented LC structures in the hydrogels can be permanently maintained by drying the gel samples elongated to and then kept at a constant tensile strain. The thermosensitive nature of PNIPAM and the angle-dependent nature of the macroscopically aligned GO LC structures allow the practical applications of the PNIPAM/GO hydrogels as optical switches, soft sensors, and actuators and so on.

  4. Could nanostructure be unspeakable quantum system?

    CERN Document Server

    Aristov, V V

    2010-01-01

    Heisenberg, Bohr and others were forced to renounce on the description of the objective reality as the aim of physics because of the paradoxical quantum phenomena observed on the atomic level. The contemporary quantum mechanics created on the base of their positivism point of view must divide the world into speakable apparatus which amplifies microscopic events to macroscopic consequences and unspeakable quantum system. Examination of the quantum phenomena corroborates the confidence expressed by creators of quantum theory that the renunciation of realism should not apply on our everyday macroscopic world. Nanostructures may be considered for the present as a boundary of realistic description for all phenomena including the quantum one.

  5. Indian Vacuum Society: The Indian Vacuum Society

    Science.gov (United States)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  6. Vacuum polarization of planar Dirac fermions by a superstrong Coulomb potential

    CERN Document Server

    Khalilov, V R

    2016-01-01

    We study the vacuum polarization of planar charged Dirac fermions by a strong Coulomb potential. Induced vacuum charge density is calculated and analyzed at the subcritical and supercritical Coulomb potentials for massless and massive fermions. For the massless case the induced vacuum charge density is localized at the origin when the Coulomb center charge is subcritical while it has a power-law tail when the Coulomb center charge is supercritical. The finite mass contribution into the induced charge due to the vacuum polarization is small and insignificantly distorts the Coulomb potential only at distances of order of the Compton length. The induced vacuum charge has a screening sign. As is known the quantum electrodynamics vacuum becomes unstable when the Coulomb center charge is increased from subcritical to supercritical values. In the supercritical Coulomb potential the quantum electrodynamics vacuum acquires the charge due to the so-called real vacuum polarization. We calculate the real vacuum polarizat...

  7. Quantum Darwinism in Quantum Brownian Motion

    Science.gov (United States)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2008-12-01

    Quantum Darwinism—the redundant encoding of information about a decohering system in its environment—was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state—a macroscopic superposition—the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.

  8. Renormalized vacuum polarization of rotating black holes

    CERN Document Server

    Ferreira, Hugo R C

    2015-01-01

    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2+1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization (and, more importantly, the renormalized stress-energy tensor), for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  9. Vacuum polarization and photon mass in inflation

    CERN Document Server

    Prokopec, T; Prokopec, Tomislav; Woodard, Richard P.

    2004-01-01

    We give a pedagogical review of a mechanism through which long wave length photons can become massive during inflation. Our account begins with a discussion of the period of exponentially rapid expansion known as inflation. We next describe how, when the universe is not expanding, quantum fluctuations in charged particle fields cause even empty space to behave as a polarizable medium. This is the routinely observed phenomenon of vacuum polarization. We show that the quantum fluctuations of low mass, scalar fields are enormously amplified during inflation. If one of these fields is charged, the vacuum polarization effect of flat space is strengthened to the point that long wave length photons acquire mass. Our result for this mass is shown to agree with a simple model in which the massive photon electrodynamics of Proca emerges from applying the Hartree approximation to scalar quantum electrodynamics during inflation. One does not measure a huge photon mass today because the original phase of inflation ended w...

  10. Gravitational Correction to Vacuum Polarization

    CERN Document Server

    Jentschura, U D

    2015-01-01

    We consider the gravitational correction to (electronic) vacuum polarization in the presence of a gravitational background field. The Dirac propagators for the virtual fermions are modified to include the leading gravitational correction (potential term) which corresponds to a coordinate-dependent fermion mass. The mass term is assumed to be uniform over a length scale commensurate with the virtual electron-positron pair. The on-mass shell renormalization condition ensures that the gravitational correction vanishes on the mass shell of the photon, i.e., the speed of light is unaffected by the quantum field theoretical loop correction, in full agreement with the equivalence principle. Nontrivial corrections are obtained for off-shell, virtual photons. We compare our findings to other works on generalized Lorentz transformations and combined quantum-electrodynamic gravitational corrections to the speed of light which have recently appeared in the literature.

  11. Time Symmetric Quantum Mechanics and Causal Classical Physics ?

    Science.gov (United States)

    Bopp, Fritz W.

    2017-02-01

    A two boundary quantum mechanics without time ordered causal structure is advocated as consistent theory. The apparent causal structure of usual "near future" macroscopic phenomena is attributed to a cosmological asymmetry and to rules governing the transition between microscopic to macroscopic observations. Our interest is a heuristic understanding of the resulting macroscopic physics.

  12. Time Symmetric Quantum Mechanics and Causal Classical Physics

    CERN Document Server

    Bopp, Fritz W

    2016-01-01

    A two boundary quantum mechanics without time ordered causal structure is advocated as consistent theory. The apparent causal structure of usual "near future" macroscopic phenomena is attributed to a cosmological asymmetry and to rules governing the transition between microscopic to macroscopic observations. Our interest is a heuristic understanding of the resulting macroscopic physics.

  13. Quantum and classical vacuum forces at zero and finite temperature; Quantentheoretische und klassische Vakuum-Kraefte bei Temperatur Null und bei endlicher Temperatur

    Energy Technology Data Exchange (ETDEWEB)

    Niekerken, Ole

    2009-06-15

    In this diploma thesis the Casimir-Polder force at zero temperature and at finite temperatures is calculated by using a well-defined quantum field theory (formulated in position space) and the method of image charges. For the calculations at finite temperature KMS-states are used. The so defined temperature describes the temperature of the electromagnetic background. A one oscillator model for inhomogeneous dispersive absorbing dielectric material is introduced and canonically quantized to calculate the Casimir-Polder force at a dielectric interface at finite temperature. The model fulfils causal commutation relations and the dielectric function of the model fulfils the Kramer-Kronig relations. We then use the same methods to calculate the van der Waals force between two neutral atoms at zero temperature and at finite temperatures. It is shown that the high temperature behaviour of the Casimir-Polder force and the van der Waals force are independent of {Dirac_h}. This means that they have to be understood classically, what is then shown in an algebraic statistical theory by using classical KMS states. (orig.)

  14. Gravitational vacuum polarization; 2, energy conditions in the Boulware vacuum

    CERN Document Server

    Visser, M

    1996-01-01

    I show that in the Boulware vacuum (1) all standard (point-wise and averaged) energy conditions are violated throughout the exterior region---all the way from spatial infinity down to the event horizon, and (2) outside the event horizon the standard point-wise energy conditions are violated in a maximal manner: they are violated at all points and for all null/timelike vectors. (The region inside the event horizon is considerably messier, and of dubious physical relevance. Nevertheless the standard point-wise energy conditions also seem to be violated even inside the event horizon.) This is rather different from the case of the Hartle--Hawking vacuum, wherein violations of the energy conditions were confined to the region inside the unstable photon orbit. These calculations are for the quantum stress-energy tensor corresponding to a conformally-coupled massless scalar field in the Boulware vacuum. I work in the test-field limit, restrict attention to the Schwarzschild geometry, and invoke a mixture of analytic...

  15. Characteristic time-scales for macroscopic quantum tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Ranfagni, A. [Istituto di Fisica Applicata ' Nello Carrara' , Consiglio Nazionale delle Ricerche, Via Panciatichi 64, 50127 Florence (Italy); Scuola di Specializzazione in Ottica dell' Universita di Firenze, Florence (Italy); Cacciari, I. [Scuola di Specializzazione in Ottica dell' Universita di Firenze, Florence (Italy); Sandri, P. [Scuola di Specializzazione in Ottica dell' Universita di Firenze, Florence (Italy); Ranfagni, C. [Facolta di Scienze Matematiche, Fisiche e Naturali, Corso di Laurea in Fisica dell' Universita di Firenze, Florence (Italy); Ruggeri, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sezione di Firenze, Florence (Italy)]. E-mail: r.ruggeri@ifac.cnr.it; Agresti, A. [Dipartimento di Fisica dell' Universita di Firenze, Florence (Italy)

    2005-08-22

    Tunneling time ({tau}{sub t}), in its real and imaginary parts, can be deduced from measurements of decay time ({tau}{sub d}) in Josephson junctions. It turns out that the real part of {tau}{sub t} is much shorter than the imaginary one, which can be identified with the semiclassical time. A third quantity is the Zeno-time ({tau}{sub Z}) which, in turn, can be estimated from the previous ones, since it is approximately given by their geometrical mean. The possibility of observing the Zeno-effect is then discussed.

  16. Macroscopic optical response and photonic bands

    CERN Document Server

    Perez-Huerta, J S; Mendoza, Bernardo S; Mochan, W Luis

    2012-01-01

    We develop a formalism for the calculation of the macroscopic dielectric response of composite systems made of particles of one material embedded periodically within a matrix of another material, each of which is characterized by a well defined dielectric function. The nature of these dielectric functions is arbitrary, and could correspond to dielectric or conducting, transparent or opaque, absorptive and dispersive materials. The geometry of the particles and the Bravais lattice of the composite are also arbitrary. Our formalism goes beyond the longwavelenght approximation as it fully incorporates retardation effects. We test our formalism through the study the propagation of electromagnetic waves in 2D photonic crystals made of periodic arrays of cylindrical holes in a dispersionless dielectric host. Our macroscopic theory yields a spatially dispersive macroscopic response which allows the calculation of the full photonic band structure of the system, as well as the characterization of its normal modes, upo...

  17. On Macroscopic Complexity and Perceptual Coding

    CERN Document Server

    Scoville, John

    2010-01-01

    While Shannon information establishes limits to the universal data compression of binary data, no existing theory provides an equivalent characterization of the lossy data compression algorithms prevalent in audiovisual media. The current paper proposes a mathematical framework for perceptual coding and inference which quantifies the complexity of objects indistinguishable to a particular observer. A definition of the complexity is presented and related to a generalization of Boltzmann entropy for these equivalence classes. When the classes are partitions of phase space, corresponding to classical observations, this is the proper Boltzmann entropy and the macroscopic complexity agrees with the Algorithmic Entropy. For general classes, the macroscopic complexity measure determines the optimal lossy compression of the data. Conversely, perceptual coding algorithms may be used to construct upper bounds on certain macroscopic complexities. Knowledge of these complexities, in turn, allows perceptual inference whic...

  18. Nanoplasmon-enabled macroscopic thermal management

    CERN Document Server

    Jonsson, Gustav Edman; Dmitriev, Alexandre

    2013-01-01

    In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive materials featuring nanoplasmons. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. However, direct experimental evidence of plasmon-enabled macroscopic temperature increase that would result from these efficient absorptive properties is scarce. Here we derive a general quantitative method of characterizing light-capturing properties of a given heat-generating absorptive layer by macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with plasmon nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to thermophotovoltaics and othe...

  19. Photon-photon interaction in structured QED vacuum

    CERN Document Server

    Hatsagortsyan, K Z

    2012-01-01

    In spatially structured strong laser fields, quantum electrodynamical vacuum behaves like a nonlinear Kerr medium with modulated third-order susceptibility where new coherent nonlinear effects arise due to modulation. We consider the enhancement of vacuum polarization and magnetization via coherent spatial vacuum effects in the photon-photon interaction process during scattering of a probe laser beam on parallel focused laser beams. Both processes of elastic and inelastic four wave-mixing in structured QED vacuum accompanied with Bragg interference are investigated. The phase-matching conditions and coherent effects in the presence of Bragg grating are analyzed for photon-photon scattering.

  20. Room Temperature Experiments with a Macroscopic Sapphire Mechanical Oscillator

    Science.gov (United States)

    Bourhill, Jeremy; Ivanov, Eugene; Tobar, Micahel

    2015-03-01

    We present initial results from a number of experiments conducted on a 0.53 kg sapphire ``dumbbell'' crystal. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects frequency modulate resonant microwave whispering gallery modes, simultaneously excited within the crystal. A novel microwave readout system is described allowing extremely low noise measurements of this frequency modulation with a phase noise floor of -160 dBc/Hz at 100 kHz, near our modes of interest. Fine-tuning of the crystal's suspension have allowed for the optimisation of mechanical Q-factors in preparation for cryogenic experiments, with a value of 8 x 107 achieved so far. Finally, results are presented that demonstrate the excitation of mechanical modes via radiation pressure force. These are all important steps towards the overall goal of the experiment; to cool a macroscopic device to the quantum ground state.

  1. Two-dimensional atom localization induced by a squeezed vacuum

    Science.gov (United States)

    Wang, Fei; Xu, Jun

    2016-10-01

    A scheme of two-dimensional (2D) atom localization induced by a squeezed vacuum is proposed, in which the three-level V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574179 and 11204099) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFC1148).

  2. All-optical coherent control of vacuum Rabi oscillations

    CERN Document Server

    Bose, Ranojoy; Choudhury, Kaushik Roy; Solomon, Glenn S; Waks, Edo

    2014-01-01

    When an atom strongly couples to a cavity, it can undergo coherent vacuum Rabi oscillations. Controlling these oscillatory dynamics quickly relative to the vacuum Rabi frequency enables remarkable capabilities such as Fock state generation and deterministic synthesis of quantum states of light, as demonstrated using microwave frequency devices. At optical frequencies, however, dynamical control of single-atom vacuum Rabi oscillations remains challenging. Here, we demonstrate coherent transfer of optical frequency excitation between a single quantum dot and a cavity by controlling vacuum Rabi oscillations. We utilize a photonic molecule to simultaneously attain strong coupling and a cavity-enhanced AC Stark shift. The Stark shift modulates the detuning between the two systems on picosecond timescales, faster than the vacuum Rabi frequency. We demonstrate the ability to add and remove excitation from the cavity, and perform coherent control of light-matter states. These results enable ultra-fast control of atom...

  3. Observation of the Phononic Lamb Shift with a Synthetic Vacuum

    Science.gov (United States)

    Rentrop, T.; Trautmann, A.; Olivares, F. A.; Jendrzejewski, F.; Komnik, A.; Oberthaler, M. K.

    2016-10-01

    In contrast to classical empty space, the quantum vacuum fundamentally alters the properties of embedded particles. This paradigm shift allows one to explain the discovery of the celebrated Lamb shift in the spectrum of the hydrogen atom. Here, we engineer a synthetic vacuum, building on the unique properties of ultracold atomic gas mixtures, offering the ability to switch between empty space and quantum vacuum. Using high-precision spectroscopy, we observe the phononic Lamb shift, an intriguing many-body effect originally conjectured in the context of solid-state physics. We find good agreement with theoretical predictions based on the Fröhlich model. Our observations establish this experimental platform as a new tool for precision benchmarking of open theoretical challenges, especially in the regime of strong coupling between the particles and the quantum vacuum.

  4. Observation of the phononic Lamb shift with a synthetic vacuum

    CERN Document Server

    Rentrop, T; Olivares, F A; Jendrzejewski, F; Komnik, A; Oberthaler, M K

    2016-01-01

    The quantum vacuum fundamentally alters the properties of embedded particles. In contrast to classical empty space, it allows for creation and annihilation of excitations. For trapped particles this leads to a change in the energy spectrum, known as Lamb shift. Here, we engineer a synthetic vacuum building on the unique properties of ultracold atomic gas mixtures. This system makes it possible to combine high-precision spectroscopy with the ability of switching between empty space and quantum vacuum. We observe the phononic Lamb shift, an intruiguing many-body effect orginally conjectured in the context of solid state physics. Our study therefore opens up new avenues for high-precision benchmarking of non-trivial theoretical predictions in the realm of the quantum vacuum.

  5. Observation of the Phononic Lamb Shift with a Synthetic Vacuum

    Directory of Open Access Journals (Sweden)

    T. Rentrop

    2016-11-01

    Full Text Available In contrast to classical empty space, the quantum vacuum fundamentally alters the properties of embedded particles. This paradigm shift allows one to explain the discovery of the celebrated Lamb shift in the spectrum of the hydrogen atom. Here, we engineer a synthetic vacuum, building on the unique properties of ultracold atomic gas mixtures, offering the ability to switch between empty space and quantum vacuum. Using high-precision spectroscopy, we observe the phononic Lamb shift, an intriguing many-body effect originally conjectured in the context of solid-state physics. We find good agreement with theoretical predictions based on the Fröhlich model. Our observations establish this experimental platform as a new tool for precision benchmarking of open theoretical challenges, especially in the regime of strong coupling between the particles and the quantum vacuum.

  6. Engineering Matter Interactions Using Squeezed Vacuum

    Directory of Open Access Journals (Sweden)

    Sina Zeytinoğlu

    2017-06-01

    Full Text Available Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the vacuum fluctuations can be used to engineer the strength and the range of interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or wave guides, which modify the electromagnetic fluctuations. Here, we show theoretically that the enhanced fluctuations in the antisqueezed quadrature of a squeezed vacuum state allow for engineering interactions between electric dipoles without the need for a photonic structure. Thus, the strength and range of the interactions can be engineered in a time-dependent way by changing the spatial profile of the squeezed vacuum in a traveling-wave geometry, which also allows the implementation of chiral dissipative interactions. Using experimentally realized squeezing parameters and including realistic losses, we predict single-atom cooperativities C of up to 10 for the squeezed-vacuum-enhanced interactions.

  7. Gravitational vacuum polarization

    CERN Document Server

    Visser, M

    1997-01-01

    The energy conditions of classical Einstein gravity fail once quantum effects are introduced. These quantum violations of the energy conditions are not subtle high-energy Planck scale effects. Rather the quantum violations of the energy conditions already occur in semiclassical quantum gravity and are first-order O(\\hbar) effects. Quantum violations of the energy conditions are widespread, albeit small.

  8. Quantum Feynman Ratchet

    Science.gov (United States)

    Goyal, Ketan; Kawai, Ryoichi

    As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.

  9. Detecting modified vacuum fluctuations due to presence of a boundary by means of the geometric phase

    OpenAIRE

    Yu, Hongwei; Hu, Jiawei

    2012-01-01

    We study the geometric phase acquired by an inertial atom whose trajectories are parallel to a reflecting boundary due its coupling to vacuum fluctuations of electromagnetic fields, by treating the atom as an open quantum system in a bath of the fluctuating vacuum fields, and show that the phase is position dependent as a result of the presence of the boundary which modifies the field quantum fluctuations. Our result therefore suggests a possible way of detecting vacuum fluctuations in experi...

  10. Quantum Magnetism

    CERN Document Server

    Barbara, Bernard; Sawatzky, G; Stamp, P. C. E

    2008-01-01

    This book is based on some of the lectures during the Pacific Institute of Theoretical Physics (PITP) summer school on "Quantum Magnetism", held during June 2006 in Les Houches, in the French Alps. The school was funded jointly by NATO, the CNRS, and PITP, and entirely organized by PITP. Magnetism is a somewhat peculiar research field. It clearly has a quantum-mechanical basis – the microsopic exchange interactions arise entirely from the exclusion principle, in conjunction with respulsive interactions between electrons. And yet until recently the vast majority of magnetism researchers and users of magnetic phenomena around the world paid no attention to these quantum-mechanical roots. Thus, eg., the huge ($400 billion per annum) industry which manufactures hard discs, and other components in the information technology sector, depends entirely on room-temperature properties of magnets - yet at the macroscopic or mesoscopic scales of interest to this industry, room-temperature magnets behave entirely classic...

  11. Intrinsic measurement errors for the speed of light in vacuum

    Science.gov (United States)

    Braun, Daniel; Schneiter, Fabienne; Fischer, Uwe R.

    2017-09-01

    The speed of light in vacuum, one of the most important and precisely measured natural constants, is fixed by convention to c=299 792 458 m s-1 . Advanced theories predict possible deviations from this universal value, or even quantum fluctuations of c. Combining arguments from quantum parameter estimation theory and classical general relativity, we here establish rigorously the existence of lower bounds on the uncertainty to which the speed of light in vacuum can be determined in a given region of space-time, subject to several reasonable restrictions. They provide a novel perspective on the experimental falsifiability of predictions for the quantum fluctuations of space-time.

  12. Vacuum grasping as a manipulation technique for minimally invasive surgery

    Science.gov (United States)

    Goossens, R. H. M.; van Eijk, D. J.; de Hingh, I. H. J. T.; Jakimowicz, J. J.

    2010-01-01

    Background Laparoscopic surgery requires specially designed instruments. Bowel tissue damage is considered one of the most serious forms of lesion, specifically perforation of the bowel. Methods An experimental setting was used to manipulate healthy pig bowel tissue via two vacuum instruments. During the experiments, two simple manipulations were performed for both prototypes by two experienced surgeons. Each manipulation was repeated 20 times for each prototype at a vacuum level of 60 kPa and 20 times for each prototype at a vacuum level of 20 kPa. All the manipulations were macroscopically assessed by two experienced surgeons in terms of damage to the bowel. Results In 160 observations, 63 ecchymoses were observed. All 63 ecchymoses were classified as not relevant and negligible. No serosa or seromuscular damages and no perforations were observed. Conclusion Vacuum instruments such as the tested prototypes have the potential to be used as grasper instruments in minimally invasive surgery. PMID:20195640

  13. Quantum friction imprints on the geometric phase of a moving atom in front of a dielectric plate

    Science.gov (United States)

    Lombardo, Fernando C.; Villar, Paula I.

    2017-08-01

    We compute the non-unitary geometric phase for the moving atom under the presence of the vacuum field and a dielectric mirror, analytically and numerically. We consider the atom (represented by a two-level system) moving in front of a dielectric plate, and study how decoherence of the particle’s internal degrees of freedom can be found in the corrections to the geometric phase accumulated by the atom. We consider the particle to follow a classical, macroscopically-fixed trajectory and by integrating over the vacuum field and the microscopic degrees of freedom of the plate we may calculate friction effects. We find a velocity dependance in the correction to the unitary geometric phase due to quantum frictional effects. We also show in which cases decoherence effects could, in principle, be controlled in order to perform a measurement of the geometric phase using standard interferometry procedures.

  14. Numerical computation for teaching quantum statistics

    Science.gov (United States)

    Price, Tyson; Swendsen, Robert H.

    2013-11-01

    The study of ideal quantum gases reveals surprising quantum effects that can be observed in macroscopic systems. The properties of bosons are particularly unusual because a macroscopic number of particles can occupy a single quantum state. We describe a computational approach that supplements the usual analytic derivations applicable in the thermodynamic limit. The approach involves directly summing over the quantum states for finite systems and avoids the need for doing difficult integrals. The results display the unusual behavior of quantum gases even for relatively small systems.

  15. Entropy, Macroscopic Information, and Phase Transitions

    OpenAIRE

    Parrondo, Juan M. R.

    1999-01-01

    The relationship between entropy and information is reviewed, taking into account that information is stored in macroscopic degrees of freedom, such as the order parameter in a system exhibiting spontaneous symmetry breaking. It is shown that most problems of the relationship between entropy and information, embodied in a variety of Maxwell demons, are also present in any symmetry breaking transition.

  16. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  17. Lozenge Tilings, Glauber Dynamics and Macroscopic Shape

    Science.gov (United States)

    Laslier, Benoît; Toninelli, Fabio Lucio

    2015-09-01

    We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/ L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297-346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit , to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain "frozen regions" (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137-165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483-507, 1997; Spohn J Stat Phys 71:1081-1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157-189, 2012; Wilson Ann Appl Probab 14:274-325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88:030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89:483-507, 1997) and Wilson (Ann Appl Probab 14:274-325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L 2+ o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no "frozen region".

  18. Macroscopic invisibility cloaking of visible light

    DEFF Research Database (Denmark)

    Chen, Xianzhong; Luo, Y.; Zhang, Jingjing

    2011-01-01

    to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale...

  19. Proof of Bekenstein-Mukhanov ansatz in loop quantum gravity

    CERN Document Server

    Majhi, Abhishek

    2016-01-01

    A simple proof of Bekenstein-Mukhanov(BM) ansatz is given within the loop quantum gravity(LQG) framework. The macroscopic area of an equilibrium black hole horizon indeed manifests a linear quantization. The quantum number responsible for this discreteness of the macroscopic area has a physical meaning in the LQG framework, unlike the ad hoc one that remained unexplained in BM ansatz.

  20. Understanding quantum phase transitions

    CERN Document Server

    Carr, Lincoln

    2010-01-01

    Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivity and display fundamental aspects of quantum theory, such as strong correlations and entanglement. Over the last two decades, our understanding of QPTs has increased tremendously due to a plethora of experimental examples, powerful new numerical meth

  1. Physical Vacuum in Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2009-01-01

    Although experiments carried out by Jain et al. showed that the Cooper pairs obey the strong equivalence principle, The measurement of the Cooper pairs inertial mass by Tate et al. revealed an anomalous excess of mass. In the present paper we interpret these experimental results in the framework of an electromagnetic model of dark energy for the superconductors' vacuum. We argue that this physical vacuum is associated with a preferred frame. Ultimately from the conservation of energy for Cooper pairs we derive a model for a variable vacuum speed of light in the superconductors physical vacuum in relation with a possible breaking of the weak equivalence principle for Cooper pairs.

  2. Vacuum Radiation Pressure Fluctuations and Barrier Penetration

    CERN Document Server

    Huang, Haiyan

    2016-01-01

    We apply recent results on the probability distribution for quantum stress tensor fluctuations to the problem of barrier penetration by quantum particles. The probability for large stress tensor fluctuations decreases relatively slowly with increasing magnitude of the fluctuation, especially when the quantum stress tensor operator has been averaged over a finite time interval. This can lead to large vacuum radiation pressure fluctuations on charged or polarizable particles, which can in turn push the particle over a potential barrier. The rate for this effect depends sensitively upon the details of the time averaging of the stress tensor operator, which might be determined by factors such as the shape of the potential. We make some estimates for the rate of barrier penetration by this mechanism and argue that in some cases this rate can exceed the rate for quantum tunneling through the barrier. The possibility of observation of this effect is discussed.

  3. Absolutely covert quantum communication

    CERN Document Server

    Bradler, Kamil; Siopsis, George; Weedbrook, Christian

    2016-01-01

    We present truly ultimate limits on covert quantum communication by exploiting quantum-mechanical properties of the Minkowski vacuum in the quantum field theory framework. Our main results are the following: We show how two parties equipped with Unruh-DeWitt detectors can covertly communicate at large distances without the need of hiding in a thermal background or relying on various technological tricks. We reinstate the information-theoretic security standards for reliability of asymptotic quantum communication and show that the rate of covert communication is strictly positive. Therefore, contrary to the previous conclusions, covert and reliable quantum communication is possible.

  4. Fluctuations in quantum devices

    Directory of Open Access Journals (Sweden)

    H.Haken

    2004-01-01

    Full Text Available Logical gates can be formalized by Boolean algebra whose elementary operations can be realized by devices that employ the interactions of macroscopic numbers of elementary excitations such as electrons, holes, photons etc. With increasing miniaturization to the nano scale and below, quantum fluctuations become important and can no longer be ignored. Based on Heisenberg equations of motion for the creation and annihilation operators of elementary excitations, I determine the noise sources of composite quantum systems.

  5. Vacuum Birefringence as a Vacuum Emission Process

    CERN Document Server

    Karbstein, Felix

    2015-01-01

    We argue that the phenomenon of vacuum birefringence in strong inhomogeneous electromagnetic fields can be most efficiently analyzed in terms of a vacuum emission process. In this contribution, we exemplarily stick to the case of vacuum birefringence in a stationary perpendicularly directed, purely magnetic background field extending over a finite spatial extent. Similar field configurations are realized in the BMV and PVLAS experiments. We demonstrate that we can reproduce the conventional constant field result. Our focus is on effects which arise when the probe photons originate in the field free region, are directed towards the magnetic field region, and detected well after the interaction with the magnetic field has taken place, again at zero field.

  6. Effective Theory of Higgs Sector Vacuum States

    CERN Document Server

    Egana-Ugrinovic, Daniel

    2015-01-01

    The effective field theory description for modifications of Standard Model-like Higgs boson interactions arising from tree-level mixing with heavy Higgs sector vacuum states without conserved quantum numbers is presented. An expansion in terms of effective operator dimension based on powers of the heavy mass scale rather than operator dimension is utilized to systematically organize interactions within the effective theory. Vacuum states arising from electroweak singlet extensions of the Higgs sector yield at leading order only two effective dimension-six operators. One of these uniformly dilutes all the interactions of a single physical Higgs boson as compared with Standard Model expectations, while the combination of the two operators give more general modifications of all remaining interactions with two or more physical Higgs bosons. Vacuum states arising from an additional electroweak doublet yield three types of effective dimension-six operators that modify physical Higgs boson couplings to fermion pairs...

  7. Are there Boltzmann brains in the vacuum

    CERN Document Server

    Davenport, Matthew

    2010-01-01

    "Boltzmann brains" are human brains that arise as thermal or quantum fluctuations and last at least long enough to think a few thoughts. In many scenarios involving universes of infinite size or duration, Boltzmann brains are infinitely more common than human beings who arise in the ordinary way. Thus we should expect to be Boltzmann brains, in contradiction to observation. We discuss here the question of whether Boltzmann brains can arise as quantum fluctuations in the vacuum. Such Boltzmann brains pose an even worse problem than those arising as fluctuations in the thermal state of an exponentially expanding universe. We give several arguments for and against inclusion of vacuum Boltzmann brains in the anthropic reference class, but find neither choice entirely satisfactory.

  8. How to play two-players restricted quantum games with 10 cards

    CERN Document Server

    Aerts, D; D'Hooghe, B; Posiewnik, A; Pykacz, J; Aerts, Diederik; Amira, Haroun; Hooghe, Bart D'; Posiewnik, Andrzej; Pykacz, Jaroslaw

    2005-01-01

    We show that it is perfectly possible to play 'restricted' two-players, two-strategies quantum games proposed originally by Marinatto and Weber having as the only equipment a pack of 10 cards. The 'quantum board' of such a model of these quantum games is an extreme simplification of 'macroscopic quantum machines' proposed by one of the authors in numerous papers that allow to simulate by macroscopic means various experiments performed on two entangled quantum objects

  9. Macroscopic Invisibility Cloaking of Visible Light

    CERN Document Server

    Chen, Xianzhong; Zhang, Jingjing; Jiang, Kyle; Pendry, John B; Zhang, Shuang

    2010-01-01

    Invisibility cloaks of light, which used to be confined to the imagination, have now been turned into a scientific reality, thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realisation of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here we report realisation of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices.

  10. Macroscopic spin and charge transport theory

    Institute of Scientific and Technical Information of China (English)

    Li Da-Fang; Shi Jun-Ren

    2009-01-01

    According to the general principle of non-equilibrium thermodynamics, we propose a set of macroscopic transport equations for the spin transport and the charge transport. In particular, the spin torque is introduced as a generalized 'current density' to describe the phenomena associated with the spin non-conservation in a unified framework. The Einstein relations and the Onsager relations between different transport phenomena are established. Specifically, the spin transport properties of the isotropic non-magnetic and the isotropic magnetic two-dimensional electron gases are fully described by using this theory, in which only the macroscopic-spin-related transport phenomena allowed by the symmetry of the system are taken into account.

  11. Macroscopic entrainment of periodically forced oscillatory ensembles.

    Science.gov (United States)

    Popovych, Oleksandr V; Tass, Peter A

    2011-03-01

    Large-amplitude oscillations of macroscopic neuronal signals, such as local field potentials and electroencephalography or magnetoencephalography signals, are commonly considered as being generated by a population of mutually synchronized neurons. In a computational study in generic networks of phase oscillators and bursting neurons, however, we show that this common belief may be wrong if the neuronal population receives an external rhythmic input. The latter may stem from another neuronal population or an external, e.g., sensory or electrical, source. In that case the population field potential may be entrained by the rhythmic input, whereas the individual neurons are phase desynchronized both mutually and with their field potential. Intriguingly, the corresponding large-amplitude oscillations of the population mean field are generated by pairwise desynchronized neurons oscillating at frequencies shifted far away from the frequency of the macroscopic field potential.

  12. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.

    1990-05-01

    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  13. Macroscopic Invisible Cloak for Visible Light

    CERN Document Server

    Zhang, Baile; Liu, Xiaogang; Barbastathis, George

    2011-01-01

    Invisibility cloaks, a subject that usually occurs in science fiction and myths, have attracted wide interest recently because of their possible realization. The biggest challenge to true invisibility is known to be the cloaking of a macroscopic object in the broad range of wavelengths visible to the human eye. Here we experimentally solve this problem by incorporating the principle of transformation optics into a conventional optical lens fabrication with low-cost materials and simple manufacturing techniques. A transparent cloak made of two pieces of calcite is created. This cloak is able to conceal a macroscopic object with a maximum height of 2 mm, larger than 3500 free-space-wavelength, inside a transparent liquid environment. Its working bandwidth encompassing red, green and blue light is also demonstrated.

  14. Shot noise in linear macroscopic resistors

    OpenAIRE

    Gomila Lluch, Gabriel; Pennetta, C.; Reggiani, L.; Ferrari, G; Sampietro, M.; G. Bertuccio(Politecnico di Milano, Italy)

    2004-01-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devi...

  15. Shot Noise in Linear Macroscopic Resistors

    Science.gov (United States)

    Gomila, G.; Pennetta, C.; Reggiani, L.; Sampietro, M.; Ferrari, G.; Bertuccio, G.

    2004-06-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.

  16. Classical system boundaries cannot be determined within quantum Darwinism

    Science.gov (United States)

    Fields, Chris

    Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.

  17. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  18. Observations of Macroscopic Shocks in the Laboratory

    Science.gov (United States)

    Endrizzi, Douglass; Laufman-Wollitzer, Lauren; Clark, Mike; Olson, Joseph; Myers, Rachel; Forest, Cary; Gota, Hiroshi; WiPAL Team; Tri Alpha Energy Team

    2016-10-01

    A magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy has been installed on the Wisconsin Plasma Astrophysics Lab (WiPAL) vacuum vessel. The MCPG fires a dense (1018m-3) and warm (10-30 eV) compact toroid (CT) at speeds of order 100 km/s. The CT is characterized using B magnetic diagnostics, multi-tip temperature probes, Ion saturation density probes, and a fast Phantom camera. The CT is injected into vacuum field, neutral gas, and plasmas of various beta. Results and evidence for propagating shocks will be presented. This work supported the NSF GRFP under Grant No. DGE-1256259.

  19. Gravitational vacuum polarization; 4, Energy conditions in the Unruh vacuum

    CERN Document Server

    Visser, M

    1997-01-01

    Building on a series of earlier papers [gr-qc/9604007, gr-qc/9604008, gr-qc/9604009], I investigate the various point-wise and averaged energy conditions in the Unruh vacuum. I consider the quantum stress-energy tensor corresponding to a conformally coupled massless scalar field, work in the test-field limit, restrict attention to the Schwarzschild geometry, and invoke a mixture of analytical and numerical techniques. I construct a semi-analytic model for the stress-energy tensor that globally reproduces all known numerical results to within 0.8%, and satisfies all known analytic features of the stress-energy tensor. I show that in the Unruh vacuum (1) all standard point-wise energy conditions are violated throughout the exterior region--all the way from spatial infinity down to the event horizon, and (2) the averaged null energy condition is violated on all outgoing radial null geodesics. In a pair of appendices I indicate general strategy for constructing semi-analytic models for the stress-energy tensor in...

  20. Cervical spine annulus vacuum.

    Science.gov (United States)

    Bohrer, S P; Chen, Y M

    1988-01-01

    Thirty-eight annulus vacuums in 27 patients were analyzed with regard to location, configuration, and associated vertebral abnormalities such as degenerative changes, absent and compressed anterosuperior vertebral body corners, and annulus calcification. It is concluded that most annulus vacuums are a degenerative phenomenon at the attachment of the annulus to bone. These vacuums may be associated with other degenerative changes such as osteophytes and annulus calcification. Vacuums have a strong association with compressed anterosuperior corners. These deformed corners are thought to be early osteophytes and may be related to previous trauma, a vertebra with an absent corner, and/or normal motion. Small annulus vacuums adjacent to vertebral corners with a normal appearance are more likely to result from acute trauma.

  1. ELETTRA vacuum system

    Science.gov (United States)

    Bernardini, M.

    1991-08-01

    A status report of the vacuum system of ELETTRA, the 2 GeV, 400 mA light source under construction in Trieste, will be described. The Vacuum project, presented at ``Synchrotron Radiation Vacuum Workshop'' at Riken (Japan 22-24 March 1990) and more recently at EVC-2, the European Vacuum Conference at Trieste (Italy 21-26 May 1990), is now in the phase of testing a prototype sector, which is 1/24 of the ring circumference. Details and some technological aspects of the fabrication will be reviewed together with the vacuum performances. Results of laboratory experiments on components, standard or not, allowed us to finalize the main choices in light of the general philosophy of the project and will be properly summarized.

  2. Cervical spine annulus vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Bohrer, S.P.; Chen, Y.M.

    1988-07-01

    Thirty-eight annulus vacuums in 27 patients were analyzed with regard to location, configuration, and associated vertebral abnormalities such as degenerative changes, absent and compressed anterosuperior vertebral body corners, and annulus calcification. It is concluded that most annulus vacuums are a degenerative phenomenon at the attachment of the annulus to bone. These vacuums may be associated with other degenerative changes such as osteophytes and annulus calcification. Vacuums have a strong association with compressed anterosuperior corners. These deformed corners are thought to be early osteophytes and may be related to previous trauma, a vertebra with an absent corner, and/or normal motion. Small annulus vacuums adjacent to vertebral corners with a normal appearance are more likely to result from acute trauma.

  3. Vacuum controls and interlocks

    CERN Document Server

    Strubin, P

    2007-01-01

    The vacuum control system is, in most cases, a subset of the general control system of an accelerator. As such, it shares the architecture and communication infrastructure of the main control system. Considered as a ‘slow process’ to control in the frame of accelerators, the vacuum control system can be built using commercial industrial controllers (PLCs). A data driven approach allows for changes in configuration without changing the software code but at the expense of a solid database. Modelling the equipment allows for easy adaptation of a variety of control units with the same functionality but different physical interfaces. It also allows for a uniform display of the available data and status values. Interlocks are required to protect the vacuum equipment itself against abnormal conditions, but also to protect other systems, like RF, which need a good vacuum to operate. They are an integral part of any vacuum control system.

  4. Microfabricated triggered vacuum switch

    Science.gov (United States)

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  5. Quantum states preparation in cavity optomechanics

    Science.gov (United States)

    Ge, Wenchao

    Quantum entanglement and quantum superposition are fundamental properties of quantum mechanics, which underline quantum information and quantum computation. Preparing quantum states in the macroscopic level is both conceptually interesting for extending quantum physics to a broader sense and fundamentally important for testing the validity of quantum mechanics. In this dissertation, schemes of preparing macroscopic entanglement and macroscopic superposition states in cavity optomechanics are studied using the unitary evolution method in the nonlinear regime or Lyapunov equation in the linearized regime. Quantum entanglement and quantum superposition states can be realized using experimentally feasible parameters with the proposals in this dissertation. Firstly, a scheme of entangling two movable end mirrors in a Fabry-Perot cavity that are coupled to a common single photon superposition state is studied. It is shown that strong entanglement can be obtained either in the single-photon strong coupling regime deterministically or in the single-photon weak coupling regime conditionally. Secondly, a scheme of entangling two movable end mirrors, that are coupled to two-mode entangled fields generated from a correlated-emission laser is investigated. By tuning the input driving laser frequencies at the Stokes sidebands of the cavity, the radiation-pressure coupling can be linearized as an effective beam-splitter-like interaction. Hence entanglement can be transferred from the two-mode fields to the two mechanical mirrors. Macroscopic entanglement between macroscopic mirrors persists at temperature ~ 1K. Thirdly, a scheme of creating macroscopic quantum superpositions of a mechanical mirror via periodically flipping a photonic qubit is proposed. Quantum superposition states of a mechanical mirror can be obtained via the nonlinear radiation coupling with a single-photon superposition state. However, the difference between two superposed mechanical states is very small due

  6. Observing Quantum Tunneling in Perturbation Series

    CERN Document Server

    Suzuki, H; Suzuki, Hiroshi; Yasuta, Hirofumi

    1997-01-01

    It is well-known that the quantum tunneling makes conventional perturbation series non-Borel summable. We use this fact reversely and attempt to extract the decay width of the false-vacuum from the actual perturbation series of the vacuum energy density (vacuum bubble diagrams). It is confirmed that, at least in quantum mechanical examples, our proposal provides a complimentary approach to the the conventional instanton calculus in the strong coupling region.

  7. Quantum Vacuum and a Matter - Antimatter Cosmology

    CERN Document Server

    Rothwarf, F; Rothwarf, Frederick; Roy, Sisir

    2007-01-01

    A model of the universe as proposed by Allen Rothwarf based upon a degenerate Fermion fluid composed of polarizable particle-antiparticle pairs leads to a big bang model of the universe where the velocity of light varies inversely with the square root of cosmological time, t. This model is here extended to predict a decelerating expansion of the universe and to derive the Tully-Fisher law describing the flat rotation curves of spiral galaxies. The estimated critical acceleration parameter, aoR, is compared to the experimental, critical modified Newtonian Dynamics (MOND) cosmological acceleration constant, obtained by fitting a large number of rotation curves. The present estimated value is much closer to the experimental value than that obtained with the other models. This model for aR(t) allows the derivation of the time dependent radius of the universe as a function of red shift Other cosmological parameters such as the velocity of light, Hubble's constant, the Tully-Fisher relation, and the index of refrac...

  8. Sonoluminescence and the QED vacuum

    CERN Document Server

    Liberati, S; Belgiorno, F; Sciama, Dennis William; Visser, Matt

    1999-01-01

    In this talk I shall describe an extension of the quantum-vacuum approach to sonoluminescence proposed several years ago by J.Schwinger. We shall first consider a model calculation based on Bogolubov coefficients relating the QED vacuum in the presence of an expanded bubble to that in the presence of a collapsed bubble. In this way we shall derive an estimate for the spectrum and total energy emitted. This latter will be shown to be proportional to the volume of space over which the refractive index changes, as Schwinger predicted. After this preliminary check we shall deal with the physical constraints that any viable dynamical model for SL has to satisfy in order to fit the experimental data. We shall emphasize the importance of the timescale of the change in refractive index. This discussion will led us to propose a somewhat different version of dynamical Casimir effect in which the change in volume of the bubble is no longer the only source for the change in the refractive index.

  9. Electromagnetic superconductivity of vacuum induced by strong magnetic field

    CERN Document Server

    Chernodub, M N

    2012-01-01

    The quantum vacuum may become an electromagnetic superconductor in the presence of a strong external magnetic field of the order of 10^{16} Tesla. The magnetic field of the required strength (and even stronger) is expected to be generated for a short time in ultraperipheral collisions of heavy ions at the Large Hadron Collider. The superconducting properties of the new phase appear as a result of a magnetic-field-assisted condensation of quark-antiquark pairs with quantum numbers of electrically charged rho mesons. We discuss similarities and differences between the suggested superconducting state of the quantum vacuum, a conventional superconductivity and the Schwinger pair creation. We argue qualitatively and quantitatively why the superconducting state should be a natural ground state of the vacuum at the sufficiently strong magnetic field. We demonstrate the existence of the superconducting phase using both the Nambu-Jona-Lasinio model and an effective bosonic model based on the vector meson dominance (th...

  10. Gravitational Stability for a Vacuum Cosmic Space Crystalline Model

    CERN Document Server

    Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Montemayor-Varela, A; Castillo-Mussot, M; Vazquez, G J

    2005-01-01

    Using Heisenberg's uncertainty principle it is shown that the gravitational stability condition for a crystalline vacuum cosmic space implies to obtain an equation formally equivalent to the relation first used by Gamow to predict the present temperature of the microwave background from the matter density. The compatibility condition between the quantum and the relativistic approaches has been obtained without infinities arising from the quantum analysis or singularities arising from the relativistic theory. The action which leads to our theory is the least action possible in a quantum scheme. The energy fluctuation involved in the gravitational stabilization of vacuum space is 10 to the 40 power times the energy of the crystalline structure of vacuum space inside the present Universe volume. PACS numbers: 04.20.-q, 03.65.-w, 03.50.De, 61.50.-f, 98.80.Ft

  11. Cosmological implications of the transition from the false vacuum to the true vacuum state

    CERN Document Server

    Stachowski, Aleksander; Urbanowski, Krzysztof

    2016-01-01

    We study the cosmology with the running dark energy. The parametrization of dark energy with the respect to the redshift is derived from the first principles of quantum mechanics. Energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. This is the class of the extended interacting $\\Lambda$CDM models. We consider the energy density of dark energy parametrization $\\rho_\\text{de}(t)$, which follows from the Breit-Wigner energy distribution function which is used to model the quantum unstable systems. The idea that properties of the process of the quantum mechanical decay of unstable states can help to understand the properties of the observed universe was formulated by Krauss and Dent and this idea was used in our considerations. In the cosmological model with the mentioned parametrization there is an energy transfer between the dark matter and dark energy. In such a evolutional scenario the universe is starting from the false vacuum...

  12. Cosmological implications of the transition from the false vacuum to the true vacuum state

    Energy Technology Data Exchange (ETDEWEB)

    Stachowski, Aleksander [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Urbanowski, Krzysztof [University of Zielona Gora, Institute of Physics, Zielona Gora (Poland)

    2017-06-15

    We study cosmology with running dark energy. The energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. We use the Breit-Wigner energy distribution function to model the quantum unstable systems and obtain the energy density of the dark energy parametrization ρ{sub de}(t). We also use Krauss and Dent's idea linking properties of the quantum mechanical decay of unstable states with the properties of the observed Universe. In the cosmological model with this parametrization there is an energy transfer between dark matter and dark energy. The intensity of this process, measured by a parameter α, distinguishes two scenarios. As the Universe starts from the false vacuum state, for the small value of α (0 < α < 0.4) it goes through an intermediate oscillatory (quantum) regime of the density of dark energy, while for α > 0.4 the density of the dark energy jumps down. In both cases the present value of the density of dark energy is reached. From a statistical analysis we find this model to be in good agreement with the astronomical data and practically indistinguishable from the ΛCDM model. (orig.)

  13. The Entropy of a Vacuum: What Does the Covariant Entropy Count?

    CERN Document Server

    Nomura, Yasunori

    2013-01-01

    We argue that a unitary description of the formation and evaporation of a black hole implies that the Bekenstein-Hawking entropy is the "entropy of a vacuum": the logarithm of the number of possible independent ways in which quantum field theory on a fixed classical spacetime background can emerge in a full quantum theory of gravity. In many cases, the covariant entropy counts this entropy--the degeneracy of emergent quantum field theories in full quantum gravity--with the entropy of particle excitations in each quantum field theory giving only a tiny perturbation. In the Rindler description of a (black hole) horizon, the relevant vacuum degrees of freedom manifest themselves as an extra hidden quantum number carried by the states representing the second exterior region; this quantum number is invisible in the emergent quantum field theory. In a distant picture, these states arise as exponentially degenerate ground and excited states of the intrinsically quantum gravitational degrees of freedom on the stretch...

  14. Thermophoretic vacuum wand

    Science.gov (United States)

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2000-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  15. Evading death by vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, A. [Universidade de Lisboa, Centro de Fisica Teorica e Computacional, Faculdade de Ciencias, Lisboa (Portugal); Ferreira, P.M.; Santos, Rui [Universidade de Lisboa, Centro de Fisica Teorica e Computacional, Faculdade de Ciencias, Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, Lisboa (Portugal); Ivanov, I.P. [Universite de Liege, IFPA, Liege (Belgium); Sobolev Institute of Mathematics, Novosibirsk (Russian Federation); Silva, Joao P. [Instituto Superior de Engenharia de Lisboa, Lisboa (Portugal); Universidade Tecnica de Lisboa, Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico, Lisboa (Portugal)

    2013-09-15

    In the Standard Model, the Higgs potential allows only one minimum at tree level. But the open possibility that there might be two scalar doublets enriches the vacuum structure, allowing for the risk that we might now be in a metastable state, which we dub the panic vacuum. Current experiments at the LHC are probing the Higgs particle predicted as a result of the spontaneous symmetry breaking. Remarkably, in the two Higgs model with a softly broken U(1) symmetry, the LHC experiments already allow to exclude many panic vacuum solutions. (orig.)

  16. Parametric Amplification of Vacuum Fluctuations in a Spinor Condensate

    DEFF Research Database (Denmark)

    Klempt, C.; Topic, O.; Gebreyesus, G.

    2010-01-01

    Parametric amplification of vacuum fluctuations is crucial in modern quantum optics, enabling the creation of squeezing and entanglement. We demonstrate the parametric amplification of vacuum fluctuations for matter waves using a spinor F=2 87Rb condensate. Interatomic interactions lead...... to correlated pair creation in the mF=±1 states from an initial mF=0 condensate, which acts as a vacuum for mF≠0. Although this pair creation from a pure mF=0 condensate is ideally triggered by vacuum fluctuations, unavoidable spurious initial mF=±1 atoms induce a classical seed which may become the dominant...... triggering mechanism. We show that pair creation is insensitive to a classical seed for sufficiently large magnetic fields, demonstrating the dominant role of vacuum fluctuations. The presented system thus provides a direct path towards the generation of nonclassical states of matter....

  17. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  18. A squeezed light source operated under high vacuum

    Science.gov (United States)

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616

  19. Construction of the Pauli-Villars-Regulated Dirac Vacuum in Electromagnetic Fields

    Science.gov (United States)

    Gravejat, Philippe; Hainzl, Christian; Lewin, Mathieu; Séré, Éric

    2013-05-01

    Using the Pauli-Villars regularization and arguments from convex analysis, we construct solutions to the classical time-independent Maxwell equations in Dirac's vacuum, in the presence of small external electromagnetic sources. The vacuum is not an empty space, but rather a quantum fluctuating medium which behaves as a nonlinear polarizable material. Its behavior is described by a Dirac equation involving infinitely many particles. The quantum corrections to the usual Maxwell equations are nonlinear and nonlocal. Even if photons are described by a purely classical electromagnetic field, the resulting vacuum polarization coincides to first order with that of full Quantum Electrodynamics.

  20. Subcycle quantum electrodynamics.

    Science.gov (United States)

    Riek, C; Sulzer, P; Seeger, M; Moskalenko, A S; Burkard, G; Seletskiy, D V; Leitenstorfer, A

    2017-01-18

    Squeezed states of electromagnetic radiation have quantum fluctuations below those of the vacuum field. They offer a unique resource for quantum information systems and precision metrology, including gravitational wave detectors, which require unprecedented sensitivity. Since the first experiments on this non-classical form of light, quantum analysis has been based on homodyning techniques and photon correlation measurements. These methods currently function in the visible to near-infrared and microwave spectral ranges. They require a well-defined carrier frequency, and photons contained in a quantum state need to be absorbed or amplified. Quantum non-demolition experiments may be performed to avoid the influence of a measurement in one quadrature, but this procedure comes at the expense of increased uncertainty in another quadrature. Here we generate mid-infrared time-locked patterns of squeezed vacuum noise. After propagation through free space, the quantum fluctuations of the electric field are studied in the time domain using electro-optic sampling with few-femtosecond laser pulses. We directly compare the local noise amplitude to that of bare (that is, unperturbed) vacuum. Our nonlinear approach operates off resonance and, unlike homodyning or photon correlation techniques, without absorption or amplification of the field that is investigated. We find subcycle intervals with noise levels that are substantially less than the amplitude of the vacuum field. As a consequence, there are enhanced fluctuations in adjacent time intervals, owing to Heisenberg's uncertainty principle, which indicate generation of highly correlated quantum radiation. Together with efforts in the far infrared, this work enables the study of elementary quantum dynamics of light and matter in an energy range at the boundary between vacuum and thermal background conditions.

  1. Improvement of an Atomic Clock using Squeezed Vacuum

    DEFF Research Database (Denmark)

    Kruse, I.; Lange, K; Peise, Jan

    2016-01-01

    Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case......, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0...

  2. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  3. Vacuum radiation induced by time dependent electric field

    Science.gov (United States)

    Zhang, Bo; Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian; Gu, Yu-qiu

    2017-04-01

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  4. Casimir switch: steering optical transparency with vacuum forces

    CERN Document Server

    Liu, X -f; Jing, H

    2016-01-01

    The Casimir force, originating from vacuum zero-point energy, is one of the most intriguing purely quantum effects. It has attracted renewed interests in current field of nanomechanics, due to the rapid size decrease of on-chip devices. Here we study the optomechanically-induced transparency (OMIT) with a tunable Casimir force. We find that the optical output rate can be significantly altered by the vacuum force, even terminated and then restored, indicating a highly-controlled optical switch. Our result addresses the possibility of designing exotic optical nano-devices by harnessing the power of vacuum.

  5. Rainbow correlation imaging with macroscopic twin beam

    Science.gov (United States)

    Allevi, Alessia; Bondani, Maria

    2017-06-01

    We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.

  6. Fingerprint Feature Extraction Based on Macroscopic Curvature

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiong; He Gui-ming; Zhang Yun

    2003-01-01

    In the Automatic Fingerprint Identification System (AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characteristic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.

  7. Fingerprint Feature Extraction Based on Macroscopic Curvature

    Institute of Scientific and Technical Information of China (English)

    Zhang; Xiong; He; Gui-Ming; 等

    2003-01-01

    In the Automatic Fingerprint Identification System(AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characterstic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.

  8. Macroscopic fluctuations theory of aerogel dynamics

    CERN Document Server

    Lefevere, Raphael; Zambotti, Lorenzo

    2010-01-01

    We consider extensive deterministic dynamics made of $N$ particles modeling aerogels under a macroscopic fluctuation theory description. By using a stochastic model describing those dynamics after a diffusive rescaling, we show that the functional giving the exponential decay in $N$ of the probability of observing a given energy and current profile is not strictly convex as a function of the current. This behaviour is caused by the fact that the energy current is carried by particles which may have arbitrary low speed with sufficiently large probability.

  9. Emergent physics on Mach's principle and the rotating vacuum

    CERN Document Server

    Jannes, G

    2015-01-01

    Mach's principle applied to rotation can be correct if one takes into account the rotation of the quantum vacuum together with the Universe. Whether one can detect the rotation of the vacuum or not depends on its properties. If the vacuum is fully relativistic at all scales, Mach's principle should work and one cannot distinguish the rotation: in the rotating Universe+vacuum, the co-rotating bucket will have a flat surface (not concave). However, if there are "quantum gravity" effects which violate Lorentz invariance at high energy, then the rotation will become observable. This is demonstrated by analogy in condensed-matter systems, which consist of two subsystems: superfluid background (analog of vacuum) and "relativistic" excitations (analog of matter). For the low-energy (long-wavelength) observer the rotation of the vacuum is not observable. In the rotating frame, the "relativistic" quasiparticles feel the background as a Minkowski vacuum, i.e. they do not feel the rotation. Mach's idea of the relativity...

  10. Vacuum mechatronics first international workshop

    Energy Technology Data Exchange (ETDEWEB)

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. (eds.) (California Univ., Santa Barbara, CA (USA))

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  11. Determinism beneath Quantum Mechanics

    CERN Document Server

    Hooft, G

    2002-01-01

    Contrary to common belief, it is not difficult to construct deterministic models where stochastic behavior is correctly described by quantum mechanical amplitudes, in precise accordance with the Copenhagen-Bohr-Bohm doctrine. What is difficult however is to obtain a Hamiltonian that is bounded from below, and whose ground state is a vacuum that exhibits complicated vacuum fluctuations, as in the real world. Beneath Quantum Mechanics, there may be a deterministic theory with (local) information loss. This may lead to a sufficiently complex vacuum state, and to an apparent non-locality in the relation between the deterministic ("ontological") states and the quantum states, of the kind needed to explain away the Bell inequalities. Theories of this kind would not only be appealing from a philosophical point of view, but may also be essential for understanding causality at Planckian distance scales.

  12. Quantum Dissipative Systems

    CERN Document Server

    Weiss, Ulrich

    2008-01-01

    Major advances in the quantum theory of macroscopic systems, in combination with stunning experimental achievements, have brightened the field and brought it to the attention of the general community in natural sciences. Today, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 as an enlarged second edition - delves much deeper than ever before into the fundamental concepts, methods, and applications of quantum dissipative systems, including the most recent developments. In this third edi

  13. Spin models as microfoundation of macroscopic market models

    Science.gov (United States)

    Krause, Sebastian M.; Bornholdt, Stefan

    2013-09-01

    Macroscopic price evolution models are commonly used for investment strategies. There are first promising achievements in defining microscopic agent based models for the same purpose. Microscopic models allow a deeper understanding of mechanisms in the market than the purely phenomenological macroscopic models, and thus bear the chance for better models for market regulation. However microscopic models and macroscopic models are commonly studied separately. Here, we exemplify a unified view of a microscopic and a macroscopic market model in a case study, deducing a macroscopic Langevin equation from a microscopic spin market model closely related to the Ising model. The interplay of the microscopic and the macroscopic view allows for a better understanding and adjustment of the microscopic model, as well, and may guide the construction of agent based market models as basis of macroscopic models.

  14. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  15. Cosmology of gravitational vacuum

    CERN Document Server

    Burdyuzha, V; Pacheco, J

    2008-01-01

    Production of gravitational vacuum defects and their contribution to the energy density of our Universe are discussed. These topological microstructures (defects) could be produced in the result of creation of the Universe from "nothing" when a gravitational vacuum condensate has appeared. They must be isotropically distributed over the isotropic expanding Universe. After Universe inflation these microdefects are smoothed, stretched and broken up. A part of them could survive and now they are perceived as the structures of Lambda-term and an unclustered dark matter. It is shown that the parametrization noninvariance of the Wheeler-De Witt equation can be used to describe phenomenologically vacuum topological defects of different dimensions (worm-holes, micromembranes, microstrings and monopoles). The mathematical illustration of these processes may be the spontaneous breaking of the local Lorentz-invariance of the quasi-classical equations of gravity. Probably the gravitational vacuum condensate has fixed tim...

  16. Handbook of vacuum technology

    CERN Document Server

    2016-01-01

    This comprehensive, standard work has been updated to remain an important resource for all those needing detailed knowledge of the theory and applications of vacuum technology. With many numerical examples and illustrations to visualize the theoretical issues.

  17. Vacuum Camera Cooler

    Science.gov (United States)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  18. ISR Intersection Vacuum Chamber

    CERN Multimedia

    1975-01-01

    This special vacuum chamber presenting a lateral opening at the beam crossing point is one of the many chambers specifically designed for a particular experiment. Here it is shown during assembly at the ISR mechanical worshop.

  19. Synchronization of interacting quantum dipoles

    Science.gov (United States)

    Zhu, B.; Schachenmayer, J.; Xu, M.; Herrera, F.; Restrepo, J. G.; Holland, M. J.; Rey, A. M.

    2015-08-01

    Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases in the presence of nonlinear coupling. Here we investigate the corresponding phenomenon with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that by incoherently driving dense packed arrays of strongly interacting dipoles, the dipoles can overcome the decoherence induced by quantum fluctuations and inhomogeneous coupling and reach a synchronized steady-state characterized by a macroscopic phase coherence. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quantum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.

  20. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-04-01

    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.

  1. Power vacuum tubes handbook

    CERN Document Server

    Whitaker, Jerry

    2012-01-01

    Providing examples of applications, Power Vacuum Tubes Handbook, Third Edition examines the underlying technology of each type of power vacuum tube device in common use today. The author presents basic principles, reports on new development efforts, and discusses implementation and maintenance considerations. Supporting mathematical equations and extensive technical illustrations and schematic diagrams help readers understand the material. Translate Principles into Specific Applications This one-stop reference is a hands-on guide for engineering personnel involved in the design, specification,

  2. Plane density of induced vacuum charge in a supercritical Coulomb potential

    CERN Document Server

    Khalilov, V R

    2016-01-01

    An expression for the density of a planar induced vacuum charge is obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in this potential. Induced vacuum charge density is calculated and analyzed at the subcritical and supercritical Coulomb potentials for massless and massive fermions. The behavior of the obtained vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. We calculate the real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in the supercritical Coulomb potential due to the so-called real vacuum polarization. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supe...

  3. MACROSCOPIC STRAIN POTENTIALS IN NONLINEAR POROUS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    刘熠; 黄筑平

    2003-01-01

    By taking a hollow sphere as a representative volume element (RVE), the macroscopic strain potentials of porous materials with power-law incompressible matrix are studied in this paper.According to the principles of the minimum potential energy in nonlinear elasticity and the variational procedure, static admissible stress fields and kinematic admissible displacement fields are constructed,and hence the upper and the lower bounds of the macroscopic strain potential are obtained. The bounds given in the present paper differ so slightly that they both provide perfect approximations of the exact strain potential of the studied porous materials. It is also found that the upper bound proposed by previous authors is much higher than the present one, and the lower bounds given by Cocks is much lower. Moreover, the present calculation is also compared with the variational lower bound of Ponte Castafneda for statistically isotropic porous materials. Finally, the validity of the hollow spherical RVE for the studied nonlinear porous material is discussed by the difference between the present numerical results and the Cocks bound.

  4. Macroscopic theory for capillary-pressure hysteresis.

    Science.gov (United States)

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-03

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.

  5. [Use the hyaluronic acid according to the concept Face Recurve: vacuum technical and interpores technical].

    Science.gov (United States)

    Le Louarn, C

    2008-06-01

    Two new applications of the Face Recurve concept to hyaluronic acid injections are: --the vacuum technique, for deep and for retro muscular injections, which is performed to avoid diffusion and increase precision; --the interpore technique for superficial injections, which is performed in the epidermis to macroscopically erase the interpore wrinkle and to decrease the pore diameter.

  6. Neoclassical theory of electromagnetic interactions a single theory for macroscopic and microscopic scales

    CERN Document Server

    Babin, Anatoli

    2016-01-01

    In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell–Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much lar...

  7. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  8. Zero time tunneling: macroscopic experiments with virtual particles

    Directory of Open Access Journals (Sweden)

    Nimtz Günter

    2015-01-01

    Full Text Available Feynman introduced virtual particles in his diagrams as intermediate states of an interaction process. They represent necessary intermediate states between observable real states. Such virtual particles were introduced to describe the interaction process between an electron and a positron and for much more complicated interaction processes. Other candidates for virtual particles are evanescent modes in optics and in elastic fields. Evanescent modes have a purely imaginary wave number, they represent the mathematical analogy of the tunneling solutions of the Schrödinger equation. Evanescent modes exist in the forbidden frequency bands of a photonic lattice and in undersized wave guides, for instance. The most prominent example for the occurrence of evanescent modes is the frustrated total internal reflection (FTIR at double prisms. Evanescent modes and tunneling lie outside the bounds of the special theory of relativity. They can cause faster than light (FTL signal velocities. We present examples of the quantum mechanical behavior of evanescent photons and phonons at a macroscopic scale. The evanescent modes of photons are described by virtual particles as predicted by former QED calculations.

  9. The experimental failure of macroscopic determinism: the case of an electrocardiogram

    CERN Document Server

    Lapiedra, Ramon

    2010-01-01

    Even if never elucidated, the question of determinism is a standing question along the history of human thinking. A physical system evolves in a deterministic way if its future is completely determined once we have fixed some present characteristics of it, i.e., its initial conditions. The problem addressed in the present paper is to test determinism in the macroscopic domain. By imposing a very plausible ``separability'' assumption, we prove that determinism enters in contradiction with the recorded outcomes of a given electrocardiogram. The interest of this result comes from the fact such a basic idea as determinism has never been experimentally tested up to now in the macroscopic domain, and as far as we know not even in the quantum domain.

  10. Calibrating System for Vacuum Gauges

    Institute of Scientific and Technical Information of China (English)

    MengJun; YangXiaotian; HaoBinggan; HouShengjun; HuZhenjun

    2003-01-01

    In order to measure the vacuum degree, a lot of vacuum gauges will be used in CSR vacuum system. We bought several types of vacuum gauges. We know that different typos of vacuum gauges or even one type of vacuum gauges have different measure results in same condition, so they must be calibrated. But it seems impossible for us to send so many gauges to the calibrating station outside because of the high price. So the best choice is to build a second class calibrating station for vacuum gauges by ourselves (Fig.l).

  11. Thermodynamical aspects of running vacuum models

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.A.S. [Universidade de Sao Paulo, Departamento de Astronomia, Sao Paulo (Brazil); Basilakos, Spyros [Academy of Athens, Research Center for Astronomy and Applied Mathematics, Athens (Greece); Sola, Joan [Univ. de Barcelona, High Energy Physics Group, Dept. d' Estructura i Constituents de la Materia, Institut de Ciencies del Cosmos (ICC), Barcelona, Catalonia (Spain)

    2016-04-15

    The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is Λ(H) ∝ H{sup n+2}, is discussed in detail. Specifically, by assuming that the ultrarelativistic particles produced by the vacuum decay emerge into space-time in such a way that its energy density ρ{sub r} ∝ T{sup 4}, the temperature evolution law and the increasing entropy function are analytically calculated. For the whole class of vacuum models explored here we find that the primeval value of the comoving radiation entropy density (associated to effectively massless particles) starts from zero and evolves extremely fast until reaching a maximum near the end of the vacuum decay phase, where it saturates. The late-time conservation of the radiation entropy during the adiabatic FRW phase also guarantees that the whole class of running vacuum models predicts the same correct value of the present day entropy, S{sub 0} ∝ 10{sup 87}-10{sup 88} (in natural units), independently of the initial conditions. In addition, by assuming Gibbons¨CHawking temperature as an initial condition, we find that the ratio between the late-time and primordial vacuum energy densities is in agreement with naive estimates from quantum field theory, namely, ρ{sub Λ0}/ρ{sub ΛI} 10{sup -123}. Such results are independent on the power n and suggests that the observed Universe may evolve smoothly between two extreme, unstable, non-singular de Sitter phases. (orig.)

  12. LER Vacuum Studies

    Energy Technology Data Exchange (ETDEWEB)

    Matter, Regina S.

    2000-06-27

    During the Summer of 1999 the vacuum in LER was studied in order to answer a few questions: (1) how fast is the vacuum system cleaning; (2) when will the required operating pressure 10 nTorr be reached; (3) how fast do the TSP's saturate; and (4) what is the present average pressure in LER and what is the corresponding beam lifetime? Once {Delta}P/I, the coefficient relating the pressure to beam current and the base pressure is calculated, it is easy to find the time constants associated with the cleaning of the vacuum system and the saturation of the TSP's. In addition, these calculations showed that vertical steering of the LER orbit affects the vacuum and that leaks cause the TSP's to saturate. It is difficult to calculate the average pressure in the ring because most of the ion pumps in the straight sections do not read pressure accurately. Secondly, how do you calculate the conductance between the chamber and the anti-chamber? Thirdly, the gas load is unevenly distributed along the ring because of photon stops and leaks. However, the average vacuum pressure seen by the beam in the arcs is roughly three times higher than the pressure measured at the ion pumps, according to Artem Kulikov. Instead of calculating the average pressure in the ring, the author has calculated the coefficient relating the inverse beam lifetime to the beam current to see the long term improvement of the LER beam lifetime as the vacuum system is scrubbed. These calculations showed that the lifetime, including the low intensity lifetime, is limited by the vacuum pressure. The results reported here are obtained from numerical calculations.

  13. Colour particle states behaviour in the QCD vacuum

    Directory of Open Access Journals (Sweden)

    Kuvshinov V.I.

    2016-01-01

    The behaviour of squeezed and entangled quantum states, the interaction of colour superpositions and multiparticle states with stochastic QCD vacuum is described. It is shown that it leads to a fully mixed quantum state with equal probabilities for different colours. Decoherence rate is found to be proportional to the product of the distance between colour charges and the time during which this interaction has taken place. I.e. such an interaction seems to lead naturally to confinement of quarks.

  14. Quantum Plasmas An Hydrodynamic Approach

    CERN Document Server

    Haas, Fernando

    2011-01-01

    This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of...

  15. Micro- and macroscopic simulation of periodic metamaterials

    Directory of Open Access Journals (Sweden)

    R. Schuhmann

    2008-05-01

    Full Text Available In order to characterize three-dimensional, left-handed metamaterials (LHM we use electromagnetic field simulations of unit cells. For waves traveling in one of the main directions of the periodic LHM-arrays, the analysis is concentrated on the calculation of global quantities of the unit cells, such as scattering parameters or dispersion diagrams, and a careful interpretation of the results. We show that the concept of equivalent material values – which may be negative in a narrow frequency range – can be validated by large "global" simulations of a wedge structure. We also discuss the limitations of this concept, since in some cases the macroscopic behavior of an LHM cannot be accurately described by equivalent material values.

  16. Microscopic versus macroscopic calculation of dielectric nanospheres

    Science.gov (United States)

    Kühn, M.; Kliem, H.

    2008-12-01

    The issue of nanodielectrics has recently become an important field of interest. The term describes nanometric dielectrics, i. e. dielectric materials with structural dimensions typically smaller than 100 run. In contrast to the behaviour of a bulk material the nanodielectrics can behave completely different. With shrinking dimensions the surface or rather boundary effects outweigh the volume effects. This leads to a different observable physics at the nanoscale. A crucial point is the question whether a continuum model for the calculation of dielectric properties is still applicable for these nanomaterials. In order to answer this question we simulated dielectric nanospheres with a microscopic local field method and compared the results to the macroscopic mean field theory.

  17. Partitioning a macroscopic system into independent subsystems

    Science.gov (United States)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  18. Taming macroscopic jamming in transportation networks

    CERN Document Server

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-01-01

    In transportation networks, a spontaneous jamming transition is often observed, e.g in urban road networks and airport networks. Because of this instability, flow distribution is significantly imbalanced on a macroscopic level. To mitigate the congestion, we consider a simple control method, in which congested nodes are closed temporarily, and investigate how it influences the overall system. Depending on the timing of the node closure and opening, and congestion level of a network, the system displays three different phases: free-flow phase, controlled phase, and deadlock phase. We show that when the system is in the controlled phase, the average flow is significantly improved, whereas when in the deadlock phase, the flow drops to zero. We study how the control method increases the network flow and obtain their transition boundary analytically.

  19. Variability of macroscopic dimensions of Moso bamboo.

    Science.gov (United States)

    Cui, Le; Peng, Wanxi; Sun, Zhengjun; Sun, Zhengjun; Sun, Zhengjun; Lu, Huangfei; Chen, Guoning

    2015-03-01

    In order to the macroscopic geometry distributions of vascular bundles in Moso bamboo tubes. The circumference of bamboo tubes was measured, used a simple quadratic diameter formula to analyze the differences between the tubes in bamboo culm, and the arrangement of vascular bundles was investigated by cross sectional images of bamboo tubes. The results shown that the vascular bundles were differently distributed in a bamboo tube. In the outer layer, the vascular bundles had a variety of shapes, and were aligned parallel to each other. In the inner layers, the vascular bundles weren't aligned but uniform in shape. It was concluded that the vascular bundle sections arranged in parallel should be separated from the non-parallel sections for the maximum bamboo utilization.

  20. Robust macroscopic entanglement without complex encodings

    CERN Document Server

    Chaves, Rafael; Acín, Antonio

    2011-01-01

    One of the main challenges for the experimental manipulation and storage of macroscopic entanglement is its fragility under noise. We present a simple recipe for the systematic enhancement of the resistance of multipartite entanglement against any local noise with a privileged direction in the Bloch sphere. For the case of exact local dephasing along any given basis, and for all noise strengths, our prescription grants full robustness: even states whose entanglement decays exponentially with the number of parts are mapped to states whose entanglement is constant. In contrast to previous techniques resorting to complex logical-qubit encodings, such enhancement is attained simply by performing local unitary rotations before the noise acts. The scheme is therefore highly experimentally-friendly, as it brings no overhead of extra physical qubits to encode logical ones. In addition, we show that, apart from entanglement, the resilience of the states as resources for useful practical tasks such as metrology and non...

  1. Determining the Macroscopic Properties of Relativistic Jets

    Science.gov (United States)

    Hardee, P. E.

    2004-08-01

    The resolved relativistic jets contain structures whose observed proper motions are typically assumed to indicate the jet flow speed. In addition to structures moving with the flow, various normal mode structures such as pinching or helical and elliptical twisting can be produced by ejection events or twisting perturbations to the jet flow. The normal mode structures associated with relativistic jets, as revealed by numerical simulation, theoretical calculation, and suggested by observation, move more slowly than the jet speed. The pattern speed is related to the jet speed by the sound speed in the jet and in the surrounding medium. In the event that normal mode structures are observed, and where proper motions of pattern and flow speed are available or can be estimated, it is possible to determine the sound speed in the jet and surrounding medium. Where spatial development of normal mode structures is observed, it is possible to make inferences as to the heating rate/macroscopic viscosity of the jet fluid. Ultimately it may prove possible to separate the microscopic energization of the synchrotron radiating particles from the macroscopic heating of the jet fluid. Here I present the relevant properties of useful normal mode structures and illustrate the use of this technique. Various aspects of the work presented here have involved collaboration with I. Agudo (Max-Planck, Bonn), M.A. Aloy (Max-Planck, Garching), J. Eilek (NM Tech), J.L. Gómez (U. Valencia), P. Hughes (U. Michigan), A. Lobanov (Max-Planck, Bonn), J.M. Martí (U. Valencia), & C. Walker (NRAO).

  2. Heavy-quark QCD vacuum polarisation function. Analytical results at four loops

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A.; Kotikov, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2006-07-15

    The first two moments of the heavy-quark vacuum polarisation function at four loops in quantum chromo-dynamics are found in fully analytical form by evaluating the missing massive four-loop tadpole master integrals. (orig.)

  3. Quantum physics meets biology

    CERN Document Server

    Arndt, Markus; Vedral, Vlatko

    2009-01-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences, entanglement and other non-classical effects, has been heading towards systems of increasing complexity. The present perspective article shall serve as a pedestrian guide to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future quantum biology, its current status, recent experimental progress and also the restrictions that nature imposes on bold extrapolat...

  4. Acetylene Vacuum Carburizing

    Institute of Scientific and Technical Information of China (English)

    Hitoshi Iwata

    2004-01-01

    Almost 30 years has passed since the publication of materials on vacuum carburizing technology, and is attracting a great deal of attention as a technology capable of being used as a substitute for gas carburizing technology.However, the technology was not popular except in specific fields. The main reason for this is due to a variety of harmful influences accompanying the sooting problems caused by CH4 or C3H8. We have succeeded in that the occurrence of sooting was suppressed by utilizing acetylene, at extremely low pressure for carburizing (below 1 kPa). This process is now showing the excellent quality and prospects for this technology in terms of quality, economy and safety. At present almost 70 practical mass production furnaces are used in production lines, in Japan and abroad. At this time, we will report summary of the present acetylene vacuum carbufizing process and the actual results obtained by these acetylene vacuum carbufizing furnaces for mass production.

  5. Quantum radiation produced by the entanglement of quantum fields

    CERN Document Server

    Iso, Satoshi; Tatsukawa, Rumi; Yamamoto, Kazuhiro; Zhang, Sen

    2016-01-01

    We investigate the quantum radiation produced by an Unruh-De Witt detector in a uniformly accelerating motion coupled to the vacuum fluctuations. Quantum radiation is nonvanishing, which is consistent with the previous calculation by Lin and Hu [Phys. Rev. D 73, 124018 (2006)]. We infer that this quantum radiation from the Unruh-De Witt detector is generated by the nonlocal correlation of the Minkowski vacuum state, which has its origin in the entanglement of the state between the left and the right Rindler wedges.

  6. The Variation of Photon Speed with Photon Frequency in Quantum Gravity

    CERN Document Server

    Dubey, Anuj Kumar; Nath, Sonarekha

    2016-01-01

    Einstein's special relativity is Lorentz invariance; the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon frequency. There is a fundamental scale the Planck scale, at which quantum effects are expected to strongly affect the nature of space-time. The commonly used ideas of space-time should break down at or before the Planck length is reached. It is then natural to question the exactness of the Lorentz invariance that is pervasive in all macroscopic theories. Quantum gravity effect could be seen from the dispersion relations violating Lorentz invariance, because the motivation for the Lorentz invariance violation is quantum gravity. Then it is expected that the energy-momentum dispersion relation could be modified to include the dependence on the ratio of the particle's energy and the quantum gravity energy. In the present work, we have derived an expression of Planck mass or Planck energy by equating the Compton wavelength with Kerr gravitational radius of...

  7. Teleportation of a two-particle four-component squeezed vacuum state by linear optical elements

    Institute of Scientific and Technical Information of China (English)

    Huina Chen; Jinming Liu

    2009-01-01

    We present a linear optical scheme for achieving a unity fidelity teleportation of a two-particle four component squeezed vacuum state using two entangled squeezed vacuum states as quantum channel.The devices used are beam splitters and ideal photon detectors capable of distinguishing between odd and even photon numbers.Moreover,we also obtain the success probability of the teleportation scheme.

  8. Birth of the Universe as anti-tunnelling from the string perturbative vacuum

    CERN Document Server

    Gasperini, M

    2001-01-01

    The decay of the string perturbative vacuum, if triggered by a suitable,duality-breaking dilaton potential, can efficiently proceed via the parametricamplification of the Wheeler-De Witt wave function in superspace, and canappropriately describe the birth of our Universe as a quantum process of pairproduction from the vacuum.

  9. Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields

    CERN Document Server

    Gravejat, Philippe; Lewin, Mathieu; Séré, Eric

    2012-01-01

    Using the Pauli-Villars regularization and arguments from convex analysis, we construct the polarized Dirac vacuum, in the presence of small external electromagnetic fields. We describe the electrons by a Hartree-Fock-type theory and the photons by a self-consistent classical magnetic potential. The resulting vacuum polarization coincides on first order with that of full Quantum Electrodynamics.

  10. Renormalised fermion vacuum expectation values on anti-de Sitter space–time

    Energy Technology Data Exchange (ETDEWEB)

    Ambruș, Victor E., E-mail: Victor.Ambrus@gmail.com [Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, Timișoara 300223 (Romania); Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk [Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-10-07

    The Schwinger–de Witt and Hadamard methods are used to obtain renormalised vacuum expectation values for the fermion condensate, charge current and stress-energy tensor of a quantum fermion field of arbitrary mass on four-dimensional anti-de Sitter space–time. The quantum field is in the global anti-de Sitter vacuum state. The results are compared with those obtained using the Pauli–Villars and zeta-function regularisation methods, respectively.

  11. Renormalised fermion vacuum expectation values on anti-de Sitter space–time

    Directory of Open Access Journals (Sweden)

    Victor E. Ambruș

    2015-10-01

    Full Text Available The Schwinger–de Witt and Hadamard methods are used to obtain renormalised vacuum expectation values for the fermion condensate, charge current and stress-energy tensor of a quantum fermion field of arbitrary mass on four-dimensional anti-de Sitter space–time. The quantum field is in the global anti-de Sitter vacuum state. The results are compared with those obtained using the Pauli–Villars and zeta-function regularisation methods, respectively.

  12. Quantum-to-classical transition in cavity quantum electrodynamics.

    Science.gov (United States)

    Fink, J M; Steffen, L; Studer, P; Bishop, Lev S; Baur, M; Bianchetti, R; Bozyigit, D; Lang, C; Filipp, S; Leek, P J; Wallraff, A

    2010-10-15

    The quantum properties of electromagnetic, mechanical or other harmonic oscillators can be revealed by investigating their strong coherent coupling to a single quantum two level system in an approach known as cavity quantum electrodynamics (QED). At temperatures much lower than the characteristic energy level spacing the observation of vacuum Rabi oscillations or mode splittings with one or a few quanta asserts the quantum nature of the oscillator. Here, we study how the classical response of a cavity QED system emerges from the quantum one when its thermal occupation-or effective temperature-is raised gradually over 5 orders of magnitude. In this way we explore in detail the continuous quantum-to-classical crossover and demonstrate how to extract effective cavity field temperatures from both spectroscopic and time-resolved vacuum Rabi measurements.

  13. Handbook of vacuum physics

    CERN Document Server

    1964-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is a handbook of vacuum physics, with emphasis on the properties of miscellaneous materials such as mica, oils, greases, waxes, and rubber. Accurate modern tables of physical constants, properties of materials, laboratory techniques, and properties of commercial pumps, gauges, and leak detectors are presented. This volume is comprised of 12 chapters and begins with a discussion on pump oils, divided into rotary pump oils and vapor pump oils. The next chapter deals with the properties and applications of greases, including outgassing and vapor pr

  14. Baryogenesis in false vacuum

    CERN Document Server

    Hamada, Yuta

    2016-01-01

    The null result in the LHC may indicate that the standard model is not drastically modified up to very high scale such as the GUT/string scale. Having this in the mind, we suggest a novel leptogenesis scenario realized in the false vacuum of the Higgs field. If the Higgs field develops the large vacuum expectation value in the early universe, the lepton number violating process is enhanced, which we use for baryogenesis. To demonstrate the scenario, several models are discussed. For example, we show that the observed baryon asymmetry is successfully generated in the standard model with a second Higgs doublet and a singlet scalar.

  15. New Vacuum Solar Telescope

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With its pure aperture up to 985mm, the New Vacuum Solar Telescope of China (NVST) has become the world's biggest vacuum solar telescope. The main science task of NVST is the high-resolution observation of photosphere and chromosphere including their fine structure of magnetic field on the sun. The NVST was equipped with many new technologies and powerful instruments, such as an adaptive optical system, a polarization analyzer, two vertical spectrographs, a high-resolution image system and a very narrow Ha filter (0.125A).

  16. Superoleophobicity under vacuum

    Science.gov (United States)

    Liu, Xinjie; Wang, Xiaolong; Liang, Yongmin; Bell, Steven E. J.; Liu, Weimin; Zhou, Feng

    2011-05-01

    By using superoleophobic alumina and low vapor pressure oils we have been able to study wetting behavior at high vacuum. Here, we show that a superoleophobic state can exist for some probe liquids, even under high vacuum. However, with other liquids the surfaces are only superoloephobic because air is trapped beneath the droplet and the contact angle decreases dramatically (150°-120°) if this air is removed. These observations open up the possibility of designing materials which fully exploit the potential of physically trapped air to achieve extreme oleophobicity and/or hydrophobicity.

  17. Vacuum stability of asymptotically safe gauge-Yukawa theories

    DEFF Research Database (Denmark)

    Litim, Daniel F.; Mojaza, Matin; Sannino, Francesco

    2016-01-01

    We study the phase diagram and the stability of the ground state for certain four-dimensional gauge-Yukawa theories whose high-energy behaviour is controlled by an interacting fixed point. We also provide analytical and numerical results for running couplings, their crossover scales, the separatrix......, and the Coleman-Weinberg effective potential. Classical and quantum stability of the vacuum is established....

  18. Frenet-Serret vacuum radiation, detection proposals and related topics

    CERN Document Server

    Rosu, H C

    2003-01-01

    The paradigmatic Unruh radiation is an ideal and simple case of stationary vacuum radiation patterns related to worldlines defined as Frenet-Serret curves. We review the corresponding body of literature as well as the experimental proposals that have been suggested to detect these types of quantum field radiation patterns. Finally, we comment on a few other topics related to the Unruh effect

  19. Vacuum stability of asymptotically safe gauge-Yukawa theories

    CERN Document Server

    Litim, Daniel F; Sannino, Francesco

    2016-01-01

    We study the phase diagram and the stability of the ground state for certain four-dimensional gauge-Yukawa theories whose high-energy behaviour is controlled by an interacting fixed point. We also provide analytical and numerical results for running couplings, their crossover scales, the separatrix, and the Coleman-Weinberg effective potential. Classical and quantum stability of the vacuum is established.

  20. On Quantum Contributions to Black Hole Growth

    NARCIS (Netherlands)

    Spaans, M.

    2013-01-01

    The effects of Wheeler’s quantum foam on black hole growth are explored from an astrophysical per- spective. Quantum fluctuations in the form of mini (10−5 g) black holes can couple to macroscopic black holes and allow the latter to grow exponentially in mass on a time scale of 109 years.

  1. On Quantum Contributions to Black Hole Growth

    NARCIS (Netherlands)

    Spaans, M.

    2013-01-01

    The effects of Wheeler’s quantum foam on black hole growth are explored from an astrophysical per- spective. Quantum fluctuations in the form of mini (10−5 g) black holes can couple to macroscopic black holes and allow the latter to grow exponentially in mass on a time scale of 109 years. Consequent

  2. Relaxation of vacuum energy in q-theory

    CERN Document Server

    Klinkhamer, F R; Volovik, G E

    2016-01-01

    The $q$-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially-flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend $q$-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions.

  3. Sonoluminescence as a QED vacuum effect; 1, The Physical Scenario

    CERN Document Server

    Liberati, S; Belgiorno, F; Sciama, Dennis William; Liberati, Stefano; Visser, Matt; Belgiorno, Francesco; Sciama, Dennis

    2000-01-01

    Several years ago Schwinger proposed a physical mechanism for sonoluminescence in terms of changes in the properties of the quantum-electrodynamic (QED) vacuum state. This mechanism is most often phrased in terms of changes in the Casimir Energy: changes in the distribution of zero-point energies and has recently been the subject of considerable controversy. The present paper further develops this quantum-vacuum approach to sonoluminescence: We calculate Bogolubov coefficients relating the QED vacuum states in the presence of a homogeneous medium of changing dielectric constant. In this way we derive an estimate for the spectrum, number of photons, and total energy emitted. We emphasize the importance of rapid spatio-temporal changes in refractive indices, and the delicate sensitivity of the emitted radiation to the precise dependence of the refractive index as a function of wavenumber, pressure, temperature, and noble gas admixture. Although the physics of the dynamical Casimir effect is a universal phenomen...

  4. The many-nucleon theory of nuclear collective structure and its macroscopic limits: an algebraic perspective

    Science.gov (United States)

    Rowe, D. J.; McCoy, A. E.; Caprio, M. A.

    2016-03-01

    The nuclear collective models introduced by Bohr, Mottelson and Rainwater, together with the Mayer-Jensen shell model, have provided the central framework for the development of nuclear physics. This paper reviews the microscopic evolution of the collective models and their underlying foundations. In particular, it is shown that the Bohr-Mottelson models have expressions as macroscopic limits of microscopic models that have precisely defined expressions in many-nucleon quantum mechanics. Understanding collective models in this way is especially useful because it enables the analysis of nuclear properties in terms of them to be revisited and reassessed in the light of their microscopic foundations.

  5. Aharonov-Casher-effect suppression of macroscopic tunneling of magnetic flux.

    Science.gov (United States)

    Friedman, Jonathan R; Averin, D V

    2002-02-04

    We suggest a system in which the amplitude of macroscopic flux tunneling can be modulated via the Aharonov-Casher effect. The system is an rf SQUID with the Josephson junction replaced by a Bloch transistor--two junctions separated by a small superconducting island on which the charge can be induced by an external gate voltage. When the Josephson coupling energies of the junctions are equal and the induced charge is q = e, destructive interference between tunneling paths brings the flux tunneling rate to zero. The device may also be useful as a qubit for quantum computation.

  6. Macroscopic Greenberg-Horne-Zeilinger state and W state in charge qubits based on Coulomb blockade

    Science.gov (United States)

    Liang, L. M.; Wang, X. B.

    2010-03-01

    Based on Coulomb blockade, we propose a scheme to generate two types of three-qubit entanglement, known as Greenberg-Horne-Zeilinger (GHZ) state and W state, in a macroscopic quantum system. The qubit is encoded in the charge qubit in the superconducting system, and the scheme can be generalized to generate the GHZ state and W state in multi-partite charge qubits. The GHZ state and W state are the eigenstates of the respective idle Hamiltonian, so they have the long lifetime.

  7. Technology handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is part of a series of publications that presents articles featuring the whole spectrum of vacuum physics. This particular volume presents materials that deal with technology concerns in vacuum mechanics. The first material talks about the utilization of ceramic materials in the construction of vacuum devices. The next paper details the application of vacuum physics in soldering and brazing process. The last article deals with the utilization of vacuum technology in high frequency heating. The book will be of great use to professionals involved

  8. Continuous-variable quantum identity authentication based on quantum teleportation

    Science.gov (United States)

    Ma, Hongxin; Huang, Peng; Bao, Wansu; Zeng, Guihua

    2016-06-01

    A continuous-variable quantum identity authentication protocol, which is based on quantum teleportation, is presented by employing two-mode squeezed vacuum state and coherent state. The proposed protocol can verify user's identity efficiently with a new defined fidelity parameter. Update of authentication key can also be implemented in our protocol. Moreover, the analysis shows its feasibility and security under the general Gaussian-cloner attack on authentication key, which is guaranteed by quantum entanglement, insertion of decoy state and random displacement.

  9. Geneva University - Superconducting flux quantum bits: fabricated quantum objects

    CERN Multimedia

    2007-01-01

    Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Lundi 29 janvier 2007 COLLOQUE DE LA SECTION DE PHYSIQUE 17 heures - Auditoire Stueckelberg Superconducting flux quantum bits: fabricated quantum objects Prof. Hans Mooij / Kavli Institute of Nanoscience, Delft University of Technology The quantum conjugate variables of a superconductor are the charge or number of Cooper pairs, and the phase of the order parameter. In circuits that contain small Josephson junctions, these quantum properties can be brought forward. In Delft we study so-called flux qubits, superconducting rings that contain three small Josephson junctions. When a magnetic flux of half a flux quantum is applied to the loop, there are two states with opposite circulating current. For suitable junction parameters, a quantum superposition of those macroscopic states is possible. Transitions can be driven with resonant microwaves. These quantum ...

  10. ∞-∞: Vacuum energy and virtual black holes

    Science.gov (United States)

    Addazi, Andrea

    2016-10-01

    We discuss other contributions to the vacuum energy of quantum field theories and quantum gravity, which have not been considered in the literature. As is well known, the presence of virtual particles in vacuum provides the so famous and puzzling contributions to the vacuum energy. In fact, these mainly come from loop integrations over the four-momenta space. However, we argue that these also imply the presence of a mass density of virtual particles in every volume cell of space-time. The most important contribution comes from quantum gravity S2× S2 bubbles, corresponding to virtual black hole pairs. The presence of virtual masses could lead to another paradox: the space-time itself would have an intrinsic virtual mass density contribution leading to a disastrous contraction —as is known, no negative masses exist in general relativity. We dub this effect the cosmological problem of second type: if not other counter-terms existed, the vacuum energy would be inevitably destabilized by virtual-mass contributions. It would be conceivable that the cosmological problem of second type could solve the first one. Virtual masses renormalize the vacuum energy to an unpredicted parameter, as in the renormalization procedure of the Standard Model charges. In the limit of MPl→ ∞ (Pauli-Villars limit), virtual black holes have a mass density providing an infinite counter-term to the vacuum energy divergent contribution MPl → ∞ (assuming MUV=MPl ). Therefore, in the same Schwinger-Feynman-Tomonaga attitude, the problem of a divergent vacuum energy could be analogous to the put-by-hand procedure used for Standard Model parameters.

  11. Structure and decay in the QED vacuum

    Science.gov (United States)

    Labun, Lance Andrew

    This thesis is a guide to a selection of the author's published work that connect and contribute to understanding the vacuum of quantum electrodynamics in strong, prescribed electromagnetic fields. This theme is elaborated over the course of two chapters: The first chapter sets the context, defining the relevant objects and conditions of the study and reviewing established knowledge upon which this study builds. The second chapter organizes and explains important results appearing in the published work. The papers 1. (Labun and Rafelski, 2009) "Vacuum Decay Time in Strong External Fields" 2. (Labun and Rafelski, 2010a) "Dark Energy Simulacrum in Nonlinear Electrodynamics" 3. (Labun and Rafelski, 2010b) "QED Energy-Momentum Trace as a Force in Astrophysics" 4. (Labun and Rafelski, 2010c) "Strong Field Physics: Probing Critical Acceleration and Inertia with Laser Pulses and Quark-Gluon Plasma" 5. (Labun and Rafelski, 2010d) "Vacuum Structure and Dark Energy" 6. (Labun and Rafelski, 2011) "Spectra of Particles from Laser-Induced Vacuum Decay" are presented in their published format as appendices. Related literature is cited throughout the body where it directly supports the content of this overview; more extensive references are found within the attached papers. This study begins with the first non-perturbative result in quantum electrodynamics, a result obtained by Heisenberg and Euler (1936) for the energy of a zero-particle state in a prescribed, long-wavelength electromagnetic field. The resulting Euler-Heisenberg effective potential generates a nonlinear theory of electromagnetism and exhibits the ability of the electrical fields to decay into electron-positron pairs. Context for phenomena arising from the Euler-Heisenberg effective potential is established by considering the energy-momentum tensor of a general nonlinear electromagnetic theory. The mass of a field configuration is defined, and I discuss two of its consequences pertinent to efforts to observe

  12. The vacuum strikes back

    CERN Multimedia

    2007-01-01

    "Modern physics has shown that the vacuum, previously thought of as a stated of total nothingness, is really a seething background of virtual particles springing in and out of eixstence until they can seize enough energy to materialize as "real" particles." (1,5 page)

  13. ISR vacuum system

    CERN Multimedia

    1971-01-01

    Some of the most important components of the vacuum system are shown. At the left, the rectangular box is a sputter-ion pump inside its bake-out oven. The assembly in the centre includes a sector valve, three roughing valves, a turbomolecular pump, a rotary backing pump and auxiliary equipment. At the right, the small elbow houses a Bayard-

  14. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  15. Vacuum-assisted delivery

    Science.gov (United States)

    ... a handle on the cup to move the baby through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ... delivers the baby's head, you will push the baby the rest of the way out. After delivery, you can hold your baby on your tummy ...

  16. ISR vacuum system

    CERN Multimedia

    1970-01-01

    A pressure of 5 x 10-11 Torr has been obtained repreatedly in this pilot section of the ISR vacuum system. The pilot section is 45 m long is pumped by 9 sputter-ion pumps pf 350 l/s pumping speed, and is baked out at 200 degrees C before each pump down.

  17. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  18. The vacuum in light-cone field theory

    CERN Document Server

    Robertson, D G

    1996-01-01

    This is an overview of the problem of the vacuum in light-cone field theory, stressing its close connection to other puzzles regarding light-cone quantization. I explain the sense in which the light-cone vacuum is ``trivial,'' and describe a way of setting up a quantum field theory on null planes so that it is equivalent to the usual equal-time formulation. This construction is quite helpful in resolving the puzzling aspects of the light-cone formalism. It furthermore allows the extraction of effective Hamiltonians that incorporate vacuum physics, but that act in a Hilbert space in which the vacuum state is simple. The discussion is fairly informal, and focuses mainly on the conceptual issues. [Talk presented at Orbis Scientiae 1996, Miami Beach, FL, January 25-28, 1996. To appear in the proceedings.

  19. Topics in vacuum decay (Ph.D Thesis)

    CERN Document Server

    Masoumi, Ali

    2015-01-01

    If a theory has more than one classically stable vacuum, quantum tunneling and thermal jumps make the transition between the vacua possible. The transition happens through a first order phase transition started by nucleation of a bubble of the new vacuum. The outward pressure of the truer vacuum makes the bubble expand and consequently eat away more of the old phase. In the presence of gravity this phenomenon gets more complicated and meanwhile more interesting. It can potentially have important cosmological consequences. Some aspects of this decay are studied in this thesis. Solutions with different symmetry than the generically used O(4) symmetry are studied and their actions calculated. Vacuum decay in a spatial vector field is studied and novel features like kinky domain walls are presented. The question of stability of vacua in a landscape of potentials is studied and the possible instability in large dimension of fields is shown. Finally a compactification of the Einstein-Maxwell theory is studied which...

  20. Vacuum energy sequestering and conformal symmetry

    Science.gov (United States)

    Ben-Dayan, Ido; Richter, Robert; Ruehle, Fabian; Westphal, Alexander

    2016-05-01

    In a series of recent papers Kaloper and Padilla proposed a mechanism to sequester standard model vacuum contributions to the cosmological constant. We study the consequences of embedding their proposal into a fully local quantum theory. In the original work, the bare cosmological constant Λ and a scaling parameter λ are introduced as global fields. We find that in the local case the resulting Lagrangian is that of a spontaneously broken conformal field theory where λ plays the role of the dilaton. A vanishing or a small cosmological constant is thus a consequence of the underlying conformal field theory structure.