WorldWideScience

Sample records for macrophages lipopolysaccharide lps

  1. DMPD: Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complexes: a short review. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1373512 Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complex....html) (.csml) Show Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complex...ride (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complexes: a short review. Authors Schuma

  2. Metformin Suppresses Lipopolysaccharide (LPS)-induced Inflammatory Response in Murine Macrophages via Activating Transcription Factor-3 (ATF-3) Induction*

    Science.gov (United States)

    Kim, Juyoung; Kwak, Hyun Jeong; Cha, Ji-Young; Jeong, Yun-Seung; Rhee, Sang Dahl; Kim, Kwang Rok; Cheon, Hyae Gyeong

    2014-01-01

    Metformin, a well known antidiabetic agent that improves peripheral insulin sensitivity, also elicits anti-inflammatory actions, but its mechanism is unclear. Here, we investigated the mechanism responsible for the anti-inflammatory effect of metformin action in lipopolysaccharide (LPS)-stimulated murine macrophages. Metformin inhibited LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a concentration-dependent manner and in parallel induction of activating transcription factor-3 (ATF-3), a transcription factor and member of the cAMP-responsive element-binding protein family. ATF-3 knockdown abolished the inhibitory effects of metformin on LPS-induced proinflammatory cytokine production accompanied with reversal of metformin-induced suppression of mitogen-activated protein kinase (MAPK) phosphorylation. Conversely, AMP-activated protein kinase (AMPK) phosphorylation and NF-κB suppression by metformin were unaffected by ATF-3 knockdown. ChIP-PCR analysis revealed that LPS-induced NF-κB enrichments on the promoters of IL-6 and TNF-α were replaced by ATF-3 upon metformin treatment. AMPK knockdown blunted all the effects of metformin (ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation), suggesting that AMPK activation by metformin is required for and precedes ATF-3 induction. Oral administration of metformin to either mice with LPS-induced endotoxemia or ob/ob mice lowered the plasma and tissue levels of TNF-α and IL-6 and increased ATF-3 expression in spleen and lungs. These results suggest that metformin exhibits anti-inflammatory action in macrophages at least in part via pathways involving AMPK activation and ATF-3 induction. PMID:24973221

  3. Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction.

    Science.gov (United States)

    Kim, Juyoung; Kwak, Hyun Jeong; Cha, Ji-Young; Jeong, Yun-Seung; Rhee, Sang Dahl; Kim, Kwang Rok; Cheon, Hyae Gyeong

    2014-08-15

    Metformin, a well known antidiabetic agent that improves peripheral insulin sensitivity, also elicits anti-inflammatory actions, but its mechanism is unclear. Here, we investigated the mechanism responsible for the anti-inflammatory effect of metformin action in lipopolysaccharide (LPS)-stimulated murine macrophages. Metformin inhibited LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a concentration-dependent manner and in parallel induction of activating transcription factor-3 (ATF-3), a transcription factor and member of the cAMP-responsive element-binding protein family. ATF-3 knockdown abolished the inhibitory effects of metformin on LPS-induced proinflammatory cytokine production accompanied with reversal of metformin-induced suppression of mitogen-activated protein kinase (MAPK) phosphorylation. Conversely, AMP-activated protein kinase (AMPK) phosphorylation and NF-κB suppression by metformin were unaffected by ATF-3 knockdown. ChIP-PCR analysis revealed that LPS-induced NF-κB enrichments on the promoters of IL-6 and TNF-α were replaced by ATF-3 upon metformin treatment. AMPK knockdown blunted all the effects of metformin (ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation), suggesting that AMPK activation by metformin is required for and precedes ATF-3 induction. Oral administration of metformin to either mice with LPS-induced endotoxemia or ob/ob mice lowered the plasma and tissue levels of TNF-α and IL-6 and increased ATF-3 expression in spleen and lungs. These results suggest that metformin exhibits anti-inflammatory action in macrophages at least in part via pathways involving AMPK activation and ATF-3 induction. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. The Anti-Inflammatory Effect of Algae-Derived Lipid Extracts on Lipopolysaccharide (LPS-Stimulated Human THP-1 Macrophages

    Directory of Open Access Journals (Sweden)

    Ruairi C. Robertson

    2015-08-01

    Full Text Available Algae contain a number of anti-inflammatory bioactive compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA and chlorophyll a, hence as dietary ingredients, their extracts may be effective in chronic inflammation-linked metabolic diseases such as cardiovascular disease. In this study, anti-inflammatory potential of lipid extracts from three red seaweeds (Porphyra dioica, Palmaria palmata and Chondrus crispus and one microalga (Pavlova lutheri were assessed in lipopolysaccharide (LPS-stimulated human THP-1 macrophages. Extracts contained 34%–42% total fatty acids as n-3 PUFA and 5%–7% crude extract as pigments, including chlorophyll a, β-carotene and fucoxanthin. Pretreatment of the THP-1 cells with lipid extract from P. palmata inhibited production of the pro-inflammatory cytokines interleukin (IL-6 (p < 0.05 and IL-8 (p < 0.05 while that of P. lutheri inhibited IL-6 (p < 0.01 production. Quantitative gene expression analysis of a panel of 92 genes linked to inflammatory signaling pathway revealed down-regulation of the expression of 14 pro-inflammatory genes (TLR1, TLR2, TLR4, TLR8, TRAF5, TRAF6, TNFSF18, IL6R, IL23, CCR1, CCR4, CCL17, STAT3, MAP3K1 by the lipid extracts. The lipid extracts effectively inhibited the LPS-induced pro-inflammatory signaling pathways mediated via toll-like receptors, chemokines and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB signaling molecules. These results suggest that lipid extracts from P. lutheri, P. palmata, P. dioica and C. crispus can inhibit LPS-induced inflammatory pathways in human macrophages. Therefore, algal lipid extracts should be further explored as anti-inflammatory ingredients for chronic inflammation-linked metabolic diseases.

  5. Anti-inflammatory effect of pomegranate flower in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages.

    Science.gov (United States)

    Xu, Jianjun; Zhao, Yongxin; Aisa, Haji Akber

    2017-12-01

    Punica granatum L (Punicaceae) flower is an important diabetes treatment in oriental herbal medicine. This study investigates the inflammation effects of pomegranate flower (PFE) ethanol extract in LPS-induced RAW264.7 cells. PFE (10, 25, 50, 100 μg/mL) was applied to 1 μg/mL LPS-induced RAW 264.7 macrophages in vitro. Levels of nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines interleukin (IL)-1β (IL-1β), interleukin (IL)-6 (IL-6) and tumor necrosis factor (TNF-α) in the supernatant fraction were determined using enzyme-linked immunosorbent assay (ELISA). Expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), phosphorylation of mitogen-activated protein kinase (MAPK) subgroups extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and P38, as well as nuclear factor-κB (NF-κB) activation in extracts were detected via Western blot. 10-100 μg/mL PFE decreased the production of NO (IC50 value = 31.8 μg/mL), PGE2 (IC50 value = 54.5 μg/mL), IL-6 (IC50 value = 48.7 μg/mL), IL-1β (IC50 value = 71.3 μg/mL) and TNF-α (IC50 value = 62.5 μg/mL) in LPS-stimulated RAW 264.7 cells significantly. A mechanism-based study showed that phosphorylation of ERK1/2, p38, JNK and translocation of the NF-B p65 subunit into nuclei were inhibited by the PFE treatment. These results show that PFE produced potential anti-inflammatory effect through modulating the synthesis of several mediators and cytokines involved in the inflammatory process.

  6. Inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells by the norsesterterpene peroxide, epimuqubilin A.

    Science.gov (United States)

    Cheenpracha, Sarot; Park, Eun-Jung; Rostama, Bahman; Pezzuto, John M; Chang, Leng Chee

    2010-03-01

    Seven norsesterterpene peroxides: epimuqubilin A (1), muqubilone B (2), unnamed cyclic peroxide ester (3), epimuqubilin B (4), sigmosceptrellin A methyl ester (5), sigmosceptrellin A (6), and sigmosceptrellin B methyl ester (7), isolated from the marine sponge Latrunculia sp., were examined with regard to their effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells. The results indicated epimuqubilin A (1) possessed potent NO inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide release with an IC(50) value of 7.4 microM, a level three times greater than the positive control, L-N(G)-monomethyl arginine citrate, followed by 6 (sigmosceptrellin A, IC(50) = 9.9 microM), whereas other compounds exhibited only modest activity (Table 1). These compounds did not show appreciable cytotoxicity at their IC(50) values for NO-inhibitory activity. The structure-activity upon NO inhibition could be summarized as follows: (1) a monocyclic carbon skeleton framework was essential for activity, (2) free acids gave higher activity, (3) the orientation of H3-22 with an equatorial position increased activity, and (4) a bicyclic structure reduced activity. This is the first report of a norsesterterpene peroxide with NO-inhibitory activity. In addition, compounds 1-7 were also evaluated for their inhibitory activities in the yeast glycogen synthase kinase-3beta assay. In summary, several norsesterterpene peroxides showed novel biological activities of inhibition in NO production, suggesting that these might provide leads for anti-inflammatory or cancer chemopreventive agents.

  7. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  8. Mechanistic study of macrophage activation by LPS stimulation using fluorescence imaging techinques

    Science.gov (United States)

    Lu, Cuixia; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Lipopolysaccharide (LPS), a structural component of the outer membrane of gram negative bacteria, has been suggested that stimulates macrophages secrete a wide variety of inflammatory mediators, such as nitric oxide (NO). However, the cellular mechanisms of NO generation in macrophage by LPS stimulation are not well known. In this study, LPS stimulated NO generation in macrophage was determined by measuring fluorescence changes with a NO specific probe DAF-FM DA. Using the fluorescence resonance energy transfer (FRET) techniques, we found an increase of protein kinase C (PKC) activation was dynamically monitored in macrophages treated with LPS. Nuclear factor kappa B (NF-κB) translocated from the cytoplasm to the nucleus in macrophage was measured by confocal laser scanning microscopy. Moreover, the PKC inhibitor GÖ6983 inhibited LPS-stimulated NF-κB activation and NO production. These results indicated that LPS stimulated NF-κB mediated NO production by activating PKC.

  9. Detection of an Actinobacillus pleuropneumoniae serotype 2 lipopolysaccharide (LPS) variant

    DEFF Research Database (Denmark)

    Stenbaek, E.I.; HovindHaugen, K.

    1996-01-01

    Until now 12 serotypes of Actinobacillus pleuropneumoniae have been recognized. The specificity of the serotypes reside in the carbohydrate composition of the capsular polysaccharides and lipopolysaccharides (LPS). The LPS of A. pleuropneumoniae serotype 2 is a smooth type LPS with O-chains of li......Until now 12 serotypes of Actinobacillus pleuropneumoniae have been recognized. The specificity of the serotypes reside in the carbohydrate composition of the capsular polysaccharides and lipopolysaccharides (LPS). The LPS of A. pleuropneumoniae serotype 2 is a smooth type LPS with O......-chains of linear repeating pentasaccharide units with an O-acetyl group linked to a glucose unit. A monoclonal antibody (MAb 102-G02) directed against A. pleuropneumoniae serotype 2 was characterized in enzyme linked immunosorbent assay (ELISA) and in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS...

  10. Lipopolysaccharide (LPS) processing by Kupffer cells releases a modified LPS with increased hepatocyte binding and decreased tumor necrosis factor-alpha stimulatory capacity.

    Science.gov (United States)

    Treon, S P; Thomas, P; Broitman, S A

    1993-02-01

    Normal physiological clearance of gut-derived endotoxin lipopolysaccharide [LPS] has been described previously; initially, there is uptake by Kupffer cells (KC), then release of modified LPS, followed by hepatocyte uptake. Previous work in our laboratories indicated that LPS is structurally modified with loss of carbohydrate prior to its release by KC. In this study, we functionally characterize KC modified LPS. KC-modified 125I-LPS was prepared from primary rat KC. Escherichia coli 0127:B8 native 125I-LPS or KC-modified 125I-LPS (40 ng) was incubated for 1 hr with 1 x 10E6 primary hepatocytes. The binding of KC-modified LPS was 4.33-fold higher than native LPS (P = 0.0024). Binding analysis studies were conducted to determine the region of KC-modified LPS responsible for enhanced hepatocyte binding. KC-modified Salmonella minnesota LPS was competed with 100-fold excess native or mutant (Ra, Rc, Rd, or Re) strains of LPS or Lipid A with no decrease to hepatocyte binding. S. minnesota-native 125I-LPS was compared with KC-modified 125I-LPS in a study to assess induction of tumor necrosis factor (TNF)-gamma by rat peritoneal macrophages. Native or KC-modified 125I-LPS (100 ng) was presented to 1 x 10E7 peritoneal macrophages for 6 hr. TNF-alpha was measured in supernatants using the WEHI-164 cytotoxicity assay. Native LPS induced 5.7-fold higher TNF-alpha levels than KC-modified LPS (P < 0.0001). The above data suggest that structural alterations in KC-modified LPS are accompanied by functional alterations resulting in enhanced hepatocyte binding and decreased TNF-alpha release. The latter result implies that an early step in LPS detoxification occurs in the KC in which LPS is modified to prevent elicitation of biologically active cytokines.

  11. Effects of schisandrin on transcriptional factors in lipopolysaccharide-pretreated macrophages.

    Science.gov (United States)

    Guo, Lian Yu; Hung, Tran Manh; Bae, Kihwan; Jang, Sehyun; Shin, Eun Myoung; Chung, Ji Won; Kang, Sam Sik; Kim, Hyun Pyo; Kim, Yeong Shik

    2009-03-01

    Schisandrin is the main active ingredient isolated from Schisandra chinensis Baill. Recent studies have demonstrated that schisandrin exhibits anti-inflammatory effects in vivo and in vitro. In this study, we examined whether the order of lipopolysaccharide (LPS) treatment affects the mechanism of schisandrin anti-inflammatory activity. We found that the antiinflammatory mechanisms are not the same depending on whether macrophages were treated with schisandrin before or after LPS. The main difference is that inhibitor kappaBalpha (IkappaBalpha) degradation was not inhibited when macrophages were pretreated by LPS before schisandrin and was weakly inhibited when macrophages were pretreated by schisandrin before LPS.

  12. Study of Nitric Oxide production by murine peritoneal macrophages induced by Brucella Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kavoosi G

    2001-07-01

    Full Text Available Brueclla is a gram negative bacteria that causes Brucellosis. Lipopolysaccharide (LPS ", the pathogenic agent of Brucella is composed of O-chain, core oligosaccharide and lipid A. in addition, the structural and biological properties of different LPS extracted from different strains are not identical. The first defense system against LPS is nonspecific immunity that causes macrophage activation. Activated macrophages produce oxygen and nitrogen radicals that enhance the protection against intracellular pathogens.In this experiment LPS was extracted by hot phenol- water procedure and the effect of various LPSs on nitric oxide prodution by peritoneal mouse macrophages was examined.Our results demonstrated that the effect of LPS on nitric oxide production is concentration-dependent we observed the maximum response in concentration of 10-20 microgram per milliliter. Also our results demonstrate that LPS extracted from vaccine Brucella abortus (S 19 had a highe effect on nitric oxide production than the LPS from other strains

  13. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  14. Metformin Inhibits the Production of Reactive Oxygen Species from NADH:Ubiquinone Oxidoreductase to Limit Induction of Interleukin-1β (IL-1β) and Boosts Interleukin-10 (IL-10) in Lipopolysaccharide (LPS)-activated Macrophages.

    Science.gov (United States)

    Kelly, Beth; Tannahill, Gillian M; Murphy, Michael P; O'Neill, Luke A J

    2015-08-14

    Metformin, a frontline treatment for type II diabetes mellitus, decreases production of the pro-form of the inflammatory cytokine IL-1β in response to LPS in macrophages. We found that it specifically inhibited pro-IL-1β production, having no effect on TNF-α. Furthermore, metformin boosted induction of the anti-inflammatory cytokine IL-10 in response to LPS. We ruled out a role for AMP-activated protein kinase (AMPK) in the effect of metformin because activation of AMPK with A769662 did not mimic metformin here. Furthermore, metformin was still inhibitory in AMKPα1- or AMPKβ1-deficient cells. The activity of NADH:ubiquinone oxidoreductase (complex I) was inhibited by metformin. Another complex I inhibitor, rotenone, mimicked the effect of metformin on pro-IL-1β and IL-10. LPS induced reactive oxygen species production, an effect inhibited by metformin or rotenone pretreatment. MitoQ, a mitochondrially targeted antioxidant, decreased LPS-induced IL-1β without affecting TNF-α. These results, therefore, implicate complex I in LPS action in macrophages.

  15. Btk regulates macrophage polarization in response to lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Joan Ní Gabhann

    Full Text Available Bacterial Lipopolysaccharide (LPS is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk (-\\- mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk(-/- macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk(-/- macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk(-/- macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk (-/- mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation.

  16. NAC attenuates LPS-induced toxicity in aspirin-sensitized mouse macrophages via suppression of oxidative stress and mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Bacterial endotoxin lipopolysaccharide (LPS induces the production of inflammatory cytokines and reactive oxygen species (ROS under in vivo and in vitro conditions. Acetylsalicylic acid (ASA, aspirin is a commonly used anti-inflammatory drug. Our aim was to study the effects of N-acetyl cysteine (NAC, an antioxidant precursor of GSH synthesis, on aspirin-sensitized macrophages treated with LPS. We investigated the effects of LPS alone and in conjunction with a sub-toxic concentration of ASA, on metabolic and oxidative stress, apoptosis, and mitochondrial function using J774.2 mouse macrophage cell line. Protection from LPS-induced toxicity by NAC was also studied. LPS alone markedly induced ROS production and oxidative stress in macrophage cells. When ASA was added to LPS-treated macrophages, the increase in oxidative stress was significantly higher than that with LPS alone. Similarly, alteration in glutathione-dependent redox metabolism was also observed in macrophages after treatment with LPS and ASA. The combination of LPS and ASA selectively altered the CYP 3A4, CYP 2E1 and CYP 1A1 catalytic activities. Mitochondrial respiratory complexes and ATP production were also inhibited by LPS-ASA treatment. Furthermore a higher apoptotic cell death was also observed in LPS-ASA treated macrophages. NAC pre-treatment showed protection against oxidative stress induced apoptosis and mitochondrial dysfunction. These effects are presumed, at least in part, to be associated with alterations in NF-κB/Nrf-2 mediated cell signaling. These results suggest that macrophages are more sensitive to LPS when challenged with ASA and that NAC pre-treatment protects the macrophages from these deleterious effects.

  17. Atomic force microscopy based investigations of anti-inflammatory effects in lipopolysaccharide-stimulated macrophages.

    Science.gov (United States)

    Pi, Jiang; Cai, Huaihong; Yang, Fen; Jin, Hua; Liu, Jianxin; Yang, Peihui; Cai, Jiye

    2016-01-01

    A new method based on atomic force microscopy (AFM) was developed to investigate the anti-inflammatory effects of drugs on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The LPS-stimulated RAW264.7 macrophage cell line is a widely used in vitro cell model for the screening of anti-inflammatory drugs or the study of anti-inflammatory mechanisms. In this work, the inhibitory effects of dexamethasone and quercetin on LPS-CD14 receptor binding in RAW264.7 macrophages was probed by LPS-functionalized tips for the first time. Both dexamethasone and quercetin were found to inhibit LPS-induced NO production, iNOS expression, IκBα phosphorylation, and IKKα/β phosphorylation in RAW264.7 macrophages. The morphology and ultrastructure of RAW264.7 macrophages were determined by AFM, which indicated that dexamethasone and quercetin could inhibit LPS-induced cell surface particle size and roughness increase in RAW264.7 macrophages. The binding of LPS and its receptor in RAW264.7 macrophages was determined by LPS-functionalized AFM tips, which demonstrated that the binding force and binding probability between LPS and CD14 receptor on the surface of RAW264.7 macrophages were also inhibited by dexamethasone or quercetin treatment. The obtained results imply that AFM, which is very useful for the investigation of potential targets for anti-inflammatory drugs on native macrophages and the enhancement of our understanding of the anti-inflammatory effects of drugs, is expected to be developed into a promising tool for the study of anti-inflammatory drugs.

  18. The TLR Expression Pattern on Monocyte-Derived Macrophages for Lipopolysaccharid Stimulation of Calves

    Institute of Scientific and Technical Information of China (English)

    GUO Yi-jie; ZHAO Guo-Qi; HUO Yong-jiu; Sachi Tana-ka; Hisashi Aso; Takahiro Yamaguchi

    2009-01-01

    In this paper, toll-like receptor expression pattern in monocytes-derived macrophages by lipopolysaccharid (LPS) stimulation was examined. Jugular venous blood samples from 4 Japanese calves were obtained and the peripheral blood mononuclear cells (PBMC) were isolated. The PBMC were cultured for 7 d so as to collect monocytes-derived macrophages in Repcell. The PBMC were stimulated by LPS for 24 h and the mRNA expression pattern of TLR and cytokines in monocytes-derived macrophages (Mod-Mφ) was analyzed. Results showed that LPS stimulation of Mod-Mφ could increase the mRNA levels of the genes of TNF-α, IL-6, and IL-8. In addition, the mRNA levels of the genes of TNF-α and IL-6 in the group of LPS stimulation were most significantly (P<0.01) higher than those in control group and the mRNA levels of TLR1, 3, 5, 8, and 10 were significantly (P<0.05) decreased after LPS stimulation. There was no difference in the mRNA expressions of TLR2, 4, 6, and 7 between the groups of the control and LPS stimulation. Besides, expression of TLR9 was not found. It suggested that monocytes-derived macrophages could respond to LPS and they might take an important role in the innate immunity. The important function of the cells might contribute to better disease treatment.

  19. Glycyrrhiza glabra L. Extract Inhibits LPS-Induced Inflammation in RAW Macrophages.

    Science.gov (United States)

    Li, Chunmei; Eom, Taekil; Jeong, Yoonhwa

    2015-01-01

    Glycyrrhiza glabra has been used in medicine for thousands of years. Our previous study revealed that the methanolic extract of Glycyrrhiza glabra L. (EGGR) exhibits significant nitric oxide (NO) inhibitory effect on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages among 100 other extracts. Accordingly, the aim of the present study was to investigate the potential anti-inflammatory effect of EGGR. The anti-inflammatory effect of EGGR on LPS-stimulated RAW 264.7 macrophages was measured by MTT assay, NO content analysis, reactive oxygen species (ROS) level analysis, RT-PCR, Western blot analysis, and ELISA assay. Low doses of EGGR were non-toxic to macrophages and imparted protective effect against LPS induced cell death. Incubation of LPS-treated macrophages with 100 μg/mL EGGR led to an increase in cell viability from 66.6 to 99%. Moreover, EGGR led to down regulation of NO (NO2+NO3) and ROS productions in a dose-dependent manner. In particular, 100 μg/mL EGGR led to a reduction in NO2+NO3 level from 336.2 to 24.1 pM/mL, and ROS level from 483.5 to 128.4%. Consistent with the result related to NO production, EGGR suppressed the ability of LPS to induce mRNA and protein expressions of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) cytokines, tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and IL-6 productions which were analyzed by an ELISA assay. These results provide a comprehensive approach into the anti-inflammatory effect of EGGR on LPS-stimulated macrophages; however, efforts are underway on gaining detailed insight into anti-inflammatory signaling pathways.

  20. Lipopolysaccharide enhances the inhibition of NF-κB expression in NNK-mediated peritoneal macrophages

    Institute of Scientific and Technical Information of China (English)

    Bin Li; Mei Wu; Xiaoping Liu

    2014-01-01

    The aim of the study was to investigate the efect of lipopolysaccharide (LPS) on the expression of nuclear factor kappa B (NF-κB) in 4-(methylitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-mediated primary mouse peritoneal macrophagesin vitro.Methods: The activity of peritoneal macrophages treated with diferent concentrations of LPS was de-tected by MTT assay in rider to find the optimal concentration. Peritoneal macrophages were also treated with NNK (100-500μM), with or without LPS for 9 h. The expression of NF-κB was demonstrated via immunocytochemistry (ICC) and Western-blot, respectively.Results:The concentration of LPS at 25 μg/mL was found to be the optimal concentration to improve the activity of peritoneal macrophages (P < 0.01). Simultaneously, LPS (25 μg/mL) increased the expression of NF-κB in both the nucleus and cytoplasm and facilitated transfer of NF-κB to the nucleus. NNK treatment significantly inhibited the expression of NF-κB in a concentration-dependent manner, among the LPS-stimulated or unstimulated peritoneal macrophages, espe-cialy when cotreated with LPS (25 μg/mL,P < 0.01 ). Furthermore, NNK treatment (500 μM) with LPS yielded a significant decrease in NF-κB translocation to nucleus and inhibited the expression of NF-κB (P < 0.005).Conclusion: LPS enhances the suppression of NF-κB expression in NNK-mediated mouse peritoneal macrophages, which may provide a theoretical basis for the inhibition of cancer.

  1. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  2. DMPD: Toll receptors, CD14, and macrophage activation and deactivation by LPS. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12106783 Toll receptors, CD14, and macrophage activation and deactivation by LPS. D...ceptors, CD14, and macrophage activation and deactivation by LPS. PubmedID 12106783 Title Toll receptors, CD14, and macrophage activa...tion and deactivation by LPS. Authors Dobrovolskaia MA,

  3. Inorganic polyphosphate suppresses lipopolysaccharide-induced inducible nitric oxide synthase (iNOS expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Kana Harada

    Full Text Available In response to infection, macrophages produce a series of inflammatory mediators, including nitric oxide (NO, to eliminate pathogens. The production of these molecules is tightly regulated via various mechanisms, as excessive responses are often detrimental to host tissues. Here, we report that inorganic polyphosphate [poly(P], a linear polymer of orthophosphate ubiquitously found in mammalian cells, suppresses inducible nitric oxide synthase (iNOS expression induced by lipopolysaccharide (LPS, a cell wall component of Gram-negative bacteria, in mouse peritoneal macrophages. Poly(P with longer chains is more potent than those with shorter chains in suppressing LPS-induced iNOS expression. In addition, poly(P decreased LPS-induced NO release. Moreover, poly(P suppressed iNOS mRNA expression induced by LPS stimulation, thereby indicating that poly(P reduces LPS-induced iNOS expression by down-regulation at the mRNA level. In contrast, poly(P did not affect the LPS-induced release of TNF, another inflammatory mediator. Poly(P may serve as a regulatory factor of innate immunity by modulating iNOS expression in macrophages.

  4. The effects of propolis on cytokine production in lipopolysaccharide-stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Hatice Özbilge

    2011-12-01

    Full Text Available Objectives: Propolis, a bee-product, has attracted researchers’ interest in recent years because of several biological and pharmacological properties. Lipopolysaccharide (LPS is a component of the outer membrane of Gram-negative bacteria and has an important role in the pathogenesis of septic shock and several inflammatory diseases by causing excessive release of inflammatory cytokines. The aim of this study was to investigate the effects of ethanol extract of propolis collected in Kayseri and its surroundings on production of pro-inflammatory cytokines in LPS-stimulated macrophages.Materials and methods: In vitro, U937 human macrophage cells were grown in RPMI-1640 medium supplemented with fetal bovine serum (10% and penicillin-streptomycin (2% and divided into: control, LPS treated, and propolis+LPS treated cell groups. After incubation in an atmosphere of 5% CO2 and at 37°C of cells, interleukin (IL-1β, IL-6 and tumor necrosis factor (TNF-α levels were measured in cell-free supernatants by ELISA.Results: IL-1β, IL-6 and TNF-α levels increased in LPS treated cell group according to control, statistically significant. Each cytokine levels significantly decreased in LPS and propolis treated cell group according to only LPS treated cell group (p<0.05.Conclusion: Propolis is a natural product to be examined for usage when needed the suppression of pro-inflammatory cytokines. J Clin Exp Invest 2011; 2 (4: 366-370

  5. Activation of Macrophages by Lipopolysaccharide for Assessing the Immunomodulatory Property of Biomaterials.

    Science.gov (United States)

    Han, Shengwei; Chen, Zetao; Han, Pingping; Hu, Qingang; Xiao, Yin

    2017-03-24

    The design paradigm of biomaterials has been changed to ones with favorable immunomodulatory effects, indicating the importance of accurately evaluating the immunomodulatory properties of biomaterials. Among all the immune cells macrophages receive most attention, due to their plasticity and multiple roles in the materials and host interactions, and thereby become model immune cells for the evaluation of immunomodulatory properties of biomaterials in many studies. Lipopolysaccharides (LPS), a polysaccharide in the outer membrane of Gram-negative bacteria, elicit strong immune responses, which was often applied to activate macrophages, resulting in a proinflammatory M1 phenotype, and the release of proinflammatory cytokines, including tumor necrosis factor alpha (TNFα), interleukin (IL)-1, and IL-6. However, there is no consensus on how to apply macrophages and LPS to detect the immunomodulatory properties of biomaterials. The lack of scientific consideration of this issue has led to some inaccurate and insufficient conclusions on the immunomodulatory properties of biomaterials, and inconsistences between different research groups. In this study, we carried out a systemic study to investigate the stimulatory effects of LPS with different times, doses, and conditions on the activation of macrophages. An experimental pathway was proposed accordingly for the activation of macrophages using LPS for assessing the immunomodulatory property of biomaterials.

  6. Evidence for lipopolysaccharide-induced differentiation of RAW264⋅ 7 murine macrophage cell line into dendritic like cells

    Indian Academy of Sciences (India)

    Rajiv K Saxena; Val Vallyathan; Daniel M Lewis

    2003-02-01

    Effect of lipopolysaccharide (LPS) on RAW264.7 macrophage cell line was studied. LPS-treated RAW264.7 cells increased in cell size and acquired distinct dendritic morphology. At the optimal dose of LPS (1 g/ml), almost 70% RAW264.7 cells acquired dendritic morphology. Flow cytometric studies indicate that the cell surface markers known to be expressed on dendritic cells and involved in antigen presentation and T cell activation (B7.1, B7.2, CD40, MHC class II antigens and CD1d) were also markedly upregulated on LPS-treated RAW264.7 cells. Our results suggest the possibility that LPS by itself could constitute a sufficient signal for differentiation of macrophages into DC-like cells.

  7. Primed Activation of Macrophages by Oral Administration of Lipopolysaccharide Derived from Pantoea agglomerans.

    Science.gov (United States)

    Inagawa, Hiroyuki; Kobayashi, Yutaro; Kohchi, Chie; Zhang, Ran; Shibasaki, Yasuhiro; Soma, Gen-Ichiro

    2016-01-01

    Bacterial lipopolysaccharide (LPS) is involved in the activation of the innate immune responses on monocytes/macrophages in vitro, and by intravenous injection. Although small quantities of LPS are usually found in traditional Chinese medicines, vegetables and fruits, the mode of action of orally administered LPS is still unclear. LPS derived from Pantoea agglomerans (LPSp) was orally administered to C3H/HeN or C3H/HeJ mice ad libitum. The LPSp treatment enhanced phagocytosis by resident peritoneal macrophages of C3H/HeN mice but not of C3H/HeJ mice. This activation can be defined as primed activation because no augmentation of inflammatory cytokines production was detected. LPSp in peritoneal fluid was detected and successfully quantified. Moreover, the LPSp reduced the expression of avian reticuloendotheliosis viral oncogene-related B (RelB) in the macrophages without degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor, alpha (IκBα). Orally administered LPSp can reach the peritoneum, and enhance phagocytosis via Toll-like receptor 4 signaling pathway in resident peritoneal macrophages. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. The interaction of lipopolysaccharide-coated polystyrene particle with membrane receptor proteins on macrophage measured by optical tweezers

    Science.gov (United States)

    Wei, Ming-Tzo; Hua, Kuo-Feng; Hsu, Jowey; Karmenyan, Artashes; Hsu, Hsien-Yeh; Chiou, Arthur

    2006-08-01

    Lipopolysaccharide (LPS) is one of the cell wall components of Gram-positive bacteria recognized by and interacted with receptor proteins such as CD14 on macrophage cells. Such a process plays an important role in our innate immune system. In this paper, we report the application of optical tweezers (λ = 1064nm Gaussian beam focused by a water-immersed objective lens with N.A. = 1.0) to the study of the dynamics of the binding of a LPS-coated polystyrene particle (diameter = 1.5μm) onto the plasma membrane of a macrophage cell. We demonstrated that the binding rate increased significantly when the macrophage cell was pre-treated with the extract of Reishi polysaccharides (EORP) which has been shown to enhance the cell surface expression of CD14 (receptor of LPS) on macrophage cells.

  9. Identification of a novel compound that inhibits iNOS and COX-2 expression in LPS-stimulated macrophages from Schisandra chinensis.

    Science.gov (United States)

    Lee, You Jin; Park, Sun Young; Kim, Sun Gun; Park, Da Jung; Kang, Jum Soon; Lee, Sang Joon; Yoon, Sik; Kim, Young Hun; Bae, Yoe-Sik; Choi, Young-Whan

    2010-01-22

    A novel alpha-iso-cubebenol, which has anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, was isolated from the fruits of Schisandra chinensis. alpha-iso-cubebenolinhibited LPS-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Consistent with these findings, alpha-iso-cubebenol also reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 at the protein and mRNA levels in a concentration-dependent manner. alpha-iso-cubebenol also inhibited LPS-induced nuclear translocation of the NF-kappaB p65 subunit. Furthermore, alpha-iso-cubebenol suppressed the phosphorylation of ERK, JNK, and p38 kinase induced by LPS. Since the novel alpha-iso-cubebenol blocked the production of several pro-inflammatory mediators induced by LPS in macrophages, the molecule can be useful material for the development of anti-inflammatory agents against bacterial infections or endotoxin.

  10. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages.

    Science.gov (United States)

    Routray, Indusmita; Ali, Shakir

    2016-01-01

    Chemical mediators of inflammation (CMI) are important in host defense against infection. The reduced capacity of host to induce the secretion of these mediators following infection is one of the factors in host susceptibility to infection. Boron, which has been suggested for its role in infection, is reported in this study to increase lymphocyte proliferation and the secretion of CMI by the lipopolysaccharide (LPS)-stimulated peritoneal macrophages in BALB/c mice. Boron was administered to mice orally as borax at different doses for 10 consecutive days, followed by the stimulation of animals with ovalbumin and isolation of splenocytes for proliferation assay. The lymphocyte subsets were determined by flow cytometry in spleen cell suspension. The mediators of inflammation, TNF-α, IL-6, IL-1β and nitric oxide (NO), were measured in culture supernatant of LPS-primed macrophages isolated from borax treated mice. TNF and ILs were measured by ELISA. NO was determined by Griess test. The expression of inducible nitric oxide synthase (iNOS) in macrophages was studied by confocal microscopy. Results showed a significant increase in T and B cell populations, as indicated by an increase in CD4 and CD19, but not CD8, cells. Boron further stimulated the secretion of TNF-α, IL-6, IL-1β, NO and the expression of iNOS by the LPS-primed macrophages. The effect was dose dependent and most significant at a dose level of 4.6 mg/kg b. wt. Taken together, the study concludes that boron at physiological concentration induces lymphocyte proliferation and increases the synthesis and secretion of pro-inflammatory mediators by the LPS-primed macrophages, more specifically the M1 macrophages, possibly acting through Toll-like receptor. The study implicates boron as a regulator of the immune and inflammatory reactions and macrophage polarization, thus playing an important role in augmenting host defense against infection, with possible role in cancer and other diseases.

  11. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages.

    Directory of Open Access Journals (Sweden)

    Indusmita Routray

    Full Text Available Chemical mediators of inflammation (CMI are important in host defense against infection. The reduced capacity of host to induce the secretion of these mediators following infection is one of the factors in host susceptibility to infection. Boron, which has been suggested for its role in infection, is reported in this study to increase lymphocyte proliferation and the secretion of CMI by the lipopolysaccharide (LPS-stimulated peritoneal macrophages in BALB/c mice. Boron was administered to mice orally as borax at different doses for 10 consecutive days, followed by the stimulation of animals with ovalbumin and isolation of splenocytes for proliferation assay. The lymphocyte subsets were determined by flow cytometry in spleen cell suspension. The mediators of inflammation, TNF-α, IL-6, IL-1β and nitric oxide (NO, were measured in culture supernatant of LPS-primed macrophages isolated from borax treated mice. TNF and ILs were measured by ELISA. NO was determined by Griess test. The expression of inducible nitric oxide synthase (iNOS in macrophages was studied by confocal microscopy. Results showed a significant increase in T and B cell populations, as indicated by an increase in CD4 and CD19, but not CD8, cells. Boron further stimulated the secretion of TNF-α, IL-6, IL-1β, NO and the expression of iNOS by the LPS-primed macrophages. The effect was dose dependent and most significant at a dose level of 4.6 mg/kg b. wt. Taken together, the study concludes that boron at physiological concentration induces lymphocyte proliferation and increases the synthesis and secretion of pro-inflammatory mediators by the LPS-primed macrophages, more specifically the M1 macrophages, possibly acting through Toll-like receptor. The study implicates boron as a regulator of the immune and inflammatory reactions and macrophage polarization, thus playing an important role in augmenting host defense against infection, with possible role in cancer and other diseases.

  12. Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Dequan Li

    2016-01-01

    Full Text Available Background. Systemic inflammatory response syndrome (SIRS accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs, as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA to assess the activity of BMSCs to suppress the inflammation induced by lipopolysaccharide (LPS in human umbilical cord endothelial cells (HUVECs and alveolar macrophages. Results. Our results demonstrated that LPS caused an inflammatory response in alveolar macrophages and HUVECs, increased permeability of HUVEC, upregulated expression of toll-like receptor (TLR 2, TLR4, phosphorylated p65, downregulated release of IL10, and promoted release of TNF-α in both cells. Coculture with BMSCs attenuated all of these activities induced by LPS in the two tested cell types. Conclusions. Together, our results demonstrate that BMSCs dosage dependently attenuates the inflammation damage of alveolar macrophages and HUVECs induced by LPS.

  13. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    Science.gov (United States)

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  14. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages.

    Science.gov (United States)

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-10-01

    Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages.

  15. Prenatal transportation alters the metabolic response of Brahman bull calves exposed to a lipopolysaccharide (LPS) challenge

    Science.gov (United States)

    This study was designed to determine if prenatal transportation influences the metabolic response to a postnatal lipopolysaccharide (LPS) challenge. Pregnant Brahman cows (n=96) matched by age and parity were separated into transported (TRANS; n=48; transported for 2 hours on gestational day 60, 80,...

  16. ATF-2 regulates lipopolysaccharide-induced transcription in macrophage cells.

    Science.gov (United States)

    Hirose, Noriyuki; Maekawa, Toshio; Shinagawa, Toshie; Ishii, Shunsuke

    2009-07-17

    The transcription factor ATF-2, a member of the ATF/CREB family, is a target of p38 that are involved in stress-induced apoptosis and in Toll-like receptor (TLR)-mediated signaling. Phosphorylation of ATF-2 at Thr-71 was enhanced by treating of RAW264.7 macrophage cells with either LPS, MALP-2, or CpG-ODN. LPS treatment enhanced the trans-activation capacity of ATF-2. Among multiple LPS-induced genes, the LPS-induced expression of Socs-3 was significantly reduced by the treatment of RAW264.7 cells with an Atf-2 siRNA. Transcription from the Socs-3 promoter was synergistically stimulated by ATF-2 and LPS, whereas it was suppressed by Atf-2 siRNA. Histone deacetylase 1 (HDAC1) interacted with ATF-2 after LPS treatment, but not before treatment. Treatment of RAW264.7 cells with trichostatin A, an inhibitor of HDAC, suppressed the LPS-induced Socs-3 expression, suggesting that HDAC1 positively regulates the LPS-induced transcription of Socs-3. Thus, ATF-2 plays an important role in TLR-mediated transcriptional control in macrophage cells.

  17. The LPS-induced neutrophil recruitment into rat air pouches is mediated by TNFα: likely macrophage origin

    Directory of Open Access Journals (Sweden)

    C-D. Arreto

    1997-01-01

    Full Text Available The role of resident cells during the lipopolysaccharide (LPS-induced neutrophil recruitment into rat air pouches was investigated. In this model, LPS (Escherichia coli, O55: B5 strain; 2–2000 ng induced a dose– and time-dependent neutrophil recruitment accompanied by the generation of a tumour necrosis factor-α (TNFα-like activity. Dexamethasone (0.05–5 mug and cycloheximide (6 ng, injected 2 h before LPS into the pouches, inhibited the neutrophil recruitment and the generation of the TNFα-like activity, while the H1-receptor antagonist mepyramine (1 and 4 mg/kg, i.p., 0.5 h before LPS and the PAF-receptor antagonist WEB 2170 (0.05 and 1 mg/kg, i.p., 0.5 h before LPS had no effect. Purified alveolar macrophages (AM were used to replenish the pouches of cycloheximide-treated recipient rats. AM provided by PBS-treated animals led to the recovery of the LPS-induced neutrophil recruitment and of the TNFα-like formation contrasting with those from cycloheximide-treated animals (1 mg/kg, i.p.. When delivered in situ, liposome-encapsulated clodronate, a macrophage depletor, significantly impaired both the LPSinduced neutrophil recruitment and the TNFα-like activity. An anti-murine TNFα polyclonal antibody (0.5 h before LPS was also effective. These results emphasize the pivotal role of macrophages for LPS-induced neutrophil recruitment via the formation of TNFα.

  18. Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-κB pathway regulation.

    Science.gov (United States)

    Jung, Yun Chan; Kim, Mi Eun; Yoon, Ju Hwa; Park, Pu Reum; Youn, Hwa-Young; Lee, Hee-Woo; Lee, Jun Sik

    2014-12-01

    Inflammation is the major symptom of the innate immune response to microbial infection. Macrophages, immune response-related cells, play a role in the inflammatory response. Galangin is a member of the flavonols and is found in Alpinia officinarum, galangal root and propolis. Previous studies have demonstrated that galangin has antioxidant, anticancer, and antineoplastic activities. However, the anti-inflammatory effects of galangin are still unknown. In this study, we investigated the anti-inflammatory effects of galangin on RAW 264.7 murine macrophages. Galagin was not cytotoxic to RAW 264.7 cells, and nitric oxide (NO) production induced by lipopolysaccharide (LPS)-stimulated macrophages was significantly decreased by the addition of 50 μM galangin. Moreover, galangin treatment reduced mRNA levels of cytokines, including IL-1β and IL-6, and proinflammatory genes, such as iNOS in LPS-activated macrophages in a dose-dependent manner. Galangin treatment also decreased the protein expression levels of iNOS in activated macrophages. Galangin was found to elicit anti-inflammatory effects by inhibiting ERK and NF-κB-p65 phosphorylation. In addition, galangin-inhibited IL-1β production in LPS-activated macrophages. These results suggest that galangin elicits anti-inflammatory effects on LPS-activated macrophages via the inhibition of ERK, NF-κB-p65 and proinflammatory gene expression.

  19. Effects of propofol on lipopolysaccharide-induced expression and release of HMGB1 in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.; Wei, X.Y.; Liu, B.; Wang, L.J.; Jiang, L.H. [Department of Anesthesiology, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou (China)

    2015-02-24

    This study aimed to determine the effects of different concentrations of propofol (2,6-diisopropylphenol) on lipopolysaccharide (LPS)-induced expression and release of high-mobility group box 1 protein (HMGB1) in mouse macrophages. Mouse macrophage cell line RAW264.7 cells were randomly divided into 5 treatment groups. Expression levels of HMGB1 mRNA were detected using RT-PCR, and cell culture supernatant HMGB1 protein levels were detected using enzyme-linked immunosorbent assay (ELISA). Translocation of HMGB1 from the nucleus to the cytoplasm in macrophages was observed by Western blotting and activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus was detected using ELISA. HMGB1 mRNA expression levels increased significantly in the cell culture supernatant and in cells after 24 h of stimulating RAW264.7 cells with LPS (500 ng/mL). However, HMGB1 mRNA expression levels in the P2 and P3 groups, which received 500 ng/mL LPS with 25 or 50 μmol/mL propofol, respectively, were significantly lower than those in the group receiving LPS stimulation (P<0.05). After stimulation by LPS, HMGB1 protein levels were reduced significantly in the nucleus but were increased in the cytoplasm (P<0.05). Simultaneously, the activity of NF-κB was enhanced significantly (P<0.05). After propofol intervention, HMGB1 translocation from the nucleus to the cytoplasm and NF-κB activity were inhibited significantly (each P<0.05). Thus, propofol can inhibit the LPS-induced expression and release of HMGB1 by inhibiting HMGB1 translocation and NF-κB activity in RAW264.7 cells, suggesting propofol may be protective in patients with sepsis.

  20. Oxidized galectin-1 reduces lipopolysaccharide-induced increase of proinflammatory cytokine mRNA in cultured macrophages

    Directory of Open Access Journals (Sweden)

    Yukie Kogawa

    2011-01-01

    Full Text Available Yukie Kogawa1, Kou Nakajima1, Kenichi Sasaguri1, Nobushiro Hamada2, Haruhisa Kawasaki3, Sadao Sato1, Toshihiko Kadoya4, Hidenori Horie51Department of Orthodontics, 2Department of Oral Microbiology, Kanagawa Dental College, Yokosuka; 3Keio University, Kanagawa; 4Maebashi Institute of Technology, Maebashi; 5Research Center of Brain and Oral Science, Kanagawa Dental College, Yokosuka, JapanBackground: Periodontitis is prevalent in older humans. Limiting the inflammation associated with periodontitis may provide a therapy for this condition, because Gram-negative bacteria expressing lipopolysaccharide (LPS have a key role in initiation of inflammation by activating macrophage functions. Because oxidized galectin-1 regulates macrophage functions in other systems, we sought to establish whether this galectin-1 mRNA is expressed in the oral cavity, and whether it could dampen LPS-induced macrophage activation in vitro.Methods: Using the reverse transcriptase polymerase chain reaction (RT-PCR, we measured galectin-1 mRNA expression to clarify its localization to rat gingival tissues and studied the effect of Porphyromonas gingivalis challenge on galectin-1 expression. Next, we tested the effects of adding oxidized galectin-1 to cultured LPS-activated peritoneal macrophages on mRNA expression of proinflammatory factors by RT-PCR and real-time RT-PCR.Results: We established that galectin-1 mRNA is expressed in gingival tissues and also showed that galectin-1 mRNA was significantly increased by challenge with P. gingivalis, indicating that galectin-1 may regulate oral inflammation. On the other hand, LPS 100 ng/mL in serum-containing medium induced macrophages to upregulate mRNA associated with a proinflammatory response, ie, interleukins 1β and 6, and inducible nitric oxide synthase. We showed that application of 0.1–10 ng/mL of oxidized galectin-1 to LPS-treated macrophages reduced the intense LPS-induced increase by serum in proinflammatory m

  1. Lipopolysaccharide (LPS) Inhibits Steroid Production in Theca Cells of Bovine Follicles In Vitro: Distinct Effect of LPS on Theca Cell Function in Pre- and Post-selection Follicles

    OpenAIRE

    MAGATA, Fumie; HORIUCHI, Maya; Miyamoto, Akio; SHIMIZU, TAKASHI

    2014-01-01

    In postpartum dairy cows, lipopolysaccharide (LPS) derived from gram-negative bacteria such as Escherichia coli causes uterine inflammation and leads to ovarian dysfunction. The aim of this study was to determine the effect of LPS on steroid production in bovine theca cells at different stages of follicular development. Theca cells isolated from pre- and post-selection follicles (PRFs, 8.5 mm in diameter, respectively) of bovine ovaries were exposed to LPS under luteinizing hormone (LH) condi...

  2. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhao-Hua [Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Kumari, Namita; Nekhai, Sergei [Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington, DC (United States); Clouse, Kathleen A. [Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Wahl, Larry M. [National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Yamada, Kenneth M. [Laboratory of Cell and Development Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Viral Immunology Section, Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2013-06-07

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM.

  3. Inhibition of Emodin on LPS-induced Nitric Oxide Generation by Suppressing PLC-γ Phosphorylation in Rat Peritoneal Macrophages

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-yu; CAI Shou-guang; WU Yi-fen; LI Jun-ying; YANG Wen-xiu; HU Fen

    2010-01-01

    Objective To investigate the inhibitory mechanism of emodin on lipopolysaccharide(LPS)-induced nitric oxide(NO)generation in rat peritoneal macrophages.Methods NO production and iNOS expression were measured through nitrite assay and Western blotting assay,respectively.NF-kB activity and nuclei P65 expression were estimated by dual-luciferase and Western blotting assay,respectively.Intracellular free Ca2+([Ca2+]i)was detected using the ratiometric fluorescent calcium indicator dye,Fura-2,and a microspectrofluorometer.PLC-γphosporylation was analyzed by Western blotting assay.Results First,emodin was found playing active roles in suppressing LPS-induced NF-kB activation in rat peritoneal macrophages.Second,emodin down-regulated transient[Ca2*]i and could increase in NF-kB upstream signal.Finally,emodin suppressed phosphorylation of PLC-γ by LPS stimulation in the upstream of[Ca2+]i.Conclusion Suppression of PLC-γ phosphorylation is involved in emodin inhibiting NO generation by LPS stimulation in rat peritoneal macrophages.

  4. Atorvastatin Attenuates TNF-alpha Production via Heme Oxygenase-1 Pathway in LPS-stimulated RAW264.7 Macrophages

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao Qiao; LUO Nian Sang; CHEN Zhong Qing; LIN Yong Qing; GU Miao Ning; CHEN Yang Xin

    2014-01-01

    ObjectiveTo assess the effect of atorvastatin on lipopolysaccharide(LPS)-inducedTNF-α production in RAW264.7 macrophages. MethodsRAW264.7 macrophageswere treated in different LPS concentrations oratdifferent time points with or without atorvastatin. TNF-α level in supernatant was measured. Expressions of TNF-αmRNA and protein and heme oxygenase-1 (HO-1) were detected by ELISA, PCR, and Western blot, respectively. HOactivity was assayed. ResultsLPS significantly increased the TNF-α expression and secretion in a dose- and time-dependent manner. The HO-1activity and HO-1 expression level were significantly higher after atorvastatin treatment than before atorvastatin treatment and attenuated by SB203580 and PD98059 but not by SP600125, suggesting that the ERK and p38 mitogen-activated protein kinase (MAPK) pathways participate inregulating the above-mentioned effects of atorvastatin. Moreover, the HO-1 activity suppressed by SnPP or the HO-1 expression inhibited by siRNA significantly attenuated the effect of atorvastatin onTNF-α expression and production in LPS-stimulated macrophages. ConclusionAtorvastatin can attenuate LPS-induced TNF-α expression and production by activating HO-1 via the ERK and p38 MAPK pathways,suggesting that atorvastatin can be used in treatment of inflammatory diseases such as sepsis, especially in those with atherosclerotic diseases.

  5. The Hydroalcoholic Extract Obtained from Mentha piperita L. Leaves Attenuates Oxidative Stress and Improves Survival in Lipopolysaccharide-Treated Macrophages

    Directory of Open Access Journals (Sweden)

    Mariana Oliveira Arruda

    2017-01-01

    Full Text Available Mentha piperita L. (peppermint possesses antimicrobial properties, but little is known of its ability to modulate macrophages. Macrophages are essential in bacterial infection control due to their antimicrobial functions and ability to link the innate and adaptive immune responses. We evaluated the effects of the peppermint leaf hydroalcoholic extract (LHAE on cultured murine peritoneal macrophages stimulated or not with lipopolysaccharide (LPS in vitro. Vehicle-treated cells were used as controls. The constituents of the extract were also identified. Epicatechin was the major compound detected in the LHAE. LPS-induced macrophage death was reversed by incubation with LHAE (1–30 μg/ml. Higher concentrations of the extract (≥100 μg/ml decreased macrophage viability (49–57% in the absence of LPS. LHAE (1–300 μg/ml attenuated H2O2 (34.6–53.4% but not nitric oxide production by these cells. At similar concentrations, the extract increased the activity of superoxide dismutase (15.3–63.5-fold and glutathione peroxidase (34.4–73.6-fold in LPS-treated macrophages. Only LPS-unstimulated macrophages presented enhanced phagocytosis (3.6–6.6-fold increase when incubated with LHAE (3–30 μg/ml. Overall, the LHAE obtained from peppermint modulates macrophage-mediated inflammatory responses, by stimulating the antioxidant pathway in these cells. These effects may be beneficial when the excessive activation of macrophages contributes to tissue damage during infectious disease.

  6. Garlic (Allium sativum) stimulates lipopolysaccharide-induced tumor necrosis factor-alpha production from J774A.1 murine macrophages.

    Science.gov (United States)

    Sung, Jessica; Harfouche, Youssef; De La Cruz, Melissa; Zamora, Martha P; Liu, Yan; Rego, James A; Buckley, Nancy E

    2015-02-01

    Garlic (Allium sativum) is known to have many beneficial attributes such as antimicrobial, antiatherosclerotic, antitumorigenetic, and immunomodulatory properties. In the present study, we investigated the effects of an aqueous garlic extract on macrophage cytokine production by challenging the macrophage J774A.1 cell line with the garlic extract in the absence or presence of lipopolysaccharide (LPS) under different conditions. The effect of allicin, the major component of crushed garlic, was also investigated. Using enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction, it was found that garlic and synthetic allicin greatly stimulated tumor necrosis factor-alpha (TNF-α) production in macrophages treated with LPS. The TNF-α secretion levels peaked earlier and were sustained for a longer time in cells treated with garlic and LPS compared with cells treated with LPS alone. Garlic acted in a time-dependent manner. We suggest that garlic, at least partially via its allicin component, acts downstream from LPS to stimulate macrophage TNF-α secretion.

  7. Low pH Environmental Stress Inhibits LPS and LTA-Stimulated Proinflammatory Cytokine Production in Rat Alveolar Macrophages

    Directory of Open Access Journals (Sweden)

    Stanley F. Fernandez

    2013-01-01

    Full Text Available Gastric aspiration increases the risks for developing secondary bacterial pneumonia. Cytokine elaboration through pathogen recognition receptors (PRRs is an important mechanism in initiating innate immune host response. Effects of low pH stress, a critical component of aspiration pathogenesis, on the PRR pathways were examined, specifically toll-like receptor-2 (TLR2 and TLR4, using isolated rat alveolar macrophages (aMØs. We assessed the ability of aMØs after brief exposure to acidified saline to elaborate proinflammatory cytokines in response to lipopolysaccharide (LPS and lipoteichoic acid (LTA stimulation, known ligands of TLR4 and TLR2, respectively. Low pH stress reduced LPS- and LTA-mediated cytokine release (CINC-1, MIP-2, TNF-, MCP-1, and IFN-. LPS and LTA increased intracellular Ca2+ concentrations while Ca2+ chelation by BAPTA decreased LPS- and LTA-mediated cytokine responses. BAPTA blocked the effects of low pH stress on most of LPS-stimulated cytokines but not of LTA-stimulated responses. In vivo mouse model demonstrates suppressed E. coli and S. pneumoniae clearance following acid aspiration. In conclusion, low pH stress inhibits antibacterial cytokine response of aMØs due to impaired TLR2 (MyD88 pathway and TLR4 signaling (MyD88 and TRIF pathways. The role of Ca2+ in low pH stress-induced signaling is complex but appears to be distinct between LPS- and LTA-mediated responses.

  8. Polyoxygenated steroids from the gorgonian Menella woodin with capabilities to modulate ROS levels in macrophages at response to LPS.

    Science.gov (United States)

    Tu, Vu A; Lyakhova, Ekaterina G; Diep, Chau N; Kalinovsky, Anatoly I; Dmitrenok, Pavel S; Cuong, Nguyen X; Thanh, Nguyen V; Menchinskaya, Ekaterina S; Pislyagin, Evgeny A; Nam, Nguyen H; Kiem, Phan V; Stonik, Valentin A; Minh, Chau V

    2015-12-01

    Four new polyoxygenated sterol derivatives (1-4) along with the compounds (5-7) previously known from other biological sources were isolated from the gorgonian Menella woodin, collected from the Vietnamese waters. Structures of 1-4 were elucidated by the detailed NMR spectroscopic and mass-spectrometric analyses as well as comparison with those reported in literature data. Compounds 1, 4, and 6 decrease the production of reactive oxygen species (ROS) by the murine macrophages of RAW 264.7 line at induction by endotoxic lipopolysaccharide (LPS) from Escherichia coli.

  9. Maturation Phenotype of Peripheral Blood Monocyte/Macrophage After Stimulation with Lipopolysaccharides in Irritable Bowel Syndrome

    Science.gov (United States)

    Rodríguez-Fandiño, Oscar A; Hernández-Ruiz, Joselín; López-Vidal, Yolanda; Charúa-Guindic, Luis; Escobedo, Galileo; Schmulson, Max J

    2017-01-01

    Background/Aims Abnormal immune regulation and increased intestinal permeability augmenting the passage of bacterial molecules that can activate immune cells, such as monocytes/macrophages, have been reported in irritable bowel syndrome (IBS). The aim was to compare the maturation phenotype of monocytes/macrophages (CD14+) from IBS patients and controls in the presence or absence of Escherichia coli lipopolysaccharides (LPS), in vitro. Methods Mononuclear cells were isolated from peripheral blood of 20 Rome II-IBS patients and 19 controls and cultured with or without LPS for 72 hours. The maturation phenotype was examined by flow cytometry as follows: M1-Early (CD11c+CD206−), M2-Advanced (CD11c−CD206+CX3CR1+); expression of membrane markers was reported as mean fluorescence intensity (MFI). The Mann-Whitney test was used and significance was set at P < 0.05. Results In CD14+ cells, CD11c expression decreased with vs without LPS both in IBS (MFI: 8766.0 ± 730.2 vs 12 920.0 ± 949.2, P < 0.001) and controls (8233.0 ± 613.9 vs 13 750.0 ± 743.3, P < 0.001). M1-Early cells without LPS, showed lower CD11c expression in IBS than controls (MFI: 11 540.0 ± 537.5 vs 13 860.0 ± 893.7, P = 0.040), while both groups showed less CD11c in response to LPS (P < 0.01). Furthermore, the percentage of “Intermediate” (CD11c+CD206+CX3CR1+) cells without LPS, was higher in IBS than controls (IBS = 9.5 ± 1.5% vs C = 4.9 ± 1.4%, P < 0.001). Finally, fractalkine receptor (CX3CR1) expression on M2-Advanced cells was increased when treated with LPS in controls but not in IBS (P < 0.001). Conclusions The initial phase of monocyte/macrophage maturation appears to be more advanced in IBS compared to controls. However, the decreased CX3CR1 in patients with IBS, compared to controls, when stimulated with LPS suggests a state of immune activation in IBS. PMID:28044051

  10. RNA from LPS-stirnulated macrophages induces the release of tumour necrosis factor-α and interleukin-1 by resident macrophages

    Directory of Open Access Journals (Sweden)

    R. A. Ribeiro

    1993-01-01

    Full Text Available The effect of exogenous RNA on many cellular functions has been studied in a variety of eukaryotic cells but there are few reports on macrophages. In the present study, it is demonstrated that cytoplasmatic RNA extracted from rat macrophages stimulated with Escherichia coli lipopolysaccharide (LPS, referred to as L-RNA, induced the release of TNF-α and IL-1 from monolayers of peritoneal resident macrophages. The activity of L-RNA was not altered by polymyxin B but was abolished by ribonuclease (RNase pretreatment, indicating the absence of LPS contamination and that the integrity of the polynucleotide chain is essential for this activity. Both the poly A(− and poly A(+ fractions obtained from L-RNA applied to oligo(dT–cellulose chromatography induced TNF-α and IL-1 release. The L-RNA-induced cytokine release was inhibited by dexamethasone and seemed to be dependent on protein synthesis since this effect was abolished by cycloheximide or actinomycin-D. The LPS-stimulated macrophages, when pre-incubated with [5-3H]-uridine, secreted a trichloroacetic acid (TCA precipitable material which was sensitive to RNase and KOH hydrolysis, suggesting that the material is RNA. This substance was also released from macrophage monolayers stimulated with IL-1β but not with TNF-α, IL-6 or IL-8. The substance secreted (3H-RNA sediments in the 4–5S region of a 5–20% sucrose gradient. These results show that L-RNA induces cytokine secretion by macrophage monolayers and support the idea that, during inflammation, stimulated macrophages could release RNA which may further induce the release of cytokines by the resident cell population.

  11. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Claudia A. [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium); Fievez, Laurence [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Neyrinck, Audrey M.; Delzenne, Nathalie M. [Universite catholique de Louvain, LDRI, Metabolism and Nutrition Research Group, Brussels B-1200 (Belgium); Bureau, Fabrice [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Vanbever, Rita, E-mail: rita.vanbever@uclouvain.be [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact of sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.

  12. Lipopolysaccharide (LPS) inhibits steroid production in theca cells of bovine follicles in vitro: distinct effect of LPS on theca cell function in pre- and post-selection follicles.

    Science.gov (United States)

    Magata, Fumie; Horiuchi, Maya; Miyamoto, Akio; Shimizu, Takashi

    2014-01-01

    In postpartum dairy cows, lipopolysaccharide (LPS) derived from gram-negative bacteria such as Escherichia coli causes uterine inflammation and leads to ovarian dysfunction. The aim of this study was to determine the effect of LPS on steroid production in bovine theca cells at different stages of follicular development. Theca cells isolated from pre- and post-selection follicles (PRFs, 8.5 mm in diameter, respectively) of bovine ovaries were exposed to LPS under luteinizing hormone (LH) conditions, estradiol (E2) conditions or both conditions in vitro. Bovine theca cells expressed the LPS receptor gene complex: Toll-like receptor 4 (TLR4), CD14 and MD2. LPS suppressed progesterone (P4) and androstenedione (A4) production with downregulation of steroidogenic enzyme transcripts when theca cells were stimulated with LH. By contrast, LPS did not affect P4 or A4 production when theca cells were stimulated with E2. P4 and A4 production in theca cells from PRFs was suppressed by LPS as early as at 48 h of culture, whereas the effect of LPS on theca cells from POFs was observed at 96 h of culture. The results demonstrate that LPS inhibits steroid production in theca cells under LH conditions. Moreover, theca cells from POFs showed a slower response to LPS compared with that of theca cells from PRFs, which might imply a distinct effect of LPS on follicles at different developmental stages. These findings suggest a possible mechanism of ovarian dysfunction and subsequent infertility in cows with endometritis.

  13. Bioactive extract from moringa oleifera inhibits the pro-inflammatory mediators in lipopolysaccharide stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Masoumeh Tangestani Fard

    2015-01-01

    Full Text Available Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E 2 , tumor necrosis factor alpha, interleukin (IL-6, and IL-1b. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders.

  14. Attenuation of lipopolysaccharide (LPS-induced cytotoxicity by tocopherols and tocotrienols

    Directory of Open Access Journals (Sweden)

    Keiko Nishio

    2013-01-01

    Full Text Available Lipopolysaccharide (LPS induces host inflammatory responses and tissue injury and has been implicated in the pathogenesis of various age-related diseases such as acute respiratory distress syndrome, vascular diseases, and periodontal disease. Antioxidants, particularly vitamin E, have been shown to suppress oxidative stress induced by LPS, but the previous studies with different vitamin E isoforms gave inconsistent results. In the present study, the protective effects of α- and γ-tocopherols and α- and γ-tocotrienols on the oxidative stress induced by LPS against human lung carcinoma A549 cells were studied. They suppressed intracellular reactive oxygen formation, lipid peroxidation, induction of inflammatory mediator cytokines, and cell death. Tocopherols were incorporated into cultured cells much slower than tocotrienols but could suppress LPS-induced oxidative stress at much lower intracellular concentration than tocotrienols. Considering the bioavailability, it was concluded that α-tocopherol may exhibit the highest protective capacity among the vitamin E isoforms against LPS-induced oxidative stress.

  15. Effects of Porphyromonas gingivalis lipopolysaccharide on the expression of key genes involved in cholesterol metabolism in macrophages

    Science.gov (United States)

    Liu, Fen; Wang, Yi; Xu, Jing; Liu, Fangqiang

    2016-01-01

    Introduction Cardiovascular diseases are positively correlated with periodontal disease. However, the molecular mechanisms linking atherosclerosis and periodontal infection are not clear. This study aimed to determine whether Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) altered the expression of genes regulating cholesterol metabolism in macrophages in the presence of low-density lipoprotein (LDL). Material and methods THP-1-derived macrophages were exposed to different concentrations (0.1, 1, 10 µg/ml) of LPS in the presence of 50 µg/ml native LDL. Macrophages were also incubated with 1 µg/ml LPS for varying times (0, 24, 48, or 72 h) in the presence of native LDL. Foam cell formation was determined by oil red O staining and cholesterol content quantification. CD36, lectin-like oxidized LDL receptor-1 (LOX-1), ATP-binding cassette G1 (ABCG1), and acetyl CoA acyltransferase 1 (ACAT1) expression levels were measured by western blot and qRT-PCR. Results Foam cell formation was induced in a time- and concentration-dependent manner as assessed by both morphological and biochemical criteria. Pg-LPS caused downregulation of CD36 and ABCG1 but upregulation of ACAT1, while LOX-1 expression was not affected (p = 0.137). Conclusions Pg-LPS appears to be an important link in the development of atherosclerosis by mechanisms targeting cholesterol homeostasis, namely, excess cholesterol ester formation via ACAT1 and reduced cellular cholesterol efflux via ABCG1. PMID:27695485

  16. Methods to Prevent or Treat Refractory Diseases by Focusing on Intestinal Microbes Using LPS and Macrophages.

    Science.gov (United States)

    Soma, Gen-Ichiro; Inagawa, Hiroyuki

    2015-08-01

    Intestinal microbes are known to influence host homeostasis by producing various substances. Recently, the presence of a diverse range of intestinal microbiota has been shown to play a key role in the maintenance of health, along with influencing the host's innate immunity towards various diseases. For example, fecal microbiota transplantation (FMT) from healthy individuals was remarkably effective in cases of refractory Clostridium difficile colitis. Conversely, decreased number of intestinal microbes resulting from the oral administration of antibiotics reportedly suppressed the antitumor effects of immunotherapy or anticancer drugs. Furthermore, it has been shown that a change in the intestinal environment triggered by oral administration of antibiotics resulted in increased number of drug-resistant microbes causing nosocomial infections. Intestinal microbes are also shown to be effective in cancer treatment as they activate macrophages at the site of cancer. One of the effects of intestinal microbes on hosts that has been gaining increasing attention is the biological regulation caused by the lipopolysaccharides (LPS) produced by Gram-negative bacteria. Among the intestinal microbiota present in the host, Gram-negative bacteria form the most dominant flora. The administration of antibiotics leads to a decreased number of intestinal microbes, as well as to suppression of cancer immunotherapy effects or anticancer drug effects, and this deterioration has been shown to be improved by oral administration of LPS. In this article, we discuss the functions of intestinal microbiota, that is currently undergoing a paradigm shift in relation to maintenance of health and the validity of LPS as a possible target for bio-treatment in the future.

  17. Cordycepin Inhibits Lipopolysaccharide (LPS-Induced Tumor Necrosis Factor (TNF-α Production via Activating AMP-Activated Protein Kinase (AMPK Signaling

    Directory of Open Access Journals (Sweden)

    Jian-Li Zhang

    2014-07-01

    Full Text Available Tumor necrosis factor (TNF-α is elevated during the acute phase of Kawasaki disease (KD, which damages vascular endothelial cells to cause systemic vasculitis. In the current study, we investigated the potential role of cordycepin on TNFα expression in both lipopolysaccharide (LPS-stimulated macrophages and ex vivo cultured peripheral blood mononuclear cells (PBMCs of KD patients. We found that cordycepin significantly suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs. Meanwhile, cordycepin alleviated TNFα production in KD patients’ PBMCs. PBMCs from healthy controls had a much lower level of basal TNF-α content than that of KD patients. LPS-induced TNF-α production in healthy controls’ PBMCs was also inhibited by cordycepin. For the mechanism study, we discovered that cordycepin activated AMP-activated protein kinase (AMPK signaling in both KD patients’ PBMCs and LPS-stimulated macrophages, which mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its inhibitor (compound C or by siRNA depletion alleviated cordycepin’s effect on TNFα production. Further, we found that cordycepin inhibited reactive oxygen species (ROS production and nuclear factor kappa B (NF-κB activation in LPS-stimulate RAW 264.7 cells or healthy controls’ PBMCs. PBMCs of KD patients showed higher basal level of ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In conclusion, our data showed that cordycepin inhibited TNFα production, which was associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this study should have significant translational relevance in managing this devastating disease.

  18. Cordycepin inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via activating amp-activated protein kinase (AMPK) signaling.

    Science.gov (United States)

    Zhang, Jian-Li; Xu, Ying; Shen, Jie

    2014-07-08

    Tumor necrosis factor (TNF)-α is elevated during the acute phase of Kawasaki disease (KD), which damages vascular endothelial cells to cause systemic vasculitis. In the current study, we investigated the potential role of cordycepin on TNFα expression in both lipopolysaccharide (LPS)-stimulated macrophages and ex vivo cultured peripheral blood mononuclear cells (PBMCs) of KD patients. We found that cordycepin significantly suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, cordycepin alleviated TNFα production in KD patients' PBMCs. PBMCs from healthy controls had a much lower level of basal TNF-α content than that of KD patients. LPS-induced TNF-α production in healthy controls' PBMCs was also inhibited by cordycepin. For the mechanism study, we discovered that cordycepin activated AMP-activated protein kinase (AMPK) signaling in both KD patients' PBMCs and LPS-stimulated macrophages, which mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its inhibitor (compound C) or by siRNA depletion alleviated cordycepin's effect on TNFα production. Further, we found that cordycepin inhibited reactive oxygen species (ROS) production and nuclear factor kappa B (NF-κB) activation in LPS-stimulate RAW 264.7 cells or healthy controls' PBMCs. PBMCs of KD patients showed higher basal level of ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In conclusion, our data showed that cordycepin inhibited TNFα production, which was associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this study should have significant translational relevance in managing this devastating disease.

  19. Brief Glutamine Pretreatment Increases Alveolar Macrophage CD163/Heme Oxygenase-1/p38-MAPK Dephosphorylation Pathway and Decreases Capillary Damage but Not Neutrophil Recruitment in IL-1/LPS-Insufflated Rats.

    Science.gov (United States)

    Fernandez-Bustamante, Ana; Agazio, Amanda; Wilson, Paul; Elkins, Nancy; Domaleski, Luke; He, Qianbin; Baer, Kaily A; Moss, Angela F D; Wischmeyer, Paul E; Repine, John E

    2015-01-01

    Glutamine (GLN) attenuates acute lung injury (ALI) but its effect on alveolar macrophages is unknown. We hypothesized that GLN pretreatment would induce the anti-inflammatory CD163/heme oxygenase (HO)-1/p38-MAPK dephosphorylation pathway in alveolar macrophages and reduce ALI in rats insufflated with interleukin-1 (IL-1) and lipopolysaccharide (LPS). Male Sprague-Dawley rats were randomized to the following groups: GLN-IL-1/LPS-, GLN+IL-1/LPS-, GLN-IL-1/LPS+, and GLN+IL-1/LPS+. GLN pretreatment was given via gavage (1 g/kg L-alanyl-L-glutamine) daily for 2 days. ALI was subsequently induced by insufflating 50 ng IL-1 followed by 5mg/kg E.coli LPS. After 24h, bronchoalveolar lavage (BAL) protein, lactate dehydrogenase (LDH) and neutrophil concentrations were analyzed. BAL alveolar macrophage CD163+ expression, HO-1 and p38-MAPK concentrations were measured, as well as alveolar macrophage tumor necrosis factor (TNF)-α and interleukin (IL)-10 concentrations. Histology and immunofluorescence studies were also performed. Following IL-1/LPS insufflation, GLN pretreated rats had significantly decreased BAL protein and LDH concentrations, but not BAL neutrophil counts, compared to non-GLN pretreated rats. The number of alveolar macrophages and the number of CD163+ macrophages were significantly increased in GLN pretreated IL-1/LPS-insufflated rats compared to non-GLN pretreated, IL-1/LPS-insufflated rats. GLN pretreatment before IL-1/LPS also significantly increased HO-1 concentrations and dephosphorylated p38-MAPK levels but not cytokine levels in alveolar macrophages. Immunofluorescence localized CD163 and HO-1 in alveolar macrophages. Short-term GLN pretreatment activates the anti-inflammatory CD163/HO-1/p38-MAPK dephosphorylation pathway of alveolar macrophages and decreases capillary damage but not neutrophil recruitment in IL-1/LPS-insufflated rats.

  20. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    Energy Technology Data Exchange (ETDEWEB)

    Russe, Otto Quintus, E-mail: quintus@russe.eu; Möser, Christine V., E-mail: chmoeser@hotmail.com; Kynast, Katharina L., E-mail: katharina.kynast@googlemail.com; King, Tanya S., E-mail: tanya.sarah.king@googlemail.com; Olbrich, Katrin, E-mail: Katrin.olbrich@gmx.net; Grösch, Sabine, E-mail: groesch@em.uni-frankfurt.de; Geisslinger, Gerd, E-mail: geisslinger@em.uni-frankfurt.de; Niederberger, Ellen, E-mail: e.niederberger@em.uni-frankfurt.de

    2014-05-09

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.

  1. Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages.

    Science.gov (United States)

    Basler, Tina; Jeckstadt, Sabine; Valentin-Weigand, Peter; Goethe, Ralph

    2006-03-01

    Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic enteritis in ruminants. In addition, MAP is presently the most favored pathogen linked to Crohn's disease. In this study, we were interested in dissecting the molecular mechanisms of macrophage activation or deactivation after infection with MAP. By subtractive hybridization of cDNAs, we identified the immune-responsive gene 1 (IRG1), which was expressed substantially higher in lipopolysaccharide (LPS)-stimulated than in MAP-infected murine macrophage cell lines. A nuclear run-on transcription assay revealed that the IRG1 gene was activated transcriptionally in LPS-stimulated and MAP-infected macrophages with higher expression in LPS-stimulated cells. Analysis of post-transcriptional regulation demonstrated that IRG1 mRNA stability was increased in LPS-stimulated but not in MAP-infected macrophages. Furthermore, IRG1 gene expression of macrophages infected with the nonpathogenic Mycobacterium smegmatis differed from those of LPS-stimulated and MAP-infected macrophages. At 2 h postinfection, M. smegmatis-induced IRG1 gene expression was as low as in MAP-infected, and 8 h postinfection, it increased nearly to the level in LPS-stimulated macrophages. Transient transfection experiments revealed similar IRG1 promoter activities in MAP- and M. smegmatis-infected cells. Northern analysis demonstrated increased IRG1 mRNA stability in M. smegmatis-infected macrophages. IRG1 mRNA stabilization was p38 mitogen-activated protein kinase-independent. Inhibition of protein synthesis revealed that constitutively expressed factors seemed to be responsible for IRG1 mRNA destabilization. Thus, our data demonstrate that transcriptional and post-transcriptional mechanisms are responsible for a differential IRG1 gene expression in murine macrophages treated with LPS, MAP, and M. smegmatis.

  2. LPS counter regulates RNA expression of extracellular proteases and their inhibitors in murine macrophages

    DEFF Research Database (Denmark)

    Hald, Andreas; Rønø, Birgitte; Lund, Leif R

    2012-01-01

    in extracellular matrix metabolism in the mouse derived-macrophage cell line RAW 264.7 following stimulation with LPS. Our results revealed that LPS induces the expression of matrix metalloproteinases while at the same time decreased the expression of matrix metalloproteinase inhibitors. The opposite scenario...

  3. Ethanol extract of Elaeocarpus petiolatus inhibits lipopolysaccharide-induced inflammation in macrophage cells.

    Science.gov (United States)

    Kwon, Ok-Kyoung; Ahn, Kyung-Seop; Park, Ji-Won; Jang, Ha-Young; Joung, Hyouk; Lee, Hyeong-Kyu; Oh, Sei-Ryang

    2012-04-01

    Elaeocarpus petiolatus is known to exert active oxygen scavenging, anti-aging, and whitening actions. However, the biological effects of E. petiolatus on inflammation and the underlying mechanisms are yet to be established. In the present study, we investigated the anti-inflammatory effects of the ethanol extract from E. petiolatus (EPE) bark in murine Raw264.7 macrophages stimulated with lipopolysaccharide (LPS). EPE inhibited the production of PGE(2), TNF-α, and IL-1β in a dose-dependent manner in Raw264.7 cells stimulated with LPS. The decrease in PGE(2) production was correlated with reduced COX-2 expression. Furthermore, EPE suppressed the phosphorylation of extracellular signal-related kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 as well as translocation of the NF-κB p65 subunit from the cytosol to nucleus. Our results suggest that EPE exerts anti-inflammatory activity through inhibition of inflammatory mediators, such as PGE(2), TNF-α, and IL-1β, and downregulation of COX-2 via suppression of NF-κB translocation and phosphorylation of ERK, JNK, and p38 in LPS-stimulated Raw264.7 cells.

  4. Sargachromenol from Sargassum micracanthum Inhibits the Lipopolysaccharide-Induced Production of Inflammatory Mediators in RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Eun-Jin Yang

    2013-01-01

    Full Text Available During our ongoing screening program designed to determine the anti-inflammatory potential of natural compounds, we isolated sargachromenol from Sargassum micracanthum. In the present study, we investigated the anti-inflammatory effects of sargachromenol on lipopolysaccharide (LPS-induced inflammation in murine RAW 264.7 macrophage cells and the underlying mechanisms. Sargachromenol significantly inhibited the LPS-induced production of nitric oxide (NO and prostaglandin E2 (PGE2 in a dose-dependent manner. It also significantly inhibited the protein expression of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2 in a dose-dependent manner in LPS-stimulated macrophage cells. Further analyses showed that sargachromenol decreased the cytoplasmic loss of inhibitor κBα (IκBα protein. These results suggest that sargachromenol may exert its anti-inflammatory effects on LPS-stimulated macrophage cells by inhibiting the activation of the NF-κB signaling pathway. In conclusion, to our knowledge, this is the first study to show that sargachromenol isolated from S. micracanthum has an effective anti-inflammatory activity. Therefore, sargachromenol might be useful for cosmetic, food, or medical applications requiring anti-inflammatory properties.

  5. Inhibition of CDKS by roscovitine suppressed LPS-induced *NO production through inhibiting NFkappaB activation and BH4 biosynthesis in macrophages.

    Science.gov (United States)

    Du, Jianhai; Wei, Na; Guan, Tongju; Xu, Hao; An, Jianzhong; Pritchard, Kirkwood A; Shi, Yang

    2009-09-01

    In inflammatory diseases, tissue damage is critically associated with nitric oxide ((*)NO) and cytokines, which are overproduced in response to cellular release of endotoxins. Here we investigated the inhibitory effect of roscovitine, a selective inhibitor of cyclin-dependent kinases (CDKs) on (*)NO production in mouse macrophages. In RAW264.7 cells, we found that roscovitine abolished the production of (*)NO induced by lipopolysaccharide (LPS). Moreover, roscovitine significantly inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA and protein expression. Our data also showed that roscovitine attenuated LPS-induced phosphorylation of IkappaB kinase beta (IKKbeta), IkappaB, and p65 but enhanced the phosphorylation of ERK, p38, and c-Jun NH(2)-terminal kinase (JNK). In addition, roscovitine dose dependently inhibited LPS-induced expression of cyclooxygenase-2 (COX)-2, IL-1beta, and IL-6 but not tumor necrosis factor (TNF)-alpha. Tetrahydrobiopterin (BH(4)), an essential cofactor for iNOS, is easily oxidized to 7,8-dihydrobiopterin (BH(2)). Roscovitine significantly inhibited LPS-induced BH(4) biosynthesis and decreased BH(4)-to-BH(2) ratio. Furthermore, roscovitine greatly reduced the upregulation of GTP cyclohydrolase-1 (GCH-1), the rate-limiting enzyme for BH(4) biosynthesis. Using other CDK inhibitors, we found that CDK1, CDK5, and CDK7, but not CDK2, significantly inhibited LPS-induced (*)NO production in macrophages. Similarly, in isolated peritoneal macrophages, roscovitine strongly inhibited (*)NO production, iNOS, and COX-2 upregulation, activation of NFkappaB, and induction of GCH-1 by LPS. Together, our data indicate that roscovitine abolishes LPS-induced (*)NO production in macrophages by suppressing nuclear factor-kappaB activation and BH(4) biosynthesis, which might be mediated by CDK1, CDK5, and CDK7. Our results also suggest that roscovitine may inhibit inflammation and that CDKs may play important roles in the mechanisms by which

  6. Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages.

    Science.gov (United States)

    Rabe, Shahrzad Zamani Taghizadeh; Ghazanfari, Tooba; Siadat, Zahra; Rastin, Maryam; Rabe, Shahin Zamani Taghizadeh; Mahmoudi, Mahmoud

    2015-04-01

    Garlic 14-kDa protein is purified from garlic (Allium sativum L.) which is used in traditional medicine and exerts various immunomodulatory activities. The present study investigated the suppressive effect of garlic 14-kDa protein on LPS-induced expression of pro-inflammatory mediators and underlying mechanism in inflammatory macrophages. J774A.1 macrophages were treated with 14-kDa protein (5-30 μg/ml) with/without LPS (1 μg/ml) and the production of inflammatory mediators such as prostaglandin E2 (PGE2), TNF-α, and IL-1β released were measured using ELISA. Nitric oxide (NO) production was determined using the Griess method. The anti-inflammatory activity of 14-kDa protein was examined by measuring inducible nitric oxide synthase and cyclooxygenase-2 proteins using western blot. The expression of nuclear NF-κB p65 subunit was assessed by western blot. Garlic 14-kDa protein significantly inhibited the excessive production of NO, PGE, TNF-α, and IL-1β in lipopolysaccharide (LPS)-activated J774A.1 macrophages in a concentration-related manner without cytotoxic effect. Western blot analysis demonstrated that garlic 14-kDa protein suppressed corresponding inducible NO synthase expression and activated cyclooxygenase-2 protein expression. The inhibitory effect was mediated partly by a reduction in the activity and expression of transcription factor NF-κB protein. Our results suggested, for the first time, garlic 14-kDa protein exhibits anti-inflammatory properties in macrophages possibly by suppressing the inflammatory mediators via the inhibition of transcription factor NF-κB signaling pathway. The traditional use of garlic as anti-inflammatory remedy could be ascribed partly to 14-kDa protein content. This protein might be a useful candidate for controlling inflammatory diseases and further investigations in vivo.

  7. An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression.

    Science.gov (United States)

    Scott, M G; Rosenberger, C M; Gold, M R; Finlay, B B; Hancock, R E

    2000-09-15

    Certain cationic antimicrobial peptides block the binding of LPS to LPS-binding protein and reduce the ability of LPS to induce the production of inflammatory mediators by macrophages. To gain a more complete understanding of how LPS activates macrophages and how cationic peptides influence this process, we have used gene array technology to profile gene expression patterns in macrophages treated with LPS in the presence or the absence of the insect-derived cationic antimicrobial peptide CEMA (cecropin-melittin hybrid). We found that CEMA selectively blocked LPS-induced gene expression in the RAW 264.7 macrophage cell line. The ability of LPS to induce the expression of >40 genes was strongly inhibited by CEMA, while LPS-induced expression of another 16 genes was relatively unaffected. In addition, CEMA itself induced the expression of a distinct set of 35 genes, including genes involved in cell adhesion and apoptosis. Thus, CEMA, a synthetic alpha-helical peptide, selectively modulates the transcriptional response of macrophages to LPS and can alter gene expression in macrophages.

  8. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages.

    Science.gov (United States)

    Villar-Lorenzo, Andrea; Ardiles, Alejandro E; Arroba, Ana I; Hernández-Jiménez, Enrique; Pardo, Virginia; López-Collazo, Eduardo; Jiménez, Ignacio A; Bazzocchi, Isabel L; González-Rodríguez, Águeda; Valverde, Ángela M

    2016-12-15

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation.

  9. Identification of a novel compound that inhibits iNOS and COX-2 expression in LPS-stimulated macrophages from Schisandra chinensis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, You Jin [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Park, Sun Young [Korea BIO-IT Foundry Center, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Sun Gun; Park, Da Jung; Kang, Jum Soon [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Lee, Sang Joon [Department of Microbiology, Pusan National University, Busan 609-735 (Korea, Republic of); Yoon, Sik [Department of Anatomy, School of Medicine, Pusan National University, Yangsan 626-770 (Korea, Republic of); Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan 626-770 (Korea, Republic of); Kim, Young Hun [Korea BIO-IT Foundry Center, Pusan National University, Busan 609-735 (Korea, Republic of); Bae, Yoe-Sik, E-mail: yoesik@dau.ac.kr [Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Choi, Young-Whan, E-mail: ywchoi@pusan.ac.kr [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of)

    2010-01-22

    A novel {alpha}-iso-cubebenol, which has anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, was isolated from the fruits of Schisandra chinensis. {alpha}-iso-cubebenol inhibited LPS-induced nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) production. Consistent with these findings, {alpha}-iso-cubebenol also reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 at the protein and mRNA levels in a concentration-dependent manner. {alpha}-iso-cubebenol also inhibited LPS-induced nuclear translocation of the NF-{kappa}B p65 subunit. Furthermore, {alpha}-iso-cubebenol suppressed the phosphorylation of ERK, JNK, and p38 kinase induced by LPS. Since the novel {alpha}-iso-cubebenol blocked the production of several pro-inflammatory mediators induced by LPS in macrophages, the molecule can be useful material for the development of anti-inflammatory agents against bacterial infections or endotoxin.

  10. Molecular hydrogen inhibits lipopolysaccharide-triggered NLRP3 inflammasome activation in macrophages by targeting the mitochondrial reactive oxygen species.

    Science.gov (United States)

    Ren, Jian-Dong; Wu, Xiao-Bo; Jiang, Rui; Hao, Da-Peng; Liu, Yi

    2016-01-01

    The NLRP3 inflammasome, an intracellular multi-protein complex controlling the maturation of cytokine interleukin-1β, plays an important role in lipopolysaccharide (LPS)-induced inflammatory cascades. Recently, the production of mitochondrial reactive oxygen species (mtROS) in macrophages stimulated with LPS has been suggested to act as a trigger during the process of NLRP3 inflammasome activation that can be blocked by some mitochondria-targeted antioxidants. Known as a ROS scavenger, molecular hydrogen (H2) has been shown to possess therapeutic benefit on LPS-induced inflammatory damage in many animal experiments. Due to the unique molecular structure, H2 can easily target the mitochondria, suggesting that H2 is a potential antagonist of mtROS-dependent NLRP3 inflammasome activation. Here we have showed that, in mouse macrophages, H2 exhibited substantial inhibitory activity against LPS-initiated NLRP3 inflammasome activation by scavenging mtROS. Moreover, the elimination of mtROS by H2 resultantly inhibited mtROS-mediated NLRP3 deubiquitination, a non-transcriptional priming signal of NLRP3 in response to the stimulation of LPS. Additionally, the removal of mtROS by H2 reduced the generation of oxidized mitochondrial DNA and consequently decreased its binding to NLRP3, thereby inhibiting the NLRP3 inflammasome activation. Our findings have, for the first time, revealed the novel mechanism underlying the inhibitory effect of molecular hydrogen on LPS-caused NLRP3 inflammasome activation, highlighting the promising application of this new antioxidant in the treatment of LPS-associated inflammatory pathological damage.

  11. Prenatal transportation alters the acute phase response (APR) of bull calves exposed to a lipopolysaccharide (LPS) challenge

    Science.gov (United States)

    This study was designed to determine if prenatal transportation influences the acute phase response (APR) to a postnatal Lipopolysaccharide (LPS) challenge. Pregnant Brahman cows (n=96) matched by age and parity were separated into transported (TRANS; n=48; transported for 2 hours on gestational day...

  12. Ethanol extract of Justicia gendarussa inhibits lipopolysaccharide stimulated nitric oxide and matrix metalloproteinase-9 expression in murine macrophage.

    Science.gov (United States)

    Varma, R Sandeep; Ashok, G; Vidyashankar, S; Patki, P; Nandakumar, Krishna S

    2011-06-01

    Justicia gendarussa Burm (Acanthaceae) is a plant used to treat inflammatory diseases such as rheumatoid arthritis. However, the mechanism involved in the anti-inflammatory properties of this plant has not been studied well. The in vitro anti-inflammatory activities of ethanol extract of Justicia gendarussa leaves (J-01) are studied here for the first time. The ethanol extract, J-01 was prepared from the leaves of Justicia gendarussa. The inhibitory effect of J-01 in nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) and matrix metalloproteinase-9 (MMP-9) gene expressions were studied in lipopolysaccharide (LPS) stimulated macrophage cell line RAW 264.7. J-01 in a concentration dependent manner (200-50 μg/mL) attenuated NO production from macrophage stimulated with LPS (1 μg/mL). Further, J-01 significantly suppressed iNOS mRNA expression in these cells. J-01 has also downregulated the MMP-9 gene expression in LPS stimulated macrophage. The modulatory function of J-01 in inhibiting NO, iNOS, and MMP-9 as obtained from the present in vitro studies provide first scientific evidence to support the anti-inflammatory properties of Justicia gendarussa. This plant may have potential use in the management of inflammatory conditions such as arthritis.

  13. Reduced caveolin-1 promotes hyper-inflammation due to abnormal heme oxygenase-1 localizationin LPS challenged macrophages with dysfunctional CFTR

    Science.gov (United States)

    Zhang, Ping-Xia; Murray, Thomas S.; Villella, Valeria Rachela; Ferrari, Eleonora; Esposito, Speranza; D'Souza, Anthony; Raia, Valeria; Maiuri, Luigi; Krause, Diane S.; Egan, Marie E.; Bruscia, Emanuela M.

    2013-01-01

    We have previously reported that TLR4 signaling is increased in lipopolysaccharide (LPS) -stimulated Cystic Fibrosis (CF) macrophages (MΦs), contributing to the robust production of pro-inflammatory cytokines. The heme oxygenase (HO-1)/carbon monoxide (CO) pathway modulates cellular redox status, inflammatory responses, and cell survival. The HO-1 enzyme, together with the scaffold protein caveolin 1 (CAV-1), also acts as a negative regulator of TLR4 signaling in MΦs. Here, we demonstrate that in LPS-challenged CF MΦs, HO-1 does not compartmentalize normally to the cell surface and instead accumulates intracellularly. The abnormal HO-1 localization in CF MΦs in response to LPS is due to decreased CAV-1 expression, which is controlled by the cellular oxidative state, and is required for HO-1 delivery to the cell surface. Overexpression of HO-1 or stimulating the pathway with CO-releasing molecules (CORM2)enhancesCAV-1 expression in CF MΦs, suggesting a positive-feed forward loop between HO-1/CO induction and CAV-1 expression. These manipulations reestablished HO-1 and CAV-1 cell surface localization in CF MΦ's. Consistent with restoration of HO-1/CAV-1 negative regulation of TLR4 signaling, genetic or pharmacological (CORM2)-induced enhancement of this pathway decreased the inflammatory response of CF MΦs and CF mice treated with LPS. In conclusion, our results demonstrate that the counter-regulatory HO-1/CO pathway, which is critical in balancing and limiting the inflammatory response, is defective in CF MΦs through a CAV-1-dependent mechanism, exacerbating the CF MΦ's response to LPS. This pathway could be a potential target for therapeutic intervention for CF lung disease. PMID:23606537

  14. Comparison of Anti-Inflammatory Effects of Flavonoid-Rich Common and Tartary Buckwheat Sprout Extracts in Lipopolysaccharide-Stimulated RAW 264.7 and Peritoneal Macrophages

    Directory of Open Access Journals (Sweden)

    Tae Gyu Nam

    2017-01-01

    Full Text Available Buckwheat sprouts have been widely consumed all around world due to their great abundance of bioactive compounds. In this study, the anti-inflammatory effects of flavonoid-rich common buckwheat sprout (CBS and tartary buckwheat sprout (TBS extracts were evaluated in lipopolysaccharide- (LPS- stimulated RAW 264.7 murine macrophages and primary peritoneal macrophages from male BALB/c mice. Based on the reversed-phase HPLC analysis, the major flavonoids in CBS were determined to be C-glycosylflavones (orientin, isoorientin, vitexin, and isovitexin, quercetin-3-O-robinobioside, and rutin, whereas TBS contained only high amounts of rutin. The TBS extract exhibited higher inhibitory activity as assessed by the production of proinflammatory mediators such as nitric oxide and cytokines including tumor necrosis factor-α, interleukin- (IL- 6, and IL-12 in LPS-stimulated RAW 264.7 macrophages than CBS extract. In addition, TBS extract suppressed nuclear factor-kappa B activation by preventing inhibitor kappa B-alpha degradation and mitogen-activated protein kinase phosphorylation in LPS-stimulated RAW 264.7 macrophages. Moreover, the TBS extract markedly reduced LPS-induced cytokine production in peritoneal macrophages. Taken together, these findings suggest that TBS extract can be a potential source of anti-inflammatory agents that may influence macrophage-mediated inflammatory disorders.

  15. Lipopolysaccharide (LPS) inner-core phosphates are required for complete LPS synthesis and transport to the outer membrane in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Delucia, Angela M; Six, David A; Caughlan, Ruth E; Gee, Patricia; Hunt, Ian; Lam, Joseph S; Dean, Charles R

    2011-01-01

    Gram-negative outer membrane (OM) integrity is maintained in part by Mg(2+) cross-links between phosphates on lipid A and on core sugars of adjacent lipopolysaccharide (LPS) molecules. In contrast to other Gram-negative bacteria, waaP, encoding an inner-core kinase, could not be inactivated in Pseudomonas aeruginosa. To examine this further, expression of the kinases WaaP or WapP/WapQ/PA5006 was placed under the control of the arabinose-regulated pBAD promoter. Growth of these strains was arabinose dependent, confirming that core phosphorylation is essential in P. aeruginosa. Transmission electron micrographs of kinase-depleted cells revealed marked invaginations of the inner membrane. SDS-PAGE of total LPS from WaaP-depleted cells showed accumulation of a fast-migrating band. Mass spectrometry (MS) analysis revealed that LPS from these cells exhibits a unique truncated core consisting of two 3-deoxy-d-manno-octulosonic acids (Kdo), two l-glycero-d-manno-heptoses (Hep), and one hexose but completely devoid of phosphates, indicating that phosphorylation by WaaP is necessary for subsequent core phosphorylations. MS analysis of lipid A from WaaP-depleted cells revealed extensive 4-amino-4-deoxy-l-arabinose modification. OM prepared from these cells by Sarkosyl extraction of total membranes or by sucrose density gradient centrifugation lacked truncated LPS. Instead, truncated LPS was detected in the inner membrane fractions, consistent with impaired transport/assembly of this species into the OM. IMPORTANCE Gram-negative bacteria have an outer membrane (OM) comprised of a phospholipid inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The OM protects cells from toxic molecules and is important for survival during infection. The LPS core kinase gene waaP can be deleted in several Gram-negative bacteria but not in Pseudomonas aeruginosa. We used a controlled-expression system to deplete WaaP directly in P. aeruginosa cells, which halted growth. WaaP depletion

  16. Esculetin attenuates lipopolysaccharide (LPS)-induced neuroinflammatory processes and depressive-like behavior in mice.

    Science.gov (United States)

    Zhu, Lingpeng; Nang, Chen; Luo, Fen; Pan, Hong; Zhang, Kai; Liu, Jingyan; Zhou, Rui; Gao, Jin; Chang, Xiayun; He, He; Qiu, Yue; Wang, Jinglei; Long, Hongyan; Liu, Yu; Yan, Tianhua

    2016-09-01

    Esculetin is one of the major bioactive compounds of Cichorium intybus L. The main purpose of the present study was to investigate the effects and possible underlying mechanism of esculetin (Esc) on lipopolysaccharide (LPS)-induced neuroinflammatory processes and depressive-like behavior in mice. Mice were pretreatment with esculetin (Esc, 20, 40mg/kg, intragastric administration) and a positive control drug fluoxetine (Flu, 20mg/kg, intragastric administration) once daily for 7 consecutive days. At the 7th day, LPS (0.83mg/kg) was intraperitoneal injection 30min after drug administration. Higher dose (40mg/kg) of esculetin and fluoxetine significantly decreased immobility time in TST and FST. There was no significant effect on locomotor activity in mice by the drugs. Esculetin significantly reduced LPS-induced elevated levels of pro-inflammatory cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in serum and hippocampus. Esculetin attenuated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression by inhibiting nuclear factor-κB (NF-κB) pathway in hippocampus. In addition, neuroprotection of esculetin was attributed to the upregulations of Brain derived neurotrophic factor (BDNF) and phosphorylated tyrosine kinase B (p-TrkB) protein expression in hippocampus. The obtained results demonstrated that esculetin exhibited antidepressant-like effects which might be related to the inhibition of NF-κB pathway and the activation of BDNF/TrkB signaling.

  17. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  18. Lanthanum Chloride Inhibiting Expression of Inducible Nitric Oxide Synthase in RAW264.7 Macrophages Induced by Lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    Guo Fei; Lou Yuanlei; Wang Yang; Xie An; Li Guohui

    2007-01-01

    Nitric oxide (NO) and its reaction products were key players in the pathophysiology of sepsis and shock. The present study was designed to explore the effects of lanthanum chloride (LaCl3) on inducible nitric oxide synthase (iNOS) expression, at both gene and protein levels, in RAW264.7 macrophages induced by Lipopolysaccharide (LPS). Reverse transcription polymerase chain reaction (RT-PCR), immunofluorescence, and western blot were employed to measure iNOS gene expression, localization, and protein expression respectively. NO production in culture supernatants was detected by the nitrate reductase method. The results showed that LaCl3 significantly attenuated the iNOS gene and protein expression, as well as NO production in RAW264.7cells induced by LPS.

  19. Leptomeningeal Cells Transduce Peripheral Macrophages Inflammatory Signal to Microglia in Reponse to Porphyromonas gingivalis LPS

    Directory of Open Access Journals (Sweden)

    Yicong Liu

    2013-01-01

    Full Text Available We report here that the leptomeningeal cells transduce inflammatory signals from peripheral macrophages to brain-resident microglia in response to Porphyromonas gingivalis (P.g. LPS. The expression of Toll-like receptor 2 (TLR2, TLR4, TNF-α, and inducible NO synthase was mainly detected in the gingival macrophages of chronic periodontitis patients. In in vitro studies, P.g. LPS induced the secretion of TNF-α and IL-1β from THP-1 human monocyte-like cell line and RAW264.7 mouse macrophages. Surprisingly, the mean mRNA levels of TNF-α and IL-1β in leptomeningeal cells after treatment with the conditioned medium from P.g. LPS-stimulated RAW264.7 macrophages were significantly higher than those after treatment with P.g. LPS alone. Furthermore, the mean mRNA levels of TNF-α and IL-1β in microglia after treatment with the conditioned medium from P.g. LPS-stimulated leptomeningeal cells were significantly higher than those after P.g. LPS alone. These observations suggest that leptomeninges serve as an important route for transducing inflammatory signals from macrophages to microglia by secretion of proinflammatory mediators during chronic periodontitis. Moreover, propolis significantly reduced the P.g. LPS-induced TNF-α and IL-1 β production by leptomeningeal cells through inhibiting the nuclear factor-κB signaling pathway. Together with the inhibitory effect on microglial activation, propolis may be beneficial in preventing neuroinflammation during chronic periodontitis.

  20. Lemon Pepper Fruit Extract (Zanthoxylum acanthopodium DC. Suppresses the Expression of Inflammatory Mediators in Lipopolysaccharide-Induced Macrophages In Vitro

    Directory of Open Access Journals (Sweden)

    Yanti

    2011-01-01

    Full Text Available Problem statement: Lemon pepper fruits (Zanthoxylum acanthopodium DC.; Rutaceae have been used as a traditional source against stomach ache by Batak people in North Sumatera province, Indonesia. However, its scientific evidence for treatment of inflammatory disorders particularly gastritis has not been reported. Approach: Here, we investigated the inhibitory effects of Lemon Pepper Fruit Extract (LPFE against inflammatory biomarkers by conducting cell culture experiments in vitro. The fruits of lemon pepper were dried and extracted twice in 70% ethanol, followed by evaporation and freeze-drying. The concentrated extract was further tested for its potential inhibition on the protein and gene expression of several inflammatory biomarkers, i.e., Tumor Necrosis Factor (TNF-α, Interleukin (IL-6, inducible Nitric Oxyde Synthase (iNOS, Cyclooxygenase (COX-2 and Matrix Metalloproteinase (MMP-9, in lipopolysaccharide (LPS-induced macrophages by performing Western blot, gelatin zymography and Reverse Transcription-Polymerase Chain Reaction (RT-PCR. Results: LPFE (1-10 μg mL-1 and LPS (2 μg mL-1 had no cytotoxicity effects on macrophages. LPFE dose dependently decreased the expression of TNF-α and COX-2 proteins and MMP-9 activity in macrophages treated with LPS. At the gene level, LPFE were effectively found to block the mRNA expression of TNF-α, IL-6, iNOS, COX-2 and MMP-9. Conclusion: Our results suggest that LPFE significantly inhibits selected inflammatory biomarkers at the protein and gene levels in LPS-induced macrophages. Further in vivo study using animal models is needed to determine the exact anti-inflammatory potential of LPFE.

  1. Ultrapotent effects of salvinorin A, a hallucinogenic compound from Salvia divinorum, on LPS-stimulated murine macrophages and its anti-inflammatory action in vivo.

    Science.gov (United States)

    Aviello, Gabriella; Borrelli, Francesca; Guida, Francesca; Romano, Barbara; Lewellyn, Kevin; De Chiaro, Maria; Luongo, Livio; Zjawiony, Jordan K; Maione, Sabatino; Izzo, Angelo A; Capasso, Raffaele

    2011-09-01

    The hallucinogenic compound, salvinorin A, is a potent κ-opioid receptor (KOR) agonist. However, other target(s) than the KOR, such as the cannabinoid CB1 receptor, have been proposed to explain its multiple pharmacological actions. Here, we have evaluated the effect of salvinorin A in lipopolysaccharide (LPS)-stimulated macrophages as well as in models of inflammation in vivo. Salvinorin A (0.1-10 pM) reduced LPS-stimulated nitrite, TNF-α and IL-10 (but not IL-1β) levels as well as iNOS (but not COX-2) LPS-induced hyperexpression. The effect of salvinorin A on nitrite levels was reverted by the opioid antagonist naloxone, the KOR antagonist nor-binaltorphimine and by the CB1 antagonist rimonabant Salvinorin A also prevented KOR and CB1 hyperexpression induced by LPS. In vivo, salvinorin A reduced the LPS- and the carrageenan-induced paw oedema and formalin-induced inflammatory pain, in a nor-binaltorphimine and rimonabant-sensitive manner. It is concluded that salvinorin A-via KORs and CB1 receptors-exerts ultrapotent actions on macrophages and also shows moderate antinflammatory effects in vivo.

  2. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    Science.gov (United States)

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  3. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages.

    Directory of Open Access Journals (Sweden)

    Bruno Bueno-Silva

    Full Text Available Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP, the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1 and of Il1β and Il1f9 (fold-change rate > 5, which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal, also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.

  4. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages.

    Science.gov (United States)

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S; Alencar, Severino M; Rosalen, Pedro L; Mayer, Marcia P A

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.

  5. Effect of lipopolysaccharide on expression and characterization of cholecystokinin receptors in rat pulmonary interstitial macrophages

    Institute of Scientific and Technical Information of China (English)

    Shun-jiang XU; Wei-juan GAO; Bin CONG; Yu-xia YAO; Zhen-yong GU

    2004-01-01

    AIM: To investigate the effect of lipopolysaccharide (LPS) on the expression and the binding characteristics of cholecystokinin receptors (CCK-R) in rat pulmonary interstitial macrophages (PIMs). METHODS: The PIMs isolated from rat lung tissues were purified by the collagenase digestion method combined with alveolar lavage and pulmonary vessel perfusion. The expression of CCK-R mRNA was detected by RT-PCR and Southern blot analysis and the binding experiments were performed by radioligand binding assay (RBA). RESULTS: CCK-A receptor (CCK-AR) and CCK-B receptor (CCK-BR) mRNA were detected in rat PIMs and their RT-PCR amplified products had a size of approximately 1.37 kb and 480 bp, respectively. The relative expression of CCK-BR mRNA was higher than that of CCK-AR mRNA after incubation with LPS for 0.5, 2, and 6 h. The expression of CCK-R mRNA could be upregulated obviously by LPS. Southern blot analysis of RT-PCR amplified CCK-AR and CCK-BR mRNA products using [γ-32p]ATP 5′-end-labelled probe showed specific hybridization bands. The specific binding of [3H] CCK-8S to rat PIM membranes was detected in the rats administered with LPS for 48 h, but not in normal rats.Scatchard analysis of the saturation curves suggested the presence of CCK-R with a high affinity (Kd=0.68+0.28 nmol/L) and a low binding capacity (Bmax=32.5+2.7 fmol.mg-1 protein) in rat PIMs. The specific binding of [3H] CCK-8S to rat PIM membranes was inhibited by unlabelled CCK-8S (ICs0=2.3±0.8 nmol/L), CCK-AR specific antagonist CR1409 (IC50=0.19±0.06 μrmol/L) and CCK-BR specific antagonist CR2945 (IC50=3.2± 1.1 nmol/L).CONCLUSION: Two types of functional CCK-AR and CCK-BR existed in rat PIMs and their expression could be upregulated by LPS.

  6. Inhibitory effects of salidroside on nitric oxide and prostaglandin E₂ production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Song, Bocui; Huang, Guoren; Xiong, Ying; Liu, Jingbo; Xu, Linli; Wang, Zhenning; Li, Gen; Lu, Jing; Guan, Shuang

    2013-11-01

    The aim of this study was to evaluate the effect of salidroside on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E₂ (PGE₂) production in RAW 264.7 macrophages and related anti-inflammatory mechanism. PGE₂ production was measured by enzyme-linked immunosorbent assay (ELISA); NO production was tested by Griess reagent. Inducible nitric oxidesynthase (iNOS) and COX-2 were determined by RT-PCR and Western blot analysis; IκB and P-IκB protein express were detected by Western blot analysis; cytosolic free Ca²⁺ ([Ca²⁺](i)) was measured by a fluorescent microscope. The data showed salidroside inhibited LPS-induced NO and PGE₂ production and reduced iNOS and COX-2 protein expression in RAW 264.7 macrophages. Consistent with these observations, salidroside inhibited LPS-induced cytosolic free Ca²⁺ concentration ([Ca²⁺](i)) elevation. In addition, we further investigated signal transduction mechanisms and found that the activation of NF-κB was suppressed by salidroside in a dose-dependent manner. These results suggest that salidroside suppresses NO and PGE₂ production by inhibiting iNOS and COX-2 protein expression, level of [Ca²⁺](i), and activation of NF-κB signal transduction pathway.

  7. Naringin lauroyl ester inhibits lipopolysaccharide-induced activation of nuclear factor κB signaling in macrophages.

    Science.gov (United States)

    Hattori, Hiromi; Tsutsuki, Hiroyasu; Nakazawa, Masami; Ueda, Mitsuhiro; Ihara, Hideshi; Sakamoto, Tatsuji

    2016-07-01

    Naringin (Nar) has antioxidant and anti-inflammatory properties. It was recently reported that enzymatic modification of Nar enhanced its functions. Here, we acylated Nar with fatty acids of different sizes (C2-C18) using immobilized lipase from Rhizomucor miehei and investigated the anti-inflammatory effects of these molecules. Treatment of murine macrophage RAW264.7 cells with Nar alkyl esters inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with Nar lauroyl ester (Nar-C12) showing the strongest effect. Furthermore, Nar-C12 suppressed the LPS-induced expression of inducible NO synthase by blocking the phosphorylation of inhibitor of nuclear factor (NF)-κB-α as well as the nuclear translocation of NF-κB subunit p65 in macrophage cells. Analysis of Nar-C12 uptake in macrophage cells revealed that Nar-C12 ester bond was partially degraded in the cell membrane and free Nar was translocated to the cytosol. These results indicate that Nar released from Nar-C12 exerts anti-inflammatory effects by suppressing NF-κB signaling pathway.

  8. Methyl 9-Oxo-(10E,12E)-octadecadienoate Isolated from Fomes fomentarius Attenuates Lipopolysaccharide-Induced Inflammatory Response by Blocking Phosphorylation of STAT3 in Murine Macrophages.

    Science.gov (United States)

    Choe, Ji-Hyun; Yi, Young-Joo; Lee, Myeong-Seok; Seo, Dong-Won; Yun, Bong-Sik; Lee, Sang-Myeong

    2015-09-01

    Fomes fomentarius is a fungus of the Polyporaceae family and is used in traditional oriental therapies. Although the anti-inflammatory activities of this species have been previously reported, the identity of the bioactive compounds responsible for this activity remains unknown. Here, we investigated whether methyl 9-oxo-(10E,12E)-octadecadienoate (FF-8) purified from F. fomentarius exerts anti-inflammatory activity in murine macrophages stimulated with lipopolysaccharide (LPS). FF-8 suppressed secretion of nitric oxide (NO) and prostaglandin E2 through downregulation of inducible NO synthase and cyclooxygenase-2 expression induced by LPS. In addition, pretreatment of cells with FF-8 led to a reduction in levels of secreted inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 in macrophages stimulated with LPS. Conversely, FF-8 did not affect nuclear factor κB, p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase pathways. Instead, FF-8 specifically interfered with signal transducer and activator of transcription 3 (STAT3) phosphorylation induced by LPS. Collectively, this study demonstrated that FF-8 purified from F. fomentarius suppresses inflammatory responses in macrophages stimulated with LPS by inhibiting STAT3 activation. Further studies will be required to elucidate the anti-inflammatory effect of FF-8 in vivo.

  9. Lipopolysaccharide Induces Alveolar Macrophage Necrosis via CD14 and the P2X7 Receptor Leading to Interleukin-1α Release.

    Science.gov (United States)

    Dagvadorj, Jargalsaikhan; Shimada, Kenichi; Chen, Shuang; Jones, Heather D; Tumurkhuu, Gantsetseg; Zhang, Wenxuan; Wawrowsky, Kolja A; Crother, Timothy R; Arditi, Moshe

    2015-04-21

    Acute lung injury (ALI) remains a serious health issue with little improvement in our understanding of the pathophysiology and therapeutic approaches. We investigated the mechanism that lipopolysaccharide (LPS) induces early neutrophil recruitment to lungs and increases pulmonary vascular permeability during ALI. Intratracheal LPS induced release of pro-interleukin-1α (IL-1α) from necrotic alveolar macrophages (AM), which activated endothelial cells (EC) to induce vascular leakage via loss of vascular endothelial (VE)-cadherin. LPS triggered the AM purinergic receptor P2X7(R) to induce Ca(2+) influx and ATP depletion, which led to necrosis. P2X7R deficiency significantly reduced necrotic death of AM and release of pro-IL-1α into the lung. CD14 was required for LPS binding to P2X7R, as CD14 neutralization significantly diminished LPS induced necrotic death of AM and pro-IL-1α release. These results demonstrate a key role for pro-IL-1α from necrotic alveolar macrophages in LPS-mediated ALI, as a critical initiator of increased vascular permeability and early neutrophil infiltration.

  10. Estrogen-induced nongenomic calcium signaling inhibits lipopolysaccharide-stimulated tumor necrosis factor α production in macrophages.

    Directory of Open Access Journals (Sweden)

    Limin Liu

    Full Text Available Estrogen is traditionally thought to exert genomic actions through members of the nuclear receptor family. Here, we investigated the rapid nongenomic effects of 17β-estradiol (E2 on tumor necrosis factor α (TNF-α production following lipopolysaccharide (LPS stimulation in mouse bone marrow-derived macrophages (BMMs. We found that LPS induced TNF-α production in BMMs via phosphorylation of p38 mitogen-activated protein kinase (MAPK. E2 itself did not affect the MAPK pathway, although it attenuated LPS-induced TNF-α production through suppression of p38 MAPK activation. Recently, G protein-coupled receptor 30 (GPR30 was suggested to be a membrane estrogen receptor (mER that can mediate nongenomic estradiol signaling. We found that BMMs expressed both intracellular estrogen receptors (iER and mER GPR30. The specific GPR30 antagonist G-15 significantly blocked effects of estradiol on LPS-induced TNF-α production, whereas an iER antagonist did not. Moreover, E2 induced a rapid rise in intracellular free Ca(2+ that was due to the influx of extracellular Ca(2+ and was not inhibited by an iER antagonist or silencing of iER. Ca(2+ influx was also induced by an impermeable E2 conjugated to BSA (E2-BSA, which has been used to investigate the nongenomic effects of estrogen. Consequently, Ca(2+, a pivotal factor in E2-stimulated nongenomic action, was identified as the key mediator. The inhibitory effects of E2 on LPS-induced TNF-α production and p38 MAPK phosphorylation were dependent on E2-triggered Ca(2+ influx because BAPTA, an intracellular Ca(2+ chelator, prevented these effects. Taken together, these data indicate that E2 can down-regulate LPS-induced TNF-α production via blockade of p38 MAPK phosphorylation through the mER-mediated nongenomic Ca(2+ signaling pathway in BMMs.

  11. Macrophage Deletion of SOCS1 Increases Sensitivity to LPS and Palmitic Acid and Results in Systemic Inflammation and Hepatic Insulin Resistance

    Science.gov (United States)

    Graham, Kate L.; Galic, Sandra; Honeyman, Jane E.; Fynch, Stacey L.; Hewitt, Kimberly A.; Kay, Thomas W.

    2011-01-01

    OBJECTIVE Macrophage secretion of proinflammatory cytokines contributes to the pathogenesis of obesity-related insulin resistance. An important regulator of inflammation is the suppressor of cytokine signaling-1 (SOCS1), which inhibits the JAK-STAT and toll-like receptor-4 (TLR4) pathways. Despite the reported role of SOCS1 in inhibiting insulin signaling, it is surprising that a SOCS1 polymorphism that increases SOCS1 promoter activity is associated with enhanced insulin sensitivity despite obesity. In the current study, we investigated the physiological role of myeloid and lymphoid cell SOCS1 in regulating inflammation and insulin sensitivity. RESEARCH DESIGN AND METHODS We used mice generated by crossing SOCS1 floxed mice with mice expressing Cre recombinase under the control of the LysM-Cre promoter (SOCS1 LysM-Cre). These mice have deletion of SOCS1 in macrophages and lymphocytes. We assessed macrophage inflammation using flow cytometry and serum cytokine levels using Bioplex assays. We then measured insulin sensitivity using glucose tolerance tests and the euglycemic-hyperinsulinemic clamp. Using bone marrow–derived macrophages, we tested the effects of SOCS1 deletion in regulating responses to the TLR4 ligands: lipopolysaccharide (LPS) and palmitic acid. RESULTS SOCS1 LysM-Cre mice had increased macrophage expression of CD11c, enhanced sensitivity to LPS, and palmitic acid and increased serum concentrations of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein. Increased inflammation was associated with impaired glucose tolerance and hyperinsulinemia as a result of reduced hepatic but not skeletal muscle insulin sensitivity. CONCLUSIONS The expression of SOCS1 in hematopoietic cells protects mice against systemic inflammation and hepatic insulin resistance potentially by inhibiting LPS and palmitate-induced TLR4 signaling in macrophages. PMID:21646388

  12. A novel hybrid aspirin-NO-releasing compound inhibits TNFalpha release from LPS-activated human monocytes and macrophages

    Directory of Open Access Journals (Sweden)

    Fox Sarah

    2008-07-01

    Full Text Available Abstract Background The cytoprotective nature of nitric oxide (NO led to development of NO-aspirins in the hope of overcoming the gastric side-effects of aspirin. However, the NO moiety gives these hybrids potential for actions further to their aspirin-mediated anti-platelet and anti-inflammatory effects. Having previously shown that novel NO-aspirin hybrids containing a furoxan NO-releasing group have potent anti-platelet effects, here we investigate their anti-inflammatory properties. Here we examine their effects upon TNFα release from lipopolysaccharide (LPS-stimulated human monocytes and monocyte-derived macrophages and investigate a potential mechanism of action through effects on LPS-stimulated nuclear factor-kappa B (NF-κB activation. Methods Peripheral venous blood was drawn from the antecubital fossa of human volunteers. Mononuclear cells were isolated and cultured. The resultant differentiated macrophages were treated with pharmacologically relevant concentrations of either a furoxan-aspirin (B8, B7; 10 μM, their respective furazan NO-free counterparts (B16, B15; 10 μM, aspirin (10 μM, existing nitroaspirin (NCX4016; 10 μM, an NO donor (DEA/NO; 10 μM or dexamethasone (1 μM, in the presence and absence of LPS (10 ng/ml; 4 h. Parallel experiments were conducted on undifferentiated fresh monocytes. Supernatants were assessed by specific ELISA for TNFα release and by lactate dehydrogenase (LDH assay for cell necrosis. To assess NF-κB activation, the effects of the compounds on the loss of cytoplasmic inhibitor of NF-κB, IκBα (assessed by western blotting and nuclear localisation (assessed by immunofluorescence of the p65 subunit of NF-κB were determined. Results B8 significantly reduced TNFα release from LPS-treated macrophages to 36 ± 10% of the LPS control. B8 and B16 significantly inhibited monocyte TNFα release to 28 ± 5, and 49 ± 9% of control, respectively. The B8 effect was equivalent in magnitude to that of

  13. Inhibition of CDKS by roscovitine suppressed LPS-induced ·NO production through inhibiting NFκB activation and BH4 biosynthesis in macrophages

    Science.gov (United States)

    Wei, Na; Guan, Tongju; Xu, Hao; An, Jianzhong; Pritchard, Kirkwood A.

    2009-01-01

    In inflammatory diseases, tissue damage is critically associated with nitric oxide (·NO) and cytokines, which are overproduced in response to cellular release of endotoxins. Here we investigated the inhibitory effect of roscovitine, a selective inhibitor of cyclin-dependent kinases (CDKs) on ·NO production in mouse macrophages. In RAW264.7 cells, we found that roscovitine abolished the production of ·NO induced by lipopolysaccharide (LPS). Moreover, roscovitine significantly inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA and protein expression. Our data also showed that roscovitine attenuated LPS-induced phosphorylation of IκB kinase β (IKKβ), IκB, and p65 but enhanced the phosphorylation of ERK, p38, and c-Jun NH2-terminal kinase (JNK). In addition, roscovitine dose dependently inhibited LPS-induced expression of cyclooxygenase-2 (COX)-2, IL-1β, and IL-6 but not tumor necrosis factor (TNF)-α. Tetrahydrobiopterin (BH4), an essential cofactor for iNOS, is easily oxidized to 7,8-dihydrobiopterin (BH2). Roscovitine significantly inhibited LPS-induced BH4 biosynthesis and decreased BH4-to-BH2 ratio. Furthermore, roscovitine greatly reduced the upregulation of GTP cyclohydrolase-1 (GCH-1), the rate-limiting enzyme for BH4 biosynthesis. Using other CDK inhibitors, we found that CDK1, CDK5, and CDK7, but not CDK2, significantly inhibited LPS-induced ·NO production in macrophages. Similarly, in isolated peritoneal macrophages, roscovitine strongly inhibited ·NO production, iNOS, and COX-2 upregulation, activation of NFκB, and induction of GCH-1 by LPS. Together, our data indicate that roscovitine abolishes LPS-induced ·NO production in macrophages by suppressing nuclear factor-κB activation and BH4 biosynthesis, which might be mediated by CDK1, CDK5, and CDK7. Our results also suggest that roscovitine may inhibit inflammation and that CDKs may play important roles in the mechanisms by which roscovitine attenuates inflammation. PMID:19553566

  14. DMPD: The role of macrophages in the hypothalamic-pituitary-adrenal activation inresponse to endotoxin (LPS). [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1315450 The role of macrophages in the hypothalamic-pituitary-adrenal activation in...png) (.svg) (.html) (.csml) Show The role of macrophages in the hypothalamic-pituitary-adrenal activation in...response to endotoxin (LPS). PubmedID 1315450 Title The role of macrophages in th

  15. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor

    Directory of Open Access Journals (Sweden)

    Qureshi Asaf A

    2012-07-01

    Full Text Available Abstract Background Altered immune function during ageing results in increased production of nitric oxide (NO and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin in lipopolysaccharide (LPS-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice. Results The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P 40%; P 60%; P 40%; P P  Conclusions The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-κB activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-α, IL-1β, IL-6, and NO levels, in response to inflammatory stimuli

  16. Perfluorocarbon inhibits lipopolysaccharide-induced macrophage inflammatory protein-2 expression and activation of ATF-2 and c-Jun in A549 pulmonary epithelial cells.

    Science.gov (United States)

    Hu, Y; Li, C S; Li, Y Q; Liang, Y; Cao, L; Chen, L A

    2016-04-30

    The signaling pathway that mediates the anti-inflammatory effects of perfluorocarbon (PFC) in alveolar epithelial cells treated with lipopolysaccharide (LPS) remains unclear. To evaluate the role of macrophage-inflammatory protein-2 (MIP-2), four A549 treatment groups were utilized: (1) untreated control, (2) 10 μg/mL of LPS, (3) 10 μg/mL of LPS+30% PFC and (4) 30% PFC. MIP-2 mRNA expression was determined by qPCR and ELISA. Mitogen-activated protein kinase (MAPK) activation was determined by Western blot analysis, and MIP-2 expression was determined by qPCR following treatment with MAPK inhibitors. PFC suppressed LPS-induced MIP-2 mRNA levels (P≤0.035) and MIP-2 secretion (P≤0.046). LPS induced ATF-2 and c-Jun phosphorylation, which was suppressed by PFC. Finally, inhibitors of ERK, JNK, and p38 suppressed LPS-induced MIP-2 mRNA expression. Thus, PFC inhibits LPS-induced MIP-2 expression and ATF-2 and c-Jun phosphorylation. To fully explore the therapeutic potential of PFC for acute lung injury (ALI), in vivo analyses are required to confirm these effects.

  17. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Allegra, M; D'Acquisto, F; Tesoriere, L; Attanzio, A; Livrea, M A

    2014-01-01

    Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia Ficus Indica prevented activation of nuclear factor-κB (NF-κB) and over-expression of PGE2 synthase-1 (mPGES-1), but up-regulated cyclo-oxygenase-2 (COX-2) and PGD2 synthase (H-PGDS), with final production of the anti-inflammatory cyclopentenone. The effects were positively related with concentration between 50 and 100 µM. Indicaxanthin did not have any effect in the absence of LPS. A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50-100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5-3 h) modest inhibition, followed by a progressive (3-12 h) concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5-3 h) concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages.

  18. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages

    Science.gov (United States)

    Allegra, M.; D’Acquisto, F.; Tesoriere, L.; Attanzio, A.; Livrea, M.A.

    2014-01-01

    Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia Ficus Indica prevented activation of nuclear factor-κB (NF-κB) and over-expression of PGE2 synthase-1 (mPGES-1), but up-regulated cyclo-oxygenase-2 (COX-2) and PGD2 synthase (H-PGDS), with final production of the anti-inflammatory cyclopentenone. The effects were positively related with concentration between 50 and 100 µM. Indicaxanthin did not have any effect in the absence of LPS. A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50–100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5–3 h) modest inhibition, followed by a progressive (3–12 h) concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5–3 h) concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages. PMID:25180166

  19. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats.

    Science.gov (United States)

    Wang, Wen; Liu, Zhi; Su, Jie; Chen, Wen-Sheng; Wang, Xiao-Wu; Bai, San-Xing; Zhang, Jin-Zhou; Yu, Shi-Qiang

    2016-08-01

    Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3'-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI. Copyright © 2016 the American Physiological Society.

  20. The Fab Fragment of a Humanized Anti-Toll Like Receptor 4 (TLR4) Monoclonal Antibody Reduces the Lipopolysaccharide Response via TLR4 in Mouse Macrophage.

    Science.gov (United States)

    Cai, Binggang; Wang, Maorong; Zhu, Xuhui; Xu, Jing; Zheng, Wenkai; Zhang, Yiqing; Zheng, Feng; Feng, Zhenqing; Zhu, Jin

    2015-01-01

    Lipopolysaccharides (LPS) can induce acute inflammation, sepsis, or chronic inflammatory disorders through the Toll receptor 4 (TLR4) signaling pathway. The TLR4/MD2 (myeloid differentiation protein 2) complex plays a major role in the immune response to LPS. However, there is not a good method to suppress the immune response induced by LPS via this complex in macrophages. In this article, we aimed to evaluate the effects of humanized anti-TLR4 monoclonal antibodies on LPS-induced responses in mouse macrophages. The peritoneal macrophages of mice were incubated with anti-TLR4 monoclonal antibodies and stimulated with LPS. The expression levels of cytokines were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assays. Additionally, activation of various signaling pathways was evaluated by Western blotting. The results showed that the humanized anti-TLR4 monoclonal antibody blocked the inflammatory cytokines expression at both the mRNA and protein level. We also found that the Fab fragment significantly inhibited the nuclear factor kappaB signaling pathway by reducing the phosphorylation of the inhibitor of kappaBalpha and decreasing the translocation of p65, resulting in the suppression of p38, extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, and IFN-β regulatory factor 3 phosphorylation. Therefore, our study showed that this humanized anti-TLR4 monoclonal antibody could effectively protect against LPS-induced responses by blocking the TLR4 signaling pathway in mouse peritoneal macrophages.

  1. The Fab Fragment of a Humanized Anti-Toll Like Receptor 4 (TLR4 Monoclonal Antibody Reduces the Lipopolysaccharide Response via TLR4 in Mouse Macrophage

    Directory of Open Access Journals (Sweden)

    Binggang Cai

    2015-10-01

    Full Text Available Lipopolysaccharides (LPS can induce acute inflammation, sepsis, or chronic inflammatory disorders through the Toll receptor 4 (TLR4 signaling pathway. The TLR4/MD2 (myeloid differentiation protein 2 complex plays a major role in the immune response to LPS. However, there is not a good method to suppress the immune response induced by LPS via this complex in macrophages. In this article, we aimed to evaluate the effects of humanized anti-TLR4 monoclonal antibodies on LPS-induced responses in mouse macrophages. The peritoneal macrophages of mice were incubated with anti-TLR4 monoclonal antibodies and stimulated with LPS. The expression levels of cytokines were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assays. Additionally, activation of various signaling pathways was evaluated by Western blotting. The results showed that the humanized anti-TLR4 monoclonal antibody blocked the inflammatory cytokines expression at both the mRNA and protein level. We also found that the Fab fragment significantly inhibited the nuclear factor kappaB signaling pathway by reducing the phosphorylation of the inhibitor of kappaBalpha and decreasing the translocation of p65, resulting in the suppression of p38, extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, and IFN-β regulatory factor 3 phosphorylation. Therefore, our study showed that this humanized anti-TLR4 monoclonal antibody could effectively protect against LPS-induced responses by blocking the TLR4 signaling pathway in mouse peritoneal macrophages.

  2. Transcriptional profiling of the effect of lipopolysaccharide (LPS pretreatment in blood from probiotics-treated dairy cows

    Directory of Open Access Journals (Sweden)

    Sarah Adjei-Fremah

    2016-12-01

    Full Text Available Probiotic supplements are beneficial for animal health and rumen function; and lipopolysaccharides (LPS from gram negative bacteria have been associated with inflammatory diseases. In this study the transcriptional profile in whole blood collected from probiotics-treated cows was investigated in response to stimulation with lipopolysaccharides (LPS in vitro. Microarray experiment was performed between LPS-treated and control samples using the Agilent one-color bovine v2 bovine (v2 4x44K array slides. Global gene expression analysis identified 13,658 differentially expressed genes (fold change cutoff ≥ 2, P < 0.05, 3816 upregulated genes and 9842 downregulated genes in blood in response to LPS. Treatment with LPS resulted in increased expression of TLR4 (Fold change (FC = 3.16 and transcription factor NFkB (FC = 5.4 and decreased the expression of genes including TLR1 (FC = −2.54, TLR3 (FC = −2.43, TLR10 (FC = −3.88, NOD2 (FC = −2.4, NOD1 (FC = −2.45 and pro-inflammatory cytokine IL1B (−3.27. The regulation of the genes involved in inflammation signaling pathway suggests that probiotics may stimulate the innate immune response of animal against parasitic and bacterial infections. We have provided a detailed description of the experimental design, microarray experiment and normalization and analysis of data which have been deposited into NCBI Gene Expression Omnibus (GEO: GSE75240.

  3. Downregulation of pro-inflammatory mediators by a water extract of Schisandra chinensis (Turcz.) Baill fruit in lipopolysaccharide-stimulated RAW 264.7 macrophage cells.

    Science.gov (United States)

    Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Kang, Chang-Hee; Lee, Seungheon; Park, Sang Rul; Jeong, Jin-Woo; Choi, Yung Hyun; Seo, Yong Taek; Jang, Young Pyo; Kim, Gi-Young

    2013-09-01

    Schisandra chinensis has a long-standing history of medicinal use as a tonic, a sedative, an anti-tussive, and an anti-aging drug. Nevertheless, the antagonistic effects of S. chinensis against lipopolysaccharide (LPS)-stimulated responses have not yet been studied. In this study, we investigated whether water extract of S. chinensis fruit (WESC) has the ability to attenuate the expression of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophage cells. WESC inhibited the expression of LPS-induced pro-inflammatory mediators, namely, NO, PGE2, and TNF-α. Furthermore, gene expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α was inhibited both at mRNA and protein synthesis levels, without any cytotoxic effect. Moreover, WESC significantly suppressed LPS-induced DNA-binding activity of NF-κB by inhibiting degradation of IκBα. It was found that pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor, downregulates the expression of these pro-inflammatory genes to be closely regulated by NF-κB activity. Furthermore, we found that WESC retains dephosphorylation of Akt in response to LPS, and consequently suppressed the DNA-binding activity of NF-κB in RAW 264.7 macrophage cells. LY294002, a specific Akt inhibitor, attenuated LPS-induced pro-inflammatory gene expression via suppression of NF-κB activity. Taken together, our results indicate that WESC downregulates the expression of pro-inflammatory genes involved in the synthesis of NO, PGE2, and TNF-α in LPS-stimulated RAW 264.7 macrophage cells by suppressing Akt-dependent NF-κB activity.

  4. Effect of lipopolysaccharide (LPS and peptidoglycan (PGN on human mast cell numbers, cytokine production, and protease composition

    Directory of Open Access Journals (Sweden)

    Wu Yalin

    2008-08-01

    Full Text Available Abstract Background Human mast cell (HuMC maturation occurs in tissues interfacing with the external environment, exposing both mast cell progenitors and mature mast cells, to bacteria and their products. It is unknown, however, whether long- or short-term exposure to bacteria-derived toll-like receptor (TLR ligands, such as lipopolysaccharide (LPS or peptidoglycan (PGN, influences HuMC biology. Results Over 6 wks of culture, LPS had minimal effect on HuMC numbers but increased CD117, tryptase and chymase expression. PGN inhibited HuMC development. For mature mast cells, LPS in the presence of rhSCF (10 ng/ml increased CD117, tryptase, chymase and carboxypeptidase expression, primarily in CD117low HuMC. LPS decreased FcεRI expression and β-hexosaminidase release; but had no effect on LTC4 and PGD2 production. PGN reduced HuMC numbers; and CD117 and tryptase expression. IL-1β and IL-6 (in addition to IL-8 and IL-12 were detected in short-term culture supernatants of LPS treated cells, and reproduced the increases in CD117, tryptase, chymase, and carboxypeptidase expression observed in the presence of LPS. Comparative studies with mouse bone marrow-derived mast cells from wild type, but not TLR4 knockout mice, showed increases in mRNA of mouse mast cell chymases MMCP-1, MMCP-2 and MMCP-4. Conclusion PGN inhibits HuMC growth, while LPS exerts its primary effects on mature HuMC by altering cytokine production and protease composition, particularly at low concentrations of SCF. These data demonstrate the ability of bacterial products to alter HuMC mediator production, granular content, and number which may be particularly relevant at mucosal sites where HuMC are exposed to these products.

  5. Modulation of lipopolysaccharide-induced proinflammatory cytokine production by satratoxins and other macrocyclic trichothecenes in the murine macrophage.

    Science.gov (United States)

    Chung, Yong-Joo; Jarvis, Bruce; Pestka, James

    2003-02-28

    The satratoxins and other macrocyclic trichothecene mycotoxins are produced by Stachybotrys, a mold that is often found in water-damaged dwellings and office buildings. To test the potential immunomodulatory effects of these mycotoxins, RAW 264.7 murine macrophage cells were treated with various concentrations of satratoxin G (SG), isosatratoxin F (iSF), satratoxin H (SH), roridin A (RA), and verrucarin A (VA) for 48 h in the presence or absence of suboptimal concentra-tion of lipopolysaccharide (LPS, 50 ng/ml), and tumor necrosis factor-alpha (TNF-alpha ) and interleukin-6 (IL-6) production were assayed by enzyme-linked immunosorbent assay (ELISA). In LPS-stimulated cultures, TNF-alpha supernatant concentrations were significantly increased in the presence of 2.5, 2.5, and 1 ng/ml of SG, SH, and RA, respectively, whereas IL-6 concentrations were not affected by the same concentrations these macrocyclic trichothecenes. When cells that were treated with LPS and SG (2.5 ng/ml) were evaluated by real-time polymerase chain reaction (PCR),TNF-alpha mRNA was found to increase at 24, 36, and 48 h compared to control cells. At higher concentrations, cytokine production and cell viability were markedly impaired in LPS-stimulated cells. Without LPS stimulation, neither TNF-alpha, nor IL-6 was induced. These results indicate that low concentrations of macrocyclic trichothecenes superinduce expression of TNF-alpha, whereas higher concentrations of these toxins are cytotoxic and concurrently reduce cytokine production. The capacity of satratoxins and other macrocyclic trichothecenes to alter cytokine production may play an etiologic role in outbreaks of Stachybotrys-associated human illnesses.

  6. Inhibitory effects of 4-hydroxyderricin and xanthoangelol on lipopolysaccharide-induced inflammatory responses in RAW264 macrophages.

    Science.gov (United States)

    Yasuda, Michiko; Kawabata, Kyuichi; Miyashita, Miki; Okumura, Mayu; Yamamoto, Norio; Takahashi, Masakazu; Ashida, Hitoshi; Ohigashi, Hajime

    2014-01-15

    The Japanese herb, Ashitaba (Angelica keiskei Koidzumi), contains two prenylated chalcones, 4-hydroxyderricin and xanthoangelol, which are considered to be the major active compounds of Ashitaba. However, their effects on inflammatory responses are poorly understood. In the present study, we investigated the effects and underlying molecular mechanisms of 4-hydroxyderricin and xanthoangelol on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264 mouse macrophages. LPS-mediated production of nitric oxide (NO) was markedly reduced by 4-hydroxyderricin (10 μM) and xanthoangelol (5 μM) compared with their parent compound, chalcone (25 μM). They also inhibited LPS-induced secretion of tumor necrosis factor-alpha (TNF-α) and expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Although chalcone decreased the DNA-binding activity of both activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB), 4-hydroxyderricin and xanthoangelol suppressed only AP-1 and had no effect on NF-κB. On the other hand, all of the tested chalcones reduced the phosphorylation (at serine 536) level of the p65 subunit of NF-κB. 4-Hydroxyderricin and xanthoangelol may be promising for the prevention of inflammatory diseases.

  7. Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells.

    Science.gov (United States)

    Metzger, Brandon T; Barnes, David M; Reed, Jess D

    2008-05-28

    Carrots ( Daucus carota L.) contain phytochemicals including carotenoids, phenolics, polyacetylenes, isocoumarins, and sesquiterpenes. Purple carrots also contain anthocyanins. The anti-inflammatory activity of extracts and phytochemicals from purple carrots was investigated by determining attenuation of the response to lipopolysaccharide (LPS). A bioactive chromatographic fraction (Sephadex LH-20) reduced LPS inflammatory response. There was a dose-dependent reduction in nitric oxide production and mRNA of pro-inflammatory cytokines (IL-6, IL-1beta, TNF-alpha) and iNOS in macrophage cells. Protein secretions of IL-6 and TNF-alpha were reduced 77 and 66% in porcine aortic endothelial cells treated with 6.6 and 13.3 microg/mL of the LH-20 fraction, respectively. Preparative liquid chromatography resulted in a bioactive subfraction enriched in the polyacetylene compounds falcarindiol, falcarindiol 3-acetate, and falcarinol. The polyacetylenes were isolated and reduced nitric oxide production in macrophage cells by as much as 65% without cytotoxicity. These results suggest that polyacetylenes, not anthocyanins, in purple carrots are responsible for anti-inflammatory bioactivity.

  8. Could a B-1 cell derived phagocyte "be one" of the peritoneal macrophages during LPS-driven inflammation?

    Directory of Open Access Journals (Sweden)

    Ana Flavia Popi

    Full Text Available The inflammatory response is driven by signals that recruit and elicit immune cells to areas of tissue damage or infection. The concept of a mononuclear phagocyte system postulates that monocytes circulating in the bloodstream are recruited to inflamed tissues where they give rise to macrophages. A recent publication demonstrated that the large increase in the macrophages observed during infection was the result of the multiplication of these cells rather than the recruitment of blood monocytes. We demonstrated previously that B-1 cells undergo differentiation to acquire a mononuclear phagocyte phenotype in vitro (B-1CDP, and we propose that B-1 cells could be an alternative origin for peritoneal macrophages. A number of recent studies that describe the phagocytic and microbicidal activity of B-1 cells in vitro and in vivo support this hypothesis. Based on these findings, we further investigated the differentiation of B-1 cells into phagocytes in vivo in response to LPS-induced inflammation. Therefore, we investigated the role of B-1 cells in the composition of the peritoneal macrophage population after LPS stimulation using osteopetrotic mice, BALB/Xid mice and the depletion of monocytes/macrophages by clodronate treatment. We show that peritoneal macrophages appear in op/op((-/- mice after LPS stimulation and exhibit the same Ig gene rearrangement (VH11 that is often found in B-1 cells. These results strongly suggest that op/op((-/- peritoneal "macrophages" are B-1CDP. Similarly, the LPS-induced increase in the macrophage population was observed even following monocyte/macrophage depletion by clodronate. After monocyte/macrophage depletion by clodronate, LPS-elicited macrophages were observed in BALB/Xid mice only following the transfer of B-1 cells. Based on these data, we confirmed that B-1 cell differentiation into phagocytes also occurs in vivo. In conclusion, the results strongly suggest that B-1 cell derived phagocytes are a component of

  9. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-κB signalling in macrophages.

    Science.gov (United States)

    Liu, Xin-Hua; Pan, Li-Long; Jia, Yao-Ling; Wu, Dan; Xiong, Qing-Hui; Wang, Yang; Zhu, Yi-Zhun

    2013-05-15

    A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from Danshensu, exerted cytoprotective effects by anti-oxidative and anti-apoptotic activities in vitro. Herein, we reported the protective effects of DSC on lipopolysaccharide (LPS)-induced inflammatory responses in murine RAW264.7 macrophages and the underlying mechanisms. We showed that DSC concentration-dependently attenuated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression with less cytotoxicity. Signal transduction studies indicated that DSC significantly inhibited LPS-induced phosphorylation of Akt, but not c-Jun N-terminal kinase 1/2, p38, or extracellular signal-regulated kinase 1/2. Meanwhile, LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) p65 was decreased by DSC. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly suppressed LPS-induced NF-κB p65 nuclear translocation, iNOS expression, and NO production, which was also mimicked by pretreatment with DSC. These results suggested that DSC attenuated LPS-induced inflammatory response in macrophages, at least in part, through suppression of PI3K/Akt signaling and NF-κB activation.

  10. Aspirin inhibits LPS-induced macrophage activation via the NF-κB pathway.

    Science.gov (United States)

    Liu, Yitong; Fang, Silian; Li, Xiaoyan; Feng, Jie; Du, Juan; Guo, Lijia; Su, Yingying; Zhou, Jian; Ding, Gang; Bai, Yuxing; Wang, Songling; Wang, Hao; Liu, Yi

    2017-09-14

    Aspirin (acetylsalicylic acid, ASA) has been shown to improve bone marrow mesenchymal stem cell-based calvarial bone regeneration by promoting osteogenesis and inhibiting osteoclastogenesis. However, it remains unknown whether aspirin influences other immune cells during bone formation. In the present study, we investigated whether ASA treatment influenced macrophage activation during the LPS inducement. We found that ASA could downregulate the expressions of iNOS and TNF-α both in mouse peritoneum macrophages and RAW264.7 cells induced by LPS via the IκK/IκB/NF-κB pathway and a COX2/PGE2/EP2/NF-κB feedback loop, without affecting the expressions of FIZZ/YM-1/ARG1 induced by IL-4. Furthermore, we created a rat mandibular bone defect model and showed that ASA treatment improved bone regeneration by inhibiting LPS-induced macrophage activation in the early stages of inflammation. Taken together, our results indicated that ASA treatment was a feasible strategy for improving bone regeneration, particularly in inflammatory conditions.

  11. Effects of constituents from the bark of Magnolia obovata on nitric oxide production in lipopolysaccharide-activated macrophages.

    Science.gov (United States)

    Matsuda, H; Kageura, T; Oda, M; Morikawa, T; Sakamoto, Y; Yoshikawa, M

    2001-06-01

    The methanolic extract from a Japanese herbal medicine, the bark of Magnolia obovata, was found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-activated macrophages. By bioassay-guided separation, three neolignans (magnolol, honokiol, obovatol) and three sesquiterpenes (alpha-eudesmol, beta-eudesmol, gamma-eudesmol) were obtained as active constituents. A trineolignan (magnolianin), a phenylpropanoid glycoside (syringin), lignan glycosides (liriodendrin, (+)-syringaresinol 4'-O-beta-D-glucopyranoside) and a sesquiterpene (caryophyllene oxide) did not show any activity. On the other hand, sesquiterpene-neolignans (eudesmagnolol, clovanemagnolol, caryolanemagnolol, eudeshonokiol A, eudesobovatol A) showed the strong cytotoxic effects. Active constituents (magnolol, honokiol, obovatol) showed weak inhibition for inducible NO synthase (iNOS) enzyme activity, but potent inhibition of iNOS induction and activation of nuclear factor-kappaB.

  12. Jeju seaweeds suppress lipopolysaccharide-stimulated proinflammatory response in RAW 264.7 murine macrophages

    Institute of Scientific and Technical Information of China (English)

    Eun-Jin Yang; Ji-Young Moon; Sang Suk Kim; Kyong-Wol Yang; Wook Jae Lee; Nam Ho Lee; Chang-Gu Hyun

    2014-01-01

    Objective: To investigate the anti-inflammatory effects of Jeju seaweeds on macrophage RAW 264.7 cells under lipopolysaccharide (LPS) stimulation.Methods:Ethyl acetate fractions were prepared from five different types of Jeju seaweeds, Dictyopteris divaricata (D. divaricata), Dictyopteris prolifera (D. prolifera), Prionitis cornea (P. cornea), Grateloupia lanceolata (G. lanceolata), and Grateloupia filicina (G. filicina). They were screened for inhibitory effects on proinflammatory mediators and cytokines such as nitric oxide (NO), prostaglandin E2, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6).Results:Our results revealed that D. divaricata, D. prolifera, P. cornea, G. lanceolata, and G. filicina potently inhibited LPS-stimulated NO production (IC50 values were 18.0, 38.36, 38.43, 32.81 and 37.14 µg/mL, respectively). Consistent with these findings, D. divaricata, D. prolifera, P. cornea, and G. filicina also reduced the LPS-induced and prostaglandin E2 production in a concentration-dependent manner. Expectedly, they suppressed the expression of inducible NO synthase and cyclooxygenase-2 at the protein level in a dose-dependent manner in the RAW 264.7 cells, as determined by western blotting. In addition, the levels of TNF-α and IL-6, released into the medium, were also reduced by D. divaricata, D. prolifera, P. cornea, G. lanceolata, andG. filicina in a dose-dependent manner (IC 50 values for TNF-α were 16.11, 28.21, 84.27, 45.52 and 74.75 µg/mL, respectively; IC50 values for IL-6 were 37.35, 80.08, 103.28, 62.53 and 84.28 µg/mL, respectively). The total phlorotannin content was measured by the Folin-Ciocalteu method and expressed as phloroglucinol equivalents. The content was 92.0 µg/mg for D. divaricata, 151.8 µg/mg for D. prolifera, 57.2 µg/mg for P. cornea, 53.0 µg/mg for G. lanceolata, and 40.2 µg/mg for G.filicina. Conclusions: Thus, these findings suggest that Jeju seaweed extracts have potential therapeutic applications for

  13. Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    William T Festuccia

    Full Text Available The phosphoinositide-3-kinase (PI3K/protein kinase B (Akt axis plays a central role in attenuating inflammation upon macrophage stimulation with toll-like receptor (TLR ligands. The mechanistic target of rapamycin complex 2 (mTORC2 relays signal from PI3K to Akt but its role in modulating inflammation in vivo has never been investigated. To evaluate the role of mTORC2 in the regulation of inflammation in vivo, we have generated a mouse model lacking Rictor, an essential mTORC2 component, in myeloid cells. Primary macrophages isolated from myeloid-specific Rictor null mice exhibited an exaggerated response to TLRs ligands, and expressed high levels of M1 genes and lower levels of M2 markers. To determine whether the loss of Rictor similarly affected inflammation in vivo, mice were either fed a high fat diet, a situation promoting chronic but low-grade inflammation, or were injected with lipopolysaccharide (LPS, which mimics an acute, severe septic inflammatory condition. Although high fat feeding contributed to promote obesity, inflammation, macrophage infiltration in adipose tissue and systemic insulin resistance, we did not observe a significant impact of Rictor loss on these parameters. However, mice lacking Rictor exhibited a higher sensitivity to septic shock when injected with LPS. Altogether, these results indicate that mTORC2 is a key negative regulator of macrophages TLR signalling and that its role in modulating inflammation is particularly important in the context of severe inflammatory challenges. These observations suggest that approaches aimed at modulating mTORC2 activity may represent a possible therapeutic approach for diseases linked to excessive inflammation.

  14. Effect of sydnone SYD-1 on certain functions of LPS-stimulated macrophages.

    Science.gov (United States)

    Bizetto, Eduardo Luis; Noleto, Guilhermina Rodrigues; Echevarria, Aurea; Canuto, André Vinicius; Cadena, Silvia Maria Suter Correia

    2012-01-01

    In an earlier article, we demonstrated that sydnone SYD-1 (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) inhibits electron transport in the respiratory chain and uncouples oxidative phosphorylation, and postulated that these effects are probably involved in its antitumor activity. We now report the effect of SYD-1 on certain macrophage functions, considering the important role of these cells in inflammatory response and also the relevant anti-inflammatory activity reported for some sydnones. Incubation of macrophages with SYD-1 (5-100 μM) for 48 h did not affect the cell viability up to a concentration of 50 μM. However, at the highest concentration (100 μM), the compound decreased macrophage viability by ~20%. In assays involving 2 h and 24 h of incubation, SYD-1 (5-100 μM) did not affect the cell viability. The incubation of macrophages with the compound for 2 h promoted a dose-dependent reduction of phagocytic activity of up to ~65% (100 μM). SYD-1 (100 μM) was also able to increase the production of superoxide anion (~50%). In the absence of LPS, SYD-1 decreased NO production dose-dependently by up to ~80% (100 μM). When SYD-1 and LPS were incubated concomitantly, the decrease of NO promoted by SYD was the most pronounced, reaching up to ~98% at the same concentration (50 μM). SYD-1 dose-dependently suppressed IL-6 secretion by LPS-stimulated macrophages, reaching up to ~90% of inhibition at the highest concentration (100 μM). These results indicate that SYD-1 promotes effects similar to those described for anti-inflammatory and immunosuppressive drugs, thus motivating further studies to clarify the mechanisms involved in this activity.

  15. Resveratrol and its metabolites inhibit pro-inflammatory effects of lipopolysaccharides in U-937 macrophages in plasma-representative concentrations.

    Science.gov (United States)

    Walker, Jessica; Schueller, Katharina; Schaefer, Lisa-Marie; Pignitter, Marc; Esefelder, Laura; Somoza, Veronika

    2014-01-01

    Resveratrol has been shown to exploit various biological activities, including an anti-inflammatory activity. However, resveratrol is metabolized by phase II enzymes post-absorption to predominantly form glucuronides and sulfates. To investigate the anti-inflammatory effects of resveratrol and its dominating sulfated and glucuronated metabolites formed in vivo, U-937 macrophages were chosen as an immune-competent model system, known to release cytokines upon lipopolysaccharide stimulation. U-937 cells were stimulated with lipopolysaccharides from Escherichia coli (E. coli-LPS) to evoke an inflammatory reaction, and pre- or co-incubated with 1 or 10 μM of resveratrol (RES), resveratrol-3-sulfate (R3S), resveratrol-disulfates (RDS), resveratrol-3-glucuronide or resveratrol-4'-glucuronide. Time dependent gene expression of IL-6, IL-1α/β and IL-1R by qPCR was studied at 1 h, 3 h, 6 h, 9 h, and 24 h of incubation, and the release of IL-6 and TNF-α, after 6 h was analysed by means of non-magnetic or magnetic bead analysis. As a result, 10 μM resveratrol completely inhibited the E. coli-LPS-induced release of IL-6, while resveratrol-3-sulfate and resveratrol-disulfates decreased it by respective 84.2 ± 29.4% and 52.3 ± 39.5%. Whereas TNF-α release was reduced by 48.1 ± 15.4%, 33.0 ± 10.0% and 46.7 ± 8.7% by RES, R3S and RDS, respectively. These results show that not only resveratrol but also resveratrol-3-sulfate and resveratrol-disulfates exhibit an anti-inflammatory potential by counteracting an inflammatory challenge in U-937 macrophages at plasma representative concentrations.

  16. Effects of doxycycline on depressive-like behavior in mice after lipopolysaccharide (LPS) administration.

    Science.gov (United States)

    Mello, Bruna Stefânia Ferreira; Monte, Aline Santos; McIntyre, Roger S; Soczynska, Joanna K; Custódio, Charllyany Sabino; Cordeiro, Rafaela Carneiro; Chaves, João Henrique; Vasconcelos, Silvânia Maria Mendes; Nobre, Hélio Vitoriano; Florenço de Sousa, Francisca Cléa; Hyphantis, Thomas N; Carvalho, André Férrer; Macêdo, Danielle Silveira

    2013-10-01

    Current evidences support inflammation, oxidative and nitrogen stress, as well as brain-derived neurotrophic factor (BDNF) signaling mechanisms as important in depression pathophysiology. Tetracycline antibiotics have anti-inflammatory and antioxidant properties. Preliminary evidence indicates that minocycline has antidepressant properties. Doxycycline (DOXY) has favorable pharmacokinetic and safety profiles when compared to other tetracycline congeners. The antidepressant activity of DOXY has not been adequately investigated. This study evaluated the effects of DOXY (25 and 50 mg/kg, i.p.) on LPS-induced (0.5 mg/kg, i.p.) depressive-like behavior. Doxycycline was administered 30 min before LPS (pre-LPS) or 1.5 and 23.5 h following LPS (post-LPS) administration in mice. LPS-treated animals presented an increase in immobility time in the forced swimming test (FST) when compared to controls 24 h after endotoxin administration. Similarly to imipramine (IMI-10 mg/kg, i.p.), DOXY at both doses prevented and reversed LPS-induced alterations in the FST. IL-1β content was increased 24 h after LPS administration in striatum, hippocampus and prefrontal cortex. IMI and DOXY prevented and reversed LPS-induced increase in IL-1β. IMI and DOXY also prevented and reversed LPS-induced alterations in nitrite content and oxidative stress parameters (lipid peroxidation and reduced glutathione levels). Both DOXY and IMI prevented LPS-induced decrease in hippocampal BDNF levels. Taken together, our results demonstrate that DOXY is comparable to IMI in effectively ameliorate LPS-induced depressive-like behavior, providing a rationale for testing DOXY's antidepressant efficacy in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice.

    Science.gov (United States)

    Qian, Zhengjiang; Wu, Zhiqin; Huang, Lian; Qiu, Huiling; Wang, Liyan; Li, Li; Yao, Lijun; Kang, Kang; Qu, Junle; Wu, Yonghou; Luo, Jun; Liu, Johnson J; Yang, Yi; Yang, Wancai; Gou, Deming

    2015-11-30

    Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2(-/-) mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-β) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2(-/-) mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials.

  18. Ethylacetate extract from Draconis Resina inhibits LPS-induced inflammatory responses in vascular smooth muscle cells and macrophages via suppression of ROS production.

    Science.gov (United States)

    Heo, Sook-Kyoung; Yi, Hyo-Seung; Yun, Hyun-Jeong; Ko, Chang-Hyun; Choi, Jae-Woo; Park, Sun-Dong

    2010-05-01

    Draconis Resina (DR) is a type of dragon's blood resin obtained from Daemomorops draco BL. (Palmae). DR has long been used as a traditional Korean herbal medicine, and is currently used in traditional clinics to treat wounds, tumors, diarrhea, and rheumatism, insect bites and other conditions. In this study, we evaluated fractionated extracts of DR to determine if they inhibited the production of interleukin-1beta (IL-1beta) and the expression of cyclooxygenase (COX)-2. The results of this analysis revealed that the ethylacetate extract of Draconis Resina (DREA) was more potent than that of other extracts. Moreover, DREA inhibited the production of nitric oxide (NO), reactive oxygen species (ROS), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha), IL-8 and IL-6 in lipopolysaccharide (LPS)-treated human aortic smooth muscle cells (HASMC) and RAW 264.7 macrophages. Furthermore, treatment with an NADPH oxidase assembly inhibitor, AEBSF, efficiently blocked LPS-induced mitogen-activated protein kinases (MAPKs) activation, as did DREA. These findings indicate that DREA inhibits the production of NO, PGE(2), TNF-alpha, IL-8, and IL-6 by LPS via the inhibition of ROS production, which demonstrates that DREA inhibits LPS-induced inflammatory responses via the suppression of ROS production. Taken together, these results indicate that DREA has the potential for use as an anti-atherosclerosis agent.

  19. Neocryptotanshinone inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppression of NF-κB and iNOS signaling pathways

    Directory of Open Access Journals (Sweden)

    Chuanhong Wu

    2015-07-01

    Full Text Available Neocryptotanshinone (NCTS is a natural product isolated from traditional Chinese herb Salvia miltiorrhiza Bunge. In this study, we investigated its anti-inflammatory effects in lipopolysaccharide (LPS-stimulated mouse macrophage (RAW264.7 cells. MTT results showed that NCTS partly reversed LPS-induced cytotoxicity. Real-time PCR results showed that NCTS suppressed LPS-induced mRNA expression of inflammatory cytokines, including tumor necrosis factor α (TNFα, interleukin-6 (IL-6 and interleukin-1β (IL-1β. Moreover, NCTS could decrease LPS-induced nitric oxide (NO production. Western blotting results showed that NCTS could down-regulate LPS-induced expression of inducible nitric oxide synthase (iNOS, p-IκBα, p-IKKβ and p-NF-κB p65 without affecting cyclooxygenase-2 (COX-2. In addition, NCTS inhibited LPS-induced p-NF-κB p65 nuclear translocation. In conclusion, these data demonstrated that NCTS showed anti-inflammatory effect by suppression of NF-κB and iNOS signaling pathways.

  20. Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson's Disease Models.

    Science.gov (United States)

    Huang, Bingxu; Liu, Juxiong; Ju, Chen; Yang, Dongxue; Chen, Guangxin; Xu, Shiyao; Zeng, Yalong; Yan, Xuan; Wang, Wei; Liu, Dianfeng; Fu, Shoupeng

    2017-09-22

    The neuroprotective effects of Licochalcone A (Lico.A), a flavonoid isolated from the herb licorice, in Parkinson's disease (PD) have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia in dopaminergic neurodegeneration has been validated. In this study, we explore the therapeutic effects of Lico.A in lipopolysaccharide (LPS)-induced PD models in vivo and in vitro. We find that Lico.A significantly inhibits LPS-stimulated production of pro-inflammatory mediators and microglial activation by blocking the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and nuclear factor κB (NF-κB) p65 in BV-2 cells. In addition, through cultured primary mesencephalic neuron-glia cell experiments, we illustrate that Lico.A attenuates the decrease in [³H] dopamine (DA) uptake and the loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in LPS-induced PD models in vitro. Furthermore, LPS intoxication in rats results in microglial activation, dopaminergic neurodegeneration and significant behavioral deficits in vivo. Lico.A treatment prevents microglial activation and reduction of dopaminergic neuron and ameliorates PD-like behavioral impairments. Thus, these results demonstrate for the first time that the neuroprotective effects of Lico.A are associated with microglia and anti-inflammatory effects in PD models.

  1. aged black garlic exerts anti-inflammatory effects by decreasing no and proinflammatory cytokine production with less cytoxicity in LPS-stimulated raw 264.7 macrophages and LPS-induced septicemia mice.

    Science.gov (United States)

    Kim, Min Jee; Yoo, Yung Choon; Kim, Hyun Jung; Shin, Suk Kyung; Sohn, Eun Jeong; Min, A Young; Sung, Nak Yun; Kim, Mee Ree

    2014-10-01

    In this study, the anti-inflammatory and antisepticemic activities of a water extract of aged black garlic (AGE), which is not pungent, were compared with those of raw garlic extract (RGE). The methyl thiazolyl tetrazolium (MTT) assay showed that AGE was not toxic up to 1000 μg/mL and was at least four times less cytotoxic than RGE. AGE significantly suppressed the production of nitric oxide (NO), tumor-necrosis factor-α (TNF-α), and prostaglandin (PG)-E2 in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Furthermore, the inhibitory effect of AGE on LPS-induced inflammation was confirmed by downregulation of inducible NO synthase and TNF-α mRNA expression, as well as cyclooxygenase-2 protein expression. The anti-inflammatory activities of AGE were similar to those of RGE at nontoxic concentrations up to 250 μg/mL. Signal transduction pathway studies further indicated that both garlic extracts inhibited activation of mitogen-activated protein kinase and nuclear factor-κB induced by LPS stimulation. Treatment with both AGE and RGE in an in vivo experiment of LPS-induced endotoxemia significantly reduced the level of TNF-α and interleukin-6 in serum and completely protected against LPS-induced lethal shock in C57BL/6 mice. The results suggest that AGE is a more promising nutraceutical or medicinal agent to prevent or cure inflammation-related diseases for safety aspects compared with RGE.

  2. Human macrophages chronically exposed to LPS can be reactivated by stimulation with MDP to acquire an antimicrobial phenotype.

    Science.gov (United States)

    Guzmán-Beltrán, Silvia; Torres, Martha; Arellano, Monserrat; Juárez, Esmeralda

    2017-02-21

    Macrophages are important in host defense and can differentiate into functionally distinct subsets named classically (M1) or alternatively (M2) activated. In several inflammatory disorders, macrophages become tolerized to prevent deleterious consequences. This tolerization reduces the ability of macrophages to respond to bacterial components (e.g., LPS) maintaining a low level of inflammation but compromising the ability of macrophages to mount an effective immune response during subsequent pathogen encounters. In this study, we aimed to reactivate human monocyte-derived macrophages chronically exposed to LPS by re-stimulation with muramyl dipeptide (MDP). We observed an undefined profile of cell surface marker expression during endotoxin tolerance and absence of TNFα production. Stimulating macrophages chronically exposed to LPS with LPS+MDP restored TNFα, production together with an increased production of IL1, IL6, IFNγ, IL4, IL5 and IL10. These results suggest that macrophages chronically exposed to LPS possess a mixed M1-M2 phenotype with sufficient antimicrobial and homeostatic potential.

  3. Is nitric oxide decrease observed with naphthoquinones in LPS stimulated RAW 264.7 macrophages a beneficial property?

    Directory of Open Access Journals (Sweden)

    Brígida R Pinho

    Full Text Available The search of new anti-inflammatory drugs has been a current preoccupation, due to the need of effective drugs, with less adverse reactions than those used nowadays. Several naphthoquinones (plumbagin, naphthazarin, juglone, menadione, diosquinone and 1,4-naphthoquinone, plus p-hydroquinone and p-benzoquinone were evaluated for their ability to cause a reduction of nitric oxide (NO production, when RAW 264.7 macrophages were stimulated with lipopolysaccharide (LPS. Dexamethasone was used as positive control. Among the tested compounds, diosquinone was the only one that caused a NO reduction with statistical importance and without cytotoxicity: an IC(25 of 1.09±0.24 µM was found, with 38.25±6.50% (p<0.001 NO reduction at 1.5 µM. In order to elucidate if this NO decrease resulted from the interference of diosquinone with cellular defence mechanisms against LPS or to its conversion into peroxynitrite, by reaction with superoxide radical formed by naphthoquinones redox cycling, 3-nitrotyrosine and superoxide determination was also performed. None of these parameters showed significant changes relative to control. Furthermore, diosquinone caused a decrease in the pro-inflammatory cytokines: tumour necrosis factor-alpha (TNF-α and interleukin 6 (IL-6. Therefore, according to the results obtained, diosquinone, studied for its anti-inflammatory potential for the first time herein, has beneficial effects in inflammation control. This study enlightens the mechanisms of action of naphthoquinones in inflammatory models, by checking for the first time the contribution of oxidative stress generated by naphthoquinones to NO reduction.

  4. Inhibitory effects of coumarin and acetylene constituents from the roots of Angelica furcijuga on D-galactosamine/lipopolysaccharide-induced liver injury in mice and on nitric oxide production in lipopolysaccharide-activated mouse peritoneal macrophages.

    Science.gov (United States)

    Yoshikawa, Masayuki; Nishida, Norihisa; Ninomiya, Kiyofumi; Ohgushi, Teruki; Kubo, Mizuho; Morikawa, Toshio; Matsuda, Hisashi

    2006-01-15

    The methanolic extract (200 mg/kg, p.o. and i.p.), principal coumarin constituents (isoepoxypteryxin, anomalin, and praeroside IV), and a polyacetylene constituent (falcarindiol) (25 mg/kg, i.p.) from the roots of Angelica furcijuga protected the liver injury induced by D-galactosamine (D-GalN)/lipopolysaccharide (LPS) in mice. In in vitro experiments, coumarin constituents (hyuganins A-D, anomalin, pteryxin, isopteryxin, and suksdorfin) and polyacetylene constituents [(-)-falcarinol and falcarindiol] substantially inhibited LPS-induced NO and/or TNF-alpha production in mouse peritoneal macrophages, and isoepoxypteryxin inhibited D-GalN-induced cytotoxicity in primary cultured rat hepatocytes. Furthermore, hyuganin A, anomalin, and isopteryxin inhibited the decrease in cell viability by TNF-alpha in L929 cells.

  5. Preparation of procyanidin B2 from apple pomace and its inhibitory effect on the expression of cyclooxygenase-2 in lipopolysaccharide-treated RAW264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2011-06-01

    Full Text Available Dimeric procyanidin B2 (PB2 is one of phenolic compounds in apple pomace, an agro-industrial byproduct in apple juice processing. This work focused on purification of PB2 from apple pomace using sephadex column chromatography and its potential effect on lipopolysaccharide (LPS-induced inflammation using RAW264.7 macrophages. PB2 with the purity of 72.28 ± 1.85% was successfully afforded using resin and gel column chromatographic technique. Anti-inflammatory tests suggested that the expression of cyclooxygenase-2 (COX-2 in LPS-induced murine RAW264.7 macrophages was suppressed in a PB2 concentration-dependent manner. PB2 at no less than 50 μg·mL-1 could significantly suppress inflammation in the LPS-induced cells. Moreover, this suppressive effect was not correlated with PB2 pretreating. However, the COX-2 expression was not reduced in LPS pretreatment way followed by PB2 exposure, which suggested that PB2 has no repairing function. The results showed that high pure PB2 prepared from apple pomace has a remarkable anti-inflammatory property.

  6. Neuroprotective Activity of (--Epigallocatechin Gallate against Lipopolysaccharide-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Jin-Biao Liu

    2016-01-01

    Full Text Available Lipopolysaccharide- (LPS- mediated systemic inflammation plays a critical role in neurodegenerative diseases. The present study was conducted to evaluate the protective effects of epigallocatechin gallate (EGCG, the major component in green tea, on LPS-mediated inflammation and neurotoxicity. LPS treatment of macrophages induced expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6. However, EGCG pretreatment of macrophages significantly inhibited LPS-mediated induction of these cytokines. In addition, EGCG significantly diminished LPS-induced inflammatory cytokines in the peripheral mononuclear blood cells (PBMCs. Supernatant from EGCG-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-EGCG-pretreated and LPS-activated macrophage cultures. Furthermore, EGCG treatment of neurons could inhibit LPS-induced production of reactive oxygen species (ROS. Thus EGCG represents a potent and useful neuroprotective agent for inflammation-mediated neurological disorders.

  7. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia

    National Research Council Canada - National Science Library

    Henry, Christopher J; Huang, Yan; Wynne, Angela; Hanke, Mark; Himler, Justin; Bailey, Michael T; Sheridan, John F; Godbout, Jonathan P

    2008-01-01

    ...)-induced neuroinflammation, sickness behavior, and anhedonia. In the first set of experiments the effect of minocycline pretreatment on LPS-induced microglia activation was assessed in BV-2 microglia cell cultures...

  8. Ethyl pyruvate inhibits the acetylation and release of HMGB1 via effects on SIRT1/STAT signaling in LPS-activated RAW264.7 cells and peritoneal macrophages.

    Science.gov (United States)

    Kim, Young Min; Park, Eun Jung; Kim, Jung Hwan; Park, Sang Won; Kim, Hye Jung; Chang, Ki Churl

    2016-12-01

    High mobility group box 1 (HMGB1), a cytokine present in the late phase of sepsis, may be a potential target for the treatment of sepsis. For HMGB1 to be actively secreted from macrophages during infections, it must be post-translationally modified. Although ethyl pyruvate (EP), a simple aliphatic ester derived from pyruvic acid, has been shown to inhibit the release of HMGB1 in lipopolysaccharide (LPS)-treated RAW 264.7 cells, the underlying mechanism(s) are not yet clear. We investigated the hypothesis that the upregulation of SIRT1 by EP might promote the deacetylation of HMGB1, which reduces HMGB1 release in LPS-activated macrophages. Our results show that EP induced the expression of the SIRT1 protein in RAW264.7 cells and that it significantly inhibited the LPS-induced acetylation of HMGB1. Transfection with a SIRT1-overexpressing vector resulted in a significant decrease in the acetylation of HMGB1 in LPS-activated RAW264.7 cells relative to control cells. The genetic ablation or the pharmacological inhibition of SIRT1 by sirtinol increased LPS-induced HMGB1 acetylation. Moreover, EP inhibited the acetylation of HMGB1 in peritoneal macrophages treated with LPS. Interestingly, EP significantly reduced the LPS-induced phosphorylation of STAT1, which was significantly reversed by siSIRT1 transfection in RAW264.7 cells, indicating that SIRT1 negatively regulates the phosphorylation of STAT1. Overall, the results show that EP promotes the deacetylation of HMGB1 via the inhibition of STAT1 phosphorylation through the upregulation of SIRT1, which reduces HMGB1 release in LPS-activated RAW264.7 cells. In conclusion, EP might be useful in the treatment of diseases that target HMGB1, such as sepsis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Lipopolysaccharide (LPS-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR.

    Directory of Open Access Journals (Sweden)

    Christy E Trussoni

    Full Text Available Cholangiocytes (biliary epithelial cells actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells, or low passage normal human cholangiocytes (NHC, were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p<0.05 and proliferation (p<0.01. Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC livers exhibited increased phospho-EGFR (p<0.01. Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.

  10. Anti-inflammatory effect of fucoxanthin derivatives isolated from Sargassum siliquastrum in lipopolysaccharide-stimulated RAW 264.7 macrophage.

    Science.gov (United States)

    Heo, Soo-Jin; Yoon, Weon-Jong; Kim, Kil-Nam; Oh, Chulhong; Choi, Young-Ung; Yoon, Kon-Tak; Kang, Do-Hyung; Qian, Zhong-Ji; Choi, Il-Whan; Jung, Won-Kyo

    2012-09-01

    In this study, the anti-inflammatory effect of fucoxanthin (FX) derivatives, which was isolated from Sargassum siliquastrum were evaluated by examining their inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells. The FX derivatives were isolated from activity-guided chloroform fraction using inhibition of nitric oxide (NO) production and identified as 9'-cis-(6'R) fucoxnathin (FXA), and 13-cis and 13'-cis-(6'R) fucoxanthin complex (FXB) on the basis of a comparison of NMR spectroscopic data. Both FXA and FXB significantly inhibited the NO production and showed slightly reduce the PGE2 production. However, FXB exhibited cytotoxicity at the whole tested concentration, therefore, the results of FXA was only illustrate for further experiments. FXA induced dose-dependent reduction in the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) proteins as well as mRNA expression. In addition, FXA reduced the LPS-stimulated production and mRNA expressions of TNF-α and IL-6 in a dose-dependent manner whereas IL-1β production do not inhibit by addition of FXA. Taken together, these findings indicate that the anti-inflammatory properties of FXA may be due to the inhibition of iNOS/NO pathway which associated with the attenuation of TNF-α and IL-6 formation. Thus FXA may provide a potential therapeutic approach for inflammation related diseases.

  11. Metabolomic Analysis Reveals Cyanidins in Black Raspberry as Candidates for Suppression of Lipopolysaccharide-Induced Inflammation in Murine Macrophages.

    Science.gov (United States)

    Jo, Young-Hee; Park, Hyun-Chang; Choi, Seulgi; Kim, Sugyeong; Bao, Cheng; Kim, Hyung Woo; Choi, Hyung-Kyoon; Lee, Hong Jin; Auh, Joong-Hyuck

    2015-06-10

    The extracts produced by multisolvent extraction and subfractionation with preparative liquid chromatography of black raspberry (Rubus coreanus Miquel) cultivated in Gochang, South Korea, were tested for their anti-inflammatory effects. The metabolomic profiling and analysis by orthogonal partial least-squares discriminant analysis (OLPS-DA) suggested that cyanidin, cyanidin-3-glucoside (C3G), and cyanidin-3-rutinoside (C3R) were key components for the anti-inflammatory responses in the most active fraction BF3-1, where they were present at 0.44, 1.26, and 0.56 μg/mg of BF3-1, respectively. Both BF3-1 and mixture of these cyanidins at the same ratio reduced lipopolysaccharide (LPS)-induced protein level of iNOS expression and suppressed mRNA and protein expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β through inhibiting the phosphorylation of mitogen-activated protein kinases (MAPKs) and STAT3 in murine macrophage RAW264.7 cells. Overall, the results suggested that co-administration of cyanidin, C3G, and C3R is more effective than that of cyanidin alone and that the coexistence of these anthocyanin components in black raspberry plays a vital role in regulating LPS-induced inflammation even at submicromolar concentrations, making it possible to explain the health beneficial activity of its extracts.

  12. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation.

    Science.gov (United States)

    Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through

  13. Heat Stress and Lipopolysaccharide Stimulation of Chicken Macrophage-Like Cell Line Activates Expression of Distinct Sets of Genes.

    Science.gov (United States)

    Slawinska, Anna; Hsieh, John C; Schmidt, Carl J; Lamont, Susan J

    2016-01-01

    Acute heat stress requires immediate adjustment of the stressed individual to sudden changes of ambient temperatures. Chickens are particularly sensitive to heat stress due to development of insufficient physiological mechanisms to mitigate its effects. One of the symptoms of heat stress is endotoxemia that results from release of the lipopolysaccharide (LPS) from the guts. Heat-related cytotoxicity is mitigated by the innate immune system, which is comprised mostly of phagocytic cells such as monocytes and macrophages. The objective of this study was to analyze the molecular responses of the chicken macrophage-like HD11 cell line to combined heat stress and lipopolysaccharide treatment in vitro. The cells were heat-stressed and then allowed a temperature-recovery period, during which the gene expression was investigated. LPS was added to the cells to mimic the heat-stress-related endotoxemia. Semi high-throughput gene expression analysis was used to study a gene panel comprised of heat shock proteins, stress-related genes, signaling molecules and immune response genes. HD11 cell line responded to heat stress with increased mRNA abundance of the HSP25, HSPA2 and HSPH1 chaperones as well as DNAJA4 and DNAJB6 co-chaperones. The anti-apoptotic gene BAG3 was also highly up-regulated, providing evidence that the cells expressed pro-survival processes. The immune response of the HD11 cell line to LPS in the heat stress environment (up-regulation of CCL4, CCL5, IL1B, IL8 and iNOS) was higher than in thermoneutral conditions. However, the peak in the transcriptional regulation of the immune genes was after two hours of temperature-recovery. Therefore, we propose the potential influence of the extracellular heat shock proteins not only in mitigating effects of abiotic stress but also in triggering the higher level of the immune responses. Finally, use of correlation networks for the data analysis aided in discovering subtle differences in the gene expression (i.e. the role

  14. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Essafi-Benkhadir, Khadija [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Refai, Amira [Laboratoire de Recherche sur la Transmission, le Controle et l' immunobiologie des Infections, Institut Pasteur de Tunis (Tunisia); Riahi, Ichrak [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Fattouch, Sami [Laboratory LIP-MB National Institute of Applied Sciences and Technology, Tunis (Tunisia); Karoui, Habib [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Essafi, Makram, E-mail: makram.essafi@pasteur.rns.tn [Laboratoire de Recherche sur la Transmission, le Controle et l' immunobiologie des Infections, Institut Pasteur de Tunis (Tunisia)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  15. Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR).

    Science.gov (United States)

    Trussoni, Christy E; Tabibian, James H; Splinter, Patrick L; O'Hara, Steven P

    2015-01-01

    Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (pphospho-EGFR (p<0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.

  16. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease.

    Science.gov (United States)

    Baillie, J Kenneth; Arner, Erik; Daub, Carsten; De Hoon, Michiel; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Faulkner, Geoffrey J; Wells, Christine A; Rehli, Michael; Pavli, Paul; Summers, Kim M; Hume, David A

    2017-03-01

    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis

  17. Anti-inflammatory phenolics isolated from Juniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264.7 macrophage cells.

    Science.gov (United States)

    Jeong, Eun Ju; Seo, Hanee; Yang, Heejung; Kim, Jinwoong; Sung, Sang Hyun; Kim, Young Choong

    2012-12-01

    Inflammation is an essential host defense system particularly in response to infection and injury; however, excessive or undesirable inflammatory responses contribute to acute and chronic human diseases. A high-throughput screening effort searching for anti-inflammatory compounds from medicinal plants deduced that the methanolic extract of Juniperus rigida S. et L. (Cupressaceae) inhibited significantly nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Activity-guided fractionation and isolation yielded 13 phenolic compounds, including one new phenylpropanoid glycosides, 3,4-dimethoxycinnamyl 9-O-β-D-glucopyranoside (1). Among the isolated compounds, phenylpropanoid glycosides with p-hydroxy group (2, 4) and massoniaside A (7), (+)-catechin (10), amentoflavone (11) effectively inhibited LPS-induced NO production in RAW264.7 cells.

  18. A Novel Herbal Medicine KIOM-MA Exerts an Anti-Inflammatory Effect in LPS-Stimulated RAW 264.7 Macrophage Cells

    Directory of Open Access Journals (Sweden)

    You-Chang Oh

    2012-01-01

    Full Text Available KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 as well as nitric oxide (NO and prostaglandin E2 (PGE2. Consistent with the inhibitory effect on PGE2, KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9 in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6. We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB and represses the activity of extracellular signal-regulated kinase (ERK, p38, and c-Jun NH2-terminal kinase (JNK mitogen-activated protein kinases (MAPKs. Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS.

  19. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation.

    Science.gov (United States)

    Xu, Xiaolong; Yin, Peng; Wan, Changrong; Chong, Xinlu; Liu, Mingjiang; Cheng, Peng; Chen, Jiajia; Liu, Fenghua; Xu, Jianqin

    2014-06-01

    Punicalagin (2,3,hexahydroxydiphenoyl-gallagyl-D-glucose and referred to as PUN) is a bioactive ellagitannin isolated from pomegranate, which is widely used for the treatment of inflammatory bowel disease (IBD), diarrhea, and ulcers in Chinese traditional medicine. In this study, we detected the anti-inflammation potentials of PUN in lipopolysaccharide (LPS)-induced macrophages and tried to uncover the underlying mechanism. Results demonstrated that PUN (25, 50, or 100 μM) treatment could significantly decrease the LPS-induced production of nitric oxide), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in RAW264.7 cells. Molecular research showed that PUN inhibited the activation of upstream mediator nuclear factor-κB by suppressing the phosphorylation of IκBα and p65. Results also indicated that PUN could suppress the phosphorylation of mitogen-activated protein kinase including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase. In conclusion, we observed that PUN could inhibit LPS-induced inflammation, and it may be a potential choice for the treatment of inflammation diseases.

  20. Red ginseng marc oil inhibits iNOS and COX-2 via NFκB and p38 pathways in LPS-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Bak, Min-Ji; Hong, Soon-Gi; Lee, Jong-Won; Jeong, Woo-Sik

    2012-11-22

    In this study, we investigated the anti-inflammatory effects of red ginseng marc oil (RMO) in the RAW 264.7 macrophage cell line. RMO was prepared by a supercritical CO(2) extraction of waste product generated after hot water extraction of red ginseng. RMO significantly inhibited the production of oxidative stress molecules such as nitric oxide and reactive oxygen species in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Levels of inflammatory targets including prostaglandin E2, tumor necrosis factor-α, interleukin (IL)-1β and IL-6 were also reduced after the treatment with RMO. In addition, RMO diminished the expressions of inducible nitric oxide synthase and cyclooxygenase 2 at both mRNA and protein levels. Blockade of nuclear translocation of the p65 subunit of nuclear factor κB (NFκB) was also observed after the treatment of RMO. Furthermore, RMO decreased the phosphorylations of p38 mitogen-activated protein kinase (MAPK) and its upstream kinases including MAPK kinases 3/6 (MKK3/6) and TAK 1 (TGF-β activated kinase 1). Gas chromatographic analysis on RMO revealed that RMO contained about 10% phytosterols including sitosterol, stigmasterol and campesterol which may contribute to the anti-inflammatory properties of RMO. Taken together, these results suggest that the anti-inflammatory effect of RMO in LPS-induced RAW 264.7 macrophages could be associated with the inhibition of NFκB transcriptional activity, possibly via blocking the p38 MAPK pathway.

  1. Differences in the effects of four TRPV1 channel antagonists on lipopolysaccharide-induced cytokine production and COX-2 expression in murine macrophages.

    Science.gov (United States)

    Ninomiya, Yuki; Tanuma, Sei-Ichi; Tsukimoto, Mitsutoshi

    2017-03-11

    Sepsis is a systemic inflammatory response syndrome triggered by lipopolysaccharide (LPS), an outer membrane component of gram-negative bacteria, and cytokine production via LPS-induced macrophage activation is deeply involved in its pathogenesis. Effective therapy of sepsis has not yet been established. However, it was reported that transient receptor potential vanilloid 1 (TRPV1) channel antagonist capsazepine (CPZ; a capsaicin analogue) attenuates sepsis in a murine model [Ang et al., PLoS ONE 6(9) (2011) e24535; J. Immunol. 187 (2011) 4778-4787]. Here, we profiled the effects of four TRPV1 channel antagonists, AMG9810, SB366791, BCTC and CPZ, on the release of IL-6, IL-1β and IL-18, and on expression of cyclooxygenase 2 (COX-2) in LPS-activated macrophages. Treatment of murine macrophage J774.1 cells or BALB/c mouse-derived intraperitoneal immune cells with LPS induced pro-inflammatory cytokines production and COX-2 expression. Pretreatment with AMG9810 or CPZ significantly suppressed the release of IL-6, IL-1β and IL-18, and COX-2 expression, whereas SB366791 and BCTC were less effective. These results support a role of TRPV1 channel in macrophage activation, but also indicate that only a subset of TRPV1 channel antagonists may be effective in suppressing inflammatory responses. These results suggest that at least some TRPV1 channel antagonists, such as AMG9810 and CPZ, may be candidate anti-inflammatory agents for treatment of sepsis.

  2. Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.

    1999-01-01

    following LPS stimulation, representing an ex vivo model of sepsis. Levels of tumour necrosis factor-alpha (TNF-alpha), IL-1 beta and IL-6 in whole blood supernatants were measured after in vitro LPS stimulation for 24 h in 168 elderly humans aged 81 years from the 1914 cohort in Glostrup, Denmark and in 91...... young controls aged 19-31 years. Levels of TNF-alpha and IL-1 beta were significantly lower in elderly humans compared with young controls, whereas no difference was detected with regard to IL-6. Elderly humans with low body mass index had the lowest levels of IL-1 beta. Young women had lower levels...

  3. A regulatory role for macrophage class A scavenger receptors in TLR4-mediated LPS responses.

    Science.gov (United States)

    Chen, Yunying; Wermeling, Fredrik; Sundqvist, Johanna; Jonsson, Ann-Beth; Tryggvason, Karl; Pikkarainen, Timo; Karlsson, Mikael C I

    2010-05-01

    Recognition of microbial components by TLR, key sensors of infection, leads to induction of inflammatory responses. We found that, in vivo, TLR4 engagement by LPS induces up-regulation of the class A scavenger receptors (SR) macrophage receptor with a collagenous structure (MARCO) and SR-A, which occurs, at least in the case of MARCO, via both MyD88-dependent and -independent pathways. When challenging mice with a low dose of LPS followed by a high dose, class A SR-deficient mice showed a higher survival rate than WT mice. This was paired with increased production of IL-10 and anti-LPS Ab, as well as increased activation status of marginal zone B cells. However, the receptors were not crucial for survival when challenging mice i.p. with Neisseria meningitidis or Listeria monocytogenes, but they were found to contribute to microbial capture and clearance. This indicates physiological significance for the up-regulation of class A SR during early stages of bacterial infection. Thus, we believe that we have revealed a mechanism where SR regulate the activation status of the immune system and are involved in balancing a proper immune response to infection. This regulation could also be important in maintaining tolerance since these receptors have been shown to be involved in regulation of self-reactivity.

  4. Comparative nitric oxide production by LPS-stimulated monocyte-derived macrophages from Ovis canadensis and Ovis aries.

    Science.gov (United States)

    Sacco, R E; Waters, W R; Rudolph, K M; Drew, M L

    2006-01-01

    Bighorn sheep are more susceptible to respiratory infection by Mannheimia haemolytica than are domestic sheep. In response to bacterial challenge, macrophages produce a number of molecules that play key roles in the inflammatory response, including highly reactive nitrogen intermediates such as nitric oxide (NO). Supernatants from monocyte-derived macrophages cultured with M. haemolytica LPS were assayed for nitric oxide activity via measurement of the NO metabolite, nitrite. In response to LPS stimulation, bighorn sheep macrophages secreted significantly higher levels of NO compared to levels for non-stimulated macrophages. In contrast, levels of NO produced by domestic sheep macrophages in response to M. haemolytica LPS did not differ from levels detected in non-stimulated cell cultures. Nitrite levels detected in supernatants of LPS-stimulated bighorn macrophage cultures treated with an inducible nitric oxide synthase (INOS) inhibitor, N(G)-monomethyl-L-arginine, were similar to that observed in non-stimulated cultures indicating a role for the iNOS pathway.

  5. Protection against the toxicity of microcystin-LR and cylindrospermopsin in Artemia salina and Daphnia spp. by pre-treatment with cyanobacterial lipopolysaccharide (LPS).

    Science.gov (United States)

    Lindsay, J; Metcalf, J S; Codd, G A

    2006-12-15

    Purified cyanobacterial lipopolysaccharide (LPS) was not acutely toxic to three aquatic invertebrates (Artemia salina, Daphnia magna and Daphnia galeata) in immersion trials. However, pre-exposure (24 h) to 2 ngmL(-1) LPS increased the LC(50) of microcystin-LR significantly in all 3 species. Similar results were observed with A. salina pre-treated with the same concentration of cyanobacterial LPS and subsequently exposed to cylindrospermopsin, increasing the LC(50) by 8. The findings indicate the need to include exposures to defined combinations of cyanotoxins, and in defined sequences, to understand the contributions of individual cyanotoxins in accounting for cyanobacterial toxicity to invertebrates in natural aquatic environments.

  6. Suppression of Inflammatory Mediators by Cruciferous Vegetable-Derived Indole-3-Carbinol and Phenylethyl Isothiocyanate in Lipopolysaccharide-Activated Macrophages

    Directory of Open Access Journals (Sweden)

    Jo-Ting Tsai

    2010-01-01

    Full Text Available This study was aimed to examine the effects of indole-3-carbinol (I3C and β-phenylethyl isothiocyanate (PEITC, bioactive components present in cruciferous vegetable, on the production of inflammatory mediators, including nitric oxide (NO, tumor necrosis factor-α (TNF-α and interleukin-10 (IL-10, in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. Possible mechanisms of the NO-inhibitory effects were also explored. The results indicated that I3C and PEITC inhibited NO production, and this suppression was associated with decreased production of TNF-α and IL-10 by activated macrophages. In addition, I3C suppressed NO production even after the inducible nitric oxide synthase (iNOS protein had been produced, but such an inhibitory effect was not observed in cells treated with PEITC. Furthermore, both compounds reduced the NO contents generated from an NO donor in a cell-free condition, suggesting that the increased NO clearance may have contributed to the NO-inhibitory effects. In summary, both I3C and PEITC possessed antiinflammatory effects by inhibiting the productions of NO, TNF-α, and IL-10, although the NO-inhibitory effects may have involved in different mechanisms.

  7. Anti-inflammatory effect of a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor via the stimulation of heme oxygenase-1 in LPS-activated mice and J774.1 murine macrophages

    Directory of Open Access Journals (Sweden)

    Sung Bum Park

    2016-08-01

    Full Text Available 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 converts inactive cortisone to the active cortisol. 11β-HSD1 may be involved in the resolution of inflammation. In the present study, we investigate the anti-inflammatory effects of 2-(3-benzoyl-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344, a selective 11β-HSD1 inhibitor, in lipopolysaccharide (LPS-activated C57BL/6J mice and macrophages. LPS increased 11β-HSD1 activity and expression in macrophages, which was inhibited by KR-66344. In addition, KR-66344 increased survival rate in LPS treated C57BL/6J mice. HO-1 mRNA expression level was increased by KR-66344, and this effect was reversed by the HO competitive inhibitor, ZnPP, in macrophages. Moreover, ZnPP reversed the suppression of ROS formation and cell death induced by KR-66344. ZnPP also suppressed animal survival rate in LPS plus KR-66344 treated C57BL/6J mice. In the spleen of LPS-treated mice, KR-66344 prevented cell death via suppression of inflammation, followed by inhibition of ROS, iNOS and COX-2 expression. Furthermore, LPS increased NFκB-p65 and MAPK phosphorylation, and these effects were abolished by pretreatment with KR-66344. Taken together, KR-66344 protects against LPS-induced animal death and spleen injury by inhibition of inflammation via induction of HO-1 and inhibition of 11β-HSD1 activity. Thus, we concluded that the selective 11β-HSD1 inhibitor may provide a novel strategy in the prevention/treatment of inflammatory disorders in patients.

  8. Effects of lipopolysaccharide (LPS) induced inflammatory response on early embryo survival in ewes

    Science.gov (United States)

    Early pregnant ewes were used to determine the effects of endogenous (through LPS activation) and exogenous TNF-alpha tumor necrosis factor-alpha (TNF-alpha) on embryonic loss. Thirty-eight Dorset x Texel ewes were synchronized for estrus and bred to fertile rams (d0). On d5/6, ewes were assigned t...

  9. Anti-inflammatory potential of peat moss extracts in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Choi, Woo-Suk; Jeong, Jin-Woo; Kim, Sung Ok; Kim, Gi-Young; Kim, Byung-Woo; Kim, Cheol Min; Seo, Yong-Bae; Kim, Woe-Yeon; Lee, Sang-Yeol; Jo, Kwon-Ho; Choi, Young Ju; Choi, Yung Hyun; Kim, Gun-Do

    2014-10-01

    The aim of the present study was to identify the anti-inflammatory and anti-oxidative effects of peat moss aqueous extract (PME) on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. To demonstrate the anti-inflammatory and antioxidant effects of PME, the levels of nitric oxide (NO) and cytokines were measured using Griess reagent and cytokine ELISA kits, respectively. Reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot analysis were conducted to evaluate the expression of genes and proteins. Immunofluorescence was used to measure the expression and translocation of transcription factors. Pre-treatment with PME inhibited the production of prostaglandin E(2) and NO by suppressing the gene expression of cyclooxygenase-2 and inducible NO synthase, respectively. The LPS-stimulated gene expression and the production of tumor necrosis factor-α and interleukin-1β were significantly reduced by PME. In the LPS-stimulated RAW 264.7 cells, nuclear factor‑κB (NF-κB) translocated from the cytosol to the nucleus, while pre-treatment with PME induced the sequestration of NF-κB in the cytosol through the inhibition of IκBα degradation. In the same manner, PME contributed to the inhibition of the activation of mitogen-activated protein kinases. In addition, the PME-treated RAW 264.7 cells facilitated the activation of nuclear factor-like 2 (Nrf2) , and in turn, enhanced heme oxygenase-1 (HO-1) expression. These results indicate that PME exerts anti-inflammatory and antioxidant effects, and suggest that PME may neutralize inflammation and prevent cellular damage by oxidative stress.

  10. Apigenin Protects Endothelial Cells from Lipopolysaccharide (LPS)-Induced Inflammation by Decreasing Caspase-3 Activation and Modulating Mitochondrial Function

    Science.gov (United States)

    Duarte, Silvia; Arango, Daniel; Parihar, Arti; Hamel, Patrice; Yasmeen, Rumana; Doseff, Andrea I.

    2013-01-01

    Acute and chronic inflammation is characterized by increased reactive oxygen species (ROS) production, dysregulation of mitochondrial metabolism and abnormal immune function contributing to cardiovascular diseases and sepsis. Clinical and epidemiological studies suggest potential beneficial effects of dietary interventions in inflammatory diseases but understanding of how nutrients work remains insufficient. In the present study, we evaluated the effects of apigenin, an anti-inflammatory flavonoid abundantly found in our diet, in endothelial cells during inflammation. Here, we show that apigenin reduced lipopolysaccharide (LPS)-induced apoptosis by decreasing ROS production and the activity of caspase-3 in endothelial cells. Apigenin conferred protection against LPS-induced mitochondrial dysfunction and reestablished normal mitochondrial complex I activity, a major site of electron leakage and superoxide production, suggesting its ability to modulate endothelial cell metabolic function during inflammation. Collectively, these findings indicate that the dietary compound apigenin stabilizes mitochondrial function during inflammation preventing endothelial cell damage and thus provide new translational opportunities for the use of dietary components in the prevention and treatment of inflammatory diseases. PMID:23989609

  11. Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.

    1999-01-01

    host defence against infections in the elderly and be of importance in elderly humans with underlying health disorders. However, the clinical relevance is questionable in healthy elderly people because decreased levels were found compared with young men but not compared with young women....... following LPS stimulation, representing an ex vivo model of sepsis. Levels of tumour necrosis factor-alpha (TNF-alpha), IL-1 beta and IL-6 in whole blood supernatants were measured after in vitro LPS stimulation for 24 h in 168 elderly humans aged 81 years from the 1914 cohort in Glostrup, Denmark and in 91...... young controls aged 19-31 years. Levels of TNF-alpha and IL-1 beta were significantly lower in elderly humans compared with young controls, whereas no difference was detected with regard to IL-6. Elderly humans with low body mass index had the lowest levels of IL-1 beta. Young women had lower levels...

  12. Anti-myeloperoxidase antibodies attenuate the monocyte response to LPS and shape macrophage development

    Science.gov (United States)

    Popat, Reena J.; Hakki, Seran; Coughlan, Alice M.; Watson, Julie; Little, Mark A.; Spickett, Corinne M.; Lavender, Paul; Afzali, Behdad; Kemper, Claudia; Robson, Michael G.

    2017-01-01

    Anti-neutrophil cytoplasmic antibody (ANCA) vasculitis is characterized by the presence of autoantibodies to myeloperoxidase and proteinase-3, which bind monocytes in addition to neutrophils. While a pathological effect on neutrophils is acknowledged, the impact of ANCA on monocyte function is less well understood. Using IgG from patients we investigated the effect of these autoantibodies on monocytes and found that anti-myeloperoxidase antibodies (MPO-ANCA) reduced both IL-10 and IL-6 secretion in response to LPS. This reduction in IL-10 and IL-6 depended on Fc receptors and enzymatic myeloperoxidase and was accompanied by a significant reduction in TLR-driven signaling pathways. Aligning with changes in TLR signals, oxidized phospholipids, which function as TLR4 antagonists, were increased in monocytes in the presence of MPO-ANCA. We further observed that MPO-ANCA increased monocyte survival and differentiation to macrophages by stimulating CSF-1 production. However, this was independent of myeloperoxidase enzymatic activity and TLR signaling. Macrophages differentiated in the presence of MPO-ANCA secreted more TGF-β and further promoted the development of IL-10– and TGF-β–secreting CD4+ T cells. Thus, MPO-ANCA may promote inflammation by reducing the secretion of antiinflammatory IL-10 from monocytes, and MPO-ANCA can alter the development of macrophages and T cells to potentially promote fibrosis. PMID:28138552

  13. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages.

    Directory of Open Access Journals (Sweden)

    James Witham

    Full Text Available The transcriptional activation of the chicken lysozyme gene (cLys by lipopolysaccharide (LPS in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR triggering eviction of the CCCTC-binding factor (CTCF from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE. In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.

  14. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages.

    Science.gov (United States)

    Witham, James; Ouboussad, Lylia; Lefevre, Pascal F

    2013-01-01

    The transcriptional activation of the chicken lysozyme gene (cLys) by lipopolysaccharide (LPS) in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR) triggering eviction of the CCCTC-binding factor (CTCF) from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE). In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.

  15. Role of the Brucella suis Lipopolysaccharide O Antigen in Phagosomal Genesis and in Inhibition of Phagosome-Lysosome Fusion in Murine Macrophages

    Science.gov (United States)

    Porte, Françoise; Naroeni, Aroem; Ouahrani-Bettache, Safia; Liautard, Jean-Pierre

    2003-01-01

    Brucella species are gram-negative, facultative intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment inside professional and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both cell types. However, the molecular mechanisms and the microbial factors involved are poorly understood. Smooth lipopolysaccharide (LPS) of Brucella has been reported to be an important virulence factor, although its precise role in pathogenesis is not yet clear. In this study, we show that the LPS O side chain is involved in inhibition of the early fusion between Brucella suis-containing phagosomes and lysosomes in murine macrophages. In contrast, the phagosomes containing rough mutants, which fail to express the O antigen, rapidly fuse with lysosomes. In addition, we show that rough mutants do not enter host cells by using lipid rafts, contrary to smooth strains. Thus, we propose that the LPS O chain might be a major factor that governs the early behavior of bacteria inside macrophages. PMID:12595466

  16. Bauer Ketones 23 and 24 from Echinacea paradoxa var. paradoxa Inhibit Lipopolysaccharide-induced Nitric Oxide, Prostaglandin E2 and Cytokines in RAW 264.7 Mouse Macrophages

    Science.gov (United States)

    Zhang, Xiaozhu; Rizshsky, Ludmila; Hauck, Catherine; Qu, Luping; Widrlechner, Mark P.; Nikolau, Basil J.; Murphy, Patricia A.; Birt, Diane F.

    2011-01-01

    Among the nine Echinacea species, E. purpurea, E. angustifolia and E. pallida, have been widely used to treat the common cold, flu and other infections. In our study, ethanol extracts of these three Echinacea species and E. paradoxa, including its typical variety, E. paradoxa var. paradoxa, were screened in lipopolysaccharide (LPS)-stimulated macrophage cells to assess potential anti-inflammatory activity. Echinacea paradoxa var. paradoxa, rich in polyenes/polyacetylenes, was an especially efficient inhibitor of LPS-induced production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) by 46%, 32%, 53% and 26%, respectively, when tested at 20 μg/ml in comparison to DMSO control. By bioactivity-guided fractionation, pentadeca-8Z-ene-11, 13-diyn-2-one (Bauer ketones 23, compound 1) and pentadeca-8Z, 13Z-dien-11-yn-2-one (Bauer ketone 24, compound 2) from E. paradoxa var. paradoxa were found primarily responsible for inhibitory effects on NO and PGE2 production. Moreover, Bauer ketone 24 (compound 2) was the major contributor to inhibition of inflammatory cytokine production in LPS-induced mouse macrophage cells. These results provide a rationale for exploring the medicinal effects of the Bauer ketone-rich taxon, E. paradoxa var. paradoxa, and confirm the anti-inflammatory properties of Bauer ketones 23 and 24. PMID:22133644

  17. Roxatidine suppresses inflammatory responses via inhibition of NF-κB and p38 MAPK activation in LPS-induced RAW 264.7 macrophages.

    Science.gov (United States)

    Cho, Eu-Jin; An, Hyo-Jin; Shin, Ji-Sun; Choi, Hye-Eun; Ko, Jane; Cho, Young-Wuk; Kim, Hyung-Min; Choi, Jung-Hye; Lee, Kyung-Tae

    2011-12-01

    Roxatidine is a novel, specific, competitive H(2) -receptor antagonist that is used to treat gastric and duodenal ulcers, and which is known to suppress the growth of several tumors by reducing vascular endothelial growth factor (VEGF) expression. Nevertheless, it remains unclear whether roxatidine has anti-inflammatory effects. In this study, we the authors investigated the anti-inflammatory effect of roxatidine in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. It was found that roxatidine dose-dependently inhibited the productions of prostaglandin E(2) (PGE(2)), nitric oxide (NO), and histamine, and the protein and mRNA expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and histidine decarboxylase (HDC). In addition, roxatidine reduced the productions and expressions of VEGF-1 and pro-inflammatory cytokines, including those of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Electrophoretic mobility shift assays (EMSA) and reporter gene assays revealed that treatment with roxatidine attenuated the LPS-induced DNA-binding and transcriptional activity of nuclear factor kappa B (NF-κB). In addition, it was found that pretreatment with roxatidine significantly inhibited the nuclear translocations of the p65 and p50 subunits of NF-κB, and these inhibitions were not found to be associated with decreases in the phosphorylation or degradation of inhibitory kappa B-α (IκBα). Furthermore, roxatidine suppressed the phosphorylation of p38 MAP kinase, but not of IκB kinase-α/β (IKKα/β), c-Jun NH(2) -terminal kinase (JNK), or extracellular signal-regulated kinase (ERK). Taken together, these results indicate that the anti-inflammatory properties of roxatidine in LPS-treated RAW 264.7 macrophages are mediated by the inhibition of NF-κB transcriptional activity and the p38 MAP kinase pathway.

  18. Effects of β-Glucan on the Release of Nitric Oxide by Macrophages Stimulated with Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    E. Y. Choi

    2016-11-01

    Full Text Available This research analyzed the effect of β-glucan that is expected to alleviate the production of the inflammatory mediator in macrophagocytes, which are processed by the lipopolysaccharide (LPS of Escherichia. The incubated layer was used for a nitric oxide (NO analysis. The DNA-binding activation of the small unit of nuclear factor-κB was measured using the enzyme-linked immunosorbent assay-based kit. In the RAW264.7 cells that were vitalized by Escherichia coli (E. coli LPS, the β-glucan inhibited both the combatant and rendering phases of the inducible NO synthase (iNOS-derived NO. β-Glucan increased the expression of the heme oxygenase-1 (HO-1 in the cells that were stimulated by E. coli LPS, and the HO-1 activation was inhibited by the tin protoporphyrin IX (SnPP. This shows that the NO production induced by LPS is related to the inhibition effect of β-glucan. The phosphorylation of c-Jun N-terminal kinases (JNK and the p38 induced by the LPS were not influenced by the β-glucan, and the inhibitory κB-α (IκB-α decomposition was not influenced either. Instead, β-glucan remarkably inhibited the phosphorylation of the signal transducer and activator of transcription-1 (STAT1 that was induced by the E. coli LPS. Overall, the β-glucan inhibited the production of NO in macrophagocytes that was vitalized by the E .coli LPS through the HO-1 induction and the STAT1 pathways inhibition in this research. As the host immune response control by β-glucan weakens the progress of the inflammatory disease, β-glucan can be used as an effective immunomodulator.

  19. Aged red garlic extract reduces lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages and acute pulmonary inflammation through haeme oxygenase-1 induction.

    Science.gov (United States)

    Park, H-J; Jeon, B T; Kim, H C; Roh, G S; Shin, J-H; Sung, N-J; Han, J; Kang, D

    2012-05-01

    It is known that garlic has antioxidative and anti-inflammatory properties. Aged red garlic (ARG), a novel aged garlic formulation, has higher antioxidant effects than fresh raw garlic. This study was performed to examine the anti-inflammatory effects of ARG extract (ARGE). The anti-inflammatory effects of ARGE were evaluated in the lipopolysaccharide (LPS)-treated Raw 264.7 macrophages and acute lung inflammatory mice. NO production was determined by the Griess method, and iNOS, HO-1 and COX-2 expressions were measured using Western blot analysis. Histology and inflammation extent of lung were analysed using haematoxylin-eosin staining and immunohistochemistry. ARGE treatment markedly reduced LPS-induced nitrite production in RAW 264.7 macrophages and reduced inducible nitric oxide synthase (iNOS) expression. Treatment of cells with ARGE led to a significant increase in haeme oxygenase-1 (HO-1) protein expression, which was mediated by stimulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). Treatment with zinc protoporphyrin, a selective inhibitor of HO-1, significantly reversed the ARGE-mediated inhibition of nitrite production (P < 0.05). In LPS-induced inflammatory mice, ARGE treatment down-regulated iNOS and COX-2 expressions, while it up-regulated HO-1 expression. These results show that ARGE reduces LPS-induced nitric oxide production in RAW 264.7 macrophages through HO-1 induction and suggest that ARGE may have potential effects on prevention and treatment of acute inflammatory lung injury. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  20. 2-Phenylnaphthalene Derivatives Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Mediators by Downregulating of MAPK/NF-κB Pathways in RAW 264.7 Macrophage Cells

    Science.gov (United States)

    Chang, Chi-Fen; Liao, Kang-Chun; Chen, Chung-Hwan

    2017-01-01

    The anti-inflammatory pharmacological effect of eight 2-phenylnaphthalenes (PNAP-1−PNAP-8) on lipopolysaccharide (LPS)-induced RAW 264.7 (a mouse cell line) was investigated. Among them, 6,7-dihydroxy-2-(4′-hydroxyphenyl)naphthalene (PNAP-6) and 2-(4′-aminophenyl)-6,7-dimethoxynaphthalene (PNAP-8) exhibited the best anti-inflammatory activity in this study. PNAP-6 and PNAP-8 not only significantly decreased the expression of inducible nitric oxide synthase and cyclooxygenase-II, but also inhibited the production of nitric oxide, interleukin-6, and tumor necrosis factor-α in LPS stimulated cells. Moreover, PNAP-6 and PNAP-8 inhibited nuclear factor (NF)-κB activation by decreasing the degradation of IκB and nuclear translocation of NF-κB subunit (p65). In addition, PNAP-6 and PNAP-8 also attenuated the phosphorylation of ERK, p38, and JNK. These results suggest that PNAP-6 and PNAP-8 exert anti-inflammatory activities by down regulating NF-κB activation and the mitogen-activated protein kinase signaling pathway in LPS-stimulated Raw 264.7 cells. This is the first study demonstrating that PNAPs can inhibit LPS-induced pro-inflammatory mediators in macrophages cells. PMID:28060845

  1. Evaluation of suitable reference genes for gene expression studies in porcine alveolar macrophages in response to LPS and LTA

    Directory of Open Access Journals (Sweden)

    Cinar Mehmet

    2012-02-01

    Full Text Available Abstract Background To obtain reliable quantitative real-time PCR data, normalization relative to stable housekeeping genes (HKGs is required. However, in practice, expression levels of 'typical' housekeeping genes have been found to vary between tissues and under different experimental conditions. To date, validation studies of reference genes in pigs are relatively rare and have never been performed in porcine alveolar macrophages (AMs. In this study, expression stability of putative housekeeping genes were identified in the porcine AMs in response to the stimulation with two pathogen-associated molecular patterns (PAMPs lipopolysaccharide (LPS and lipoteichoic acid (LTA. Three different algorithms (geNorm, Normfinder and BestKeeper were applied to assess the stability of HKGs. Results The mRNA expression stability of nine commonly used reference genes (B2M, BLM, GAPDH, HPRT1, PPIA, RPL4, SDHA, TBP and YWHAZ was determined by qRT-PCR in AMs that were stimulated by LPS and LTA in vitro. mRNA expression levels of all genes were found to be affected by the type of stimulation and duration of the stimulation (P SDHA, B2M and RPL4 showed a high expression stability in the irrespective to the stimulation group, while SDHA, YWHAZ and RPL4 showed high stability in non-stimulated control group. In all cases, GAPDH showed the least stability in geNorm. NormFinder revealed that SDHA was the most stable gene in all the groups. Moreover, geNorm software suggested that the geometric mean of the three most stable genes would be the suitable combination for accurate normalization of gene expression study. Conclusions There was discrepancy in the ranking order of reference genes obtained by different analysing algorithms. In conclusion, the geometric mean of the SDHA, YWHAZ and RPL4 seemed to be the most appropriate combination of HKGs for accurate normalization of gene expression data in porcine AMs without knowing the type of bacterial pathogenic status of

  2. Anti-inflammatory role of microRNA let-7c in LPS treated alveolar macrophages by targeting STAT3

    Institute of Scientific and Technical Information of China (English)

    Ji-Hui Yu; Li Long; Zhi-Xiao Luo; Lin-Man Li; Jie-Ru You

    2016-01-01

    Objective: To explore the expression of microRNA (miRNA) let-7c and its function in chronic obstructive pulmonary disease (COPD) and alveolar macrophage cells. Methods: Real time PCR was performed to detect the expression of miRNA let-7c in the lung tissue of COPD patients and COPD model in mice. MiRNA let-7c was overexpressed in alveolar macrophages isolated from mice and its effect was measured by the production of pro-inflammation cytokines and the protein level of signal transducer and activator of transcription 3 (STAT3) as well as phosphorylation level of STAT3 after LPS stimulation. Luciferase assay was used to detect the binding of miRNA let-7c and 3'UTR of STAT3. Results: MiRNA let-7c expression was significantly lower in patients with COPD compared with control group, and the similar result was found in COPD mice and LPS stimulated alveolar macrophages. Overexpression of miRNA let-7c in alveolar macrophages inhibited LPS-induced increasing of tumor necrosis factor alpha, interleukin-6 and interleukin-1β. Luciferase assay showed STAT3 was a targeting of miRNA let-7c in alveolar macrophages. Conclusions: MiRNA let-7c low expression in COPD can regulate inflammatory responses by targeting STAT3 in alveolar macrophage, which may provide a new target for COPD treatment strategies.

  3. Evaluation of the lipopolysaccharide-induced transcription of the human TREM-1 gene in vitamin D3-matured THP-1 macrophage-like cells.

    Science.gov (United States)

    Hosoda, Hiroshi; Tamura, Hiroshi; Nagaoka, Isao

    2015-11-01

    Triggering receptor expressed on myeloid cells-1 (TREM-1) plays a role in inflammation by augmenting inflammatory responses through the production of pro-inflammatory cytokines. TREM-1 is expressed in mature macrophages, and is upregulated by stimulation with bacterial components, such as lipopolysaccharide (LPS). In the present study, the regulatory mechanisms responsible for the transcription of the human TREM-1 gene were examined using a human monocytic cell line (THP-1 cells). Reverse transcription-polymerase chain reaction (RT-PCR) revealed that TREM-1 mRNA was constitutively expressed at a low level in resting cells, and that its expression was upregulated by treatment with vitamin D3 (VitD3), but not by LPS. Importantly, TREM-1 mRNA expression was further upregulated by stimulation of the VitD3‑treated THP-1 cells with LPS. In addition, a luciferase reporter assay revealed that the serum response element (SRE) was involved in VitD3-induced promoter activity, whereas the activator protein-1 (AP-1) sites participated in the VitD3- and LPS-induced promoter activity. Of note, the CCAAT-enhancer-binding protein (C/EBP) site contributed not only to basal, but also to VitD3- and LPS-induced promoter activity. Transfection with transcription factor oligodeoxynucleotide (ODN) decoys indicated that transcription factors of the C/EBP and AP-1 families are likely involved in the basal, as well as in the VitD3- and LPS-induced TREM-1 transcription. Western blot analysis indicated that, of the members of the C/EBP family, C/EBPα was constitutively expressed in resting cells; its expression was enhanced by treatment with VitD3 and was further increased by treatment with VitD3 and LPS. Moreover, the expression of c-Fos and c-Jun (members of the AP-1 family) was augmented by treatment with both VitD3 and LPS. These observations indicate that members of the C/EBP family participate not only in basal, but also in the VitD3- and LPS-induced promoter activity of the human

  4. Endothelin receptor-antagonists suppress lipopolysaccharide-induced cytokine release from alveolar macrophages of non-smokers, smokers and COPD subjects.

    Science.gov (United States)

    Gerlach, Kathrin; Köhler-Bachmann, Stefanie; Jungck, David; Körber, Sandra; Yanik, Sarah; Knoop, Heiko; Wehde, Deborah; Rheinländer, Sonja; Walther, Jörg W; Kronsbein, Juliane; Knobloch, Jürgen; Koch, Andrea

    2015-12-01

    Smoking-induced COPD is characterized by chronic airway inflammation, which becomes enhanced by bacterial infections resulting in accelerated disease progression called exacerbation. Alveolar macrophages (AM) release endothelin-1 (ET-1), IL-6, CCL-2 and MMP-9, all of which are linked to COPD pathogenesis and exacerbation. ET-1 signals via ETA- and ETB-receptors (ETAR, ETBR). This is blocked by endothelin receptor antagonists (ERAs), like bosentan, which targets both receptors, ETAR-selective ambrisentan and ETBR-specific BQ788. Therefore, ERAs could have anti-inflammatory potential, which might be useful in COPD and other inflammatory lung diseases. We hypothesized that ERAs suppress cytokine release from AM of smokers and COPD subjects induced by lipopolysaccharide (LPS), the most important immunogen of gram-negative bacteria. AM were isolated from the broncho-alveolar lavage (BAL) of n=29 subjects (11 non-smokers, 10 current smokers without COPD, 8 smokers with COPD), cultivated and stimulated with LPS in the presence or absence of ERAs. Cytokines were measured by ELISA. Endothelin receptor expression was investigated by RT-PCR and western blot. AM expressed ETAR and ETBR mRNA, but only ETBR protein was detected. LPS and ET-1 both induced IL-6, CCL-2 and MMP-9. LPS-induced IL-6 release was increased in COPD versus non-smokers and smokers. Bosentan, ambrisentan and BQ788 all partially reduced all cytokines without differences between cohorts. Specific ETBR inhibition was most effective. LPS induced ET-1, which was exclusively blocked by BQ788. In conclusion, LPS induces ET-1 release in AM, which in turn leads to CCL-2, IL-6 and MMP-9 expression rendering AM sensitive for ERAs. ERAs could have anti-inflammatory potential in smoking-induced COPD.

  5. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways.

    Science.gov (United States)

    Kim, Young-Sang; Ahn, Chang-Bum; Je, Jae-Young

    2016-07-01

    Anti-inflammatory Mytilus edulis hydrolysates (MEHs) were prepared by peptic hydrolysis and MEH was further fractionated into three fractions based on molecular weight, namely >5kDa, 1-5kDa, and 5kDa peptide fraction exerted the highest nitric oxide (NO) inhibitory activity and inhibited prostaglandin E2 (PGE2) secretion in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pretreatment with the >5kDa peptide fraction markedly inhibited LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions. Stimulation by LPS induced the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β), whereas co-treatment with the >5kDa peptide fraction suppressed pro-inflammatory cytokine production. The >5kDa peptide fraction inhibited the translocation of NF-κB (nuclear factor-kappa B) through the prevention of IκBα (inhibitory factor kappa B alpha) phosphorylation and degradation and also inhibited the MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.

  6. Modification of a synthetic LPS-binding domain of anti-lipopolysaccharide factor from shrimp reveals strong structure-activity relationship in their antimicrobial characteristics.

    Science.gov (United States)

    Guo, Shuyue; Li, Shihao; Li, Fuhua; Zhang, Xiaojun; Xiang, Jianhai

    2014-08-01

    Anti-lipopolysaccharide factor (ALF) is a small protein with broad-spectrum antimicrobial activities and certain antiviral property. Its putative lipopolysaccharide (LPS) binding domain was deduced to be important for its activities. However, there is still no report revealing how the structure of the LPS-binding domain affects its biological function until now. In the present study, we designed and synthesized a peptide corresponding to the LPS-binding domain of ALF from the Chinese shrimp (designated as FcALF-LBDc) and its structure-modified isoforms in order to analyze the relationship between its structure and antimicrobial activities. Results showed that FcALF-LBDc exhibited apparent antibacterial activities against both Gram-negative bacteria Escherichia coli and Vibrio anguillarum and Gram-positive bacteria Micrococcus luteus and Micrococcus lysodeikticus with MIC ranges of 32-64, 2-4, 1-2, and 32-64μM, respectively. The disulfide loop and the basic amino acids in the LPS-binding domain (LBD) of ALF played key roles in its antibacterial activities. In addition, FcALF-LBDc could reduce the propagation of white spot syndrome virus (WSSV) in vivo, and its lysine residue is indispensable for its antiviral property. This is the first attempt to testify the effects of the sequence features of the LPS-binding domain on its antimicrobial activities.

  7. Ethanol inhibits LPS-induced signaling and modulates cytokine production in peritoneal macrophages in vivo in a model for binge drinking

    Directory of Open Access Journals (Sweden)

    Pruett Stephen B

    2009-09-01

    Full Text Available Abstract Background Previous reports indicate that ethanol, in a binge drinking model in mice, inhibits the production of pro-inflammatory cytokines in vivo. However, the inhibition of signaling through TLR4 has not been investigated in this experimental model in vivo. Considering evidence that signaling can be very different in vitro and in vivo, the present study was conducted to determine if effects of ethanol on TLR4 signaling reported for cells in culture or cells removed from ethanol treated mice and stimulated in culture also occur when ethanol treatment and TLR4 activation occur in vivo. Results Phosphorylated p38, ERK, and c-Jun (nuclear were quantified with kits or by western blot using samples taken 15, 30, and 60 min after stimulation of peritoneal macrophages with lipopolysaccharide in vivo. Effects of ethanol were assessed by administering ethanol by gavage at 6 g/kg 30 min before administration of lipopolysaccharide (LPS. Cytokine concentrations in the samples of peritoneal lavage fluid and in serum were determined at 1, 2, and 6 hr after lipopolysaccharide administration. All of these data were used to measure the area under the concentration vs time curve, which provided an indication of the overall effects of ethanol in this system. Ethanol suppressed production of most pro-inflammatory cytokines to a similar degree as it inhibited key TLR4 signaling events. However, NF-κB (p65 translocation to the nucleus was not inhibited by ethanol. To determine if NF-κB composed of other subunits was inhibited, transgenic mice with a luciferase reporter were used. This revealed a reproducible inhibition of NF-κB activity, which is consistent with the observed inhibition of cytokines whose expression is known to be NF-κB dependent. Conclusion Overall, the effects of ethanol on signalling in vivo were similar to those reported for in vitro exposure to ethanol and/or lipopolysaccharide. However, inhibition of the activation of NF-κB was

  8. Upregulation of heme oxygenase-1 via PI3K/Akt and Nrf-2 signaling pathways mediates the anti-inflammatory activity of Schisandrin in Porphyromonas gingivalis LPS-stimulated macrophages.

    Science.gov (United States)

    Park, Sun Young; Park, Da Jung; Kim, Young Hun; Kim, Younghee; Kim, Sun Gun; Shon, Kwang Jae; Choi, Young-Whan; Lee, Sang-Joon

    2011-09-30

    The lipopolysaccharide (LPS) of Porphyromonas gingivalis is thought to induce periodontitis. In this study, we isolated Schisandrin from the dried fruits of Schisandra chinensis and examined the anti-inflammatory effect of Schisandrin in macrophages stimulated with LPS from P. gingivalis. First, Schisandrin inhibited LPS-induced pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6. And Schisandrin suppressed the nuclear translocation and activity of NF-κB and phosphorylation of IκBα in LPS-stimulated RAW 264.7 cells. Next, the presence of a selective inhibitor of HO-1 (SnPP) and a siRNA specific for HO-1 inhibited Schisandrin-mediated anti-inflammatory activity. Furthermore, Schisandrin induced HO-1 expression of RAW 264.7 cells through Nrf-2, PI3K/Akt, and ERK activation. Therefore, these results suggest that the anti-inflammatory effects of Schisandrin on P. gingivalis LPS-stimulated RAW 264.7 cells may be due to a reduction of NF-κB activity and induction of the expression of HO-1, leading to TNF-α, IL-1β, and IL-6 down-regulation.

  9. The essential oil isolated from Artemisia capillaris prevents LPS-induced production of NO and PGE(2) by inhibiting MAPK-mediated pathways in RAW 264.7 macrophages.

    Science.gov (United States)

    Cha, Jeong-Dan; Moon, Sang-Eun; Kim, Hye-Young; Lee, Jeong-Chae; Lee, Kyung-Yeol

    2009-01-01

    Artemisia capillaris (A. capillaris) is used in traditional Korean herbal medicine for its believedanti-inflammatory activities. Previous studies have suggested that the essential oil of A. capillaris contains the active components responsible for its pharmacological effect, even though the mechanism for its action is unclear. This study examined the inhibitory effects of the essential oil of A. capillaris on the lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)). The essential oil significantly inhibited the production of NO in the LPS-stimulated RAW 264.7 macrophages, which was mediated by the down-regulation of inducible NO synthase (iNOS) expression but not by its direct cytotoxic activity. The essential oil also blocked the secretion of PGE(2) and the expression of cyclooxygenase-2 (COX-2) in the LPS-stimulated cells. Western blot analysis showed that the essential oil inhibited the phosphorylation of IkappaB-alpha, nuclear translocation of p65, and subsequent activation of NF-kappaB. In addition, the essential oil suppressed the LPS-stimulated activation of mitogen-activated protein kinases (MAPKs) as well as the AP-1 DNA-binding activity. Moreover, MAPK inhibitors significantly reduced the LPS-induced production of NO and PGE(2). Collectively, we suggest that the oil inhibits the expression and production of inflammatory mediators by blocking the MAPK-mediated pathways and inhibiting the activation of NF-kappaB and AP-1.

  10. Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-kappaB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage.

    Science.gov (United States)

    Kim, Ho Gyoung; Yoon, Deok Hyo; Lee, Won Ho; Han, Sang Kuk; Shrestha, Bhushan; Kim, Chun Hoi; Lim, Mi Hee; Chang, Woochul; Lim, Soyeon; Choi, Sunga; Song, Won O; Sung, Jae Mo; Hwang, Ki Chul; Kim, Tae Woong

    2007-12-03

    The mushroom Phellinus linteus has been known to exhibit potent biological activity. In contrast to the immuno-potentiating properties of Phellinus linteus, the anti-inflammatory properties of Phellinus linteus have rarely been investigated. Recently, ethanol extract and n-BuOH fractions from Phellinus linteus were deemed most effective in anti-inflammatory activity in RAW 264.7 macrophages. The regulatory mechanisms of Phellinus linteus butanol fractions (PLBF) on the pharmacological and biochemical actions of macrophages involved in inflammation have not been clearly defined yet. In the present study, we tested the role of PLBF on anti-inflammation patterns in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. To investigate the mechanism by which PLBF inhibits NO and PGE2 production as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, we examined the activation of IkappaB and MAPKs in LPS-activated macrophages. PLBF clearly inhibited nuclear translocation of NF-kappaB p65 subunits, which correlated with PLBF's inhibitory effects on IkappaBalpha phosphorylation and degradation. PLBF also suppressed the activation of mitogen-activated protein (MAP) kinases including p38 and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Furthermore, macrophages stimulated with LPS generated ROS via activation of membrane-bound NADPH oxidase, and ROS played an important role in the activation of nuclear factor-kappaB (NF-kappaB) and MAPKs. We demonstrated that PLBF directly blocked intracellular accumulation of reactive oxygen species in RAW 264.7 cells stimulated with LPS much as the NADPH oxidase inhibitors, diphenylene iodonium, and antioxidant pyrrolidine dithiocarbamate did. The suppression of NADPH oxidase also inhibited NO production and iNOS protein expression. Cumulatively, these results suggest that PLBF inhibits the production of NO and PGE2 through the down-regulation of iNOS and COX-2 gene

  11. Red Ginseng Marc Oil Inhibits iNOS and COX-2 via NFκB and p38 Pathways in LPS-Stimulated RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Woo-Sik Jeong

    2012-11-01

    Full Text Available In this study, we investigated the anti-inflammatory effects of red ginseng marc oil (RMO in the RAW 264.7 macrophage cell line. RMO was prepared by a supercritical CO2 extraction of waste product generated after hot water extraction of red ginseng. RMO significantly inhibited the production of oxidative stress molecules such as nitric oxide and reactive oxygen species in lipopolysaccharide (LPS-activated RAW 264.7 cells. Levels of inflammatory targets including prostaglandin E2, tumor necrosis factor-α, interleukin (IL-1β and IL-6 were also reduced after the treatment with RMO. In addition, RMO diminished the expressions of inducible nitric oxide synthase and cyclooxygenase 2 at both mRNA and protein levels. Blockade of nuclear translocation of the p65 subunit of nuclear factor κB (NFκB was also observed after the treatment of RMO. Furthermore, RMO decreased the phosphorylations of p38 mitogen-activated protein kinase (MAPK and its upstream kinases including MAPK kinases 3/6 (MKK3/6 and TAK 1 (TGF-β activated kinase 1. Gas chromatographic analysis on RMO revealed that RMO contained about 10% phytosterols including sitosterol, stigmasterol and campesterol which may contribute to the anti-inflammatory properties of RMO. Taken together, these results suggest that the anti-inflammatory effect of RMO in LPS-induced RAW 264.7 macrophages could be associated with the inhibition of NFκB transcriptional activity, possibly via blocking the p38 MAPK pathway.

  12. Lipopolysaccharide (LPS potentiates hydrogen peroxide toxicity in T98G astrocytoma cells by suppression of anti-oxidative and growth factor gene expression

    Directory of Open Access Journals (Sweden)

    Fine Daniel H

    2008-12-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS is a cell wall component of Gram-negative bacteria with proved role in pathogenesis of sepsis. Brain injury was observed with both patients dead from sepsis and animal septic models. However, in vitro administration of LPS has not shown obvious cell damage to astrocytes and other relative cell lines while it does cause endothelial cell death in vitro. These observations make it difficult to understand the role of LPS in brain parenchymal injury. Results To test the hypothesis that LPS may cause biological changes in astrocytes and make the cells to become vulnerable to reactive oxygen species, a recently developed highly sensitive and highly specific system for large-scale gene expression profiling was used to examine the gene expression profile of a group of 1,135 selected genes in a cell line, T98G, a derivative of human glioblastoma of astrocytic origin. By pre-treating T98G cells with different dose of LPS, it was found that LPS treatment caused a broad alteration in gene expression profile, but did not cause obvious cell death. However, after short exposure to H2O2, cell death was dramatically increased in the LPS pretreated samples. Interestingly, cell death was highly correlated with down-regulated expression of antioxidant genes such as cytochrome b561, glutathione s-transferase a4 and protein kinase C-epsilon. On the other hand, expression of genes encoding growth factors was significantly suppressed. These changes indicate that LPS treatment may suppress the anti-oxidative machinery, decrease the viability of the T98G cells and make the cells more sensitive to H2O2 stress. Conclusion These results provide very meaningful clue for further exploring and understanding the mechanism underlying astrocyte injury in sepsis in vivo, and insight for why LPS could cause astrocyte injury in vivo, but not in vitro. It will also shed light on the therapeutic strategy of sepsis.

  13. A COMPARISON OF DIFFERENT LIPOPOLYSACCHARIDE CHEMOTYPES FROM ESCHERICHIA COLI AND SALMONELLA UPON SYNTHESIS OF TNFα AND IL-6 BY MACROPHAGE-LIKE THP-1 CELLS

    Directory of Open Access Journals (Sweden)

    E. V. Voloshina

    2009-01-01

    Full Text Available Abstract. Present study was performed to investigate the influence of polysaccharide fragment or lipid A upon induction of TNFα and IL-6 cytokines. The study was performed with human THP-1 monocytic leukemia cells that were induced to differentiate into macrophage-like cells using PMA treatment. Bacterial lipopolysaccharides from S. typhimurium (S-chemotype form, S. typhimurium SL1181 (R-chemotype, Re-mutant, E. coli O55:B5 (S-chemotype, and E. coli JM103 (R-chemotype, Re-mutant were used in this study. A decreased molar ratio for lipid A-KDO in S-form of LPS from E. coli is accompanied by diminished TNFα and IL-6 expression. By the contrast, for S-form of LPS from Salmonella, a decrease in lipid A-KDO molar ratio did cause a sufficient enhancement of TNFα expression. A contribution of lipid A structure into biological activity of LPS is more significant for Re-chemotype than for S-chemotype, independently on bacterial species.

  14. Suppressive effects of acetone extract from the stem bark of three Acacia species on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophage cells

    Institute of Scientific and Technical Information of China (English)

    Kandhasamy Sowndhararajan; Rameshkumar Santhanam; Sunghyun Hong; Jin-Woo Jhoo; Songmun Kim

    2016-01-01

    Objective: To compare the inhibitory effects of acetone extracts from the stem bark of three Acacia species(Acacia dealbata, Acacia ferruginea and Acacia leucophloea) on nitric oxide production.Methods: The lipopolysaccharide(LPS)-stimulated RAW 264.7 macrophage cells were used to investigate the regulatory effect of acetone extracts of three Acacia stem barks on nitric oxide production and the expression of inducible nitric oxide synthase,cyclooxygenase-2 and tumor necrosis factor-a. Further, the phenolic profile of acetone extracts from the Acacia barks was determined by liquid chromatography-mass spectrometry/mass spectrometry analysis.Results: All the three extracts significantly decreased LPS-induced NO production as well as the expression of inducible nitric oxide synthase, cyclooxygenase-2 and tumor necrosis factor-a in a concentration dependent manner(25, 50 and 75 mg/m L). In the liquid chromatography-mass spectrometry/mass spectrometry analysis, acetone extract of Acacia ferruginea bark revealed the presence of 12 different phenolic components including quercetin, catechin, ellagic acid and rosmanol. However, Acacia dealbata and Acacia leucophloea barks each contained 6 different phenolic components.Conclusions: The acetone extracts of three Acacia species effectively inhibited the NO production in LPS-stimulated RAW 264.7 cells and the presence of different phenolic components in the bark extracts might be responsible for reducing the NO level in cells.

  15. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-{alpha} and NF-{kappa}B pathways in lipopolysaccharide-stimulated mouse macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzung-Yan, E-mail: joyamen@mail.cgu.edu.tw [Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan (China); Lee, Ko-Chen [School of Traditional Chinese Medicine, Chang Gung University, Taiwan (China); Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, Shih-Yuan [Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan (China); Chang, Hen-Hong [Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan (China); Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China)

    2009-04-24

    Inflammation is involved in numerous diseases, including chronic inflammatory diseases and the development of cancer. Many plants possess a variety of biological activities, including antifungal, antibacterial and anti-inflammatory activities. However, our understanding of the anti-inflammatory effects of 6-gingerol is very limited. We used lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of 6-gingerol, which contains phenolic structure. We found that 6-gingerol exhibited an anti-inflammatory effect. 6-Gingerol could decrease inducible nitric oxide synthase and TNF-{alpha} expression through suppression of I-{kappa}B{alpha} phosphorylation, NF-{kappa}B nuclear activation and PKC-{alpha} translocation, which in turn inhibits Ca{sup 2+} mobilization and disruption of mitochondrial membrane potential in LPS-stimulated macrophages. Here, we demonstrate that 6-gingerol acts as an anti-inflammatory agent by blocking NF-{kappa}B and PKC signaling, and may be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.

  16. Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway.

    Science.gov (United States)

    Tan, Woan Sean; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Fakurazi, Sharida

    2015-01-01

    Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.

  17. Anti-inflammatory activity of the active components from the roots of Cosmos bipinnatus in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Sohn, Sang-Hyun; Yun, Bong-Sik; Kim, So-Young; Choi, Wahn-Soo; Jeon, Hyun-Soo; Yoo, Jun-Sik; Kim, Si-Kwan

    2013-01-01

    We isolated a sesquiterpene lactone from the methanol extract of the roots of Cosmos bipinnatus, namely, MDI (a mixture of dihydrocallitrisin and isohelenin). The anti-inflammatory activity of MDI was evaluated using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. MDI significantly inhibited the expression of inducible nitric oxide synthase and cyclooxygenase-2. Consistent with these results, the production of NO and prostaglandin E2 (PGE2) was suggested to be suppressed by MDI in a concentration-dependent manner (IC50 value was 0.94 and 2.88 µg mL(-1) for NO and PGE2, respectively). In addition, MDI significantly inhibited the expressions of pro-inflammatory cytokines such as IL-1β, IL-6, IFN-γ and TNF-α. Furthermore, MDI attenuated DNA-binding activity of NF-κB by inhibiting the phosphorylation of IκB. These results indicate that MDI isolated from the roots of C. bipinnatus shows anti-inflammatory activity in LPS-stimulated murine macrophages by modulating the NF-κB pathway.

  18. Krill Oil-In-Water Emulsion Protects against Lipopolysaccharide-Induced Proinflammatory Activation of Macrophages In Vitro

    Directory of Open Access Journals (Sweden)

    Gabriel A. Bonaterra

    2017-03-01

    Full Text Available Background: Parenteral nutrition is often a mandatory therapeutic strategy for cases of septicemia. Likewise, therapeutic application of anti-oxidants, anti-inflammatory therapy, and endotoxin lowering, by removal or inactivation, might be beneficial to ameliorate the systemic inflammatory response during the acute phases of critical illness. Concerning anti-inflammatory properties in this setting, omega-3 fatty acids of marine origin have been frequently described. This study investigated the anti-inflammatory and LPS-inactivating properties of krill oil (KO-in-water emulsion in human macrophages in vitro. Materials and Methods: Differentiated THP-1 macrophages were activated using specific ultrapure-LPS that binds only on the toll-like receptor 4 (TLR4 in order to determine the inhibitory properties of the KO emulsion on the LPS-binding capacity, and the subsequent release of TNF-α. Results: KO emulsion inhibited the macrophage binding of LPS to the TLR4 by 50% (at 12.5 µg/mL and 75% (at 25 µg/mL, whereas, at 50 µg/mL, completely abolished the LPS binding. Moreover, KO (12.5 µg/mL, 25 µg/mL, or 50 µg/mL also inhibited (30%, 40%, or 75%, respectively the TNF-α release after activation with 0.01 µg/mL LPS in comparison with LPS treatment alone. Conclusion: KO emulsion influences the LPS-induced pro-inflammatory activation of macrophages, possibly due to inactivation of the LPS binding capacity.

  19. EFFECT OF USNIC ACID ON TNF-α AND NO PRODUCTION IN LIPOPOLYSACCHARIDE-STIMULATED MACROPHAGES

    Institute of Scientific and Technical Information of China (English)

    Jin Juqing; He Langchong; Li Cuiqin

    2006-01-01

    Objective To investigate the molecular mechanisms that are responsible for anti-inflammatory effect of usnic acid (UA), the effects of UA from usnea longissm on tumor necrosis factor-α(TNF-α) and nitric oxide (NO) production in peritoneal macrophages has been examined. Methods The different concentrations of UA were added to peritoneal macrophages. The TNF-α and NO production in peritoneal macrophages were examined with mouse TNF-α ELISA kit and NO content by measuring the amount of nitrite (NO-2μmol/L) formed in the medium using Griess reaction. The activity of inducible nitric oxide synthase (i-NOS) was determined using i-NOS detection kit and the TNF-α mRNA expression was tested by reverse transcriptase polymerase chain reaction (RT-PCR). Results UA decreased the TNF-α and NO level in LPS-stimulated peritoneal macrophages in dose-dependent manner, the IC50 values were 12.8μmol/L and 5.7μmol/L respectively. RT-PCR analysis indicated that UA could inhibit TNF-α mRNA expression; the activity analysis of i-NOS indicated that UA could inhibit the activity of i-NOS. Conclusion UA could inhibit the TNF-α and NO production in peritoneal macrophages, it may be associated with the anti-inflammatory activity of UA.

  20. Genome-wide analysis of TIAR RNA ligands in mouse macrophages before and after LPS stimulation

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    2016-03-01

    Full Text Available TIA-1 related protein (TIAR is a RNA-binding protein involved in several steps of gene expression such as RNA splicing Aznarez et al. (2008 [1] and translation Piecyk et al. (2000 [2]. TIAR contains three RNA recognition motifs (RRMs allowing its interaction with specific sequences localized in the untranslated regions (UTRs of several mRNAs. In myeloid cells, TIAR has been shown to bind and regulate the translation and stability of various mRNA-encoding proteins important for the inflammatory response, such as TNFα Piecyk et al. (2000, Gueydan et al. (1999 [2,3], Cox-2 Cok et al. (2003 [4] or IL-8 Suswam et al. (2005 [5]. Here, we generated two macrophage-like RAW 264.7 cell lines expressing either a tagged full-length TIAR protein or a RRM2-truncated mutant unable to bind RNA with high affinity Dember et al. (1996, Kim et al. (2013 . By a combination of RNA-IP and microarray analysis (RIP-chip, we identified mRNAs specifically bound by the full-length protein both in basal conditions and in response to LPS (GSE77577.

  1. DMPD: LPS, TLR4 and infectious disease diversity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15608698 LPS, TLR4 and infectious disease diversity. Miller SI, Ernst RK, Bader MW.... Nat Rev Microbiol. 2005 Jan;3(1):36-46. (.png) (.svg) (.html) (.csml) Show LPS, TLR4 and infectious disease diversity.... PubmedID 15608698 Title LPS, TLR4 and infectious disease diversity. Authors Miller SI, Ernst RK,

  2. DMPD: LPS/TLR4 signal transduction pathway. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18304834 LPS/TLR4 signal transduction pathway. Lu YC, Yeh WC, Ohashi PS. Cytokine. ...2008 May;42(2):145-51. Epub 2008 Mar 4. (.png) (.svg) (.html) (.csml) Show LPS/TLR4 signal transduction path...way. PubmedID 18304834 Title LPS/TLR4 signal transduction pathway. Authors Lu YC, Yeh WC, Ohashi PS. Publica

  3. DMPD: LPS induction of gene expression in human monocytes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11257452 LPS induction of gene expression in human monocytes. Guha M, Mackman N. Ce...ll Signal. 2001 Feb;13(2):85-94. (.png) (.svg) (.html) (.csml) Show LPS induction of gene expression in human... monocytes. PubmedID 11257452 Title LPS induction of gene expression in human monocytes. Authors Guha M, Ma

  4. Ethanol Extract of Sarcodon asparatus Mitigates Inflammatory Responses in Lipopolysaccharide-Challenged Mice and Murine Macrophages.

    Science.gov (United States)

    Chung, Min-Yu; Jung, Sung Keun; Lee, Hye-Jin; Shon, Dong Hwa; Kim, Hyun-Ku

    2015-11-01

    A number of compounds isolated from mushrooms have exhibited disease-modifying effects. We sought to investigate the mechanisms responsible for the anti-inflammatory effects of an extract from the mushroom species Sarcodon asparatus (SAE). Male BALB/c mice (N=42; 6 weeks old) were randomly assigned to four treatment groups. Intraperitoneal administration of SAE significantly attenuated lipopolysaccharide (LPS)-mediated increases in alanine aminotransferase (ALT) activity. LPS also increased serum levels of proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, which were dose-dependently and significantly attenuated by SAE. Correlative relationships between serum ALT activity and proinflammatory cytokines suggested that SAE-mediated suppression of liver injury was partly attributable to the attenuation of serum inflammatory responses. SAE significantly decreased hepatic NO(•) production and subsequent 3-nitrotyrosine formation, and the hepatic NO(•) production significantly correlated with serum ALT and cytokine levels, suggesting that SAE mitigates liver injury in association with inflammatory processes, likely by suppressing NO(•) production. Anti-inflammatory activity and further mechanisms of SAE were evaluated using RAW264.7 with LPS challenge. Noncytotoxic levels of SAE significantly attenuated NO(•) production in RAW264.7 cells and also markedly suppressed the expression of iNOS and other proinflammatory mediators, including COX-2 and IL-6, which were upregulated in the presence of LPS. SAE inhibited the phosphorylation of p65, an observation that occurred independently of IKKαβ-mediated IκBα phosphorylation. Collectively, our results demonstrate that SAE suppressed NO(•)-mediated inflammation by inhibiting p65 transcriptional activation without affecting IKKαβ-mediated IκBα phosphorylation. Further studies are warranted to examine the major compounds responsible for these effects and the mechanisms responsible for the p65

  5. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    J Kenneth Baillie

    2017-03-01

    Full Text Available The FANTOM5 consortium utilised cap analysis of gene expression (CAGE to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1 to bacterial lipopolysaccharide (LPS. We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility

  6. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease

    Science.gov (United States)

    Arner, Erik; De Hoon, Michiel; Carninci, Piero; Hayashizaki, Yoshihide; Pavli, Paul; Summers, Kim M.; Hume, David A.

    2017-01-01

    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis

  7. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice

    Science.gov (United States)

    Patil, Prabhu B; Sonti, Ramesh V

    2004-01-01

    Background In animal pathogenic bacteria, horizontal gene transfer events (HGT) have been frequently observed in genomic regions that encode functions involved in biosynthesis of the outer membrane located lipopolysaccharide (LPS). As a result, different strains of the same pathogen can have substantially different lps biosynthetic gene clusters. Since LPS is highly antigenic, the variation at lps loci is attributed to be of advantage in evading the host immune system. Although LPS has been suggested as a potentiator of plant defense responses, interstrain variation at lps biosynthetic gene clusters has not been reported for any plant pathogenic bacterium. Results We report here the complete sequence of a 12.2 kb virulence locus of Xanthomonas oryzae pv. oryzae (Xoo) encoding six genes whose products are homologous to functions involved in LPS biosynthesis and transport. All six open reading frames (ORFs) have atypical G+C content and altered codon usage, which are the hallmarks of genomic islands that are acquired by horizontal gene transfer. The lps locus is flanked by highly conserved genes, metB and etfA, respectively encoding cystathionine gamma lyase and electron transport flavoprotein. Interestingly, two different sets of lps genes are present at this locus in the plant pathogens, Xanthomonas campestris pv. campestris (Xcc) and Xanthomonas axonopodis pv. citri (Xac). The genomic island is present in a number of Xoo strains from India and other Asian countries but is not present in two strains, one from India (BXO8) and another from Nepal (Nepal624) as well as the closely related rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoor). TAIL-PCR analysis indicates that sequences related to Xac are present at the lps locus in both BXO8 and Nepal624. The Xoor strain has a hybrid lps gene cluster, with sequences at the metB and etfA ends, being most closely related to sequences from Xac and the tomato pathogen, Pseudomonas syringae pv. tomato respectively

  8. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages.

    Science.gov (United States)

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-13

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD(+) has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD(+) homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD(+) levels and expression levels of NAD(+) homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD(+) levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD(+) synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD(+) homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD(+) levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD(+). The agonist-induced rise in NAD(+) shows striking parallels to well-known second messengers and raises the possibility that NAD(+) is acting in a similar manner in this model.

  9. Cytoprotective and anti-inflammatory effects of kernel extract from Adenanthera pavonina on lipopolysaccharide-stimulated rat peritoneal macrophages

    Institute of Scientific and Technical Information of China (English)

    Arunagirinathan Koodalingam; Ramar Manikandan; Munisamy Indhumathi; Ethala Subramani Kaviya

    2015-01-01

    Objective:To investigate mechanism of anti-inflammatory activity ofAdenanthera pavonina (A. pavonina) extracts.Methods:Rat peritoneal macrophages were treated with different concentrations of lipopolysaccharide andH2O2 in the presence and absence of kernel extract from A. pavonina.Nitric oxide, superoxide anion generation, cell viability and nuclear fragmentation were investigated.Results:The pre-treatment of kernel extract fromA. pavonina suppressed nitric oxide, superoxide anion, cell death, nuclear fragmentation in lipopolysaccharide andH2O2 stimulated or induced macrophages, respectively.Conclusions:These results suggest thatA. pavonina extract suppresses the intra cellular peroxide production.

  10. Development of a lipopolysaccharide (LPS)-supplemented adjuvant and its effects on cell-mediated and humoral immune responses in male rats immunized against sperm

    Science.gov (United States)

    NOGUCHI, Junko; WATANABE, Shinya; NGUYEN, Thanh Q. Dang; KIKUCHI, Kazuhiro; KANEKO, Hiroyuki

    2016-01-01

    Supplementation with lipopolysaccharide (LPS) from non-pathogenic Escherichia coli was found to enhance the adjuvant effects of a veterinary vaccine adjuvant (ISA 71VG®). Sperm immunization using 71VG as an adjuvant in the immature period induced infertility in 25% of male rats, whereas this increased to 62.5% after immunization with 71VG + LPS or Freund′s complete adjuvant (FCA). Mean testicular weight of non-sterile males in the 71VG + LPS group was significantly lower than that in the 71VG or FCA group. Histological examination of testicular tissue from sterile males demonstrated severe impairment of spermatogenesis due to experimental autoimmune orchitis, a cell-mediated autoimmune condition. The serum anti-sperm titer was elevated in the three sperm-immunized groups relative to male rats treated with adjuvant alone, but the titer was higher in the 71VG + LPS and FCA groups than in the 71VG group. We consider that this LPS-supplemented adjuvant stimulates both humoral and cell-mediated immune responses to an extent comparable to FCA. PMID:27890874

  11. Anti-Inflammatory Effects and Mechanisms of Action of Coussaric and Betulinic Acids Isolated from Diospyros kaki in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages.

    Science.gov (United States)

    Kim, Kyoung-Su; Lee, Dong-Sung; Kim, Dong-Cheol; Yoon, Chi-Su; Ko, Wonmin; Oh, Hyuncheol; Kim, Youn-Chul

    2016-09-09

    Diospyros kaki Thunb. is widely distributed in East Asian countries, its leaves being mainly used for making tea. In this study, coussaric acid (CA) and betulinic acid (BA), both triterpenoid compounds, were obtained from D. kaki leaf extracts through bioassay-guided isolation. CA and BA showed anti-inflammatory effects via inhibition of the nuclear factor-κB (NF-κB) pathway, providing important information on their anti-inflammatory mechanism. Furthermore, they markedly inhibited nitric oxide (NO) and prostaglandin E₂ (PGE₂) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages, and suppressed tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) levels. Furthermore, they decreased protein expression of inducible nitric oxide synthase and cyclooxygenase-2. Pre-treatment with CA and BA inhibited LPS-induced NF-κB. We further examined the effects of CA and BA on heme oxygenase (HO)-1 expression in RAW 264.7 macrophages: BA induced HO-1 protein expression in a dose-dependent manner, while CA had no effect. We also investigated whether BA treatment induced nuclear translocation of Nrf2. BA inhibited LPS-induced NF-κB-binding activity, as well as pro-inflammatory mediator and cytokine production (e.g., NO, PGE₂, TNF-α, IL-1β, IL-6), by partial reversal of this effect by SnPP, an inhibitor of HO-1. These findings further elucidate the anti-inflammatory mechanism of CA and BA isolated from D. kaki.

  12. Anti-Inflammatory Effects and Mechanisms of Action of Coussaric and Betulinic Acids Isolated from Diospyros kaki in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Kyoung-Su Kim

    2016-09-01

    Full Text Available Diospyros kaki Thunb. is widely distributed in East Asian countries, its leaves being mainly used for making tea. In this study, coussaric acid (CA and betulinic acid (BA, both triterpenoid compounds, were obtained from D. kaki leaf extracts through bioassay-guided isolation. CA and BA showed anti-inflammatory effects via inhibition of the nuclear factor-κB (NF-κB pathway, providing important information on their anti-inflammatory mechanism. Furthermore, they markedly inhibited nitric oxide (NO and prostaglandin E2 (PGE2 production in lipopolysaccharide (LPS-activated RAW 264.7 macrophages, and suppressed tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and interleukin-1β (IL-1β levels. Furthermore, they decreased protein expression of inducible nitric oxide synthase and cyclooxygenase-2. Pre-treatment with CA and BA inhibited LPS-induced NF-κB. We further examined the effects of CA and BA on heme oxygenase (HO-1 expression in RAW 264.7 macrophages: BA induced HO-1 protein expression in a dose-dependent manner, while CA had no effect. We also investigated whether BA treatment induced nuclear translocation of Nrf2. BA inhibited LPS-induced NF-κB-binding activity, as well as pro-inflammatory mediator and cytokine production (e.g., NO, PGE2, TNF-α, IL-1β, IL-6, by partial reversal of this effect by SnPP, an inhibitor of HO-1. These findings further elucidate the anti-inflammatory mechanism of CA and BA isolated from D. kaki.

  13. Perifosine inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via regulation multiple signaling pathways: new implication for Kawasaki disease (KD) treatment.

    Science.gov (United States)

    Shen, Jie; Liang, Li; Wang, Chunlin

    2013-07-26

    Kawasaki disease (KD) is a multisystem vasculitis of unknown etiology, with coronary artery aneurysms occurring in majority of untreated cases. Tumor necrosis factor (TNF)-α is the pleiotropic inflammatory cytokine elevated during the acute phase of KD, which induces damage to vascular endothelial cells to cause systemic vasculitis. We here investigated the potential role of perifosine, a novel Akt inhibitor, on TNFα expression in LPS-stimulated macrophages and in ex-vivo cultured peripheral blood mononuclear cells (PBMCs) of acute KD patients. Here, we found that perifosine inhibited LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, perifosine administration down-regulated TNFα production in PBMCs isolated from acute KD patients. For the mechanism study, we found that perifosine significantly inhibited Akt and ERK/mitogen-activated protein kinases (MAPK) signaling, while activating AMP-activated protein kinase (AMPK) signaling in both patients' PBMCs and LPS-stimulated macrophages. Interestingly, although perifosine is generally known as an Akt inhibitor, our data suggested that ERK inhibition and AMPK activation, but not Akt inactivation were possibly involved in perifosine-mediated inhibition against TNFα production in monocytes. In conclusion, our data suggested that perifosine significantly inhibited TNFα production via regulation multiple signaling pathways. The results of this study should have significant translational relevance in managing this devastating disease.

  14. Inflammatory cytokine regulation by LPS and lymphoid cells in human gamma-irradiated monocytes/macrophages; Regulation des cytokines de l`inflammation en presence de LPS ou de lymphocytes dans les monocytes/macrophages humains irradies

    Energy Technology Data Exchange (ETDEWEB)

    Pons, I.; Gras, G.; Dormont, D. [Centre de Recherches du Service de Sante des Armees, La Tronche, 38 - Grenoble (France)]|[Centre de Recherches du Service de Sante des Armees - Centre d`Etudes Nucleaires de Fontenay-aux-Roses, 92 (France)]|[Paris-5 Univ., 75 (France)

    1997-12-31

    We have investigated the inflammatory cytokine regulation after ionizing radiation of monocytes/macrophages. We have not evidenced any significant induction of tumour necrosis factor-{alpha}(TNF{alpha}) after irradiation alone. For one donor only out of eight, interleukin-1{beta}(IL-l{beta}) gene expression was affected by {gamma}-irradiation, with a 2-3-fold increase in level, while for two other donors, interleukin-6 (IL-6) mRNA expression was 5-14 fold increased. For one of the eight donors tested, monocytes/macrophages responded to 10 Gy {gamma}-rays by releasing inflammatory cytokines. In the presence of LPS, a significant increase of IL-1{beta} mRNA expression was detected in 10 Gy {gamma}-irradiated cells treated with 1 {mu}g/ml LPS. In most cases, combination of LPS treatment and 10 Gy irradiation down-regulated cytokine secretion except for a TNF{alpha} induction at 6 h post-irradiation. In the presence of lymphoid cells, IL-6 mRNA level was increased in irradiated cells at 24 h. Increases of IL-1{beta} and IL-6 releases were detected at 24 h post-irradiation too. (authors)

  15. Pseuderanthemum palatiferum leaf extract inhibits the proinflammatory cytokines, TNF-α and IL-6 expression in LPS-activated macrophages.

    Science.gov (United States)

    Sittisart, Patcharawan; Chitsomboon, Benjamart; Kaminski, Norbert E

    2016-11-01

    The anti-inflammatory potential and underlying mechanisms of an ethanol extract of Pseuderanthemum palatiferum (EEP) leaves was investigated using LPS-activated macrophages. Our results show EEP produced a concentration-dependent suppression of TNF-α and IL-6 secretion by LPS-activated mouse peritoneal macrophages. EEP also suppressed LPS-induced TNF-α and IL-6 protein and mRNA levels in mouse-derived myeloid cell line RAW264.7. To further elucidate the molecular mechanisms responsible for impaired TNF-α and IL-6 regulation by EEP, the activation of transcription factors, NF-κB, C/EBP, and AP-1, was monitored using electrophoretic mobility shift assays. EEP suppressed LPS-induced NF-κB DNA binding activity within both the TNF-α and IL-6 promoters in RAW264.7 cells with impairment being more pronounced in the IL-6 promoter. In addition, EEP exhibited a concentration-dependent suppression of C/EBP and AP-1 DNA binding activity within the IL-6 promoter. Concordantly, IL-6 luciferase promoter reporter activity was also suppressed by EEP in transiently transfected RAW264.7 cells, upon LPS activation. EEP analysis by GC-MS and HPLC DAD-MSD revealed the presence of β-sitosterol and various polyphenols, respectively, which are known to possess anti-inflammatory activity. Collectively, these results suggest that the anti-inflammatory effects of EEP are mediated, at least in part, by modulating TNF-α and IL-6 expression through impairment of NF-κB, C/EBP, and AP-1 activity.

  16. Enhanced Inhibitory Effect of Ultra-Fine Granules of Red Ginseng on LPS-induced Cytokine Expression in the Monocyte-Derived Macrophage THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hong-Yeoul Kim

    2008-08-01

    Full Text Available Red ginseng is one of the most popular traditional medicines in Korea because its soluble hot-water extract is known to be very effective on enhancing immunity as well as inhibiting inflammation. Recently, we developed a new technique, called the HACgearshift system, which can pulverize red ginseng into the ultra-fine granules ranging from 0.2 to 7.0 μm in size. In this study, the soluble hot-water extract of those ultra-fine granules of red ginseng (URG was investigated and compared to that of the normal-sized granules of red ginseng (RG. The high pressure liquid chromatographic analyses of the soluble hot-water extracts of both URG and RG revealed that URG had about 2-fold higher amounts of the ginsenosides, the biologically active components in red ginseng, than RG did. Using quantitative RT-PCR, cytokine profiling against the Escherichia coli lipopolysaccharide (LPS in the monocyte-derived macrophage THP-1 cells demonstrated that the URG-treated cells showed a significant reduction in cytokine expression than the RG-treated ones. Transcription expression of the LPS-induced cytokines such as TNF-α, IL-1β, IL-6, IL-8, IL-10, and TGF-β was significantly inhibited by URG compared to RG. These results suggest that some biologically active and soluble components in red ginseng can be more effectively extracted from URG than RG by standard hot-water extraction.

  17. Euscaphic acid isolated from roots of Rosa rugosa inhibits LPS-induced inflammatory responses via TLR4-mediated NF-κB inactivation in RAW 264.7 macrophages.

    Science.gov (United States)

    Kim, In-Tae; Ryu, Suran; Shin, Ji-Sun; Choi, Jung-Hye; Park, Hee-Juhn; Lee, Kyung-Tae

    2012-06-01

    As an attempt to search for bioactive natural products exerting anti-inflammatory activity, we have evaluated the anti-inflammatory effects of euscaphic acid (19α-hydroxyursane-type triterpenoids, EA) isolated from roots of Rosa rugosa and its underlying molecular mechanisms in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. EA concentration-dependently reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced by LPS in RAW 264.7 macgophages. Consistent with these data, expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and iNOS, COX-2, TNF-α, and IL-1β mRNA were inhibited by EA in a concentration-dependent manner. In addition, EA attenuated LPS-induced DNA binding and transcriptional activity of nuclear factor-kappa B (NF-κB), which was accompanied by a parallel reduction of degradation and phosphorylation of inhibitory kappa Bα (IκBα) and consequently by decreased nuclear translocation of p65 subunit of NF-κB. Pretreatment with EA significantly inhibited the LPS-induced phosphorylation of IκB kinase β (IKKβ), p38, and JNK, whereas the phosphorylation of ERK1/2 was unaffected. Furthermore, EA interfered with the LPS-induced clustering of TNF receptor-associated factor 6 (TRAF6) with interleukin receptor associated kinase 1 (IRAK1) and transforming growth factor-β-activated kinase 1 (TAK1). Taken together, these results suggest that EA inhibits LPS-induced inflammatory responses by interference with the clustering of TRAF6 with IRAK1 and TAK1, resulting in blocking the activation of IKK and MAPKs signal transduction to downregulate NF-κB activations.

  18. Stress hormone release is a key component of the metabolic response to lipopolysaccharide (LPS): studies in hypopituitary and healthy subjects

    DEFF Research Database (Denmark)

    Bach, Ermina; Møller, Andreas Buch; Jørgensen, Jens Otto Lunde

    2016-01-01

    of stress hormones. We compared the metabolic effects of LPS in hypopituitary patients (HP) (in the absence of pituitary stress hormone responses) and healthy control subjects (CTR) (with normal pituitary stress hormone responses). DESIGN: Single blind randomized. METHODS: We compared effects of LPS...... but not in HP. LPS increased whole body palmitate fluxes (3-fold) and decreased palmitate specific activity 40-50 % in CTR, but not in HP. G(0)/G(1) Switch Gene 2 (G0S2 - an inhibitor of lipolysis) adipose tissue mRNA was decreased in CTR. LPS increased phenylalanine fluxes significantly more in CTR, whereas...... on glucose, protein and lipid metabolism in eight HP and eight matched CTR twice during 4-h basal and 2-h hyperinsulinemic euglycemic clamp conditions with muscle biopsies and fat biopsies in each period during infusion with saline or LPS. RESULTS: LPS increased cortisol and growth hormone (GH) levels in CTR...

  19. DMPD: The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10669111 The Lps locus: genetic regulation of host responses to bacteriallipopolysa...ccharide. Qureshi ST, Gros P, Malo D. Inflamm Res. 1999 Dec;48(12):613-20. (.png) (.svg) (.html) (.csml) Show The... Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. PubmedID 10669111 Title The

  20. Nfkb1 inhibits LPS-induced IFN-β and IL-12 p40 production in macrophages by distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Xixing Zhao

    Full Text Available BACKGROUND: Nfkb1-deficient murine macrophages express higher levels of IFN-β and IL-12 p40 following LPS stimulation than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes several gene products including the NF-κB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105, and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-β and IL-12 p40 following LPS stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-β(Ifnb and IL-12 p40 (Il12b gene expression in macrophages following LPS stimulation have not been directly compared. METHODOLOGY/PRINCIPAL FINDINGS: We have used recombinant retroviruses to express p105, p50, and the C-terminal domain of p105 (p105ΔN in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that both p50 and p105ΔN inhibited expression of Ifnb, and that inhibition of Ifnb by p105ΔN depended on ERK activation, because a mutant of p105ΔN (p105ΔNS930A that lacks a key serine necessary to support ERK activation failed to inhibit. In contrast, only p105ΔN but not p50 inhibited Il12b expression. Surprisingly, p105ΔNS930A retained inhibitory activity for Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105ΔNS930A on Ifnb and Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that p105ΔNS930A influences gene expression by interfering with the function of c-Rel. CONCLUSIONS: These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR stimulation of murine macrophages.

  1. Critical roles of the WASP N-terminal domain and Btk in LPS-induced inflammatory response in macrophages.

    Directory of Open Access Journals (Sweden)

    Chisato Sakuma

    Full Text Available While Wiskott-Aldrich syndrome protein (WASP plays critical roles in TCR signaling as an adaptor molecule, how it transduces innate immune signals remains to be elucidated. To investigate the roles of WASP in innate immune cells, we established bone marrow-derived macrophage (BMDM cell lines from WASP15 transgenic (Tg mice overexpressing the WASP N-terminal region (exons 1-5. Upon LPS stimulation, WASP15 Tg BMDM cell lines produce lower levels of inflammatory cytokines, such as TNF-α, IL-6, and IL-12p40 than the wild-type BMDM cell line. In addition, the production of nitric oxide by WASP15 Tg BMDM cells in response to LPS and IFN-γ was significantly impaired. Furthermore, we uncovered that the WASP N-terminal domain associates with the Src homology (SH 3 domain of Bruton's tyrosine kinase (Btk. Overexpression of the WASP N-terminal domain diminishes the extent of tyrosine phosphorylation of endogenous WASP in WASP15 Tg BMDM cells, possibly by interfering with the specific binding between endogenous WASP and Btk during LPS signaling. These observations strongly suggest that the interaction between WASP N-terminal domain and Btk plays important roles in the LPS signaling cascade in innate immunity.

  2. Preferential macrophage recruitment and polarization in LPS-induced animal model for COPD: noninvasive tracking using MRI.

    Science.gov (United States)

    Al Faraj, Achraf; Sultana Shaik, Asma; Pureza, Mary Angeline; Alnafea, Mohammad; Halwani, Rabih

    2014-01-01

    Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of chronic obstructive respiratory diseases (COPD), which make them attractive vehicles to deliver contrast agents for diagnostic or drugs for therapeutic purposes. This study was designed to monitor and evaluate the migration of differently polarized M1 and M2 iron labeled macrophage subsets to the lung of a LPS-induced COPD animal model and to assess their polarization state once they have reached the inflammatory sites in the lung after intravenous injection. Ex vivo polarized bone marrow derived M1 or M2 macrophages were first efficiently and safely labeled with amine-modified PEGylated dextran-coated SPIO nanoparticles and without altering their polarization profile. Their biodistribution in abdominal organs and their homing to the site of inflammation in the lung was tracked for the first time using a free-breathing non-invasive MR imaging protocol on a 4.7T magnet after their intravenous administration. This imaging protocol was optimized to allow both detection of iron labeled macrophages and visualization of inflammation in the lung. M1 and M2 macrophages were successfully detected in the lung starting from 2 hours post injection with no variation in their migration profile. Quantification of cytokines release, analysis of surface membrane expression using flow cytometry and immunohistochemistry investigations confirmed the successful recruitment of injected iron labeled macrophages in the lung of COPD mice and revealed that even with a continuum switch in the polarization profile of M1 and M2 macrophages during the time course of inflammation a balanced number of macrophage subsets predominate.

  3. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice.

    Science.gov (United States)

    Savignac, Helene M; Couch, Yvonne; Stratford, Michael; Bannerman, David M; Tzortzis, George; Anthony, Daniel C; Burnet, Philip W J

    2016-02-01

    The manipulation of the enteric microbiota with specific prebiotics and probiotics, has been shown to reduce the host's inflammatory response, alter brain chemistry, and modulate anxiety behaviour in both rodents and humans. However, the neuro-immune and behavioural effects of prebiotics on sickness behaviour have not been explored. Here, adult male CD1 mice were fed with a specific mix of non-digestible galacto-oligosaccharides (Bimuno®, BGOS) for 3 weeks, before receiving a single injection of lipopolysaccharide (LPS), which induces sickness behaviour and anxiety. Locomotor and marble burying activities were assessed 4h after LPS injection, and after 24h, anxiety in the light-dark box was assessed. Cytokine expression, and key components of the serotonergic (5-Hydroxytryptamine, 5-HT) and glutamatergic system were evaluated in the frontal cortex to determine the impact of BGOS administration at a molecular level. BGOS-fed mice were less anxious in the light-dark box compared to controls 24h after the LPS injection. Elevated cortical IL-1β concentrations in control mice 28 h after LPS were not observed in BGOS-fed animals. This significant BGOS×LPS interaction was also observed for 5HT2A receptors, but not for 5HT1A receptors, 5HT, 5HIAA, NMDA receptor subunits, or other cytokines. The intake of BGOS did not influence LPS-mediated reductions in marble burying behaviour, and its effect on locomotor activity was equivocal. Together, our data show that the prebiotic BGOS has an anxiolytic effect, which may be related to the modulation of cortical IL-1β and 5-HT2A receptor expression. Our data suggest a potential role for prebiotics in the treatment of neuropsychiatric disorders where anxiety and neuroinflammation are prominent clinical features.

  4. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus.

    Science.gov (United States)

    Zhao, Yuhai; Jaber, Vivian; Lukiw, Walter J

    2017-01-01

    Although the potential contribution of the human gastrointestinal (GI) tract microbiome to human health, aging, and disease is becoming increasingly acknowledged, the molecular mechanics and signaling pathways of just how this is accomplished is not well-understood. Major bacterial species of the GI tract, such as the abundant Gram-negative bacilli Bacteroides fragilis (B. fragilis) and Escherichia coli (E. coli), secrete a remarkably complex array of pro-inflammatory neurotoxins which, when released from the confines of the healthy GI tract, are pathogenic and highly detrimental to the homeostatic function of neurons in the central nervous system (CNS). For the first time here we report the presence of bacterial lipopolysaccharide (LPS) in brain lysates from the hippocampus and superior temporal lobe neocortex of Alzheimer's disease (AD) brains. Mean LPS levels varied from two-fold increases in the neocortex to three-fold increases in the hippocampus, AD over age-matched controls, however some samples from advanced AD hippocampal cases exhibited up to a 26-fold increase in LPS over age-matched controls. This "Perspectives" paper will further highlight some very recent research on GI tract microbiome signaling to the human CNS, and will update current findings that implicate GI tract microbiome-derived LPS as an important internal contributor to inflammatory degeneration in the CNS.

  5. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD: Detection of Lipopolysaccharide (LPS in AD Hippocampus

    Directory of Open Access Journals (Sweden)

    Yuhai Zhao

    2017-07-01

    Full Text Available Although the potential contribution of the human gastrointestinal (GI tract microbiome to human health, aging, and disease is becoming increasingly acknowledged, the molecular mechanics and signaling pathways of just how this is accomplished is not well-understood. Major bacterial species of the GI tract, such as the abundant Gram-negative bacilli Bacteroides fragilis (B. fragilis and Escherichia coli (E. coli, secrete a remarkably complex array of pro-inflammatory neurotoxins which, when released from the confines of the healthy GI tract, are pathogenic and highly detrimental to the homeostatic function of neurons in the central nervous system (CNS. For the first time here we report the presence of bacterial lipopolysaccharide (LPS in brain lysates from the hippocampus and superior temporal lobe neocortex of Alzheimer's disease (AD brains. Mean LPS levels varied from two-fold increases in the neocortex to three-fold increases in the hippocampus, AD over age-matched controls, however some samples from advanced AD hippocampal cases exhibited up to a 26-fold increase in LPS over age-matched controls. This “Perspectives” paper will further highlight some very recent research on GI tract microbiome signaling to the human CNS, and will update current findings that implicate GI tract microbiome-derived LPS as an important internal contributor to inflammatory degeneration in the CNS.

  6. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation--modulation of microRNA 126.

    Science.gov (United States)

    Ojwang, Leonnard O; Banerjee, Nivedita; Noratto, Giuliana D; Angel-Morales, Gabriela; Hachibamba, Twambo; Awika, Joseph M; Mertens-Talcott, Susanne U

    2015-01-01

    Cowpea (Vigna unguiculata) is a drought tolerant crop with several agronomic advantages over other legumes. This study evaluated varieties from four major cowpea phenotypes (black, red, light brown and white) containing different phenolic profiles for their anti-inflammatory property on non-malignant colonic myofibroblasts (CCD18Co) cells challenged with an endotoxin (lipopolysaccharide, LPS). Intracellular reactive oxygen species (ROS) assay on the LPS-stimulated cells revealed antioxidative potential of black and red cowpea varieties. Real-time qRT-PCR analysis in LPS-stimulated cells revealed down-regulation of proinflammatory cytokines (IL-8, TNF-α, VCAM-1), transcription factor NF-κB and modulation of microRNA-126 (specific post-transcriptional regulator of VCAM-1) by cowpea polyphenolics. The ability of cowpea polyphenols to modulate miR-126 signaling and its target gene VCAM-1 were studied in LPS-stimulated endothelial cells transfected with a specific inhibitor of miR-126, and treated with 10 mg GAE/L black cowpea extract where the extract in part reversed the effect of the miR-126 inhibitor. This suggests that cowpea may exert their anti-inflammatory activities at least in part through induction of miR-126 that then down-regulate VCAM-1 mRNA and protein expressions. Overall, Cowpea therefore is promising as an anti-inflammatory dietary component.

  7. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways

    Directory of Open Access Journals (Sweden)

    Choi YH

    2014-10-01

    Full Text Available Yung Hyun Choi,1,2 Gi-Young Kim,3 Hye Hyeon Lee4 1Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 2Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan, 3Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, 4Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea Abstract: Cordycepin is the main functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. This compound possesses many pharmacological properties, such as an ability to enhance immune function, as well as antioxidant, antiaging, and anticancer effects. In the present study, we investigated the anti-inflammatory effects of cordycepin using a murine macrophage RAW 264.7 cell model. Our data demonstrated that cordycepin suppressed production of proinflammatory mediators such as nitric oxide (NO and prostaglandin E2 by inhibiting inducible NO synthase and cyclooxygenase-2 gene expression. Cordycepin also inhibited the release of proinflammatory cytokines, including tumor necrosis factor-alpha and interleukin-1-beta, through downregulation of respective mRNA expression. In addition, pretreatment with cordycepin significantly inhibited lipopolysaccharide (LPS-induced phosphorylation of mitogen-activating protein kinases and attenuated nuclear translocation of NF-κB by LPS, which was associated with abrogation of inhibitor kappa B-alpha degradation. Furthermore, cordycepin potently inhibited the binding of LPS to macrophages and LPS-induced Toll-like receptor 4 and myeloid differentiation factor 88 expression. Taken together, the results suggest that the inhibitory effects of cordycepin on LPS-stimulated inflammatory responses in RAW 264.7 macrophages are associated with suppression of mitogen-activating protein kinases and activation of NF-κB by inhibition of the Toll-like receptor 4 signaling pathway. Keywords

  8. Hydration, Ionic Valence and Cross-Linking Propensities of Cations Determine the Stability of Lipopolysaccharide (LPS) Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Agrinaldo; Pontes, Frederico J.; Lins, Roberto D.; Soares, Thereza A.

    2013-10-29

    The supra-molecular structure of LPS aggregates governs outer membrane permeability and activation of the host immune response during Gram-negative bacterial infections. Molecular dynamics simulations unveil at atomic resolution 10 the subtle balance between cation hydration and cross-link ability in modulating phase transitions of LPS membranes.

  9. DMPD: Structural and functional analyses of bacterial lipopolysaccharides. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12106784 Structural and functional analyses of bacterial lipopolysaccharides. Carof...html) (.csml) Show Structural and functional analyses of bacterial lipopolysaccharides. PubmedID 12106784 Ti...tle Structural and functional analyses of bacterial lipopolysaccharides. Authors

  10. Pyrrolizidine alkaloids from Liparis nervosa with inhibitory activities against LPS-induced NO production in RAW264.7 macrophages.

    Science.gov (United States)

    Huang, Shuai; Zhou, Xian-li; Wang, Cui-juan; Wang, You-song; Xiao, Feng; Shan, Lian-hai; Guo, Zhi-yun; Weng, Jie

    2013-09-01

    Six pyrrolizidine alkaloids were isolated from the whole herb of Liparis nervosa together with two previously known ones. Their structures were elucidated by extensive spectroscopic analyses and chemical reactions. The cytotoxicity of the isolates was evaluated against A549, HepG2, and MCF-7 human cancer cell lines; however, no significant growth inhibition was observed. All compounds were evaluated for the inhibition of LPS-induced nitric oxide (NO) production in RAW264.7 macrophages, and most significantly inhibited NO production with IC50 values in the range of 2.16-38.25 μM.

  11. Role for macrophage inflammatory protein-2 in lipopolysaccharide-induced lung injury in rats

    DEFF Research Database (Denmark)

    Schmal, H; Shanley, T P; Jones, M L;

    1996-01-01

    Macrophage inflammatory protein-2 (MIP-2) is a C-X-C chemokine that possesses chemotactic activity for neutrophils. Rat MIP-2 was cloned and expressed as a 7.9-kDa peptide that exhibited dose-dependent neutrophil chemotactic activity at concentrations from 10 to 250 nM. Rabbit polyclonal Ab...... to the 7.9-kDa peptide showed reactivity by western blot analysis and suppressed its in vitro chemotactic activity. Cross-desensitization chemotaxis experiments suggested that the chemotactic responses elicited by MIP-2 and the related chemokine, cytokine-induced neutrophil chemoattractant, may be mediated...... through a common receptor. Also, chemotactic responses to human GRO-alpha were blocked by exposure of human neutrophils to either GRO-alpha or rat MIP-2, suggesting conservation of this receptor-mediated response. After LPS instillation into rat lung, mRNA for MIP-2 was up-regulated in a time...

  12. Synthesis of New Tricyclic and Tetracyclic Fused Coumarin Sulfonate Derivatives and Their Inhibitory Effects on LPS-Induced Nitric Oxide and PGE2 Productions in RAW 264.7 Macrophages: Part 2.

    Science.gov (United States)

    El-Gamal, Mohammed I; Lee, Woo-Seok; Shin, Ji-Sun; Oh, Chang-Hyun; Lee, Kyung-Tae; Choi, Jungseung; Myoung, Nohsun; Baek, Daejin

    2016-11-01

    The synthesis of a new series of 21 fused coumarin derivatives is described, and the biological evaluation of their in vitro antiinflammatory effects as inhibitors of lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in RAW 264.7 macrophages. The target compounds 1a-u were first tested for cytotoxicity to determine a non-toxic concentration for antiinflammatory screening, so that the inhibitory effects against NO and PGE2 production would not be caused by cytotoxicity. Compounds 1f and 1p were the most active PGE2 inhibitors with IC50 values of 0.89 and 0.95 µM, respectively. Western blot and cell-free COX-2 screening showed that their effects were due to inhibition of both COX-2 protein expression and COX-2 enzyme activity. Their IC50 values against the COX-2 enzyme were 0.67 and 0.85 µM, respectively, which is more potent than etoricoxib. The selectivity indexes of compounds 1f and 1p against COX-2 compared to COX-1 were 41.1 and 42.5, respectively. Compound 1f showed strong inhibitory effects at 5 µM concentration on COX-2 mRNA expression in LPS-induced RAW 264.7 macrophages. Moreover, the tricyclic compounds 1l and 1n as well as the tetracyclic analog 1u were the most potent NO inhibitors, with one-digit micromolar IC50 values. They showed dose-dependent inhibition of inducible nitric oxide synthase (iNOS) protein expression. The tetracyclic derivative 1u was the most potent inhibitor of NO production. It also exhibited a strong inhibitory effect on iNOS mRNA expression in LPS-induced RAW 264.7 macrophages.

  13. Niacin attenuates the production of pro-inflammatory cytokines in LPS-induced mouse alveolar macrophages by HCA2 dependent mechanisms.

    Science.gov (United States)

    Zhou, Ershun; Li, Yimeng; Yao, Minjun; Wei, Zhengkai; Fu, Yunhe; Yang, Zhengtao

    2014-11-01

    Niacin has been reported to have potent anti-inflammatory effects in LPS-induced acute lung injury. However, the molecular mechanism of niacin has not been fully understood. The aim of the present study was to investigate the effects of niacin on the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β in LPS-induced mouse alveolar macrophages and explore its underlying mechanism. Mouse alveolar macrophages were incubated in the presence or absence of various concentrations of niacin (1, 10, 100 μmol/l) 1h before LPS (1 μg/ml) challenge. The results showed that niacin reduced the levels of TNF-α, IL-6 and IL-1β in LPS-challenged alveolar macrophages. Furthermore, NF-κB activation was inhibited by niacin through blocking the phosphorylation of NF-κB p65 and IκBα. In addition, silencing HCA2 abrogated the effect of niacin on the production of pro-inflammatory cytokines. These findings suggested that niacin attenuated the LPS-induced pro-inflammatory cytokines possibly mediated by HCA2 in LPS-challenged alveolar macrophages.

  14. Citrus unshiu flower inhibits LPS-induced iNOS and COX-2 via MAPKs in RAW 264.7 macrophage cells

    Directory of Open Access Journals (Sweden)

    Min-Jin Kim

    2015-12-01

    Full Text Available In the present study, we investigated the effects of Citrus unshiu flower on regulatory mechanisms of cytokines and nitric oxide (NO involved in immunological activity of RAW 264.7 macrophages. Our results indicated that ethyl acetate fraction of Citrus unshiu flower (CUF-EA downregulated LPS-induced nitric oxide (NO synthase (iNOS and cyclooxygenase-2 (COX-2 expression, thereby reducing the production of NO and prostaglandin E2 (PGE2 in LPS-activated RAW 264.7 macrophages. Furthermore, CUF-EA suppressed LPS-induced production of pro-inflammatory cytokines such as interleukin IL-6, and tumor necrosis factor (TNF-α. To elucidate its anti-inflammatory mechanisms, CUF-EA was investigated as an inhibitor of phosphorylation of mitogen-activated protein (MAP kinase in LPS-stimulated RAW 264.7 macrophages. As expected, the phosphorylation of MAP kinases (p38, ERK1/2 and JNK in LPS-stimulated RAW 264.7 macrophages was suppressed by CUF-EA in a dose-dependent manner. These results suggest that the anti-inflammatory properties of CUF-EA might results from inhibition of NO, PGE2, iNOS, COX-2, IL-6 and TNF-α expressions through the down-regulation of phosphorylation of MAPKs in RAW 264.7 macrophages.

  15. Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS)

    Science.gov (United States)

    Bester, Janette; Soma, Prashilla; Kell, Douglas B.; Pretorius, Etheresia

    2015-01-01

    Alzheimer-type dementia (AD) is a neurodegenerative disorder and the most common form of dementia. Patients typically present with neuro- and systemic inflammation and iron dysregulation, associated with oxidative damage that reflects in hypercoagulability. Hypercoagulability is closely associated with increased fibrin(ogen) and in AD patients fibrin(ogen) has been implicated in the development of neuroinflammation and memory deficits. There is still no clear reason precisely why (a) this hypercoagulable state, (b) iron dysregulation and (c) increased fibrin(ogen) could together lead to the loss of neuronal structure and cognitive function. Here we suggest an alternative hypothesis based on previous ultrastructural evidence of the presence of a (dormant) blood microbiome in AD. Furthermore, we argue that bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, might be the cause of the continuing and low-grade inflammation, characteristic of AD. Here, we follow an integrated approach, by studying the viscoelastic and ultrastructural properties of AD plasma and whole blood by using scanning electron microscopy, Thromboelastography (TEG®) and the Global Thrombosis Test (GTT®). Ultrastructural analysis confirmed the presence and close proximity of microbes to erythrocytes. TEG® analysis showed a hypercoagulable state in AD. TEG® results where LPS was added to naive blood showed the same trends as were found with the AD patients, while the GTT® results (where only platelet activity is measured), were not affected by the added LPS, suggesting that LPS does not directly impact platelet function. Our findings reinforce the importance of further investigating the role of LPS in AD. PMID:26462180

  16. Moracin C, A Phenolic Compound Isolated from Artocarpus heterophyllus, Suppresses Lipopolysaccharide-Activated Inflammatory Responses in Murine Raw264.7 Macrophages

    Science.gov (United States)

    Yao, Xue; Wu, Dang; Dong, Ningning; Ouyang, Ping; Pu, Jiaqian; Hu, Qian; Wang, Jingyuan; Lu, Weiqiang; Huang, Jin

    2016-01-01

    Artocarpus heterophyllus, a popular tropical fruit commonly known as the jackfruit tree, is normally planted in subtropical or tropical areas. Since a variety of phytochemicals isolated from A. heterophyllus have been found to possess potently anti-inflammatory, antiviral and antimalarial activities, researchers have devoted much interest to its potential pharmaceutical value. However, the exact mechanism underlying its anti-inflammatory activity is not well characterized. In this study, seven natural products isolated from A. heterophyllus, including 25-Hydroxycycloart-23-en-3-one (HY), Artocarpin (AR), Dadahol A (DA), Morachalcone A (MA), Artoheterophyllin B (AB), Cycloheterophyllin (CY) and Moracin C (MC) were collected. Lipopolysaccharide (LPS)-stimulated inflammatory response in RAW264.7 macrophages were used in this study. Among these compounds, MC significantly inhibited LPS-activated reactive oxygen species (ROS) and nitric oxide (NO) release without marked cytotoxicity. Furthermore, MC effectively reduced LPS stimulated up-regulation of mRNA and protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and serval pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α)). Mechanistic studies revealed that the anti-inflammatory effect of MC was associated with the activation of the mitogen activated protein kinases (MAPKs) (including p38, ERK and JNK) and nuclear factor-κB (NF-κB) pathways, especially reducing the nuclear translocation of NF-κB p65 subunit as revealed by nuclear separation experiment and confocal microscopy. PMID:27463712

  17. Moracin C, A Phenolic Compound Isolated from Artocarpus heterophyllus, Suppresses Lipopolysaccharide-Activated Inflammatory Responses in Murine Raw264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Xue Yao

    2016-07-01

    Full Text Available Artocarpus heterophyllus, a popular tropical fruit commonly known as the jackfruit tree, is normally planted in subtropical or tropical areas. Since a variety of phytochemicals isolated from A. heterophyllus have been found to possess potently anti-inflammatory, antiviral and antimalarial activities, researchers have devoted much interest to its potential pharmaceutical value. However, the exact mechanism underlying its anti-inflammatory activity is not well characterized. In this study, seven natural products isolated from A. heterophyllus, including 25-Hydroxycycloart-23-en-3-one (HY, Artocarpin (AR, Dadahol A (DA, Morachalcone A (MA, Artoheterophyllin B (AB, Cycloheterophyllin (CY and Moracin C (MC were collected. Lipopolysaccharide (LPS-stimulated inflammatory response in RAW264.7 macrophages were used in this study. Among these compounds, MC significantly inhibited LPS-activated reactive oxygen species (ROS and nitric oxide (NO release without marked cytotoxicity. Furthermore, MC effectively reduced LPS stimulated up-regulation of mRNA and protein expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, and serval pro-inflammatory cytokines (interleukin-1β (IL-1β, interleukin-6 (IL-6 and tumor necrosis factor α (TNF-α. Mechanistic studies revealed that the anti-inflammatory effect of MC was associated with the activation of the mitogen activated protein kinases (MAPKs (including p38, ERK and JNK and nuclear factor-κB (NF-κB pathways, especially reducing the nuclear translocation of NF-κB p65 subunit as revealed by nuclear separation experiment and confocal microscopy.

  18. Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Woan Sean Tan

    2015-01-01

    Full Text Available Aim of Study. Moringa oleifera Lam. (M. oleifera possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS- induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Nitric oxide (NO production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2, interleukin- (IL- 6, IL-1β, tumor necrosis factor-alpha (TNF-α, nuclear factor-kappa B (NF-κB, inducible NO synthase (iNOS, and cyclooxygenase-2 (COX-2. However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB in a concentration dependent manner (100 μg/mL and 200 μg/mL. Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator’s production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.

  19. Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway

    Science.gov (United States)

    Tan, Woan Sean; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Fakurazi, Sharida

    2015-01-01

    Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway. PMID:26609199

  20. The α-cyclodextrin complex of the Moringa isothiocyanate suppresses lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells through Akt and p38 inhibition.

    Science.gov (United States)

    Giacoppo, Sabrina; Rajan, Thangavelu Soundara; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2017-03-13

    In the last decades, a growing need to discover new compounds for the prevention and treatment of inflammatory diseases has led researchers to consider drugs derived from natural products as a valid option in the treatment of inflammation-associated disorders. The purpose of the present study was to investigate the anti-inflammatory effects of a new formulation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl isothiocyanate as a complex with alpha-cyclodextrin (moringin + α-CD) on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells, a common model used for inflammation studies. In buffered/aqueous solution, the moringin + α-CD complex has enhanced the water solubility and stability of this isothiocyanate by forming a stable inclusion system. Our results showed that moringin + α-CD inhibits the production of inflammatory mediators in LPS-stimulated macrophages by down-regulation of pro-inflammatory cytokines (TNF-α and IL-1β), by preventing IκB-α phosphorylation, translocation of the nuclear factor-κB (NF-κB), and also via the suppression of Akt and p38 phosphorylation. In addition, as a consequence of upstream inhibition of the inflammatory pathway following treatment with moringin + α-CD, the modulation of the oxidative stress (results focused on the expression of iNOS and nitrotyrosine) and apoptotic pathway (Bax and Bcl-2) was demonstrated. Therefore, moringin + α-CD appears to be a new relevant helpful tool to use in clinical practice for inflammation-associated disorders.

  1. Reduced scytonemin isolated from Nostoc commune suppresses LPS/IFNγ-induced NO production in murine macrophage RAW264 cells by inducing hemeoxygenase-1 expression via the Nrf2/ARE pathway.

    Science.gov (United States)

    Itoh, Tomohiro; Koketsu, Mamoru; Yokota, Naoto; Touho, Shota; Ando, Masashi; Tsukamasa, Yasuyuki

    2014-07-01

    Reduced scytonemin (R-scy) and scytonemin (Scy) isolated from Nostoc commune exhibit anti-tumor and ultraviolet-absorbing properties. In this study, we examined the effects of R-scy and Scy on the induction of nitric oxide (NO) production by lipopolysaccharide (LPS) and interferon-γ (IFNγ) in murine macrophage RAW264 cells. While both R-scy and Scy suppressed LPS/IFNγ-induced NO production, R-scy exhibited a stronger inhibitory effect compared with Scy. To further elucidate the mechanisms underlying the anti-inflammatory effects of R-scy, we examined the changes in the intracellular signaling cascade after LPS/IFNγ stimulation in cells. In addition to the attenuation of LPS/IFNγ-induced upregulation of the inducible isoform of NO synthase, R-scy decreased the activity of nuclear factor-κB, phosphatidylinositol 3-kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs) after LPS/IFNγ stimulation. R-scy treatment increased heme oxygenase-1 (HO-1) expression by increasing the intracellular levels of reactive oxygen species and thereby activating nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element signaling. The induction of HO-1 by R-scy was inhibited by pretreatment with an antioxidant, N-acetyl-cysteine (NAC), as well as SB203580 and LY294002, inhibitors for p38 MAPK and PI3K/Akt, respectively. Our findings suggest that the anti-inflammatory effects of R-scy could involve both the ROS/PI3K/Akt and the p38 MAPK/Nrf2 signaling pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Oleifolioside A, a New Active Compound, Attenuates LPS-Stimulated iNOS and COX-2 Expression through the Downregulation of NF-κB and MAPK Activities in RAW 264.7 Macrophages.

    Science.gov (United States)

    Yu, Hai Yang; Kim, Kyoung-Sook; Lee, Young-Choon; Moon, Hyung-In; Lee, Jai-Heon

    2012-01-01

    Oleifolioside A, a new triterpenoid compound isolated from Dendropanax morbifera Leveille (D. morbifera), was shown in this study to have potent inhibitory effects on lipopolysaccharide (LPS-)stimulated nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production in RAW 264.7 macrophages. Consistent with these findings, oleifolioside A was further shown to suppress the expression of LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxigenase-2 (COX-2) in a dose-dependent manner at both the protein and mRNA levels and to significantly inhibit the DNA-binding activity and transcriptional activity of NF-κB in response to LPS. These results were found to be associated with the inhibition of the degradation and phosphorylation of IκB-α and subsequent translocation of the NF-κB p65 subunit to the nucleus. Inhibition of NF-κB activation by oleifolioside A was also shown to be mediated through the prevention of p38 MAPK and ERK1/2 phosphorylation. Taken together, our results suggest that oleifolioside A has the potential to be a novel anti-inflammatory agent capable of targeting both the NF-κB and MAPK signaling pathways.

  3. Oleifolioside A, a New Active Compound, Attenuates LPS-Stimulated iNOS and COX-2 Expression through the Downregulation of NF-κB and MAPK Activities in RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Hai Yang Yu

    2012-01-01

    Full Text Available Oleifolioside A, a new triterpenoid compound isolated from Dendropanax morbifera Leveille (D. morbifera, was shown in this study to have potent inhibitory effects on lipopolysaccharide (LPS-stimulated nitric oxide (NO and prostaglandin E2 (PGE2 production in RAW 264.7 macrophages. Consistent with these findings, oleifolioside A was further shown to suppress the expression of LPS-stimulated inducible nitric oxide synthase (iNOS and cyclooxigenase-2 (COX-2 in a dose-dependent manner at both the protein and mRNA levels and to significantly inhibit the DNA-binding activity and transcriptional activity of NF-κB in response to LPS. These results were found to be associated with the inhibition of the degradation and phosphorylation of IκB-α and subsequent translocation of the NF-κB p65 subunit to the nucleus. Inhibition of NF-κB activation by oleifolioside A was also shown to be mediated through the prevention of p38 MAPK and ERK1/2 phosphorylation. Taken together, our results suggest that oleifolioside A has the potential to be a novel anti-inflammatory agent capable of targeting both the NF-κB and MAPK signaling pathways.

  4. Aqueous extract of Gracilaria tenuistipitata suppresses LPS-induced NF-κB and MAPK activation in RAW 264.7 and rat peritoneal macrophages and exerts hepatoprotective effects on carbon tetrachloride-treated rat.

    Science.gov (United States)

    Tseng, Chin-Kai; Lin, Chun-Kuang; Chang, Hsueh-Wei; Wu, Yu-Hsuan; Yen, Feng-Lin; Chang, Fang-Rong; Chen, Wei-Chun; Yeh, Chi-Chen; Lee, Jin-Ching

    2014-01-01

    In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT) against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4)-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases.

  5. Aqueous extract of Gracilaria tenuistipitata suppresses LPS-induced NF-κB and MAPK activation in RAW 264.7 and rat peritoneal macrophages and exerts hepatoprotective effects on carbon tetrachloride-treated rat.

    Directory of Open Access Journals (Sweden)

    Chin-Kai Tseng

    Full Text Available In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases.

  6. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peng [Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Xue, Peng; Dong, Jian [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Peng, Hui [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences (China); Clewell, Rebecca [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Wang, Aiping [Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Wang, Yue [Institute for Medical Device Standardization Administration, National Institutes for Food and Drug Control, Beijing (China); Peng, Shuangqing [Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences (China); Qu, Weidong [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Zhang, Qiang; Andersen, Melvin E. [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States)

    2013-11-01

    Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), regulate IL6 transcription. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for the Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of many proteins, including Nrf2 and IκB kinase β (IKKβ). Here, we found that stable knockdown of Keap1 (Keap1-KD) in RAW 264.7 (RAW) mouse macrophages and human monocyte THP-1 cells significantly increased expression of Il6, and Nrf2-target genes, under basal and lipopolysaccharide (LPS, 0.001–0.1 μg/ml)-challenged conditions. However, Nrf2 activation alone, by tert-butylhydroquinone treatment of RAW cells, did not increase expression of Il6. Compared to cells transduced with scrambled non-target negative control shRNA, Keap1-KD RAW cells showed enhanced protein levels of IKKβ and increased expression and phosphorylation of NF-κB p65 under non-stressed and LPS-treated conditions. Because the expression of Il6 in Keap1-KD RAW cells was significantly attenuated by silencing of Ikkβ, but not Nrf2, it appears that stabilized IKKβ is responsible for the enhanced transactivation of Il6 in Keap1-KD cells. This study demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of Il6 via NF-κB activation. Given the importance of IL6 in the inflammatory response, the Keap1–IKKβ–NF-κB pathway may be a novel target for treatment and prevention of inflammation and associated disorders. - Highlights: • Knockdown of Keap1 increases expression of Il6 in macrophages. • Silencing of Keap1 results in protein accumulation of IKKβ and NF-κB p65. • Induction of Il6 resulting from Keap1 silencing is attributed to NF-κB activation.

  7. Lipopolysaccharide (LPS introduction during growth and development period of rat’s tooth toward the occurrence of enamel hypoplasia

    Directory of Open Access Journals (Sweden)

    Didin Erma Indahyani

    2007-06-01

    Full Text Available The aim of this study is to know the effect of lipopoly saccharide (LPS induction during growth and development period specifically the occurrence of hypoplasia on tooth enamel. 5 day old male wistar rats divided into two groups. Group 1 (control under went no treatment. Group 2 (treatment under went LPS induction every 24 hour for 8 days on buccal fold right maxillary first molar. After 21 days old the rats were sacrificed and the tooth was resected. Hypoplasia Hypo calcification Index (HHI was used to determine the degree of hypoplasia by clinical examination. Radiograph of maxilla was also taken to analyze the apacities of enamel by using COREL DRAW version 11. The result showed that group under went LPS induction hypoplasia occurred on its molar tooth and more radiolucent than control groups. The conclusion is LPS induction during growth and development period of rats tooth causing enamel hypoplasia.

  8. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    Science.gov (United States)

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses.

  9. Nogo-B Facilitates LPS-Mediated Immune Responses by Up-Regulation of TLR4-Signaling in Macrophage RAW264.7

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2017-01-01

    Full Text Available Background/Aims: Nogo-B, a member of the reticulon family of proteins, is mainly located in the endoplasmic reticulum (ER. Here, we investigate the function and mechanism of Nogo-B in the regulation of TLR4-associated immune responses in the macrophage cell line of RAW264.7. Methods: Nogo-B was up- and down-regulated through the use of appropriate adenoviral vectors or siRNA, and the effects of Nogo-B on macrophages under liposaccharide (LPS stimulation were evaluated via western blotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA, flow cytometric analysis, and transwell assay. Results: Our data indicates that the protein of Nogo-B was down-regulated in a time- and dose-dependent manner following LPS administration in the macrophage. Nogo-B overexpression increased the production of inflammatory cytokines (MCP-1, TNF-α, IL-1β, and TGF-β, enhanced macrophage migration activities, activated major histocompatibility complex II (MHC II, and elevated the expression of macrophage scavenger receptor 1(MSR1, all of which suggest that Nogo-B is necessary for immune responses and plays an important role in regulating macrophage recruitment. Mechanistically, Nogo-B may enhance TLR4 expression in macrophage surfaces, activate mitogen-activated protein kinase (MAPK pathways, and initiate inflammatory responses. Conclusion: These findings illustrate the key regulatory functions of Nogo-B in facilitating LPS-mediated immune responses through promoting the phosphorylation of MAP kinase.

  10. Citrus unshiu flower inhibits LPS-induced iNOS and COX-2 via MAPKs in RAW 264.7 macrophage cells

    OpenAIRE

    2015-01-01

    In the present study, we investigated the effects of Citrus unshiu flower on regulatory mechanisms of cytokines and nitric oxide (NO) involved in immunological activity of RAW 264.7 macrophages. Our results indicated that ethyl acetate fraction of Citrus unshiu flower (CUF-EA) downregulated LPS-induced nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, thereby reducing the production of NO and prostaglandin E2 (PGE2) in LPS-activated RAW 264.7 macrophages. Furthermore,...

  11. Low doses of LPS and minimally oxidized LDL cooperatively activate macrophages via NF-kappaB and AP-1: Possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia

    Science.gov (United States)

    Wiesner, Philipp; Choi, Soo-Ho; Almazan, Felicidad; Benner, Christopher; Huang, Wendy; Diehl, Cody J.; Gonen, Ayelet; Butler, Susan; Witztum, Joseph L.; Glass, Christopher K.; Miller, Yury I.

    2010-01-01

    Rationale Oxidized low-density lipoprotein (LDL) is an important determinant of inflammation in atherosclerotic lesions. It has also been documented that certain chronic infectious diseases, such as periodontitis and chlamydial infection, exacerbate clinical manifestations of atherosclerosis. In addition, low-level but persistent metabolic endotoxemia is often found in diabetic and obese subjects and is induced in mice fed a high-fat diet. Objective In this study, we examined cooperative macrophage activation by low levels of bacterial LPS and by minimally oxidized LDL (mmLDL), as a model for subclinical endotoxemia-complicated atherosclerosis. Methods and Results We found that both in vitro and in vivo, mmLDL and LPS (Kdo2-LipidA) cooperatively activated macrophages to express pro-inflammatory cytokines Cxcl2 (MIP-2), Ccl3 (MIP-1alpha), and Ccl4 (MIP-1beta). Importantly, the mmLDL and LPS cooperative effects were evident at a threshold LPS concentration (1 ng/ml) at which LPS alone induced only a limited macrophage response. Analyzing microarray data with a de novo motif discovery algorithm, we found that genes transcribed by promoters containing an AP-1 binding site were significantly upregulated by co-stimulation with mmLDL and LPS. In a nuclear factor-DNA binding assay, the cooperative effect of mmLDL and LPS co-stimulation on c-Jun and c-Fos DNA binding, but not on p65 or p50, was dependent on mmLDL-induced activation of ERK1/2. In addition, mmLDL induced JNK-dependent derepression of AP-1 by removing the corepressor NCoR from the chemokine promoters. Conclusions The cooperative engagement of AP-1 and NF-kappaB by mmLDL and LPS may constitute a mechanism of increased transcription of inflammatory cytokines within atherosclerotic lesions. PMID:20489162

  12. Chlamydial virulence determinants in atherogenesis: the role of chlamydial lipopolysaccharide and heat shock protein 60 in macrophage-lipoprotein interactions.

    Science.gov (United States)

    Kalayoglu, M V; Indrawati; Morrison, R P; Morrison, S G; Yuan, Y; Byrne, G I

    2000-06-01

    Data from a spectrum of epidemiologic, pathologic, and animal model studies show that Chlamydia pneumoniae infection is associated with coronary artery disease, but it is not clear how the organism may initiate or promote atherosclerosis. It is postulated that C. pneumoniae triggers key atherogenic events through specific virulence determinants. C. pneumoniae induces mononuclear phagocyte foam cell formation by chlamydial lipopolysaccharide (cLPS) and low-density lipoprotein oxidation by chlamydial hsp60 (chsp60). Thus, different chlamydial components may promote distinct events implicated in the development of atherosclerosis. Data implicating cLPS and chsp60 in the pathogenesis of atherosclerosis are discussed and novel approaches are presented for attempting to elucidate how these putative virulence determinants signal mononuclear phagocytes to modulate lipoprotein influx and modification.

  13. Zinc Oxide Nanoparticles Suppress LPS-Induced NF-κB Activation by Inducing A20, a Negative Regulator of NF-κB, in RAW 264.7 Macrophages.

    Science.gov (United States)

    Kim, Min-Ho; Jeong, Hyun-Ja

    2015-09-01

    Zinc contained in solar salt and bamboo salt plays a critical role in various immune responses. Zinc oxide is a source of zinc, and recently it has been reported that zinc oxide nanoparticles (ZO-NP) more effectively decrease allergic inflammatory reactions than zinc oxide bulk material. The aim of this work was to investigate the regulatory effect of ZO-NP on interferon (IFN)-γ plus lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. ZO-NP (0.1-10 μg/mL) did not affect cell viability but toxicity was evident at a ZO-NP concentration of 100 μg/mL. ZO-NP (10 μg/mL) inhibited the IFN-γ plus LPS-induced production of nitric oxide and the protein expressions of inducible nitric oxide synthase and cyclooxygenase-2. The productions of inflammatory cytokines, such as, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were increased by IFN-γ plus LPS but down-regulated by ZO-NP treatment. Furthermore, the up-regulations of IL-1β and TNF-α mRNAs by IFN-γ plus LPS were reduced by ZO-NP at low (0.1 μg/mL) and high (10 μg/mL) concentrations. ZO-NP (0.1, 1, and 10 μg/mL) inhibited the nuclear translocation of nuclear factor-κB by blocking IκBα phosphorylation and degradation. In addition, ZO-NP induced the expression of A20, a zinc finger protein and negative regulator of NF-κB. In conclusion, the present study demonstrated that ZO-NP offer a potential means of treating inflammatory diseases.

  14. DMPD: Lipopolysaccharide-binding molecules: transporters, blockers and sensors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15241548 Lipopolysaccharide-binding molecules: transporters, blockers and sensors. ...orters, blockers and sensors. PubmedID 15241548 Title Lipopolysaccharide-binding molecules: transport...Chaby R. Cell Mol Life Sci. 2004 Jul;61(14):1697-713. (.png) (.svg) (.html) (.csml) Show Lipopolysaccharide-binding molecules: transp

  15. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones

    OpenAIRE

    Beynon, Amy L; Brown, M. Rowan; Wright, Rhiannon; Rees, Mark I.; Sheldon, I Martin; Davies, Jeffrey S.

    2013-01-01

    Background Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-in...

  16. A low-level diode laser therapy reduces the lipopolysaccharide (LPS)-induced periodontal ligament cell inflammation

    Science.gov (United States)

    Huang, T. H.; Chen, C. C.; Liu, S. L.; Lu, Y. C.; Kao, C. T.

    2014-07-01

    The purpose of this study was to investigate the cytologic effects of inflammatory periodontal ligament cells in vitro after low-level laser therapy. Human periodontal ligament cells were cultured, exposed to lipopolysaccharide and subjected to low-level laser treatment of 5 J cm-2 or 10 J cm-2 using a 920 nm diode laser. A periodontal ligament cell attachment was observed under a microscope, and the cell viability was quantified by a mitochondrial colorimetric assay. Lipopolysaccharide-treated periodontal ligament cells were irradiated with the low-level laser, and the expression levels of several inflammatory markers, iNOS, TNF-α and IL-1, and pErk kinase, were analyzed by reverse transcription polymerase chain reaction and western blot. The data were collected and analyzed by one-way analysis of variance; p low-level laser treatment of periodontal ligament cells increased their ability to attach and survive. After irradiation, the expression levels of iNOS, TNF-α and IL-1 in lipopolysaccharide-exposed periodontal ligament cells decreased over time (p low-level diode laser treatment increased the cells’ proliferative ability and decreased the expression of the examined inflammatory mediators.

  17. Anti-inflammatory effect of Mentha longifolia in lipopolysaccharide-stimulated macrophages: reduction of nitric oxide production through inhibition of inducible nitric oxide synthase.

    Science.gov (United States)

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2013-01-01

    Mentha longifolia is an aromatic plant used in flavoring and preserving foods and as an anti-inflammatory folk medicine remedy. The present study assessed the effects of M. longifolia extracts, including essential oil and crude methanol extract and its fractions (ethyl acetate, butanol and hexane), on nitric oxide (NO) production and inducible NO synthase (iNOS) mRNA expression in lipopolysaccharide (LPS)-stimulated J774A.1 cells using real-time polymerase chain reaction (PCR). The cytotoxic effects of the extracts on the cells were examined and non-cytotoxic concentrations (<0.2 mg/ml) were used to examine their effects on NO production and iNOS mRNA expression. Only the hexane fraction that contained high levels of phenolic and flavonoid compounds at concentrations from 0.05-0.20 mg/ml significantly reduced NO production in LPS-stimulated cells (p < 0.001). Real-time PCR analysis indicated the ability of this fraction at the same concentrations to significantly decrease iNOS as well as TNFα mRNA expression in the cells (p < 0.001). All extracts were able to scavenge NO radicals in a concentration-dependent manner. At concentrations greater than 0.2 mg/ml, total radicals were 100% scavenged. In conclusion, M. longifolia possibly reduces NO secretion in macrophages by scavenging NO and inhibiting iNOS mRNA expression, and also decreases TNFα pro-inflammatory cytokine expression, thus showing its usefulness in the inflammatory disease process.

  18. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis.

    Science.gov (United States)

    Pun, Nirmala Tilija; Subedi, Amit; Kim, Mi Jin; Park, Pil-Hoon

    2015-01-01

    Adiponectin, an adipokine predominantly produced from adipose tissue, exhibited potent anti-inflammatory properties. In particular, it inhibits production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In the present study, we investigated the role of autophagy induction in the suppression of Lipopolysaccharide (LPS) -induced TNF-α expression by globular adiponectin (gAcrp) and its potential mechanisms. Herein, we found that gAcrp treatment increased expression of genes related with autophagy, including Atg5 and microtubule-associated protein light chain (LC3B), induced autophagosome formation and autophagy flux in RAW 264.7 macrophages. Similar results were observed in primary macrophages isolated peritoneum of mice. Interestingly, inhibition of autophagy by pretreatment with Bafilomycin A1 or knocking down of LC3B gene restored suppression of TNF-α expression, tumor necrosis factor receptor- associated factor 6 (TRAF6) expression and p38MAPK phosphorylation by gAcrp, implying a critical role of autophagy induction in the development of tolerance to LPS-induced TNF-α expression by gAcrp. We also found that knocking-down of FoxO3A, a forkhead box O member of transcription factor, blocked gAcrp-induced expression of LC3II and Atg5. Moreover, gene silencing of Silent information regulator 1 (SIRT1) blocked both gAcrp-induced nuclear translocation of FoxO3A and LC3II expression. Finally, pretreatment with ROS inhibitors, prevented gAcrp-induced SIRT1 expression and further generated inhibitory effects on gAcrp-induced autophagy, indicating a role of ROS production in gAcrp-induced SIRT1 expression and subsequent autophagy induction. Taken together, these findings indicate that globular adiponectin suppresses LPS-induced TNF-α expression, at least in part, via autophagy activation. Furthermore, SIRT1-FoxO3A

  19. Inhibitory Effects of Benzaldehyde Derivatives from the Marine Fungus Eurotium sp. SF-5989 on Inflammatory Mediators via the Induction of Heme Oxygenase-1 in Lipopolysaccharide-Stimulated RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Kyoung-Su Kim

    2014-12-01

    Full Text Available Two benzaldehyde derivatives, flavoglaucin (1 and isotetrahydro-auroglaucin (2, were isolated from the marine fungus Eurotium sp. SF-5989 through bioassay- and 1H NMR-guided investigation. In this study, we evaluated the anti-inflammatory effects of these compounds in lipopolysaccharide (LPS-stimulated RAW264.7 macrophages. We demonstrated that compounds 1 and 2 markedly inhibited LPS-induced nitric oxide (NO and prostaglandin E2 (PGE2 production by suppressing inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 protein expression without affecting cell viability. We also demonstrated that the compounds reduced the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β and interleukin-6 (IL-6. Furthermore, compounds 1 and 2 inhibited LPS-induced nuclear factor-κB (NF-κB activation by suppressing phosphorylation of IkappaB (IκB. These results indicated that the anti-inflammatory effects of these benzaldehyde derivatives in LPS-stimulated RAW264.7 macrophages were due to the inactivation of the NF-κB pathway. In addition, compounds 1 and 2 induced heme oxygenase-1 (HO-1 expression through the nuclear transcription factor-E2–related factor 2 (Nrf2 translocation. The inhibitory effects of compounds 1 and 2 on the production of pro-inflammatory mediators and on NF-κB binding activity were reversed by HO-1 inhibitor tin protoporphyrin (SnPP. Thus, the anti-inflammatory effects of compounds 1 and 2 also correlated with their ability of inducing HO-1 expression.

  20. Inhibitory effects of benzaldehyde derivatives from the marine fungus Eurotium sp. SF-5989 on inflammatory mediators via the induction of heme oxygenase-1 in lipopolysaccharide-stimulated RAW264.7 macrophages.

    Science.gov (United States)

    Kim, Kyoung-Su; Cui, Xiang; Lee, Dong-Sung; Ko, Wonmin; Sohn, Jae Hak; Yim, Joung Han; An, Ren-Bo; Kim, Youn-Chul; Oh, Hyuncheol

    2014-12-19

    Two benzaldehyde derivatives, flavoglaucin (1) and isotetrahydro-auroglaucin (2), were isolated from the marine fungus Eurotium sp. SF-5989 through bioassay- and 1H NMR-guided investigation. In this study, we evaluated the anti-inflammatory effects of these compounds in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We demonstrated that compounds 1 and 2 markedly inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production by suppressing inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression without affecting cell viability. We also demonstrated that the compounds reduced the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Furthermore, compounds 1 and 2 inhibited LPS-induced nuclear factor-κB (NF-κB) activation by suppressing phosphorylation of IkappaB (IκB). These results indicated that the anti-inflammatory effects of these benzaldehyde derivatives in LPS-stimulated RAW264.7 macrophages were due to the inactivation of the NF-κB pathway. In addition, compounds 1 and 2 induced heme oxygenase-1 (HO-1) expression through the nuclear transcription factor-E2-related factor 2 (Nrf2) translocation. The inhibitory effects of compounds 1 and 2 on the production of pro-inflammatory mediators and on NF-κB binding activity were reversed by HO-1 inhibitor tin protoporphyrin (SnPP). Thus, the anti-inflammatory effects of compounds 1 and 2 also correlated with their ability of inducing HO-1 expression.

  1. Anti-Inflammatory Effect of Neoechinulin A from the Marine Fungus Eurotium sp. SF-5989 through the Suppression of NF-кB and p38 MAPK Pathways in Lipopolysaccharide-Stimulated RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Kyoung-Su Kim

    2013-10-01

    Full Text Available In the course of a bioassay-guided study of metabolites from the marine fungus Eurotium sp. SF-5989, two diketopiperazine type indole alkaloids, neoechinulins A and B, were isolated. In this study, we investigated the anti-inflammatory effects of neoechinulins A (1 and B (2 on lipopolysaccharide (LPS-stimulated RAW264.7 macrophages. Neoechinulin A (1 markedly suppressed the production of nitric oxide (NO and prostaglandin E2 (PGE2 and the expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 in a dose dependent manner ranging from 12.5 µM to 100 µM without affecting the cell viability. On the other hand, neoechinulin B (2 affected the cell viability at 25 µM although the compound displayed similar inhibitory effect of NO production to neoechinulin A (1 at lower doses. Furthermore, neoechinulin A (1 decreased the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β. We also confirmed that neoechinulin A (1 blocked the activation of nuclear factor-kappaB (NF-κB in LPS-stimulated RAW264.7 macrophages by inhibiting the phosphorylation and degradation of inhibitor kappa B (IκB-α. Moreover, neoechinulin A (1 decreased p38 mitogen-activated protein kinase (MAPK phosphorylation. Therefore, these data showed that the anti-inflammatory effects of neoechinulin A (1 in LPS-stimulated RAW264.7 macrophages were due to the inhibition of the NF-κB and p38 MAPK pathways, suggesting that neoechinulin A (1 might be a potential therapeutic agent for the treatment of various inflammatory diseases.

  2. Indirubin-3′-(2,3 dihydroxypropyl)-oximether (E804) is a potent modulator of LPS-stimulated macrophage functions

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, Abigail S. [Department of Biological Sciences, Clemson University, Clemson, SC 29634 (United States); Anderson, Amy L. [Department of Biological Sciences, Clemson University, Clemson, SC 29634 (United States); Graduate Program in Environmental Toxicology, Clemson University, Clemson, SC 29634 (United States); Rice, Charles D., E-mail: cdrice@clemson.edu [Department of Biological Sciences, Clemson University, Clemson, SC 29634 (United States); Graduate Program in Environmental Toxicology, Clemson University, Clemson, SC 29634 (United States)

    2013-01-01

    Indirubin is a deep-red bis-indole isomer of indigo blue, both of which are biologically active ingredients in Danggui Longhui Wan, an ancient Chinese herbal tea mixture used to treat neoplasia and chronic inflammation and to enhance detoxification of xenobiotics. Multiple indirubin derivatives have been synthesized and shown to inhibit cyclin-dependent kinases (CDKs) and glycogen-synthase kinase (GSK-3β) with varying degrees of potency. Several indirubins are also aryl hydrocarbon receptor (AhR) agonists, with AhR-associated activities covering a wide range of potencies, depending on molecular structure. This study examined the effects of indirubin-3′-(2,3 dihydroxypropyl)-oximether (E804), a novel indirubin with potent STAT3 inhibitory properties, on basal and LPS-inducible activities in murine RAW264.7 macrophages. Using a focused commercial qRT-PCR array platform (SuperArray®), the effects of E804 on expression of a suite of genes associated with stress and toxicity were determined. Most genes up-regulated by LPS treatment were suppressed by E804; including LPS-induced expression of pro-inflammatory cytokines and receptors, apoptosis control genes, and oxidative stress response genes. Using qRT-PCR as a follow up to the commercial arrays, E804 treatment suppressed LPS-induced COX-2, iNOS, IL-6 and IL-10 gene expression, though the effects on iNOS and COX-2 protein expression were less dramatic. E804 also inhibited LPS-induced secretion of IL-6 and IL-10. Functional endpoints, including iNOS and lysozyme enzymatic activity, phagocytosis of fluorescent latex beads, and intracellular killing of bacteria, were also examined, and in each experimental condition E804 suppressed activities. Collectively, these results indicate that E804 is a potent modulator of pro-inflammatory profiles in LPS-treated macrophages. -- Highlights: ► RAW 264.7 macrophages were treated with 1 μM Indirubin E804, 1 μg/ml LPS, or both. ► E804 suppresses LPS-induced expression of i

  3. Anti-inflammatory properties of a triterpenoidal glycoside from Momordica cochinchinensis in LPS-stimulated macrophages.

    Science.gov (United States)

    Jung, Kiwon; Chin, Young-Won; Yoon, Kee dong; Chae, Hee-Sung; Kim, Chul Young; Yoo, Hunseung; Kim, Jinwoong

    2013-02-01

    Two triterpenoidal saponins were isolated from the seeds of Momordica cochinchinensis Sprenger (Cucurbitaceae). Identification of chemical structures has been performed by (1)H- and (13)C-NMR spectroscopy and gas chromatography (GC). One of the saponins is a new gypsogenin glycoside, named as gypsogenin 3-O-β-D-galactopyranosyl(1→2)-[α-L-rhamnopyranosyl(1→3)]-β-D-glucuronopyranoside (compound 1), which is reported for the first time from natural resources. The other saponin is a quillaic acid glycoside (compound 2), which showed anti-inflammatory activities in RAW 264.7 cells. The mechanistic understanding of anti-inflammatory activities demonstrates that compound 2 inhibits lipopolysaccharide-induced expression of nitric oxide and IL-6 via NF-κB pathway.

  4. High-fat diet induces periodontitis in mice through lipopolysaccharides (LPS receptor signaling: protective action of estrogens.

    Directory of Open Access Journals (Sweden)

    Vincent Blasco-Baque

    Full Text Available BACKGROUND: A fat-enriched diet favors the development of gram negative bacteria in the intestine which is linked to the occurrence of type 2 diabetes (T2D. Interestingly, some pathogenic gram negative bacteria are commonly associated with the development of periodontitis which, like T2D, is characterized by a chronic low-grade inflammation. Moreover, estrogens have been shown to regulate glucose homeostasis via an LPS receptor dependent immune-modulation. In this study, we evaluated whether diet-induced metabolic disease would favor the development of periodontitis in mice. In addition, the regulatory role of estrogens in this process was assessed. METHODS: Four-week-old C57BL6/J WT and CD14 (part of the TLR-4 machinery for LPS-recognition knock-out female mice were ovariectomised and subcutaneously implanted with pellets releasing either placebo or 17β-estradiol (E2. Mice were then fed with either a normal chow or a high-fat diet for four weeks. The development of diabetes was monitored by an intraperitoneal glucose-tolerance test and plasma insulin concentration while periodontitis was assessed by identification of pathogens, quantification of periodontal soft tissue inflammation and alveolar bone loss. RESULTS: The fat-enriched diet increased the prevalence of periodontal pathogenic microbiota like Fusobacterium nucleatum and Prevotella intermedia, gingival inflammation and alveolar bone loss. E2 treatment prevented this effect and CD14 knock-out mice resisted high-fat diet-induced periodontal defects. CONCLUSIONS/SIGNIFICANCE: Our data show that mice fed with a diabetogenic diet developed defects and microflora of tooth supporting-tissues typically associated with periodontitis. Moreover, our results suggest a causal link between the activation of the LPS pathway on innate immunity by periodontal microbiota and HFD-induced periodontitis, a pathophysiological mechanism that could be targeted by estrogens.

  5. Effect of lipopolysaccharide on the iron metabolism in macrophages%脂多糖对巨噬细胞铁代谢的影响

    Institute of Scientific and Technical Information of China (English)

    王莉; 姜宝华; 钱忠明; 段相林

    2014-01-01

    目的:检测二价金属离子转运体(DMT1)和金属转运蛋白(FPN1)在原代培养巨噬细胞中的分布及脂多糖( LPS)对巨噬细胞铁代谢的影响。方法采用原代细胞培养、MTT显色、细胞化学染色和细胞免疫荧光等方法检测LPS对原代培养的巨噬细胞活性的作用及对DMT1和FPN1分布的影响。结果不带铁反应元件的二价金属离子转运体( DMT1-IRE)主要在细胞核中表达,在细胞质中分布较少。带铁反应元件的二价金属离子转运体( DMT1+IRE)主要分布于细胞质中,可以将吞噬小体中的铁向细胞质中转运。 FPN1在巨噬细胞的细胞质和细胞膜均有表达,但主要分布于细胞质。结论巨噬细胞吞噬衰老的红细胞以后,其中的亚铁血红素在细胞质中分解, FPN1可能介导了亚铁血红素分解释放出来的铁在巨噬细胞质中的转运过程。 LPS在低浓度时有促进巨噬细胞生长的作用,LPS浓度为10-5μg/L时达到高峰,随着浓度的增加,又开始抑制细胞生长。%Objective To study the effect of lipopolysaccharide ( LPS ) on the activity of primary cultured macrophages and the distribution of divalent metal transporter 1 ( DMT1 ) and ferroportin 1 ( FPN1 ) .Methods Primary cell culture , MTT chromotest , cytochemistry chromotest and cell immunofluorescence techniques were used in this work . Results DMT1 was mainly distributed in the cytoplasm , which illuminates that DMT1 mediates the macrophage intracellular transit of iron from phagolysosome to cytoplasm .FPN1 was distributed in the cytoplasm and membrane , and the cytoplasm was the main site of FPN 1 distribution in macrophages .Conclusion Iron liberation from heme inside the phagolysosome occurs after erythrophagocytosis and it is possible that FPN 1 mediates intracellular transit of iron released by heme catabolism .The study found that LPS promoted the cell growth and this effect was reached to the peak

  6. n-Propyl gallate suppresses lipopolysaccharide-induced inducible nitric oxide synthase activation through protein kinase Cδ-mediated up-regulation of heme oxygenase-1 in RAW264.7 macrophages.

    Science.gov (United States)

    Jeon, Wookwang; Park, Seong Ji; Kim, Byung-Chul

    2017-04-15

    n-Propyl gallate is a synthetic phenolic antioxidant with potential anti-inflammatory effects. However, the underlying mechanism remains largely unknown. In the present study, we showed that n-propyl gallate increases the expression and activity of the heme oxygenase-1 (HO-1), a stress-inducible protein with potent anti-inflammatory activity, in RAW264.7 macrophages. The inhibition of the HO-1 activity by treatment with zinc (II) protoporphyrin IX (ZnPP) or by knockdown of the HO-1 expression with small interference RNA significantly reversed the inhibitory effect of n-Propyl gallate on activations of nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS). An additional mechanism study using inhibitors of signaling kinases revealed the involvement of protein kinase Cδ (PKCδ) in the expression of HO-1 induced by n-Propyl gallate. Consistent with these results, n-Propyl gallate increased the intracellular levels of phosphorylated PKCδ in concentration- and time-dependent manners. The inhibitory effects of n-Propyl gallate on LPS-induced iNOS expression and nitric oxide production were also significantly attenuated by pretreatment with the PKCδ inhibitor, rottlerin, or by transfection with PKCδ (K376R), a kinase-inactive form of PKCδ. Taken together, these findings provide the first evidence that n-Propyl gallate exerts its anti-inflammatory effect through PKCδ-mediated up-regulation of HO-1 in macrophages.

  7. Anti-Inflammatory Effect of Methylpenicinoline from a Marine Isolate of Penicillium sp. (SF-5995: Inhibition of NF-κB and MAPK Pathways in Lipopolysaccharide-Induced RAW264.7 Macrophages and BV2 Microglia

    Directory of Open Access Journals (Sweden)

    Dong-Cheol Kim

    2014-11-01

    Full Text Available In the course of a search for anti-inflammatory metabolites from marine-derived fungi, methylpenicinoline (1 was isolated from a marine isolate of Penicillin sp. Compound 1 inhibited lipopolysaccharide (LPS-stimulated nitric oxide (NO production by suppressing the expression of inducible NO synthase (iNOS in RAW264.7 macrophages and BV2 microglia. It also attenuated prostaglandin E2 (PGE2 production by suppressing cyclooxygenase-2 (COX-2 expression in a concentration-dependent manner (from 10 μM to 80 μM without affecting cell viability. In addition, compound 1 reduced the production of the pro-inflammatory cytokine interleukin-1β (IL-1β. In a further study designed to elucidate the mechanism of its anti-inflammatory effects, compound 1 was shown to block nuclear factor-kappa B (NF-κB activation in LPS-induced RAW264.7 macrophages and BV2 microglia by inhibiting the phosphorylation of inhibitor kappa B-α (IκB-α, thereby suppressing the nuclear translocation of NF-κB dimers, namely p50 and p65, that are known to be crucial molecules associated with iNOS and COX-2 expression. In addition, compound 1 inhibited the activation of mitogen-activated protein kinase (MAPK pathways. Taken together, the results suggest that compound 1 might be a valuable therapeutic agent for the treatment of anti-inflammatory and anti-neuroinflammatory diseases.

  8. Depressant effects of ambroxol and erdosteine on cytokine synthesis, granule enzyme release, and free radical production in rat alveolar macrophages activated by lipopolysaccharide.

    Science.gov (United States)

    Jang, Yoon Young; Song, Jin Ho; Shin, Yong Kyoo; Han, Eun Sook; Lee, Chung Soo

    2003-04-01

    The present study examined the effects of ambroxol and erdosteine, bronchial expectorants, on the cytokine synthesis, granule enzyme release, and free radical production in rat alveolar macrophages activated by lipopolysaccharide. Ambroxol and erdosteine significantly decreased the production of tumour necrosis factors-alpha, interleukin-1beta, and interleukin-6 in alveolar macrophages activated by lipopolysaccharide. These drugs significantly reduced the production of superoxide anion, hydrogen peroxide, and nitric oxide and the release of acid phosphatase and lysozyme in lipopolysaccharide-activated macrophages. Ambroxol and erdosteine showed no scavenging effect on superoxide anion and hydrogen peroxide, whereas both drugs effectively decomposed nitric oxide. The results show that ambroxol and erdosteine may inhibit the responses, including cytokine synthesis and free radical production, in rat alveolar macrophages activated by lipopolysaccharide. Unlike the production of reactive oxygen species, the inhibitory effect of ambroxol and erdosteine on the production of nitric oxide in lipopolysaccharide-activated alveolar macrophages may be accomplished by a scavenging action on the species and inhibition of the respiratory burst.

  9. Molecular characterization and immune response to lipopolysaccharide (LPS) of the suppressor of cytokine signaling (SOCS)-1, 2 and 3 genes in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Liu, Cai-Zhi; He, An-Yuan; Chen, Li-Qiao; Limbu, Samwel Mchele; Wang, Ya-Wen; Zhang, Mei-Ling; Du, Zhen-Yu

    2016-03-01

    Suppressor of cytokine signaling (SOCS) proteins are inverse feedback regulators of cytokine and hormone signaling mediated by the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway that are involved in immunity, growth and development of organisms. In the present study, three SOCS genes, SOCS-1, SOCS-2 and SOCS-3, were identified in an economically important fish, Nile tilapia (Oreochromis niloticus) referred to as NtSOCS-1, NtSOCS-2 and NtSOCS-3. Multiple alignments showed that, the three SOCS molecules share highly conserved functional domains, including the SRC homology 2 (SH2) domain, the extended SH2 subdomain (ESS) and the SOCS box with others vertebrate counterparts. Phylogenetic analysis indicated that NtSOCS-1, 2 and 3 belong to the SOCS type II subfamily. Whereas NtSOCS-1 and 3 showed close evolutionary relationship with Perciformes, NtSOCS-2 was more related to Salmoniformes. Tissue specific expression results showed that, NtSOCS-1, 2 and 3 were constitutively expressed in all nine tissues examined. NtSOCS-1 and 3 were highly expressed in immune-related tissues, such as gills, foregut and head kidney. However, NtSOCS-2 was superlatively expressed in liver, brain and heart. In vivo, NtSOCS-1 and 3 mRNA levels were up-regulated after lipopolysaccharide (LPS) challenge while NtSOCS-2 was down-regulated. In vitro, LPS stimulation increased NtSOCS-3 mRNA expression, however it inhibited the transcription of NtSOCS-1 and 2. Collectively, our findings suggest that, the NtSOCS-1 and 3 might play significant role(s) in innate immune response, while NtSOCS-2 may be more involved in metabolic regulation.

  10. Effect of manassantin B, a lignan isolated from Saururus chinensis, on lipopolysaccharide-induced interleukin-1β in RAW 264.7 cells

    OpenAIRE

    Park, Hwan Chul; Bae, Hong-Beom; Jeong, Cheol-Won; Lee, Seong Heon; Jeung, Hye Jin; Kwak, Sang-Hyun

    2012-01-01

    Background Elevated systemic levels of pro-inflammatory cytokines cause hypotension during septic shock and induce capillary leakage in acute lung injury. Manassantin B has anti-inflammatory and anti-plasmoidal properties. This study examined the effects of manassantin B on lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages. Methods RAW 264.7 macrophage cells were incubated without or with (1, 3 and 10 µM) manassantin B and without or with (100 ng/ml) LPS. Manassanti...

  11. Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages.

    Science.gov (United States)

    Rajan, Thangavelu Soundara; Giacoppo, Sabrina; Iori, Renato; De Nicola, Gina Rosalinda; Grassi, Gianpaolo; Pollastro, Federica; Bramanti, Placido; Mazzon, Emanuela

    2016-07-01

    Inflammatory response plays an important role in the activation and progress of many debilitating diseases. Natural products, like cannabidiol, a constituent of Cannabis sativa, and moringin, an isothiocyanate obtained from myrosinase-mediated hydrolysis of the glucosinolate precursor glucomoringin present in Moringa oleifera seeds, are well known antioxidants also endowed with anti-inflammatory activity. This is due to a covalent-based mechanism for ITC, while non-covalent interactions underlie the activity of CBD. Since these two mechanisms are distinct, and the molecular endpoints are potentially complementary, we investigated in a comparative way the protective effect of these compounds alone or in combination on lipopolysaccharide-stimulated murine macrophages. Our results show that the cannabidiol (5μM) and moringin (5μM) combination outperformed the single constituents that, at this dosage had only a moderate efficacy on inflammatory (Tumor necrosis factor-α, Interleukin-10) and oxidative markers (inducible nitric oxide synthase, nuclear factor erythroid 2-related factor 2, nitrotyrosine). Significant upregulation of Bcl-2 and downregulation of Bax and cleaved caspase-3 was observed in cells treated with cannabidiol-moringin combination. Treatment with the transient receptor potential vanilloid receptor 1 antagonist was detrimental for the efficacy of cannabidiol, while no effect was elicited by cannabinoid receptor 1 and cannabinoid receptor 2 antagonists. None of these receptors was involved in the activity of moringin. Taken together, our in vitro results testify the anti-inflammatory, antioxidative, and anti-apoptotic effects of the combination of cannabidiol and moringin.

  12. Induction of Golli-MBP Expression in CNS Macrophages During Acute LPS-Induced CNS Inflammation and Experimental Autoimmune Encephalomyelitis (EAE

    Directory of Open Access Journals (Sweden)

    Tracey L. Papenfuss

    2007-01-01

    Full Text Available Microglia are the tissue macrophages of the CNS. Microglial activation coupled with macrophage infiltration is a common feature of many classic neurodegenerative disorders. The absence of cell-type specific markers has confounded and complicated the analysis of cell-type specific contributions toward the onset, progression, and remission of neurodegeneration. Molecular screens comparing gene expression in cultured microglia and macrophages identified Golli-myelin basic protein (MBP as a candidate molecule enriched in peripheral macrophages. In situ hybridization analysis of LPS/IFNg and experimental autoimmune encephalomyelitis (EAE–induced CNS inflammation revealed that only a subset of CNS macrophages express Golli-MBP. Interestingly, the location and morphology of Golli-MBP+ CNS macrophages differs between these two models of CNS inflammation. These data demonstrate the difficulties of extending in vitro observations to in vivo biology and concretely illustrate the complex heterogeneity of macrophage activation states present in region- and stage-specific phases of CNS inflammation. Taken altogether, these are consistent with the emerging picture that the phenotype of CNS macrophages is actively defined by their molecular interactions with the CNS microenvironment.

  13. DMPD: Bruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15081522 Bruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signall...ruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? PubmedID 15081522 Title Bruton...'s tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? Authors

  14. Anti-Inflammatory Effects of Curvularin-Type Metabolites from a Marine-Derived Fungal Strain Penicillium sp. SF-5859 in Lipopolysaccharide-Induced RAW264.7 Macrophages.

    Science.gov (United States)

    Ha, Tran Minh; Ko, Wonmin; Lee, Seung Jun; Kim, Youn-Chul; Son, Jae-Young; Sohn, Jae Hak; Yim, Joung Han; Oh, Hyuncheol

    2017-09-02

    Chemical study on the extract of a marine-derived fungal strain Penicillium sp. SF-5859 yielded a new curvularin derivative (1), along with eight known curvularin-type polyketides (2-9). The structures of these metabolites (1-9) were established by comprehensive spectroscopic analyses, including 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS). In vitro anti-inflammatory effects of these metabolites were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Among these metabolites, 3-9 were shown to strongly inhibit LPS-induced overproduction of nitric oxide (NO) and prostaglandin E₂ (PGE₂) with IC50 values ranging from 1.9 μM to 18.1 μM, and from 2.8 μM to 18.7 μM, respectively. In the further evaluation of signal pathways involved in these effects, the most active compound, (10E,15S)-10,11-dehydrocurvularin (8) attenuated the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 macrophages. Furthermore, compound 8 was shown to suppress the upregulation of pro-inflammatory mediators and cytokines via the inhibition of the nuclear factor-κB (NF-κB) signaling pathway, but not through the mitogen-activated protein kinase (MAPK) pathway. Based on the comparisons of the different magnitude of the anti-inflammatory effects of these structurally-related metabolites, it was suggested that the opening of the 12-membered lactone ring in curvularin-type metabolites and blocking the phenol functionality led to the significant decrease in their anti-inflammatory activity.

  15. Lipopolysaccharide induces parkin expression and mitophagy in murine peritoneal macrophages%脂多糖诱导小鼠腹腔巨噬细胞parkin 表达及线粒体自噬形成

    Institute of Scientific and Technical Information of China (English)

    程艳伟; 靳梦醒; 闫海; 黄大可; 黄保军; 张林杰

    2014-01-01

    Objective: To investigate whether lipopolysaccharide induced parkin expression and mitophagy in macrophages.Methods:The murine peritoneal primary macrophages were aseptically isolated from Kunming mice and cultured in complete medium.The mitochondrial membrane potential of macrophages was detected by flow cytometry,after the cells were stimulated with 200 ng/ml LPS and labeled mitochondria with JC-1.The parkin mRNA level of macrophages was detected by RT-PCR, protein levels of parkin and autophagic related protein LC3 Ⅱ and LC3 Ⅰ were determined by Western blot.The distribution and co-localization of parkin with LC3 and mitochondria in macrophages were respectively observed by laser scanning confocal microscope, before and after the cells were treated with LPS.Results: Flow cytometry results after JC-1 staining showed that mitochondrial membrane potential in macrophages was declined after stimulation with 200 ng/ml LPS, and continuously decreased with prolonged treatment time.The mRNA levels of parkin were increased slightly within 6 h after LPS stimulation,but parkin proteins were increased significantly within 6 h after LPS stimulation.The results of parkin distribution showed that parkin was evenly distributed in the cytoplasm at normal status, but became the obvious punctate distribution after LPS stimulation in macrophages.Western blot results showed LC3 Ⅱ/LC3 Ⅰ levels were increased after LPS stimulation, indicating the appearance of macrophage autophagy.Confocal microscopy showed that there were co-localization of parkin,LC3 and mitochondrial in macrophages after LPS stimulation.Conclusion:Parkin expression is increased significantly and mediated mitochondrial autophagy in macrophages after LPS stimulation, which is involved in the clearance of damaged mitochondria,thereby playing a role in regulating macrophage inflammatory response.%目的:探讨巨噬细胞在脂多糖( LPS)处理后parkin表达及对线粒体自噬的影响。方法:无

  16. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media.

    Science.gov (United States)

    Ishihara, Hisashi; Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Maeda, Yukihide; Nishizaki, Kazunori

    2016-10-01

    Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.

  17. Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-κB pathways

    Science.gov (United States)

    Wang, Wei; Liu, Pei; Hao, Cui; Wu, Lijuan; Wan, Wenjin; Mao, Xiangzhao

    2017-01-01

    Neoagaro-oligosaccharides derived from agarose have been demonstrated to possess a variety of biological activities, such as anti-bacteria and anti-oxidative activities. In this study, we mainly explored the inhibitory effects and the mechanisms of neoagaro-oligosaccharide monomers against LPS-induced inflammatory responses in mouse macrophage RAW264.7 cells. The results indicated that neoagaro-oligosaccharide monomers especially neoagarotetraose could significantly reduce the production and release of NO in LPS-induced macrophages. Neoagarotetraose significantly suppressed the expression and secretion of inducible nitric oxide synthase (iNOS) and proinflammatory cytokines such as TNF-α and IL-6. The inhibition mechanisms may be associated with the inhibition of the activation of p38MAPK, Ras/MEK/ERK and NF-κB signaling pathways. Thus, neoagarotetraose may attenuate the inflammatory responses through downregulating the MAPK and NF-κB signaling pathways in LPS-stimulated macrophages. In summary, the marine-derived neoagaro-oligosaccharide monomers merit further investigation as novel anti-inflammation agents in the future. PMID:28266652

  18. Involvement of p38 MAPK and ATF-2 signaling pathway in anti-inflammatory effect of a novel compound bis[(5-methyl)2-furyl](4-nitrophenyl)methane on lipopolysaccharide-stimulated macrophages.

    Science.gov (United States)

    Udompong, Sarinporn; Mankhong, Sakulrat; Jaratjaroonphong, Jaray; Srisook, Klaokwan

    2017-09-01

    Activated macrophages produce various pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) and cyclooxygenase (COX)-2-derived prostaglandin E2 (PGE2) during inflammatory response. However, overproduction of NO and PGE2 appears to be involved in pathogenesis of various inflammatory diseases. Therefore, inhibition of NO and PGE2 production might be useful for the treatment of inflammatory-related diseases. In this study, the bis[(5-methyl)2-furyl](4-nitrophenyl)methane or BFNM was evaluated for the anti-inflammatory activity and mechanism of action in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage. BFNM inhibited NO and PGE2 production in a concentration-dependent manner and down-regulated the expression of iNOS and COX-2 at mRNA and protein levels. BFNM suppressed nuclear translocation of NF-κB p65 subunit only very slightly, and failed to decrease NF-κB DNA binding activity. In contrast, the compound significantly reduced phosphorylation of p38 MAPK and ATF-2, a component of AP-1 known to be involved in the transcriptional regulation of iNOS and COX-2, in a dose-dependent manner in LPS-induced cells. Collectively, these results suggest that BFNM has an anti-inflammatory effect in RAW 264.7 macrophages, at least in part, by suppression of NO and PGE2 production. The inhibitory effect of BFNM is mediated mainly via the p38 MAPK/ATF-2 signaling pathway. Thus, BFNM would be a lead compound for the development of novel anti-inflammatory agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The presence of MOMA-2+ macrophages in the outer B cell zone and protection of the splenic micro-architecture from LPS-induced destruction depend on secreted IgM.

    Science.gov (United States)

    Fischer, Michael B; Rüger, Beate; Vaculik, Christine; Becherer, Alexander; Wadsak, Wolfgang; Yanagida, Genya; Losert, Udo M; Chen, Jianzhu; Carroll, Michael C; Eibl, Martha M

    2007-10-01

    The role secretory IgM has in protecting splenic tissue from LPS-induced damage was assessed in mice incapable of secreting IgM but able to express surface IgM and IgD. Within seconds after LPS challenge, 99% of the (131)I-labeled LPS was found in the liver and the spleen of both sIgM-deficient and wild-type mice. In the spleen FITC-labeled LPS was found on the surface of 2F8(+) scavenger receptor macrophages localized in the outer marginal zone, while none of the labeled LPS could be detected on marginal zone ER-TR9(+) and MOMA-1(+) macrophages. An additional population of macrophages, MOMA-2(+), were capable of producing C3 locally in the T and B cell zone after LPS challenge. Local C3 production was regulated, as no C3 was found in splenic tissue of unchallenged mice. Interestingly, in the absence of circulating and locally produced secretory IgM, MOMA-2(+) macrophages of the T and B cell zone failed to establish an additional ring of C3-producing macrophages in the outer B cell zone close to the marginal zone upon LPS challenge. The consequence was a massive destruction of the microarchitecture of the spleen where marginal zones disorganized, lymphoid follicles and T cell zones disrupted and follicular DC (FDC) networks disappeared.

  20. The effect of N-acetylcysteine (NAC) on liver and renal tissue inducible nitric oxide synthase (iNOS) and tissue lipid peroxidation in obstructive jaundice stimulated by lipopolysaccharide (LPS).

    Science.gov (United States)

    Cağlikülekci, Mehmet; Pata, Cengiz; Apa, Duygu Dusmez; Dirlik, Musa; Tamer, Lulufer; Yaylak, Faik; Kanik, Arzu; Aydin, Suha

    2004-03-01

    Morbidity and mortality rates are very high in obstructive jaundice when it is associated with sepsis and multiple organ failure. Nitric oxide (NO) formation and increased expression of inducible nitric oxide synthase (iNOS) also take place in obstructive jaundice (OJ). N-Acetylcysteine (NAC) has a beneficial effect by demonstrating anti-inflammatory activity such as inhibits cytokine expression/release, inhibiting the adhesion molecule expression and inhibiting nuclear factor kappa B (NFkappaB). The aim of this study was to investigate the effects of NAC on liver and renal tissue iNOS, and liver tissue lipid peroxidation in lipopolysaccharide (LPS) induced obstructive jaundice. We randomized 48 rats into six groups. Group A: Sham group; group B: OJ group; group C: OJ+NAC; group D: OJ+LPS (Escherichia coli LPS serotype L-2630, 100mg, Sigma) group E: OJ+NAC+LPS; group F: OJ+LPS+NAC. NAC was started subcutaneously 100mg/kg. LPS was injected intraperitoneally and then at the tenth day we sacrificed the rats. Liver malondialdehyde (MDA) increased and liver ATPase decreased in groups B-D when compared to group A. After the administration of NAC (groups C-E), liver MDA levels decreased, tissue ATPase levels increased as compared to other groups. The liver and renal tissue iNOS expression was increased in groups B, D, and F. After the administration of NAC (groups C-E) the liver and renal tissue iNOS expression were decreased. Our results indicated that NAC prevented the deleterious effects of LPS in OJ by reducing iNOS expression via lipid peroxidation in liver and renal tissue; if it was administrated before LPS. But NAC failed to prevent the iNOS expression and lipid peroxidation if there was established endotoxemia in OJ.

  1. Lipopolysaccharide (LPS) stimulates the production of tumor necrosis factor (TNF)-alpha and expression of inducible nitric oxide synthase (iNOS) by osteoclasts (OCL) in murine bone marrow cell culture.

    Science.gov (United States)

    Kikkawa, I; Saito, S; Tominaga, K; Hoshino, Y; Ooi, Y; Nakano, M

    1998-01-01

    Osteoclasts (OCL) resorb bone. They are essential for the development of normal bones and the repair of impaired bones. The function of OCL is presumed to be supported by cytokines and other biological mediators, including tumor necrosis factor (TNF)-alpha and nitric oxide (NO). Bacterial lipopolysaccharide (LPS) is a potent inducer of TNF-alpha and inducible nitric oxide synthase (iNOS), which is the specific enzyme for synthesizing NO from L-arginine. To obtain direct evidence on LPS-induced TNF-alpha production and iNOS expression by OCL, OCL-enriched cultures were prepared by 7-day cocultures of bone marrow cells of adult BALB/c mice and osteoblastic cells (OBs) derived from calvaria of newborn BALB/c mice, and the generation of TNF-alpha and iNOS in OCL stimulated with LPS was examined immunocytochemically. When the cultured cells were stimulated with 100 ng/ml of LPS, OCL clearly showed TNF-alpha and iNOS expression. Without LPS-stimulation, no expression was observed. TNF activity in the culture supernatants of the OCL-enriched cultures in the presence of LPS was also detected by cytotoxic assay that used TNF-sensitive L929 cells. The dentin resorption activity of OCL was estimated by area and number of pits formed on dentin slices, which were covered by the OCL fraction and cultured in the presence or absence of LPS, sodium nitroprusside (SNP; a NO generating compound), N(G)-monomethyl L-arginine acetate (L-NMMA; a competitive inhibitor of NO synthase (NOS)), or LPS plus L-NMMA. Pit formation was obviously inhibited in the presence of SNP and slightly inhibited in the presence of L-NMMA, but it was not affected in the presence of LPS or LPS plus L-NMMA. These findings indicate that OCL produces TNF and expresses iNOS in response to LPS, but the LPS-activation of OCL scarcely affects pit formation by them.

  2. Liposomal phosphatidylserine inhibits tumor cytotoxicity of liver macrophages induced by muramyl dipeptide and lipopolysaccharide

    NARCIS (Netherlands)

    Daemen, T; Regts, J; Scherphof, GL

    1996-01-01

    Liposomes can very efficiently deliver immunomodulators to macrophages so as to induce tumor cytotoxicity. Liposomes most widely used for that purpose contain negatively charged lipids, in particular phosphatidylserine (PS), to enhance liposome uptake by the macrophages. We investigated the effect o

  3. Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-kappaB via mitogen-activated protein kinase pathways in mouse macrophage cells.

    Science.gov (United States)

    Han, Kyu Yeon; Kwon, Taek Hwan; Lee, Tae Hoon; Lee, Sung-Joon; Kim, Sung-Hoon; Kim, Jiyoung

    2008-04-30

    A variety of anti-inflammatory agents have been shown to exert chemopreventive activity via targeting of transcription factors such as NF-kappaB and AP-1. Lithospermum erythrorhizon (LE) has long been used in traditional oriental medicine. In this study, we demonstrated the inhibitory effects of LE extracts on lipopolysaccharide (LPS)-stimulated production of inflammatory cytokines. As an underlying mechanism of inhibition, LE extracts reduced LPS-induced transactivation of AP-1 as well as NF-kappaB in mouse macrophage cells. Electrophoretic mobility shift assays indicated that LE extracts inhibited the DNA binding activities of AP-1 and NF-kappaB. In addition, phosphorylation of IkappaB-alpha protein was suppressed by LE extracts. Moreover, LE extracts inhibited c-Jun N-terminal kinase and extracellular signal-regulated signaling pathways. Our results suggest that the anti-inflammatory activity of LE extracts may be mediated by the inhibition of signal transduction pathways that normally lead to the activation of AP-1and NF-kappaB. These inhibitory effects may be useful for chemoprevention of cancer or other chronic inflammatory diseases.

  4. Inhibition of lipopolysaccharide-induced nitric oxide and prostaglandin E2 production by chloroform fraction of Cudrania tricuspidata in RAW 264.7 macrophages

    OpenAIRE

    Yang Gabsik; Lee Kyungjin; Lee Mihwa; Ham Inhye; Choi Ho-Young

    2012-01-01

    Abstract Background Cudrania tricuspidata extract is an important traditional herbal remedy for tumors, inflammation, gastritis, and liver damage and is predominantly used in Korea, China, and Japan. However, the anti-inflammatory effects of the extract have not yet been conclusively proved. Methods In this study, we investigated the effects of the CHCl3 fraction (CTC) of a methanol extract of C. tricuspidata on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2...

  5. Mouse CD84 is a pan-leukocyte cell-surface molecule that modulates LPS-induced cytokine secretion by macrophages.

    Science.gov (United States)

    Sintes, Jordi; Romero, Xavier; de Salort, Jose; Terhorst, Cox; Engel, Pablo

    2010-10-01

    CD84 is 1 of the 9 SLAM family cell-surface receptors involved in leukocyte activation. The CD84 ectodomain is highly glycosylated, and its cytoplasmic tail contains 2 copies of an ITSM, which can be phosphorylated. Here, we report that although mouse CD84 was present on all BM HSCs, its expression declined in developing thymic and BM lymphocytes. However, CD84 expression levels did increase significantly during the later maturation stages and were expressed abundantly on mature B and T cells. Among lymphocyte subsets, the highest expression was found on innate-like lymphocytes; specifically, on NKT and marginal zone B cells. Splenic CD4+ T(FH) cells exhibited higher levels of CD84 compared with the other CD4+ T cell subsets. CD84 was expressed abundantly on monocytes, macrophages, granulocytes, and DCs. Moreover, as the function of CD84 in myeloid cells remains unknown, we focused on the role this receptor plays in mouse macrophage activation. Transfection of CD84 in RAW-264.7 macrophages led to an increase in MAPK phosphorylation and NF-κB activation upon LPS stimulation. Concomitantly, the presence of CD84 increased the LPS-induced secretion of TNF-α and MCP-1 but lowered IL-10 and IL-6 production significantly. This modulatory effect was mediated by Y(300) within the second ITSM of CD84. Additionally, CD84 knock-down decreased TNF-α and IL-6 production in LPS-activated BMDMs. Taken together, these results show that mouse CD84 is a pan-leukocyte receptor, able to modulate signaling pathways downstream of TLR4, and regulates macrophage cell-fate decisions and effector functions.

  6. The phosphoproteome of toll-like receptor-activated macrophages

    DEFF Research Database (Denmark)

    Weintz, Gabriele; Olsen, Jesper Velgaard; Frühauf, Katja;

    2010-01-01

    Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome...

  7. Anti-inflammatory effects of ethanolic extract from Sargassum horneri (Turner) C. Agardh on lipopolysaccharide-stimulated macrophage activation via NF-κB pathway regulation.

    Science.gov (United States)

    Kim, Mi Eun; Jung, Yun Chan; Jung, Inae; Lee, Hee-Woo; Youn, Hwa-Young; Lee, Jun Sik

    2015-01-01

    Inflammation is major symptom of the innate immune response by infection of microbes. Macrophages, one of immune response related cells, play a role in inflammatory response. Recent studies reported that various natural products can regulate the activation of immune cells such as macrophage. Sargassum horneri (Turner) C. Agardh is one of brown algae. Recently, various seaweeds including brown algae have antioxidant and anti-inflammatory effects. However, anti-inflammatory effects of Sargassum horneri (Turner) C. Agardh are still unknown. In this study, we investigated anti-inflammatory effects of ethanolic extract of Sargassum horneri (Turner) C. Agardh (ESH) on RAW 264.7 murine macrophage cell line. The ESH was extracted from dried Sargassum horneri (Turner) C. Agardh with 70% ethanol and then lyophilized at -40 °C. ESH was not cytotoxic to RAW 264.7, and nitric oxide (NO) production induced by LPS-stimulated macrophage activation was significantly decreased by the addition of 200 μg/mL of ESH. Moreover, ESH treatment reduced mRNA level of cytokines, including IL-1β, and pro-inflammatory genes such as iNOS and COX-2 in LPS-stimulated macrophage activation in a dose-dependent manner. ESH was found to elicit anti-inflammatory effects by inhibiting ERK, p-p38 and NF-κB phosphorylation. In addition, ESH inhibited the release of IL-1β in LPS-stimulated macrophages. These results suggest that ESH elicits anti-inflammatory effects on LPS-stimulated macrophage activation via the inhibition of ERK, p-p38, NF-κB, and pro-inflammatory gene expression.

  8. cAMP elevators inhibit LPS-induced IL-12 p40 expression by interfering with phosphorylation of p38 MAPK in Murine Peritoneal Macrophages

    Institute of Scientific and Technical Information of China (English)

    WEI; GUO; FENG; YI; BING; WANG; JIN; SONG; ZHANG; XING; YU; WANG; CHANG; LIN; LI; ZONG; LIANG; CHANG

    2002-01-01

    cAMP mediated signaling may play a suppressive role in immune response. We previously found thatthe cAMP-elevators (CTx and 8-Br-cAMP) inhibited IL-12, IL-la, IL-6 gene expression, but increasedthe transcriptional levels of IL-10 and IL-1Ra in LPS-treated murine peritoneal macrophages. The presentstudy examined a possible molecular mechanism involved in cAMP elevators-induced inhibition of IL-12 p40expression in response to LPS. Our data demonstrated that cAMP elevators downregulated IL-12 p40 mRNAexpression and IL-12 p70 production in murine peritoneal macrophages. Subsequent studies revealed thatcAMP-elevators blocked phosphorylation of p38 MAPK, but did not affect the activity of NF-κB bindingto IL-12 promoter (-136/-112). This is the first report that cAMP elevators inhibit LPS-induced IL-12production by a mechanism that is associated, at least in part, with p38-dependent inhibition by cAMPsignaling pathways.

  9. The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory.

    Science.gov (United States)

    Yoshida, Keisuke; Maekawa, Toshio; Zhu, Yujuan; Renard-Guillet, Claire; Chatton, Bruno; Inoue, Kentaro; Uchiyama, Takeru; Ishibashi, Ken-ichi; Yamada, Takuji; Ohno, Naohito; Shirahige, Katsuhiko; Okada-Hatakeyama, Mariko; Ishii, Shunsuke

    2015-10-01

    Immunological memory is thought to be mediated exclusively by lymphocytes. However, enhanced innate immune responses caused by a previous infection increase protection against reinfection, which suggests the presence of innate immunological memory. Here we identified an important role for the stress-response transcription factor ATF7 in innate immunological memory. ATF7 suppressed a group of genes encoding factors involved in innate immunity in macrophages by recruiting the histone H3K9 dimethyltransferase G9a. Treatment with lipopolysaccharide, which mimics bacterial infection, induced phosphorylation of ATF7 via the kinase p38, which led to the release of ATF7 from chromatin and a decrease in repressive histone H3K9me2 marks. A partially disrupted chromatin structure and increased basal expression of target genes were maintained for long periods, which enhanced resistance to pathogens. ATF7 might therefore be important in controlling memory in cells of the innate immune system.

  10. Sulfated Cyclocarya paliurus polysaccharides markedly attenuates inflammation and oxidative damage in lipopolysaccharide-treated macrophage cells and mice

    Science.gov (United States)

    Wang, Zhijun; Xie, Jianhua; Yang, Yujiao; Zhang, Fan; Wang, Shengnan; Wu, Ting; Shen, Mingyue; Xie, Mingyong

    2017-01-01

    Natural polysaccharides and their modified derivatives are crucial supplements to the prevention of inflammation. This study aimed to evaluate the effect of sulfated modification on the anti-inflammatory and anti-oxidative activities of Cyclocarya paliurus polysaccharides (CP). A sulfated CP, S-CP1–4 was obtained using chlorosulfonic acid-pyridine method. The chemical components and FT-IR spectrum confirmed that sulfated group was synthesized to the polysaccharide chains successfully. S-CP1–4 was found to inhibit nitric oxide production, phagocytic activity and the release of interleukin (IL)-6 and IL-1β in lipopolysaccharide-treated macrophage cells, RAW 264.7. S-CP1–4 significantly decreased the secretion of IL-6 and TNF-α and the thymus and spleen indexes, and increased the production of IL-10 in lipopolysaccharide-treated mice. S-CP1–4 could better protect the liver by inhibiting the activities of alanine aminotransferase and aspartate aminotransferase, and malondialdehyde level while increasing the superoxide dismutase activity and total anti-oxidative capacity. These results suggested that S-CP1–4 may be an effective anti-inflammatory agent, and sulfated modification may be a reliable method for the development of food supplements. PMID:28094275

  11. Semecarpus anacardium L, nuts inhibit lipopolysaccharide induced NO production in rat macrophages along with its hypolipidemic property.

    Science.gov (United States)

    Tripathi, Y B; Pandey, R S

    2004-04-01

    Traditionally S. anacardium is used for rejuvenation, rheumatoid arthritis, fever and neurological disorders. In the present study it was observed that a fraction of S. anacacrdium at dose of 1 mg/100 g body wt, significantly reduced serum cholesterol from 378.87 mg/dl in the rats fed with atherogenic diet (AD) to 197.99 mg/dl (45-52%) in the rats fed with AD diet and increased serum HDL-cholesterol (33-37%). The same fraction also inhibited LPS induced NO production in the culture activated rat peritoneal macrophages in the dose dependent manner with IC50 value at 50 ng/ml of the culture medium. The drug in the above doses was completely safe and non-toxic, (no change in the enzymes), to liver and kidney functions.

  12. Evaluation of inhibitory activities of plant extracts on production of LPS-stimulated pro-inflammatory mediators in J774 murine macrophages.

    Science.gov (United States)

    Verma, Nandini; Tripathi, Subhash K; Sahu, Debasis; Das, Hasi R; Das, Rakha H

    2010-03-01

    Whole plant methanolic extracts of 14 traditionally used medicinal herbs were evaluated for their anti-inflammatory activity. Extracts of Grindelia robusta, Salix nigra, Arnica montana, and Quassia amara showed up to 4.5-fold inhibition of nitric oxide (NO) production in the J774 murine macrophage cells challenged with LPS without cytotoxicity. These four selected extracts significantly reduced the protein levels of inducible NO synthase (iNOS) and the cyclooxygenase-2 (COX-2) as observed by Western blot analysis. Culture supernatants from cells treated with these extracts indicated 3-5-fold reduction of tumor necrosis factor-alpha (TNF-alpha). However, only G. robusta and Q. amara extracts significantly inhibited (by 50%) IL-1beta and IL-12 secretions. Furthermore, all these plant extracts were shown to prevent the LPS-mediated nuclear translocation of nuclear factor-kappaB (NF-kappaB). All the above observations indicate the anti-inflammatory potential of these plant extracts.

  13. Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages.

    NARCIS (Netherlands)

    Hougee, S.; Sanders, A.; Faber, J.; Graus, Y.M.; Berg, W.B. van den; Garssen, J.; Smit, H.F.; Hoijer, M.A.

    2005-01-01

    Apigenin and its structural analogues chrysin and luteolin were used to evaluate their capacity to inhibit the production of pro-inflammatory cytokines by lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (PBMC). Furthermore, flowcytometric analysis was performed to compar

  14. The β-adrenoceptor agonist clenbuterol is a potent inhibitor of the LPS-induced production of TNF-α and IL-6 in vitro and in vivo

    NARCIS (Netherlands)

    Izeboud, C.A.; Monshouwer, M.; Miert, A.S.J.P.A.M. van; Witkamp, R.F.

    1999-01-01

    Objective and Design: To investigate the suppressive effects of the β-agonist clenbuterol on the release of TNF-α and IL-6 in a lipopolysaccharide (LPS)-model of inflammation, both in vitro and in vivo. Material and Subjects: Human U-937 cell line (monocyte-derived macrophages), and male Wistar rats

  15. Anti-Inflammatory Activity of Heterocarpin from the Salt Marsh Plant Corydalis heterocarpa in LPS-Induced RAW 264.7 Macrophage Cells

    OpenAIRE

    You Ah Kim; Chang-Suk Kong; Hyo Hyun Park; Eunkyung Lee; Mi-Soon Jang; Ki-Ho Nam; Youngwan Seo

    2015-01-01

    The inhibitory effect of three chromones 1–3 and two coumarins 4–5 on the production of nitric oxide (NO) was evaluated in LPS-induced RAW 264.7 macrophage cells. Among the compounds tested heterocarpin (1), a furochromone, significantly inhibited its production in a dose-dependent manner. In addition, heterocarpin suppressed prostaglandin E2 (PGE2) production and expression of cytokines such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α),...

  16. DMPD: New roles for Bcl10 in B-cell development and LPS response. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15049289 New roles for Bcl10 in B-cell development and LPS response. Fischer KD, Te...dford K, Wirth T. Trends Immunol. 2004 Mar;25(3):113-6. (.png) (.svg) (.html) (.csml) Show New roles for Bcl...10 in B-cell development and LPS response. PubmedID 15049289 Title New roles for Bcl10 in B-cell development

  17. A designed TLR4/MD-2 complex to capture LPS.

    Science.gov (United States)

    Brandl, Katharina; Glück, Thomas; Hartmann, Pia; Salzberger, Bernd; Falk, Werner

    2005-01-01

    The family of Toll-like receptors (TLRs) is involved in the defense of an organism to microbial attack. TLR4-induced signaling is involved in infectious diseases, chronic inflammatory diseases and sepsis; therefore, we aimed at modulating TLR4-signaling via ligand-binding soluble receptors. Because recognition of microbial structures shows some species-specific traits, we specifically selected the mouse model for later in vivo studies. We first prepared the N-terminally Flag-tagged mouse (m) recombinant (r) soluble (s) fusion proteins mrsTLR4-IgGFc (T4Fc) and mrsMD-2 in Drosophila melanogaster Schneider 2 (S2) cells. The function of these molecules was tested by inhibition of synthesis of pro-inflammatory cytokines after stimulation of mouse macrophage RAW 264.7 cells with purified lipopolysaccharide (LPS). T4Fc alone had no inhibitory activity; however, a T4Fc/MD-2 complex blocked LPS activity. By analogy with 'cytokine traps', we then prepared a designer molecule (LPS-Trap) by fusing MD-2 to the C-terminus of soluble TLR4 via a flexible linker. LPS-Trap significantly inhibited TNF production by LPS-stimulated RAW 264.7 cells. Thus, the T4Fc/MD-2 complex as well as the LPS-Trap blocked LPS activity in vitro and might thus represent a new therapeutic option in sepsis by neutralization of TLR4-activating ligands.

  18. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue

    DEFF Research Database (Denmark)

    Hersoug, L-G.; Møller, Peter; Loft, Steffen

    2016-01-01

    , low-grade inflammation, expression of fat translocase and scavenger receptor CD36, and the scavenger receptor class B type 1 (SR-BI). SR-BI binds to both lipids and lipopolysaccharide (LPS) from Gram-negative bacteria, which may promote incorporation of LPS in chylomicrons (CMs). These CMs......The composition of the gut microbiota and excessive ingestion of high-fat diets (HFD) are considered to be important factors for development of obesity. In this review we describe a coherent mechanism of action for the development of obesity, which involves the composition of gut microbiota, HFD...... activity absorb LPS-rich lipoproteins. In addition, macrophages in adipose tissue internalize LPS-lipoproteins. This may contribute to the polarization from M2 to M1 phenotype, which is a consequence of increased LPS delivery into the tissue during hypertrophy. In conclusion, evidence suggests that LPS...

  19. Compound FLZ inhibits lipopolysaccharide-induced inflammatory effects via down-regulation of the TAK-IKK and TAK-JNK/ p38MAPK pathways in RAW264.7 macrophages

    Institute of Scientific and Technical Information of China (English)

    Hongyan PANG; Gang LIU; Gengtao LIU

    2009-01-01

    Aim:The aim of this study was to investigate the effect of the squamosamide derivative FLZ (N-2-(4-hydroxy-phenyl)-ethyl-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide) on.lipopolysaccharide (LPS)-induced inflam-matory mediator production and the underlying mechanism in RAW264.7 macrophages.Methods: RAW264.7 cells were preincubated with non-toxic concentrations of compound FLZ (1,5,and 10 μmol/L) for 30 min and then stimulated with 10 μg/L LPS.The production of nitric oxide (NO),the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2),and the activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways were examined.Results: FLZ significantly inhibited the LPS-induced production of NO,as well as the expression of iNOS and COX-2 at both the RNA and the protein levels in RAW264.7 cells.The LPS-induced increase in the DNA binding activity of NF-κBand activator protein I (AP-1),the nuclear translocation of NF-κB p65,the degradation of the inhibitory κBα protein (IκBα)and the phosphorylation of IκBα,IκB kinase (IKK) α/β,c-Jun NH2-terminal kinase (JNK) and p38 MAPKs were all sup-pressed by FLZ.However,the phosphorylation of extracellular signal-regulated kinase (ERK) was not affected.Further study revealed that FLZ inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1),which is an upstream signaling molecule required for IKKα/β,JNK and p38 activation.Conclusion: FLZ inhibited the LPS-induced production of inflammatory mediators at least partly through the downregula-tion of the TAK-IKK and TAK-JNK/p38MAPK pathways.

  20. Evaluation of 5-HT7 Receptor Trafficking on In Vivo and In Vitro Model of Lipopolysaccharide (LPS)-Induced Inflammatory Cell Injury in Rats and LPS-Treated A549 Cells.

    Science.gov (United States)

    Ayaz, Gulsen; Halici, Zekai; Albayrak, Abdulmecit; Karakus, Emre; Cadirci, Elif

    2017-02-01

    This study aimed to investigate the effects of the 5-HT7 receptor agonist (LP44) and antagonist (SB269970) on LPS-induced in vivo tissue damage and cell culture by molecular methods. This study was conducted in two steps. For in vivo studies, 24 female rats were divided into four groups. Group I: healthy; II (2nd h): LPS 5 mg/kg administered intraperitoneally (i.p.); III (4th h): LPS 5 mg/kg administered i.p.; IV (8th h): LPS 5 mg/kg administered i.p. For in vitro studies, we used the A549 cell line. Groups: I control (healthy) (2-4 h); II LPS: 1 µg/ml E. Coli O55:B5 strain (2-4 h); III agonist (LP44) 10(-9) M (2-4 h); IV antagonist (SB269970) 10(-9) M (2-4 h); V LPS+agonist 10(-9) M (LP44 1 µg/ml) (2-4 h); VI LPS+antagonist 10(-9) M (2-4 h). In molecular analyses, we determined increased TNF-α, IL-1β, NF-κB, and 5-HT7 mRNA expressions in rat lung tissues and increased TNF-α, iNOS, and 5-HT7 mRNA expressions in the A549 cell line. In in vitro parameters, LP44 agonist administration-related decrease was observed. Our study showed that lung 5-HT7 receptor expression is increased in LPS-induced endotoxemia. All this data suggest that 5-HT7 receptor overexpression is an important protective mechanism during LPS-induced sepsis-related cell damage.

  1. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.

    Science.gov (United States)

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury.

  2. Lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) blunt the response of Neuropeptide Y/Agouti-related peptide (NPY/AgRP) glucose inhibited (GI) neurons to decreased glucose.

    Science.gov (United States)

    Hao, Lihong; Sheng, Zhenyu; Potian, Joseph; Deak, Adam; Rohowsky-Kochan, Christine; Routh, Vanessa H

    2016-10-01

    A population of Neuropeptide Y (NPY) neurons which co-express Agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus (ARC) are inhibited at physiological levels of brain glucose and activated when glucose levels decline (e.g. glucose-inhibited or GI neurons). Fasting enhances the activation of NPY/AgRP-GI neurons by low glucose. In the present study we tested the hypothesis that lipopolysaccharide (LPS) inhibits the enhanced activation of NPY/AgRP-GI neurons by low glucose following a fast. Mice which express green fluorescent protein (GFP) on their NPY promoter were used to identify NPY/AgRP neurons. Fasting for 24h and LPS injection decreased blood glucose levels. As we have found previously, fasting increased c-fos expression in NPY/AgRP neurons and increased the activation of NPY/AgRP-GI neurons by decreased glucose. As we predicted, LPS blunted these effects of fasting at the 24h time point. Moreover, the inflammatory cytokine tumor necrosis factor alpha (TNFα) blocked the activation of NPY/AgRP-GI neurons by decreased glucose. These data suggest that LPS and TNFα may alter glucose and energy homeostasis, in part, due to changes in the glucose sensitivity of NPY/AgRP neurons. Interestingly, our findings also suggest that NPY/AgRP-GI neurons use a distinct mechanism to sense changes in extracellular glucose as compared to our previous studies of GI neurons in the adjacent ventromedial hypothalamic nucleus.

  3. PGRN缺失型腹膜巨噬细胞对细菌脂多糖的体外炎症应答%Inflammatory responses of PGRN-deficient peritoneal macrophage to bacterial lipopolysaccharide in vitro

    Institute of Scientific and Technical Information of China (English)

    刘露; 张雯; 陈翰祥; 郑琳; 卢翌; 王红; 唐伟; 赵蔚明

    2013-01-01

    Objective To investigate the effects of progranulin (PGRN) in the inflammatory responses of peritoneal macrophages (PMs) to bacterial lipopolysaccharide (LPS) in vitro. Methods Peritoneal exudate cells (PECs) were induced and extracted from wild-type (WT) mice and PGRN gene knock-out mice (KO), then the number, morpholo gy and classes of PECs were subsequently evaluated. Surface markers CD11 b and F4/80 of PMs were tested by flow cytometry. PMs derived from WT or KO mice were treated with LPS and WT PMs were treated with PBS, LPS, re-combinant PGRN or LPS plus recombinant PGRN respectively. Supernatants of cultivation were collected after 24-hours incubation and concentrations of TNF-α, IL-1β, IL-12 and production of NO were detected by ELISA or Griess assay respectively. Results There were no significant differences in cell number, classes and expression of surface makers CD11b and F4/80 between WT and KO mice-derived PECs. Higher concentration of TNF-α, IL-1β, IL-12 and more NO production were detected in the supernatants of KO PMs stimulated by LPS compared to those of WT PMs. Additionally,recombinant PGRN dramatically inhibited the production of pro-inflammatory cytokines TNF-α, IL-1β, IL-12 and in flammatory intermediate NO of WT PMs stimulated by LPS. Conclusion PGRN KO PMs display a stronger inflam matory response than WT PMs when treated with LPS. In addition, recombinant PGRN powerfully inhibits LPS stimu lating production of TNF-α, IL-1β, IL-12 and NO of PMs.%目的 观察颗粒蛋白前体(PGRN)对细菌脂多糖(LPS)诱导腹膜巨噬细胞(PM)炎症应答的影响.方法 诱导提取野生型(WT)小鼠及PGRN基因敲除小鼠(KO)腹膜细胞(PEC),观察PEC数目、形态和类型;流式细胞术检测PEC的巨噬细胞表面标志物CD11b、F4/80.LPS分别处理WT或KO小鼠PM,LPS、重组PGRN或LPS加重组PGRN分别处理WT小鼠PM,培养24 h后收集细胞上清,ELISA法检测肿瘤坏死因子α(TNF-α)、白细胞介素1β(IL-1

  4. Lipoxin A4 negatively regulates lipopolysaccharide-induced differentiation of RAW264.7 murine macrophages into dendritic-like cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; WU Ping; JIN Sheng-wei; YUAN Ping; WAN Jing-yuan; ZHOU Xiao-yan; XIONG Wei; FANG Feng; YE Du-yun

    2007-01-01

    Background Lipoxins (LXs), endogenous anti-inflammatory and pro-resolving eicosanoids generated during various inflammatory conditions, have novel immunomodulatory properties. Because dendritic cells (DCs) play crucial roles in the initiation and maintenance of immune response, we determined whether LXs could modulate the maturation process of DCs and investigated the effects of lipoxin A4 (LXA4) on lipopolysaccharide (LPS)-induced differentiation of RAW264.7cells into dendritic-like cells.Methods RAW264.7 cells were cultured in vitro with 1 μg/ml LPS in the absence or presence of LXA4 for 24 hours, and cellular surface markers (MHC-Ⅱ, CD80 (B7-1), CD86(B7-2)) were measured by flow cytometry (FCM). Mixed lymphocyte reaction was performed to evaluate the allostimulatory activity. Cytoplastic IκB degradation and nuclear factor kappa B (NF-κB) translocation were detected by Western blotting. Luciferase reporter plasmid was transiently transfected into RAW264.7 cells, and luciferase activity was determined to measure the transcriptional activity of NF-κB.Results LXA4 reduced the ratio of LPS-treated RAW264.7 cells to DCs with morphological characteristics and inhibited the expression of MHC Ⅱ. LPS-induced up-regulation of CD86 was moderately suppressed by LXA4 but no obvious change of CD80 was observed. Moreover, LXA4 weakened the allostimulatory activity of LPS-treated RAW264.7 cells.These alterations of LPS+LXA4-treated cells were associated with a marked inhibition of IκB degradation, NF-κB translocation and then the transcriptional activity of NF-κB.Conclusions LXA4 negatively regulates LPS-induced differentiation of RAW264.7 cells into dendritic-like cells.This activity reveals an undescribed mechanism of LXA4 to prevent excessive and sustained immune reaction by regulating maturation of DCs.

  5. 白藜芦醇对脂多糖诱导的巨噬细胞极化改变的影响%Effect of resveratrol on macrophage polarizing phenotype induced by lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    雷宇鹏; 曾振国; 胡德泉

    2015-01-01

    Objective To investigate the effect of resveratrol on murine macrophage cell line (RAW264 .7 cells) polarizing phenotype induced by lipopolysaccharide .Methods RAW264 .7 mouse macrophages seeded in a 6 well plate ,then randomly divided into phosphate buffer saline(PBS) control group ,LPS (100 ng/mL) group ,and LPS (100 ng/mL)+ resveratrol (30 μmol/L) group .In the LPS+ resveratrol group ,LPS was added after incubation with resveratrol for 12 h .Cells were harvested and superna‐tant were collected after incubation with LPS for 12 h .Both the mRNA expression levels of M1 associated markers iNOS and TNF‐αand M2 associated markers IL‐10 ,PPARγ and Arg‐1 were measured by real time quantitative PCR .Expression of iNOS ,Arg‐1 protein were detected by Western blot ,inflammatory factor IL‐12 p40 ,IL‐10 and TNF‐αprotein in the supernatant of were assayed by ELISA .Results PCR detection showed that the mRNA expression levels of M1 associated markers iNOS and TNF‐αin the LPS group were significantly higher than that of LPS+ resveratrol group(P<0 .05) ,but the mRNA expression levels of M2 associated markers IL‐10 ,PPARγand Arg‐1 were significantly lower than that of LPS+ resveratrol group(P<0 .05) .Compared with LPS+resveratrol group ,western blot assay showed that iNOS protein level in LPS group was significantly higher than it (P<0 .05) ,but Arg‐1 protein level was significantly lower than it(P<0 .05) .The levels of IL‐12 p40 and TNF‐αin LPS group were significantly higher than that in LPS+ resveratrol group(P<0 .05) ,but the levels of IL‐10 was significantly lower than it(P<0 .05) .Conclusion Resveratrol may promote LPS stimulated RAW264 .7 macrophage polarization to M2 phenotype .%目的:探讨白藜芦醇对脂多糖(LPS)诱导的小鼠巨噬细胞系RAW264.7细胞极化表型改变的影响。方法体外培养的RAW264.7小鼠巨噬细胞在六孔板孵育12 h ,分为磷酸盐缓冲液(PBS)对照组、LPS(100 ng

  6. Peptide IDR-1002 Inhibits NF-κB Nuclear Translocation by Inhibition of IκBα Degradation and Activates p38/ERK1/2–MSK1-Dependent CREB Phosphorylation in Macrophages Stimulated with Lipopolysaccharide

    Science.gov (United States)

    Huante-Mendoza, Alejandro; Silva-García, Octavio; Oviedo-Boyso, Javier; Hancock, Robert E. W.; Baizabal-Aguirre, Víctor M.

    2016-01-01

    The inflammatory response is a critical molecular defense mechanism of the innate immune system that mediates the elimination of disease-causing bacteria. Repair of the damaged tissue, and the reestablishment of homeostasis, must be accomplished after elimination of the pathogen. The innate defense regulators (IDRs) are short cationic peptides that mimic natural host defense peptides and are effective in eliminating pathogens by enhancing the activity of the immune system while controlling the inflammatory response. Although the role of different IDRs as modulators of inflammation has been reported, there have been only limited studies of the signaling molecules regulated by this type of peptide. The present study investigated the effect of IDR-1002 on nuclear factor κB (NF-κB) and cAMP-response element-binding protein (CREB) transcription factors that are responsible for triggering and controlling inflammation, respectively, in macrophages. We found that TNF-α and COX-2 expression, IκBα phosphorylation, and NF-κB nuclear translocation were strongly inhibited in macrophages pre-incubated with IDR-1002 and then stimulated with lipopolysaccharide (LPS). IDR-1002 also increased CREB phosphorylation at Ser133 via activation of the p38/ERK1/2–MSK1 signaling pathways without detectable expression of the cytokines IL-4, IL-10, and IL-13 involved is suppressing inflammation or alternative activation. Transcriptional activation of NF-κB and CREB is known to require interaction with the transcriptional coactivator CREB-binding protein (CBP). To test for CBP–NF-κB and CBP–CREB complex formation, we performed co-immunoprecipitation assays. These assays showed that IDR-1002 inhibited the interaction between CBP and NF-κB in macrophages stimulated with LPS, which might explain the inhibition of TNF-α and COX-2 expression. Furthermore, the complex between CBP and CREB in macrophages stimulated with IDR-1002 was also inhibited, which might explain why IDR-1002 did

  7. 雷公藤内酯醇对内毒素激活小鼠腹腔巨噬细胞分泌促炎症介质NO和IL-6的影响%Effect of triptolide on lipopolysaccharide-activated secretion of the pro-inflammatory cytokines NO and IL-6 in celiac macrophages of mice

    Institute of Scientific and Technical Information of China (English)

    杨帆; 胡耑; 白祥军

    2011-01-01

    Objective Tripterygium wilfordii Hook. f. has been used for centuries in traditional Chinese medicine to treat autoimmune disease associated with increased production of the pro-inflammatory cytokine. Triptolide( TP) is a compound originally purified from T. wilfordii Hook f. and it has potent anti- inflammatory and immunosuppressant activities. In this study, we investigated the effect of TP on secretion of NO and IL-6 in celiac macrophages ( MΦ) activated by lipopolysaccharide ( LPS) in Kunming mice. Methods Celiac MΦ of mice were separated, purified, and activated by LPS, then cultured in vitro with TP of different concentrations. The level of NO in cellular supematants was determined by Griess reagent, and that of IL-6 was determined by ELISA. Results We found that pro-inflammatory cytokine NO activity in MΦ induced by LPS was significantly inhibited by TP ( 10-3-10 μg/ml) from 4-24 h in a time and dose- dependent manner (P < 0. 01). The level of IL-6 in MΦ was significantly inhibited by TP (10-3-10 μg/ml) at 12 h in a dose-dependent manner (P <0. 01). Conclusions We demonstrated that TP can inhibit levels of NO and IL-6 in celiac MΦ of Kunming mice activated by LPS.

  8. Tyrosol exhibits negative regulatory effects on LPS response and endotoxemia.

    Science.gov (United States)

    Lu, Jing; Huang, Guoren; Wang, Zhenning; Zhuang, Shuang; Xu, Linli; Song, Bocui; Xiong, Ying; Guan, Shuang

    2013-12-01

    Tyrosol, a phenolic compound, was isolated from wine, olive oil and other plant-derived products. In the present study, we first investigated the negative regulatory effects of tyrosol on cytokine production by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro, and the results showed that tyrosol reduced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) secretion. This inspired us to further study the effects of tyrosol in vivo. Tyrosol significantly attenuated TNF-α, IL-1β and IL-6 production in serum from mice challenged with LPS, and consistent with the results in vitro. In the murine model of endotoxemia, mice were treated with tyrosol prior to or after LPS challenge. The results showed that tyrosol significantly increased mice survival. We further investigated signal transduction ways to determine how tyrosol works. The data revealed that tyrosol shocked LPS-induced mitogen activated protein kinases (MAPKs) and nuclear transcription factor-κB (NF-κB) signal transduction pathways in RAW 264.7 macrophages. These observations indicated that tyrosol exerted negative regulatory effects on LPS response in vitro and in vivo through suppressing NF-κB and p38/ERK MAPK signaling pathways.

  9. CD14 mediates binding of high doses of LPS but is dispensable for TNF-α production.

    Science.gov (United States)

    Borzęcka, Kinga; Płóciennikowska, Agnieszka; Björkelund, Hanna; Sobota, Andrzej; Kwiatkowska, Katarzyna

    2013-01-01

    Activation of macrophages with lipopolysaccharide (LPS) involves a sequential engagement of serum LPS-binding protein (LBP), plasma membrane CD14, and TLR4/MD-2 signaling complex. We analyzed participation of CD14 in TNF-α production stimulated with 1-1000 ng/mL of smooth or rough LPS (sLPS or rLPS) and in sLPS binding to RAW264 and J744 cells. CD14 was indispensable for TNF-α generation induced by a low concentration, 1 ng/mL, of sLPS and rLPS. At higher doses of both LPS forms (100-1000 ng/mL), TNF-α release required CD14 to much lower extent. Among the two forms of LPS, rLPS-induced TNF-α production was less CD14-dependent and could proceed in the absence of serum as an LBP source. On the other hand, the involvement of CD14 was crucial for the binding of 1000 ng/mL of sLPS judging from an inhibitory effect of the anti-CD14 antibody. The binding of sLPS was also strongly inhibited by dextran sulfate, a competitive ligand of scavenger receptors (SR). In the presence of dextran sulfate, sLPS-induced production of TNF-α was upregulated about 1.6-fold. The data indicate that CD14 together with SR participates in the binding of high doses of sLPS. However, CD14 contribution to TNF α production induced by high concentrations of sLPS and rLPS can be limited.

  10. Osteopontin binding to lipopolysaccharide lowers tumor necrosis factor-α and prevents early alcohol-induced liver injury in mice

    DEFF Research Database (Denmark)

    Ge, Xiadong; Leung, Tung-Ming; Arriazu, Elena;

    2014-01-01

    Although osteopontin (OPN) is induced in alcoholic patients, its role in the pathophysiology of alcoholic liver disease (ALD) remains unclear. Increased translocation of lipopolysaccharide (LPS) from the gut is key for the onset of ALD because it promotes macrophage infiltration and activation...... by decreased liver-to-body weight ratio, hepatic triglycerides, the steatosis score, oil red-O staining, and lipid peroxidation. There was also less inflammation and liver injury as demonstrated by lower alanine aminotransferase (ALT) activity, hepatocyte ballooning degeneration, LPS levels, the inflammation...... score, and the number of macrophages and TNFα+ cells. To establish if OPN could limit LPS availability and its noxious effects in the liver, binding studies were performed. OPN showed binding affinity for LPS which prevented macrophage activation, reactive oxygen, and nitrogen species generation...

  11. A novel CD14(high) CD16(high) subset of peritoneal macrophages from cirrhotic patients is associated to an increased response to LPS.

    Science.gov (United States)

    Ruiz-Alcaraz, Antonio José; Tapia-Abellán, Ana; Fernández-Fernández, María Dolores; Tristán-Manzano, María; Hernández-Caselles, Trinidad; Sánchez-Velasco, Eduardo; Miras-López, Manuel; Martínez-Esparza, María; García-Peñarrubia, Pilar

    2016-04-01

    The aim of this study was to characterize monocyte-derived macrophages (M-DM) from blood and ascites of cirrhotic patients comparatively with those obtained from blood of healthy controls. The phenotypic profile based on CD14/CD16 expression was analyzed by flow cytometry. Cells were isolated and stimulated in vitro with LPS and heat killed Candida albicans. Phosphorylation of ERK, c-Jun, p38 MAPK, and PKB/Akt was analyzed by Western blotting. A novel CD14(high)CD16(high) M-DM subpopulation is present in ascites (∼33%). The CD14(++)CD16(+) intermediate subset is increased in the blood of cirrhotic patients (∼from 4% to 11%) and is predominant in ascites (49%), while the classical CD14(++)CD16(-) subpopulation is notably reduced in ascites (18%). Basal hyperactivation of ERK and JNK/c-Jun pathways observed in ascites M-DM correlates with CD14/CD16 high expressing subsets, while PI3K/PKB does it with the CD16 low expressing cells. In vitro LPS treatment highly increases ERK1/2, PKB/Akt and c-Jun phosphorylation, while that of p38 MAPK is decreased in M-DM from ascites compared to control blood M-DM. Stimulation of healthy blood M-DM with LPS and C. albicans induced higher phosphorylation levels of p38 than those from ascites. Regarding cytokines secretion, in vitro activated M-DM from ascites of cirrhotic patients produced significantly higher amounts of IL-6, IL-10 and TNF-α, and lower levels of IL-1β and IL-12 than control blood M-DM. In conclusion, a new subpopulation of CD14(high)CD16(high) peritoneal M-DM has been identified in ascites of cirrhotic patients, which is very sensitive to LPS stimulation.

  12. Intra-amniotic LPS modulation of TLR signaling in lung and blood monocytes of fetal sheep.

    Science.gov (United States)

    Kramer, Boris W; Kallapur, Suhas G; Moss, Timothy J; Nitsos, Ilias; Newnham, John P; Jobe, Alan H

    2009-04-01

    Epidemiological studies suggest that intra-uterine exposure to inflammation may prime postnatal immune responses. In fetal sheep, intra-amniotic injection of lipopolysaccharide (LPS) induced chorioamnionitis, lung inflammation and maturation, matured lung monocytes to macrophages and initiated systemic tolerance of fetal monocytes to subsequent challenge with LPS. We hypothesized that LPS-mediated chorioamnionitis altered the response of lung and blood monocytes to Toll-like receptor (TLR) ligands such as PamCysK4 (TLR2), flagellin (TLR5), and human CpG-DNA (TLR9). Time-mated ewes were given intra-amniotic injections of LPS or saline. Blood and lung monocytes were assessed after 2 days, 7 days and 2 days and 7 days repetitive LPS injections before delivery at 124 days gestational age (term 150 days). Responsiveness of blood and lung monocytes to TLR-ligands in vitro was assessed by interleukin (IL)-6, tumor necrosis factor-alpha (TNF-alpha) and hydrogen peroxide. Monocytes from preterm controls had minimal responses. Lipopolysaccharide-mediated chorioamnionitis increased IL-6, TNF- alpha and hydrogen peroxide to all TLR agonists in blood and lung monocytes. Repetitive exposure to antenatal LPS reduced IL-6, TNF- alpha and hydrogen peroxide to TLR-ligands suggesting tolerance. Tolerance to TLR-ligands reduced IL-1 receptor associated kinase-4 expression. Thus, repeated fetal exposure to LPS induced tolerance to other TLR-ligands. These modulations of fetal innate immunity have implications for host defense and injury responses in preterm infants.

  13. Establishment of disseminated intravascular coagulation (DIC model by a single iv administration of Escherichia coli-derived lipopolysaccharide (LPS to cynomolgus monkeys and evaluation of its pathophysiological status

    Directory of Open Access Journals (Sweden)

    Hirofumi Minomo

    2017-02-01

    Full Text Available We prepared a DIC model by administrating LPS to cynomolgus monkeys, and investigated its potential for evaluations of new medicines for DIC therapy. Peripheral blood mononuclear cells (PBMC collected from cynomolgus monkeys were incubated with LPS (8 types, and TNF-α levels in the media were measured. LPS from Escherichia coli (K-235 was most appropriate in terms of larger increases and smaller variation in TNF-α levels. PBMC from rats, cynomolgus monkeys or humans were incubated with LPS (K-235, and the TNF-α response to LPS was investigated. The response was comparable between cynomolgus monkeys and humans but small in rats. In an in vivo experiment, LPS (K-235 was administered once intravenously to cynomolgus monkeys with or without recombinant human thrombomodulin (rhTM to investigate any changes in coagulation and fibrinolysis biomarkers and the suppressive effect of rhTM. The liver, kidney, and lung were examined histopathologically. Almost all of the changes resembled the pathophysiological status of human DIC and were suppressed by co-administration of rhTM. The DIC model resembling human DIC was established by LPS (K-235 treatment in cynomolgus monkeys, and therapeutic effect of rhTM was noted, suggesting that this model is useful in evaluations of the efficacy of new medicines for DIC therapy.

  14. Toll-like receptor 4, a novel signal transducer for lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    杨清武; 朱佩芳; 王正国; 蒋建新

    2002-01-01

    @@Lipopolysaccharide (LPS), or endotoxin, is the major component of the outer surface of gram-negative bacteria. LPS is a potent activator of the cells of the immune and inflammation systems, including macrophages, monocytes and endothelial cells, and contributes to systemic changes seen in septic shock.1,2 It has long been believed that LPS is responsible for several fatal consequences of gram-negative infection. Cell activation by LPS constitutes the first step in the cascade of events believed to lead to the manifestation of gram-negative sepsis, which results in approximately 20 000 annual deaths in the United States3 and 30% mortality rate of known cases in China.Therefore, the action mechanism of LPS is one of the most important problems in the research field of immunity, inflammation and surgery. Researchers have investigated the mechanism of cell activity and injury of LPS for a long time. In 1990, CD14,the glycosyl-phosphatidylinositol (GPI)-linked plasma membrane protein, was identified as a proximal LPS receptor on the cell surface of macrophages, and it was suggested that CD14 and LBP (lipopolysaccharide binding protein) played an important role in the effect mechanism of LPS. CD14 seemed to receive LPS via transfer from the plasma protein LBP. Then, two action patterns were recognized. CD14 positive cells, such as macrophages and leukocytes, were activated after LPS combined with LBP and interacted with CD14. But, CD14 negative cells (for example, endothelial cells), were activated through other receptors that we did not know of in the cell surface after LPS, LBP and soluble CD14 (sCD14) combined with the compounds. However, there are some questions to be answered. Firstly, because CD14 lacks cytoplasmic doman, it is unlikely to act as the transducer. Secondly, the action pattern of LPS through CD14 and LBP may be in dose-dependent mode, but, in conditions of high dosage and long exposure to LPS action, CD14 and LBP do not play an important role in

  15. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages.

    Science.gov (United States)

    Hyam, Supriya R; Lee, In-Ah; Gu, Wan; Kim, Kyung-Ah; Jeong, Jin-Ju; Jang, Se-Eun; Han, Myung Joo; Kim, Dong-Hyun

    2013-05-15

    Seeds of Arctium lappa, containing arctigenin and its glycoside arctiin as main constituents, have been used as a diuretic, anti-inflammatory and detoxifying agent in Chinese traditional medicine. In our preliminary study, arctigenin inhibited IKKβ and NF-κB activation in peptidoglycan (PGN)- or lipopolysaccharide (LPS)-induced peritoneal macrophages. To understand the anti-inflammatory effect of arctigenin, we investigated its anti-inflammatory effect in LPS-stimulated peritoneal macrophages and on LPS-induced systemic inflammation as well as 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Arctigenin inhibited LPS-increased IL-1β, IL-6 and TNF-α expression in LPS-stimulated peritoneal macrophages, but increased LPS-reduced IL-10 and CD204 expression. Arctigenin inhibited LPS-induced PI3K, AKT and IKKβ phosphorylation, but did not suppress LPS-induced IRAK-1 phosphorylation. However, arctigenin did not inhibit NF-κB activation in LPS-stimulated PI3K siRNA-treated peritoneal macrophages. Arctigenin suppressed the binding of p-PI3K antibody and the nucleus translocation of NF-κB p65 in LPS-stimulated peritoneal macrophages. Arctigenin suppressed blood IL-1β and TNF-α level in mice systemically inflamed by intraperitoneal injection of LPS. Arctigenin also inhibited colon shortening, macroscopic scores and myeloperoxidase activity in TNBS-induced colitic mice. Arctigenin inhibited TNBS-induced IL-1β, TNF-α and IL-6 expression, as well as PI3K, AKT and IKKβ phosphorylation and NF-κB activation in mice, but increased IL-10 and CD204 expression. However, it did not affect IRAK-1 phosphorylation. Based on these findings, arctigenin may ameliorate inflammatory diseases, such as colitis, by inhibiting PI3K and polarizing M1 macrophages to M2-like macrophages.

  16. Modulation of immune response by bacterial lipopolysaccharide (LPS): cellular basis of stimulatory and inhibitory effects of LPS on the in vitro IGM antibody response to a T-dependent antigen

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, T.; Jacobs, D.M.

    1978-12-01

    The role of thymus-derived lymphocytes (T cells) in LPS modulation of T cell-development antibody responses has been investigated. We have assessed the effect of LPS on the primary anti-TNP response to TNP-SRBC of cultures of whole spleen cells or T cell-depleted spleen cells that were supplemented with various subpopulations of carrier-primed (SRBC) spleen cells. The TNP-PFC response was enhanced in the presence of irradiated SRBC-primed spleen cells by addition of 0.16 to 20 ..mu..g/ml LPS, but inhibition was observed when irradiation of primed cells was omitted. Enhancement but no inhibition occurred when added primed cells were first passed through a nylon wool column. LPS-mediated enhancement was dependent on a T cell in the primed population. These results suggest that LPS modulation of antibody synthesis is dependent on two populations of antigen-specific cells that have opposing effects on B cell responses to a T-dependent antigen: a helper cell that is irradiation resistant, nonadherent to nylon wool, and sensitive to anti-T cell serum, and a suppressor cell that is irradiation sensitive and adherent to nylon wool.

  17. DMPD: Induction of proliferation and cytokine production in human T lymphocytes bylipopolysaccharide (LPS). [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11090938 Induction of proliferation and cytokine production in human T lymphocytes ... (.png) (.svg) (.html) (.csml) Show Induction of proliferation and cytokine production in human T lymphocyte...and cytokine production in human T lymphocytes bylipopolysaccharide (LPS). Authors Ulmer AJ, Flad H, Rietsch

  18. ONO 3403, a synthetic serine protease inhibitor, inhibits lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production and protects mice from lethal endotoxic shock

    NARCIS (Netherlands)

    Tumurkhuu, Gantsetseg; Koide, Naoki; Hiwasa, Takaki; Ookoshi, Motohiro; Dagvadorj, Jargalsaikhan; Noman, Abu Shadat Mohammod; Iftakhar-E-Khuda, Imtiaz; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi

    2011-01-01

    ONO 3403, a new synthetic serine protease inhibitor, is a derivative of camostat mesilate and has a higher protease-inhibitory activity. The effect of ONO 3403 on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha and nitric oxide (NO) production in RAW 264.7 macrophage-like cells wa

  19. Learning in a simple biological system: a pilot study of classical conditioning of human macrophages in vitro

    Directory of Open Access Journals (Sweden)

    Nilsonne Gustav

    2011-11-01

    Full Text Available Abstract Recent advances in cell biology and gene regulation suggest mechanisms whereby associative learning could be performed by single cells. Therefore, we explored a model of classical conditioning in human macrophages in vitro. In macrophage cultures, bacterial lipopolysaccharide (LPS; unconditioned stimulus was paired once with streptomycin (conditioned stimulus. Secretion of interleukin-6 (IL-6 was used as response measure. At evocation, conditioning was not observed. Levels of IL-6 were higher only in those cultures that had been exposed to LPS in the learning phase (p's However, habituation was evident, with a 62% loss of the IL-6 response after three LPS presentations (p

  20. Wool and grain dusts stimulate TNF secretion by alveolar macrophages in vitro.

    Science.gov (United States)

    Brown, D M; Donaldson, K

    1996-01-01

    OBJECTIVE: The aim of the study was to investigate the ability of two organic dusts, wool and grain, and their soluble leachates to stimulate secretion of tumour necrosis factor (TNF) by rat alveolar macrophages with special reference to the role of lipopolysaccharide (LPS). METHODS: Rat alveolar macrophages were isolated by bronchoalveolar lavage (BAL) and treated in vitro with whole dust, dust leachates, and a standard LPS preparation. TNF production was measured in supernatants with the L929 cell line bioassay. RESULTS: Both wool and grain dust samples were capable of stimulating TNF release from rat alveolar macrophages in a dose-dependent manner. The standard LPS preparation caused a dose-dependent secretion of TNF. Leachates prepared from the dusts contained LPS and also caused TNF release but leachable LPS could not account for the TNF release and it was clear that non-LPS leachable activity was present in the grain dust and that wool dust particles themselves were capable of causing release of TNF. The role of LPS in wool dust leachates was further investigated by treating peritoneal macrophages from two strains of mice, LPS responders (C3H) and LPS non-responders (C3H/HEJ), with LPS. The non-responder mouse macrophages produced very low concentrations of TNF in response to the wool dust leachates compared with the responders. CONCLUSIONS: LPS and other unidentified leachable substances present on the surface of grain dust, and to a lesser extent on wool dust, are a trigger for TNF release by lung macrophages. Wool dust particles themselves stimulate TNF. TNF release from macrophages could contribute to enhancement of inflammatory responses and symptoms of bronchitis and breathlessness in workers exposed to organic dusts such as wool and grain. PMID:8758033

  1. Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS from E. coli O111:B4) activated macrophages and microglial cells; focus on sepsis.

    Science.gov (United States)

    Mazzio, Elizabeth A; Li, Nan; Bauer, David; Mendonca, Patricia; Taka, Equar; Darb, Mohammed; Thomas, Leeshawn; Williams, Henry; Soliman, Karam F A

    2016-11-15

    Acute systemic inflammatory response syndrome arising from infection can lead to multiple organ failure and death, with greater susceptibility occurring in immunocompromised individuals. Moreover, sub-acute chronic inflammation is a contributor to the pathology of diverse degenerative diseases (Parkinson's disease, Alzheimer's disease and arthritis). Given the known limitations in Western medicine to treat a broad range of inflammatory related illness as well as the emergence of antibiotic resistance, there is a renewed interest in complementary and alternative medicines (CAMs) to achieve these means. A high throughput (HTP) screening of >1400 commonly sold natural products (bulk herbs, cooking spices, teas, leaves, supplement components, nutraceutical food components, fruit and vegetables, rinds, seeds, polyphenolics etc.) was conducted to elucidate anti-inflammatory substances in lipopolysaccharide (LPS) (E. coli serotype O111:B4) monocytes: RAW 264.7 macrophages [peripheral], BV-2 microglia [brain]) relative to hydrocortisone, dexamethasone and L-N6-(1Iminoethyl)lysine (L-NIL). HTP evaluation was also carried out for lethal kill curves against E.coli 0157:H7 1x10(6) CFU/mL relative to penicillin. Validation studies were performed to assess cytokine profiling using antibody arrays. Findings were corroborated by independent ELISAs and NO2-/iNOS expression quantified using the Griess Reagent and immunocytochemistry, respectively. For robust screening, we developed an in-vitro efficacy paradigm to ensure anti-inflammatory parameters were observed independent of cytotoxicity. This caution was taken given that many plants exert tumoricidal and anti-inflammatory effects at close range through similar signaling pathways, which could lead to false positives. The data show that activated BV-2 microglia cells (+ LPS 1μg/ml) release >10-fold greater IL-6, MIP1/2, RANTES and nitric oxide (NO2-), where RAW 264.7 macrophages (+ LPS 1μg/ml) produced > 10-fold rise in sTNFR2

  2. Integrated analysis of COX-2 and iNOS derived inflammatory mediators in LPS-stimulated RAW macrophages pre-exposed to Echium plantagineum L. bee pollen extract.

    Directory of Open Access Journals (Sweden)

    Eduarda Moita

    Full Text Available Oxidative stress and inflammation play important roles in disease development. This study intended to evaluate the anti-inflammatory and antioxidant potential of Echium plantagineum L. bee pollen to support its claimed health beneficial effects. The hydromethanol extract efficiently scavenged nitric oxide ((•NO although against superoxide (O2(•- it behaved as antioxidant at lower concentrations and as pro-oxidant at higher concentrations. The anti-inflammatory potential was evaluated in LPS-stimulated macrophages. The levels of (•NO and L-citrulline decreased for all extract concentrations tested, while the levels of prostaglandins, their metabolites and isoprostanes, evaluated by UPLC-MS, decreased with low extract concentrations. So, E. plantagineum bee pollen extract can exert anti-inflammatory activity by reducing (•NO and prostaglandins. The extract is able to scavenge the reactive species (•NO and O2(•- and reduce markers of oxidative stress in cells at low concentrations.

  3. Anthemis wiedemanniana essential oil prevents LPS-induced production of NO in RAW 264.7 macrophages and exerts antiproliferative and antibacterial activities in vitro.

    Science.gov (United States)

    Conforti, Filomena; Menichini, Federica; Formisano, Carmen; Rigano, Daniela; Senatore, Felice; Bruno, Maurizio; Rosselli, Sergio; Celik, Sezgin

    2012-01-01

    Anthemis wiedemanniana is known in folk medicine for the treatment of microbial infections, cancer and also urinary and pulmonary problems. In this study, the chemical composition of the essential oil from A. wiedemanniana was evaluated and its antibacterial activity was tested against 10 bacterial strains. The oil was also tested for its potentiality to inhibit nitric oxide production in RAW 264.7 macrophages and for its cytotoxicity against four human cancer cell lines. A. wiedemanniana oil, rich of oxygenated monoterpenes (25.4%), showed a good antibacterial activity against Gram-positive bacteria and a good activity against the two Gram-negative bacteria, Escherichia coli and Proteus vulgaris. Besides that, it exhibited a high inhibitory effect on the LPS-induced nitrite production and a strong cytotoxic activity, especially against amelanotic melanoma (C32) and large lung cell carcinoma (COR-L23) cell lines.

  4. Immunoelectron microscopy of lipopolysaccharide in Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna

    1989-01-01

    Monoclonal antibodies (MAb) specific for Chlamydia trachomatis lipopolysaccharide (LPS) and major outer membrane protein (MOMP) were used for immunoelectron microscopy analysis. MAb specific for MOMP showed strong reaction with the chlamydial surface, whereas MAb specific for LPS showed strong...

  5. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    M. Allegra

    2014-01-01

    A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50–100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5–3 h modest inhibition, followed by a progressive (3–12 h concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5–3 h concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages.

  6. Effect of gamma irradiation on the change of solubility and anti-inflammation activity of chrysin in macrophage cells and LPS-injected endotoxemic mice

    Science.gov (United States)

    Byun, Eui-Baek; Jang, Beom-Su; Byun, Eui-Hong; Sung, Nak-Yun

    2016-10-01

    This study evaluated the changes of solubility and anti-inflammatory properties of structurally modified gamma-irradiated chrysin. Chrysin was irradiated at various doses for a physical analysis and determining any structural changes and solubility. As shown through the physical analysis, the main peak of the chrysin was decreased as the irradiation dose increased, and it was concomitant with the appearance of several new peaks, which were highly increased in 50 kGy gamma-irradiated chrysin. The solubility was markedly increased in the gamma-irradiated groups. As shown through a physiological analysis, both gamma-irradiated- (15-50 kGy) and intact-chrysin (0 kGy) did not exert cytotoxicity to bone-marrow derived macrophages. The treatment of LPS-stimulated macrophages with 50 kGy gamma-irradiated chrysin resulted in a dose-dependent decrease in pro-inflammatory mediators, such as iNOS-mediated NO, PGE2, COX-2, and cell surface marker (CD80 and CD86), as well as pro-inflammatory cytokines (TNF-α and IL-6), when compared to the intact-chrysin treated group. Mechanically, we found that the inhibition of these pro-inflammatory mediators induced by gamma-irradiated chrysin occurred through an inhibition of MAPKs (ERK1/2 and p38) and the NF-κB signaling pathways. Furthermore, the anti-inflammatory activity remained in the LPS-injected animal model. In this model, gamma-irradiated chrysin treatment highly increased the mouse survival, and significantly decreased the serum cytokine (TNF-α, IL-6 and IL-1β) levels. From these findings, the anti-inflammatory action by gamma-irradiated chrysin may be closely mediated with structural modification. It seems likely that gamma irradiation can be an effective tool for improvement of the physical and physiological properties of polyphenols.

  7. Lack of TCRalphabeta+ CD8+ and TCRgammadelta+ lymphocytes ameliorates LPS induced orchitis in mice--preliminary histological observations.

    Science.gov (United States)

    Sliwa, Leopold; Macura, Barbara; Majewska-Szczepanik, Monika; Szczepanik, Marian

    2014-01-01

    The inflammation of the reproductive system can affect reproduction causing partial or complete infertility. It is well known that lipopolysaccharide (LPS) triggers an inflammatory response in the whole organism, including immunologically privileged organs, e.g. the testicles. Adult male TCRalpha-/-, TCRdelta-/-, CD1d-/- and beta2m-/- on B10.PL (H-2(u)) and B10.PL control mice were intraperitonealy (i.p.) injected with lipopolysaccharide (LPS). The animals were killed 24h and 10 days post LPS treatment and their gonads were prepared for microscopic examination. Histological changes in the testes after LPS injection were found only in control B10PL and CD1d-/- mice. The experiments revealed disturbances in Leydig's glands structure, blood vessel dilatation in the interstitial tissue as well as degeneration of seminal tubule epithelium, disruption ofspermatogenesis and subsequent decrease of sperm cell number in the tubule lumen. These changes were noticed mainly 10 days after LPS treatment. Lack of either TCRalphabeta+ CD8+ or TCRgammadelta+ lymphocytes diminishes the response of testicular macrophages to LPS whereas the absence of CD1d-dependent NKT cells does not affect macrophage reactivity.

  8. System x(c)(-) regulates microglia and macrophage glutamate excitotoxicity in vivo.

    Science.gov (United States)

    Kigerl, Kristina A; Ankeny, Daniel P; Garg, Sanjay K; Wei, Ping; Guan, Zhen; Lai, Wenmin; McTigue, Dana M; Banerjee, Ruma; Popovich, Phillip G

    2012-01-01

    It is widely believed that microglia and monocyte-derived macrophages (collectively referred to as central nervous system (CNS) macrophages) cause excitotoxicity in the diseased or injured CNS. This view has evolved mostly from in vitro studies showing that neurotoxic concentrations of glutamate are released from CNS macrophages stimulated with lipopolysaccharide (LPS), a potent inflammogen. We hypothesized that excitotoxic killing by CNS macrophages is more rigorously controlled in vivo, requiring both the activation of the glutamate/cystine antiporter (system x(c)(-)) and an increase in extracellular cystine, the substrate that drives glutamate release. Here, we show that non-traumatic microinjection of low-dose LPS into spinal cord gray matter activates CNS macrophages but without causing overt neuropathology. In contrast, neurotoxic inflammation occurs when LPS and cystine are co-injected. Simultaneous injection of NBQX, an antagonist of AMPA glutamate receptors, reduces the neurotoxic effects of LPS+cystine, implicating glutamate as a mediator of neuronal cell death in this model. Surprisingly, neither LPS nor LPS+cystine adversely affects survival of oligodendrocytes or oligodendrocyte progenitor cells. Ex vivo analyses show that redox balance in microglia and macrophages is controlled by induction of system x(c)(-) and that high GSH:GSSG ratios predict the neurotoxic potential of these cells. Together, these data indicate that modulation of redox balance in CNS macrophages, perhaps through regulating system x(c)(-), could be a novel approach for attenuating injurious neuroinflammatory cascades.

  9. Macrophages exposed continuously to lipopolysaccharide and other agonists that act via toll-like receptors exhibit a sustained and additive activation state

    Directory of Open Access Journals (Sweden)

    Ozinsky Adrian O

    2001-10-01

    Full Text Available Abstract Background Macrophages sense microorganisms through activation of members of the Toll-like receptor family, which initiate signals linked to transcription of many inflammation associated genes. In this paper we examine whether the signal from Toll-like receptors [TLRs] is sustained for as long as the ligand is present, and whether responses to different TLR agonists are additive. Results RAW264 macrophage cells were doubly-transfected with reporter genes in which the IL-12p40, ELAM or IL-6 promoter controls firefly luciferase, and the human IL-1β promoter drives renilla luciferase. The resultant stable lines provide robust assays of macrophage activation by TLR stimuli including LPS [TLR4], lipopeptide [TLR2], and bacterial DNA [TLR9], with each promoter demonstrating its own intrinsic characteristics. With each of the promoters, luciferase activity was induced over an 8 hr period, and thereafter reached a new steady state. Elevated expression required the continued presence of agonist. Sustained responses to different classes of agonist were perfectly additive. This pattern was confirmed by measuring inducible cytokine production in the same cells. While homodimerization of TLR4 mediates responses to LPS, TLR2 appears to require heterodimerization with another receptor such as TLR6. Transient expression of constitutively active forms of TLR4 or TLR2 plus TLR6 stimulated IL-12 promoter activity. The effect of LPS, a TLR4 agonist, was additive with that of TLR2/6 but not TLR4, whilst that of lipopeptide, a TLR2 agonist, was additive with TLR4 but not TLR2/6. Actions of bacterial DNA were additive with either TLR4 or TLR2/6. Conclusions These findings indicate that maximal activation by any one TLR pathway does not preclude further activation by another, suggesting that common downstream regulatory components are not limiting. Upon exposure to a TLR agonist, macrophages enter a state of sustained activation in which they continuously

  10. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Chiong HS

    2013-03-01

    Full Text Available Hoe Siong Chiong,1 Yoke Keong Yong,1 Zuraini Ahmad,1 Mohd Roslan Sulaiman,1 Zainul Amiruddin Zakaria,1 Kah Hay Yuen,2 Muhammad Nazrul Hakim1,31Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia; 3Sports Academy, Universiti Putra Malaysia, Serdang, MalaysiaBackground: Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug.Methods: Liposomes, prepared using an optimized proliposome method, were used in the present work to encapsulate piroxicam, a widely prescribed nonsteroidal anti-inflammatory drug. The cytotoxic effects as well as the in vitro efficacy in regulation of inflammatory responses by free-form piroxicam and liposome-encapsulated piroxicam were evaluated using a lipopolysaccharide-sensitive macrophage cell line, RAW 264.7.Results: Cells treated with liposome-encapsulated piroxicam demonstrated higher cell viabilities than those treated with free-form piroxicam. In addition, the liposomal piroxicam formulation resulted in statistically stronger inhibition of pro-inflammatory mediators (ie, nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 than piroxicam at an equivalent dose. The liposome-encapsulated piroxicam also caused statistically significant production of interleukin-10, an anti-inflammatory cytokine.Conclusion: This study affirms the potential of a liposomal piroxicam formulation in reducing cytotoxicity and enhancing anti-inflammatory responses in vitro.Keywords: liposomes, nitric oxide, cytokines, prostaglandin E2, interleukin-1β, piroxicam

  11. 5-Bromo-2-hydroxy-4-methyl-benzaldehyde inhibited LPS-induced production of pro-inflammatory mediators through the inactivation of ERK, p38, and NF-κB pathways in RAW 264.7 macrophages.

    Science.gov (United States)

    Kim, Kil-Nam; Ko, Seok-Chun; Ye, Bo-Ram; Kim, Min-Sun; Kim, Junseong; Ko, Eun-Yi; Cho, Su-Hyeon; Kim, Daekyung; Heo, Soo-Jin; Jung, Won-Kyo

    2016-10-25

    The aim of the present study was to investigate the effects of 5-bromo-2-hydroxy-4-methyl-benzaldehyde (BHMB) on inflammatory responses to lipopolysaccharide (LPS) in RAW 264.7 cells and the associated mechanism of action. BHMB concentration-dependently suppressed protein and mRNA expressions of iNOS and COX-2, thereby inhibiting the production of NO and PGE2 in LPS-stimulated RAW 264.7 cells. BHMB also reduced the mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW 264.7 cells. To elucidate the mechanism underlying the anti-inflammatory activity of BHMB, we investigated the effects of BHMB on the mitogen-activated protein kinase and nuclear factor-kappa B (NF-κB) pathways. BHMB suppressed the phosphorylation and degradation of IκB-α and markedly inhibited the nuclear translocation of p65 and p50 in LPS-stimulated RAW 264.7 cells. The compound also inhibited the LPS-stimulated phosphorylation of ERK and p38. Taken together, these results illustrated that BHMB suppresses pro-inflammatory mediator and cytokine expression in LPS-stimulated RAW 264.7 cells by inhibiting the phosphorylation of ERK and p38 and the activation of NF-κB.

  12. Jeju seaweeds suppress lipopolysaccharide-stimulated proinflammatory response in RAW 264.7 murine macrophages

    Institute of Scientific and Technical Information of China (English)

    Eun-Jin; Yang; Ji-Young; Moon; Sang; Suk; Kim; Kyong—Wol; Yang; Wook; Jae; Lee; Nam; Ho; Lee; Chang-Gu; Hyun

    2014-01-01

    Objective:To investigate the anti-inflammatory effects of Jeju seaweeds on macrophage RAW264.7 cells under lipopolysaccharide(LPS)stimulation.Methods:Ethyl acetate fractions were prepared from five different types of Jeju seaweeds,Dictyopteris divaricata(D.divaricata),Dictyopteris prolifera(D.prolifefa),Prioutis cornea(P.comea,Grateloupia laceolata(G,lanceolate,and Cralcloupia filicina(G.filicina)They were screened for inhibitory effects on proinflammatory mediators and cytokines such as nitric oxide(NO),prostaglandin E,,tumor necrosis factor-a(TNF-a),and interleukin-6(11.-6).Results:Our results revealed that D.divaricata,D.prolifera,P.cornea,G.lanceolata,and G.filicina potently inhibited I.PS-stimulaled NO production(IC50,values were 18.0,38.36,38.43,32.81 and 37.14μg/mL,respectively).Consistent with these findings,D.divtricata,D.prolifera,P.cornea,and G.fdicina also reduced the IPS-induced and prostaglandin E,production in a concentration-dependent manner.Expectedly,they suppressed the expression of inducible NO synthase and cyclooxygenase-2 at the protein level in a dose-dependent manner in the RAW264.7 cells,as detennined by western blotting.In addition,the levels of TNF-a and IL-6,released into the medium,were also reduced by D.divaricata,D.prolifera,P.cornea,G,lanceolata,and G.fdicina in a dose-dependent manner(IC50values for TNF-a were 16.11,28.21,84.27,45.52 and74.75μg/mL,respectively;IC50,values for IL-6 were 37.35,80.08,103.28,62.53 and 84.28μg/mL,respectively).The total phlorotannin content was measured by the Folin-Ciocalteu method and expressed as phloroglucinol equivalents.The content was 92.0μg/mg for D.divaricata,151.8μg/mg for D.prolifera,57.2μg/mg for P.cornea,53.0 pg/mg for G.lanceolata,and 40.2μg/mg for G.fdicina.Conclusions:Thus,these findings suggest that Jeju seaweed extracts have potential therapeutic applications for inflammatory responses.

  13. Coxiella burnetii lipopolysaccharide blocks p38α-MAPK activation through the disruption of TLR-2 and TLR-4 association

    Directory of Open Access Journals (Sweden)

    Filippo eConti

    2015-01-01

    Full Text Available To survive in macrophages, Coxiella burnetii hijacks the activation pathway of macrophages. Recently, we have demonstrated that C. burnetii, via its lipopolysaccharide (LPS, avoids the activation of p38α-MAPK through an antagonistic engagement of Toll-like receptor (TLR-4. We investigated the fine-tuned mechanism leading to the absence of activation of the p38α-MAPK despite TLR-4 engagement. In macrophages challenged with Escherichia coli LPS or with the LPS from the avirulent variants of C. burnetii, TLR-4 and TLR-2 co-immunoprecipitated. This association was absent in cells challenged by the LPS of pathogenic C. burnetii. The disruption makes TLRs unable to signal during the recognition of the LPS of pathogenic C. burnetii. The disruption of TLR-2 and TLR-4 was induced by the re-organization of the macrophage cytoskeleton by C. burnetii LPS. Interestingly, blocking the actin cytoskeleton re-organization relieved the disruption of the association TLR-2/TLR-4 by pathogenic C. burnetii and rescued the p38α-MAPK activation by C. burnetii. We elucidated an unexpected mechanism allowing pathogenic C. burnetii to avoid activating macrophages by the disruption of the TLR-2 and TLR-4 association.

  14. Effects of organic chemicals derived from ambient particulate matter on lung inflammation related to lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Ken-ichiro; Yanagisawa, Rie; Hirano, Seishiro; Kobayashi, Takahiro [National Institute for Environmental Studies, Environmental Health Sciences Division, Tsukuba, Ibaraki (Japan); Takano, Hirohisa [National Institute for Environmental Studies, Environmental Health Sciences Division, Tsukuba, Ibaraki (Japan); Kyoto Prefectural University of Medicine, Inflammation and Immunology, Graduate School of Medical Science, Kyoto (Japan); Ichinose, Takamichi [Oita University of Nursing and Health Sciences, Department of Health Science, Oita (Japan); Yoshikawa, Toshikazu [Kyoto Prefectural University of Medicine, Inflammation and Immunology, Graduate School of Medical Science, Kyoto (Japan)

    2006-12-15

    The effects of components of ambient particulate matter (PM) on individuals with predisposing respiratory disorders are not well defined. We have previously demonstrated that airway exposure to diesel exhaust particles (DEP) or organic chemicals (OC) extracted from DEP (DEP-OC) enhances lung inflammation related to bacterial endotoxin (lipopolysaccharide, LPS). The present study aimed to examine the effects of airway exposure to OC extracted from urban PM (PM-OC) on lung inflammation related to LPS. ICR mice were divided into four experimental groups that intratracheally received vehicle, LPS (2.5 mg/kg), PM-OC (4 mg/kg), or PM-OC + LPS. Lung inflammation, lung water content, and lung expression of cytokines were evaluated 24 h after intratracheal administration. LPS challenge elicited lung inflammation evidenced by cellular profiles of bronchoalveolar lavage fluid and lung histology, which was further aggravated by the combined challenge with PM-OC. The combination with PM-OC and LPS did not significantly exaggerate LPS-elicited pulmonary edema. LPS instillation induced elevated lung expression of interleukin-1{beta}, macrophage inflammatory protein-1{alpha}, macrophage chemoattractant protein-1, and keratinocyte chemoattractant, whereas the combined challenge with PM-OC did not influence these levels. All the results were consistent with our previous reports on DEP-OC. These results suggest that the extracted organic chemicals from PM exacerbate infectious lung inflammation. The mechanisms underlying the enhancing effects are not mediated via the enhanced local expression of proinflammatory cytokines. (orig.)

  15. DMPD: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15379975 Signal transduction by the lipopolysaccharide receptor, Toll-like receptor...-4. Palsson-McDermott EM, O'Neill LA. Immunology. 2004 Oct;113(2):153-62. (.png) (.svg) (.html) (.csml) Show Signal... transduction by the lipopolysaccharide receptor, Toll-like receptor-4. PubmedID 15379975 Title Signal

  16. Transmembrane TNF-α Reverse Signaling Inhibits Lipopolysaccharide-Induced Proinflammatory Cytokine Formation in Macrophages by Inducing TGF-β: Therapeutic Implications.

    Science.gov (United States)

    Pallai, Anna; Kiss, Beáta; Vereb, György; Armaka, Marietta; Kollias, George; Szekanecz, Zoltán; Szondy, Zsuzsa

    2016-02-01

    TNF-α, a potent proinflammatory cytokine, is generated in a precursor form called transmembrane (m)TNF-α that is expressed as a type II polypeptide on the surface of certain cells. mTNF-α was shown to act both as a ligand by binding to TNF-α receptors, as well as a receptor that transmits outside-to-inside (reverse) signals back into the mTNF-α-bearing cells. In this study, we show that nonactivated macrophages express basal levels of mTNF-α and respond to anti-TNF-α Abs by triggering the MAPK kinase 4 signaling pathway. The pathway induces TGF-β. Based on inhibitory experiments, the production of TGF-β1 is regulated via Jun kinases, whereas that of other TGF-βs is regulated via p38 MAPKs. Exposure to LPS further induced the expression of mTNF-α, and triggering of mTNF-α strongly suppressed the LPS-induced proinflammatory response. Neutralizing TGF-β by Abs prevented the mTNF-α-mediated suppression of LPS-induced proinflammatory cytokine formation, indicating that the immune-suppressive effect of mTNF-α is mediated via TGF-β. Although apoptotic cells are also known to suppress LPS-induced proinflammatory cytokine formation in macrophages by upregulating TGF-β, we show that they do not use the mTNF-α signaling pathway. Because TGF-β possesses a wide range of immune-suppressive effects, our data indicate that upregulation of TGF-β synthesis by those TNF-α-targeting molecules, which are able to trigger mTNF-α, might contribute to their therapeutic effect in the treatment of certain inflammatory diseases such as Crohn's disease, Wegener's granulomatosis, or sarcoidosis. Additionally, none of the TNF-α-targeting molecules is expected to interfere with the immune-silencing effects of apoptotic cells.

  17. Suppressive Effect on Lipopolysaccharide-Induced Proinflammatory Mediators by Citrus aurantium L. in Macrophage RAW 264.7 Cells via NF-κB Signal Pathway

    Directory of Open Access Journals (Sweden)

    Sang-Rim Kang

    2011-01-01

    Full Text Available Citrus fruits have been used as an edible fruit and a traditional medicine since ancient times. In particular, the peels of immature citrus fruits are used widely in traditional herbal medicine in Korea, as they are believed to contain bioactive components exerting anti-inflammatory activity. This study examined whether the crude methanol extract of Citrus aurantium L. (CME has a suppressive effect on inducible enzymes and proinflammatory cytokines by inhibiting the NF-κB pathway in LPS-stimulated macrophage RAW 264.7 cells. The cells were pretreated with the indicated concentrations of CME (5, 10, 20, and 50 μg/mL and then treated with LPS (1 μg/mL. The results showed that CME (10, 20, and 50 μg/mL inhibited the LPS- (1 μg/mL induced mRNA and protein expression of iNOS in macrophage Raw 264.7 cells. In addition, the expression of COX-2 was inhibited at the mRNA and protein levels by CME in a dose-dependent manner. The mRNA expression of proinflammatory cytokines, such as TNF-α and IL-6, were markedly reduced by CME (10, 20, and 50 μg/mL. Moreover, CME clearly suppressed the nuclear translocation of the NF-κB p65 subunits, which was correlated with its inhibitory effect on I-κB phosphorylation. These results suggest that CME has anti-inflammatory properties by modulating the expression of COX-2, iNOS, and proinflammatory cytokines, such as TNF-α and IL-6, in macrophage RAW 264.7 cells via the NF-κB pathway.

  18. LPS inmobilization on porous and non-porous supports as an approach for the isolation of anti-LPS host-defense peptides.

    Directory of Open Access Journals (Sweden)

    Carlos eLopez-Abarrategui

    2013-12-01

    Full Text Available Lipopolysaccharides (LPS are the major molecular component of the outer membrane of Gram-negative bacteria. This molecule is recognized as a sign of bacterial infection, responsible for the development of local inflammatory response and, in extreme cases, septic shock. Unfortunately, despite substantial advances in the pathophysiology of sepsis, there is no efficacious therapy against this syndrome yet. As a consequence, septic shock syndrome continues to increase, reaching mortality rates over 50% in some cases. Even though many preclinical studies and clinical trials have been conducted, there is no FDA-approved drug yet that interacts directly against LPS. Cationic host defense peptides could be an alternative solution since they possess both antimicrobial and antiseptic properties. Host defense peptides are small, positively charged peptides which are evolutionarily conserved components of the innate immune response. In fact, binding to diverse chemotypes of LPS and inhibition of LPS-induced pro-inflammatory cytokines from macrophages have been demonstrated for different host defense peptides (HDPs. Curiously, none of them have been isolated by their affinity to LPS. A diversity of supports could be useful for such biological interaction and suitable for isolating host defense peptides that recognize LPS. This approach could expand the rational search for anti-LPS host defense peptides.

  19. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Liu, Yuan [Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Wang, Xiujuan; Kong, Wei [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Zhao, Feng, E-mail: taixingzhaofeng163@163.com [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China)

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  20. Inhibitory effect of a formulated extract from multiple citrus peels on LPS-induced inflammation in RAW 246.7 macrophages

    Directory of Open Access Journals (Sweden)

    Tadahiro Etoh

    2013-06-01

    Full Text Available ABSTRACTBackground: Formulated Citrus Peel Extract (GL made from the peels of six citrus fruits available in Japan, namely navel oranges, citrus hassaku, citrus limon, citrus natsudaidai, citrus miyauchi and satsuma, was initially developed as a cosmetic product to protect skin from UV irradiation. Anecdotal evidences of anti-cancer property of GL have been reported by consumers based on the cases such as topical application for melanoma, and oral ingestion for prostate, lung and liver cancers.Those anecdotal reports stimulated us to investigate anti-tumorigenesis activity of GL. In the previous study, we reported that the topical application of GL inhibited DMBA/TPA-induced skin tumor formation by decreasing inflammatory gene parameters.Objective: In this study, we mainly investigated the effect of GL on translocation of NF-kB together with production of nitric-oxide and TNF-α induced by LPS in RAW 264.7 cells.Results: This investigation showed that GL decreased the release of TNF-α and nitric oxide from macrophage RAW264.7 cells stimulated by LPS in a dose-dependent manner. In addition, GL suppressed the expression of iNOS and nuclear translocation of NF-kB in RAW264.7 cells, inhibited the degradation of IκB-α, and scavenged hydroxyl radicals (DMPO/OH adduct in vitro.Conclusions: Our findings suggest that GL suppresses the inflammation in vitro, and exerts chemopreventive activity through the inhibition of production of TNF-α and iNOS proteins due to the inhibition of nuclear translocation of NF-kB and oxidative stress. GL appears to be a novel functional natural product capable of preventing inflammation and inflammation-associated tumorigenesis.Keywords: GL, Citrus peel extract, anti-inflammation, Nitric oxide, iNOS, NF-kB, TNF-α

  1. α-Solanine Isolated From Solanum Tuberosum L. cv Jayoung Abrogates LPS-Induced Inflammatory Responses Via NF-κB Inactivation in RAW 264.7 Macrophages and Endotoxin-Induced Shock Model in Mice.

    Science.gov (United States)

    Shin, Ji-Sun; Lee, Kyoung-Goo; Lee, Hwi-Ho; Lee, Hae Jun; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2016-10-01

    α-Solanine, a trisaccharide glycoalkaloid, has been reported to possess anti-cancer effects. In this study, we investigated the anti-inflammatory effects of α-solanine isolated from "Jayoung" a dark purple-fleshed potato by examining its in vitro inhibitory effects on inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophages and its in vivo effects on LPS-induced septic shock in a mouse model. α-Solanine suppressed the expression of iNOS and COX-2 both at protein and mRNA levels and consequently inhibited nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in LPS-induced RAW 264.7 macrophages. α-Solanine also reduced the production and mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced by LPS. Furthermore, molecular mechanism studies indicated that α-solanine inhibited LPS-induced activation of nuclear factor-κB (NF-κB) by reducing nuclear translocation of p65, degradation of inhibitory κBα (IκBα), and phosphorylation of IκB kinaseα/β (IKKα/β). In an in vivo experiment of LPS-induced endotoxemia, treatment with α-solanine suppressed mRNA expressions of iNOS, COX-2, IL-6, TNF-α, and IL-1β, and the activation of NF-κB in liver. Importantly, α-solanine increased the survival rate of mice in LPS-induced endotoxemia and polymicrobial sepsis models. Taken together, our data suggest that the α-solanine may be a promising therapeutic against inflammatory diseases by inhibiting the NF-κB signaling pathway. J. Cell. Biochem. 117: 2327-2339, 2016. © 2016 Wiley Periodicals, Inc.

  2. HSF-1 is involved in attenuating the release of inflammatory cytokines induced by LPS through regulating autophagy.

    Science.gov (United States)

    Tong, Zhongyi; Jiang, Bimei; Zhang, Lingli; Liu, Yanjuan; Gao, Min; Jiang, Yu; Li, Yuanbin; Lu, Qinglan; Yao, Yongming; Xiao, Xianzhong

    2014-05-01

    Autophagy plays a protective role in endotoxemic mice. Heat shock factor 1 (HSF-1) also plays a crucial protective role in endotoxemic mice by decreasing inflammatory cytokines. The purpose of this study was to determine whether HSF-1 is involved in attenuating the release of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated mice and peritoneal macrophages (PMs) through regulating autophagy activity. Autophagosome formation in HSF-1(+/+) and HSF-1(-/-) mice and PMs stimulated by LPS was examined by Western blotting and immunofluorescence. Lipopolysaccharide-induced autophagy and inflammatory cytokines were examined in HSF-1(+/+) and HSF-1(-/-) PMs treated with 3-methyladenine (3-MA) or rapamycin. Results showed that LPS-induced autophagy was elevated transiently at 12 h but declined at 24 h in the livers and lungs of mice. Higher levels of inflammatory cytokines and lower autophagy activity were detected in HSF-1(-/-) mice and PMs compared with HSF-1(+/+) mice and PMs. Interestingly, LPS-induced release of inflammatory cytokines did not further increase in HSF-1(-/-) PMs treated with 3-MA but aggravated in HSF-1(+/+) PMs. Lipopolysaccharide-induced autophagy did not decrease in HSF-1(-/-) PMs treated with 3-MA but decreased in HSF-1 PMs(+/+). Taken together, our results suggested that HSF-1 attenuated the release of inflammatory cytokines induced by LPS by regulating autophagy activity.

  3. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis.

    Science.gov (United States)

    Lv, Hongming; Liu, Qinmei; Wen, Zhongmei; Feng, Haihua; Deng, Xuming; Ci, Xinxin

    2017-03-02

    Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2) and/or AMP-activated protein kinase (AMPK) activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI). Xanthohumol (Xn), a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS) generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2(-/-) mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway.

  4. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  5. Usefulness of ELISA Methods for Assessing LPS Interactions with Proteins and Peptides

    Science.gov (United States)

    Martínez-Sernández, Victoria; Orbegozo-Medina, Ricardo A.; Romarís, Fernanda; Paniagua, Esperanza; Ubeira, Florencio M.

    2016-01-01

    Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, can trigger severe inflammatory responses during bacterial infections, possibly leading to septic shock. One approach to combatting endotoxic shock is to neutralize the most conserved part and major mediator of LPS activity (lipid A) with LPS-binding proteins or peptides. Although several available assays evaluate the biological activity of these molecules on LPS (e.g. inhibition of LPS-induced TNF-α production in macrophages), the development of simple and cost-effective methods that would enable preliminary screening of large numbers of potential candidate molecules is of great interest. Moreover, it would be also desirable that such methods could provide information about the possible biological relevance of the interactions between proteins and LPS, which may enhance or neutralize LPS-induced inflammatory responses. In this study, we designed and evaluated different types of ELISA that could be used to study possible interactions between LPS and any protein or peptide. We also analysed the usefulness and limitations of the different ELISAs. Specifically, we tested the capacity of several proteins and peptides to bind FITC-labeled LPSs from Escherichia coli serotypes O111:B4 and O55:B5 in an indirect ELISA and in two competitive ELISAs including casein hydrolysate (hCAS) and biotinylated polymyxin B (captured by deglycosylated avidin; PMX) as LPS-binding agents in the solid phase. We also examined the influence of pH, detergents and different blocking agents on LPS binding. Our results showed that the competitive hCAS-ELISA performed under mildly acidic conditions can be used as a general method for studying LPS interactions, while the more restrictive PMX-ELISA may help to identify proteins/peptides that are likely to have neutralizing properties in vitro or in vivo. PMID:27249227

  6. Structure and Bioactivity of a Modified Peptide Derived from the LPS-Binding Domain of an Anti-Lipopolysaccharide Factor (ALF of Shrimp

    Directory of Open Access Journals (Sweden)

    Hui Yang

    2016-05-01

    Full Text Available The lipopolysaccharide binding domain (LBD in anti-lipopolysaccharide factor (ALF is the main functional element of ALF, which exhibits antimicrobial activities. Our previous studies show that the peptide LBDv, synthesized based on the modified sequence of LBD (named LBD2 from FcALF2, exhibited an apparently enhanced antimicrobial activity. To learn the prospect of LBDv application, the characteristics of LBDv were analyzed in the present study. The LBDv peptide showed higher antimicrobial and bactericidal activities compared with LBD2. These activities of the LBDv peptide were stable after heat treatment. LBDv could also exhibit in vivo antimicrobial activity to Vibrio harveyi. The LBDv peptide was found to bind bacteria, quickly cause bacterial agglutination, and kill bacteria by damaging their membrane integrity. Structure analysis showed that both LBDv and LBD2 held the β-sheet structure, and the positive net charge and amphipathicity characteristic were speculated as two important components for their antimicrobial activity. The cytotoxicity of LBDv was evaluated in cultured Spodoptera frugiperda (Sf9 cells and Cherax quadricarinatus hemocytes. More than 80% cells could survive with the LBDv concentration up to 16 μM. Collectively, these findings highlighted the potential antimicrobial mechanism of LBD peptides, and provided important information for the commercial use of LBDv in the future.

  7. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages.

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohnishi

    Full Text Available N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.

  8. Inhibition of LPS-induced TNF-α and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238.

    Science.gov (United States)

    Dey, Debendranath; Chaskar, Sunetra; Athavale, Nitin; Chitre, Deepa

    2014-10-01

    Rheumatoid arthritis is a chronic crippling disease, where protein-based tumor necrosis factor-alpha (TNF-α) inhibitors show significant relief, but with potentially fatal side effects. A need for a safe, oral, cost-effective small molecule or phyto-pharmaceutical is warranted. BV-9238 is an Ayurvedic poly-herbal formulation containing specialized standardized extracts of Withania somnifera, Boswellia serrata, Zingiber officinale and Curcuma longa. The anti-inflammatory and anti-arthritic effects of BV-9238 were evaluated for inhibition of TNF-α and nitric oxide (NO) production, in lipopolysaccharide-stimulated, RAW 264.7, mouse macrophage cell line. BV-9238 reduced TNF-α and NO production, without any cytotoxic effects. Subsequently, the formulation was tested in adjuvant-induced arthritis (AIA) and carrageenan-induced paw edema (CPE) rat animal models. AIA was induced in rats by injecting Freund's complete adjuvant intra-dermally in the paw, and BV-9238 and controls were administered orally for 21 days. Arthritic scores in AIA study and inflamed paw volume in CPE study were significantly reduced upon treatment with BV-9238. These results suggest that the anti-inflammatory and anti-arthritic effects of BV-9238 are due to its inhibition of TNF-α, and NO, and this formulation shows promise as an alternate therapy for inflammatory disorders where TNF-α and NO play important roles.

  9. Total bacterial load within Echinacea purpurea, determined using a new PCR-based quantification method, is correlated with LPS levels and in vitro macrophage activity.

    Science.gov (United States)

    Pugh, Nirmal D; Jackson, Colin R; Pasco, David S

    2013-01-01

    Our previous studies indicate that the majority of in vitro monocyte/macrophage activation exhibited by extracts of Echinacea depends on bacterial components. In the present study, total bacterial load was determined within E. purpurea samples and ranged from 6.4 × 10(6) to 3.3 × 10(8) bacteria/g of dry plant material. To estimate total bacterial load, we developed a PCR-based quantification method that circumvents the problems associated with nonviable/nonculturable cells (which precludes using plate counts) or the coamplification of mitochondrial or chloroplast DNA with the use of universal bacterial primers (which precludes the use of qPCR). Differences in total bacterial load within Echinacea samples were strongly correlated with the activity (NF-κB activation in THP-1 cells) and content of bacterial lipopolysaccharides within extracts of this plant material. These results add to the growing body of evidence that bacteria within Echinacea are the main source of components responsible for enhancing innate immune function. Georg Thieme Verlag KG Stuttgart · New York.

  10. Gomisin A decreases the LPS-induced expression of iNOS and COX-2 and activation of RIP2/NF-κB in mouse peritoneal macrophages.

    Science.gov (United States)

    Jeong, Hyun-Ja; Han, Na-Ra; Kim, Kyu-Yeob; Choi, Il-Sook; Kim, Hyung-Min

    2014-06-01

    Gomisin A (GA), a lignan component contained in the fruit of Schisandra chinensis Baillon, improves hepatic cell degeneration, vasodilatory activity and insulin sensitivity. These effects also impact the immune system, including various inflammatory mediators and cytokines. In this study, the anti-inflammatory effect of GA on lipopolysaccharide-stimulated mouse peritoneal macrophages was studied. Pretreatment with GA attenuated the expression of receptor-interacting protein 2 (RIP2) and IκB kinase-β (IKK-β) as well as IKK-β phosphorylation. The activation of nuclear factor-kappa B (NF-κB) in the nucleus, the phosphorylation of IκBα and degradation of IκBα in the cytosol were suppressed by GA. GA decreased the production and mRNA expression of the inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6. In addition, expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and production of nitric oxide were decreased by pretreatment with GA. In conclusion, these results show that the anti-inflammatory properties of GA potentially result from the inhibition of COX-2, iNOS, IL-6, TNF-α and NO through the down-regulation of RIP2 and NF-κB activation. These results impact the development of potential health products for preventing and treating inflammatory diseases.

  11. Integrated Analysis of COX-2 and iNOS Derived Inflammatory Mediators in LPS-Stimulated RAW Macrophages Pre-Exposed to Echium plantagineum L. Bee Pollen Extract

    Science.gov (United States)

    Moita, Eduarda; Gil-Izquierdo, Angel; Sousa, Carla; Ferreres, Federico; Silva, Luís R.; Valentão, Patrícia; Domínguez-Perles, Raúl; Baenas, Nieves; Andrade, Paula B.

    2013-01-01

    Oxidative stress and inflammation play important roles in disease development. This study intended to evaluate the anti-inflammatory and antioxidant potential of Echium plantagineum L. bee pollen to support its claimed health beneficial effects. The hydromethanol extract efficiently scavenged nitric oxide (•NO) although against superoxide (O2•−) it behaved as antioxidant at lower concentrations and as pro-oxidant at higher concentrations. The anti-inflammatory potential was evaluated in LPS-stimulated macrophages. The levels of •NO and L-citrulline decreased for all extract concentrations tested, while the levels of prostaglandins, their metabolites and isoprostanes, evaluated by UPLC-MS, decreased with low extract concentrations. So, E. plantagineum bee pollen extract can exert anti-inflammatory activity by reducing •NO and prostaglandins. The extract is able to scavenge the reactive species •NO and O2•− and reduce markers of oxidative stress in cells at low concentrations. PMID:23520554

  12. NADPH oxidase is internalized by clathrin-coated pits and localizes to a Rab27A/B GTPase-regulated secretory compartment in activated macrophages

    DEFF Research Database (Denmark)

    Ejlerskov, Patrick; Christensen, Dan Ploug; Beyaie, David;

    2012-01-01

    Here, we report that activation of different types of tissue macrophages, including microglia, by lipopolysaccharide (LPS) or GM-CSF stimulation correlates with the quantitative redistribution of NADPH oxidase (cyt b(558)) from the plasma membrane to an intracellular stimulus-responsive storage c...

  13. Effect of Three-spot Seahorse Petroleum Ether Extract on Lipopolysaccharide Induced Macrophage RAW264.7 Inflammatory Cytokine Nitric Oxide and Composition Analysis.

    Science.gov (United States)

    Chen, LiPing; Shen, XuanRi; Chen, GuoHua; Cao, XianYing; Yang, Jian

    2015-01-01

    Three-Spot seahorse is a traditional medicine in Asian countries. However, the alcohol extract is largely unknown for its anti-inflammatory activity. This study aimed at elucidating fraction of potent anti-inflammatory activity of seahorse. A systematic solvent extraction method of liquid-liquid fractionation of ethanol crude extract gave four fractions petroleum ether (PE), and ethyl acetate (EtOAc), water saturated butanol (n-BuOH), water (H2O). In this study, PE extract was selected for further study after preliminary screening test, and was connected to silica column chromatography and eluted with different polarity of mobile phases, and obtained four active fractions (Fr I, Fr II, Fr III, Fr IV). Effect of separated fractions on inflammation was investigated in lipopolysaccharide (LPS) stimulated murine RAW264.7 cells in vitro. The result shows that seahorse extract was capable of inhibiting the production of nitric oxide (NO) significantly in a dose dependent manner and exhibited no notable cytotoxicity on cell viability. IC50 of fraction IV was 36.31 μg/mL, indicating that separated fraction possessed potent NO inhibitory activity against LPS-induced inflammatory response, thus, demonstrated its in vitro anti-inflammatory potentiality, it may be at least partially explained by the presence of anti-inflammation active substances, phenolic compounds, phospholipids and polyunsaturated fatty acids, especially phospholipids and polyunsaturated fatty acids. It could be suggested that seahorse lipid-soluble components could be used in functional food and anti-inflammatory drug preparations.

  14. Serogroup-specific interactions of lipopolysaccharides with supported lipid bilayer assemblies

    Science.gov (United States)

    Mendez, Heather M.; Stromberg, Loreen R.; Swingle, Kirstie; Graves, Steven W.; Montano, Gabriel; Mukundan, Harshini

    2017-02-01

    Lipopolysaccharide (LPS) is an amphiphilic lipoglycan that is the primary component of the outer membrane of Gramnegative bacteria. Classified as a pathogen associated molecular pattern (PAMPs), LPS is an essential biomarker for identifying pathogen serogroups. Structurally, LPS is comprised of a hydrophobic lipophilic domain that partitions into the outer membrane of Gram-negative bacteria. Previous work by our team explored biophysical interactions of LPS in supported lipid bilayer assemblies (sLBAs), and demonstrated LPS-induced hole formation in DOPC lipid bilayers. Here, we have incorporated cholesterol and sphingomyelin into sLBAs to evaluate the interaction of LPS in a more physiologically relevant system. The goal of this work was to determine whether increasing membrane complexity of sLBAs, and changing physiological parameters such as temperature, affects LPS-induced hole formation. Integrating cholesterol and sphingomyelin into sLBAs decreased LPS-induced hole formation at lower concentrations of LPS, and bacterial serotype contributed to differences in hole formation as a response to changes in temperature. We also investigated the possibility of LPS-induced hole formation in cellular systems using the cytokine response in both TLR4 (+)/(-) murine macrophages. LPS was presented to each cell line in murine serum, delipidated serum, and buffer (i.e. no serum), and the resulting cytokine levels were measured. Results indicate that the method of LPS presentation directly affects cellular cytokine expression. The two model systems presented in this study provide preliminary insight into the interactions of LPS in the host, and suggest the significance of amphiphile-carrier interactions in regulating host-pathogen biology during infection.

  15. Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7)

    Institute of Scientific and Technical Information of China (English)

    Rajendra Karki; Cheol-Ho Park; Dong-Wook Kim

    2013-01-01

    OBJECTIVE:Buckwheat has been considered as a potential source of nutraceutical components on the world market of probiotic foodstuffs.The purpose of this study was to evaluate the effects of tartary buckwheat (Fagopyrum tataricum) sprouts on oxidation and pro-inflammatory mediators.METHODS:The anti-oxidant effects of buckwheat extract (BWE) and rutin were evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH)-and nitric oxide (NO)-scavenging activities,serum peroxidation and chelating assays.Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were used to evaluate anti-inflammatory activities of buckwheat and rutin.NO production in LPS-stimulated RAW264.7 cells was determined by using Griess reagent.The expressions of inducible nitric oxide synthase (iNOS),cyclooxygenase-2 (COX-2),nuclear factor-kappa B (NF-κB) p65 subunit in cytosolic and nuclear portions were determined by Western blot analysis.Also,the production of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was determined by enzyme-linked immunosorbent assay.RESULTS:Inhibitory concentration 50 values for DPPH-and NO-scavenging activities of BWE were 24.97 and 72.54 μg/mL respectively.BWE inhibited serum oxidation and possessed chelating activity.Furthermore,BWE inhibited IL-6 and TNF-α production in LPS-stimulated RAW264.7 cells.Also,BWE inhibited iNOS and COX-2 expression and NF-κB p65 translocation.CONCLUSION:Buckwheat sprouts possessed strong antioxidant activity and inhibited production of pro-inflammatory mediators in the applied model systems.Thus,buckwheat can be suggested to be beneficial in inflammatory diseases by inhibiting the free radicals and inflammatory mediators.

  16. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1.

    Science.gov (United States)

    Fukuzumi, M; Shinomiya, H; Shimizu, Y; Ohishi, K; Utsumi, S

    1996-01-01

    Hypoglycemia is among the most injurious metabolic disorders caused by endotoxemia. In experimental endotoxemia with lipopolysaccharide (LPS) in animals, a marked glucose consumption is observed in macrophage-rich organs. However, the direct effect of LPS on the uptake of glucose by macrophages has not been fully understood, and the present study was undertaken to shed light on this point. The consumption and uptake of glucose, as measured with 2-deoxy-D-[3H]glucose, by murine peritoneal exudate macrophages in culture were accelerated two- to threefold by stimulation with 3 ng of LPS per ml. The rate of glucose uptake reached a plateau after 20 min of stimulation and remained at the maximum as long as LPS was present. Northern (RNA) blot analysis with cDNA probes for five known isoforms of glucose transporter (GLUT) revealed that the expression of GLUT by macrophages was restricted to the GLUT1 isoform during LPS stimulation and the amount of GLUT1 mRNA was increased by the stimulation. These results suggest that macrophage responses to LPS are supported by a rapid and sustained glucose influx via GLUT1 and that this is a participating factor in the development of systemic hypoglycemia when endotoxemia is prolonged. PMID:8557327

  17. Yohimbine enhances protection of berberine against LPS-induced mouse lethality through multiple mechanisms.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available Sepsis remains a major cause of mortality in intensive care units, better therapies are urgently needed. Gram-negative bacterial lipopolysaccharide (LPS is an important trigger of sepsis. We have demonstrated that berberine (Ber protects against lethality induced by LPS, which is enhanced by yohimbine (Y pretreatment, and Ber combined with Y also improves survival in septic mice. However, the precise mechanisms by which Y enhances protection of Ber against LPS-induced lethality remain unclear. The present study confirmed that simultaneously administered Y also enhanced protection of Ber against LPS-induced lethality. Ber or/and Y attenuated liver injury, but not renal injury in LPS-challenged mice. Ber or/and Y all inhibited LPS-stimulated IκBα, JNK and ERK phosphorylation, NF-κB activation as well as TNF-α production. Ber also increased IL-10 production in LPS-challenged mice, which was enhanced by Y. Furthermore, Ber or/and Y all suppressed LPS-induced IRF3, TyK2 and STAT1 phosphorylation, as well as IFN-β and IP-10 mRNA expression in spleen of mice at 1 h after LPS challenge. Especially, Y enhanced the inhibitory effect of Ber on LPS-induced IP-10 mRNA expression. In vitro experiments further demonstrated that Y significantly enhanced the inhibitory effect of Ber on TNF-α production in LPS-treated peritoneal macrophages, Ber combined with Y promoted LPS-induced IL-10 production and LPS-stimulated IκBα, JNK, ERK and IRF3 phosphorylation and NF-κB activation were also suppressed by Ber or/and Y pretreatment in peritoneal macrophages. Taken together, these results demonstrate that Y enhances the protection of Ber against LPS-induced lethality in mice via attenuating liver injury, upregulating IL-10 production and suppressing IκBα, JNK, ERK and IRF3 phosphorylation. Ber combined with Y may be an effective immunomodulator agent for the prevention of sepsis.

  18. LPS inmobilization on porous and non-porous supports as an approach for the isolation of anti-LPS host-defense peptides

    Science.gov (United States)

    López-Abarrategui, Carlos; del Monte-Martínez, Alberto; Reyes-Acosta, Osvaldo; Franco, Octavio L.; Otero-González, Anselmo J.

    2013-01-01

    Lipopolysaccharides (LPSs) are the major molecular component of the outer membrane of Gram-negative bacteria. This molecule is recognized as a sign of bacterial infection, responsible for the development of local inflammatory response and, in extreme cases, septic shock. Unfortunately, despite substantial advances in the pathophysiology of sepsis, there is no efficacious therapy against this syndrome yet. As a consequence, septic shock syndrome continues to increase, reaching mortality rates over 50% in some cases. Even though many preclinical studies and clinical trials have been conducted, there is no Food and Drug Administration-approved drug yet that interacts directly against LPS. Cationic host-defense peptides (HDPs) could be an alternative solution since they possess both antimicrobial and antiseptic properties. HDPs are small, positively charged peptides which are evolutionarily conserved components of the innate immune response. In fact, binding to diverse chemotypes of LPS and inhibition of LPS-induced pro-inflammatory cytokines from macrophages have been demonstrated for different HDPs. Curiously, none of them have been isolated by their affinity to LPS. A diversity of supports could be useful for such biological interaction and suitable for isolating HDPs that recognize LPS. This approach could expand the rational search for anti-LPS HDPs. PMID:24409171

  19. A defective TLR4 signaling for IFN-β expression is responsible for the innately lower ability of BALB/c macrophages to produce NO in response to LPS as compared to C57BL/6.

    Directory of Open Access Journals (Sweden)

    Luciana S Oliveira

    Full Text Available C57BL/6 mice macrophages innately produce higher levels of NO than BALB/c cells when stimulated with LPS. Here, we investigated the molecular events that account for this intrinsic differential production of NO. We found that the lower production of NO in BALB/c is not due to a subtraction of L-arginine by arginase, and correlates with a lower iNOS accumulation, which is independent of its degradation rate. Instead, the lower accumulation of iNOS is due to the lower levels of iNOS mRNA, previously shown to be also independent of its stability, suggesting that iNOS transcription is less efficient in BALB/c than in C57BL/6 macrophages. Activation of NFκB is more efficient in BALB/c, thus not correlating with iNOS expression. Conversely, activation of STAT-1 does correlate with iNOS expression, being more prominent in C57BL/6 than in BALB/c macrophages. IFN-β and IL-10 are more highly expressed in C57BL/6 than in BALB/c macrophages, and the opposite is true for TNF-α. Whereas IL-10 and TNF-α do not seem to participate in their differential production of NO, IFN-β has a determinant role since 1 anti-IFN-β neutralizing antibodies abolish STAT-1 activation reducing NO production in C57BL/6 macrophages to levels as low as in BALB/c cells and 2 exogenous rIFN-β confers to LPS-stimulated BALB/c macrophages the ability to phosphorylate STAT-1 and to produce NO as efficiently as C57BL/6 cells. We demonstrate, for the first time, that BALB/c macrophages are innately lower NO producers than C57BL/6 cells because they are defective in the TLR-4-induced IFN-β-mediated STAT-1 activation pathway.

  20. Chlamydial hemagglutinin identified as lipopolysaccharide.

    OpenAIRE

    Watkins, N G; Caldwell, H D; Hackstadt, T

    1987-01-01

    Chlamydial lipopolysaccharide (LPS) agglutinated mouse and rabbit erythrocytes but not human, guinea pig, or pronghorn antelope erythrocytes. Hemagglutination was not specific for Chlamydia spp., as rough LPSs from Coxiella burnetii and Escherichia coli also agglutinated erythrocytes from the same animal species. Nonagglutinated and agglutinated erythrocytes bound equivalent amounts of LPS, indicating that hemagglutination was not due to a specific interaction of chlamydial LPS with erythrocy...

  1. Purification of lipopolysaccharide-binding protein from bovine serum.

    Science.gov (United States)

    Bochsler, P N; Yang, Z; Murphy, C L; Carroll, R C

    1996-06-01

    Lipopolysaccharide-binding protein (LBP) plays a central role in presentation of bacterial-derived lipopolysaccharide (LPS; endotoxin) to leukocytes such as macrophages and neutrophils. Interaction of LBP with LPS is significant because LBP-LPS complexes promote activation of leukocytes and the immune system, which results in enhanced secretion of a spectrum of proinflammatory cytokines. An improved, simplified method was used to purify bovine LBP from serum. Methodology consisted of ion-exchange chromatography using Bio-Rex 70 resin, followed by gel-filtration chromatography (Sephacryl S-200 resin) of a selected ion-exchange fraction (0.22-0.50 M NaCl). Densitometric scans on silver-stained polyacrylamide gels of chromatographically-derived proteins indicated up to 88.7% purity of the resultant 64kD protein (bovine LBP) in the cleanest fractions. The isoelectric point of bovine LBP was determined to be 6.8. Identity of the protein was substantiated by western-blot analysis, and by N-terminus amino acid sequence analysis with favorable comparison to published sequence data from rabbit, human, and murine LBP Identity was corroborated by use of purified bovine LBP in bioassays which demonstrated enhanced tissue factor expression of LPS (1 ng ml(-1)-stimulated bovine alveolar macrophages. Tissue factor expression was inhibitable in these assays using anti-CD14 monoclonal antibodies, which is also consistent with LBP-mediated activation of cells. When bovine LBP was heated at 56 degrees C for 30 min, the biological activity was reduced by 50% in the macrophage-based bioassays. Biological activity of bovine LBP was completely destroyed by heating at 62 degrees C for 30 min, which compared favorably with data resulting from use of fetal bovine serum.

  2. Detection of Adhesion Molecules on Inflamed Macrophages at Early-Stage Using SERS Probe Gold Nanorods

    Institute of Scientific and Technical Information of China (English)

    Dakrong Pissuwan; Yusuke Hattori

    2017-01-01

    In recent years, it has been shown that inflammatory biomarkers can be used as an effective signal for disease diagnoses. The early detection of these signals provides useful information that could prevent the occurrence of severe diseases. Here, we employed surface-enhanced Raman scattering (SERS) probe gold nanorods (GNRs) as a tool for the early detection of inflammatory molecules in inflamed cells. A murine macrophage cell line (Raw264.7) stimulated with lipopolysaccharide (LPS) was used as a model in this study. The prepared SERS probe GNRs containing 4-mercapto-benzoic acid as a Raman reporter to generate SERS signals were used for detection of intracellular adhesion molecule-1 (ICAM-1) in macrophages after treatment with LPS for varying lengths of time. Our results show that SERS probe GNRs could detect significant differences in the expression of ICAM-1 molecules in LPS-treated macrophages compared to those in untreated macrophages after only 1 h of LPS treatment. In contrast, when using fluorescent labeling or enzyme-linked immunosorbent assays (ELISA) to detect ICAM-1, significant differences between inflamed and un-inflamed macrophages were not seen until the cells had been treated with LPS for 5 h. These results indicate that our SERS probe GNRs provide a higher sensitivity for detecting biomarker molecules in inflamed macrophages than the conventional fluorescence and ELISA techniques, and could therefore be useful as a potential diagnostic tool for managing disease risk.

  3. Dietary Blue Pigments Derived from Genipin, Attenuate Inflammation by Inhibiting LPS-Induced iNOS and COX-2 Expression via the NF-κB Inactivation

    OpenAIRE

    Qiang-Song Wang; Yaozu Xiang; Yuan-Lu Cui; Ke-Ming Lin; Xin-Fang Zhang

    2012-01-01

    BACKGROUND AND PURPOSE: The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported. METHODOLOGY/PRINCIPAL FINDINGS: The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) were inhibited in...

  4. Lipopolysaccharide induces IFN-γ production in human NK cells

    Directory of Open Access Journals (Sweden)

    Leonid M Kanevskiy

    2013-01-01

    Full Text Available NK cells have been shown to play a regulatory role in sepsis. According to the current view, NK cells become activated via macrophages or dendritic cells primed by lipopolysaccharide (LPS. Recently TLR4 gene expression was detected in human NK cells suggesting the possibility of a direct action of LPS on NK cells. In this study, effects of LPS on NK cell cytokine production and cytotoxicity were studied using highly purified human NK cells. LPS induced IFN-γ production in the presence of IL-2 in cell populations containing >98% CD56+ cells. Surprisingly, in the same experiments LPS decreased NK cell degranulation. No significant expression of markers related to blood dendritic cells, monocytes or T or B lymphocytes in the NK cell preparations was observed; the portions of HLA-DRbright, CD14+, CD3+ and CD20+ cells amounted to less than 0.1% within the cell populations. No more than 0.2% of NK cells were shown to be slightly positive for surface TLR4 in our experimental system, although intracellular staining revealed moderate amounts of TLR4 inside the NK cell population. These cells were negative for surface CD14, the receptor participating in LPS recognition by TLR4. Incubation of NK cells with IL-2 or/and LPS did not lead to an increase in TLR4 surface expression. TLR4–CD56+ NK cells isolated by cell sorting secreted IFN-γ in response to LPS. Antibody to TLR4 did not block the LPS-induced increase in IFN-γ production. We have also shown that Re-form of LPS lacking outer core oligosaccharide and O-antigen induces less cytokine production in NK cells than full length LPS. We speculate that the polysaccharide fragments of LPS molecule may take part in LPS-induced IFN-γ production by NK cells. Collectively our data suggest the existence of a mechanism of LPS direct action on NK cells distinct from established TLR4-mediated signaling.

  5. The Effect of the Aerial Part of Lindera akoensis on Lipopolysaccharides (LPS-Induced Nitric Oxide Production in RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yen-Hsueh Tseng

    2013-04-01

    Full Text Available Four new secondary metabolites, 3α-((E-Dodec-1-enyl-4β-hydroxy-5β-methyldihydrofuran-2-one (1, linderinol (6, 4'-O-methylkaempferol 3-O-α-L-(4''-E-p-coumaroylrhamnoside (11 and kaempferol 3-O-α-L-(4''-Z-p-coumaroylrhamnoside (12 with eleven known compounds—3-epilistenolide D1 (2, 3-epilistenolide D2 (3, (3Z,4α,5β-3-(dodec-11-ynylidene-4-hydroxy-5-methylbutanolide (4, (3E,4β,5β-3-(dodec-11-ynylidene-4-hydroxy-5-methylbutanolide (5, matairesinol (7, syringaresinol (8, (+-pinoresinol (9, salicifoliol (10, 4''-p-coumaroylafzelin (13, catechin (14 and epicatechin (15—were first isolated from the aerial part of Lindera akoensis. Their structures were determined by detailed analysis of 1D- and 2D-NMR spectroscopic data. All of the compounds isolated from Lindera akoensis showed that in vitro anti-inflammatory activity decreases the LPS-stimulated production of nitric oxide (NO in RAW 264.7 cell, with IC50 values of 4.1–413.8 µM.

  6. Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-κB and MAPK activation in macrophages.

    Science.gov (United States)

    Búfalo, Michelle Cristiane; Ferreira, Isabel; Costa, Gustavo; Francisco, Vera; Liberal, Joana; Cruz, Maria Teresa; Lopes, Maria Celeste; Batista, Maria Teresa; Sforcin, José Maurício

    2013-08-26

    Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential

  7. Molecular mechanism of apigenin on inhibition of LPS-induced inflammatory mediators in murine macrophages%芹菜素抑制脂多糖诱导小鼠巨噬细胞分泌炎症介质的分子机制

    Institute of Scientific and Technical Information of China (English)

    吴广; 符平; 周玉生; 周润梅

    2015-01-01

    Objective:To investigate the effect and the mechanism of Apigenin on lipopolysaccharides ( LPS )-induced inflammatory mediators production in murine macrophages. Methods:The murine macrophage cell line RAW 264. 7 cells were cultured in vitro,and were treated with different concentration of Apigenin followed by LPS administration. Expression of heme oxygenase-1 ( HO-1),cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS),phosphorylation of p38 and IκB,nuclear translocation of Nrf2 were detected by Western blot. Production of Nitrite and nitrate ( NOx) was analyzed by colorimetric technique. Secretion of prosta-glandin E2 (PGE2) was detected by ELISA. Activation of NF-κB was measured by luciferase assay. Results: Western blot indicated that apigenin could induce RAW 264. 7 cells expression of HO-1, and pretreatment of SB203580, an inhibitor of p38 significantly inhibited apigenin induced HO-1 expression. In addition,Apigenin could also decrease the content of nuclear transcription factor Nrf2 in cytoplasm and increase its level in the nucleus. Silencing of Nrf2 by specific siRNA could inhibit apigenin-induced HO-1 expression. Furthermore,apigenin administration significantly inhibited LPS-induced NOx production and PGE2 secretion, COX-2 and iNOS expression,IκB phosphorylation and NF-κB activation,and transfection of HO-1 siRNA could reverse these actions. Conclusion:Apigenin inhibits LPS-induced inflammatory response through induction of HO-1 and inhibition of NF-κB in macrophages.%目的::观察芹菜素对脂多糖( LPS)诱导小鼠巨噬细胞分泌炎症介质的影响,并探讨其分子机制。方法:体外培养小鼠巨噬细胞RAW 264.7,用不同浓度的芹菜素处理后,加入LPS刺激。 Western blot检测血红素氧合酶-1(HO-1)、环氧化酶-2(COX-2)、诱导型一氧化氮合成酶(iNOS)的表达以及p38和IκB的磷酸化;比色法检测亚硝酸盐和硝酸盐(NOx)的含量;ELISA检测PGE2的产生;报

  8. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPS-activated macrophages.

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    Full Text Available Genkwanin is one of the major non-glycosylated flavonoids in many herbs with anti-inflammatory activities. Although its anti-inflammatory activity in vivo has been reported, the potential molecular mechanisms remain obscure. In this study, by pharmacological and genetic approaches, we explore the anti-inflammatory effects of genkwanin in LPS-activated RAW264.7 macrophages. Genkwanin potently decreases the proinflammatory mediators, such as iNOS, TNF-α, IL-1β and IL-6, at the transcriptional and translational levels without cytotoxicity, indicating the excellent anti-inflammatory potency of genkwanin in vitro. Mechanism study shows that genkwanin significantly suppresses the p38- and JNK-mediated AP-1 signaling pathway and increases the mitogen-activated protein kinase (MAPK phosphatase 1 (MKP-1 expression at the posttranscriptional level. We also confirmed that microRNA-101 (miR-101 is a negative regulator of MKP-1 expression. Moreover, regardless of miR-101-deficient cells or miR-101-abundant cells, the suppression effects of genkwanin on supernatant proinflammatory mediators' levels are far less than that in respective negative control cells, suggesting that genkwanin exerts anti-inflammatory effect mainly through reducing miR-101 production. However, genkwanin can't affect the level of phospho-Akt (p-Akt, indicating that the phosphorylation of Akt may be not responsible for the effect of genkwanin on miR-101 production. We conclude that genkwanin exerts its anti-inflammatory effect mainly through the regulation of the miR-101/MKP-1/MAPK pathway.

  9. Evaluation of anti-proliferative and anti-inflammatory activities of Pelagia noctiluca venom in Lipopolysaccharide/Interferon-γ stimulated RAW264.7 macrophages.

    Science.gov (United States)

    Ayed, Yosra; Sghaier, Rabiaa Manel; Laouini, Dhafer; Bacha, Hassen

    2016-12-01

    Components of Pelagia noctiluca (P. noctiluca) venom were evaluated for their anticancer and nitric Oxide (NO) inhibition activities. Three fractions, out of four, obtained by gel filtration on Sephadex G75 of P. noctiluca venom revealed an important selective anti-proliferative activity on several cell lines such as human bladder carcinoma (RT112), human glioblastoma (U87), and human myelogenous leukemia (K562) but not on mitogen-stimulated peripheral blood mononuclear cells. Interestingly, P. noctiluca components showed an important dose-dependent anti-inflammatory activity, through inhibition of NO production via transcriptional regulation of Inducible NO Synthase (iNOS), in IFN-γ/LPS stimulated RAW 264.7 macrophages. These data strongly suggest that P. noctiluca venom could be used as a natural inhibitor of cancer cell lines and a potent anti-inflammatory agent for the treatment of anti-inflammatory diseases.

  10. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  11. Production of IL-12, IL-23 and IL-27p28 by bone marrow-derived conventional dendritic cells rather than macrophages after LPS/TLR4-dependent induction by Salmonella Enteritidis.

    Science.gov (United States)

    Siegemund, Sabine; Schütze, Nicole; Freudenberg, Marina A; Lutz, Manfred B; Straubinger, Reinhard K; Alber, Gottfried

    2007-01-01

    Induction of the interleukin-12 (IL-12) cytokine family comprising IL-12, IL-23, IL-27, and IL-12p40 by intracellular pathogens is required for orchestration of cell-mediated immune responses. Macrophages (MPhi) have been shown to be a source of IL-12 following TLR4-dependent activation by Salmonella (S.). In this study another antigen-presenting cell type, the conventional dendritic cell (cDC), was analyzed and its cytokine responses compared with those of MPhi. We generated bone marrow-derived conventional dendritic cells (BMDC) and macrophages (BMMPhi) by incubating murine bone marrow cells with supernatants containing granulocyte/macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF), respectively. Stimulation of BMDC and BMMPhi with S. enterica serovar Enteritidis (SE) or LPS resulted in the release of IL-12 and IL-23 by BMDC but not by BMMPhi. Furthermore, BMDC secreted approx. 20-fold more IL-12p40 and IL-27p28 than BMMPhi. However, BMDC and BMMPhi produced similar levels of IL-10. Using BMDC originating from wild-type (wt), TLR2(def) and TLR4(def) mice, we show that in BMDC the induction of IL-12, IL-23, and IL-27p28 by SE is dependent on TLR4, whereas low-level production of p40 is also mediated by pattern recognition receptors (PRR) other than TLR4. Interestingly, LPS- and SE-provoked responses of BMDC were remarkably similar indicating that LPS is the primary danger molecule of SE. Taken together, our results point to cDC rather than MPhi as the major producers of the IL-12 family members during in vitro infection with SE. The mechanisms of recognition of SE, however, appear to be the same for cDC and MPhi.

  12. Vitamin D both facilitates and attenuates the cellular response to lipopolysaccharide

    Science.gov (United States)

    Chen, Ling; Eapen, Mathew Suji; Zosky, Graeme R.

    2017-01-01

    Vitamin D has a range of non-skeletal health effects and has been implicated in the response to respiratory infections. The aim of this study was to assess the effect of vitamin D on the response of epithelial cells, neutrophils and macrophages to lipopolysaccharide (LPS) stimulation. BEAS-2B cells (airway epithelial cell line) and primary neutrophils and macrophages isolated from blood samples were cultured and exposed to LPS with and without vitamin D (1,25(OH)2D). The production of IL-6, IL-8, IL-1β and TNF-α of all cells and the phagocytic capacity of neutrophils and macrophages to E. coli were assessed. Vitamin D had no effect on BEAS-2B cells but enhanced the production of IL-8 in neutrophils (p = 0.007) and IL-1β in macrophages (p = 0.007) in response to LPS. Both vitamin D (p = 0.019) and LPS (p vitamin D on responses to infection are complex and that the net effect will depend on the cells that respond, the key response that is necessary for resolution of infection (cytokine production or phagocytosis) and whether there is pre-existing inflammation. PMID:28345644

  13. Lipopolysaccharide Could Be Internalized into Human Peripheral Blood Mononuclear Cells and Elicits TNF-α Release,but not via the Pathway of Toll-Like Receptor 4 on the Cell Surface

    Institute of Scientific and Technical Information of China (English)

    HongZhou; GuofuDing; WeiLiu; LiangxiWang; YonglingLu; HongweiCao; JiangZheng

    2004-01-01

    Lipopolysaccharide (LPS [endotoxin]), the principal component of the outer membrane of gram-negative bacteria, stimulate various cell types to release numerous proinflammatory mediators such as TNF-α, IL-6 and IL-12, which may damage cells and lead to organ injury, even sepsis and septic shock. Toll-like receptor 4(TLR4) has been identified as the receptor involved in the recognition of LPS, but the role of LPS uptake inactivating signal transduction remains controversial. In the present study, TNF-α was used as a marker of macrophages/monocytes activated by LPS, and CQ was used as an inhibitor of endosome mature in order to definitude what stage the signal transduction elicited by LPS was interrupted. We found that there indeed existed internalization of LPS and internalization partially participated in LPS signaling since CQ inhibitedcytokine release, and decreased accumulation of FITC-LPS in hPBMC. In contrast, anti-hTLR4 antibodycould decrease cytokines' release, but no inhibition on accumulation of FITC-LPS. This result revealed thatinhibition of cytokine release was related to reduction of FITC-LPS accumulation in the cells. But TLR4 on thecell surface didn't possibly participated in internalization of LPS. Thus, LPS signaling and internalizationcannot be viewed as mutually independent processes. Cellular & Molecular Immunology. 2004;1(5):373-377.

  14. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hong; Roh, Eunmiri [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Hyun Soo [Pharmaceutical R and D Center, Huons Co., Ltd., Anyang (Korea, Republic of); Baek, Seung-Il [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Choi, Nam Song [Pharmaceutical R and D Center, Huons Co., Ltd., Anyang (Korea, Republic of); Kim, Narae; Hwang, Bang Yeon; Han, Sang-Bae [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Youngsoo, E-mail: youngsoo@chungbuk.ac.kr [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2013-12-13

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.

  15. A Curcumin Derivative, 2,6-Bis(2,5-dimethoxybenzylidene-cyclohexanone (BDMC33 Attenuates Prostaglandin E2 Synthesis via Selective Suppression of Cyclooxygenase-2 in IFN-g/LPS-Stimulated Macrophages

    Directory of Open Access Journals (Sweden)

    Syahida Ahmad

    2011-11-01

    Full Text Available Our preliminary screening had shown that the curcumin derivative [2,6-bis(2,5-dimethoxybenzylidenecyclohexanone] or BDMC33 exhibited improved anti-inflammatory activity by inhibiting nitric oxide synthesis in activated macrophage cells. In this study, we further investigated the anti-inflammatory properties of BDMC33 on PGE2 synthesis and cyclooxygenase (COX expression in IFN-g/LPS-stimulated macrophages. We found that BDMC33 significantly inhibited PGE2 synthesis in a concentration-dependent manner albeit at a low inhibition level with an IC50 value of 47.33 ± 1.00 µM. Interestingly, the PGE2 inhibitory activity of BDMC33 is not attributed to inhibition of the COX enzyme activities, but rather BDMC33 selectively down-regulated the expression of COX-2. In addition, BDMC33 modulates the COX expression by sustaining the constitutively COX-1 expression in IFN-g/LPS-treated macrophage cells. Collectively, the experimental data suggest an immunodulatory action of BDMC33 on PGE2 synthesis and COX expression, making it a possible treatment for inflammatory disorders with minimal gastrointestinal-related side effects.

  16. A curcumin derivative, 2,6-bis(2,5-dimethoxybenzylidene)-cyclohexanone (BDMC33) attenuates prostaglandin E2 synthesis via selective suppression of cyclooxygenase-2 in IFN-γ/LPS-stimulated macrophages.

    Science.gov (United States)

    Lee, Ka-Heng; Abas, Faridah; Alitheen, Noorjahan Banu Mohamed; Shaari, Khozirah; Lajis, Nordin Haji; Ahmad, Syahida

    2011-11-23

    Our preliminary screening had shown that the curcumin derivative [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] or BDMC33 exhibited improved anti-inflammatory activity by inhibiting nitric oxide synthesis in activated macrophage cells. In this study, we further investigated the anti-inflammatory properties of BDMC33 on PGE(2 )synthesis and cyclooxygenase (COX) expression in IFN-γ/LPS-stimulated macrophages. We found that BDMC33 significantly inhibited PGE(2) synthesis in a concentration-dependent manner albeit at a low inhibition level with an IC(50) value of 47.33 ± 1.00 µM. Interestingly, the PGE(2) inhibitory activity of BDMC33 is not attributed to inhibition of the COX enzyme activities, but rather BDMC33 selectively down-regulated the expression of COX-2. In addition, BDMC33 modulates the COX expression by sustaining the constitutively COX-1 expression in IFN-γ/LPS-treated macrophage cells. Collectively, the experimental data suggest an immunodulatory action of BDMC33 on PGE(2) synthesis and COX expression, making it a possible treatment for inflammatory disorders with minimal gastrointestinal-related side effects.

  17. Pretreatment of Sialic Acid Efficiently Prevents Lipopolysaccharide-Induced Acute Renal Failure and Suppresses TLR4/gp91-Mediated Apoptotic Signaling

    Directory of Open Access Journals (Sweden)

    Shih-Ping Hsu

    2016-05-01

    Full Text Available Background/Aims: Lipopolysaccharides (LPS binding to Toll-like receptor 4 (TLR4 activate NADPH oxidase gp91 subunit-mediated inflammation and oxidative damage. Recognizing the high binding affinity of sialic acid (SA with LPS, we further explored the preventive potential of SA pretreatment on LPS-evoked acute renal failure (ARF. Methods: We determined the effect of intravenous SA 30 min before LPS-induced injury in urethane-anesthetized female Wistar rats by evaluating kidney reactive oxygen species (ROS responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. Results: LPS time-dependently reduced arterial blood pressure, renal microcirculation, and increased blood urea nitrogen and creatinine in the rats. LPS enhanced monocyte/macrophage infiltration and ROS production, and subsequently impaired kidneys with the enhancement of TLR4/NADPH oxidase gp91/Caspase 3/poly-(ADP-ribose-polymerase (PARP-mediated apoptosis in the kidneys. SA pretreatment effectively alleviated LPS-induced ARF. The levels of LPS-increased ED-1 infiltration and ROS production in the kidney were significantly depressed by SA pretreatment. Furthermore, SA pretreatment significantly depressed TLR4 activation, gp91 expression, and Caspase 3/PARP induced apoptosis in the kidneys. Conclusion: We suggest that pretreatment of SA significantly and preventively attenuated LPS-induced detrimental effects on systemic and renal hemodynamics, renal ROS production and renal function, as well as, LPS-activated TLR4/gp91/Caspase3 mediated apoptosis signaling.

  18. Differential Cell Sensitivity between OTA and LPS upon Releasing TNF-α

    Directory of Open Access Journals (Sweden)

    Lauy Al-Anati

    2010-06-01

    Full Text Available The release of tumor necrosis factor α (TNF-α by ochratoxin A (OTA was studied in various macrophage and non-macrophage cell lines and compared with E. coli lipopolysaccharide (LPS as a standard TNF-α release agent. Cells were exposed either to 0, 2.5 or 12.5 µmol/L OTA, or to 0.1 µg/mL LPS, for up to 24 h. OTA at 2.5 µmol/L and LPS at 0.1 µg/mL were not toxic to the tested cells as indicated by viability markers. TNF-a was detected in the incubated cell medium of rat Kupffer cells, peritoneal rat macrophages, and the mouse monocyte macrophage cell line J774A.1: TNF-a concentrations were 1,000 pg/mL, 1,560 pg/mL, and 650 pg/mL, respectively, for 2.5 µmol/L OTA exposure and 3,000 pg/mL, 2,600 pg/mL, and 2,115 pg/mL, respectively, for LPS exposure. Rat liver sinusoidal endothelial cells, rat hepatocytes, human HepG2 cells, and mouse L929 cells lacked any cytokine response to OTA, but showed a significant release of TNF-a after LPS exposure, with the exception of HepG2 cells. In non-responsive cell lines, OTA lacked both any activation of NF-κB or the translocation of activated NF-κB to the cell nucleus, i.e., in mouse L929 cells. In J774A.1 cells, OTA mediated TNF-a release via the pRaf/MEK 1/2–NF-κB and p38-NF-κB pathways, whereas LPS used pRaf/MEK 1/2-NF-κB, but not p38-NF-κB pathways. In contrast, in L929 cells, LPS used other pathways to activate NF-κB. Our data indicate that only macrophages and macrophage derived cells respond to OTA and are considered as sources for TNF-a release upon OTA exposure.

  19. Lipopolysaccharide Adsorbed to the Bio-Corona of TiO2 Nanoparticles Powerfully Activates Selected Pro-inflammatory Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Massimiliano G. Bianchi

    2017-08-01

    Full Text Available It is known that the adsorption of bioactive molecules provides engineered nanoparticles (NPs with novel biological activities. However, the biological effects of the adsorbed molecules may also be modified by the interaction with NP. Bacterial lipopolysaccharide (LPS, a powerful pro-inflammatory compound, is a common environmental contaminant and is present in several body compartments such as the gut. We recently observed that the co-incubation of LPS with TiO2 NPs markedly potentiates its pro-inflammatory effects on murine macrophages, suggesting that, when included in a NP bio-corona, LPS activity is enhanced. To distinguish the effects of adsorbed LPS from those of the free endotoxin, a pellet fraction, denominated P25/LPS, was isolated by centrifugation from a mixture of P25 TiO2 NP (128 µg/ml and LPS (10 ng/ml in the presence of fetal bovine serum. Western blot analysis of the pellet eluate indicated that the P25/LPS fraction contained, besides proteins, also LPS, pointing to the presence of LPS-doped NP. The effects of adsorbed or free LPS were then compared in Raw264.7 murine macrophages. RT-PCR was used to evaluate the induction of cytokine genes, whereas active, phosphorylated isoforms of proteins involved in signaling pathways were assessed with western blot. At a nominal LPS concentration of 40 pg/ml, P25/LPS induced the expression of both NF-κB and IRF3-dependent cytokines at levels comparable with those observed with free LPS (10 ng/ml, although with different time courses. Moreover, compared to free LPS, P25/LPS caused a more sustained phosphorylation of p38 MAPK and a more prolonged induction of STAT1-dependent genes. Cytochalasin B partially inhibited the induction of Tnfa by P25/LPS, but not by free LPS, and suppressed the induction of IRF3-dependent genes by either P25/LPS or free LPS. These data suggest that, when included in the bio-corona of TiO2 NP, LPS exhibits enhanced and time-shifted pro-inflammatory effects

  20. Trametinib, a novel MEK kinase inhibitor, suppresses lipopolysaccharide-induced tumor necrosis factor (TNF)-α production and endotoxin shock.

    Science.gov (United States)

    Du, Shi-lin; Yuan, Xue; Zhan, Sun; Tang, Luo-jia; Tong, Chao-yang

    2015-03-13

    Lipopolysaccharide (LPS), one of the most prominent pathogen-associated molecular patterns (PAMPs), activates macrophages, causing release of toxic cytokines (i.e. tumor necrosis factor (TNF)-α) that may provoke inflammation and endotoxin shock. Here, we tested the potential role of trametinib, a novel and highly potent MAPK/ERK kinase (MEK) inhibitor, against LPS-induced TNF-α response in monocytes, and analyzed the underlying mechanisms. We showed that trametinib, at nM concentrations, dramatically inhibited LPS-induced TNF-α mRNA expression and protein secretion in transformed (RAW 264.7 cells) and primary murine macrophages. In ex-vivo cultured human peripheral blood mononuclear cells (PBMCs), this MEK inhibitor similarly suppressed TNF-α production by LPS. For the mechanism study, we found that trametinib blocked LPS-induced MEK-ERK activation in above monocytes, which accounted for the defective TNF-α response. Macrophages or PBMCs treated with a traditional MEK inhibitor PD98059 or infected with MEK1/2-shRNA lentivirus exhibited a similar defect as trametinib, and nullified the activity of trametinib. On the other hand, introducing a constitutively-active (CA) ERK1 restored TNF-α production by LPS in the presence of trametinib. In vivo, mice administrated with trametinib produced low levels of TNF-α after LPS stimulation, and these mice were protected from LPS-induced endotoxin shock. Together, these results show that trametinib inhibits LPS-induced TNF-α expression and endotoxin shock probably through blocking MEK-ERK signaling.

  1. Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia.

    Science.gov (United States)

    Guan, Shuang; Feng, Haihua; Song, Bocui; Guo, Weixiao; Xiong, Ying; Huang, Guoren; Zhong, Weiting; Huo, Meixia; Chen, Na; Lu, Jing; Deng, Xuming

    2011-12-01

    Salidroside is a major component isolated from the Rhodiola rosea. In the present study, we investigated the anti-inflammatory effects of salidroside on cytokine production by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro, and the results showed that salidroside reduced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) secretions. This inspired us to further study the effects of salidroside in vivo. Salidroside significantly attenuated TNF-α, IL-1β and IL-6 productions in serum from mice challenged with LPS, and consistent with the results in vitro. In the murine model of endotoxemia, mice were treated with salidroside prior to or after LPS challenge. The results showed that salidroside significantly increased mouse survival. Further studies revealed that salidroside could downregulate LPS-induced nuclear transcription factor-қB (NF-қB) DNA-binding activation and ERK/MAPKs signal transduction pathways production in RAW 264.7 macrophages. These observations indicated that salidroside modulated early cytokine responses by blocking NF-қB and ERK/MAPKs activation, and thus, increased mouse survival. These effects of salidroside may be of potential usefulness in the treatment of inflammation-mediated endotoxemia. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Immunomodulatory Effect of Chinese Herbal Medicine Formula Sheng-Fei-Yu-Chuan-Tang in Lipopolysaccharide-Induced Acute Lung Injury Mice

    OpenAIRE

    Chia-Hung Lin; Ching-Hua Yeh; Li-Jen Lin; Shulhn-Der Wang; Jen-Shu Wang; Shung-Te Kao

    2013-01-01

    Traditional Chinese medicine formula Sheng-Fei-Yu-Chuan-Tang (SFYCT), consisting of 13 medicinal plants, was used to treat patients with lung diseases. This study investigated the immunoregulatory effect of SFYCT on intratracheal lipopolysaccharides- (LPS-) challenged acute lung injury (ALI) mice. SFYCT attenuated pulmonary edema, macrophages, and neutrophils infiltration in the airways. SFYCT decreased inflammatory cytokines, including tumor necrosis factor- α (TNF α ), interleukin-1 β , and...

  3. Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk

    OpenAIRE

    Kim, Jun Ho; Kim, Mi-Yeon; Kim,Jong-Hoon; Cho, Jae Youl

    2015-01-01

    Flavonoids, such as fisetin (3,7,3?,4?-tetrahydroxyflavone), are plant secondary metabolites. It has been reported that fisetin is able to perform numerous pharmacological roles including anti-inflammatory, anti-microbial, and anti-cancer activities; however, the exact anti-inflammatory mechanism of fisetin is not understood. In this study, the pharmacological action modes of fisetin in lipopolysaccharide (LPS)-stimulated macrophage-like cells were elucidated by using immunoblotting analysis,...

  4. Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk

    OpenAIRE

    Kim, Jun Ho; Kim, Mi-Yeon; Kim, Jong-Hoon; Cho, Jae Youl

    2015-01-01

    Flavonoids, such as fisetin (3,7,3′,4′-tetrahydroxyflavone), are plant secondary metabolites. It has been reported that fisetin is able to perform numerous pharmacological roles including anti-inflammatory, anti-microbial, and anti-cancer activities; however, the exact anti-inflammatory mechanism of fisetin is not understood. In this study, the pharmacological action modes of fisetin in lipopolysaccharide (LPS)-stimulated macrophage-like cells were elucidated by using immunoblotting analysis,...

  5. Protein kinase C δ (PKCδ)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade regulates glycogen synthase kinase-3 (GSK-3) inhibition-mediated interleukin-10 (IL-10) expression in lipopolysaccharide (LPS)-induced endotoxemia.

    Science.gov (United States)

    Noh, Kyung Tae; Son, Kwang Hee; Jung, In Duk; Kang, Hyun Kyu; Hwang, Sun Ae; Lee, Won Suk; You, Ji Chang; Park, Yeong-Min

    2012-04-20

    Glycogen synthase kinase-3 (GSK-3) modulates a wide array of cellular processes, including embryonic development, cell differentiation, survival, and apoptosis. Recently, it was reported that a GSK-3 inhibitor attenuates lipopolysaccharide (LPS)-induced septic shock and regulates the mortality of endotoxemic mice. However, the detailed mechanism of reduced mortality via GSK-3 inhibition is not well defined. Herein, we showed that GSK-3 inhibition induces extracellular signal-regulated kinase 1/2 (ERK1/2) activation under LPS-stressed conditions via protein kinase C δ (PKCδ) activation. Furthermore, PKCδ-induced ERK1/2 activation by the inhibition of GSK-3 provoked the production of interleukin (IL)-10, playing a crucial role in regulating endotoxemia. Using a mitogen-activated protein kinase kinase-1 (MEK-1) and PKCδ inhibitor, we confirmed that GSK-3 inhibition induces PKCδ and subsequent ERK1/2 activation, resulting in increased IL-10 expression under LPS-treated conditions. We verified that septic shock caused by LPS is attenuated by GSK-3 inhibition using a GSK-3 inhibitor. This relieved endotoxemia induced by GSK-3 inhibition was restored in an ERK1/2-dependent manner. Taken together, IL-10 expression produced by GSK-3 inhibition-induced ERK1/2 activation via PKCδ relieved LPS-mediated endotoxemia. This finding suggests that IL-10 hyperexpression resulting from GSK-3 inhibition-induced ERK activation could be a new therapeutic pathway for endotoxemia.

  6. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mirrione, M.M.; Mirrione, M.M.; Konomosa, D.K.; Ioradanis, G.; Dewey, S.L.; Agzzid, A.; Heppnerd, F.L.; Tsirka, St.E.

    2010-04-01

    Activated microglia have been associated with neurodegeneration in patients and in animal models of Temporal Lobe Epilepsy (TLE), however their precise functions as neurotoxic or neuroprotective is a topic of significant investigation. To explore this, we examined the effects of pilocarpine-induced seizures in transgenic mice where microglia/macrophages were conditionally ablated. We found that unilateral ablation of microglia from the dorsal hippocampus did not alter acute seizure sensitivity. However, when this procedure was coupled with lipopolysaccharide (LPS) preconditioning (1 mg/kg given 24 h prior to acute seizure), we observed a significant pro-convulsant phenomenon. This effect was associated with lower metabolic activation in the ipsilateral hippocampus during acute seizures, and could be attributed to activity in the mossy fiber pathway. These findings reveal that preconditioning with LPS 24 h prior to seizure induction may have a protective effect which is abolished by unilateral hippocampal microglia/macrophage ablation.

  7. Antioxidant and anti-inflammatory effects of Ruta chalepensis L. extracts on LPS-stimulated RAW 264.7 cells.

    Science.gov (United States)

    Kacem, Mohamed; Simon, Gaëlle; Leschiera, Raphael; Misery, Laurent; ElFeki, Abdelfattah; Lebonvallet, Nicolas

    2015-02-01

    Ruta chalepensis L. is used in the traditional herbal treatment of various diseases. The aim of this work is to investigate the effect of different extracts of R. chalepensis L. on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expressions and their antioxidant capacity on murine RAW 264.7 macrophage challenged with lipopolysaccharide (LPS). In fact, this study shows that the ethanol and ethyl acetate extracts of R. chalepensis L. considerably decreased the nitric oxide (NO) production in murine RAW 264.7 macrophages stimulated with lipopolysaccharide. Thus, the treatment with both extracts significantly suppressed the levels of iNOS and COX-2 gene expressions through the inhibition of the nuclear factor-κB (NF-κB) activation. The preincubation of RAW 264.7 cells with various concentrations of ethanol and ethyl acetate extracts decreased the production of thiobarbituric acid-reactive substances (TBARS) in a dose-dependent manner. It also increased the activities of antioxidative enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in LPS-stimulated macrophages, compared to those in the cells treated only with LPS. Besides, the (1)H NMR spectra of both extracts have demonstrated the presence of aromatic signals, thus confirming the existence of phenolic compounds such as flavonoids and polyphenols. So, the ethanol and ethyl acetate extracts of R. chalepensis L. have been shown to possess enough antioxidant and anti-inflammatory activities to prevent LPS-induced oxidative stress and inflammation in RAW 264.7 macrophages.

  8. 阿托伐他汀对脂多糖诱导的THP-1巨噬细胞炎症因子分泌的影响及机制%The Effect and Mechanism of Atorvastatin on the THP-1 Macrophage Proinflammatory Cytokines Secretion Induced by Lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    喻思扬; 曾高峰; 刘洋; 徐健强; 曾梦雅; 唐业华; 曾志英; 石小桥; 陈莹

    2016-01-01

    目的 观察阿托伐他汀对脂多糖(LPS)诱导的THP-1巨噬细胞炎症因子分泌的影响,并探讨其机制.方法 100 nmol/L佛波酯孵育THP-1细胞24 h,使其分化为巨噬细胞后,换无血清培养基,加入LPS和(或)阿托伐他汀进行处理.酶联免疫吸附法检测细胞上清液中白细胞介素1β(IL-1β)和白细胞介素18(IL-18)含量,荧光定量PCR检测细胞核苷酸结合寡聚化结构域样受体蛋白1(NLRP1)炎性体的mRNA表达,Western blot检测细胞NLRP1炎性体的蛋白表达.结果 阿托伐他汀可呈浓度、时间依赖性抑制LPS诱导的THP-1巨噬细胞IL-1β和IL-18释放;阿托伐他汀可下调THP-1巨噬细胞NLRP1炎性体mRNA和蛋白的表达.结论 阿托伐他汀抑制巨噬细胞炎症因子分泌,其作用机制可能与其下调NLRP1炎性体表达有关.%Aim To investigate the effect and potential mechanism of atorvastatin on the THP-1 macrophage proinflammatory cytokines release induced by lipopolysaccharide (LPS).Methods THP-1 cells were treated with phorbol 12-myristate 13-acetate (100 nmol/L) for 24 h to differentiate into macrophages.The medium was then replaced with serum-free medium containing LPS and (or) atorvastatin.The secretion of interleukin-1β (IL-1 β) and interleukin18 (IL-18) were quantitated using enzyme-linked immunosorbent assay analysis.The mRNA level of nucleotide-binding oligomerization domain-like receptor protein 1 (NLRP1) inflammasome was measured by real-time PCR.Western blot was employed to analyze the protein expression of NLRP1 inflammasome.Results Atorvastatin inhibited IL-1β and IL-18 secretion induced by LPS in THP-1 macrophages in a dose-and time-dependent manner.Atorvastatin decreased the mRNA and protein expression of NLRP1 inflammasome in THP-1 macrophages.Conclusion Atorvastatin reduces proinflammatory cytokines release from macrophages,and the mechanism might be related to the inhibition of NLRP1 inflammasome expression.

  9. A Human Anti-Toll Like Receptor 4 Fab Fragment Inhibits Lipopolysaccharide-Induced Pro-Inflammatory Cytokines Production in Macrophages.

    Science.gov (United States)

    Wang, Maorong; Zheng, Wenkai; Zhu, Xuhui; Xu, Jing; Cai, Binggang; Zhang, Yiqing; Zheng, Feng; Zhou, Linfu; Yang, Zhiguo; Zhang, Xin; Wang, Changjun; Nie, Shinan; Zhu, Jin

    2016-01-01

    The results of clinical and experimental studies suggest that endotoxin/toll-like receptor 4 (TLR4)-mediated proinflammatory and profibrotic signaling activation is critical in the development of hepatic fibrosis. However, studies examining the role of specific TLR4 inhibitor are still lacking. The present study was aimed to prepare a human anti-TLR4 Fab fragment, named hTLR4-Fab01, and to explore its immune activity. We screened the positive clone of anti-human TLR4 phagemid from a human phage-display antibody library using recombinant TLR4 protein, which was used as template cDNA for the amplification of variable regions of the heavy (VH) chain and light chain (VL), then coupled with highly conserved regions of the heavy chain domain 1 (CH1) and the light chain (CL), respectively. Thus, the prokaryotic expression vector pETDuet-1 of hTLR4-Fab01 was constructed and transformed into Escherichia coli (E. coli) BL21. The characteristic of hTLR4-Fab01 was examined by SDS-PAGE, Western blotting, ELISA, affinity and kinetics assay. Further, our data demonstrate that hTLR4-Fab01 could specifically bind to TLR4, and its treatment obviously attenuated the proinflammatory effect, characterized by less LPS-induced TNF-α, IL-1, IL-6 and IL-8 production in human macrophages. In conclusion, we have successfully prepared the hTLR4-Fab01 with efficient activity for blocking LPS-induced proinflammatory cytokines production, suggesting that the hTLR4-Fab01 may be a potential candidate for the treatment of hepatic fibrosis.

  10. Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia after spinal cord injury.

    Science.gov (United States)

    Hayakawa, Kentaro; Okazaki, Rentaro; Morioka, Kazuhito; Nakamura, Kozo; Tanaka, Sakae; Ogata, Toru

    2014-12-01

    The inflammatory response following spinal cord injury (SCI) has both harmful and beneficial effects; however, it can be modulated for therapeutic benefit. Endotoxin/lipopolysaccharide (LPS) preconditioning, a well-established method for modifying the immune reaction, has been shown to attenuate damage induced by stroke and brain trauma in rodent models. Although such effects likely are conveyed by tissue-repairing functions of the inflammatory response, the mechanisms that control the effects have not yet been elucidated. The present study preconditioned C57BL6/J mice with 0.05 mg/kg of LPS 48 hr before inducing contusion SCI to investigate the effect of LPS preconditioning on the activation of macrophages/microglia. We found that LPS preconditioning promotes the polarization of M1/M2 macrophages/microglia toward an M2 phenotype in the injured spinal cord on quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical analyses. Flow cytometric analyses reveal that LPS preconditioning facilitates M2 activation in resident microglia but not in infiltrating macrophages. Augmented M2 activation was accompanied by vascularization around the injured lesion, resulting in improvement in both tissue reorganization and functional recovery. Furthermore, we found that M2 activation induced by LPS preconditioning is regulated by interleukin-10 gene expression, which was preceded by the transcriptional activation of interferon regulatory factor (IRF)-3, as demonstrated by Western blotting and an IRF-3 binding assay. Altogether, our findings demonstrate that LPS preconditioning has a therapeutic effect on SCI through the modulation of M1/M2 polarization of resident microglia. The present study suggests that controlling M1/M2 polarization through endotoxin signal transduction could become a promising therapeutic strategy for various central nervous system diseases. © 2014 Wiley Periodicals, Inc.

  11. Effects of lipopolysaccharide on cytokines secreted by alveolar macrophages in aged rats%脂多糖对衰老大鼠肺泡巨噬细胞分泌细胞因子的影响

    Institute of Scientific and Technical Information of China (English)

    刘焕星; 姜智; 贾玉珍

    2007-01-01

    目的 探讨脂多糖(lipopolysaccharide,LPS)对衰老大鼠模型肺泡巨噬细胞(alveolar macrophage,AM)产生细胞因子的影响. 方法 ①将24只Wistar大鼠随机均分为2组,任取其中1组用D-半乳糖[D-galactose,D-gal,20 mg/(kg·d)]腹腔注射,连续6周制备衰老大鼠模型;另1组青年大鼠作为对照;②应用支气管肺泡灌洗和细胞贴壁的方法获取AM,用瑞氏染色鉴定纯度、台盼蓝染色测定活细胞数;③将各组获取的AM再随机均分为LPS刺激组及阴性对照组,其中LPS刺激组细胞在贴壁 2 h后加入含10 mg/L LPS的1640培养液,24 h后用酶联免疫吸附法(enzyma linked immunosorsent assay,ELISA)分别测定细胞上清液中肿瘤坏死因子-α(tumor necrosis factor-α,TNF- α)和内皮素(endolthelin,ET-1)的含量. 结果 (1)青年、老年大鼠LPS刺激组TNF-α、ET-1均高于对照组;(2)老年LPS刺激组肺泡灌洗液上清中TNF-α[ (31.32±2.38) pg/ml]高于青年LPS刺激组[(25.48±3.52) pg/ml, P《0.05];老年LPS刺激组ET-1[(3.91±0.11) pg/ml] 高于青年LPS刺激组[(3.17±0.11) pg/ml, P《0.05]. 结论 老年大鼠对LPS刺激的反应程度大于青年组,AM在炎症反应中起重要的作用.

  12. Lipopolysaccharide Enhances the Production of Nicotine-Induced Prostaglandin E2 by an Increase in Cyclooxygenase-2 Expression in Osteoblasts

    Institute of Scientific and Technical Information of China (English)

    Maiko SHOJI; Natsuko TANABE; Narihiro MITSUI; Naoto SUZUKI; Osamu TAKEICHI; Tomoko KATONO; Akira MOROZUMI; Masao MAENO

    2007-01-01

    Previous studies have indicated that lipopolysaccharide (LPS) from Gram-negative bacteria in plaque induces the release of prostaglandin E2 (PGE2),which promotes alveolar bone resorption in periodontitis,and that tobacco smoking might be an important risk factor for the development and severity of periodontitis.We determined the effect of nicotine and LPS on alkaline phosphatase (ALPase)activity,PGE2 production,and the expression of cyclooxygenase (COX-1,COX-2),PGE2 receptors Ep1-4,and macrophage colony stimulating factor(M-CSF)in human osteoblastic Saos-2 cells.The cells were cultured with 10-3 M nicotine in the presence of 0,1,or 10 μg/ml LPS,or with LPS alone.ALPase activity decreased in cells cultured with nicotine or LPS alone,and decreased further in those cultured with both nicotine and LPS,whereas PGE2 production significantly increased in the former and increased further in the latter.By itself,nicotine did not affect expression of COX-1,COX-2,any of the PGE2 receptors,or M-CSF,but when both nicotine and LPS were present,expression of COX-2,Ep3,Ep4,and M-CSF increased significantly.Simultaneous addition of 10-4 M indomethacin eliminated the effects of nicotine and LPS on ALPase activity,PGE2 production,and MCSF expression.Phosphorylation of protein kinase A was high in cells cultured with nicotine and LPS.These results suggest that LPS enhances the production of nicotine-induced PGE2 by an increase in COX-2 expression in osteoblasts,that nicotine-LPS-induced PGE2 interacts with the osteoblast Ep4 receptor primarily in autocrine or paracrine mode,and that the nicotine-LPS-induced PGE2 then decreases ALPase activity and increases M-CSF expression.

  13. Absolute stereostructures of olibanumols A, B, C, H, I, and J from olibanum, gum-resin of Boswellia carterii, and inhibitors of nitric oxide production in lipopolysaccharide-activated mouse peritoneal macrophages.

    Science.gov (United States)

    Yoshikawa, Masayuki; Morikawa, Toshio; Oominami, Hideo; Matsuda, Hisashi

    2009-09-01

    Three new monoterpenes, olibanumols A (1), B (2), and C (3), and three new triterpenes, olibanumols H (4), I (5), and J (6), were isolated from olibanum, the exuded gum-resin from Boswellia carterii BIRDW. Their structures including the absolute configuration were determined by chemical and physicochemical evidence. Among the constituents, olibanumols A (1), H (4), and I (5), and isofouquierol (12) exhibited nitric oxide production inhibitory activity in lipopolysaccharide-activated mouse peritoneal macrophages.

  14. A study to evaluate the effect of nootropic drug-piracetam on DNA damage in leukocytes and macrophages.

    Science.gov (United States)

    Singh, Sarika; Goswami, Poonam; Swarnkar, Supriya; Singh, Sheelendra Pratap; Wahajuddin; Nath, Chandishwar; Sharma, Sharad

    2011-11-27

    Piracetam is a nootropic drug that protects neurons in neuropathological and age-related diseases and the activation and modulation of peripheral blood cells in patients with neuropathological conditions is well known. Therefore, in the present study, in vivo, ex vivo, and in vitro tests were conducted to investigate the effect of piracetam on leukocytes and macrophages. Lipopolysaccharide (LPS) causes oxidative DNA damage; thus, in the present study, LPS was used as a tool to induce DNA damage. In vivo experiments were conducted on Sprague Dawley rats, and piracetam (600mg/kg, oral) was provided for five consecutive days. On the fifth day, a single injection of LPS (10mg/kg, i.p.) was administered. Three hours after LPS injection, blood leukocytes and peritoneal macrophages were collected and processed, and a variety of different assays were conducted. Ex vivo treatments were performed on isolated rat blood leukocytes, and in vitro experiments were conducted on rat macrophage cell line J774A.1. Cell viability and the level of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and DNA damage were estimated in untreated (control) and piracetam-, LPS- and LPS+piracetam-treated leukocytes and macrophages. In vivo experiments revealed that rats pretreated with piracetam were significantly protected against LPS-induced increases in ROS levels and DNA damage. Ex vivo isolated leukocytes and J774A.1 cells treated with LPS exhibited augmented ROS levels and DNA damage, which were attenuated with piracetam treatment. Thus, the present study revealed the salutary effect of piracetam against LPS-induced oxidative stress and DNA damage in leukocytes and macrophages. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    Science.gov (United States)

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  16. 多巴胺对脂多糖诱导小鼠腹腔巨噬细胞炎症反应的影响%Effect of dopamine on lipopolysaccharide-induced inflammatory response in mouse peritoneal macrophages

    Institute of Scientific and Technical Information of China (English)

    李琳; 李磊; 王慧丽; 谭燕; 吴晓凤; 刘锐; 温秀杰; 刘畅; 唐明

    2016-01-01

    Objective To investigate the effect of dopamine on lipopolysaccharide (LPS)-induced inflammatory response in mouse peritoneal macrophages (MPMs).Methods MPMs were isolated after injection of thioglycolate broth into the peritoneal cavity.MPMs from wild type C57 mice were distributed into control group,LPS group,dopamine pretreatment group,dopamine D1-like and and D2-like receptor antagonist groups (D1 and D2 antagonist groups).In the latter two groups,MPMs were pretreated with Dl-like and D2-like receptor antagonist respectively for 30 min,and then stimulated with dopamine and LPS.MPMs from wild type (TLR4 +/+) and TLR4 knock-out (TLR4-/-) mice were only divided into LPS group and dopamine pretreatment group.In LPS group,MPMs were stimulated with 1 μg/ml LPS for 6 h.In dopamine pretreatment group,MPMs were pretreated with 10-4 mol/L dopamine for 2 h,and then stimulated with 1μg/ml LPS for 6 h.Expressions of TLR4 and pro-IL-1βwere detected by Western blot and tumor necrosis factor-α (TNF-α) in cell culture supernatant by ELISA method.Results (1) Expressions of TLR4,pro-IL-1β and TNF-α in control group were (0.56 ± 0.07),(0.65 ± 0.11) and (1,770.6 ±448.8) pg/ml;in LPS group were (1.12 ± 0.15),(1.24 ± 0.20) and (15,569.5 ± 822.7) pg/ml;in dopamine pretreatment group were (0.28 ± 0.11),(0.22 ± 0.08) and (7,800.7 ±862.6)pg/ml;in D1 antagonist group were (0.25 ±0.12),(0.18 ±0.09) and (7,065.0 ± 1016.8)pg/ml;in D2 antagonist group were (0.80 ±0.09),(0.44 ±0.08) and (14,299.6 ± 1430.9)pg/ml.The three indicators in LPS group were increased compared to control group and dopamine pretreatment group (P < 0.05),and in D2 antagonist group were increased compared to dopamine pretreatment group (P < 0.05).There were no obvious differences between D1 antagonist group and dopamine pretreatment group(P >0.05).(2) After LPS stimulation,expressions of pro-IL-1 β and TNF-α in TLR4+/+ mice were (0.94 ±0.17) and (15,109.0 ± 1,903.4)pg/ml,and were (0.08 ±0

  17. CD36 is upregulated in mice with periodontitis and metabolic syndrome and involved in macrophage gene upregulation by palmitate.

    Science.gov (United States)

    Lu, Z; Li, Y; Brinson, C W; Kirkwood, K L; Lopes-Virella, M F; Huang, Y

    2017-03-01

    We reported that high-fat diet (HFD)-induced metabolic syndrome (MetS) exacerbates lipopolysaccharide (LPS)-stimulated periodontitis and palmitate, the major saturated fatty acid in the HFD, amplified LPS-stimulated gene expression in vitro. As CD36 is a major receptor for fatty acids, we investigated periodontal CD36 expression in mice with periodontitis and MetS, and the role of CD36 in inflammatory gene expression in macrophages stimulated by palmitate. MetS and periodontitis were induced in mice by HFD and periodontal injection of LPS, respectively. The periodontal CD36 expression and its relationship with alveolar bone loss were studied using immunohistochemistry, real-time PCR, and correlation analysis. The role of CD36 in upregulation of inflammatory mediators by LPS and palmitate in macrophages was assessed using pharmacological inhibitor and small interfering RNA. Periodontal CD36 expression was higher in mice with both MetS and periodontitis than that in mice with periodontitis or MetS alone and was correlated with osteoclastogenesis and alveolar bone loss. In vitro studies showed that CD36 expression in macrophages was upregulated by LPS and palmitate, and targeting CD36 attenuated palmitate-enhanced gene expression. CD36 expression is upregulated in mice with periodontitis and MetS and involved in gene expression in macrophages stimulated by palmitate and LPS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Anti-inflammatory Effect of Erdosteine in Lipopolysaccharide-Stimulated RAW 264.7 Cells.

    Science.gov (United States)

    Park, Jong Sun; Park, Mi-Young; Cho, Young-Jae; Lee, Jae Ho; Yoo, Chul-Gyu; Lee, Choon-Taek; Lee, Sang-Min

    2016-08-01

    Erdosteine is widely used as a mucolytic agent and also has free radical scavenging and antioxidant activities. However, little is known about the mechanisms of the anti-inflammatory effect of erdosteine. We investigated the effect of erdosteine on the activation of the nuclear factor (NF)-kB/inhibitor of NFkB (IkB), and the mitogen-activated protein kinase (MAPK) and Akt pathways in the mouse macrophage cell line RAW 264.7. Cultured RAW 264.7 cells were pretreated with erdosteine and stimulated with lipopolysaccharide (LPS). In Western blotting, pretreatment with erdosteine inhibited the IkBα degradation induced in RAW 264.7 cells by LPS. LPS-induced IkB kinase (IKK) activity and NF-kB transcription were inhibited by pretreatment with erdosteine. Production of IL-6 and IL-1β was also inhibited by erdosteine pretreatment. However, erdosteine did not inhibit LPS-induced phosphorylation of Akt and MAPKs. These results suggest that the anti-inflammatory effect of erdosteine in mouse macrophages is mediated through inhibition of LPS-induced NF-kB activation.

  19. Okra (Abelmoschus esculentus Linn) inhibits lipopolysaccharide ...

    African Journals Online (AJOL)

    extract on the production of reactive oxygen species (ROS) and pro-inflammatory cytokines in lipopolysaccharide ... suppressed LPS-induced NO as well as ROS compared to untreated cells. ... the human diet, supplying many nutrients. Okra.

  20. CCR5 deficiency increased susceptibility to lipopolysaccharide-induced acute renal injury.

    Science.gov (United States)

    Lee, Dong Hun; Park, Mi Hee; Hwang, Chul Ju; Hwang, Jae Yeon; Yoon, Hae Suk; Yoon, Do Young; Hong, Jin Tae

    2016-05-01

    C-C chemokine receptor 5 (CCR5) regulates leukocyte chemotaxis and activation, and its deficiency exacerbates development of nephritis. Therefore, we investigated the role of CCR5 during lipopolysaccharide (LPS)-induced acute kidney injury. CCR5-deficient (CCR5-/-) and wild-type (CCR5+/+) mice, both aged about 10 months, had acute renal injury induced by intraperitoneal injection of LPS (10 mg/kg). Compared with CCR5+/+ mice, CCR5-/- mice showed increased mortality and renal injury, including elevated creatinine and blood urea nitrogen levels, following LPS challenge. Compared to CCR5+/+ mice, CCR5-/- mice also exhibited greater increases in the serum concentrations of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β following LPS challenge. Furthermore, infiltration of macrophages and neutrophils, expression of intracellular adhesion molecule (ICAM)-1, and the number of apoptotic cells were more greatly increased by LPS treatment in CCR5-/- mice than in CCR5+/+ mice. The concentrations of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β were also significantly increased in the kidney of CCR5-/- mice after LPS challenge. Moreover, primary kidney cells from CCR5-/- mice showed greater increases in TNF-α production and p38 MAP kinase activation following treatment with LPS compared with that observed in the cells from CCR5+/+ mice. LPS-induced TNF-α production and apoptosis in the primary kidney cells from CCR5-/- mice were inhibited by treatment with p38 MAP kinase inhibitor. These results suggest that CCR5 deficiency increased the production of TNF-α following LPS treatment through increased activation of the p38 pathway in the kidney, resulting in renal apoptosis and leukocyte infiltration and led to exacerbation of LPS-induced acute kidney injury.

  1. Obese mice exhibit an altered behavioural and inflammatory response to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Catherine B. Lawrence

    2012-09-01

    Obesity is associated with an increase in the prevalence and severity of infections. Genetic animal models of obesity (ob/ob and db/db mice display altered centrally-mediated sickness behaviour in response to acute inflammatory stimuli such as lipopolysaccharide (LPS. However, the effect of diet-induced obesity (DIO on the anorectic and febrile response to LPS in mice is unknown. This study therefore determined how DIO and ob/ob mice respond to a systemic inflammatory challenge. C57BL/6 DIO and ob/ob mice, and their respective controls, were given an intraperitoneal (i.p. injection of LPS. Compared with controls, DIO and ob/ob mice exhibited an altered febrile response to LPS (100 μg/kg over 8 hours. LPS caused a greater and more prolonged anorexic effect in DIO compared with control mice and, in ob/ob mice, LPS induced a reduction in food intake and body weight earlier than it did in controls. These effects of LPS in obese mice were also seen after a fixed dose of LPS (5 μg. LPS (100 μg/kg induced Fos protein expression in several brain nuclei of control mice, with fewer Fos-positive cells observed in the brains of obese mice. An altered inflammatory response to LPS was also observed in obese mice compared with controls: changes in cytokine expression and release were detected in the plasma, spleen, liver and peritoneal macrophages in obese mice. In summary, DIO and ob/ob mice displayed an altered behavioural response and cytokine release to systemic inflammatory challenge. These findings could help explain why obese humans show increased sensitivity to infections.

  2. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    Science.gov (United States)

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease.

  3. The Potential Role of an Endotoxin Tolerance-Like Mechanism for the Anti-inflammatory Effect of Spirulina platensis Organic Extract in Macrophages.

    Science.gov (United States)

    Pham, Tho X; Park, Young-Ki; Bae, Minkyung; Lee, Ji-Young

    2017-01-25

    Endotoxin tolerance is a phenomenon where exposure of innate immune cells to lipopolysaccharide (LPS) induces a refractory state to subsequent endotoxin exposures. The goal of this study was to investigate if Spirulina platensis organic extract (SPE) induces an endotoxin tolerance-like state. We used splenocytes and peritoneal macrophages from C57BL/6J mice fed a high-fat/high-sucrose (HF/HS) control or a HF/HS diet containing 0.25% (w/w) SPE for 16 weeks for ex vivo LPS stimulation and endotoxin-tolerant (ET) macrophages to evaluate the effects of SPE on endotoxin tolerance. Cells from SPE-fed mice displayed significantly less expression of proinflammatory genes than those from control mice. ET macrophages were produced in vitro by incubating RAW 264.7 macrophages with low-dose LPS to determine the energy phenotype of naive, SPE-treated, and ET macrophages. Compared to naive macrophages exposed to a high-dose LPS (100 ng/mL) for the first time, ET macrophages showed significantly less proinflammatory gene expression after LPS stimulation, which was also observed with SPE treatment. Consistently, nuclear translocation of p65 was markedly reduced in both ET- and SPE-treated macrophages on LPS stimulation with increase in nuclear protein levels of p50 and B cell lymphoma 3-encoded protein. In conclusion, the anti-inflammatory effect of SPE is at least partly attributable to the induction of an endotoxin tolerance-like state in macrophages, which shares common characteristics of macrophage endotoxin tolerance.

  4. Zuonin B Inhibits Lipopolysaccharide-Induced Inflammation via Downregulation of the ERK1/2 and JNK Pathways in RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Mee-Young Lee

    2012-01-01

    Full Text Available We investigated whether Zuonin B exerts immunological effects on RAW264.7 cells. Zuonin B, isolated from flower buds of Daphne genkwa, suppressed the levels of nitric oxide and prostaglandin E2, as well as proinflammatory cytokines, such as tumor necrosis factor-α and interleukin-(IL- 6, in lipopolysaccharide-stimulated macrophages. Moreover, the compound inhibited cyclooxygenase-2 and inducible nitric oxide synthase expression. Zuonin B attenuated NF-kappaB (NF-κB activation via suppressing proteolysis of inhibitor kappa B-alpha (IκB-α and p65 nuclear translocation as well as phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase. Additionally, IL-4 and IL-13 production in ConA-induced splenocytes was inhibited by Zuonin B. In conclusion, the anti-inflammatory effects of Zuonin B are attributable to the suppression of proinflammatory cytokines and mediators via blockage of NF-κB and AP-1 activation. Based on these findings, we propose that Zuonin B is potentially an effective functional chemical candidate for the prevention of inflammatory diseases.

  5. Endotoxin Molecule Lipopolysaccharide-Induced Zebrafish Inflammation Model: A Novel Screening Method for Anti-Inflammatory Drugs

    Directory of Open Access Journals (Sweden)

    Li-Ling Yang

    2014-02-01

    Full Text Available Lipopolysaccharide (LPS, an endotoxin molecule, has been used to induce inflammatory responses. In this study, LPS was used to establish an in vivo inflammation model in zebrafish for drug screening. We present an experimental method that conveniently and rapidly assesses the anti-inflammatory properties of drugs. The yolks of 3-day post-fertilization (dpf larvae were injected with 0.5 mg/mL LPS to induce fatal inflammation. After LPS stimulation, macrophages were tracked by NR and SB staining and neutrophil migration was observed using the MPO:GFP line. Larval mortality was used as the primary end-point. Expression levels of key cytokines involved in the inflammatory response including IL-1β, IL-6, and TNF-α, were measured using quantitative reverse transcription polymerase chain reaction (RT-PCR. Macrophages and neutrophils were both recruited to the LPS-injected site during the inflammatory response. Mortality was increased by LPS in a dose-dependent manner within 48 h. Analyses of IL-1β, IL-6, and TNF-α expression levels revealed the upregulation of the inflammatory response in the LPS-injected larvae. Further, the anti-inflammatory activity of chlorogenic acid (CA was evaluated in this zebrafish model to screen for anti-inflammatory drugs. A preliminary result showed that CA revealed a similar effect as the corticosteroid dexamethasone (DEX, which was used as a positive control, by inhibiting macrophage and neutrophil recruitment to the LPS site and improving survival. Our results suggest that this zebrafish screening model could be applied to study inflammation-mediated diseases. Moreover, the Traditional Chinese Medicine CA displays potential anti-inflammatory activity.

  6. Morpho-histology of head kidney of female catfish Heteropneustes fossilis: seasonal variations in melano-macrophage centers, melanin contents and effects of lipopolysaccharide and dexamethasone on melanins.

    Science.gov (United States)

    Kumar, Ravi; Joy, K P; Singh, S M

    2016-10-01

    In the catfish Heteropneustes fossilis, the anterior kidney is a hemopoietic tissue which surrounds the adrenal homologues, interrenal (IR) and chromaffin tissues corresponding to the adrenal cortical and adrenal medulla of higher mammals. The IR tissue is arranged in cell cords around the posterior cardinal vein (PCV) and its tributaries and secretes corticosteroids. The chromaffin tissue is scattered singly or in nests of one or more cells around the epithelial lining of the PCV or blood capillaries within the IR tissue. They are ferric ferricyanide-positive. Leukemia-inhibitory factor (LIF)-like reactivity was noticed in the lining of the epithelium of the IR cell cords and around the wall of the PCV and blood capillaries. No staining was observed in the hemopoietic cells. IL-1β- and TNF-α-like immunoreactivity was seen in certain cells in the hemopoietic tissue but not in the IR region. Macrophages were identified with mammalian macrophage-specific MAC387 antibodies and are present in the hemopoietic mass but not in the IR tissue. Pigments accumulate in the hemopoietic mass as melano-macrophage centers (MMCs) and are PAS-, Schmorl's- and Perls'-positive. The pigments contain melanin (black), hemosiderin (blue) and lipofuscin/ceroid (oxidized lipid, yellowish tan), as evident from the Perls' reaction. The MMCs were TUNEL-positive as evident from FITC fluorescence, indicating their apoptotic nature. The MMCs showed significant seasonal variation with their density increasing to the peak in the postspawning phase. Melanins were characterized spectrophotometrically for the first time in fish anterior kidney. The predominant form is pheomelanin (PM), followed by eumelanin (EM) and alkali-soluble melanin (ASM). Melanins showed significant seasonal variations with the level low in the resting phase and increasing to the peak in the postspawning phase. Under in vitro conditions, lipopolysaccharide (10 µg/mL) treatment increased significantly the levels of PM and EM

  7. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response

    Science.gov (United States)

    Shi, Chung-Sheng; Hsiao, Shi-Ming; Kao, Yuan-Chung; Kuo, Kuan-Lin; Ma, Chih-Yuan; Kuo, Cheng-Hsiang; Chang, Bi-Ing; Chang, Chuan-Fa; Lin, Chun-Hung; Wong, Chi-Huey

    2008-01-01

    Thrombomodulin (TM), a widely expressing glycoprotein originally identified in vascular endothelium, is an important cofactor in the protein C anticoagulant system. TM appears to exhibit anti-inflammatory ability through both protein C–dependent and –independent pathways. We presently have demonstrated that recombinant N-terminal lectinlike domain of TM (rTMD1) functions as a protective agent against sepsis caused by Gram-negative bacterial infections. rTMD1 caused agglutination of Escherichia coli and Klebsiella pneumoniae and enhanced the macrophage phagocytosis of these Gram-negative bacteria. Moreover, rTMD1 bound to the Klebsiella pneumoniae and lipopolysaccharide (LPS) by specifically interacting with Lewis Y antigen. rTMD1 inhibited LPS-induced inflammatory mediator production via interference with CD14 and LPS binding. Furthermore, rTMD1 modulated LPS-induced mitogen-activated protein kinase and nuclear factor-κB signaling pathway activations and inducible nitric oxide synthase expression in macrophages. Administration of rTMD1 protected the host by suppressing inflammatory responses induced by LPS and Gram-negative bacteria, and enhanced LPS and bacterial clearance in sepsis. Thus, rTMD1 can be used to defend against bacterial infection and inhibit LPS-induced inflammatory responses, suggesting that rTMD1 may be valuable in the treatment of severe inflammation in sepsis, especially in Gram-negative bacterial infections. PMID:18711002

  8. Chikusetsusaponin IVa Methyl Ester Isolated from the Roots of Achyranthes japonica Suppresses LPS-Induced iNOS, TNF-α, IL-6, and IL-1β Expression by NF-κB and AP-1 Inactivation.

    Science.gov (United States)

    Lee, Hae-Jun; Shin, Ji-Sun; Lee, Woo-Seok; Shim, Heon-Yong; Park, Ji-Min; Jang, Dae-Sik; Lee, Kyung-Tae

    2016-01-01

    We investigated the effect of chikusetsusaponin IVa (CS) and chikusetsusaponin IVa methyl ester (CS-ME) from the roots of Achyranthes japonica NAKAI on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW264.7 macrophages. CS-ME more potently inhibited LPS-induced NO and PGE2 production than CS. CS-ME concentration-dependently inhibited LPS-induced tumor necrosis factor (TNF)-α and interleukin (IL)-6 and IL-1β production in RAW264.7 macrophages and mouse peritoneal macrophages. Consistent with these findings, CS-ME suppressed LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 at protein level as well as iNOS, COX-2, TNF-α, IL-6, and IL-1β at mRNA level. In addition, CS-ME suppressed LPS-induced transcriptional activity of nuclear factor (NF)-κB and activator protein (AP)-1. The anti-inflammatory properties of CS-ME might result from suppression of iNOS, COX-2, TNF-α, IL-6, and IL-1β expression through downregulation of NF-κB and AP-1 in macrophages.

  9. The influence of N-acetyl-L-cysteine on oxidative stress and nitric oxide synthesis in stimulated macrophages treated with a mustard gas analogue

    Directory of Open Access Journals (Sweden)

    Smith Milton

    2008-06-01

    Full Text Available Abstract Background Sulphur mustard gas, 2, 2'-dichlorodiethyl sulphide (HD, is a chemical warfare agent. Both mustard gas and its monofunctional analogue, 2-chloroethyl ethyl sulphide (CEES, are alkylating agents that react with and diminish cellular thiols and are highly toxic. Previously, we reported that lipopolysaccharide (LPS significantly enhances the cytotoxicity of CEES in murine RAW 264.7 macrophages and that CEES transiently inhibits nitric oxide (NO production via suppression of inducible NO synthase (iNOS protein expression. NO generation is an important factor in wound healing. In this paper, we explored the hypotheses that LPS increases CEES toxicity by increasing oxidative stress and that treatment with N-acetyl-L-cysteine (NAC would block LPS induced oxidative stress and protect against loss of NO production. NAC stimulates glutathione (GSH synthesis and also acts directly as a free radical scavenger. The potential therapeutic use of the antibiotic, polymyxin B, was also evaluated since it binds to LPS and could thereby block the enhancement of CEES toxicity by LPS and also inhibit the secondary infections characteristic of HD/CEES wounds. Results We found that 10 mM NAC, when administered simultaneously or prior to treatment with 500 μM CEES, increased the viability of LPS stimulated macrophages. Surprisingly, NAC failed to protect LPS stimulated macrophages from CEES induced loss of NO production. Macrophages treated with both LPS and CEES show increased oxidative stress parameters (cellular thiol depletion and increased protein carbonyl levels. NAC effectively protected RAW 264.7 cells simultaneously treated with CEES and LPS from GSH loss and oxidative stress. Polymyxin B was found to partially block nitric oxide production and diminish CEES toxicity in LPS-treated macrophages. Conclusion The present study shows that oxidative stress is an important mechanism contributing to CEES toxicity in LPS stimulated macrophages and

  10. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages

    Directory of Open Access Journals (Sweden)

    C. Guo

    Full Text Available Glucagon-like peptide 1 (GLP-1, a kind of gut hormone, is used in the treatment of type 2 diabetes (T2D. Emerging evidence indicates that GLP-1 has anti-inflammatory activity. Chronic inflammation in the adipose tissue of obese individuals is a cause of insulin resistance and T2D. We hypothesized that GLP-1 analogue therapy in patients with T2D could suppress the inflammatory response of macrophages, and therefore inhibit insulin resistance. Our results showed that GLP-1 agonist (exendin-4 not only attenuated macrophage infiltration, but also inhibited the macrophage secretion of inflammatory cytokines including TNF-β, IL-6, and IL-1β. Furthermore, we observed that lipopolysaccharide (LPS-induced macrophage conditioned media could impair insulin-stimulated glucose uptake. This effect was compensated by treatment with the conditioned media from macrophages treated with the combination of LPS and exendin-4. It was also observed that exendin-4 directly inhibited the activation of NF-κB in macrophages. In conclusion, our results indicated that GLP-1 improved inflammatory macrophage-derived insulin resistance by inhibiting NF-κB pathway and secretion of inflammatory cytokines in macrophages. Furthermore, our observations suggested that the anti-inflammatory effect of GLP-1 on macrophages can contribute to GLP-1 analogue therapy of T2D.

  11. Effect of low doses of lipopolysaccharide prior to ozone exposure οn bronchoalveolar lavage. Differences between wild type and surfactant protein A-deficient mice

    Directory of Open Access Journals (Sweden)

    Rizwanul Haque

    2009-01-01

    Full Text Available SUMMARY. BACKGROUND: Several aspects of the inflammatory response to a single insult, i.e., exposure to 2 ppm of ozone (O3 for 3 h or 6 h, are less pronounced in surfactant protein A deficient (SP-A -/- mice (KO than in wild type mice (WT. It was hypothesized that a mild insult, specifically low doses of lipopolysaccharide (LPS, would adversely affect host defense and differentially potentiate O3-induced injury in WT and KO mice. METHODS: WT and KO mice were treated with different doses of LPS or LPS (2 ng + O3 (2 ppm or filtered air (FA for 3 h, then sacrificed 4 h following exposure (O3, FA or 20 h after LPS treatment alone. Several endpoints of inflammation were measured in bronchoalveolar lavage (BAL. RESULTS: 1 At 20 h after LPS treatment alone, both WT and KO mice exhibited signs of inflammation, but with differences in the macrophage inflammatory protein 2 (MIP-2 response pattern, total cells (at 0.5 ng LPS and basal levels of oxidized protein and phospholipids; 2 After LPS + O3, KO compared to WT showed decrease in polymorphonuclear leukocytes (PMNs and MIP-2 and increase in phospholipids, and after LPS + FA an increase in total cells; 3 WT after LPS + FA showed an increase in SP-A with no further increase after LPS + O3, and an increase in oxidized SP-A dimer following O3 or LPS + O3. CONCLUSIONS: LPS treatment has negative effects on inflammation endpoints in mouse BAL long after exposure and renders KO mice less capable of responding to a second insult. LPS and O3 affect SP-A, quantitatively and qualitatively, respectively. Pneumon 2009; 22(2:131–155.

  12. Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines.

    Directory of Open Access Journals (Sweden)

    Shuyi Zhang

    Full Text Available BACKGROUND: The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis. Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. METHODOLOGY/PRINCIPAL FINDINGS: To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS, and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. CONCLUSIONS/SIGNIFICANCE: This study provides global gene expression data for a diverse set of biologically

  13. CD163 and CD206 expression does not correlate with tolerance and cytokine production in LPS-tolerant human monocytes.

    Science.gov (United States)

    Alves-Januzzi, Amanda Barba; Brunialti, Milena Karina Colo; Salomao, Reinaldo

    2017-05-01

    Lipopolysaccharide (LPS)-tolerant monocytes produce small amounts of inflammatory cytokines, which is one of the characteristics of the alternative activated macrophages (AAM). These cells exhibited an increased expression of CD206 and CD163. Given the functional similarities of AAMs with the modulation of monocytes' functions observed during sepsis and LPS-tolerance, we evaluated whether the inhibition of inflammatory cytokine production by LPS-tolerant monocytes is associated with the phenotype of cells expressing CD206 and CD163. We investigated whether tolerant human monocytes would modulate their expression of CD206 and CD163, markers of alternative activation, and whether the level of their expression would be related to cytokines detection. Tolerance to LPS was induced in peripheral blood mononuclear cell by pre-incubating the cells with increasing concentrations of LPS. The expression of CD206 and CD163 and intracellular TNF-α and IL-6 was determined 24 h after LPS challenge by flow cytometry. No differences in CD163 expression were observed between tolerant and non-tolerant cells, while the expression of CD206, which was decreased following LPS stimulation in non-tolerized cells, was further reduced in tolerant cells. Decreased production of inflammatory cytokines was observed in the tolerized cells, regardless of the expression of CD163 and CD206, with the exception of IL-6 in CD206+ monocytes, which was similarly expressed in both tolerized and non-tolerized cells. The effect of LPS in the expression of CD163 and CD206 on monocytes is not reverted in LPS tolerant cells, and the inhibition of inflammatory cytokines in tolerant cells is not related with modulation of these receptors. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  14. Nitric Oxide Interaction with Lactoferrin and Its Production by Macrophage Cells Studied by EPR and Spin Trapping

    Science.gov (United States)

    1993-01-01

    Hibbq, Jr., R.R. Taintor and Z. Vavrin (1987) Macrophage cytotoxicity: role for I.- arginine deiminase and imino nitrogen oxidation to nitrite. Science...of NO originates from the N-terminal guanidino group of L- arginine . 3 Although the exact role of NO in cells remains uncertain, several properties of...purchased from Matheson Gas Products, Inc. (Fairfield, NJ). Lipopolysaccharide (LPS), Cu,Zn-superoxide dismutase (SOD), bovine lactoferrin, L- arginine

  15. Effect of azithromycin on the LPS-induced production and secretion of phospholipase A2 in lung cells.

    Science.gov (United States)

    Kitsiouli, Eirini; Antoniou, Georgia; Gotzou, Helen; Karagiannopoulos, Michalis; Basagiannis, Dimitris; Christoforidis, Savvas; Nakos, George; Lekka, Marilena E

    2015-07-01

    Azithromycin is a member of macrolides, utilized in the treatment of infections. Independently, these antibiotics also possess anti-inflammatory and immunomodulatory properties. Phospholipase A2 isotypes, which are implicated in the pathophysiology of inflammatory lung disorders, are produced by alveolar macrophages and other lung cells during inflammatory response and can promote lung injury by destructing lung surfactant. The aim of the study was to investigate whether in lung cells azithromycin can inhibit secretory and cytosolic phospholipases A2, (sPLA2) and (cPLA2), respectively, which are induced by an inflammatory trigger. In this respect, we studied the lipopolysaccharide (LPS)-mediated production or secretion of sPLA2 and cPLA2 from A549 cells, a cancer bronchial epithelial cell line, and alveolar macrophages, isolated from bronchoalveolar lavage fluid of ARDS and control patients without cardiopulmonary disease or sepsis. Pre-treatment of cells with azithromycin caused a dose-dependent decrease in the LPS-induced sPLA2-IIA levels in A549 cells. This inhibition was rather due to reduced PLA2G2A mRNA expression and secretion of sPLA2-IIA protein levels, as observed by western blotting and indirect immunofluorescence by confocal microscopy, respectively, than to the inhibition of the enzymic activity per se. On the contrary, azithromycin had no effect on the LPS-induced production or secretion of sPLA2-IIA from alveolar macrophages. The levels of LPS-induced c-PLA2 were not significantly affected by azithromycin in either cell type. We conclude that azithromycin exerts anti-inflammatory properties on lung epithelial cells through the inhibition of both the expression and secretion of LPS-induced sPLA2-IIA, while it does not affect alveolar macrophages.

  16. Effects of Lycopene on Lipopolysaccharide-induced Inflammatory Response in Macrophages and Its Possible Molecular Mechanism%番茄红素对脂多糖诱导巨噬细胞炎症反应的作用及其分子机制

    Institute of Scientific and Technical Information of China (English)

    冯丹; 凌文华

    2011-01-01

    [Objective] To investigate the effects of lycopene on lipopolysaccharide (LPS)-induced proinflammatoiy cytokines production in RAW264.7 cells and its possible molecular mechanism. [Methods] RAW264.7 cells were pretreated with 1,5, and 10 μmol/L lycopene for 1 h and then treated with 1μg/mL LPS for different time. The LPS-induced NO and IL-6 release in macrophages were assayed by the methods of Griess and ELISA, respectively. Western blotting was used to analyze nuclear factor-KB (NF-κB) P65, phosphorylated and non-phosphorylated I-KBα, mitogen activated protein kinases (MAPKs) protein expression.[Results] Lycopene inhibited LPS-induced production of nitric oxide (NO) and interleukin-6 (IL-6). Further study showed that lycopene also inhibited LPS-induced I-Kba phosphorylation, I-Kba degradation, and NF-kB translocation. Moreover, lycopene blocked the phosphorylation of ERKI/2 and p38 MAP kinase but not c-Jun NH2-terminaI kinase. [Conclusion] Lycopene inhibits the inflammatory response of RAW 264.7 cells to LPS through inhibiting ERK/p38MAP kinase and the NF-κB pathway, which is one of the mechanisms responsible for preventing inflammation-related diseases by lycopene.%[目的]探讨番茄红素对脂多糖(LPS)所诱导的RAW264.7巨噬细胞炎症因子生成的影响及其作用的分子机制.[方法]分别用1、5、10 μmol/L的番茄红素孵育细胞1 h,再用1μg/mL LPS处理细胞不同时间,分别用Griess法和ELISA法检测RAW264.7巨噬细胞培养基中NO及IL-6的含量,用Western-blot检测核因子-κB(NF-κB)p65、磷酸化和非磷酸化I-κBα、丝裂原活化蛋白激酶(MAPKs)的蛋白表达量.[结果]番茄红素能有效地降低炎性因子NO和IL-6分泌,进一步研究显示番茄红素能够抑制LPS诱导I-κBα磷酸化和降解、NF-κB核转移,阻断ERK1/2和p38 MAPK激活,而对JNK活化没有影响.[结论]番茄红素能够通过抑制ERK1/2和p38 MAPK信号通路的激活而抑制巨噬细胞NF-κB依赖的炎症因子N0

  17. LPS-TLR4/NF-kB信号通路与抗炎免疫研究进展

    Institute of Scientific and Technical Information of China (English)

    何金鑫; 黄丽华

    2013-01-01

    脂多糖(lipopolysaccharide, LPS)可以激活许多与炎症发生的相关的细胞(如单核细胞和巨噬细胞等),引起相关细胞的细胞因子的合成以及释放,最终导致生物体全身炎症的发生。LPS可以与巨噬细胞表面上的Tol -4受体(TLR4)受体相结合,引起自噬反应的发生,从而利于巨噬细胞对生物体内病原体的吞噬。近些年来,大量的研究表明LPS-TLR4/NF-kB信号通路与生物的炎症密切相关,本文主要综述了LPS,TLR4,NF - kB以及它们之间形成的通路与抗炎免疫的关系,从而为临床上LPS引起的炎症的治疗提供新的途径。%lipopolysaccharide (LPS) lipopolysaccharide, can activate many cels related to inflammation, (such as monocytes and macrophages, etc.), and cause the related cels and synthesis of cytokines and release, eventualy leading to organism systemic inflammation. LPS can combine macrophage receptor on the surface of Tol - 4 (TLR4) receptors, causing the occurrence of autophagy reaction, thus conducive to macrophage phagocytosis of biological pathogens in the body. In recent years, a large number of studies have shown that LPS - TLR4/ NF - kB signaling pathway is closely related to inflammation of the creatures. This paper mainly summarized the LPS, TLR4, NF - kB and formation of the channel between them and the relationship of them. This paper provides a new way for the clinical treatment of inflammation caused by LPS.

  18. Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Bigagli, Elisabetta; Cinci, Lorenzo; Paccosi, Sara; Parenti, Astrid; D'Ambrosio, Mario; Luceri, Cristina

    2017-02-01

    The health benefits of bio-active phenolic compounds have been largely investigated in vitro at concentrations which exceed those reachable in vivo. We investigated and compared the anti-inflammatory effects of resveratrol, hydroxytyrosol and oleuropein at physiologically relevant concentrations by using in vitro models of inflammation. Human granulocytes and monocytes were stimulated with phorbol myristate acetate (PMA) and the ability of resveratrol, hydroxytyrosol and oleuropein to inhibit the oxidative burst and CD11b expression was measured. Nitric oxide (NO), prostaglandin E2 (PGE2) levels, COX-2, iNOS, TNFα, IL-1β and miR-146a expression and activation of the transcription factor Nrf2 were evaluated in macrophages RAW 264.7 stimulated with LPS (1μg/ml) for 18h, exposed to resveratrol, hydroxytyrosol and oleuropein (5 and 10μM). Synergistic effects were explored as well, together with the levels of PGE2, COX-2 and IL-1β expression in macrophages after 6h of LPS stimulation. PGE2 and COX-2 expression were also assessed on human monocytes. All the tested compounds inhibited granulocytes oxidative burst in a concentration dependent manner and CD11b expression was also significantly counteracted by resveratrol and hydroxytyrosol. The measurement of oxidative burst in human monocytes produced similar effects being resveratrol more active. Hydroxytyrosol and resveratrol inhibited the production of NO and PGE2 but did not reduce iNOS, TNFα or IL-1β gene expression in LPS-stimulated RAW 264.7 for 18h. Resveratrol slightly decreased COX-2 expression after 18h but not after 6h, but reduced PGE2 levels after 6h. Resveratrol and hydroxytyrosol 10μM induced NRf2 nuclear translocation and reduced miR-146a expression in LPS treated RAW 264.7. Overall, we reported an anti-inflammatory effect of resveratrol and hydroxytyrosol at low, nutritionally relevant concentrations, involving the inhibition of granulocytes and monocytes activation, the modulation of miR-146a

  19. Inhibitory effects of β-chamigrenal, isolated from the fruits of Schisandra chinensis, on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in RAW 264.7 macrophages [corrected].

    Science.gov (United States)

    Shin, Ji-Sun; Ryu, Suran; Cho, Young-Wuk; Kim, Hyun Ji; Jang, Dae Sik; Lee, Kyung-Tae

    2014-06-01

    Much is known about the bioactive properties of lignans from the fruits of Schisandra chinensis. However, very little work has been done to determine the properties of sesquiterpenes in the fruits of S. chinensis. The aim of the present study was to investigate the anti-inflammatory potential of new sesquiterpenes (β-chamigrenal, β-chamigrenic acid, α-ylangenol, and α-ylangenyl acetate) isolated from the fruits of S. chinensis and to explore their effect on macrophages stimulated with lipopolysaccharide. Of these four sesquiterpenes, β-chamigrenal most significantly suppressed lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in RAW 264.7 macrophages (47.21 ± 4.54 % and 51.61 ± 3.95 % at 50 µM, respectively). Molecularly, the inhibitory activity of β-chamigrenal on nitric oxide production was mediated by suppressing inducible nitric oxide synthase activity but not its expression. In the prostaglandin E2 synthesis pathway, β-chamigrenal prevented the upregulation of inducible microsomal prostaglandin E synthase-1 expression after stimulation with lipopolysaccharide. Conversely, β-chamigrenal had no effect on the expression and enzyme activity of cyclooxygenase-2. In addition, the expression of early growth response factor-1, a key transcription factor of microsomal prostaglandin E synthase-1 expression, was inhibited by β-chamigrenal. These results may suggest a possible anti-inflammatory activity of β-chamigrenal which has to be proven in in vivo experiments.

  20. Sensitization to lipopolysaccharide in mice with asymptomatic viral infection: role of T cell-dependent production of interferon-gamma

    DEFF Research Database (Denmark)

    Nansen, A; Christensen, Jan Pravsgaard; Marker, O

    1997-01-01

    The interplay between viral infection and lipopolysaccharide (LPS) was studied. Infection with a noncytopathogenic virus, lymphocytic choriomeningitis virus (LCMV), was found to sensitize mice to low doses of LPS. In vivo, this hypersensitivity correlated with hyperproduction of tumor necrosis...... was observed in LCMV-infected, T cell-deficient mice and in mice infected with vesicular stomatitis virus, a virus that induces much less T cell activation than does LCMV. Finally, LCMV infection was much less efficient in priming IFN-gamma knockout mice for hyperproduction of TNF-alpha. These findings...... indicate that clinically silent viral infections may induce hypersensitivity to LPS through T cell activation and subsequent production of IFN-gamma; this sensitizes monocytes/macrophages for hyperproduction of TNF-alpha....

  1. ACTIVATION OF HUMAN BLOOD MONONUCLEARS BY LIPOPOLYSACCHARIDE OF DIFFERENT COMPOSITION

    Directory of Open Access Journals (Sweden)

    S. V. Zubova

    2010-01-01

    Full Text Available Influence of lipopolysaccharide (LPS composition upon activation of human blood mononuclears was investigated, by measuring levels of pro-inflammatory TNFα and IL-6 cytokines released by the cells. It is shown that LPS from Rhodobacter capsulatus PG, in contrast to E. coli LPS, did not activate the target cells for synthesis of the cytokines.

  2. Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides

    DEFF Research Database (Denmark)

    Kubiak, Jakub; Brewer, Jonathan R.; Hansen, Søren

    2011-01-01

    We developed a new (to our knowledge) protocol to generate giant unilamellar vesicles (GUVs) composed of mixtures of single lipopolysaccharide (LPS) species and Escherichia coli polar lipid extracts. Four different LPSs that differed in the size of the polar headgroup (i.e., LPS smooth > LPS...

  3. 巨噬细胞中脂多糖诱导微小RNA-155表达与地塞米松的抑制%Dexamethasone inhibits the expression of microRNA-155 in macrophages induced by lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    王中华; 王首红; 吴岩; 李宙; 廖小龙; 覃铁和

    2016-01-01

    BACKGROUND:It is unclear about dexamethasone effect on the regulation of microRNA-155 expression in macrophages. OBJCTIVE:To explore whether dexamethasone can regulate the expression of microRNA-155 in macrophages. METHODS:(1) Lipopolysaccharide stimulation of mouse macrophages: mouse macrophage cel lines, Raw264.7 cels, were culturedin vitro and stimulated by lipopolysaccharide. Cultured cels were colected at 0, 0.5, 2, 6 hours after culture to detect the dynamical expression of microRNA-155. (2) Dexamethasone intervention for macrophages: Macrophages were divided into four groups: control group treated with phosphate buffer; lipopolysaccharide group stimulated by lipopolysaccharide; combined group given intervention with dexamethasone and lipopolysaccharide; dexamethasone group cultured with dexamethasone. At 6 hours after culture, cel supernatant was colected to detect the expression of tumor necrosis factor α and interleukin-6 using ELISA method. Real-time fluorescence quantitative PCR was used to detect the expression of microRNA-155 in the Raw264.7 macrophages. RESULTS AND CONCLUSION:Lipopolysaccharide significantly increased the expression of tumor necrosis factor α, interleukin-6 and microRNA-155 after 6 hours of culture (P   目的:了解地塞米松是否调节巨噬细胞中微小RNA-155的表达。  方法:①脂多糖刺激小鼠巨噬细胞:体外培养小鼠巨噬细胞株 Raw264.7细胞,予脂多糖刺激。分别在培养0,0.5,2,6 h收集细胞,检测miRNA-155的动态表达。②地塞米松对巨噬细胞的干预:实验分4组:对照组予磷酸盐缓冲液培养;脂多糖组予脂多糖刺激;地塞米松+脂多糖组予地塞米松和脂多糖共同作用;地塞米松组予地塞米松培养。6 h后收集培养上清用ELISA法检测培养液中肿瘤坏死因子α、白细胞介素6等炎症因子表达,用实时荧光定量PCR法检测巨噬细胞中微小RNA-155的表达。  结果与

  4. Berberine reduces Toll-like receptor-mediated macrophage migration by suppression of Src enhancement.

    Science.gov (United States)

    Cheng, Wei-Erh; Ying Chang, Miao; Wei, Jyun-Yan; Chen, Yen-Jen; Maa, Ming-Chei; Leu, Tzeng-Horng

    2015-06-15

    Berberine is an isoquinoline with anti-inflammatory activity. We previously demonstrated that there was a loop of signal amplification between nuclear factor kappa B and Src for macrophage mobility triggered by the engagement of Toll-like receptors (TLRs). The simultaneous suppression of lipopolysaccharide (LPS)-mediated upregulation of inducible nitric oxide synthase, cyclooxygenase 2, and cell mobility in berberine-treated macrophages suggested Src might be a target of berberine. Indeed, th reduced migration, greatly suppressed Src induction in both protein and RNA transcript by berberine were observed in macrophages exposed to LPS, peptidoglycan, polyinosinic-polycytidylic acid, and CpG-oligodeoxynucleotides. In addition to Src induction, berberine also inhibited LPS-mediated Src activation in Src overexpressing macrophages and S-nitroso-N-acetylpenicillamine (a nitric oxide donor) could partly restore it. Moreover, berberine suppressed Src activity in fibronectin-stimulated macrophages and in v-Src transformed cells. These results implied that by effectively reducing Src expression and activity, berberine inhibited TLR-mediated cell motility in macrophages.

  5. 丙泊酚对脂多糖刺激人单核细胞丝裂原活化蛋白激酶信号通路的影响%The effects of propofol on the lipopolysaccharide induced activation of mitogen-activated protein kinase pathway in humanmononuc lear macrophage cells

    Institute of Scientific and Technical Information of China (English)

    薛琼; 屠伟峰; 陈茜; 唐靖; 古妙宁

    2012-01-01

    目的 研究丙泊酚对脂多糖(lipopolysaccharide,LPS)刺激人单核细胞(human mononuclear macrophage cell,THP-1)丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路的影响.方法 将体外培养的THP-1细胞按完全随机方法分为4组:对照组(C组):给予脂肪乳20 mg/L;LPS刺激组(L组):给予LPS10mg/L;丙泊酚处理组(P组):给予丙泊酚20 mg/L;丙泊酚处理合并LPS刺激组(P+L组):给予丙泊酚20mg/L及LPS10 mg/L.在刺激后0.5、1、2、6h4个时间点通过免疫蛋白印迹分析(Western blot)法检测磷酸化p38MAPK (p-p38MAPK),磷酸化细胞外信号调节激酶(P-extracellular-signal regulated protein kinase,p-ERK)1/2及磷酸化c-Jun氨基末端激酶(p-c-Jun amino-terminal kinase,p-JNK)1/2含量的变化.结果 给予LPS刺激THP-1细胞0.5 h时,L组p-p38MAPK、p-ERK1/2及p-JNK1/2的相对灰度值分别为14.67±0.82、1.34±0.05、4.49±0.51,与C组比较表达均显著增加(P<0.05).给予刺激1h时,L组p-p38MAPK、p-ERK1/2及p-JNK1/2的相对灰度值分别为11.78±0.75、0.58±0.05、3.31±0.55,与C组比较表达均显著增加(P<0.05);P+L组p-ERK1/2的相对灰度值为0.14±0.02,与L组比较磷酸化水平显著降低(P<0.05).给予刺激2h时,L组p-p38MAPK和p-JNK1/2的相对灰度值分别为15.60±0.96、8.33±0.70,与C组比较表达均显著增加(P<0.05);P+L组p-p38MAPK和p-JNK1/2的相对灰度值分别为4.52±0.23、1.80±0.70,与L组比较磷酸化水平显著降低(P<0.05).给予刺激6h时,L组p-p38MAPK及p-JNK1/2的相对灰度值分别为18.89±1.22、2.58±0.50,与C组比较表达均显著增加(P<0.05);P+L组p-p38MAPK的相对灰度值为3.91±0.30,与L组比较磷酸化水平显著降低(P<0.05).结论 丙泊酚抑制由LPS刺激THP-1细胞引起的p-p38MAPK、p-ERK1/2及p-JNK1/2表达增加,这可能是其抗炎的重要作用机制之一.%Objective To study the effects of propofol on the lipopolysaccharide induced activation of mitogen

  6. Nanostructure formation enhances the activity of LPS-neutralizing peptides.

    NARCIS (Netherlands)

    Mas-Moruno, C.; Cascales, L.; Cruz, L.J.; Mora, P.; Perez-Paya, E.; Albericio, F.

    2008-01-01

    Peptides that interact with lipopolysaccharide (LPS) can provide the basis for the development of new antisepsis agents. In this work, several LPS-neutralizing acyl peptides derived from LALF, BPI, and SAP were prepared, structurally characterized, and biologically evaluated. In all cases, peptides

  7. Lipopolysaccharide preconditioning protects hepatocytes from ischemia/reperfusion injury (IRI through inhibiting ATF4-CHOP pathway in mice.

    Directory of Open Access Journals (Sweden)

    Jianhua Rao

    Full Text Available BACKGROUND: Low-dose lipopolysaccharide (LPS preconditioning-induced liver protection has been demonstrated during ischemia-reperfusion injury (IRI in several organs but has not been sufficiently elucidated underlying causal mechanism. This study investigated the role of low-dose LPS preconditioning on ATF4-CHOP pathway as well as the effects of the pathway on tissue injury and inflammation in a mouse model of liver partial-warm IRI. METHODS: LPS (100 µg/kg/d was injected intraperitoneally two days before ischemia. Hepatic injury was evaluated based on serum alanine aminotransferase levels, histopathology, and caspase-3 activity. The ATF4-CHOP pathway and its related apoptotic molecules were investigated after reperfusion. The role of LPS preconditioning on apoptosis and ATF4-CHOP pathway was examined in vitro. Moreover, the effects of the ATF4-CHOP pathway on apoptosis, Caspase-12, and Caspase-3 were determined with ATF4 small interfering RNA (siRNA. Inflammatory cytokine expression was also checked after reperfusion. Inflammatory cytokines and related signaling pathways were analyzed in vitro in macrophages treated by LPS preconditioning or ATF4 siRNA. RESULTS: LPS preconditioning significantly attenuated liver injury after IRI. As demonstrated by in vitro experiments, LPS preconditioning significantly reduced the upregulation of the ATF4-CHOP pathway and inhibited Caspase-12 and Caspase-3 activation after IRI. Later experiments showed that ATF4 knockdown significantly suppressed CHOP, cleaved caspase-12 and caspase-3 expression, as well as inhibited hepatocellular apoptosis. In addition, in mice pretreated with LPS, TNF-α and IL-6 were inhibited after reperfusion, whereas IL-10 was upregulated. Similarly, low-dose LPS significantly inhibited TNF-α, IL-6, ATF4-CHOP pathway, NF-κB pathway, and ERK1/2 in high-dose LPS-stimulated macrophages, whereas IL-10 and cytokine signaling (SOCS-3 suppressor were induced. Importantly, ATF4 siRNA is

  8. The role of TREM-2 in internalization and intracellular survival of Brucella abortus in murine macrophages.

    Science.gov (United States)

    Wei, Pan; Lu, Qiang; Cui, Guimei; Guan, Zhenhong; Yang, Li; Sun, Changjiang; Sun, Wanchun; Peng, Qisheng

    2015-02-15

    Triggering receptor expressed on myeloid cells-2 (TREM-2) is a cell surface receptor primarily expressed on macrophages and dendritic cells. TREM-2 functions as a phagocytic receptor for bacteria as well as an inhibitor of Toll like receptors (TLR) induced inflammatory cytokines. However, the role of TREM-2 in Brucella intracellular growth remains unknown. To investigate whether TREM-2 is involved in Brucella intracellular survival, we chose bone marrow derived macrophages (BMDMs), in which TREM-2 is stably expressed, as cell model. Colony formation Units (CFUs) assay suggests that TREM-2 is involved in the internalization of Brucella abortus (B. abortus) by macrophages, while silencing of TREM-2 decreases intracellular survival of B. abortus. To further study the underlying mechanisms of TREM-2-mediated bacterial intracellular survival, we examined the activation of B. abortus-infected macrophages through determining the kinetics of activation of the three MAPKs, including ERK, JNK and p38, and measuring TNFα production in response to lipopolysaccharide (LPS) of Brucella (BrLPS) or B. abortus stimulation. Our data show that TREM-2 deficiency promotes activation of Brucella-infected macrophages. Moreover, our data also demonstrate that macrophage activation promotes killing of Brucella by enhancing nitric oxygen (NO), but not reactive oxygen species (ROS) production, macrophage apoptosis or cellular death. Taken together, these findings provide a novel interpretation of Brucella intracellular growth through inhibition of NO production produced by TREM-2-mediated activated macrophages.

  9. Protective effect of cyclosporin A and FK506 from nitric oxide-dependent apoptosis in activated macrophages

    Science.gov (United States)

    Hortelano, Sonsoles; López-Collazo, Eduardo; Boscá, Lisardo

    1999-01-01

    Activation of macrophages with lipopolysaccharide (LPS) and low doses of interferon-γ (IFN-γ) induced apoptotic death through a nitric oxide-dependent pathway. Treatment of cells with the immunosuppressors cyclosporin A (CsA) or FK506 inhibited the activation-dependent apoptosis. These drugs decreased the up-regulation of p53 and Bax characteristic of activated macrophages. Moreover, incubation of activated macrophages with CsA and FK506 contributed to maintain higher levels of Bcl-2 than in LPS/IFN-γ treated cells. The inhibition of apoptosis exerted by CsA and FK506 in macrophages was also observed when cell death was induced by treatment with chemical nitric oxide donors. Incubation of macrophages with LPS/IFN-γ barely affected caspase-1 but promoted an important activation of caspase-3. Both CsA and FK506 inhibited pathways leading to caspase-3 activation. Moreover, the cleavage of poly(ADP-ribose) polymerase, a well established caspase substrate, was reduced by these immunosuppressive drugs. CsA and FK506 reduced the release of cytochrome c to the cytosol and the activation of caspase-3 in cells treated with nitric oxide donors. These results indicate that CsA and FK506 protect macrophages from nitric oxide-dependent apoptosis and suggest a contribution of the macrophage to innate immunity under conditions of immunosuppression of the host. PMID:10205001

  10. Cafestol, a coffee-specific diterpene, is a novel extracellular signal-regulated kinase inhibitor with AP-1-targeted inhibition of prostaglandin E2 production in lipopolysaccharide-activated macrophages.

    Science.gov (United States)

    Shen, Ting; Lee, Jaehwi; Lee, Eunji; Kim, Seong Hwan; Kim, Tae Woong; Cho, Jae Youl

    2010-01-01

    Coffee is a popular beverage worldwide with various nutritional benefits. Diterpene cafestol, one of the major components of coffee, contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects. In this study, we examined the precise molecular mechanism of the antiinflammatory activity of cafestol in terms of prostaglandin E(2) (PGE(2)) production, a critical factor involved in inflammatory responses. Cafestol inhibited both PGE(2) production and the mRNA expression of cyclooxygenase (COX)-2 from lipopolysaccharide (LPS)-treated RAW264.7 cells. Interestingly, this compound strongly decreased the translocation of c-Jun into the nucleus and AP-1 mediated luciferase activity. In kinase assays using purified extracellular signal-regulated kinase 2 (ERK2) or immunoprecipitated ERK prepared from LPS-treated cells in the presence or absence of cafestol, it was found that this compound can act as an inhibitor of ERK2 but not of ERK1 and mitogen-activated protein kinase kinase 1 (MEK 1). Therefore our data suggest that cafestol may be a novel ERK inhibitor with AP-1-targeted inhibitory activity against PGE(2) production in LPS-activated RAW264.7 cells.

  11. Anti-CD163-dexamethasone conjugate inhibits the acute phase response to lipopolysaccharide in rats

    DEFF Research Database (Denmark)

    Thomsen, Karen Louise; Møller, Holger Jon; Graversen, Jonas Heilskov

    2016-01-01

    AIM: To study the effect of a new anti-CD163-dexamethasone conjugate targeting activated macrophages on the hepatic acute phase response in rats. METHODS: Wistar rats were injected intravenous with either the CD163 targeted dexamethasone-conjugate (0.02 mg/kg) or free dexamethasone (0.02 or 1 mg/...... the hepatic acute phase response to LPS. This indicates an anti-inflammatory potential of the conjugate in vivo.......AIM: To study the effect of a new anti-CD163-dexamethasone conjugate targeting activated macrophages on the hepatic acute phase response in rats. METHODS: Wistar rats were injected intravenous with either the CD163 targeted dexamethasone-conjugate (0.02 mg/kg) or free dexamethasone (0.02 or 1 mg....../kg) 24 h prior to lipopolysaccharide (LPS) (2.5 mg/kg intraperitoneal). We measured plasma concentrations of tumour necrosis factor-α (TNF-α) and interleukin 6 (IL-6) 2 h post-LPS and liver mRNAs and serum concentrations of the rat acute phase protein α-2-macroglobulin (α-2-M) 24 h after LPS. Also...

  12. Thrombospondin-1 production is enhanced by Porphyromonas gingivalis lipopolysaccharide in THP-1 cells.

    Directory of Open Access Journals (Sweden)

    Misa Gokyu

    Full Text Available Periodontitis is a chronic inflammatory disease caused by gram-negative anaerobic bacteria. Monocytes and macrophages stimulated by periodontopathic bacteria induce inflammatory mediators that cause tooth-supporting structure destruction and alveolar bone resorption. In this study, using a DNA microarray, we identified the enhanced gene expression of thrombospondin-1 (TSP-1 in human monocytic cells stimulated by Porphyromonas gingivalis lipopolysaccharide (LPS. TSP-1 is a multifunctional extracellular matrix protein that is upregulated during the inflammatory process. Recent studies have suggested that TSP-1 is associated with rheumatoid arthritis, diabetes mellitus, and osteoclastogenesis. TSP-1 is secreted from neutrophils, monocytes, and macrophages, which mediate immune responses at inflammatory regions. However, TSP-1 expression in periodontitis and the mechanisms underlying TSP-1 expression in human monocytic cells remain unknown. Here using real-time RT-PCR, we demonstrated that TSP-1 mRNA expression level was significantly upregulated in inflamed periodontitis gingival tissues and in P. gingivalis LPS-stimulated human monocytic cell line THP-1 cells. TSP-1 was expressed via Toll-like receptor (TLR 2 and TLR4 pathways. In P. gingivalis LPS stimulation, TSP-1 expression was dependent upon TLR2 through the activation of NF-κB signaling. Furthermore, IL-17F synergistically enhanced P. gingivalis LPS-induced TSP-1 production. These results suggest that modulation of TSP-1 expression by P. gingivalis plays an important role in the progression and chronicity of periodontitis. It may also contribute a new target molecule for periodontal therapy.

  13. 过氧化物酶体增殖物激活受体α(PPARα)对脂多糖刺激巨噬细胞引发炎症反应的影响%Activated peroxisome proliferator-activated receptor αinhibiting the lipopolysaccharide-induced macrophage-mediated inflammatory responses by promoting the autophagy

    Institute of Scientific and Technical Information of China (English)

    杨蓉蓉; 张莉; 张向颖; 时红波; 陈德喜; 段钟平; 任锋; 王琦

    2015-01-01

    Objective To investigate the effects of peroxisome proliferator-activated receptor α( PPARα) on macrophage-mediated inflammatory responses with the interference of lipopolysaccharide and the possible mechanism.Methods The bone marrow stem cells were isolated from the femora of mice.The granulocyte-macrophage colony stimulating factor ( GM-CSF) was used to stimulate the in vitro differentiation from bone marrow stem cells into primary macrophages.An in vitro model with cultured cells expressing in-flammatory cytokines was established by treating the primary macrophages with lipopolysaccharide ( LPS) .A specific chemical agonist, Wy-14643, was used to activate PPARα. Autophagy inhibitors including 3-methyladenine (3-MA) and small interfering RNA against Atg7 ( Atg7 siRNA) were used to inhibit the autophagy.Western blot assay was performed to detect the expression of autophagy-related proteins ( Atg5, Atg7, Beclin-1 and LC3).The transcriptional levels of TNF-α, IL-1β, IL-6, Atg5, Atg7 and Beclin-1 were analyzed by qRT-PCR.Results Compared with the macrophages treated with LPS alone, those pretreated with various concentrations of Wy-14643 (10 μmol/L, 25 μmol/L and 50 μmol/L) showed inhibited ex-pression of proinflammatory cytokines ( TNF-α,IL-1βand IL-6) and enhanced expression of autophagy-relat-ed proteins (Atg5, Atg7 and Beclin-1) at mRNA level in a dose-dependent manner.The expression of auto-phagy-related proteins (Atg5, Atg7, Beclin-1 and LC3) by macrophages was promoted with the pretreatment of Wy-14643 as indicated by Western blot assay.The transcriptional levels of TNF-α, IL-1βand IL-6 were increased in Wy-14643 pretreated-macrophages after stimulation with 3-MA or Atg7 siRNA .Conclusion PPARαsuppressed the macrophage-mediated inflammatory responses by promoting autophagy, suggesting that the PPARα-autophagy pathway might be one of the signaling pathways regulating LPS induced-inflamma-tory responses.%目的:探讨过氧化物酶

  14. Neuropeptide FF inhibits LPS-mediated osteoclast differentiation of RAW264.7 cells.

    Science.gov (United States)

    Sun, Yu-Long; Chen, Zhi-Hao; Li, Di-Jie; Zhao, Fan; Ma, Xiao-Li; Shang, Peng; Yang, Tuanming; Qian, Airong

    2014-01-01

    Neuropeptide FF (NPFF) has been implicated in many physiological processes. Previously, we have reported that NPFF modulates the viability and nitric oxide (NO) production of RAW264.7 macrophages. In this study, we investigated the influence of NPFF on lipopolysaccharide (LPS)-mediated osteoclast formation of RAW264.7 cells. Our results suggest that, NPFF dose-dependently (1 nM, 10 nM and 100 nM) inhibited osteoclast formation, TRAP enzyme activity and bone resorption in osteoclasts induced by LPS respectively. Moreover, LPS-provoked NO release was also inhibited by NPFF treatment, indicating a NO-dependent pathway is mainly involved. Furthermore, the alterations of osteoclast marker genes were also assessed including TRAP, Cathepsin K, MMP-9, NFATc1 and Runx2. NPFF downregulated LPS-caused gene augmentations of TRAP, Cathepsin K and MMP-9, whereas showed no influences on NFATc1 and Runx2. In addition, NPFF receptor 2 (NPFFR2) mRNA expression was also augmented in response to NPFF treatment, hinting the involvement of NPFFR2 pathway. It should be mentioned that RF9 (1 µ M), a reported pharmacological inhibitor for NPFF receptors, exerted NPFF-like agonist properties as to attenuate osteoclastogenesis. Collectively, our findings provide new evidence for the in vitro activity of NPFF on osteoclasts, which may be helpful to extend the scope of NPFF functions.

  15. New model of macrophage acquisition of the lymphatic endothelial phenotype.

    Directory of Open Access Journals (Sweden)

    Kelly L Hall

    Full Text Available BACKGROUND: Macrophage-derived lymphatic endothelial cell progenitors (M-LECPs contribute to new lymphatic vessel formation, but the mechanisms regulating their differentiation, recruitment, and function are poorly understood. Detailed characterization of M-LECPs is limited by low frequency in vivo and lack of model systems allowing in-depth molecular analyses in vitro. Our goal was to establish a cell culture model to characterize inflammation-induced macrophage-to-LECP differentiation under controlled conditions. METHODOLOGY/PRINCIPAL FINDINGS: Time-course analysis of diaphragms from lipopolysaccharide (LPS-treated mice revealed rapid mobilization of bone marrow-derived and peritoneal macrophages to the proximity of lymphatic vessels followed by widespread (∼50% incorporation of M-LECPs into the inflamed lymphatic vasculature. A differentiation shift toward the lymphatic phenotype was found in three LPS-induced subsets of activated macrophages that were positive for VEGFR-3 and many other lymphatic-specific markers. VEGFR-3 was strongly elevated in the early stage of macrophage transition to LECPs but undetectable in M-LECPs prior to vascular integration. Similar transient pattern of VEGFR-3 expression was found in RAW264.7 macrophages activated by LPS in vitro. Activated RAW264.7 cells co-expressed VEGF-C that induced an autocrine signaling loop as indicated by VEGFR-3 phosphorylation inhibited by a soluble receptor. LPS-activated RAW264.7 macrophages also showed a 68% overlap with endogenous CD11b(+/VEGFR-3(+ LECPs in the expression of lymphatic-specific genes. Moreover, when injected into LPS- but not saline-treated mice, GFP-tagged RAW264.7 cells massively infiltrated the inflamed diaphragm followed by integration into 18% of lymphatic vessels. CONCLUSIONS/SIGNIFICANCE: We present a new model for macrophage-LECP differentiation based on LPS activation of cultured RAW264.7 cells. This system designated here as the "RAW model" mimics

  16. TLR4 mediates LPS-induced HO-1 expression in mouse liver: Role of TNF-α and IL-1β

    Institute of Scientific and Technical Information of China (English)

    Yong Song; Yi Shi; Li-Hua Ao; Alden H; Harken; Xian-Zhong Meng

    2003-01-01

    AIM: Heme oxygenase (HO)-1 catalyzes the conversion of heme to biliverdin, iron and carbon monoxide. HO-1 is induced by many stimuli including heme, Hb, heat stress,lipopolysaccharide (LPS) and cytokines. Previous studies demonstrated that LPS induced HO-1 gene activation and HO-1 expression in liver. However, the mechanisms of LPSinduced HO-1 expression in liver remain unknown. The effect of toil-like receptor-4 (TLR4) on LPS-induced liver HO-1expression and the role of TNF-α and IL-1β in this condition were determined.METHODS: HO-1 expression was determined by immunofluorescent staining and immunoblotting. Double immunofluorescent staining was performed to determine the cell type of HO-1 expression in liver.RESULTS: A low dose of LPS significantly increased HO-1expression in the liver which was localized in Kupffer cells only. Furthermore, HO-1 expression was enhanced by three doses of LPS. HO-1 expression was significantly inhibited in the liver of TLR4 mutant mice. While the liver HO-1expression in TNF KO mice was much lower than that in C57 mice following the same LPS treatment, IL-1β KO had a slight influence on liver HO-1 expression following LPS treatment.CONCLUSION: The present results confirm that macrophages are the major source of HO-1 in the liver induced by LPS.This study demonstrates that TLR4 plays a dominant role in mediating HO-1 expression following LPS. LPS-induced HO-1 expression is mainly mediated by endogenous TNF-α, but only partially by endogenous IL-1β.

  17. Emodin Ameliorates LPS-Induced Acute Lung Injury, Involving the Inactivation of NF-κB in Mice

    Directory of Open Access Journals (Sweden)

    Min Xiao

    2014-10-01

    Full Text Available Acute lung injury (ALI and its severe manifestation of acute respiratory distress syndrome (ARDS are well-known illnesses. Uncontrolled and self-amplified pulmonary inflammation lies at the center of the pathology of this disease. Emodin, the bio-active coxund of herb Radix rhizoma Rhei, shows potent anti-inflammatory properties through inactivation of nuclear factor-κB (NF-κB. The aim of this study was to evaluate the effect of emodin on lipopolysaccharide (LPS-induced ALI in mice, and its potential bio-mechanism. In our study, BALB/c mice were stimulated with LPS to induce ALI. After 72 h of LPS stimulation, pulmonary pathological changes, lung injury scores, pulmonary edema, myeloperoxidase (MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in bronchoalveolar lavage fluid (BALF, and MCP-1 and E-selectin expression were notably attenuated by emodin in mice. Meanwhile, our data also revealed that emodin significantly inhibited the LPS-enhanced the phosphorylation of NF-κB p65 and NF-κB p65 DNA binding activity in lung. Our data indicates that emodin potently inhibits LPS-induced pulmonary inflammation, pulmonary edema and MCP-1 and E-selectin expression, and that these effects were very likely mediated by inactivation of NF-κB in mice. These results suggest a therapeutic potential of emodin as an anti-inflammatory agent for ALI/ARDS treatment.

  18. Aging negatively skews macrophage TLR2- and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway.

    Science.gov (United States)

    Boehmer, Eric D; Meehan, Michael J; Cutro, Brent T; Kovacs, Elizabeth J

    2005-12-01

    We recently reported that macrophages from aged mice produced less tumor necrosis factor (TNF)-alpha following lipopolysaccharide (LPS) stimulation than macrophages from young animals. This correlated with decreased levels of phosphorylated and total p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs). Here, we went on to determine if age affects other Toll-like (TLR) and non-TLR signaling pathways. We found that LPS- and zymosan-stimulated TNF-alpha and IL-6 production is attenuated in splenic macrophages from aged mice compared to young. Conversely, LPS-stimulated, but not zymosan-stimulated, IL-10 production from the aged group was elevated over that of the young group. In contrast, IL-2-stimulated TNF-alpha and IL-6 production was not affected by age. The age-associated changes did not correlate with alterations in the cell-surface expression of TLR2, TLR4, or IL-2Rbeta. Macrophages from aged mice demonstrated lower p38 MAPK and MAPK-activated protein kinase (APK)-2 activation. Protein expression of p38, but not MAPK-APK-2, was reduced with age. Additionally, nuclear factor (NF)-kappaB activation was significantly decreased in macrophages from aged mice after exposure to LPS, but not IL-2. These data indicate that age-associated macrophage signaling alterations are pathway-specific and suggest that TLR-mediated pathways are impaired with age at the level of MAPK expression.

  19. Hyperoxia Exacerbates Postnatal Inflammation-Induced Lung Injury in Neonatal BRP-39 Null Mutant Mice Promoting the M1 Macrophage Phenotype

    Directory of Open Access Journals (Sweden)

    Mansoor A. Syed

    2013-01-01

    Full Text Available Rationale. Hyperoxia exposure to developing lungs—critical in the pathogenesis of bronchopulmonary dysplasia—may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. Objective. We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. Methods. We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2 studies. For in vivo studies, wild-type (WT and BRP-39−/− mice received continuous exposure to 21% O2 (control mice or 100% O2 from postnatal (PN 1 to PN7 days, along with intranasal lipopolysaccharide (LPS administered on alternate days (PN2, -4, and -6. Lung histology, bronchoalveolar lavage (BAL cell counts, BAL protein, and cytokines measurements were performed. Measurements and Main Results. Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39−/− mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. Conclusions. These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury.

  20. Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages.

    Science.gov (United States)

    Xuan, Dongying; Han, Qianqian; Tu, Qisheng; Zhang, Lan; Yu, Liming; Murry, Dana; Tu, Tianchi; Tang, Yin; Lian, Jane B; Stein, Gary S; Valverde, Paloma; Zhang, Jincai; Chen, Jake

    2016-05-01

    Emerging evidence suggests an important role for epigenetic mechanisms in modulating signals during macrophage polarization and inflammation. JMJD3, a JmjC family histone demethylase necessary for M2 polarization is also required for effective induction of multiple M1 genes by lipopolysaccharide (LPS). However, the effects of JMJD3 to inflammation in the context of obesity remains unknown. To address this deficiency, we firstly examined the expression of JMJD3 in macrophage isolated from bone marrow and adipose tissue of diet induced obesity (DIO) mice. The results indicated that JMJD3 was down-regulated in obesity. Adiponectin (APN), a factor secreted by adipose tissue which is down-regulated in obesity, functions to switch macrophage polarization from M1 to M2, thereby attenuating chronic inflammation. Intriguingly, our results indicated that APN contributed to JMJD3 up-regulation, reduced macrophage infiltration in obese adipose tissue, and abolished the up-regulation of JMJD3 in peritoneal macrophages isolated from DIO mice when challenged with Porphyromonas gingivalis LPS (pg.lps). To elucidate the interaction of APN and JMJD3 involved in macrophage transformation in the context of inflammation, we designed the loss and gain-function experiments of APN in vivo with APN(-/-) mice with experimental periodontitis and in vitro with macrophage isolated from APN(-/-) mice. For the first time, we found that APN can help to reduce periodontitis-related bone loss, modulate JMJD3 and IRF4 expression, and macrophage infiltration. Therefore, it can be inferred that APN may contribute to anti-inflammation macrophage polarization by regulating JMJD3 expression, which provides a basis for macrophage-centered epigenetic therapeutic strategies.

  1. Structure and immunogenicity of the rough-type lipopolysaccharide from the periodontal pathogen Tannerella forsythia.

    Science.gov (United States)

    Posch, Gerald; Andrukhov, Oleh; Vinogradov, Evgeny; Lindner, Buko; Messner, Paul; Holst, Otto; Schäffer, Christina

    2013-06-01

    Tannerella forsythia is a Gram-negative anaerobic organism that inhabits subgingival plaque biofilms and is covered with a so far unique surface layer composed of two glycoproteins. It belongs to the so-called "red complex" of bacteria comprising species that are associated with periodontal disease. While the surface layer glycoprotein glycan structure had been elucidated recently and found to be a virulence factor, no structural data on the lipopolysaccharide (LPS) of this organism were available. In this study, the T. forsythia LPS structure was partially elucidated by a combined mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) approach and initial experiments to characterize its immunostimulatory potential were performed. The T. forsythia LPS is a complex, rough-type LPS with a core region composed of one 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residue, three mannose residues, and two glucosamine residues. MS analyses of O-deacylated LPS proved that, in addition, one phosphoethanolamine residue and most likely one galactose-phosphate residue were present, however, their positions could not be identified. Stimulation of human macrophages with T. forsythia LPS resulted in the production of the proinflammatory cytokines interleukin-1 (IL-1), IL-6, and tumor necrosis factor alpha in a dose-dependent manner. The response to T. forsythia LPS was observed only upon stimulation in the presence of fetal calf serum (FCS), whereas no cytokine production was observed in the absence of FCS. This finding suggests that the presence of certain additional cofactors is crucial for the immune response induced by T. forsythia LPS.

  2. Sesamin inhibits lipopolysaccharide-induced inflammation and extracellular matrix catabolism in rat intervertebral disc.

    Science.gov (United States)

    Li, Kang; Li, Yan; Xu, Bo; Mao, Lu; Zhao, Jie

    2016-09-01

    Intervertebral disc (IVD) degeneration contributes to most spinal degenerative diseases, while treatment inhibiting IVD degeneration is still in the experimental stage. Sesamin, a bioactive component extracted from sesame, has been reported to exert chondroprotective and anti-inflammatory effects. Here, we analyzed the anti-inflammatory and anti-catabolic effects of sesamin on rat IVD in vitro and ex vivo. Results show that sesamin significantly inhibits the lipopolysaccharide (LPS)-induced expression of catabolic enzymes (MMP-1, MMP-3, MMP-13, ADAMTS-4, ADAMTS-5) and inflammation factors (IL-1β, TNF-α, iNOS, NO, COX-2, PGE2) in a dose-dependent manner in vitro. It is also proven that migration of macrophages induced by LPS can be inhibited by treatment with sesamin. Organ culture experiments demonstrate that sesamin protects the IVD from LPS-induced depletion of the extracellular matrix ex vivo. Moreover, sesamin suppresses LPS-induced activation of the mitogen-activated protein kinase (MAPK) pathway through inhibiting phosphorylation of JNK, the common downstream signaling pathway of LPS and IL-1β, which may be the potential mechanism of the effects of sesamin. In light of our results, sesamin protects the IVD from inflammation and extracellular matrix catabolism, presenting positive prospects in the treatment of IVD degenerative diseases.

  3. Preconditioning with Lipopolysaccharide or Lipoteichoic Acid Protects against Staphylococcus aureus Mammary Infection in Mice

    Directory of Open Access Journals (Sweden)

    Koen Breyne

    2017-07-01

    Full Text Available Staphylococcus aureus is one of the most causative agents of mastitis and is associated with chronic udder infections. The persistency of the pathogen is believed to be the result of an insufficient triggering of local inflammatory signaling. In this study, the preclinical mastitis model was used, aiming to evaluate if lipopolysaccharide (